WorldWideScience

Sample records for two-parameter elastic foundation

  1. Vibrations And Stability Of Bernoulli-Euler And Timoshenko Beams On Two-Parameter Elastic Foundation

    Directory of Open Access Journals (Sweden)

    Obara P.

    2014-12-01

    Full Text Available The vibration and stability analysis of uniform beams supported on two-parameter elastic foundation are performed. The second foundation parameter is a function of the total rotation of the beam. The effects of axial force, foundation stiffness parameters, transverse shear deformation and rotatory inertia are incorporated into the accurate vibration analysis. The work shows very important question of relationships between the parameters describing the beam vibration, the compressive force and the foundation parameters. For the free supported beam, the exact formulas for the natural vibration frequencies, the critical forces and the formula defining the relationship between the vibration frequency and the compressive forces are derived. For other conditions of the beam support conditional equations were received. These equations determine the dependence of the frequency of vibration of the compressive force for the assumed parameters of elastic foundation and the slenderness of the beam.

  2. Foundation calculation for buildings and structures with two elastic characteristics of the foundation using features of Fourier transformsfor finite functions

    Directory of Open Access Journals (Sweden)

    Kurbatskiy Evgeniy Nikolaevich

    2014-01-01

    Full Text Available The problem of a beam resting on elastic foundation often occurs in the analysis of building, geotechnical, highway, and railroad structures. Its solution demands modeling of the mechanical behavior of the beam, the mechanical behavior of the soil as elastic subgrade and the form of interaction between the beam and the soil. The oldest, most famous and most frequently used mechanical model is the one devised by Winkler (1867, in which the beam-supporting soil is modeled as a series of closely spaced, mutually independent, linear elastic vertical springs, which, evidently, provide resistance in direct proportion to the deflection of the beam.The solution is presented for the problem of an Euler–Bernoulli beam supported by an infinite two-parameter Pasternak foundation. The beam is subjected to arbitrarily distributed or concentrated vertical loading along its length. Static response of a beam on an elastic foundation characterized by two parameters is investigated assuming, that the beam is subjected to external loads and two concentrated edge load. The governing equations of the problem are obtained and solved by pointing out that there is a concentrated edge foundation reaction in addition to a continuous foundation reaction along the beam axis in the case of complete contact in the foundation reactions of the two-parameter foundation model. The proposed method is based on the properties of Fourier transforms of the finite functions. Particular attention is paid to the problem, taking into account the deformation of soil areas outside the beam. The beam model with two foundation coefficients more realistically describes the behavior of strip footings under loading.

  3. Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model

    Science.gov (United States)

    Attar, M.; Karrech, A.; Regenauer-Lieb, K.

    2014-05-01

    The free vibration of a shear deformable beam with multiple open edge cracks is studied using a lattice spring model (LSM). The beam is supported by a so-called two-parameter elastic foundation, where normal and shear foundation stiffnesses are considered. Through application of Timoshenko beam theory, the effects of transverse shear deformation and rotary inertia are taken into account. In the LSM, the beam is discretised into a one-dimensional assembly of segments interacting via rotational and shear springs. These springs represent the flexural and shear stiffnesses of the beam. The supporting action of the elastic foundation is described also by means of normal and shear springs acting on the centres of the segments. The relationship between stiffnesses of the springs and the elastic properties of the one-dimensional structure are identified by comparing the homogenised equations of motion of the discrete system and Timoshenko beam theory.

  4. Shells on elastic foundations

    International Nuclear Information System (INIS)

    Das, Y.C.; Kedia, K.K.

    1977-01-01

    No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)

  5. Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations

    International Nuclear Information System (INIS)

    Civalek, Ö.

    2014-01-01

    In the present study nonlinear static and dynamic responses of shallow spherical shells resting on Winkler–Pasternak elastic foundations are carried out. The formulation of the shells is based on the Donnell theory. The nonlinear governing equations of motion of shallow shells are discretized in space and time domains using the discrete singular convolution and the differential quadrature methods, respectively. The validity of the present method is demonstrated by comparing the present results with those available in the open literature. The effects of the Winkler and Pasternak foundation parameters on nonlinear static and dynamic response of shells are investigated. Some results are also presented for circular plate as special case. Damping effect on nonlinear dynamic response of shells is studied. It is important to state that the increase in damping parameter causes decrease in the dynamic response of the shells. It is shown that the shear parameter of the foundation has a significant influence on the dynamic and static response of the shells. Also, the response of the shell is decreased with the increasing value of the shear parameter of the foundation. Parametric studies considering different geometric variables have also been investigated. -- Highlights: • Nonlinear responses of shallow spherical shells are presented. • The effects of foundation parameters are investigated. • Damping effect on nonlinear dynamic response of shells is also studied

  6. DYNAMIC RESPONSE OF THICK PLATES ON TWO PARAMETER ELASTIC FOUNDATION UNDER TIME VARIABLE LOADING

    OpenAIRE

    Ozgan, Korhan; Daloglu, Ayse T.

    2014-01-01

    In this paper, behavior of foundation plates with transverse shear deformation under time variable loading is presented using modified Vlasov foundation model. Finite element formulation of thick plates on elastic foundation is derived by using an 8-noded finite element based on Mindlin plate theory. Selective reduced integration technique is used to avoid shear locking problem which arises when smaller plate thickness is considered for the evaluation of the stiffness matrices. After comparis...

  7. Bending analysis of agglomerated carbon nanotube-reinforced beam resting on two parameters modified Vlasov model foundation

    Science.gov (United States)

    Ghorbanpour Arani, A.; Zamani, M. H.

    2018-06-01

    The present work deals with bending behavior of nanocomposite beam resting on two parameters modified Vlasov model foundation (MVMF), with consideration of agglomeration and distribution of carbon nanotubes (CNTs) in beam matrix. Equivalent fiber based on Eshelby-Mori-Tanaka approach is employed to determine influence of CNTs aggregation on elastic properties of CNT-reinforced beam. The governing equations are deduced using the principle of minimum potential energy under assumption of the Euler-Bernoulli beam theory. The MVMF required the estimation of γ parameter; to this purpose, unique iterative technique based on variational principles is utilized to compute value of the γ and subsequently fourth-order differential equation is solved analytically. Eventually, the transverse displacements and bending stresses are obtained and compared for different agglomeration parameters, various boundary conditions simultaneously and variant elastic foundation without requirement to instate values for foundation parameters.

  8. The effect of multi-directional nanocomposite materials on the vibrational response of thick shell panels with finite length and rested on two-parameter elastic foundations

    Science.gov (United States)

    Tahouneh, Vahid; Naei, Mohammad Hasan

    2016-03-01

    The main purpose of this paper is to investigate the effect of bidirectional continuously graded nanocomposite materials on free vibration of thick shell panels rested on elastic foundations. The elastic foundation is considered as a Pasternak model after adding a shear layer to the Winkler model. The panels reinforced by randomly oriented straight single-walled carbon nanotubes are considered. The volume fractions of SWCNTs are assumed to be graded not only in the radial direction, but also in axial direction of the curved panel. This study presents a 2-D six-parameter power-law distribution for CNTs volume fraction of 2-D continuously graded nanocomposite that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. The benefit of using generalized power-law distribution is to illustrate and present useful results arising from symmetric, asymmetric and classic profiles. The material properties are determined in terms of local volume fractions and material properties by Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient numerical tool is used to discretize governing equations and to implement boundary conditions. The fast rate of convergence of the method is shown and results are compared against existing results in literature. Some new results for natural frequencies of the shell are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded nanocomposite volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded nanocomposite materials.

  9. Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations

    International Nuclear Information System (INIS)

    Civalek, Omer; Acar, Mustafa Hilmi

    2007-01-01

    The method of discrete singular convolution (DSC) is used for the bending analysis of Mindlin plates on two-parameter elastic foundations for the first time. Two different realizations of singular kernels, such as the regularized Shannon's delta (RSD) kernel and Lagrange delta sequence (LDS) kernel, are selected as singular convolution to illustrate the present algorithm. The methodology and procedures are presented and bending problems of thick plates on elastic foundations are studied for different boundary conditions. The influence of foundation parameters and shear deformation on the stress resultants and deflections of the plate have been investigated. Numerical studies are performed and the DSC results are compared well with other analytical solutions and some numerical results

  10. Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution

    International Nuclear Information System (INIS)

    Baltacioglu, A.K.; Civalek, O.; Akgoez, B.; Demir, F.

    2011-01-01

    This paper presents nonlinear static analysis of a rectangular laminated composite thick plate resting on nonlinear two-parameter elastic foundation with cubic nonlinearity. The plate formulation is based on first-order shear deformation theory (FSDT). The governing equation of motion for a rectangular laminated composite thick plate is derived by using the von Karman equation. The nonlinear static deflections of laminated plates on elastic foundation are investigated using the discrete singular convolution method. The effects of foundation and geometric parameters of plates on nonlinear deflections are investigated. The validity of the present method is demonstrated by comparing the present results with those available in the literature. - Highlights: → Large deflection analysis of laminated composite plates are investigated. → As foundation, nonlinear elastic models have been used firstly. → The effects of three-parameter foundation are investigated in detail.

  11. Impact loads on beams on elastic foundations

    International Nuclear Information System (INIS)

    Kameswara Rao, N.S.V.; Prasad, B.B.

    1975-01-01

    Quite often, complex structural components are idealised as beams in engineering analysis and design. Also, equations governing the responses of shallow shells are mathematically equivalent to the equations governing the responses of beams on elastic foundations. Hence with possible applications in several technical disciplines, the behaviour of beams on elastic foundations subjected to impact loads is studied in detail in the present investigation both analytically and experimentally. The analytical methods include analysis and energy method. The effect of foundation parameters (stiffness, and damping constants) on the dynamic responses of the beam-foundation system has been analysed. In modal analysis, the free-vibration equation has been solved by replacing the applied impulse by suitable initial conditions and the solution has been obtained as the linear combination of an infinite sequence of discrete eigen-vectors. In the energy method, the beam-foundation system is treated to be under forced vibrations and the forcing function has been obtained using the Hertz's law of impact. In the case of free-free end conditions of the beam, the rigid body modes and the elastic modes have been superposed to obtain the total response. The responses predicted using modal analysis are higher than those obtained using energy method. From the present study it is observed that model analysis is preferable to energy method. (Auth.)

  12. Forced in-plane vibration of a thick ring on a unilateral elastic foundation

    Science.gov (United States)

    Wang, Chunjian; Ayalew, Beshah; Rhyne, Timothy; Cron, Steve; Dailliez, Benoit

    2016-10-01

    Most existing studies of a deformable ring on elastic foundation rely on the assumption of a linear foundation. These assumptions are insufficient in cases where the foundation may have a unilateral stiffness that vanishes in compression or tension such as in non-pneumatic tires and bushing bearings. This paper analyzes the in-plane dynamics of such a thick ring on a unilateral elastic foundation, specifically, on a two-parameter unilateral elastic foundation, where the stiffness of the foundation is treated as linear in the circumferential direction but unilateral (i.e. collapsible or tensionless) in the radial direction. The thick ring is modeled as an orthotropic and extensible circular Timoshenko beam. An arbitrarily distributed time-varying in-plane force is considered as the excitation. The Equations of Motion are explicitly derived and a solution method is proposed that uses an implicit Newmark scheme for the time domain solution and an iterative compensation approach to determine the unilateral zone of the foundation at each time step. The dynamic axle force transmission is also analyzed. Illustrative forced vibration responses obtained from the proposed model and solution method are compared with those obtained from a finite element model.

  13. Dynamic stability of a cantilevered Timoshenko beam on partial elastic foundations subjected to a follower force

    International Nuclear Information System (INIS)

    Ryu, Bong Jo; Shin, Kwang Bok; Yim, Kyung Bin; Yoon, Young Sik

    2006-01-01

    This paper presents the dynamic stability of a cantilevered Timoshenko beam with a concentrated mass, partially attached to elastic foundations, and subjected to a follower force. Governing equations are derived from the extended Hamilton's principle, and FEM is applied to solve the discretized equation. The influence of some parameters such as the elastic foundation parameter, the positions of partial elastic foundations, shear deformations, the rotary inertia of the beam, and the mass and the rotary inertia of the concentrated mass on the critical flutter load is investigated. Finally, the optimal attachment ratio of partial elastic foundation that maximizes the critical flutter load is presented

  14. Foundation plate on the elastic half-space, deterministic and probabilistic approach

    Directory of Open Access Journals (Sweden)

    Tvrdá Katarína

    2017-01-01

    Full Text Available Interaction between the foundation plate and subgrade can be described by different mathematical - physical model. Elastic foundation can be modelled by different types of models, e.g. one-parametric model, two-parametric model and a comprehensive model - Boussinesque (elastic half-space had been used. The article deals with deterministic and probabilistic analysis of deflection of the foundation plate on the elastic half-space. Contact between the foundation plate and subsoil was modelled using contact elements node-node. At the end the obtained results are presented.

  15. Lumped-parameter Model of a Bucket Foundation

    DEFF Research Database (Denmark)

    Andersen, Lars; Ibsen, Lars Bo; Liingaard, Morten

    2009-01-01

    efficient model that can be applied in aero-elastic codes for fast evaluation of the dynamic structural response of wind turbines. The target solutions, utilised for calibration of the lumped-parameter models, are obtained by a coupled finite-element/boundaryelement scheme in the frequency domain......, and the quality of the models are tested in the time and frequency domains. It is found that precise results are achieved by lumped-parameter models with two to four internal degrees of freedom per displacement or rotation of the foundation. Further, coupling between the horizontal sliding and rocking cannot...

  16. Free and Forced Vibration of the Moderately Thick Laminated Composite Rectangular Plate on Various Elastic Winkler and Pasternak Foundations

    Directory of Open Access Journals (Sweden)

    Dongyan Shi

    2017-01-01

    Full Text Available An improved Fourier series method (IFSM is applied to study the free and forced vibration characteristics of the moderately thick laminated composite rectangular plates on the elastic Winkler or Pasternak foundations which have elastic uniform supports and multipoints supports. The formulation is based on the first-order shear deformation theory (FSDT and combined with artificial virtual spring technology and the plate-foundation interaction by establishing the two-parameter foundation model. Under the framework of this paper, the displacement and rotation functions are expressed as a double Fourier cosine series and two supplementary functions which have no relations to boundary conditions. The Rayleigh-Ritz technique is applied to solve all the series expansion coefficients. The accuracy of the results obtained by the present method is validated by being compared with the results of literatures and Finite Element Method (FEM. In this paper, some results are obtained by analyzing the varying parameters, such as different boundary conditions, the number of layers and points, the spring stiffness parameters, and foundation parameters, which can provide a benchmark for the future research.

  17. Mathematical foundations of elasticity

    CERN Document Server

    Marsden, Jerrold E

    1994-01-01

    This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con

  18. Application of the Modified Vlasov Model to the Free Vibration Analysis of Thick Plates Resting on Elastic Foundations

    Directory of Open Access Journals (Sweden)

    Korhan Ozgan

    2009-01-01

    Full Text Available The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4 is used for plate bending analysis based on Mindlin plate theory which is effectively applied to the analysis of thin and thick plates when selective reduced integration technique is used. The first ten natural frequency parameters are presented in tabular and graphical forms to show the effects of the parameters considered in the study. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on elastic foundation is generally larger than that of the other parameters considered in the study.

  19. Oscillations of a Beam on a Non-Linear Elastic Foundation under Periodic Loads

    Directory of Open Access Journals (Sweden)

    Donald Mark Santee

    2006-01-01

    Full Text Available The complexity of the response of a beam resting on a nonlinear elastic foundation makes the design of this structural element rather challenging. Particularly because, apparently, there is no algebraic relation for its load bearing capacity as a function of the problem parameters. Such an algebraic relation would be desirable for design purposes. Our aim is to obtain this relation explicitly. Initially, a mathematical model of a flexible beam resting on a non-linear elastic foundation is presented, and its non-linear vibrations and instabilities are investigated using several numerical methods. At a second stage, a parametric study is carried out, using analytical and semi-analytical perturbation methods. So, the influence of the various physical and geometrical parameters of the mathematical model on the non-linear response of the beam is evaluated, in particular, the relation between the natural frequency and the vibration amplitude and the first period doubling and saddle-node bifurcations. These two instability phenomena are the two basic mechanisms associated with the loss of stability of the beam. Finally Melnikov's method is used to determine an algebraic expression for the boundary that separates a safe from an unsafe region in the force parameters space. It is shown that this can be used as a basis for a reliable engineering design criterion.

  20. Application of the Modified Vlasov Model to the Free Vibration Analysis of Thick Plates Resting on Elastic Foundations

    OpenAIRE

    Ozgan, Korhan; Daloglu, Ayse T.

    2009-01-01

    The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4) is used for plate bending analysis based on Mindlin plate theory which is effectively appli...

  1. Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation

    International Nuclear Information System (INIS)

    Yas, M.H.; Samadi, N.

    2012-01-01

    This study deals with free vibrations and buckling analysis of nanocomposite Timoshenko beams reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation. The SWCNTs are assumed to be aligned and straight with a uniform layout. Four different carbon nanotubes (CNTs) distributions including uniform and three types of functionally graded distributions of CNTs through the thickness are considered. The rule of mixture is used to describe the effective material properties of the nanocomposite beams. The governing equations are derived through using Hamilton's principle and then solved by using the generalized differential quadrature method (GDQM). Natural frequencies and critical buckling load are obtained for nanocomposite beams with different boundary conditions. Effects of several parameters, such as nanotube volume fraction, foundation stiffness parameters, slenderness ratios, CNTs distribution and boundary conditions on both natural frequency and critical buckling load are investigated. The results indicate that the above-mentioned parameters play a very important role on the free vibrations and buckling characteristics of the beam. Highlights: ► Beams with FG-X distribution have highest fundamental frequency. ► Beams with FG-X distribution have highest critical buckling load. ► Using elastic foundation, lead to increase the natural frequency. ► Using elastic foundation, lead to increase the critical buckling load. ► Increasing CNT volume fraction, lead to increase the natural frequency.

  2. Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on elastic foundation by a combination of harmonic differential quadrature-finite difference methods

    International Nuclear Information System (INIS)

    Civalek, Oemer

    2005-01-01

    The nonlinear dynamic response of doubly curved shallow shells resting on Winkler-Pasternak elastic foundation has been studied for step and sinusoidal loadings. Dynamic analogues of Von Karman-Donnel type shell equations are used. Clamped immovable and simply supported immovable boundary conditions are considered. The governing nonlinear partial differential equations of the shell are discretized in space and time domains using the harmonic differential quadrature (HDQ) and finite differences (FD) methods, respectively. The accuracy of the proposed HDQ-FD coupled methodology is demonstrated by numerical examples. The shear parameter G of the Pasternak foundation and the stiffness parameter K of the Winkler foundation have been found to have a significant influence on the dynamic response of the shell. It is concluded from the present study that the HDQ-FD methodolgy is a simple, efficient, and accurate method for the nonlinear analysis of doubly curved shallow shells resting on two-parameter elastic foundation

  3. Blocky inversion of multichannel elastic impedance for elastic parameters

    Science.gov (United States)

    Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza

    2018-04-01

    Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.

  4. Seismic isolation of buildings on two dimensional phononic crystal foundation

    Science.gov (United States)

    Han, Lin; Li, Xiao-mei; Zhang, Yan

    2017-11-01

    In order to realize the seismic isolation of buildings, we establish the two dimensional phononic crystal (PC) foundation which has the cell with the size close to the regular concrete test specimens, and is composed of the concrete base, rubber coating and lead cylindrical core. We study the in-plane band gap (BG) characteristics in it, through the analysis of the frequency dispersion relation and frequency response result. To lower the start BG frequency to the seismic frequency range, we also study the influences of material parameters (the elastic modulus of coating and density of cylindrical core) and geometry parameters (the thickness of coating, radius of cylindrical core and lattice constant) on BG ranges. The study could help to design the PC foundation for seismic isolation of building.

  5. Nonlinear analysis of flexible plates lying on elastic foundation

    Directory of Open Access Journals (Sweden)

    Trushin Sergey

    2017-01-01

    Full Text Available This article describes numerical procedures for analysis of flexible rectangular plates lying on elastic foundation. Computing models are based on the theory of plates with account of transverse shear deformations. The finite difference energy method of discretization is used for reducing the initial continuum problem to finite dimensional problem. Solution procedures for nonlinear problem are based on Newton-Raphson method. This theory of plates and numerical methods have been used for investigation of nonlinear behavior of flexible plates on elastic foundation with different properties.

  6. Thermal Shock In Periodic Edge-Cracked Plate Supported By Elastic Foundation

    OpenAIRE

    Abd El-Fattah A. Rizk

    2012-01-01

    The study of the transient thermal stress problem for a periodic edge cracks in an elastic plate on an elastic foundations is investigated. This study may also be applied for circumferentially periodic cracked hollow cylinder under transient thermal stresses. Based on previous studies, the cylindrical shell may be modeled by a plate on an elastic foundation. The thermal stresses are generated due to sudden convective cooling on the boundary containing the edge cracks while the other boundary ...

  7. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  8. Vibrational analysis of submerged cylindrical shells based on elastic foundations

    International Nuclear Information System (INIS)

    Shah, A.G.; Naeem, M.N.

    2014-01-01

    In this study a vibration analysis was performed of an isotropic cylindrical shell submerged in fluid, resting on Winkler and Pasternak elastic foundations for simply supported boundary condition. Love's thin shell theory was exploited for strain- and curvature- displacement relationship. Shell problem was solved by using wave propagation approach. Influence of fluid and Winkler as well as Pasternak elastic foundations were studied on the natural frequencies of submerged isotropic cylindrical shells. Results were validated by comparing with the existing results in literature. Vibration, Submerged cylindrical shell, Love's thin shell theory, Wave propagation method, Winkler and Pasternak foundations. (author)

  9. Torsional Post-Buckling of a Simply Supported Thin-Walled Open-Section Beam Resting on a Two-Parameter Foundation

    Science.gov (United States)

    Rao, Ch. K.; Rao, L. B.

    2018-01-01

    The problem of the post-buckling response of a simply supported thin-walled beam subjected to an axial compressive load and supported by the Winkler-Pasternak foundation is studied in this paper. The strains are assumed to be small and elastic. The shear deformations and the in-plane cross-sectional deformations are assumed to be negligible. The post-buckling paths of the simply supported beam are determined for different values of the Winkler and Pasternak stiffness parameters. Bifurcation points are found.

  10. Dynamic response of beams on elastic foundations to impact loading

    International Nuclear Information System (INIS)

    Prasad, B.B.; Sinha, B.P.

    1987-01-01

    The beam considered is a Timoshenko beam in which the effects of rotatory inertia and shear deformations are included and the foundation model consists of Winkler-Zimmermann type having Hookean linear elastic springs. The analysis is very useful for predicting the dynamic response of structural components of aircraft or nuclear reactors or even runways if that component may be mathematically idealized as a beam on elastic foundation. The effect of rotatory inertia and shear deformation is very much pronounced and hence should not be neglected in solving such impact problems. In general the effect of foundation modulus is to further increase the values of frequencies of vibrations. (orig./HP)

  11. Numerical estimate of fracture parameters under elastic and elastic-plastic conditions

    International Nuclear Information System (INIS)

    Soba, Alejandro; Denis, Alicia C.

    2003-01-01

    The importance of the stress intensity factor K in the elastic fracture analysis is well known. In this work three methods are developed to estimate the parameter K I , corresponding to the normal loading mode, employing the finite elements method. The elastic-plastic condition is also analyzed, where the line integral J is the relevant parameter. Two cases of interest are studied: sample with a crack in its center and tubes with internal pressure. (author)

  12. Critical velocities in fluid-conveying single-walled carbon nanotubes embedded in an elastic foundation

    Science.gov (United States)

    Rao, Ch. K.; Rao, L. B.

    2017-07-01

    The problem of stability of fluid-conveying carbon nanotubes embedded in an elastic medium is investigated in this paper. A nonlocal continuum mechanics formulation, which takes the small length scale effects into consideration, is utilized to derive the governing fourth-order partial differential equations. The Fourier series method is used for the case of the pinned-pinned boundary condition of the tube. The Galerkin technique is utilized to find a solution of the governing equation for the case of the clamped-clamped boundary. Closed-form expressions for the critical flow velocity are obtained for different values of the Winkler and Pasternak foundation stiffness parameters. Moreover, new and interesting results are also reported for varying values of the nonlocal length parameter. It is observed that the nonlocal length parameter along with the Winkler and Pasternak foundation stiffness parameters exert considerable effects on the critical velocities of the fluid flow in nanotubes.

  13. Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation

    Science.gov (United States)

    Jandaghian, A. A.; Rahmani, O.

    2016-03-01

    In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials.

  14. Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation

    International Nuclear Information System (INIS)

    Jandaghian, A A; Rahmani, O

    2016-01-01

    In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials. (paper)

  15. Natural frequencies of Euler-Bernoulli beam with open cracks on elastic foundations

    International Nuclear Information System (INIS)

    Shin, Young Jae; Yun, Jong Hak; Seong, Kyeong Youn; Kim, Jae Ho; Kang, Sung Hwang

    2006-01-01

    A study of the natural vibrations of beam resting on elastic foundation with finite number of transverse open cracks is presented. Frequency equations are derived for beams with different end restraints. Euler-Bernoulli beam on Winkler foundation and Euler-Bernoulli beam on Paster nak foundation are investigated. The cracks are modeled by massless substitute spring. The effects of the crack location, size and its number and the foundation constants, on the natural frequencies of the beam, are investigated

  16. Derivation Method for the Foundation Boundaries of Hydraulic Numerical Simulation Models Based on the Elastic Boussinesq Solution

    Directory of Open Access Journals (Sweden)

    Jintao Song

    2015-01-01

    Full Text Available The foundation boundaries of numerical simulation models of hydraulic structures dominated by a vertical load are investigated. The method used is based on the stress formula for fundamental solutions to semi-infinite space body elastic mechanics under a vertical concentrated force. The limit method is introduced into the original formula, which is then partitioned and analyzed according to the direction of the depth extension of the foundation. The point load will be changed to a linear load with a length of 2a. Inverse proportion function assumptions are proposed at parameter a and depth l of the calculation points to solve the singularity questions of elastic stress in a semi-infinite space near the ground. Compared with the original formula, changing the point load to a linear load with a length of 2a is more reasonable. Finally, the boundary depth criterion of a hydraulic numerical simulation model is derived and applied to determine the depth boundary formula for gravity dam numerical simulations.

  17. Three dimensional vibration and bending analysis of carbon nanotubes embedded in elastic medium based on theory of elasticity

    Directory of Open Access Journals (Sweden)

    M. Shaban

    Full Text Available This paper studies free vibration and bending behavior of singlewalled carbon nanotubes (SWCNTs embedded on elastic medium based on three-dimensional theory of elasticity. To accounting the size effect of carbon nanotubes, non-local theory is adopted to shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. The surrounding medium is modeled as two-parameter elastic foundation. By using Fourier series expansion in axial and circumferential direction, the set of coupled governing equations are reduced to the ordinary differential equations in thickness direction. Then, the state-space method as an efficient and accurate method is used to solve the resulting equations analytically. Comprehensive parametric studies are carried out to show the influences of the nonlocal parameter, radial and shear elastic stiffness, thickness-to-radius ratio and radiusto-length ratio.

  18. Calculation of the Strip Foundation on Solid Elastic Base, Taking into Account the Karst Collapse

    Science.gov (United States)

    Sharapov, R.; Lodigina, N.

    2017-07-01

    Karst processes greatly complicate the construction and operation of buildings and structures. Due to the karstic deformations at different times there have been several major accidents, which analysis showed that in all cases the fundamental errors committed at different stages of building development: site selection, engineering survey, design, construction or operation of the facilities. Theory analysis of beams on elastic foundation is essential in building practice. Specialist engineering facilities often have to resort to multiple designing in finding efficient forms of construction of these facilities. In work the calculation of stresses in cross-sections of the strip foundation evenly distributed load in the event of karst. A comparison of extreme stress in the event of karst and without accounting for the strip foundation as a beam on an elastic foundation.

  19. Buckling of Nonprismatic Column on Varying Elastic Foundation with Arbitrary Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Ahmad A. Ghadban

    2017-01-01

    Full Text Available Buckling of nonprismatic single columns with arbitrary boundary conditions resting on a nonuniform elastic foundation may be considered as the most generalized treatment of the subject. The buckling differential equation for such columns is extremely difficult to solve analytically. Thus, the authors propose a numerical approach by discretizing the column into a finite number of segments. Each segment has constants E (modulus of elasticity, I (moment of inertia, and β (subgrade stiffness. Next, an exact analytical solution is derived for each prismatic segment resting on uniform elastic foundation. These segments are then assembled in a matrix from which the critical buckling load is obtained. The derived formulation accounts for different end boundary conditions. Validation is performed by benchmarking the present results against analytical solutions found in the literature, showing excellent agreement. After validation, more examples are solved to illustrate the power and flexibility of the proposed method. Overall, the proposed method provides reasonable results, and the examples solved demonstrate the versatility of the developed approach and some of its many possible applications.

  20. Automatic estimation of elasticity parameters in breast tissue

    Science.gov (United States)

    Skerl, Katrin; Cochran, Sandy; Evans, Andrew

    2014-03-01

    Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.

  1. Buckling Analysis of Rectangular Plates with Variable Thickness Resting on Elastic Foundation

    International Nuclear Information System (INIS)

    Viswanathan, K K; Aziz, Z A; Navaneethakrishnan, P V

    2015-01-01

    Buckling of rectangular plates of variable thickness resting in elastic foundation is analysed using a quintic spline approximation technique. The thickness of the plate varies in the direction of one edge and the variations are assumed to be linear, exponential and sinusoidal. The plate is subjected to in plane load of two opposite edges. The buckling load and the mode shapes of buckling are computed from the eigenvalue problem that arises. Detailed parametric studies are made with different boundary conditions and the results are presented through the diagram and discussed

  2. Thermodynamic parameters of elasticity and electrical conductivity ...

    African Journals Online (AJOL)

    The thermodynamic parameters (change in free energy of elasticity, DGe; change in enthalpy of elasticity, DHe; and change in entropy of elasticity, DSe) and the electrical conductivity of natural rubber composites reinforced separately with some agricultural wastes have been determined. Results show that the reinforced ...

  3. Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization

    KAUST Repository

    Oh, Juwon

    2016-09-15

    The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth\\'s surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry

  4. Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2016-01-01

    The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth's surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry

  5. Cracking of a layered medium on an elastic foundation under thermal shock

    Science.gov (United States)

    Rizk, Abd El-Fattah A.; Erdogan, Fazil

    1988-01-01

    The cladded pressure vessel under thermal shock conditions which is simulated by using two simpler models was studied. The first model (Model 1) assumes that, if the crack size is very small compared to the vessel thickness, the problem can be treated as a semi-infinite elastic medium bonded to a very thin layer of different material. However, if the crack size is of the same order as the vessel thickness, the curvature effects may not be negligible. In this case it is assumed that the relatively thin walled hollow cylinder with cladding can be treated as a composite beam on an elastic foundation (Model 2). In both models, the effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. The calculated results include the transient temperature, thermal stresses in the uncracked medium and stress intensity factors which are presented as a function of time, and the duration of cooling ramp. The stress intensity factors are also presented as a function of the size and the location of the crack. The problem is solved for two bonded materials of different thermal and mechanical properties. The mathematical formulation results in two singular integral equations which are solved numerically. The results are given for two material pairs, namely an austenitic steel layer welded on a ferritic steel substrate, and a ceramic coating on ferritic steel. In the case of the yielded clad, the stress intensity factors for a crack under the clad are determined by using a plastic strip model and are compared with elastic clad results.

  6. Vibration and bending analyses of magneto-electro-thermo-elastic sandwich microplates resting on viscoelastic foundation

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-08-01

    Magneto-electro-thermo-mechanical bending and free vibration analysis of a sandwich microplate using strain gradient theory is expressed in this paper. The sandwich plate is made of a core and two integrated piezo-magnetic face sheets. The structure is subjected to electric and magnetic potentials, thermal loadings, and resting on Pasternak's foundation. Electro-magnetic equations are developed by considering the variation form of Hamilton's principle. The effects of important parameters of this problem such as applied electric and magnetic potentials, direct and shear parameter of foundation, three microlength-scale parameters, and two parameters of temperature rising are investigated on the vibration and bending results of problem.

  7. Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium

    International Nuclear Information System (INIS)

    Sofiyev, A.H.; Kuruoglu, N.

    2013-01-01

    In this paper, the non-linear buckling of the truncated conical shell made of functionally graded materials (FGMs) surrounded by an elastic medium has been studied using the large deformation theory with von Karman–Donnell-type of kinematic non-linearity. A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction. The FGM properties are assumed to vary continuously through the thickness direction. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of the FGM truncated conical shell resting on the Pasternak-type elastic foundation are derived. By using the Superposition and Galerkin methods, the non-linear stability equations for the FGM truncated conical shell is solved. Finally, influences of variations of Winkler foundation stiffness and shear subgrade modulus of the foundation, compositional profiles and shell characteristics on the dimensionless critical non-linear axial load are investigated. The present results are compared with the available data for a special case. -- Highlights: • Nonlinear buckling of FGM conical shell surrounded by elastic medium is studied. • Pasternak foundation model is used to describe the shell–foundation interaction. • Nonlinear basic equations are derived. • Problem is solved by using Superposition and Galerkin methods. • Influences of various parameters on the nonlinear critical load are investigated

  8. Numerical study of the stress-strain state of reinforced plate on an elastic foundation by the Bubnov-Galerkin method

    Science.gov (United States)

    Beskopylny, Alexey; Kadomtseva, Elena; Strelnikov, Grigory

    2017-10-01

    The stress-strain state of a rectangular slab resting on an elastic foundation is considered. The slab material is isotropic. The slab has stiffening ribs that directed parallel to both sides of the plate. Solving equations are obtained for determining the deflection for various mechanical and geometric characteristics of the stiffening ribs which are parallel to different sides of the plate, having different rigidity for bending and torsion. The calculation scheme assumes an orthotropic slab having different cylindrical stiffness in two mutually perpendicular directions parallel to the reinforcing ribs. An elastic foundation is adopted by Winkler model. To determine the deflection the Bubnov-Galerkin method is used. The deflection is taken in the form of an expansion in a series with unknown coefficients by special polynomials, which are a combination of Legendre polynomials.

  9. Parameter Optimisation for the Behaviour of Elastic Models over Time

    DEFF Research Database (Denmark)

    Mosegaard, Jesper

    2004-01-01

    Optimisation of parameters for elastic models is essential for comparison or finding equivalent behaviour of elastic models when parameters cannot simply be transferred or converted. This is the case with a large range of commonly used elastic models. In this paper we present a general method tha...

  10. The Effect of Knitting Parameter and Finishing on Elastic Property of PET/PBT Warp Knitted Fabric

    Directory of Open Access Journals (Sweden)

    Chen Qing

    2017-12-01

    Full Text Available This study investigated the elastic elongation and elastic recovery of the elastic warp knittedfabric made of PET( polyethylene terephthalate and PBT(polybutylene terephthalate filament. Using 50/24F PET and 50D/24F PBT in two threadingbars, the tricot, locknit and satin warp knitted fabrics were produced on the E28 tricot warpknitting machine. The knitting parameters influencing the elastic elongation under 100N wereanalyzed in terms of fabric structure, yarn run-in speed and drawing density set on machine.Besides, dyeing temperature and heat setting temperature/time were also examined in order toretain proper elastic elongation and elastic recovery. The relationship between elastic elongationand knitting parameter and finishing parameter were analyzed. Finally, the elastic recovery ofPET/PBT warp knitted fabric was examined to demonstrate the elastic property of final finishedfabric. This study could help us to further exploit the use of PET/PBT warp knitted fabric in thedevelopment of elastic garment in future.

  11. The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix

    International Nuclear Information System (INIS)

    Kim, Jeong Soo; Kim, Moon Kyum

    2012-01-01

    In this study, finite element analysis of beam on elastic foundation, which received great attention of researchers due to its wide applications in engineering, is performed for estimating dynamic responses of shallow foundation using exact stiffness matrix. First, element stiffness matrix based on the closed solution of beam on elastic foundation is derived. Then, we performed static finite element analysis included exact stiffness matrix numerically, comparing results from the analysis with some exact analysis solutions well known for verification. Finally, dynamic finite element analysis is performed for a shallow foundation structure under rectangular pulse loading using trapezoidal method. The dynamic analysis results exist in the reasonable range comparing solution of single degree of freedom problem under a similar condition. The results show that finite element analysis using exact stiffness matrix is evaluated as a good tool of estimating the dynamic response of structures on elastic foundation.

  12. Free vibration analysis of a magneto-electro-elastic doubly-curved shell resting on a Pasternak-type elastic foundation

    International Nuclear Information System (INIS)

    Razavi, Soheil; Shooshtari, Alireza

    2014-01-01

    Free vibration of a simply-supported magneto-electro-elastic doubly-curved thin shell resting on a Pasternak foundation is investigated based on Donnell theory. The rotary inertia effect is considered in the formulation. Maxwell equations for electrostatics and magnetostatics are used to model the electric and magnetic behavior. The partial differential equations of motion are reduced to a single ordinary differential equation and an analytical relation is obtained for the natural frequency. After validation of the present study, several numerical studies is done to investigate the effects of the electric and magnetic potentials, spring and shear coefficients of the Pasternak foundation, and the geometry of the shell on the vibration frequency. (paper)

  13. Effective material parameter retrieval of anisotropic elastic metamaterials with inherent nonlocality

    Science.gov (United States)

    Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young

    2016-09-01

    In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.

  14. Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model

    Directory of Open Access Journals (Sweden)

    Jianhua Shen

    2017-07-01

    Full Text Available In offshore area, newly deposited Quaternary loose seabed soils are widely distributed. There are a great number of offshore structures has been built on them in the past, or will be built on them in the future due to the fact that there would be no very dense seabed soil foundation could be chosen at planed sites sometimes. However, loosely deposited seabed foundation would bring great risk to the service ability of offshore structures after construction. Currently, the understanding on wave-induced liquefaction mechanism in loose seabed foundation has been greatly improved; however, the recognition on the consolidation characteristics and settlement estimation of loose seabed foundation under offshore structures is still limited. In this study, taking a semi-coupled numerical model FSSI-CAS 2D as the tool, the consolidation and settlement of loosely deposited sandy seabed foundation under an offshore breakwater is investigated. The advanced soil constitutive model Pastor-Zienkiewics Mark III (PZIII is used to describe the quasi-static behavior of loose sandy seabed soil. The computational results show that PZIII model is capable of being used for settlement estimation problem of loosely deposited sandy seabed foundation. For loose sandy seabed foundation, elastic deformation is the dominant component in consolidation process. It is suggested that general elastic model is acceptable for subsidence estimation of offshore structures on loose seabed foundation; however, Young's modulus E must be dependent on the confining effective stress, rather than a constant in computation.

  15. Vibration analysis of Euler-Bernoulli beam with open cracks on elastic foundations using differential transformation method and generalized differential quadrature method

    International Nuclear Information System (INIS)

    Shin, Young Jae; Hwang, Ki Sup; Yun, Jong Hak

    2006-01-01

    The main purpose of this paper is to apply Differential Transformation Method(DTM) and Generalized Differential Quadrature Method(GDQM) to vibration analysis of Euler-Bernoulli beam with open cracks on elastic foundation. In this paper the concepts of DTM and GDQM were briefly introduced. The governing equation of motion of the beam with open cracks on elastic foundation is derived. The cracks are modeled by massless substitute spring. The effects of the crack location, size and the foundation constants, on the natural frequencies of the beam, are investigated. Numerical calculations are carried out and compared with previous published results

  16. On the vibrations of a simply supported square plate on a weakly nonlinear elastic foundation

    NARCIS (Netherlands)

    Zarubinskaya, M.A.; Van Horssen, W.T.

    2003-01-01

    In this paper an initial-boundary value problem for a weakly nonlinear plate equation with a quadratic nonlinearity will be studied. This initial-boundary value problem can be regarded as a simple model describing free oscillations of a simply supported square plate on an elastic foundation. It is

  17. Contribution to Control of an Elastic Two-Mass System by Means of Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zelmira Ferkova

    2007-01-01

    Full Text Available Oscillations of an elastic two-mass system with all known parameters may be suppressed by suitable feedback signal. An observer enables to estimate this feedback without measurement of load mechanism speed. This article contains application of genetic algorithms for identification of elastic system parameters and determination of corresponding observer feedback coefficients. Design correctness is verified by simulation.

  18. On the Effect of Unit-Cell Parameters in Predicting the Elastic Response of Wood-Plastic Composites

    Directory of Open Access Journals (Sweden)

    Fatemeh Alavi

    2013-01-01

    Full Text Available This paper presents a study on the effect of unit-cell geometrical parameters in predicting elastic properties of a typical wood plastic composite (WPC. The ultimate goal was obtaining the optimal values of representative volume element (RVE parameters to accurately predict the mechanical behavior of the WPC. For each unit cell, defined by a given combination of the above geometrical parameters, finite element simulation in ABAQUS was carried out, and the corresponding stress-strain curve was obtained. A uniaxial test according to ASTM D638-02a type V was performed on the composite specimen. Modulus of elasticity was determined using hyperbolic tangent function, and the results were compared to the sets of finite element analyses. Main effects of RVE parameters and their interactions were demonstrated and discussed, specially regarding the inclusion of two adjacent wood particles within one unit cell of the material. Regression analysis was performed to mathematically model the RVE parameter effects and their interactions over the modulus of elasticity response. The model was finally employed in an optimization analysis to arrive at an optimal set of RVE parameters that minimizes the difference between the predicted and experimental moduli of elasticity.

  19. Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.

  20. Hardrock Elastic Physical Properties: Birch's Seismic Parameter Revisited

    Science.gov (United States)

    Wu, M.; Milkereit, B.

    2014-12-01

    Identifying rock composition and properties is imperative in a variety of fields including geotechnical engineering, mining, and petroleum exploration, in order to accurately make any petrophysical calculations. Density is, in particular, an important parameter that allows us to differentiate between lithologies and estimate or calculate other petrophysical properties. It is well established that compressional and shear wave velocities of common crystalline rocks increase with increasing densities (i.e. the Birch and Nafe-Drake relationships). Conventional empirical relations do not take into account S-wave velocity. Physical properties of Fe-oxides and massive sulfides, however, differ significantly from the empirical velocity-density relationships. Currently, acquiring in-situ density data is challenging and problematic, and therefore, developing an approximation for density based on seismic wave velocity and elastic moduli would be beneficial. With the goal of finding other possible or better relationships between density and the elastic moduli, a database of density, P-wave velocity, S-wave velocity, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio was compiled based on a multitude of lab samples. The database is comprised of isotropic, non-porous metamorphic rock. Multi-parameter cross plots of the various elastic parameters have been analyzed in order to find a suitable parameter combination that reduces high density outliers. As expected, the P-wave velocity to S-wave velocity ratios show no correlation with density. However, Birch's seismic parameter, along with the bulk modulus, shows promise in providing a link between observed compressional and shear wave velocities and rock densities, including massive sulfides and Fe-oxides.

  1. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    Science.gov (United States)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  2. Biomechanics – Elastic Foundation Applied in Modelling of Calcaneal Nails

    Directory of Open Access Journals (Sweden)

    Sejda František

    2015-12-01

    Full Text Available This paper presents a strength analysis of a calcaneal nail (material Ti6Al4V and stainless steel which is used to treat complex heel fractures. The application focuses on a unique calcaneal nail, the C-NAIL, produced by Medin a.s. (Nové Město na Moravě, Czech Republic. The paper first presents an analysis of fracture types, treatment methods and loading of the calcaneus. It then presents an analysis of limit conditions and loading. Calculations (displacement and stress are performed for 6 and 7 fixing screws using FEM (Ansys Workbench 14 software. The calculation involves a new, original application of an elastic foundation, which effectively replaces the complex interaction of the calcaneal nail and the heel bone.

  3. Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-09-01

    In this paper, size-dependent free vibration analysis of a sandwich nanoplate is presented. The sandwich nanoplate is including an elastic nano core and two piezo-electro-magnetic face-sheets as sensor and actuator actuated by electric and magnetic potentials. The sandwich nanoplate is resting on visco-Pasternak's foundation. Hamilton's principle is employed to derive the governing equations of motion based on Kirchhoff plate and nonlocal elasticity theory. The numerical results are presented to study the influence of important parameters of the problem such as applied electric and magnetic potentials, nonlocal parameter and visco-Pasternak's parameters. Furthermore, the influence of various boundary conditions is discussed on the vibration characteristics of the sandwich nanoplate.

  4. Parametric instability of a functionally graded Timoshenko beam on Winkler's elastic foundation

    International Nuclear Information System (INIS)

    Mohanty, S.C.; Dash, R.R.; Rout, T.

    2011-01-01

    Highlights: → Winkler's elastic foundation enhances the stability of both FGO and FGSW beams with material properties distribution along the thickness as per power law and exponential law. → FGO beam with steel-rich bottom is more stable than a beam with aluminium-rich bottom for both the types of property distribution. → FGSW beam with the properties in FGM core varying as per power law becomes less stable with increase in core thickness. → Exponential variation of core properties enhances its stability with the increase in core thickness. - Abstract: This article presents an investigation of the dynamic stability of functionally graded ordinary (FGO) beam and functionally graded sandwich (FGSW) beam on Winkler's elastic foundation using finite element method. The material properties are assumed to follow both exponential and power law. It is found that the foundation enhances stability of the FGO beam for first three modes. The effect of distributions of material properties of the FGO beam on its parametric instability is investigated. It is found that the FGO beam with steel-rich bottom is more stable as compared to that with Al-rich bottom for all the three modes and for both the types of property distributions. The effect of property distribution on stability of FGSW beam with steel as bottom skin and alumina as top skin is also investigated. It is observed that the beam having properties in core according to exponential law is the most stable beam while the beam having properties in core as per power law with index 2.5 is the least stable beam. For an FGSW beam it is found that the increase in the thickness of FGM core makes the beam less stable when the properties in FGM vary as per power law whereas the stability of beam enhances with the increase of thickness of FGM core when the properties vary according to exponential law.

  5. Study on orthorhombic parameters for 3D elastic full waveform inversion

    KAUST Repository

    Oh, Juwon

    2015-08-21

    For a better understanding of the influence of the parameterizations on the multi-parameter full waveform inversion (FWI) for 3D elastic orthorhombic media, we analyze the virtual sources for each cij parameter. Because the virtual sources for cij parameters can be regarded as bases of the virtual sources for other parameterizations, the insights developed here explains many of the scattering phenomena of the different parameters. The resulting radiation patterns provide insights on which parameter set is the best in the multi-parameter FWI for 3D elastic orthorhombic media. In this study, we analyze the virtual source for each cij parameter as a linear combination of several moment tensors. After that, we analyze the strain fields deformed by incident waves as momenta of the virtual source and their influences on sensitivity kernels of each cij parameter.

  6. Study on orthorhombic parameters for 3D elastic full waveform inversion

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2015-01-01

    For a better understanding of the influence of the parameterizations on the multi-parameter full waveform inversion (FWI) for 3D elastic orthorhombic media, we analyze the virtual sources for each cij parameter. Because the virtual sources for cij parameters can be regarded as bases of the virtual sources for other parameterizations, the insights developed here explains many of the scattering phenomena of the different parameters. The resulting radiation patterns provide insights on which parameter set is the best in the multi-parameter FWI for 3D elastic orthorhombic media. In this study, we analyze the virtual source for each cij parameter as a linear combination of several moment tensors. After that, we analyze the strain fields deformed by incident waves as momenta of the virtual source and their influences on sensitivity kernels of each cij parameter.

  7. Homotopy perturbation method for free vibration analysis of beams on elastic foundation

    International Nuclear Information System (INIS)

    Ozturk, Baki; Coskun, Safa Bozkurt; Koc, Mehmet Zahid; Atay, Mehmet Tarik

    2010-01-01

    In this study, the homotopy perturbation method (HPM) is applied for free vibration analysis of beam on elastic foundation. This numerical method is applied on a previously available case study. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, N r . The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for the case considered in this study and the differential transform method (DTM) results available in the literature.

  8. Effects of elastic support on the dynamic behaviors of the wind turbine drive train

    Institute of Scientific and Technical Information of China (English)

    Shuaishuai WANG; Caichao ZHU; Chaosheng SONG; Huali HAN

    2017-01-01

    The reliability and service life of wind turbines are influenced by the complex loading applied on the hub,especially amidst a poor external wind environment.A three-point elastic support,which includes the main bearing and two torque arms,was considered in this study.Based on the flexibilities of the planet carrier and the housing,a coupled dynamic model was developed for a wind turbine drive train.Then,the dynamic behaviors of the drive train for different elastic support parameters were computed and analyzed.Frequency response functions were used to examine how different elastic support parameters influence the dynamic behaviors of the drive train.Results showed that the elastic support parameters considerably influenced the dynamic behaviors of the wind turbine drive train.A large support stiffness of the torque arms decreased the dynamic response of the planet carrier and the main bearing,whereas a large support stiffness of the main bearing decreased the dynamic response of planet carrier while increasing that of the main bearing.The findings of this study provide the foundation for optimizing the elastic support stiffness of the wind turbine drive train.

  9. Dynamic Analysis of Wind Turbine Towers on Flexible Foundations

    Directory of Open Access Journals (Sweden)

    S. Adhikari

    2012-01-01

    Full Text Available Offshore wind turbines are considered as an essential part to develop sustainable, alternative energy sources. The structures themselves are both slender and highly flexible, with a subsea foundation typically consisting of a single large diameter monopile. They are subject to intense wind and wave loadings, with the result that significant movement of both the exposed structure and the upper part of the monopile can occur. Although the structures are intended for design life of 25 to 30 years, very little is known about the long term behaviour of these structures. This paper characterizes the dynamic behaviour of these structures. A simplified approach has been proposed for the free vibration analysis of wind turbines taking the effect of foundation into account. The method is based on an Euler-Bernoulli beam-column with elastic end supports. The elastic end-supports are considered to model the flexible nature of the interaction of these systems with the foundation. A closed-form expression of the characteristic equation governing all the natural frequencies of the system has been derived. Theoretical developments are explained by practical numerical examples. Analytical as well as a new experimental approach has been proposed to determine the parameters for the foundation. Some design issues of wind turbine towers are discussed from the point of view of the foundation parameters.

  10. Dependence of elastic hadron collisions on impact parameter

    Czech Academy of Sciences Publication Activity Database

    Procházka, Jiří; Lokajíček, Miloš V.; Kundrát, Vojtěch

    2016-01-01

    Roč. 131, č. 5 (2016), s. 1-19, č. článku 147. ISSN 2190-5444 Institutional support: RVO:68378271 Keywords : elastic hadron collisions * impact parameter Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.753, year: 2016

  11. Dependence of elastic hadron collisions on impact parameter

    Science.gov (United States)

    Procházka, Jiří; Lokajíček, Miloš V.; Kundrát, Vojtěch

    2016-05-01

    Elastic proton-proton collisions represent probably the greatest ensemble of available measured data, the analysis of which may provide a large amount of new physical results concerning fundamental particles. It is, however, necessary to analyze first some conclusions concerning pp collisions and their interpretations differing fundamentally from our common macroscopic experience. It has been argued, e.g., that elastic hadron collisions have been more central than inelastic ones, even if any explanation of the existence of so different processes, i.e., elastic and inelastic (with hundreds of secondary particles) collisions, under the same conditions has not been given until now. The given conclusion has been based on a greater number of simplifying mathematical assumptions (already done in earlier calculations), without their influence on physical interpretation being analyzed and entitled; the corresponding influence has started to be studied in the approach based on the eikonal model. The possibility of a peripheral interpretation of elastic collisions will be demonstrated and the corresponding results summarized. The arguments will be given on why no preference may be given to the mentioned centrality against the standard peripheral behaviour. The corresponding discussion on the contemporary description of elastic hadronic collision in dependence on the impact parameter will be summarized and the justification of some important assumptions will be considered.

  12. Response of two structures supported on common foundation

    International Nuclear Information System (INIS)

    Joshi, M.H.; Kulkarni, M.R.; Subramanian, K.V.; Palekar, S.M.; Warudkar, A.S.

    1995-01-01

    The present paper describes a parametric study of structure-structure interaction. The parameter's selected are stiffness and mass of the structures and stiffness of foundation medium. The paper concludes that in case of weak soils structures do interact through the common foundation and for rock-like foundation conditions there is no interaction between the structures. (author). 1 fig., 6 tabs

  13. Elasticity of semiflexible polymers in two dimensions

    Science.gov (United States)

    Prasad, Ashok; Hori, Yuko; Kondev, Jané

    2005-10-01

    We study theoretically the entropic elasticity of a semiflexible polymer, such as DNA, confined to two dimensions. Using the worm-like-chain model we obtain an exact analytical expression for the partition function of the polymer pulled at one end with a constant force. The force-extension relation for the polymer is computed in the long chain limit in terms of Mathieu characteristic functions. We also present applications to the interaction between a semiflexible polymer and a nematic field, and derive the nematic order parameter and average extension of the polymer in a strong field.

  14. Foundation Structure

    DEFF Research Database (Denmark)

    2009-01-01

    Method of installing a bucket foundation structure comprising one, two, three or more skirts, into soils in a controlled manner. The method comprises two stages: a first stage being a design phase and the second stage being an installation phase. In the first stage, design parameters are determined...... relating to the loads on the finished foundation structure; soil profile on the location; allowable installation tolerances, which parameters are used to estimate the minimum diameter and length of the skirts of the bucket. The bucket size is used to simulate load situations and penetration into foundation...

  15. Boundary integral equation methods and numerical solutions thin plates on an elastic foundation

    CERN Document Server

    Constanda, Christian; Hamill, William

    2016-01-01

    This book presents and explains a general, efficient, and elegant method for solving the Dirichlet, Neumann, and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. The solutions of these problems are obtained both analytically—by means of direct and indirect boundary integral equation methods (BIEMs)—and numerically, through the application of a boundary element technique. The text discusses the methodology for constructing a BIEM, deriving all the attending mathematical properties with full rigor. The model investigated in the book can serve as a template for the study of any linear elliptic two-dimensional problem with constant coefficients. The representation of the solution in terms of single-layer and double-layer potentials is pivotal in the development of a BIEM, which, in turn, forms the basis for the second part of the book, where approximate solutions are computed with a high degree of accuracy. The book is intended for graduate students and r...

  16. On Elasticity Measurement in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Wei Ai

    2016-01-01

    Full Text Available Elasticity is the foundation of cloud performance and can be considered as a great advantage and a key benefit of cloud computing. However, there is no clear, concise, and formal definition of elasticity measurement, and thus no effective approach to elasticity quantification has been developed so far. Existing work on elasticity lack of solid and technical way of defining elasticity measurement and definitions of elasticity metrics have not been accurate enough to capture the essence of elasticity measurement. In this paper, we present a new definition of elasticity measurement and propose a quantifying and measuring method using a continuous-time Markov chain (CTMC model, which is easy to use for precise calculation of elasticity value of a cloud computing platform. Our numerical results demonstrate the basic parameters affecting elasticity as measured by the proposed measurement approach. Furthermore, our simulation and experimental results validate that the proposed measurement approach is not only correct but also robust and is effective in computing and comparing the elasticity of cloud platforms. Our research in this paper makes significant contribution to quantitative measurement of elasticity in cloud computing.

  17. On the influence of the embedment of the foundation and the layered media

    International Nuclear Information System (INIS)

    Ambrosini, R.D.; Danesi, R.F.

    1995-01-01

    The main objective of this paper is to contribute to determine the influence of both the embedment of the foundation and the layered media in the seismic response of building structures with prismatic rectangular foundations. A soil-structure interaction model was used for this purpose. A general beam formulation was adopted to represent the physical model of the structure and two lumped parameter models, were adopted to represent the soil and the interaction mechanisms. On the other hand, an equivalent half space model was added, that permits taking into account the layered elastic soil in the analysis. The results obtained show that the embedment of the foundation is a fundamental parameter that cannot be neglected in the analysis because the structure forces could be significantly underestimated. In connection with the layered soil it can be stated that this is not an important factor because the differences with the half space results are not significant. (author). 18 refs., 1 fig., 5 tabs

  18. Dynamic analysis of the 7-GeV APS experiment hall foundation based on equivalent lumped parameter modeling

    International Nuclear Information System (INIS)

    Wambsganss, M.W.

    1989-01-01

    In this technical note, mass-spring-dashpot, also referred to as equivalent lumped parameter, models are employed to model the soil-foundation interaction of two typical floor segments from the 7-GeV APS experiment hall. Equivalent lumped parameter models have the advantage of being easy to apply and of readily allowing for parameter studies. Analysis requires knowledge of certain properties of the soil including density, shear wave velocity, and Poisson's ratio, as well as knowledge of the degree of homogeneity of the underlying soil stratum. These data for the APS site were determined by a geotechnical investigation. A soil profile and pertinent data, obtained from crosshole seismic testing, are given. Natural frequencies and damping are calculated for the vertical, sliding, rocking, and coupled rocking/sliding modes of vibration. Subsequently, various corrections to account for modeling ''deficiencies'' are considered and their influences evaluated. The equivalent lumped parameter models were developed for machine foundations which, compared with the APS foundation, are smaller in plan dimension. Therefore, the applicability of these models in the analysis of the dynamic characteristics of the APS foundation must be established. The modeling is evaluated by applying the equivalent lumped parameter models in the analysis of large foundations for which test data exists. A comparison of theoretical and test results establishes the basis for an assessment of the applicability and accuracy of the modeling

  19. A modified elastic foundation contact model for application in 3D models of the prosthetic knee.

    Science.gov (United States)

    Pérez-González, Antonio; Fenollosa-Esteve, Carlos; Sancho-Bru, Joaquín L; Sánchez-Marín, Francisco T; Vergara, Margarita; Rodríguez-Cervantes, Pablo J

    2008-04-01

    Different models have been used in the literature for the simulation of surface contact in biomechanical knee models. However, there is a lack of systematic comparisons of these models applied to the simulation of a common case, which will provide relevant information about their accuracy and suitability for application in models of the implanted knee. In this work a comparison of the Hertz model (HM), the elastic foundation model (EFM) and the finite element model (FEM) for the simulation of the elastic contact in a 3D model of the prosthetic knee is presented. From the results of this comparison it is found that although the nature of the EFM offers advantages when compared with that of the HM for its application to realistic prosthetic surfaces, and when compared with the FEM in CPU time, its predictions can differ from FEM in some circumstances. These differences are considerable if the comparison is performed for prescribed displacements, although they are less important for prescribed loads. To solve these problems a new modified elastic foundation model (mEFM) is proposed that maintains basically the simplicity of the original model while producing much more accurate results. In this paper it is shown that this new mEFM calculates pressure distribution and contact area with accuracy and short computation times for toroidal contacting surfaces. Although further work is needed to confirm its validity for more complex geometries the mEFM is envisaged as a good option for application in 3D knee models to predict prosthetic knee performance.

  20. Seismic wave propagation in heterogeneous multiphasic media: numerical modelling, sensibility and inversion of poro-elastic parameters

    International Nuclear Information System (INIS)

    Dupuy, B.

    2011-11-01

    Seismic wave propagation in multiphasic porous media have various environmental (natural risks, geotechnics, groundwater pollutions...) and resources (aquifers, oil and gas, CO 2 storage...) issues. When seismic waves are crossing a given material, they are distorted and thus contain information on fluid and solid phases. This work focuses on the characteristics of seismic waves propagating in multiphasic media, from the physical complex description to the parameter characterisation by inversion, including 2D numerical modelling of the wave propagation. The first part consists in the description of the physics of multiphasic media (each phase and their interactions), using several up-scaling methods, in order to obtain an equivalent mesoscale medium defined by seven parameters. Thus, in simple porosity saturated media and in complex media (double porosity, patchy saturation, visco-poro-elasticity), I can compute seismic wave propagation without any approximation. Indeed, I use a frequency-space domain for the numerical method, which allows to consider all the frequency dependent terms. The spatial discretization employs a discontinuous finite elements method (discontinuous Galerkin), which allows to take into account complex interfaces.The computation of the seismic attributes (velocities and attenuations) of complex porous media shows strong variations in respect with the frequency. Waveforms, computed without approximation, are strongly different if we take into account the full description of the medium or an homogenisation by averages. The last part of this work deals with the poro-elastic parameters characterisation by inversion. For this, I develop a two-steps method: the first one consists in a classical inversion (tomography, full waveform inversion) of seismograms data to obtain macro-scale parameters (seismic attributes). The second step allows to recover, from the macro-scale parameters, the poro-elastic micro-scale properties. This down-scaling step

  1. Strain concentration at structural discontinuities and its quantification by elastic follow-up parameter

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Takasho, Hideki

    1998-12-01

    Elevated temperature structural design codes pay attention to strain concentration at structural discontinuities due to creep and plasticity, since it causes to enlarge creep-fatigue damage of material. One of the difficulties to predict strain concentration is its dependency on loading, constitutive equations, and relaxation time. This study investigated fundamental mechanism of strain concentration and its main factors. It was clarified that strain concentration was caused from strain redistribution between elastic and inelastic regions, which can be quantified by the elastic follow-up parameter. As a function of inelastic strain, the elastic follow-up parameter can describe variation of strain concentration during incremental loading and relaxation process, caused by transition of strain distribution from peak strain concentration to secondary stress redistribution. Structures have their own elastic follow-up characteristics as a function of inelastic strain, which is insensitive to constitutive equations. It means that application of inelastic analysis is not difficult to obtain elastic follow-up characteristics. (author)

  2. Visco-piezo-elastic parameter estimation in laminated plate structures

    DEFF Research Database (Denmark)

    Araujo, A. L.; Mota Soares, C. M.; Herskovits, J.

    2009-01-01

    A parameter estimation technique is presented in this article, for identification of elastic, piezoelectric and viscoelastic properties of active laminated composite plates with surface-bonded piezoelectric patches. The inverse method presented uses experimental data in the form of a set of measu...

  3. Structure and properties of joints of two-ply steel using ''elastic'' explosives

    International Nuclear Information System (INIS)

    Gel'man, A.S.; Savel'ev, S.A.; Kulakevich, Ya.S.; Sharypov, N.A.; Drogovejko, I.Z.; Domolego, I.E.

    1980-01-01

    Some experimental data on structure and properties of compounds during cladding of sheets made of St3 with sheets of nichrome and steel 12Kh18N10T with the use of ''elastic'' explosives are presented. It is shown that the use of ''elastic'' explosives permits to decrease r parameter sufficiently, (where r - is the ratio of explosive mass to the mass of throwen phate) that reduces considerably the specific consumption explosives in comparison with the consumption conventional mixture explosives. Peculiarities of tested ''elastic'' explosives make their application perspective in two cases - at cladding of complex curved surfaces (drums, tube blanks etc.), as sell as at applications of burst chambers, where explosive mass limits dimensions of cladding blanks and details [ru

  4. Analysis of raft foundations for spent fuel pool in nuclear facilities

    International Nuclear Information System (INIS)

    Subramanian, K.V.; Kashikar, A.V.; Nath, C.; Shintre, C.C.

    2005-01-01

    Foundation rafts are analysed as a plate on elastic foundation with the representation of the foundation media using the Winkler idealisation i.e. series of linear uncoupled springs. The elastic constant of the Winkler springs is derived using the sub-grade modulus. However, the Winkler approach has limitations due to incompatibility of the deflections at raft-soil interface. The deflection of the raft at the point of contact and the deformation of the foundation media at this point of contact are incompatible in this approach. This particularly influences flexible rafts and further if the foundation media is soil. This paper discusses the analysis of raft, in general, and the analysis of the foundation raft for a Spent Fuel pool facility using 'variable k approach' where deformations at a node and influencing nodes are computed using Boussinesq's theory. The limitations stated above are overcome in this approach. Some studies on the sensitivity of parameters were carried out in the form of variation of moduli of elasticity of concrete and deformation modulus of soil. Analysis is also performed with conventional method using 'Winkler' soil springs. It is concluded that the Winkler model does not correctly predict the behaviour of the mat both qualitatively and quantitatively and could lead to underestimation of soil pressures leading to unconservative design. The approach involving soil structure interaction like the one presented here is hence recommended for important structures like those involved in Nuclear facilities. (authors)

  5. The relationship between 3D bone architectural parameters and elastic moduli of three orthogonal directions predicted from finite elements analysis

    International Nuclear Information System (INIS)

    Park, Kwan Soo; Lee, Sam Sun; Huh, Kyung Hoe; Yi, Wan Jin; Heo, Min Suk; Choi, Soon Chul

    2008-01-01

    To investigate the relationship between 3D bone architectural parameters and direction-related elastic moduli of cancellous bone of mandibular condyle. Two micro-pigs (Micro-pigR, PWG Genetics Korea) were used. Each pig was about 12 months old and weighing around 44 kg. 31 cylindrical bone specimen were obtained from cancellous bone of condyles for 3D analysis and measured by micro-computed tomography. Six parameters were trabecular thickness (Tb.Th), bone specific surface (BS/BV), percent bone volume (BV/TV), structure model index (SMI), degree of anisotropy (DA) and 3-dimensional fractal dimension (3DFD). Elastic moduli of three orthogonal directions (superiorinferior (SI), medial-lateral (ML), andterior-posterior (AP) direction) were calculated through finite element analysis. Elastic modulus of superior-inferior direction was higher than those of other directions. Elastic moduli of 3 orthogonal directions showed different correlation with 3D architectural parameters. Elastic moduli of SI and ML directions showed significant strong to moderate correlation with BV/TV, SMI and 3DFD. Elastic modulus of cancellous bone of pig mandibular condyle was highest in the SI direction and it was supposed that the change into plate-like structure of trabeculae was mainly affected by increase of trabeculae of SI and ML directions.

  6. Experimental evaluation of a quasi-modal parameter based rotor foundation identification technique

    Science.gov (United States)

    Yu, Minli; Liu, Jike; Feng, Ningsheng; Hahn, Eric J.

    2017-12-01

    Correct modelling of the foundation of rotating machinery is an invaluable asset in model-based rotor dynamic study. One attractive approach for such purpose is to identify the relevant modal parameters of an equivalent foundation using the motion measurements of rotor and foundation at the bearing supports. Previous research showed that, a complex quasi-modal parameter based system identification technique could be feasible for this purpose; however, the technique was only validated by identifying simple structures under harmonic excitation. In this paper, such identification technique is further extended and evaluated by identifying the foundation of a numerical rotor-bearing-foundation system and an experimental rotor rig respectively. In the identification of rotor foundation with multiple bearing supports, all application points of excitation forces transmitted through bearings need to be included; however the assumed vibration modes far outside the rotor operating speed cannot or not necessary to be identified. The extended identification technique allows one to identify correctly an equivalent foundation with fewer modes than the assumed number of degrees of freedom, essentially by generalising the technique to be able to handle rectangular complex modal matrices. The extended technique is robust in numerical and experimental validation and is therefore likely to be applicable in the field.

  7. ACOUSTIC WAVES EMISSION IN THE TWO-COMPONENT HEREDITARY-ELASTIC MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2014-01-01

    Full Text Available Summary. On the dynamics of two-component media a number of papers, which address the elastic waves in a homogeneous, unbounded fluid-saturated porous medium. In other studies address issues of dissipative processes in harmonic deformation hereditary elastic medium. In the article the dissipative processes of the viscoelastic porous medium, which hereditary properties are described by the core relaxation fractional exponential function U.N. Rabotnova integro-differential Boltzmann-Volterr ratio, harmonic deformation by the straining saturated incompressible liquid are investigated. Speed of wave propagation, absorption coefficient, mechanical loss tangent, logarithmic decrement, depending on fractional parameter γ, determining formulas received. The frequency logarithm and temperature graph dependences with the goal fractional parameter are constructed. Shows the dependences velocity and attenuation coefficient of the tangent of the phase angle of the logarithm of the temperature, and the dependence of the attenuation coefficient of the logarithm of the frequency. Dependencies the speed and the tangent of the phase angle of the frequency identical function of the logarithm of temperature.

  8. Two-zone elastic-plastic single shock waves in solids.

    Science.gov (United States)

    Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T

    2011-09-23

    By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

  9. The modelling of two DOF joints controlled by elastic inner ties

    Directory of Open Access Journals (Sweden)

    Ożóg Dominik

    2017-01-01

    Full Text Available This paper considers the mathematical model of two types of joints that can be used to connect the arms of two robots. The first of them is a simple revolute joint with one degree of freedom and the second is a universal joint with two degrees of freedom. Each of them is controlled using elastic ties that run in the joints and are connected to the inside of the arm joints. This paper describes a study of kinematics, dynamics properties and Extended Denavit-Hartenberg Notation parameters mentioned joints.

  10. Stochastic analysis of laminated composite plates on elastic foundation: The cases of post-buckling behavior and nonlinear free vibration

    International Nuclear Information System (INIS)

    Singh, B.N.; Lal, Achchhe

    2010-01-01

    This study deals with the stochastic post-buckling and nonlinear free vibration analysis of a laminated composite plate resting on a two parameters Pasternak foundation with Winkler cubic nonlinearity having uncertain system properties. The system properties are modeled as basic random variables. A C 0 nonlinear finite element formulation of the random problem based on higher-order shear deformation theory in the von Karman sense is presented. A direct iterative method in conjunction with a stochastic nonlinear finite element method proposed earlier by the authors is extended to analyze the effect of uncertainty in system properties on the post-buckling and nonlinear free vibration of the composite plates having Winler type of geometric nonlinearity. Mean as well as standard deviation of the responses have been obtained for various combinations of geometric parameters, foundation parameters, stacking sequences and boundary conditions and compared with those available in the literature and Monte Carlo simulation.

  11. A domain decomposition approach for full-field measurements based identification of local elastic parameters

    KAUST Repository

    Lubineau, Gilles

    2015-03-01

    We propose a domain decomposition formalism specifically designed for the identification of local elastic parameters based on full-field measurements. This technique is made possible by a multi-scale implementation of the constitutive compatibility method. Contrary to classical approaches, the constitutive compatibility method resolves first some eigenmodes of the stress field over the structure rather than directly trying to recover the material properties. A two steps micro/macro reconstruction of the stress field is performed: a Dirichlet identification problem is solved first over every subdomain, the macroscopic equilibrium is then ensured between the subdomains in a second step. We apply the method to large linear elastic 2D identification problems to efficiently produce estimates of the material properties at a much lower computational cost than classical approaches.

  12. Standard test method for determining the effective elastic parameter for X-ray diffraction measurements of residual stress

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This test method covers a procedure for experimentally determining the effective elastic parameter, Eeff, for the evaluation of residual and applied stresses by X-ray diffraction techniques. The effective elastic parameter relates macroscopic stress to the strain measured in a particular crystallographic direction in polycrystalline samples. Eeff should not be confused with E, the modulus of elasticity. Rather, it is nominally equivalent to E/(1 + ν) for the particular crystallographic direction, where ν is Poisson's ratio. The effective elastic parameter is influenced by elastic anisotropy and preferred orientation of the sample material. 1.2 This test method is applicable to all X-ray diffraction instruments intended for measurements of macroscopic residual stress that use measurements of the positions of the diffraction peaks in the high back-reflection region to determine changes in lattice spacing. 1.3 This test method is applicable to all X-ray diffraction techniques for residual stress measurem...

  13. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  14. Supersonic flutter suppression of electrorheological fluid-based adaptive panels resting on elastic foundations using sliding mode control

    International Nuclear Information System (INIS)

    Hasheminejad, Seyyed M; Nezami, M; Aryaee Panah, M E

    2012-01-01

    Brief reviews on suppressing panel flutter vibrations by various active control strategies as well as utilization tunable electrorheological fluids (ERFs) for vibration control of structural systems are presented. Active suppression of the supersonic flutter motion of a simply supported sandwich panel with a tunable ERF interlayer, and coupled to an elastic foundation, is subsequently investigated. The structural formulation is based on the classical beam theory along with the Winkler–Pasternak foundation model, the ER fluid core is modeled as a first-order Kelvin–Voigt material, and the quasi-steady first-order supersonic piston theory is employed to describe the aerodynamic loading. Hamilton’s principle is used to derive a set of fully coupled dynamic equations of motion. The generalized Fourier expansions in conjunction with the Galerkin method are then employed to formulate the governing equations in the state space domain. The critical dynamic pressures at which unstable panel oscillations (coalescence of eigenvalues) occur are obtained via the p-method for selected applied electric field strengths (E = 0,2,4 kV mm −1 ). The classical Runge–Kutta time integration algorithm is subsequently used to calculate the open-loop aeroelastic response of the system in various basic loading configurations (i.e. uniformly distributed blast, gust, sonic boom, and step loads), with or without an interacting soft/stiff elastic foundation. Finally, a sliding mode control synthesis (SMC) involving the first six natural modes of the structural system is set up to actively suppress the closed-loop system response in supersonic flight conditions and under the imposed excitations. Simulation results demonstrate performance, effectiveness, and insensitivity with respect to the spillover of the proposed SMC-based control system. Limiting cases are considered and good agreements with the data available in the literature as well as with the computations made by using the

  15. Two-Sided Estimates of Thermo-elastic Characteristics of Dispersed Inclusion Composites

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available The composites, dispersion-reinforced with inclusions from high-strength and high-modulus materials are widely used in technology. Nanostructure elements can perform the role of such inclusions as well. Possible applications of such composites in heat-stressed structures under heavy mechanical and thermal influences significantly depend on a complex of thermo-mechanical characteristics including the values of the moduli of elasticity and coefficient of linear thermal expansion. There are different approaches to construction of mathematical models that allow calculating dependences to estimate elastic characteristics of composites. Relation between thermoelastic properties of matrix and inclusions of the composite with its temperature coefficient of linear expansion is studied in less detail. Thus, attention has been insufficient in estimating a degree of reliability and a possible error of derived dependencies.A dual variation formulation of the problem of thermo-elasticity in a non-uniform solids simulating the properties and structure of the composite with dispersed inclusions, makes it possible to define two-sided limits of possible values of the volume elasticity modulus, shear modulus, and coefficient of linear thermal expansion of such composite. These limits allow us to estimate the maximum possible error, if to take a half-sum of the limit values of these parameters as the thermoelastic characteristics of the composite. Implementing this approach to find possible errors, arising when using one or another calculating dependency, improves reliability of predicted thermo-elastic characteristics as applied to existing and promising composites.

  16. Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method

    International Nuclear Information System (INIS)

    Anjomshoa, Amin; Tahani, Masoud

    2016-01-01

    In the present study a continuum model based on the nonlocal elasticity theory is developed for free vibration analysis of embedded ortho tropic thick circular and elliptical nano-plates rested on an elastic foundation. The elastic foundation is considered to behave like a Pasternak type of foundations. Governing equations for vibrating nano-plate are derived according to the Mindlin plate theory in which the effects of shear deformations of nano-plate are also included. The Galerkin method is then employed to obtain the size dependent natural frequencies of nano-plate. The solution procedure considers the entire nano-plate as a single super-continuum element. Effect of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties, thickness and foundation on circular frequencies are investigated. It is seen that the nonlocal frequencies of the nano-plate are smaller in comparison to those from the classical theory and this is more pronounced for small lengths and higher vibration modes. It is also found that as the aspect ratio increases or the nanoplate becomes more elliptical, the small scale effect on natural frequencies increases. Further, it is observed that the elastic foundation decreases the influence of nonlocal parameter on the results. Since the effect of shear deformations plays an important role in vibration analysis and design of nano-plates, by predicting smaller values for fundamental frequencies, the study of these nano-structures using thick plate theories such as Mindlin plate theory is essential.

  17. Seismic isolation of two dimensional periodic foundations

    International Nuclear Information System (INIS)

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-01-01

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  18. Surface excess elasticity of gold: Ab initio coefficients and impact on the effective elastic response of nanowires

    International Nuclear Information System (INIS)

    Elsner, B.A.M.; Müller, S.; Bargmann, S.; Weissmüller, J.

    2017-01-01

    Predicting the influence of the surface on the effective elastic properties of nanoscale structures and nanomaterials remains a challenge, which we here address on both levels, continuum and atomic. Density Functional Theory (DFT) computation at the atomic level yields the first reliable surface excess elastic parameters for the (111) and (001) surfaces of gold. At the continuum level, we derive closed-form expressions for the effective elastic behavior that can be combined with the DFT-derived excess elastic parameters to obtain the effective axial, torsion, and bending stiffness of circular nanowires with surface excess elasticity. The two approaches use different reference frames, and we emphasize the need for consistent stress definitions and for conversion between the separate stress measures when transferring results between the approaches. We present excess elastic parameters separately for Cauchy and 2 nd Piola-Kirchhoff stresses, demonstrating that the conversion substantially modifies their numerical value and may even invert their sign. The results afford an assessment of the contribution of the surface excess elastic parameters to the effective elastic response of nanoscale beams or wires. This assessment sheds doubt on earlier suggestions relating experimental observations of an effective stiffening or softening at small size to the excess elasticity of clean surfaces.

  19. Investigation on the dynamic response and strength of very long floating structures by beam modeling on an elastic foundation; Dansei shishojo no hari model ni yoru chodai futai kozo no doteki tawami kyodo tokusei ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsubogo, T.; Okada, H. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1997-08-01

    A very large floating structure was replaced with the beam on an elastic foundation to examine the response characteristics in waves. Another evidence was regularly and numerically given for the basic characteristics of a very large floating body Suzuki found. New information was also obtained. The frequency response is mainly classified into a wave number control area and proper frequency control area when buoyancy elasticity exists. When the buoyancy structure is long and flexible, the proper frequency becomes continuous and the frequency control area becomes a resonance area. In the wave number control area, the Suzuki`s characteristic wave number becomes a control parameter, and various characteristic values are indicated by characteristic wave numbers. The response in the wave number control area becomes quasi-static when the distribution mass of buoyancy is fully small. The design in which the distribution mass of buoyancy is fully large must be avoided. In the displacement amplitude, the mass on the free end is severest. The proper frequency of vertical vibration relatively moves to the high-frequency side when buoyancy is considered as an elastic foundation. Attention must be thus paid to the proper frequency of vibration on the horizontal surface. 9 refs., 12 figs., 3 tabs.

  20. Linear elastic properties derivation from microstructures representative of transport parameters.

    Science.gov (United States)

    Hoang, Minh Tan; Bonnet, Guy; Tuan Luu, Hoang; Perrot, Camille

    2014-06-01

    It is shown that three-dimensional periodic unit cells (3D PUC) representative of transport parameters involved in the description of long wavelength acoustic wave propagation and dissipation through real foam samples may also be used as a standpoint to estimate their macroscopic linear elastic properties. Application of the model yields quantitative agreement between numerical homogenization results, available literature data, and experiments. Key contributions of this work include recognizing the importance of membranes and properties of the base material for the physics of elasticity. The results of this paper demonstrate that a 3D PUC may be used to understand and predict not only the sound absorbing properties of porous materials but also their transmission loss, which is critical for sound insulation problems.

  1. Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    This paper investigates the thermal stability of magneto-electro-thermo-elastic functionally graded (METE-FG) nanoplates based on the nonlocal theory and a refined plate model. The METE-FG nanoplate is subjected to the external electric potential, magnetic potential and different temperature rises. Interaction of elastic medium with the METE-FG nanoplate is modeled via Winkler-Pasternak foundation model. The governing equations are derived by using the Hamilton principle and solved by using an analytical method to determine the critical buckling temperatures. To verify the validity of the developed model, the results of the present work are compared with those available in the literature. A detailed parametric study is conducted to study the influences of the nonlocal parameter, foundation parameters, temperature rise, external electric and magnetic potentials on the size-dependent thermal buckling characteristics of METE-FG nanoplates.

  2. Analytic approximations for the elastic moduli of two-phase materials

    DEFF Research Database (Denmark)

    Zhang, Z. J.; Zhu, Y. K.; Zhang, P.

    2017-01-01

    Based on the models of series and parallel connections of the two phases in a composite, analytic approximations are derived for the elastic constants (Young's modulus, shear modulus, and Poisson's ratio) of elastically isotropic two-phase composites containing second phases of various volume...

  3. Elastic ππ scattering to two loops

    International Nuclear Information System (INIS)

    Bijnens, J.; Colangelo, G.; Gasser, J.; Ecker, G.; Sainio, M.E.

    1995-11-01

    We evaluate analytically the elastic ππ scattering amplitude to two loops in chiral perturbation theory and give numerical values for the two S-wave scattering lengths and for the phase shift difference δ 0 0 -δ 1 1 . (author)

  4. Fluid-elastic vibration in two-phase cross flow

    International Nuclear Information System (INIS)

    Sasakawa, T.; Serizawa, A.; Kawara, Z.

    2003-01-01

    The present work aims at clarifying the mechanisms of fluid elastic vibration of tube bundles in two-phase cross flow. The experiment is conducted using air-water two-phase flow under atmospheric pressure. The test section is a 1.03m long transparent acrylic square duct with 128 x 128 mm 2 cross section, which consists of 3 rod-rows with 5 rods in each row. The rods are 125mm long aluminum rods with 22 mm in diameter (p/D=1.45). The natural frequency of rod vibration is about 30Hz. The result indicated a diversion of observed trend in vibration behavior depending on two-phase flow patterns either bubbly flow or churn flow. Specifically, in churn flow, the fluid elastic vibration has been observed to occur when the frequency in void fraction fluctuation approached to the natural frequency of the rods, but this was not the case in fluid elastic vibration in bubbly flow. This fact suggests the existence of mechanisms closely coupled with two-phase flow structures depending on the flow patterns, that is, static two-phase character-controlled mechanism in bubbly flow and dynamic character- controlled in churn flow

  5. Propagation of steady-state vibration in periodic pipes conveying fluid on elastic foundations with external moving loads

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dianlong, E-mail: dianlongyu@yahoo.com.cn [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073 (China); MOE Key Laboratory of Photonic and Phononic Crystals, National University of Defense Technology, Changsha 410073 (China); Wen, Jihong; Shen, Huijie; Wen, Xisen [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073 (China); MOE Key Laboratory of Photonic and Phononic Crystals, National University of Defense Technology, Changsha 410073 (China)

    2012-10-01

    The propagation of steady-state vibration in a periodic pipe conveying fluid on elastic foundation with an external moving load is studied using wave propagation and attenuation theory. Wavenumbers and propagation properties in a moving coordinate system are investigated. The propagation constants are calculated using transfer matrix theory to determine whether the perturbation, which is introduced by an external moving load, can propagate through the pipe or not. The Bragg and locally resonant band gaps, corresponding to the velocity field, can exist in a periodic pipe system. In addition, the effects on both types of band gaps have been analysed.

  6. Propagation of steady-state vibration in periodic pipes conveying fluid on elastic foundations with external moving loads

    International Nuclear Information System (INIS)

    Yu, Dianlong; Wen, Jihong; Shen, Huijie; Wen, Xisen

    2012-01-01

    The propagation of steady-state vibration in a periodic pipe conveying fluid on elastic foundation with an external moving load is studied using wave propagation and attenuation theory. Wavenumbers and propagation properties in a moving coordinate system are investigated. The propagation constants are calculated using transfer matrix theory to determine whether the perturbation, which is introduced by an external moving load, can propagate through the pipe or not. The Bragg and locally resonant band gaps, corresponding to the velocity field, can exist in a periodic pipe system. In addition, the effects on both types of band gaps have been analysed.

  7. Teaching nonlinear dynamics through elastic cords

    International Nuclear Information System (INIS)

    Chacon, R; Galan, C A; Sanchez-Bajo, F

    2011-01-01

    We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.

  8. Longitudinal waves in carbon nanotubes in the presence of transverse magnetic field and elastic medium

    Science.gov (United States)

    Liu, Hu; Liu, Hua; Yang, Jialing

    2017-09-01

    In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.

  9. Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment

    Science.gov (United States)

    Kamali, M.; Shamsi, M.; Saidi, A. R.

    2018-03-01

    As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman's relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin's method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.

  10. Two-photon exchange in elastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Blunden, P.G.; Melnitchouk, W.; Tjon, J.A.

    2005-01-01

    A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio, G E /G M . The two-photon exchange contribution to the longitudinal polarization transfer P L is small, whereas the contribution to the transverse polarization transfer P T is enhanced at backward angles by several percent, increasing with Q 2 . This gives rise to a small, E /G M obtained from the polarization transfer ratio P T /P L at large Q 2 . We also compare the two-photon exchange effects with data on the ratio of e + p to e - p cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron and estimate the elastic intermediate state contribution to the 3 He form factors

  11. Imaging disturbance zones ahead of a tunnel by elastic full-waveform inversion: Adjoint gradient based inversion vs. parameter space reduction using a level-set method

    Directory of Open Access Journals (Sweden)

    Andre Lamert

    2018-03-01

    Full Text Available We present and compare two flexible and effective methodologies to predict disturbance zones ahead of underground tunnels by using elastic full-waveform inversion. One methodology uses a linearized, iterative approach based on misfit gradients computed with the adjoint method while the other uses iterative, gradient-free unscented Kalman filtering in conjunction with a level-set representation. Whereas the former does not involve a priori assumptions on the distribution of elastic properties ahead of the tunnel, the latter introduces a massive reduction in the number of explicit model parameters to be inverted for by focusing on the geometric form of potential disturbances and their average elastic properties. Both imaging methodologies are validated through successful reconstructions of simple disturbances. As an application, we consider an elastic multiple disturbance scenario. By using identical synthetic time-domain seismograms as test data, we obtain satisfactory, albeit different, reconstruction results from the two inversion methodologies. The computational costs of both approaches are of the same order of magnitude, with the gradient-based approach showing a slight advantage. The model parameter space reduction approach compensates for this by additionally providing a posteriori estimates of model parameter uncertainty. Keywords: Tunnel seismics, Full waveform inversion, Seismic waves, Level-set method, Adjoint method, Kalman filter

  12. Numerical calculations of effective elastic properties of two cellular structures

    International Nuclear Information System (INIS)

    Tuncer, Enis

    2005-01-01

    Young's moduli of regular two-dimensional truss-like and eye-shaped structures are simulated using the finite element method. The structures are idealizations of soft polymeric materials used in ferro-electret applications. In the simulations, the length scales of the smallest representative units are varied, which changes the dimensions of the cell walls in the structures. A power-law expression with a quadratic as the exponent term is proposed for the effective Young's moduli of the systems as a function of the solid volume fraction. The data are divided into three regions with respect to the volume fraction: low, intermediate and high. The parameters of the proposed power-law expression in each region are later represented as a function of the structural parameters, the unit-cell dimensions. The expression presented can be used to predict a structure/property relationship in materials with similar cellular structures. The contribution of the cell-wall thickness to the elastic properties becomes significant at concentrations >0.15. The cell-wall thickness is the most significant factor in predicting the effective Young's modulus of regular cellular structures at high volume fractions of solid. At lower concentrations of solid, the eye-shaped structure yields a lower Young's modulus than a truss-like structure with similar anisotropy. Comparison of the numerical results with those of experimental data for poly(propylene) show good agreement regarding the influence of cell-wall thickness on elastic properties of thin cellular films

  13. Deep foundation rebound instrumentation at the Grand Gulf Nuclear Power Station

    International Nuclear Information System (INIS)

    Blendy, M.M.; Boisen, B.P.

    1978-01-01

    Removing an extensive amount of overburden can initiate adjustments in the foundation mass. Rebound adjustments induced by this removal include, in addition to elastic response, elements of visco-elastic and plastic response which have to be taken into account when the foundation is loaded by subsequent construction. The accurate measurement of foundation response can be important in the design and construction of deep foundations and can be essential in the construction of very deep foundations. In 1974, a large foundation excavation was undertaken for the two unit Grand Gulf Nuclear Station. Overburden removal ranged in depth from 65 feet in the turbine area to 110 feet in the containment area. Very long, rod-type Multiple Position Borehole Extensometers measured the rebound. The design of the extensometers, and the dimensions of the installed instruments, are discussed. Graphs are included which show the adjustments measured by each extensometer during the deepening of the excavation. The measured rebound for each transducer package of each extensometer is summarized. The data are compared to predicted values based on a mathematical model developed using laboratory test results and empirical methods. The resulting information forms part of the permanent record of construction for the nuclear power station

  14. Design guidance for elastic followup

    International Nuclear Information System (INIS)

    Naugle, F.V.

    1983-01-01

    The basic mechanism of elastic followup is discussed in relation to piping design. It is shown how mechanistic insight gained from solutions for a two-bar problem can be used to identify dominant design parameters and to determine appropriate modifications where elastic followup is a potential problem. It is generally recognized that quantitative criteria are needed for elastic followup in the creep range where badly unbalanced lines can pose potential problems. Approaches for criteria development are discussed

  15. Bayesian Markov Chain Monte Carlo inversion for weak anisotropy parameters and fracture weaknesses using azimuthal elastic impedance

    Science.gov (United States)

    Chen, Huaizhen; Pan, Xinpeng; Ji, Yuxin; Zhang, Guangzhi

    2017-08-01

    A system of aligned vertical fractures and fine horizontal shale layers combine to form equivalent orthorhombic media. Weak anisotropy parameters and fracture weaknesses play an important role in the description of orthorhombic anisotropy (OA). We propose a novel approach of utilizing seismic reflection amplitudes to estimate weak anisotropy parameters and fracture weaknesses from observed seismic data, based on azimuthal elastic impedance (EI). We first propose perturbation in stiffness matrix in terms of weak anisotropy parameters and fracture weaknesses, and using the perturbation and scattering function, we derive PP-wave reflection coefficient and azimuthal EI for the case of an interface separating two OA media. Then we demonstrate an approach to first use a model constrained damped least-squares algorithm to estimate azimuthal EI from partially incidence-phase-angle-stack seismic reflection data at different azimuths, and then extract weak anisotropy parameters and fracture weaknesses from the estimated azimuthal EI using a Bayesian Markov Chain Monte Carlo inversion method. In addition, a new procedure to construct rock physics effective model is presented to estimate weak anisotropy parameters and fracture weaknesses from well log interpretation results (minerals and their volumes, porosity, saturation, fracture density, etc.). Tests on synthetic and real data indicate that unknown parameters including elastic properties (P- and S-wave impedances and density), weak anisotropy parameters and fracture weaknesses can be estimated stably in the case of seismic data containing a moderate noise, and our approach can make a reasonable estimation of anisotropy in a fractured shale reservoir.

  16. Using GPS and GRACE data to assess Solid Earth elastic parameters at regional scale

    DEFF Research Database (Denmark)

    Barletta, Valentina Roberta; Borghi, A.; Aoudia, A.

    2012-01-01

    We propose a way to combine GPS and GRACE data for regional scale cross check and validation especially of the most commonly used PREM (Preliminary Earth Reference Model). In form of h and k Love numbers, global PREM is very often used to simulate elastic rebound due to present-day ice mass loss......, to derive the mass distribution produced by the observed GRACE time series, and it is also used for atmospheric loading correction both in GPS and in GRACE dealiasing products. GRACE data provide load estimates, usually given as water equivalent mass distribution, from which one derives the Earth elastic...... response, by convolution with suitable elastic green functions, relying on selected Earth model and related layering and elastic parameters. We calculate at regional scale the time series of monthly uplift associated with the mass redistribution observed by GRACE implementing the high resolution technique...

  17. Calculation of foundation response to spatially varying ground motion by finite element method

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.

    1995-01-01

    This paper presents a general method to compute the response of a rigid foundation of arbitrary shape resting on a homogeneous or multilayered elastic soil when subjected to a spatially varying ground motion. The foundation response is calculated from the free-field ground motion and the contact tractions between the foundation and the soil. The spatial variation of ground motion in this study is introduced by a coherence function and the contact tractions are obtained numerically using the Finite Element Method in the process of calculating the dynamic compliance of the foundation. Applications of this method to a massless rigid disc supported on an elastic half space and to that founded on an elastic medium consisting of a layer of constant thickness supported on an elastic half space are described. The numerical results obtained are in very good agreement with analytical solutions published in the literature. (authors). 5 refs., 8 figs

  18. Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect

    International Nuclear Information System (INIS)

    Yao Hai-Yan; Fan Wen-Liang; Yun Guo-Hong

    2013-01-01

    The size-dependent elastic property of rectangular nanobeams (nanowires or nanoplates) induced by the surface elasticity effect is investigated by using a developed modified core-shell model. The effect of surface elasticity on the elastic modulus of nanobeams can be characterized by two surface related parameters, i.e., inhomogeneous degree constant and surface layer thickness. The analytical results show that the elastic modulus of the rectangular nanobeam exhibits a distinct size effect when its characteristic size reduces below 100 nm. It is also found that the theoretical results calculated by a modified core-shell model have more obvious advantages than those by other models (core-shell model and core-surface model) by comparing them with relevant experimental measurements and computational results, especially when the dimensions of nanostructures reduce to a few tens of nanometers. (condensed matter: structural, mechanical, and thermal properties)

  19. Analysis of pile foundations under dynamic loads

    International Nuclear Information System (INIS)

    Waas, G.; Hartmann, H.G.

    1981-01-01

    A method is presented for the analysis of pile foundations which are subjected to horizontal dynamic loads from earthquakes, airplane impact, gas explosion or other sources. The motion of the pile cap and the pile forces are computed. - The loads may be applied to the pile cap or directly to the piles (e.g. by earthquake wave motion). The soil may be stratified and is considered to be an elastic or visco-elastic medium. The piles are assumed vertical. The method makes use of an approximate fundamental solution for displacements caused by a dynamic point load in a layered visco-elastic medium. The approximation involves a discretization of the medium in the vertical direction. In horizontal directions the medium is treated by continuum theory. The soil medium supports each pile at about 10 to 20 nodes. A dynamic flexiblity matrix for the soil is derived which relates the elastic, damping and inertial forces of the soil to the displacements at each node. It includes effects of radiation damping. All piles are coupled through the soil flexibility matrix. The piles are modelled by beam elements. Transient response is computed using fast discrete Fourier transforms. The arrangement of the piles is arbitrary. However, simple and double symmetry can be accounted for by the computer program. When the pile arrangement is axisymmetric, the degrees of freedom can be reduced to only those of two piles per ring. The influence of the number of piles and the influence of the pile spacing on group stiffness and on pile forces is presented for two soil profiles. Dynamic effects on pile forces of a foundation for a reactor building are studied. They are significant when soils are soft. (orig.)

  20. Elasticity theory of ultrathin nanofilms

    International Nuclear Information System (INIS)

    Li, Jiangang; Yun, Guohong; Narsu, B; Yao, Haiyan

    2015-01-01

    A self-consistent theoretical scheme for describing the elastic behavior of ultrathin nanofilms (UTNFs) was proposed. Taking into account the lower symmetry of an UTNF compared to its bulk counterpart, additional elastic and magnetoelastic parameters were introduced to model the elasticity rigorously. The applications of current theory to several elastic and magnetoelastic systems gave excellent agreement with experiments. More importantly, the surface elastic and magnetoelastic parameters used to fit the experimental results are physically reasonable and in close agreement with those obtained from experiment and simulation. This fact suggests that the additional elastic (magnetoelastic) constants due to symmetry breaking are of great importance in theoretical description of the mechanical properties of UTNFs. And we proved that the elasticity of UTNFs should be described by a three-dimensional model just including the intrinsic surface and bulk parameters, but not the effective surface parameters. It is believed that the theory reported here is a universal strategy for elasticity and magnetoelasticity of ultrathin films. (paper)

  1. Elastic Property Simulation of Nano-particle Reinforced Composites

    Directory of Open Access Journals (Sweden)

    He Jiawei

    2016-01-01

    Full Text Available A series of numerical micro-mechanical models for two kinds of particle (cylindrical and discal particle reinforced composites are developed to investigate the effect of microstructural parameters on the elastic properties of composites. The effects of both the degree of particle clustering and particle’s shape on the elastic mechanical properties of composites are investigated. In addition, single particle unit cell approximation is good enough for the analysis of the effect of averaged parameters when only linear elastic response is considered without considering the particle clustering in particle-reinforced composites.

  2. Investigation on crack growth parameters in the elastic plastic region (interim report)

    International Nuclear Information System (INIS)

    Prij, J.

    1982-03-01

    Some theoretical as well as numerical results are presented with respect to the 2D and 3D application of linear elastic fracture mechanics. The application of the finite element method to calculate the stress and strain field in cracked bodies has been discussed with special attention to: singularity representation, parameter extraction and mesh refinement. Detailed 3D stress analyses of fracture mechanics test specimen are presented showing that: the stress intensity concept cannot be extended simply into a 3D concept, the energy release concept is more promising within this aspect and the plastic region along the crackfront will not have a dogbone shape. The 3D elastic fracture mechanics concept is applied to evaluate the consequences of the thermal stresses due to γ-heating in an in-pile crack growth experiment

  3. Two-photon exchange corrections in elastic lepton-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz (Germany)

    2015-07-01

    The measured value of the proton charge radius from the Lamb shift of energy levels in muonic hydrogen is in strong contradiction, by 7-8 standard deviations, with the value obtained from electronic hydrogen spectroscopy and the value extracted from unpolarized electron-proton scattering data. The dominant unaccounted higher order contribution in scattering experiments corresponds to the two photon exchange (TPE) diagram. The elastic contribution to the TPE correction was studied with the fixed momentum transfer dispersion relations and compared to the hadronic model with off-shell photon-nucleon vertices. A dispersion relation formalism with one subtraction was proposed. Theoretical predictions of the TPE elastic contribution to the unpolarized elastic electron-proton scattering and polarization transfer observables in the low momentum transfer region were made. The TPE formalism was generalized to the case of massive leptons and the elastic contribution was evaluated for the kinematics of upcoming muon-proton scattering experiment (MUSE).

  4. Assessing the foundation of the Trojan Horse Method

    Science.gov (United States)

    Bertulani, C. A.; Hussein, M. S.; Typel, S.

    2018-01-01

    We discuss the foundation of the Trojan Horse Method (THM) within the Inclusive Non-Elastic Breakup (INEB) theory. We demonstrate that the direct part of the INEB cross section, which is of two-step character, becomes, in the DWBA limit of the three-body theory with appropriate approximations and redefinitions, similar in structure to the one-step THM cross section. We also discuss the connection of the THM to the Surrogate Method (SM), which is a genuine two-step process.

  5. On crack interaction effects of in-plane surface cracks using elastic and elastic-plastic finite element analyses

    International Nuclear Information System (INIS)

    Kim, Jong Min; Huh, Nam Su

    2010-01-01

    The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components

  6. On the general theory of thermo-elastic friction

    NARCIS (Netherlands)

    Alblas, J.B.

    1961-01-01

    A theory of the thermo-elastic dissipation in vibrating bodies is developed, starting from the three-dimensional thermo-elastic equations. After a discussion of the basic thermodynamical foundations, some general considerations on the problem of the conversion of mechanical energy into heat are

  7. Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium

    International Nuclear Information System (INIS)

    Soltani, P; Farshidianfar, A; Taherian, M M

    2010-01-01

    In this study, for the first time, the transverse vibrational model of a viscous-fluid-conveying single-walled carbon nanotube (SWCNT) embedded in biological soft tissue is developed. Nonlocal Euler-Bernoulli beam theory has been used to investigate fluid-induced vibration of the SWCNT while visco-elastic behaviour of the surrounding tissue is simulated by the Kelvin-Voigt model. The results indicate that the resonant frequencies and the critical flow velocity at which structural instability of nanotubes emerges are significantly dependent on the properties of the medium around the nanotube, the boundary conditions, the viscosity of the fluid and the nonlocal parameter. Detailed results are demonstrated for the dependence of damping and elastic properties of the medium on the resonant frequencies and the critical flow velocity. Three standard boundary conditions, namely clamped-clamped, clamped-pinned and pinned-pinned, are applied to study the effect of the supported end conditions. Furthermore, it is found that the visco-elastic foundation causes an obvious reduction in the critical velocity in comparison with the elastic foundation, in particular for a compliant medium, pinned-pinned boundary condition, high viscosity of the fluid and small values of the nonlocal coefficient.

  8. Two-velocity elasticity theory and facet growth

    OpenAIRE

    Andreev, A. F.; Melnikovsky, L. A.

    2002-01-01

    We explain the linear growth of smooth solid helium facets by the presence of lattice point defects. To implement this task, the framework of very general two-velocity elasticity theory equations is developed. Boundary conditions for these equations for various surface types are derived. We also suggest additional experiments to justify the concept.

  9. Diffusionless phase transition with two order parameters in spin-crossover solids

    Energy Technology Data Exchange (ETDEWEB)

    Gudyma, Iurii, E-mail: yugudyma@gmail.com; Ivashko, Victor [Department of General Physics, Chernivtsi National University, 58012 Chernivtsi (Ukraine); Linares, Jorge [Groupe d' Etude de la Matière Condensée (GEMAC), UMR 8635, CNRS, Université de Versailles Saint Quentin, 45 avenue des Etats-Unis, 78035 Versailles (France)

    2014-11-07

    The quantitative analysis of the interface boundary motion between high-spin and low-spin phases is presented. The nonlinear effect of the switching front rate on the temperature is shown. A compressible model of spin-crossover solid is studied in the framework of the Ising-like model with two-order parameters under statistical approach, where the effect of elastic strain on interaction integral is considered. These considerations led to examination of the relation between the order parameters during temperature changes. Starting from the phenomenological Hamiltonian, entropy has been derived using the mean field approach. Finally, the phase diagram, which characterizes the system, is numerically analyzed.

  10. A 3D domain decomposition approach for the identification of spatially varying elastic material parameters

    KAUST Repository

    Moussawi, Ali; Lubineau, Gilles; Xu, Jiangping; Pan, Bing

    2015-01-01

    Summary: The post-treatment of (3D) displacement fields for the identification of spatially varying elastic material parameters is a large inverse problem that remains out of reach for massive 3D structures. We explore here the potential

  11. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-10-01

    This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.

  12. Three-Dimensional Computer-Assisted Two-Layer Elastic Models of the Face.

    Science.gov (United States)

    Ueda, Koichi; Shigemura, Yuka; Otsuki, Yuki; Fuse, Asuka; Mitsuno, Daisuke

    2017-11-01

    To make three-dimensional computer-assisted elastic models for the face, we decided on five requirements: (1) an elastic texture like skin and subcutaneous tissue; (2) the ability to take pen marking for incisions; (3) the ability to be cut with a surgical knife; (4) the ability to keep stitches in place for a long time; and (5) a layered structure. After testing many elastic solvents, we have made realistic three-dimensional computer-assisted two-layer elastic models of the face and cleft lip from the computed tomographic and magnetic resonance imaging stereolithographic data. The surface layer is made of polyurethane and the inner layer is silicone. Using this elastic model, we taught residents and young doctors how to make several typical local flaps and to perform cheiloplasty. They could experience realistic simulated surgery and understand three-dimensional movement of the flaps.

  13. Analysis of HD Journal Bearings Considering Elastic Deformation and Non-Newtonian Rabinowitsch Fluid Model

    Directory of Open Access Journals (Sweden)

    J. Javorova

    2016-06-01

    Full Text Available The purpose of this paper is to study the performance of a finite length journal bearing, taking into account effects of non-Newtonian Rabinowitsch flow rheology and elastic deformations of the bearing liner. According to the Rabinowitsch fluid model, the cubic-stress constitutive equation is used to account for the non-Newtonian effects of pseudoplastic and dilatant lubricants. Integrating the continuity equation across the film, the nonlinear non-Newtonian Reynolds-type equation is derived. The elasticity part of the problem is solved on the base of Vlassov model of an elastic foundation. The numerical solution of the modified Reynolds equation is carried out by using FDM with over-relaxation technique. The results for steady state bearing performance characteristics have been calculated for various values of nonlinear factor and elasticity parameters. It was concluded that in comparison with the Newtonian lubricants, higher values of film pressure and load carrying capacity have been obtained for dilatant lubricants, while the case was reversed for pseudoplastic lubricants.

  14. Bending wave propagation of carbon nanotubes in a bi-parameter elastic matrix

    International Nuclear Information System (INIS)

    Wu, J.-X.; Li, X.-F.; Tang, G.-J.

    2012-01-01

    This article studies transverse waves propagating in carbon nanotubes (CNTs) embedded in a surrounding medium. The CNTs are modeled as a nonlocal elastic beam, whereas the surrounding medium is modeled as a bi-parameter elastic medium. When taking into account the effect of rotary inertia of cross-section, a governing equation is acquired. A comparison of wave speeds using the Rayleigh and Euler-Bernoulli theories of beams with the results of molecular dynamics simulation indicates that the nonlocal Rayleigh beam model is more adequate to describe flexural waves in CNTs than the nonlocal Euler-Bernoulli model. The influences of the surrounding medium and rotary inertia on the phase speed for single-walled and double-walled CNTs are analyzed. Obtained results turn out that the surrounding medium plays a dominant role for lower wave numbers, while rotary inertia strongly affects the phase speed for higher wave numbers.

  15. Bending wave propagation of carbon nanotubes in a bi-parameter elastic matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.-X. [School of Civil Engineering, Central South University, Changsha, Hunan 410075 (China); Li, X.-F., E-mail: xfli25@yahoo.com.cn [School of Civil Engineering, Central South University, Changsha, Hunan 410075 (China); Tang, G.-J. [College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China)

    2012-02-15

    This article studies transverse waves propagating in carbon nanotubes (CNTs) embedded in a surrounding medium. The CNTs are modeled as a nonlocal elastic beam, whereas the surrounding medium is modeled as a bi-parameter elastic medium. When taking into account the effect of rotary inertia of cross-section, a governing equation is acquired. A comparison of wave speeds using the Rayleigh and Euler-Bernoulli theories of beams with the results of molecular dynamics simulation indicates that the nonlocal Rayleigh beam model is more adequate to describe flexural waves in CNTs than the nonlocal Euler-Bernoulli model. The influences of the surrounding medium and rotary inertia on the phase speed for single-walled and double-walled CNTs are analyzed. Obtained results turn out that the surrounding medium plays a dominant role for lower wave numbers, while rotary inertia strongly affects the phase speed for higher wave numbers.

  16. Vibration of functionally graded plate resting on viscoelastic elastic foundation subjected to moving loads

    Science.gov (United States)

    Duy Hien, Ta; Lam, Nguyen Ngoc

    2018-04-01

    The dynamics of plates subjected to a moving load must be considered by engineering mechanics and design structures. This paper deals with the dynamic responses of functionally graded (FG) rectangular plates resting on a viscoelastic foundation under moving loads. It is assumed that material properties of the plate vary continuously in the thickness direction according to the power-law. The governing equations are derived by using Hamilton’s principle, which considers the effect of the higher-order shear deformation in the plate. Transient responses of simply supported FG rectangular plates are employed by using state-space methods. Several examples are given for displacement and stresses in the plates with various structural parameters, and the effects of these parameters are discussed.

  17. Investigating dynamic characteristics of porous double-layered FG nanoplates in elastic medium via generalized nonlocal strain gradient elasticity

    Science.gov (United States)

    Reza Barati, Mohammad

    2017-09-01

    For the first time, a vibrating porous double-nanoplate system under in-plane periodic loads is modeled via the generalized nonlocal strain gradient theory (NSGT). Based on the proposed theory, one can examine both stiffness-softening and stiffness-hardening effects for a more accurate analysis of nanoplates. Nanopores or nanovoids are incorporated to the model based on a modified rule of mixture. Modeling of porous double-layered nanoplate is conducted according to a refined four-variable plate theory with fewer field variables than first-order plate theory. The governing equations and related classical and nonclassical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. It is shown that porosities, nonlocal parameter, strain gradient parameter, material gradation, interlayer stiffness, elastic foundation, side-to-thickness and aspect ratios have a notable impact on the vibration behavior of nanoporous materials.

  18. Analysis of Foundation of Tall R/C Chimney Incorporating Flexibility of Soil

    Science.gov (United States)

    Jayalekshmi, B. R.; Jisha, S. V.; Shivashankar, R.

    2017-09-01

    Three dimensional Finite Element (FE) analysis was carried out for 100 and 400 m high R/C chimneys having piled annular raft and annular raft foundations considering the flexibility of soil subjected to across-wind load. Stiffness of supporting soil and foundation were varied to evaluate the significance of Soil-Structure Interaction (SSI). The integrated chimney-foundation-soil system was analysed by finite element software ANSYS based on direct method of SSI assuming linear elastic material behaviour. FE analyses were carried out for two cases of SSI namely, (1) chimney with annular raft foundation and (2) chimney with piled annular raft foundation. The responses in raft such as bending moments and settlements were evaluated for both the cases and compared to those obtained from the conventional method of analysis of annular raft foundation. It is found that the responses in raft vary considerably depending on the stiffness of the underlying soil and the stiffness of foundation. Piled raft foundations are better suited for tall chimneys to be constructed in loose or medium sand.

  19. Damageable contact between an elastic body and a rigid foundation

    Science.gov (United States)

    Campo, M.; Fernández, J. R.; Silva, A.

    2009-02-01

    In this work, the contact problem between an elastic body and a rigid obstacle is studied, including the development of material damage which results from internal compression or tension. The variational problem is formulated as a first-kind variational inequality for the displacements coupled with a parabolic partial differential equation for the damage field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme is introduced using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, three two-dimensional numerical simulations are performed to demonstrate the accuracy and the behaviour of the scheme.

  20. Vectorized Matlab Codes for Linear Two-Dimensional Elasticity

    Directory of Open Access Journals (Sweden)

    Jonas Koko

    2007-01-01

    Full Text Available A vectorized Matlab implementation for the linear finite element is provided for the two-dimensional linear elasticity with mixed boundary conditions. Vectorization means that there is no loop over triangles. Numerical experiments show that our implementation is more efficient than the standard implementation with a loop over all triangles.

  1. Vibration characteristics of two-stage planetary transmission system with thin-walled ring gear on elastic supports

    Science.gov (United States)

    Li, JianYing; Hu, QingChun; Zong, ChangFu; Zhu, TianJun; Zhang, ZeXing

    2018-03-01

    A dual-clutch and dual-speed planetary gears mechanism of a hybrid car coupled-system is taken as research subject, in which the ring gear of planet set II is a thin-walled structure and the clutch friction plates of planet set II are used as its elastic supports. Based on the lumped parameter-rigid elastic coupled dynamic model of two-stage planetary transmission system with thin-walled ring gear on elastic supports, the motion differential equations are established and the dynamic responses are solved by the Runge-Kutta method considering each stage internal and external time-varying mesh stiffness. The vibration displacements of each stage ring gear have been affected differently in time-domain, the translational vibration displacement of the ring gear of planet set I are obviously more than the torsional vibration displacement, but it is opposite for the ring gear of planet set II; The translational and torsional vibration responses of each stage ring gear arrive the peak in low-frequency. The analysis results of this paper can enrich the theoretical research of multistage planetary transmission and provide guidance for dynamic design.

  2. Fluid-elastic force measurements acting on a tube bundle in two-phase cross flow

    International Nuclear Information System (INIS)

    Inada, Fumio; Kawamura, Koji; Yasuo, Akira

    1996-01-01

    Fluid-elastic force acting on a square tube bundle of P/D = 1.47 in air-water two-phase cross flow was measured to investigate the characteristics and to clarify whether the fluid elastic vibration characteristics could be expressed using two-phase mixture characteristics. Measured fluid elastic forces were separated into fluid-elastic force coefficients such as added mass, added stiffness, and added damping coefficient. The added damping coefficient was separated into a two-phase damping and a flow-dependent component as in previous research (Carlucci, 1981 and 1983; Pettigrew, 1994). These coefficients were nondimensionalized with two-phase mixture characteristics such as void fraction, mixture density and mixture velocity, which were obtained using the drift-flux model with consideration given to the model. The result was compared with the result obtained with the homogeneous model. It was found that fluid-elastic force coefficients could be expressed with two-phase flow mixture characteristics very well in the experimental result, and that better result can be derived using the slip model as compared to the homogeneous model. Added two-phase flow, which could be expressed as a function of void fraction, where two-phase damping was nondimensionalized with the relative velocity between the gas and liquid phases used as a reference velocity. Using these, the added stiffness coefficient and flow-dependent component of damping could be expressed very well as a function of nondimensional mixture velocity

  3. Elastic scattering and quasi-elastic transfers

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Experiments are presented which it will be possible to carry out at GANIL on the elastic scattering of heavy ions: diffraction phenomena if the absorption is great, refraction phenomena if absorption is low. The determination of the optical parameters can be performed. The study of the quasi-elastic transfer reactions will make it possible to know the dynamics of the nuclear reactions, form exotic nuclei and study their energy excitation spectrum, and analyse the scattering and reaction cross sections [fr

  4. Prediction of fretting fatigue behavior under elastic-plastic conditions

    International Nuclear Information System (INIS)

    Shin, Ki Su

    2009-01-01

    Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations

  5. Mathematical Modeling of Hydroelastic Oscillations of the Stamp and the Plate, Resting on Pasternak Foundation

    Science.gov (United States)

    Mogilevich, L. I.; Popov, V. S.; Popova, A. A.; Christoforova, A. V.

    2018-01-01

    The forced oscillations of the elastic fixed stamp and the plate, resting on Pasternak foundation are studied. The oscillations are caused by pressure pulsation in liquid layer between the stamp and the plate. Pasternak model is chosen as an elastic foundation. The laws of the stamp movement, the plate deflection and pressure in the liquid are discovered on the basis of hydroelasticity problem analytical solution. The functions of amplitude deflection distribution and liquid pressure along the plate are constructed, as well as the stamp amplitude-frequency characteristic. The obtained mathematical model allows to investigate the dynamics of hydroelastic interaction of the stamp with the plate, resting on elastic foundation, to define resonance frequencies of the plate and the stamp and corresponding deflections amplitudes, as well as liquid presser amplitudes.

  6. Two modified symplectic partitioned Runge-Kutta methods for solving the elastic wave equation

    Science.gov (United States)

    Su, Bo; Tuo, Xianguo; Xu, Ling

    2017-08-01

    Based on a modified strategy, two modified symplectic partitioned Runge-Kutta (PRK) methods are proposed for the temporal discretization of the elastic wave equation. The two symplectic schemes are similar in form but are different in nature. After the spatial discretization of the elastic wave equation, the ordinary Hamiltonian formulation for the elastic wave equation is presented. The PRK scheme is then applied for time integration. An additional term associated with spatial discretization is inserted into the different stages of the PRK scheme. Theoretical analyses are conducted to evaluate the numerical dispersion and stability of the two novel PRK methods. A finite difference method is used to approximate the spatial derivatives since the two schemes are independent of the spatial discretization technique used. The numerical solutions computed by the two new schemes are compared with those computed by a conventional symplectic PRK. The numerical results, which verify the new method, are superior to those generated by traditional conventional methods in seismic wave modeling.

  7. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit; Mahboob, Monon [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Islam, M. Zahabul [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-07-12

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10 K ~ 1500 K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 10{sup 9} s{sup −1} to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.

  8. Surface elastic properties in silicon nanoparticles

    Science.gov (United States)

    Melis, Claudio; Giordano, Stefano; Colombo, Luciano

    2017-09-01

    The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.

  9. Size-dependent analysis of a sandwich curved nanobeam integrated with piezomagnetic face-sheets

    Directory of Open Access Journals (Sweden)

    Ashraf M. Zenkour

    Full Text Available The aim of this research is to develop nonlocal transient magneto-electro-elastic formulation of a sandwich curved nanobeam including a nano-core and two piezo-magnetic face-sheets subjected to transverse mechanical loads and applied electric and magnetic potentials rest on Pasternak’s foundation. Nonlocal magneto-electro-elastic relations and Hamilton’s principle are used for derivation of the governing equations of motion. The analytical solution based on Fourier solution is presented for a simply-supported sandwich curved nanobeam. The numerical results are presented to investigate influence of significant parameters such as nonlocal parameter, radius of curvature, applied electric and magnetic potentials and two parameters of Pasternak's foundation on the dynamic responses of sandwich curved nanobeam. Keywords: Sandwich curved nanobeam, Dynamic responses, Piezo-magnetic face-sheets, Pasternak’s foundation, Radius of curvature, Nonlocal parameter

  10. Elastic interactions between hydrogen atoms in metals. II. Elastic interaction energies

    International Nuclear Information System (INIS)

    Shirley, A.I.; Hall, C.K.

    1986-01-01

    The fully harmonic lattice approximation derived in a previous paper is used to calculate the elastic interaction energies in the niobium-hydrogen system. The permanent-direct, permanent-indirect, induced-direct, and induced-indirect forces calculated previously each give rise to a corresponding elastic interaction between hydrogen atoms. The latter three interactions have three- and four-body terms in addition to the usual two-body terms. These quantities are calculated and compared with the corresponding two-body permanent elastic interactions obtained in the harmonic-approximation treatment of Horner and Wagner. The results show that the total induced elastic energy is approximately (1/3) the size of the total permanent elastic energy and opposite to it in sign. The total elastic energy due to three-body interactions is approximately (1/4) the size of the total two-body elastic energy, while the total four-body elastic energy is approximately 5% of the total two-body energy. These additional elastic energies are expected to have a profound effect on the thermodynamic and phase-change behavior of a metal hydride

  11. pp-elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E; Cantale, G; Degli-Agosti, S; Hausammann, R; Heer, E; Hess, R; Lechanoine-LeLuc, C; Leo, W; Morenzoni, S; Onel, Y [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire

    1983-01-01

    The aim of the elastic pp experimental program at SIN was to measure enough spin dependent parameters in order to do a direct experimental reconstruction of the elastic scattering amplitudes at a few energies between 400 and 600 MeV and at several angles between 38/sup 0/ cm and 90/sup 0/ cm. This reconstruction was not possible until recently due to lack of experimental data. Information instead has come mainly from phase shift analysis (PSA). The only way to extract the elastic scattering amplitudes without any hypotheses except those of basic symmetries, is to measure a sufficient set of spin dependent parameters at a given angle and energy. With this in view, the authors have measured at 448, 494, 515, 536 and 579 MeV, the polarization, the spin correlation parameters Asub(00nn), Asub(00ss), Asub(00kk), Asub(00ks), the 2-spin parameters Dsub(n0n0), Ksub(n00n), Dsub(s'0s0), Dsub(s'0k0) and the 3-spin parameters Msub(s'0sn), Msub(s'0kn) between 34/sup 0/ cm and 118/sup 0/ cm. A few of these parameters have also been measured at 560 and 470 MeV and at a few energies below 448 MeV. The indices refer to the polarization orientation of the scattered, recoil, beam and target particle respectively.

  12. Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals

    International Nuclear Information System (INIS)

    Liu, Wei; Chen, Jiwei; Liu, Yongquan; Su, Xianyue

    2012-01-01

    In the present Letter, the multiple scattering theory (MST) for calculating the elastic wave band structure of two-dimensional phononic crystals (PCs) is extended to include the interface/surface stress effect at the nanoscale. The interface/surface elasticity theory is employed to describe the nonclassical boundary conditions at the interface/surface and the elastic Mie scattering matrix embodying the interface/surface stress effect is derived. Using this extended MST, the authors investigate the interface/surface stress effect on the elastic wave band structure of two-dimensional PCs, which is demonstrated to be significant when the characteristic size reduces to nanometers. -- Highlights: ► Multiple scattering theory including the interface/surface stress effect. ► Interface/surface elasticity theory to describe the nonclassical boundary conditions. ► Elastic Mie scattering matrix embodying the interface/surface stress effect. ► Interface/surface stress effect would be significant at the nanoscale.

  13. Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yijing, E-mail: yzhng123@illinois.edu; Moore, Keegan J.; Vakakis, Alexander F. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); McFarland, D. Michael [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-12-21

    We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.

  14. The significant role of the rare earth ions on the elastic and thermodynamic parameters of LiCoDy- and ZnCoCe-ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Bishay, Samiha T. [Physics Department, Faculty of Girls for Science, Art and Education Ain Shams University, Asma Fahmi Street, Heliopolis, Cairo (Egypt)]. E-mail: dr_samiha@hotmail.com

    2006-06-15

    Two types of rare earth ferrites [Li{sub 0.6}Co{sub 0.1}Dy{sub x}Fe{sub 2.3-x}O{sub 4}; 0.0=elastic behavior and some essential thermodynamic parameters. The elastic properties were studied by measuring the ultrasonic velocities by adopting the pulse transmission technique. Longitudinal (V{sub L}) and shear (V{sub S}) velocities, Young's modulus (E), Debye temperature ({theta}{sub D}) and specific heat capacity (C{sub v}) have been evaluated for all the investigated samples. The rare earth content as well as its ionic radius plays a significant role in the evaluated parameters. According to the experimental results, the two investigated types of rare earth ferrite are considered as insulator magnetic solids. It was found that for each composition there exists a characteristic temperature, down to which the resonance frequency of the investigated samples drops smoothly, but above this temperature the resonance frequency stays constant. Accordingly, these samples seem to be of importance in industrial applications especially in the field of electronics.

  15. Precession of a two-layer Earth: contributions of the core and elasticity

    Science.gov (United States)

    Baenas, Tomás; Ferrándiz, José M.; Escapa, Alberto; Getino, Juan; Navarro, Juan F.

    2016-04-01

    The Earth's internal structure contributes to the precession rate in a small but non-negligible amount, given the current accuracy goals demanded by IAG/GGOS to the reference frames, namely 30 μas and 3 μas/yr. These contributions come from a variety of sources. One of those not yet accounted for in current IAU models is associated to the crossed effects of certain nutation-rising terms of a two-layer Earth model; intuitively, it gathers an 'indirect' effect of the core via the NDFW, or FCN, resonance as well as a 'direct' effect arising from terms that account for energy variations depending on the elasticity of the core. Similar order of magnitude reaches the direct effect of the departure of the Earth's rheology from linear elasticity. To compute those effects we work out the problem in a unified way within the Hamiltonian framework developed by Getino and Ferrándiz (2001). It allows a consistent treatment of the problem since all the perturbations are derived from the same tide generating expansion and the crossing effects are rigorously obtained through Hori's canonical perturbation method. The problem admits an asymptotic analytical solution. The Hamiltonian is constructed by considering a two-layer Earth model made up of an anelastic mantle and a fluid core, perturbed by the gravitational action of the Moon and the Sun. The former effects reach some tens of μas/yr in the longitude rate, hence above the target accuracy level. We outline their influence in the estimation of the Earth's dynamical ellipticity, a main parameter factorizing both precession and nutation.

  16. Sensitivity of fusion and quasi-elastic barrier distributions of {sub 16}O+{sub 144}Sm reaction on the coupling radius parameter

    Energy Technology Data Exchange (ETDEWEB)

    Zamrun, Muhammad; Usman, Ida; Variani, Viska Inda [Department of Physics, Haluoleo University, Kendari, Sulawesi Tengagra, 93232 (Indonesia); Kassim, Hasan Abu [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    We study the heavy-ion collision at sub-barrier energies of {sub 16}O+{sub 144}Sm system using full order coupled-channels formalism. We especially investigate the sensitivity of fusion and quasi-elastic barrier distributions for this system on the coupling radius parameter. We found that the coupled-channels calculations of the fusion and the quasi-elastic barrier distributions are sensitive to the coupling radius for this reaction in contrast to the fusion and quasi-elastic cross section. Our study indicates that the larger coupling radius, i.e., r{sub coup}=1.20, is required by the experimental quasi-elastic barrier distribution. However, the experimental fusion barrier distribution compulsory the small value, i.e., r{sub coup}=1.06.

  17. Theoretical investigation of interaction between a rectangular plate and fractional viscoelastic foundation

    Directory of Open Access Journals (Sweden)

    Chengcheng Zhang

    2014-08-01

    Full Text Available The interaction between plates and foundations is a typical problem encountered in geotechnical engineering. The long-term plate performance is highly dependent on the rheological characteristics of ground soil. Compared with conventional linear rheology, the fractional calculus-based theory is a more powerful mathematical tool that can address this issue. This paper proposes a fractional Merchant model (FMM to investigate the time-dependent behavior of a simply supported rectangular plate on viscoelastic foundation. The correspondence principle involving Laplace transforms was employed to derive the closed-form solutions of plate response under uniformly distributed load. The plate deflection, bending moment, and foundation reaction calculated using the FMM were compared with the results obtained from the analogous elastic model (EM and the standard Merchant model (SMM. It is shown that the upper and lower bound solutions of the FMM can be determined using the EM. In addition, a parametric study was performed to examine the influences of the model parameters on the time-dependent behavior of the plate–foundation interaction problem. The results indicate that a small fractional differential order corresponds to a plate resting on a sandy soil foundation, while the fractional differential order value should be increased for a clayey soil foundation. The long-term performance of a foundation plate can be accurately simulated by varying the values of the fractional differential order and the viscosity coefficient. The observations from this study reveal that the proposed fractional model has the capability to capture the variation of plate deflection over many decades of time.

  18. Adhesive friction for elastic-plastic contacting rough surfaces considering asperity interaction

    International Nuclear Information System (INIS)

    Sahoo, Prasanta

    2006-01-01

    The paper describes a theoretical study of adhesive friction at the contact between rough surfaces taking asperity interaction into consideration and using an elastic-plastic model of contact deformation that is based on an accurate finite element analysis of an elastic-plastic single asperity contact. The micro-contact model of asperity interactions, developed by Zhao and Chang, is integrated into the improved elastic-plastic rough surface adhesive contact analysis to consider the adhesive friction behaviour of rough surfaces. The model considers a large range of interference values from fully elastic through elastic-plastic to fully plastic regimes of contacting asperities. Two well-established adhesion indices are used to consider different conditions that arise as a result of varying load, surface and material parameters. Results are obtained for the coefficient of friction against applied load for various combinations of these parameters. The results show that the coefficient of friction depends strongly on the applied load for the no-interaction case while it becomes insensitive to the load for interaction consideration. Moreover, the inclusion of elastic-plastic asperities further reduces the friction coefficient

  19. Impact parameter analysis of proton-proton elastic and inelastic interactions at 360 GeV/c

    International Nuclear Information System (INIS)

    Banerjee, S.; Ragavan, R.; Bailly, J

    1987-01-01

    Data obtained with the European Hybrid Spectrometer on the proton-proton elastic scattering at 360 GeV/c are presented. The differential cross sections of elastic and inelastic pp-interactions are studied as a function of the impact parameter. The results are compared to those obtained at other energies. They are interpreted in the framework of a simple geometrical Monte-Carlo model of inelastic collisions considering protons as composite particles having a definite effective radius with valence quarks inside. The shape of the inelastic overlap function is well reproduced for both pp- and π + p-interactions. The effective radii of the proton and pion as well as of the valence quarks are estimated for inelastic interactions. The model calculations indicate an increase of the effective radii both of protons and valence quarks and an increase of the proton opacity with increasing energy

  20. Offshore Wind Turbine Foundation Model Validation with Wind Farm Measurements and Uncertainty Quantification

    DEFF Research Database (Denmark)

    Koukoura, Christina; Natarajan, Anand; Krogh, Thomas

    2013-01-01

    The variation in simulated monopile substructure loads is quantified by validating an aero-hydro-servo-elastic design tool with offshore foundation load measurements. A three bladed 3.6MW pitch controlled variable speed wind turbine for offshore monopile foundations is modeled in the HAWC2...

  1. Analysis of transverse vibration and stability issues of discrete-continuous elastic systems with nonlinearly variable parameters

    Directory of Open Access Journals (Sweden)

    Jaroszewicz Jerzy

    2018-01-01

    Full Text Available The work is devoted to methods of analysis of vibrations and stability of discrete-continuous, multi-parameter models of beams, shafts, rotors, vanes, converting to homogeneous and one-dimensional. The properties of Cauchy's influence function and the characteristic series method were used to solve the boundary problem. It has been shown that the methods are an effective tool for solving boundary problems described by ordinary fourth-and second-order differential equations with variable parameters. Particular attention should be paid to the solution of the border problem of two-parameter elastic systems with variable distribution of parameters. Universal beam-specific equations with typical support conditions including vertical support, which do not depend on beam shape and axial load type, are recorded. The shape and type of load are considered in the form of an impact function that corresponds to any change in cross-section of the support and continuous axial load, so that the functions describing the stiffness, the mass and the continuous load are complete. As a result of the solution of the boundary vibration problem of freely bent support and any change in its cross-section, loaded with any longitudinal load, arranged on the resilient substrate, strict relations between the own frequency parameters and the load parameters were derived. Using the methods, simple calculations were made, easy to use in engineering practice and conditions of use were given. Experimental studies have confirmed the high accuracy of theoretical calculations using the proposed methods and formulas.

  2. Mathematical foundation of geodesy selected papers of Torben Krarup

    CERN Document Server

    Borre, K

    2006-01-01

    This volume contains selected papers by Torben Krarup, one of the most important geodesists of the 20th century. The collection includes the famous booklet "A Contribution to the Mathematical Foundation of Physical Geodesy" from 1969, the unpublished "Molodenskij letters" from 1973, the final version of "Integrated Geodesy" from 1978, "Foundation of a Theory of Elasticity for Geodetic Networks" from 1974, as well as trend-setting papers on the theory of adjustment.

  3. Nonlinear free vibration analysis of elastically supported carbon nanotube-reinforced composite beam with the thermal environment in non-deterministic framework

    Directory of Open Access Journals (Sweden)

    Chaudhari Virendra Kumar

    2017-01-01

    Full Text Available This paper deals with the investigation of nonlinear free vibration behavior of elastically supported carbon nanotube reinforced composite (CNTRC beam subjected to thermal loading with random system properties. Material properties of each constituent’s material, volume fraction exponent and foundation parameters are considered as uncorrelated Gaussian random input variables. The beam is supported by a Pasternak foundation with Winkler cubic nonlinearity. The higher order shear deformation theory (HSDT with von-Karman non-linearity is used to formulate the governing equation using Hamilton principle. Convergence and validation study is carried out through the comparison with the available results in the literature for authenticity and accuracy of the present approach used in the analysis. First order perturbation technique (FOPT,Second order perturbation technique (SOPT and Monte Carlo simulation (MCS methods are employed to investigate the effect of geometric configuration, volume fraction exponent, foundation parameters, distribution of reinforcement and thermal loading on nonlinear vibration characteristics CNTRC beam.The present work signifies the accurate analysis of vibrational behaviour influences by different random variables. Results are presented in terms of mean, variance (COV and probability density function (PDF for various aforementioned parameters.

  4. Estimation of fracture parameters using elastic full-waveform inversion

    KAUST Repository

    Zhang, Zhendong

    2017-08-17

    Current methodologies to characterize fractures at the reservoir scale have serious limitations in spatial resolution and suffer from uncertainties in the inverted parameters. Here, we propose to estimate the spatial distribution and physical properties of fractures using full-waveform inversion (FWI) of multicomponent surface seismic data. An effective orthorhombic medium with five clusters of vertical fractures distributed in a checkboard fashion is used to test the algorithm. A shape regularization term is added to the objective function to improve the estimation of the fracture azimuth, which is otherwise poorly constrained. The cracks are assumed to be penny-shaped to reduce the nonuniqueness in the inverted fracture weaknesses and achieve a faster convergence. To better understand the inversion results, we analyze the radiation patterns induced by the perturbations in the fracture weaknesses and orientation. Due to the high-resolution potential of elastic FWI, the developed algorithm can recover the spatial fracture distribution and identify localized “sweet spots” of intense fracturing. However, the fracture azimuth can be resolved only using long-offset data.

  5. Wave dispersion of carbon nanotubes conveying fluid supported on linear viscoelastic two-parameter foundation including thermal and small-scale effects

    Science.gov (United States)

    Sina, Nima; Moosavi, Hassan; Aghaei, Hosein; Afrand, Masoud; Wongwises, Somchai

    2017-01-01

    In this paper, for the first time, a nonlocal Timoshenko beam model is employed for studying the wave dispersion of a fluid-conveying single-walled carbon nanotube on Viscoelastic Pasternak foundation under high and low temperature change. In addition, the phase and group velocity for the nanotube are discussed, respectively. The influences of Winkler and Pasternak modulus, homogenous temperature change, steady flow velocity and damping factor of viscoelastic foundation on wave dispersion of carbon nanotubes are investigated. It was observed that the characteristic of the wave for carbon nanotubes conveying fluid is the normal dispersion. Moreover, implying viscoelastic foundation leads to increasing the wave frequencies.

  6. Flexural modeling of the elastic lithosphere at an ocean trench: A parameter sensitivity analysis using analytical solutions

    Science.gov (United States)

    Contreras-Reyes, Eduardo; Garay, Jeremías

    2018-01-01

    The outer rise is a topographic bulge seaward of the trench at a subduction zone that is caused by bending and flexure of the oceanic lithosphere as subduction commences. The classic model of the flexure of oceanic lithosphere w (x) is a hydrostatic restoring force acting upon an elastic plate at the trench axis. The governing parameters are elastic thickness Te, shear force V0, and bending moment M0. V0 and M0 are unknown variables that are typically replaced by other quantities such as the height of the fore-bulge, wb, and the half-width of the fore-bulge, (xb - xo). However, this method is difficult to implement with the presence of excessive topographic noise around the bulge of the outer rise. Here, we present an alternative method to the classic model, in which lithospheric flexure w (x) is a function of the flexure at the trench axis w0, the initial dip angle of subduction β0, and the elastic thickness Te. In this investigation, we apply a sensitivity analysis to both methods in order to determine the impact of the differing parameters on the solution, w (x). The parametric sensitivity analysis suggests that stable solutions for the alternative approach requires relatively low β0 values (rise bulge. The alternative method is a more suitable approach, assuming that accurate geometric information at the trench axis (i.e., w0 and β0) is available.

  7. Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications

    Science.gov (United States)

    Wang, Wenjun; Li, Peng; Jin, Feng

    2016-09-01

    A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.

  8. The study of stress-strain state of stabilized layered soil foundations

    Directory of Open Access Journals (Sweden)

    Sokolov Mikhail V.

    2017-01-01

    Full Text Available Herein presented are the results of modeling and analysis of stress-strain state of layered inhomogeneous foundation soil when it is stabilised by injection to different depths. Produced qualitative and quantitative analysis of the components of the field of isolines of stresses, strains, stress concentration and the difference between the strain at the boundary of different elastic horizontal layers. Recommendations are given for the location of stabilised zones in relation to the border of different elastic layers. In particular, it found that stabilization of soil within the weak layer is inappropriate, since it practically provides no increase in the stability of the soil foundation, and when performing stabilisation of soil foundations, it is recommended to place the lower border of the stabilisation zone below the border of a stronger layer, at this the distribution of stresses and strains occurs more evenly, and load-bearing capacity of this layer is used to the maximum.

  9. Estimating the elasticity of trade: the trade share approach

    OpenAIRE

    Mauro Lanati

    2013-01-01

    Recent theoretical work on international trade emphasizes the importance of trade elasticity as the fundamental statistic needed to conduct welfare analysis. Eaton and Kortum (2002) proposed a two-step method to estimate this parameter, where exporter fixed effects are regressed on proxies for technology and wages. Within the same Ricardian model of trade, the trade share provides an alternative source of identication for the elasticity of trade. Following Santos Silva and Tenreyro (2006) bot...

  10. Hydroelastic Oscillations of a Circular Plate, Resting on Winkler Foundation

    Science.gov (United States)

    Kondratov, D. V.; Mogilevich, L. I.; Popov, V. S.; Popova, A. A.

    2018-01-01

    The forced hydroelastic oscillations of a circular plate resting on elastic foundation are investigated. The oscillations are caused by a stamp vibration under interaction with a plate through a thin layer of viscous incompressible liquid. The axis-symmetric problem for the regime of the steady-state harmonic oscillations is considered. On the basis of hydroelasticity problem solution the laws of plate deflection and pressure in the liquid are found. The functions of the amplitudes deflection distribution and liquid pressure along the plate are constructed. The presented mathematical model provides for investigating viscous liquid layer interaction dynamics with a circular plate resting on an elastic foundation. The above-mentioned model makes it possible to define the plate oscillations resonance frequencies and the corresponding amplitudes of deflection and liquid pressure, as well.

  11. Bulk rock elastic moduli at high pressures, derived from the mineral textures and from extrapolated laboratory data

    International Nuclear Information System (INIS)

    Ullemeyer, K; Keppler, R; Lokajíček, T; Vasin, R N; Behrmann, J H

    2015-01-01

    The elastic anisotropy of bulk rock depends on the mineral textures, the crack fabric and external parameters like, e.g., confining pressure. The texture-related contribution to elastic anisotropy can be predicted from the mineral textures, the largely sample-dependent contribution of the other parameters must be determined experimentally. Laboratory measurements of the elastic wave velocities are mostly limited to pressures of the intermediate crust. We describe a method, how the elastic wave velocity trends and, by this means, the elastic constants can be extrapolated to the pressure conditions of the lower crust. The extrapolated elastic constants are compared to the texture-derived ones. Pronounced elastic anisotropy is evident for phyllosilicate minerals, hence, the approach is demonstrated for two phyllosilicate-rich gneisses with approximately identical volume fractions of the phyllosilicates but different texture types. (paper)

  12. Elastic Properties and Stability of Physisorbed Graphene

    Directory of Open Access Journals (Sweden)

    Philippe Lambin

    2014-05-01

    Full Text Available Graphene is an ultimate membrane that mixes both flexibility and mechanical strength, together with many other remarkable properties. A good knowledge of the elastic properties of graphene is prerequisite to any practical application of it in nanoscopic devices. Although this two-dimensional material is only one atom thick, continuous-medium elasticity can be applied as long as the deformations vary slowly on the atomic scale and provided suitable parameters are used. The present paper aims to be a critical review on this topic that does not assume a specific pre-knowledge of graphene physics. The basis for the paper is the classical Kirchhoff-Love plate theory. It demands a few parameters that can be addressed from many points of view and fitted to independent experimental data. The parameters can also be estimated by electronic structure calculations. Although coming from diverse backgrounds, most of the available data provide a rather coherent picture that gives a good degree of confidence in the classical description of graphene elasticity. The theory can than be used to estimate, e.g., the buckling limit of graphene bound to a substrate. It can also predict the size above which a scrolled graphene sheet will never spontaneously unroll in free space.

  13. NONLINEAR SPECTRAL IMAGING OF ELASTIC CARTILAGE IN RABBIT EARS

    Directory of Open Access Journals (Sweden)

    JING CHEN

    2013-07-01

    Full Text Available Elastic cartilage in the rabbit external ear is an important animal model with attractive potential value for researching the physiological and pathological states of cartilages especially during wound healing. In this work, nonlinear optical microscopy based on two-photon excited fluorescence and second harmonic generation were employed for imaging and quantifying the intact elastic cartilage. The morphology and distribution of main components in elastic cartilage including cartilage cells, collagen and elastic fibers were clearly observed from the high-resolution two-dimensional nonlinear optical images. The areas of cell nuclei, a parameter related to the pathological changes of normal or abnormal elastic cartilage, can be easily quantified. Moreover, the three-dimensional structure of chondrocytes and matrix were displayed by constructing three-dimensional image of cartilage tissue. At last, the emission spectra from cartilage were obtained and analyzed. We found that the different ratio of collagen over elastic fibers can be used to locate the observed position in the elastic cartilage. The redox ratio based on the ratio of nicotinamide adenine dinucleotide (NADH over flavin adenine dinucleotide (FAD fluorescence can also be calculated to analyze the metabolic state of chondrocytes in different regions. Our results demonstrated that this technique has the potential to provide more accurate and comprehensive information for the physiological states of elastic cartilage.

  14. Measurements of spin parameters in p-p elastic scattering at 6 GeV/c

    International Nuclear Information System (INIS)

    Linn, S.L.; Perlmutter, A.; Crosbie, E.A.; Ratner, L.G.; Schultz, P.F.; O'Fallon, J.R.; Cameron, P.R.; Crabb, D.G.; Fernow, R.C.; Hansen, P.H.; Krisch, A.D.; Salthouse, A.J.; Sandler, B.; Shima, T.; Terwilliger, K.M.

    1982-01-01

    We measured the differential cross section for proton-proton elastic scattering in 6 GeV/c, with both initial spins oriented normal to the scattering plane. The analyzing power A shows significant structure with a large broad peak reaching about 24% near P/sub perpendicular/ 2 = 1.6 (GeV/c) 2 . The spin-spin correlation parameter A/sub n/n exhibits more dramatic structure, with a small but very sharp peak rising rapidly to about 13% at 90 0 /sub tsc.m./. This sharp peak may be caused by particle-identity effects

  15. Remarks on orthotropic elastic models applied to wood

    Directory of Open Access Journals (Sweden)

    Nilson Tadeu Mascia

    2006-09-01

    Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

  16. Elastic versus acoustic inversion for marine surveys

    Science.gov (United States)

    Mora, Peter; Wu, Zedong

    2018-04-01

    Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory - at least for a hard water bottom case - it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We therefore conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and noticable artefacts for layer reflection data. Based on these results, it would appear that at least, inversions of large offset marine data should be fully elastic rather than acoustic unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), that an acoustic only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  17. Static deformation of two welded monoclinic elastic half-spaces due ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Static deformation of two monoclinic elastic half-spaces in welded contact due to a long inclined strike-slip fault situated in one of the half-spaces is studied analytically and numerically. Closed- form algebraic expressions for the displacement at any point of the medium are obtained. The variation of the displacement at the ...

  18. Appraisal of elastic follow-up for a generic mechanical structure through two simplified methods

    International Nuclear Information System (INIS)

    Gamboni, S.; Ravera, C.; Stretti, G.; Rebora, A.

    1989-01-01

    Elastic follow-up (EFU) is a complex phenomenon which affects the behaviour of some structural components, especially in high temperature operations. One of the major problems encountered by the designer is the quantitative evaluation of the amount of elastic follow-up that must be taken into account for the structures under examination. In the present paper a review of the guidance furnished by the ASME Code regarding EFU is presented through an application concerning a structural problem in which EFU occurs. This has been carried out with the additional purpose of comparing the percentage EFU obtained by two simplified methods: an inelastic simplified method involving relaxation analysis; the reduced elastic modulus procedure generally used for EFU problems in piping systems. The results obtained demonstrate a substantial agreement between the two methodologies when applied to a general type structure. (author)

  19. Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2016-01-01

    Full Text Available This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW coating process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method (OHAM. The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM. The obtained velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.

  20. NUMERICAL MODELLING OF CHICKEN-FOOT FOUNDATION

    Directory of Open Access Journals (Sweden)

    Vipman Tandjiria

    1999-01-01

    Full Text Available This paper presents an analysis of the chicken-foot foundation using the finite element method. The foundation is considered as a reinforced concrete slab resting on a number of reinforced concrete pipes filled with and surrounded by in-situ soil. The soil and the pipes were modelled by isoparametric solid elements while the slab was modelled by isoparametric thick-plate elements. The study was intended to illustrate the basic mechanism of the chicken-foot foundation. Three cases have been considered for the parametric studies. The parameters investigated are thickness of slab, length of pipes and spacing between pipes. It is shown that such a foundation improves the behaviour of the raft foundation. It is also found that all the parameters used in the parametric studies influence the behaviour of the chicken-foot foundation.

  1. Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids

    International Nuclear Information System (INIS)

    Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T

    2014-01-01

    Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.

  2. Experimental Observation of Two Features Unexpected from the Classical Theories of Rubber Elasticity

    Science.gov (United States)

    Nishi, Kengo; Fujii, Kenta; Chung, Ung-il; Shibayama, Mitsuhiro; Sakai, Takamasa

    2017-12-01

    Although the elastic modulus of a Gaussian chain network is thought to be successfully described by classical theories of rubber elasticity, such as the affine and phantom models, verification experiments are largely lacking owing to difficulties in precisely controlling of the network structure. We prepared well-defined model polymer networks experimentally, and measured the elastic modulus G for a broad range of polymer concentrations and connectivity probabilities, p . In our experiment, we observed two features that were distinct from those predicted by classical theories. First, we observed the critical behavior G ˜|p -pc|1.95 near the sol-gel transition. This scaling law is different from the prediction of classical theories, but can be explained by analogy between the electric conductivity of resistor networks and the elasticity of polymer networks. Here, pc is the sol-gel transition point. Furthermore, we found that the experimental G -p relations in the region above C* did not follow the affine or phantom theories. Instead, all the G /G0-p curves fell onto a single master curve when G was normalized by the elastic modulus at p =1 , G0. We show that the effective medium approximation for Gaussian chain networks explains this master curve.

  3. Lhe law of diminishing elasticity of demand in Harrod’s trade cycle

    OpenAIRE

    Michaël Assous; Olivier Bruno; Muriel Dal-Pont

    2014-01-01

    In The Trade Cycle, Roy Harrod [1936a] propounded the Law of Diminishing Elasticity of Demand. The present paper tries to clarify the precise role Harrod assigned to this law in his The Trade Cycle Theory. We discuss the micro and macro foundations of the Law of Diminishing Elasticity of Demand and argue that it explains one of the main mechanisms that stabilize the economy during the trade cycle. In addition, we highlight how the Law of Diminishing Elasticity of Demand allowed Harrod to micr...

  4. The spin correlation parameter and analyzing power in n-p elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Abegg, R.; Davis, C.A.; Delheij, P.P.J.; Greeniaus, L.G.; Healey, D.C.; Miller, C.A.; Wait, G.D.; Ahmad, M.; Green, P.W.; Lapointe, C.; McDonald, W.J.; Moss, G.A.; Rodning, N.L.; Roy, G.; Ye, Y.

    1989-06-01

    In order to improve existing I=0 phase shift solutions, the spin correlation parameter, A NN , and the analyzing powers, A 0N and A N0 , have been measured in n-p elastic scattering over an angular range of 50 degrees -150 degrees (c.m.) at three neutron energies, 220, 325 and 425 MeV to an absolute accuracy of ±0.03. The data have a profound effect on various phase parameters, particularly the 1 P 1 , 3 D 2 and ε 1 phase parameters which in some cases change by almost a degree. With exception of the highest energy, the data support the predictions of the latest version of the Bonn potential. Also the analyzing power data (A 0N and A N0 ) measured at 477 MeV in a different experiment over a limited angular range (60 degrees - 80 degrees (c.m.)) are reported here. (Author) 30 refs., 10 figs., 5 tabs

  5. Shape optimization of a Timoshenko beam together with an elastic foundation

    Directory of Open Access Journals (Sweden)

    Machalová J.

    2010-12-01

    Full Text Available In this article we are going first to aim at the variational ormulation of the bending problem for the Timoshenko beam model. Afterwards we will extend this problem to the Timoshenko beam resting on the Winkler foundation, which is firmly connected with the beam. Hereafter a shape optimization for the aforementioned problems is presented. The state problem is here represented by the system of two ordinary differential equations of the second order. The optimization problem is given as a minimization of the so-called compliance functional on the set of all admissible design variables. For our purpose as the design variable we will select the beam thickness. Shape optimization problems have attracted the interest of many applied mathematicians and engineers. The objective of this article is to present a solution method for one of these problems and its demonstration by examples.

  6. Using constitutive equation gap method for identification of elastic material parameters: Technical insights and illustrations

    KAUST Repository

    Florentin, Éric

    2011-08-09

    The constitutive equation gap method (CEGM) is a well-known concept which, until now, has been used mainly for the verification of finite element simulations. Recently, CEGM-based functional has been proposed to identify local elastic parameters based on experimental full-field measurement. From a technical point of view, this approach requires to quickly describe a space of statically admissible stress fields. We present here the technical insights, inspired from previous works in verification, that leads to the construction of such a space. Then, the identification strategy is implemented and the obtained results are compared with the actual material parameters for numerically generated benchmarks. The quality of the identification technique is demonstrated that makes it a valuable tool for interactive design as a way to validate local material properties. © 2011 Springer-Verlag.

  7. Review of structure damping values for elastic seismic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Hashimoto, P.S.; Steele, L.K.; Johnson, J.J.; Mensing, R.W.

    1993-03-01

    Current US Nuclear Regulatory Commission guidance on structure damping values for elastic seismic design analysis of nuclear power plants are contained in Regulatory Guide 1.61 (R.G. 1.61). The objectives of the study described in this report are to investigate the adequacy of R.G1.61 structure damping values based on currently available data, and to recommend revisions to R.G. 1.61 as appropriate. Measured structure damping values, and associated structure, foundation, excitation, and input/response parameters, were collected and compiled. These data were analyzed to identify the parameters that significantly influence structure damping and to quantify structure damping in terms of these parameters. Based on this study, current R.G. 1.61 damping values for structure design are either adequate, or require only minor revision, depending on the structure material. More explicit guidance on structure damping values for seismic analysis to determine input to equipment has been prepared, along with other recommendations to improve the applicability of R.G. 1.61

  8. Deuteron-deuteron elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Ali, S.

    1991-01-01

    The eikonal picture which has theoretical foundations in some areas of physics has been successful in explaining various aspects of elastic scattering at high energies. Chou and Yang first proposed a preliminary version of the eikonal model for hadron-hadron elastic scattering. The model is based on geometrical considerations in which hadrons are treated as extended objects. Elastic scattering then results from the propagation of attenuated wave function. By assuming that at high energies the scattering amplitude is purely imaginary and that the hadronic matter distribution is proportional to the charge distribution on protons, Durand and Lipes studied high energy pp scattering on the basis of this prestine model. Later on, the model was extended to other elastic reactions. However, a survey of literature shows that it has been successful only in the diffraction peak region. It has been shown that the pristine Chou-Yange model can explain the differential cross section for deuteron-deuteron elastic scattering at √s = 53 GeV in the diffraction peak region. In order to fit the large momentum transfer data, the generalized Chou-Yang model is used

  9. Relationship between the Uncompensated Price Elasticity and the Income Elasticity of Demand under Conditions of Additive Preferences.

    Science.gov (United States)

    Sabatelli, Lorenzo

    2016-01-01

    Income and price elasticity of demand quantify the responsiveness of markets to changes in income and in prices, respectively. Under the assumptions of utility maximization and preference independence (additive preferences), mathematical relationships between income elasticity values and the uncompensated own and cross price elasticity of demand are here derived using the differential approach to demand analysis. Key parameters are: the elasticity of the marginal utility of income, and the average budget share. The proposed method can be used to forecast the direct and indirect impact of price changes and of financial instruments of policy using available estimates of the income elasticity of demand.

  10. An inverse analysis of weak structural plane parameters for a limestone foundation pit based on critical stability

    Science.gov (United States)

    yan, LIU Jun; hua, SONG Xiang; Yan, LIU

    2017-11-01

    The article uses the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) to make an analysis of the deformation characteristics of the structural plane, which is based on a real rock foundation pit in Jinan city. It makes an inverse analysis of the strength of the surface structure and the occurrence of the parameters by Mohr-Coulomb strength criterion value criterion in the way of numerical simulation, which explores the change of stress field of x-z oblique section of pit wall and the relation between the exposed height of structural plane and the critical cohesion, the exposed height and critical inclination angle of the structure surface. We can find that when the foundation pit is in the critical stable state and the inclination angle of the structural plane is constant, the critical cohesive force of the structural plane increases with the increase of the exposed surface height. And when the foundation pit in the critical stability of the situation and the structural surface of the cohesive force is constant, the structural surface exposed height increases and the structural angle of inclination is declining. The conclusion can provide theoretical basis for the design and construction of the rock foundation pit with structural plane.

  11. Mathematical methods in elasticity imaging

    CERN Document Server

    Ammari, Habib; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul

    2015-01-01

    This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic...

  12. Three-Dimensional Vibration Analysis of Rectangular Thick Plates on Pasternak Foundation with Arbitrary Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Huimin Liu

    2017-01-01

    Full Text Available This paper presents the first known vibration characteristic of rectangular thick plates on Pasternak foundation with arbitrary boundary conditions on the basis of the three-dimensional elasticity theory. The arbitrary boundary conditions are obtained by laying out three types of linear springs on all edges. The modified Fourier series are chosen as the basis functions of the admissible function of the thick plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. The exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the thick plate. The excellent accuracy and reliability of current solutions are demonstrated by numerical examples and comparisons with the results available in the literature. In addition, the influence of the foundation coefficients as well as the boundary restraint parameters is also analyzed, which can serve as the benchmark data for the future research technique.

  13. The effect of dietary and/or cosmetic argan oil on postmenopausal skin elasticity

    Directory of Open Access Journals (Sweden)

    Qiraouani Boucetta K

    2015-01-01

    Full Text Available Kenza Qiraouani Boucetta,1 Zoubida Charrouf,2 Hassan Aguenaou,3 Abdelfattah Derouiche,4 Yahya Bensouda1 1Research Team on Formulation and Biopharmacy, Research Center for Drug, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco; 2Faculty of Sciences, Mohammed V University, Rabat, Morocco; 3Mixed Unit of Research in Nutrition, ITU / CNESTEN, Ibn Tofail University, Kenitra, Morocco; 4Faculty of Sciences, Hassan II University, Casablanca, Morocco Background: During menopause, the decrease of estrogenic secretion induces the disruption of skin functioning, thus causing the decline in skin elasticity characteristic of skin aging. The purpose of this study was to evaluate in postmenopausal women the effect of daily consumption and/or application of argan oil on skin elasticity.Materials and methods: Sixty postmenopausal women consumed butter during the stabilization period and were randomly divided into two groups for the intervention period: the treatment group of 30 participants received dietary argan oil, the control group of 30 participants received olive oil, and both groups applied cosmetic argan oil in the left volar forearm during a 60-day period. Assessments of skin elasticity parameters, ie, the three R-parameters (R2 or gross-elasticity of the skin, R5 or net elasticity of the skin, and R7 or biological elasticity, and the resonance running time (RRT at both volar forearms of the two groups were performed during three visits: before starting oils consumption and application, after 30 days of oils consumption and application, and after 60 days of oils consumption and application.Results: The consumption of argan oil led to a significant increase of gross-elasticity of the skin (R2 (P<0.001, net elasticity of the skin (R5 (P<0.001, biological elasticity (R7 (P<0.001, and a significant decrease of RRT (P=0.002. The application of argan oil led to a significant increase of gross-elasticity of the skin (R2 (P<0.001, net

  14. The Effect of Mechanical Anisotropy and Heterogeneity of Shear Strength Parameters of Soils on Drained Bearing Capacity of Shallow Foundations

    Directory of Open Access Journals (Sweden)

    R. Jamshidi Chenari

    2017-09-01

    Full Text Available Natural formation of soil deposits causes heterogeneity and anisotropy in their strength and stiffness properties. However, most soils in their natural states exhibit some anisotropy with respect to shear strength and heterogeneity with respect to the depth. In this paper, the standard Mohr- Coulomb constitutive law is generalized to anisotropic version in order to consider the effect of cohesion anisotropy of soil. Random field theory coupled with finite difference method was utilized in Monte Carlo simulations with considering the effect of auto-correlation and cross correlation between strength parameters of soil, in order to calculate the bearing capacity of shallow foundation in a strain controlled scheme. The results showed that the bearing capacity of shallow foundation decreases with increasing in variability of strength parameters and increases with increasing in anisotropy ratio.

  15. Mechanical properties of two-way grid shells optimized considering roundness and elastic stiffness

    International Nuclear Information System (INIS)

    Ogawa, Toshiyuki; Yuta, Nishikawa; Rie, Tateishi; Ohsaki, Makoto

    2002-01-01

    A single-layer two-way grid shell defined by Bezier surface is optimized by coordinates of the control points as design variables. The purpose of this paper is to find optimal shapes considering roundness and elastic stiffness, and to investigate their mechanical properties. The distance of the center of curvature from the specified point is used for formulating the objective function for generating a round shape. Consider next a problem of minimizing the compliance as mechanical performance measure. The compliance is defined by the external work against the static loads applied to the nodes. The mechanically optimal shape is different from the round shape. Therefore, the multi objective optimization problem is formulated for optimizing the two objectives, which are roundness and the elastic stiffness defined by using the compliance. The constraint method is used for obtaining Pareto optimal solutions between the two objectives. We optimize single-layer two-way grid shells with square and rectangle plans. Mechanical properties of the optimal shapes are investigated by compliance and the distributions of axial force and bending moment. The round shape is significantly dominated by the bending moment and its compliance is large. The bending moment of the mechanically optimal shape is not very large, and the latticed shell has large stiffness through axial deformation. A trade-off shape is round enough, and the influence of the bending moment is smaller than that of the optimal round shape and the elastic stiffness is moderately large

  16. Numerical study of the shape parameter dependence of the local radial point interpolation method in linear elasticity.

    Science.gov (United States)

    Moussaoui, Ahmed; Bouziane, Touria

    2016-01-01

    The method LRPIM is a Meshless method with properties of simple implementation of the essential boundary conditions and less costly than the moving least squares (MLS) methods. This method is proposed to overcome the singularity associated to polynomial basis by using radial basis functions. In this paper, we will present a study of a 2D problem of an elastic homogenous rectangular plate by using the method LRPIM. Our numerical investigations will concern the influence of different shape parameters on the domain of convergence,accuracy and using the radial basis function of the thin plate spline. It also will presents a comparison between numerical results for different materials and the convergence domain by precising maximum and minimum values as a function of distribution nodes number. The analytical solution of the deflection confirms the numerical results. The essential points in the method are: •The LRPIM is derived from the local weak form of the equilibrium equations for solving a thin elastic plate.•The convergence of the LRPIM method depends on number of parameters derived from local weak form and sub-domains.•The effect of distributions nodes number by varying nature of material and the radial basis function (TPS).

  17. Reconstruction of constitutive parameters in isotropic linear elasticity from noisy full-field measurements

    International Nuclear Information System (INIS)

    Bal, Guillaume; Bellis, Cédric; Imperiale, Sébastien; Monard, François

    2014-01-01

    Within the framework of linear elasticity we assume the availability of internal full-field measurements of the continuum deformations of a non-homogeneous isotropic solid. The aim is the quantitative reconstruction of the associated moduli. A simple gradient system for the sought constitutive parameters is derived algebraically from the momentum equation, whose coefficients are expressed in terms of the measured displacement fields and their spatial derivatives. Direct integration of this system is discussed to finally demonstrate the inexpediency of such an approach when dealing with noisy data. Upon using polluted measurements, an alternative variational formulation is deployed to invert for the physical parameters. Analysis of this latter inversion procedure provides existence and uniqueness results while the reconstruction stability with respect to the measurements is investigated. As the inversion procedure requires differentiating the measurements twice, a numerical differentiation scheme based on an ad hoc regularization then allows an optimally stable reconstruction of the sought moduli. Numerical results are included to illustrate and assess the performance of the overall approach. (paper)

  18. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment

    OpenAIRE

    Henderson, Brian; Ice, Lauren; Ates, Ozgur; Avetisyan, Albert; Beck, Reinhard; Belostotski, Stanislav; Bessuille, Jason; Brinker, Frank; Calarco, John; Carassiti, V.; Cisbani, E.; Ciullo, G.; Khaneft, Dmitry; Contalbrigo, Marco; De Leo, R.

    2017-01-01

    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, $\\it R_{2 \\gamma}$, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillator...

  19. Elastic versus acoustic inversion for marine surveys

    KAUST Repository

    Mora, Peter

    2018-04-24

    Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory – at least for a hard water bottom case – it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We therefore conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and noticable artefacts for layer reflection data. Based on these results, it would appear that at least, inversions of large offset marine data should be fully elastic rather than acoustic unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), that an acoustic only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  20. Study of a Piezo-Thermo-Elastic Materials Console

    Directory of Open Access Journals (Sweden)

    hamza madjid berrabah

    2015-09-01

    Full Text Available In the first part of this work, analytical expressions were determined for the stresses through the thickness of a composite beam submitted to electrical excitation. In the second part of this study we are interested in the theory of elasticity, which is used to obtain exact solutions of piezo-thermo-elastic consoles gradually coupled evaluated under different loads. These solutions are used to identify the piezoelectric parameter and thermal coefficients of the materials. In addition, numerical results are obtained for the analysis of the loaded console by two different types of loading. In this study we show also that changing the linear thermal parameters of the material does not affect the distribution of the stress and the induction of the beam. However it affetcs the components of the deformation, electric field, the displacement and the electric potential of the console.

  1. Multiparameter Elastic Full Waveform Inversion With Facies Constraints

    KAUST Repository

    Zhang, Zhendong

    2017-08-17

    Full waveform inversion (FWI) aims fully benefit from all the data characteristics to estimate the parameters describing the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion as a tool beyond acoustic imaging applications, for example in reservoir analysis, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Adding rock physics constraints does help to mitigate these issues, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a boundary condition for the whole area. Since certain rock formations inside the Earth admit consistent elastic properties and relative values of elastic and anisotropic parameters (facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel confidence map based approach to utilize the facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such a confidence map using Bayesian theory, in which the confidence map is updated at each iteration of the inversion using both the inverted models and a prior information. The numerical examples show that the proposed method can reduce the trade-offs and also can improve the resolution of the inverted elastic and anisotropic properties.

  2. The Law of Diminishing Elasticity of Demand in Harrod’s Trade Cycle (1936)

    OpenAIRE

    Michaël Assous; Olivier Bruno; Muriel Dal-Pont Legrand

    2015-01-01

    In The Trade Cycle, Roy Harrod [1936a] propounded the Law of Diminishing Elasticity of Demand. The present paper tries to clarify the precise role Harrod assigned to this law in order to understand his trade cycle theory. We discuss the micro and macro foundations of the Law of Diminishing Elasticity of Demand and how, according to Harrod, it explains one of the main mechanisms that stabilize the economy during the trade cycle. In addition, we show how the Law of Diminishing Elasticity of Dem...

  3. Relationship between the Uncompensated Price Elasticity and the Income Elasticity of Demand under Conditions of Additive Preferences.

    Directory of Open Access Journals (Sweden)

    Lorenzo Sabatelli

    Full Text Available Income and price elasticity of demand quantify the responsiveness of markets to changes in income and in prices, respectively. Under the assumptions of utility maximization and preference independence (additive preferences, mathematical relationships between income elasticity values and the uncompensated own and cross price elasticity of demand are here derived using the differential approach to demand analysis. Key parameters are: the elasticity of the marginal utility of income, and the average budget share. The proposed method can be used to forecast the direct and indirect impact of price changes and of financial instruments of policy using available estimates of the income elasticity of demand.

  4. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment

    OpenAIRE

    Henderson, B. S.; Ice, L. D.; Khaneft, D.; O'Connor, C.; Russell, R.; Schmidt, A.; Bernauer, J. C.; Kohl, M.; Akopov, N.; Alarcon, R.; Ates, O.; Avetisyan, A.; Beck, R.; Belostotski, S.; Bessuille, J.

    2016-01-01

    The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, \\ud R\\ud 2\\ud γ\\ud , a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillato...

  5. Forward two-photon exchange in elastic lepton-proton scattering and hyperfine-splitting correction

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2017-08-15

    We relate the forward two-photon exchange (TPE) amplitudes to integrals of the inclusive lepton-proton scattering cross sections. These relations yield an alternative way for the evaluation of the TPE correction to hyperfine-splitting (HFS) in the hydrogen-like atoms with an equivalent to the standard approach (Iddings, Drell and Sullivan) result implying the Burkhardt-Cottingham sum rule. For evaluation of the individual effects (e.g., elastic contribution) our approach yields a distinct result. We compare both methods numerically on examples of the elastic contribution and the full TPE correction to HFS in electronic and muonic hydrogen. (orig.)

  6. Form finding in elastic gridshells

    Science.gov (United States)

    Baek, Changyeob; Sageman-Furnas, Andrew O.; Jawed, Mohammad K.; Reis, Pedro M.

    2018-01-01

    Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.

  7. Shape Recovery of Elastic Red Blood Cells from Shear Flow Induced Deformation in Three Dimensions

    Science.gov (United States)

    Peng, Yan; Gounley, John

    2015-11-01

    Red blood cells undergo substantial shape changes in vivo. Modeled as an elastic capsule, the shape recovery of a three dimensional biconcave capsule from shear flow is studied for different preferred elastic and bending configuration. The fluid-structure interaction is modeled using the multiple-relaxation time lattice Boltzmann (LBM) and immersed boundary (IBM) methods. Based on the studies of the limited shape memory observed in three dimensions, the shape recovery is caused by the preferred elastic configuration, at least when paired with a constant spontaneous curvature. For these capsules, the incompleteness of the shape recovery observed precludes any conjecture about whether a single or multiple phase(s) are necessary to describe the recovery process. Longer simulations and a more stable methodology will be necessary. Y. Peng acknowledges support from Old Dominion University Research Foundation Grant #503921 and National Science Foundation Grant DMS-1319078.

  8. Ab initio localized basis set study of structural parameters and elastic properties of HfO2 polymorphs

    International Nuclear Information System (INIS)

    Caravaca, M A; Casali, R A

    2005-01-01

    The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2 1 /c, Pbca, Pnma, Fm3m, P4 2 nmc and Pa3 phases of HfO 2 . Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2 1 /c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2 1 /c → Pbca and Pbca → Pnma, respectively, in accordance with different high pressure experimental values

  9. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  10. Estimation of Elastic Modulus of Intact Rocks by Artificial Neural Network

    Science.gov (United States)

    Ocak, Ibrahim; Seker, Sadi Evren

    2012-11-01

    The modulus of elasticity of intact rock ( E i) is an important rock property that is used as an input parameter in the design stage of engineering projects such as dams, slopes, foundations, tunnel constructions and mining excavations. However, it is sometimes difficult to determine the modulus of elasticity in laboratory tests because high-quality cores are required. For this reason, various methods for predicting E i have been popular research topics in recently published literature. In this study, the relationships between the uniaxial compressive strength, unit weight ( γ) and E i for different types of rocks were analyzed, employing an artificial neural network and 195 data obtained from laboratory tests carried out on cores obtained from drilling holes within the area of three metro lines in Istanbul, Turkey. Software was developed in Java language using Weka class libraries for the study. To determine the prediction capacity of the proposed technique, the root-mean-square error and the root relative squared error indices were calculated as 0.191 and 92.587, respectively. Both coefficients indicate that the prediction capacity of the study is high for practical use.

  11. Two-step nuclear reactions: The Surrogate Method, the Trojan Horse Method and their common foundations

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Mahir S. [DCTA, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil); Universidade de Sao Paulo, Instituto de Estudos Avancados, C. P. 72012, Sao Paulo, SP (Brazil); Universidade de Sao Paulo, Instituto de Fisica, C. P. 66318, Sao Paulo, SP (Brazil)

    2017-05-15

    In this Letter I argue that the Surrogate Method, used to extract the fast neutron capture cross section on actinide target nuclei, which has important practical application for the next generation of breeder reactors, and the Trojan Horse Method employed to extract reactions of importance to nuclear astrophysics, have a common foundation, the Inclusive Non-Elastic Breakup (INEB) Theory. Whereas the Surrogate Method relies on the premise that the extracted neutron cross section in a (d, p) reaction is predominantly a compound-nucleus one, the Trojan Horse Method assumes a predominantly direct process for the secondary reaction induced by the surrogate fragment. In general, both methods contain both direct and compound contributions, and I show how these seemingly distinct methods are in fact the same but at different energies and different kinematic regions. The unifying theory is the rather well developed INEB theory. (orig.)

  12. Two-step nuclear reactions: The Surrogate Method, the Trojan Horse Method and their common foundations

    International Nuclear Information System (INIS)

    Hussein, Mahir S.

    2017-01-01

    In this Letter I argue that the Surrogate Method, used to extract the fast neutron capture cross section on actinide target nuclei, which has important practical application for the next generation of breeder reactors, and the Trojan Horse Method employed to extract reactions of importance to nuclear astrophysics, have a common foundation, the Inclusive Non-Elastic Breakup (INEB) Theory. Whereas the Surrogate Method relies on the premise that the extracted neutron cross section in a (d, p) reaction is predominantly a compound-nucleus one, the Trojan Horse Method assumes a predominantly direct process for the secondary reaction induced by the surrogate fragment. In general, both methods contain both direct and compound contributions, and I show how these seemingly distinct methods are in fact the same but at different energies and different kinematic regions. The unifying theory is the rather well developed INEB theory. (orig.)

  13. Measurement of the polarization parameter in 24 GeV/c pp elastic scattering at large momentum transfers

    CERN Document Server

    Antille, J; Dick, Louis; Gonidec, A; Kuroda, K; Kyberd, P; Michalowicz, A; Perret-Gallix, D; Salmon, G L; Werlen, M

    1981-01-01

    A measurement of the polarization parameter P/sub 0/ in pp elastic scattering has been made 24 GeV/c over the range of momentum transfer squared 0.7< mod t mod <5.0 (GeV/c)/sup 2/. The structure of P/sub 0/ has changed compared to typical lower energy data. The second peak is suppressed and a dip has appeared at mod t mod =3.6 (GeV/c)/sup 2/. (31 refs).

  14. Experimental study on dynamic behavior of large scale foundation, 1

    International Nuclear Information System (INIS)

    Hanada, Kazufumi; Sawada, Yoshihiro; Esashi, Yasuyuki; Ueshima, Teruyuki; Nakamura, Hideharu

    1983-01-01

    The large-sized, high performance vibrating table in the Nuclear Power Engineering Test Center is installed on a large-scale concrete foundation of length 90.9 m, width 44.8 m and maximum thickness 21 m, weighing 150,000 tons. Through the experimental study on the behavior of the foundation, which is set on gravel ground, useful information should be obtained on the siting of a nuclear power plant on the Quaternary stratum ground. The objective of research is to grasp the vibration characteristics of the foundation during the vibration of the table to evaluate the interaction between the foundation and the ground, and to evaluate an analytical method for numerically simulating the vibration behavior. In the present study, the vibration behavior of the foundation was clarified by measurement, and in order to predict the vibration behavior, the semi-infinite theory of elasticity was applied. The accuracy of this analytical method was demonstrated by comparison with the measured results. (Mori, K.)

  15. Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials.

    Science.gov (United States)

    Rinaldi, Antonio

    2011-04-01

    Traditional fiber bundles models (FBMs) have been an effective tool to understand brittle heterogeneous systems. However, fiber bundles in modern nano- and bioapplications demand a new generation of FBM capturing more complex deformation processes in addition to damage. In the context of loose bundle systems and with reference to time-independent plasticity and soft biomaterials, we formulate a generalized statistical model for ductile fracture and nonlinear elastic problems capable of handling more simultaneous deformation mechanisms by means of two order parameters (as opposed to one). As the first rational FBM for coupled damage problems, it may be the cornerstone for advanced statistical models of heterogeneous systems in nanoscience and materials design, especially to explore hierarchical and bio-inspired concepts in the arena of nanobiotechnology. Applicative examples are provided for illustrative purposes at last, discussing issues in inverse analysis (i.e., nonlinear elastic polymer fiber and ductile Cu submicron bars arrays) and direct design (i.e., strength prediction).

  16. Validity of Simplified Analysis of Stability of Caison Breakwaters on Rubble Foundation Exposed to Impulsive Loads

    DEFF Research Database (Denmark)

    Andersen, Lars; Burcharth, Hans F.; Andersen, Thomas Lykke

    Excessive sliding and foundation failures are common failure modes for caisson breakwaters on rubble foundations. An accurate evaluation of these failure modes demands a dynamic analysis in the time domain, and due to the complexity of the material response, numerical solution methods must be app...... be applied. The waveload time series as well as elastic-plastic modelling of the seabed soil, the rubble foundation and the caisson are needed as input for such an exercise....

  17. A 3D domain decomposition approach for the identification of spatially varying elastic material parameters

    KAUST Repository

    Moussawi, Ali

    2015-02-24

    Summary: The post-treatment of (3D) displacement fields for the identification of spatially varying elastic material parameters is a large inverse problem that remains out of reach for massive 3D structures. We explore here the potential of the constitutive compatibility method for tackling such an inverse problem, provided an appropriate domain decomposition technique is introduced. In the method described here, the statically admissible stress field that can be related through the known constitutive symmetry to the kinematic observations is sought through minimization of an objective function, which measures the violation of constitutive compatibility. After this stress reconstruction, the local material parameters are identified with the given kinematic observations using the constitutive equation. Here, we first adapt this method to solve 3D identification problems and then implement it within a domain decomposition framework which allows for reduced computational load when handling larger problems.

  18. Effect of collisional elasticity on the Bagnold rheology of sheared frictionless two-dimensional disks

    Science.gov (United States)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-01-01

    We carry out constant volume simulations of steady-state, shear-driven flow in a simple model of athermal, bidisperse, soft-core, frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian rheology. Focusing on the small strain rate limit, we map out the rheological behavior as a function of particle packing fraction ϕ and a parameter Q that measures the elasticity of binary particle collisions. We find a Q*(ϕ ) that marks the clear crossover from a region characteristic of strongly inelastic collisions, Q Q* , and give evidence that Q*(ϕ ) diverges as ϕ →ϕJ , the shear-driven jamming transition. We thus conclude that the jamming transition at any value of Q behaves the same as the strongly inelastic case, provided one is sufficiently close to ϕJ. We further characterize the differing nature of collisions in the strongly inelastic vs weakly inelastic regions, and recast our results into the constitutive equation form commonly used in discussions of hard granular matter.

  19. On the identification of behavior laws parameters of argillaceous rocks

    International Nuclear Information System (INIS)

    Lecampion, Brice

    2002-01-01

    This work aims to develop methods for identification of constitutive parameters of argillaceous rocks. Under the proposed underground research laboratory of the ANDRA, it is necessary to develop such methods for the interpretation of many steps to be performed on site. We focused on two major aspects of the rheological behavior of this type of rock: poro-elastic behavior on the one hand and the elasto-viscoplastic other. The first part focuses on the identification of poro-elastic parameters. Chapter 2 refers to the direct problem and discusses a number of important points concerning the inverse problem of identification. The third chapter is dedicated to the formulation of techniques for calculating gradient for linear poro-elastic case. The numerical finite element is discussed. The methods of direct differentiation and adjoint state are validated on a two-dimensional numerical example using the code of finite element Cast3M. Identification of poro-elastic coefficients argillaceous rocks of the Meuse Haute-Marne from laboratory tests is discussed in detail in Chapter 4. The use of semi-explicit approximate solution of problems provides a direct method for quick identification. The second part of the dissertation on the identification of elasto-viscoplastic parameters. The features of visco-plastic behaviours argillaceous rocks Meuse Haute-Marne are discussed in Chapter 5 on the basis of experimental results. Modeling this behavior is considered. It proposes a model isotropic nonlinear viscoplastic strain hardening to duplicate tests. The parameters of this law of behavior are identified on a creep test unidimensional drained conditions. The deformations arise when poro-elastic and viscoplastic behavior of the rock. We show that it is possible to separate these two phenomena. All parameters are identified poro-elastic viscoplastic, a semi-explicit solution of the creep test is used. Chapter 6 presents a method for identifying parameters elasto-viscoplastic in the

  20. Progress in elastic-plastic fracture mechanics and its applications

    International Nuclear Information System (INIS)

    Paris, P.C.; Zahalak, G.I.

    1980-01-01

    This paper surveys recent developments in the application of J-Integral methods to problems of elastic-plastic fracture. The analytical and experimental development of the J-Integral concept over the last ten years is reviewed briefly. Tearing instability theory is presented in general terms, and specific applications of the theory are discussed. Principles of fracture-proof design are shown to follow naturally from the tearing instability theory. These principles are illustrated first for simple structures, and then generalized to more complex configurations and loading conditions. Examples include multiple member tension structures, beams, frames, nuclear reactor pressure vessel nozzles and piping, and beams on elastic foundations. It is concluded that J-integral based methods offer the best immediate opportunity for the development of sound analytical techniques for treating important practical problems of elastic-plastic fracture

  1. Static and dynamic analysis of high-rise building with consideration of two different values of subsoil stiffness coefficients

    Directory of Open Access Journals (Sweden)

    Ivankova Olga

    2017-01-01

    Full Text Available This paper deals with the analysis of 21-storeyed cast in-situ reinforced concrete high-rise building. Two different 3D models were created, because of two considered values of subsoil stiffness coefficient -fixed structure (alt. 1 and the structure supported by elastic soil (alt. 2. For both alternatives of foundation of structure, required analyses (static and dynamic were done and obtained results were compared in this paper. Short description of the structure, applied loads and other input parameters are also mentioned here. The main purpose of this analysis was to provide more information to planning engineers about the behaviour of structure exposed the wind load or seismic load when different soil conditions were considered.

  2. Bifurcations in the optimal elastic foundation for a buckling column

    International Nuclear Information System (INIS)

    Rayneau-Kirkhope, Daniel; Farr, Robert; Ding, K.; Mao, Yong

    2010-01-01

    We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show that with only weak lateral support, the optimum distribution is a delta-function at the centre of the beam. When more support is allowed, we find numerically that the optimal distribution undergoes a series of bifurcations. We obtain analytical expressions for the buckling load around the first bifurcation point and corresponding expansions for the optimal position of support. Our theoretical predictions, including the critical exponent of the bifurcation, are confirmed by computer simulations.

  3. Bifurcations in the optimal elastic foundation for a buckling column

    Energy Technology Data Exchange (ETDEWEB)

    Rayneau-Kirkhope, Daniel, E-mail: ppxdr@nottingham.ac.u [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Farr, Robert [Unilever R and D, Olivier van Noortlaan 120, AT3133, Vlaardingen (Netherlands); London Institute for Mathematical Sciences, 22 South Audley Street, Mayfair, London (United Kingdom); Ding, K. [Department of Physics, Fudan University, Shanghai, 200433 (China); Mao, Yong [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)

    2010-12-01

    We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show that with only weak lateral support, the optimum distribution is a delta-function at the centre of the beam. When more support is allowed, we find numerically that the optimal distribution undergoes a series of bifurcations. We obtain analytical expressions for the buckling load around the first bifurcation point and corresponding expansions for the optimal position of support. Our theoretical predictions, including the critical exponent of the bifurcation, are confirmed by computer simulations.

  4. Conception of a 3D Metamaterial-Based Foundation for Static and Seismic Protection of Fuel Storage Tanks

    Directory of Open Access Journals (Sweden)

    Vincenzo La Salandra

    2017-10-01

    Full Text Available Fluid-filled tanks in tank farms of industrial plants can experience severe damage and trigger cascading effects in neighboring tanks due to large vibrations induced by strong earthquakes. In order to reduce these tank vibrations, we have explored an innovative type of foundation based on metamaterial concepts. Metamaterials are generally regarded as manmade structures that exhibit unusual responses not readily observed in natural materials. If properly designed, they are able to stop or attenuate wave propagation. Recent studies have shown that if locally resonant structures are periodically placed in a matrix material, the resulting metamaterial forms a phononic lattice that creates a stop band able to forbid elastic wave propagation within a selected band gap frequency range. Conventional phononic lattice structures need huge unit cells for low-frequency vibration shielding, while locally resonant metamaterials can rely on lattice constants much smaller than the longitudinal wavelengths of propagating waves. Along this line, we have investigated 3D structured foundations with effective attenuation zones conceived as vibration isolation systems for storage tanks. In particular, the three-component periodic foundation cell has been developed using two common construction materials, namely concrete and rubber. Relevant frequency band gaps, computed using the Floquet–Bloch theorem, have been found to be wide and in the low-frequency region. Based on the designed unit cell, a finite foundation has been conceived, checked under static loads and numerically tested on its wave attenuation properties. Then, by means of a parametric study we found a favorable correlation between the shear stiffness of foundation walls and wave attenuation. On this basis, to show the potential improvements of this foundation, we investigated an optimized design by means of analytical models and numerical analyses. In addition, we investigated the influence of cracks

  5. Multi-parameter full waveform inversion using Poisson

    KAUST Repository

    Oh, Juwon

    2016-07-21

    In multi-parameter full waveform inversion (FWI), the success of recovering each parameter is dependent on characteristics of the partial derivative wavefields (or virtual sources), which differ according to parameterisation. Elastic FWIs based on the two conventional parameterisations (one uses Lame constants and density; the other employs P- and S-wave velocities and density) have low resolution of gradients for P-wave velocities (or ). Limitations occur because the virtual sources for P-wave velocity or (one of the Lame constants) are related only to P-P diffracted waves, and generate isotropic explosions, which reduce the spatial resolution of the FWI for these parameters. To increase the spatial resolution, we propose a new parameterisation using P-wave velocity, Poisson\\'s ratio, and density for frequency-domain multi-parameter FWI for isotropic elastic media. By introducing Poisson\\'s ratio instead of S-wave velocity, the virtual source for the P-wave velocity generates P-S and S-S diffracted waves as well as P-P diffracted waves in the partial derivative wavefields for the P-wave velocity. Numerical examples of the cross-triangle-square (CTS) model indicate that the new parameterisation provides highly resolved descent directions for the P-wave velocity. Numerical examples of noise-free and noisy data synthesised for the elastic Marmousi-II model support the fact that the new parameterisation is more robust for noise than the two conventional parameterisations.

  6. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, B.S. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ice, L.D. [Arizona State Univ., Tempe, AZ (United States); Khaneft, D. [Mainz Univ. (Germany); Collaboration: OLYMPUS Collaboration; and others

    2016-12-15

    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R{sub 2γ}, a direct measure of the contribution of hard two- photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ∼20 to 80 . The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12 , as well as symmetric Moeller/Bhabha calorimeters at 1.29 . A total integrated luminosity of 4.5 fb{sup -1} was collected. In the extraction of R{sub 2γ}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R{sub 2γ}, presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  7. The importance of defining the geometry of foundations of soil layers for dynamic analysis of Colosseum

    International Nuclear Information System (INIS)

    Beste, H-J.; Clemente, P.; Conti, C.; D'Ovidio, G.; Nakamura, Y.; Orlando, L.; Rea, R.; Rovelli, A.; Valente, G.

    2015-01-01

    By the comparison between tests and analyses, the dynamic characterization was performed, in order to obtain the map of elastic modules for soil Colosseum interaction. The accuracy for foundations and soil is lower than for monument, due ti unknown exact geometry underground. For foundations, a high variability was found of elasticity modules, which was referred to variable damage of concrete for cracking in time. For soil layers, different definitions exist, and we are interested in the best. The vibrations produced by trains are depending on the underground geometry too. The analyses are performed with traditional convoys running on Metro B and C, for the vibrations knowledge on RA XLVII and on ground felt by pedestrians.

  8. Elastic metamaterial with simultaneously negative refraction for longitudinal and transverse waves

    Directory of Open Access Journals (Sweden)

    Ji-En Wu

    2017-10-01

    Full Text Available We present a study of elastic metamaterial that possesses multiple local resonances. We demonstrated that the elastic metamaterial can have simultaneously three negative effective parameters, i.e., negative effective mass, effective bulk modulus and effective shear modulus at a certain frequency range. Through the analysis of the resonant field, it has been elucidated that the three negative parameters are induced by dipolar, monopolar and quadrupolar resonance respectively. The dipolar and monopolar resonances result into the negative band for longitudinal waves, while the dipolar and quadrupolar resonances cause the negative band for transverse waves. The two bands have an overlapping frequency regime. A simultaneously negative refraction for both longitudinal waves and transverse waves has been demonstrated in the system.

  9. Measurement of np elastic scattering spin-spin correlation parameters at 484, 634, and 788 MeV

    International Nuclear Information System (INIS)

    Garnett, R.W.

    1989-03-01

    The spin-spin correlation parameters C/sub LL/ and C/sub SL/ were measured for np elastic scattering at the incident neutron kinetic energy of 634 MeV. Good agreement was obtained with previously measured data. Additionally, the first measurement of the correlation parameter C/sub SS/ was made at the three energies, 484, 634, and 788 MeV. It was found that the new values, in general, do not agree well with phase shift predictions. A study was carried out to determine which of the isospin-0 partial waves will be affected by this new data. It was found that the 1 P 1 partial wave will be affected significantly at all three measurement energies. At 634 and 788 MeV, the 3 S 1 phase shifts will also change. 29 refs., 21 figs., 16 tabs

  10. Preliminary Design of a Multi-Column TLP Foundation for a 5-MW Offshore Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yanping He

    2012-10-01

    Full Text Available Currently, floating wind turbines (FWTs may be the more economical and suitable systems with which to exploit offshore wind energy in deep waters. Among the various types of floating foundations for offshore wind farms, a tension leg platform (TLP foundation can provide a relatively stable platform for currently available offshore wind turbines without requiring major modifications. In this study, a new multi-column TLP foundation (WindStar TLP was developed for the NREL 5-MW offshore wind turbine according to site-specific environmental conditions, which are the same as the OC3-Hywind (NREL conditions. The general arrangement, main structure and mooring system were also designed and investigated through hydrodynamic and natural frequency analyses. The complete system avoids resonance through the rotor excitations. An aero-hydro-servo-elastic coupled analysis was carried out in the time domain with the numerical tool FAST. Statistics of the key parameters were obtained and analysed and comparisons to MIT/NREL TLP are made. As a result, the design requirements were shown to be satisfied, and the proposed WindStar TLP was shown to have favourable motion characteristics under extreme wind and wave conditions with a lighter and smaller structure. The new concept holds great potential for further development.

  11. Martensitic textures: Multiscale consequences of elastic compatibility

    International Nuclear Information System (INIS)

    Shenoy, S.R.; Lookman, T.; Saxena, A.; Bishop, A.R.

    2001-03-01

    We show that a free energy entirely in the order-parameter strain variable(s), rather than the displacement field, provides a unified understanding of martensitic textures. We use compatibility equations, linking the strain tensor components in the bulk and at interfaces, that induce anisotropic order-parameter strain interactions. These two long-range bulk/interface potentials, together with local compositional fluctuations, drive the formation of global elastic textures. Relaxational simulations show the spontaneous formation (and evolution under stress/temperature quenches) of equal width parallel twins, branched twins, and tweed, including characteristic scaling of twin width with twin length. (author)

  12. Ab initio localized basis set study of structural parameters and elastic properties of HfO{sub 2} polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, M A [Facultad de Ingenieria, Universidad Nacional del Nordeste, Avenida Las Heras 727, 3500-Resistencia (Argentina); Casali, R A [Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad, 5600-Corrientes (Argentina)

    2005-09-21

    The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2{sub 1}/c, Pbca, Pnma, Fm3m, P4{sub 2}nmc and Pa3 phases of HfO{sub 2}. Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2{sub 1}/c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2{sub 1}/c {yields} Pbca and Pbca {yields} Pnma, respectively, in accordance with different high pressure experimental values.

  13. A process for detecting the foundation/floor interaction from the effect of periodic loads

    International Nuclear Information System (INIS)

    Mueller, G.

    1989-01-01

    The work is concerned with the vibration response of the ground under harmonically loaded foundations, whose stiffness and mass are taken into account. This is considered for the plane state of change of shape. The found is assumed to be an elastic isotropic, hysteretically damped horizontally layered semi-space and the foundation is assumed to be an EULER-BERNOULLI beam. The investigation is preceded by a survey of the basis of wave propagation in elastic isotropically layered spaces. The problem is solved for the state free of swelling or turbulence in the space of co-ordinates transformed by a FOURIER transformation. The method of solution of various questions, such as wave reflection at the semi-space surface or spread of vibration under harmonic loads affecting the ground is shown. (orig.HP) [de

  14. An elastic-visco-plastic damage model: from theory to application

    International Nuclear Information System (INIS)

    Wang, X.C.; Habraken, A.M.

    1996-01-01

    An energy-based two-variable damage theory is applied to Bodner's model. It gives an elastic-viscoplastic damage model. Some theoretical details are described in this paper. The parameters identification procedure is discussed and a complete set of parameters for an aluminium is presented. Numerical modelling of the laboratory tests are used to validate the model. An industrial aeronautic rod fabrication process is simulated and some numerical results are presented in this paper. (orig.)

  15. A comparison of time-history elastic plastic piping analysis with measurement

    International Nuclear Information System (INIS)

    Scavuzzo, R.J.; Sansalone, K.H.

    1992-01-01

    The GE/ETEC Green piping system was subjected to high seismic inputs from hydraulic sleds at each pipe foundation. These inputs were high enough to force bending stresses into the plastic regime. Strain gages recorded the pipe response at various positions within the system. The ABAQUS finite element code was used to model this piping system and the dynamic input. Problems associated with the dynamic input are discussed. Various types of finite elements were evaluated for accurancy. Both an elastic time-history analysis and an elastic-plastic time-history analysis of the system were conducted. Results of these analyses are compared to each other and the experimental data. These comparisons indicated that elastic analysis of dynamic strains are conservative at all points of comparison and that there is good agreement between the nonlinear elastic-plastic analysis and experimental data. (orig.)

  16. Using FRED Data to Teach Price Elasticity of Demand

    Science.gov (United States)

    Méndez-Carbajo, Diego; Asarta, Carlos J.

    2017-01-01

    In this article, the authors discuss the use of Federal Reserve Economic Data (FRED) statistics to teach the concept of price elasticity of demand in an introduction to economics course. By using real data in its computation, they argue that instructors can create a value-adding context for illustrating and applying a foundational concept in…

  17. Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube

    International Nuclear Information System (INIS)

    Eraslan, Ahmet N.; Akis, Tolga

    2006-01-01

    Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters

  18. Two Propositions on the Application of Point Elasticities to Finite Price Changes.

    Science.gov (United States)

    Daskin, Alan J.

    1992-01-01

    Considers counterintuitive propositions about using point elasticities to estimate quantity changes in response to price changes. Suggests that elasticity increases with price along a linear demand curve, but falling quantity demand offsets it. Argues that point elasticity with finite percentage change in price only approximates percentage change…

  19. Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.

  20. Probing hysteretic elasticity in weakly nonlinear materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS

    2010-12-07

    Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.

  1. Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models

    Science.gov (United States)

    Ma, Li-Hong; Ke, Liao-Liang; Wang, Yi-Ze; Wang, Yue-Sheng

    2017-02-01

    This paper makes the first attempt to investigate the dispersion behavior of waves in magneto-electro-elastic (MEE) nanobeams. The Euler nanobeam model and Timoshenko nanobeam model are developed in the formulation based on the nonlocal theory. By using the Hamilton's principle, we derive the governing equations which are then solved analytically to obtain the dispersion relations of MEE nanobeams. Results are presented to highlight the influences of the thermo-electro-magnetic loadings and nonlocal parameter on the wave propagation characteristics of MEE nanobeams. It is found that the thermo-electro-magnetic loadings can lead to the occurrence of the cut-off wave number below which the wave can't propagate in MEE nanobeams.

  2. Dynamics of layered reinforced concrete beam on visco-elastic foundation with different resistances of concrete and reinforcement to tension and compression

    Science.gov (United States)

    Nemirovsky, Y. V.; Tikhonov, S. V.

    2018-03-01

    Originally, fundamentals of the theory of limit equilibrium and dynamic deformation of building metal and reinforced concrete structures were created by A. A. Gvozdev [1] and developed by his followers [4, 5, 6, 7, 11, 12]. Forming the basis for the calculation, the model of an ideal rigid-plastic material has enabled to determine in many cases the ultimate load bearing capacity and upper (kinematically possible) or lower (statically valid) values for a wide class of different structures with quite simple methods. At the same time, applied to concrete structures the most important property of concrete to significantly differently resist tension and compression was not taken into account [10]. This circumstance was considered in [3] for reinforced concrete beams under conditions of quasistatic loading. The deformation is often accompanied by resistance of the environment in construction practice [8, 9]. In [2], the dynamics of multi-layered concrete beams on visco-elastic foundation under the loadings of explosive type is considered. In this work we consider the case which is often encountered in practical applications when the loadings weakly change in time.

  3. Polarisation parameter measurement in the proton-proton elastic scattering from 0.5 to 1.2 GeV

    International Nuclear Information System (INIS)

    Ducros, Yves

    1970-01-01

    The angular distribution of the polarisation parameter was measured in the proton-proton elastic - scattering at seven energies between 0.5 and 1.2 GeV. A polarized proton target was used. The results show a maximum of the polarisation parameter of 0.6, at 0.73 GeV. This maximum is due to the important increase of the total cross section between 0.6 and 0.73 GeV. At 1.2 GeV the angular distribution of the polarisation shows a minimum for a momentum transfer value of -1 (GeV/c) 2 . A phase shift analysis was done at 0.66 GeV, using all available experimental data at this energy. There is no evidence of a di-baryonic resonance in the 1 D 2 phase. (author) [fr

  4. Ratio of spin transfer parameters dt/rt in d(p vector, n vector)pp quasi-elastic scattering

    International Nuclear Information System (INIS)

    Abegg, R.; Green, W.; Greeniaus, L.G.; Miller, C.A.; Bardyopadhyay, D.; Birchall, J.; Davis, C.A.; Davison, N.E.; Page, S.A.; Ramsay, W.D.; van Oers, W.T.H.; Lapointe, C.; Moss, G.A.; Tkachuk, R.R.

    1988-05-01

    The ratio of spin transfer parameters d t /r t for the quasi-elastic process d(p,n)pp has been measured at four energies between 200 and 500 MeV at a neutron scattering angle of 9 degrees. From this, the following values of D t /R t for free np scattering have been deduced: -0.0190 ± 0.0072 (T p = 223 MeV); -0.2328 ± 0.0057 (324 MeV); -0.3731 ± 0.0068 (425 MeV); -0.4892 ± 0.0107 (492 MeV). These values have a noticeable effect on present day phase shift solutions. The magnitude of the ε 1 mixing parameter is reduced and other phase shifts are smoother around 300 MeV. (Author) (17 refs., 2 tabs., 3 figs.)

  5. Test of parameter-free local pseudopotential for the study of dynamical elastic constants - Cu as a prototype

    Science.gov (United States)

    Bhatia, K. G.; Vyas, S. M.; Patel, A. B.; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2018-05-01

    Using parameter-free (first principles local) pseudopotential, in the present communication we have calculated dynamical elastic constants (C11, C12 and C44), bulk modulus (B), shear modulus (µp), Young's modulus (Y) and Poisson's ratio (σ) in long wavelength limit. Our computed results are well agreed for C44 and B with experiment and with other theoretical results obtained within framework of second order perturbation pseudopotential theory. From the present study we conclude that pseudopotential used contain s-p hybridization and no extra term is required to account core-core repulsion.

  6. Estimation of parameters of constant elasticity of substitution production functional model

    Science.gov (United States)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi

    2017-11-01

    Nonlinear model building has become an increasing important powerful tool in mathematical economics. In recent years the popularity of applications of nonlinear models has dramatically been rising up. Several researchers in econometrics are very often interested in the inferential aspects of nonlinear regression models [6]. The present research study gives a distinct method of estimation of more complicated and highly nonlinear model viz Constant Elasticity of Substitution (CES) production functional model. Henningen et.al [5] proposed three solutions to avoid serious problems when estimating CES functions in 2012 and they are i) removing discontinuities by using the limits of the CES function and its derivative. ii) Circumventing large rounding errors by local linear approximations iii) Handling ill-behaved objective functions by a multi-dimensional grid search. Joel Chongeh et.al [7] discussed the estimation of the impact of capital and labour inputs to the gris output agri-food products using constant elasticity of substitution production function in Tanzanian context. Pol Antras [8] presented new estimates of the elasticity of substitution between capital and labour using data from the private sector of the U.S. economy for the period 1948-1998.

  7. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment

    Science.gov (United States)

    Henderson, B. S.; Ice, L. D.; Khaneft, D.; O'Connor, C.; Russell, R.; Schmidt, A.; Bernauer, J. C.; Kohl, M.; Akopov, N.; Alarcon, R.; Ates, O.; Avetisyan, A.; Beck, R.; Belostotski, S.; Bessuille, J.; Brinker, F.; Calarco, J. R.; Carassiti, V.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; de Leo, R.; Diefenbach, J.; Donnelly, T. W.; Dow, K.; Elbakian, G.; Eversheim, P. D.; Frullani, S.; Funke, Ch.; Gavrilov, G.; Gläser, B.; Görrissen, N.; Hasell, D. K.; Hauschildt, J.; Hoffmeister, Ph.; Holler, Y.; Ihloff, E.; Izotov, A.; Kaiser, R.; Karyan, G.; Kelsey, J.; Kiselev, A.; Klassen, P.; Krivshich, A.; Lehmann, I.; Lenisa, P.; Lenz, D.; Lumsden, S.; Ma, Y.; Maas, F.; Marukyan, H.; Miklukho, O.; Milner, R. G.; Movsisyan, A.; Murray, M.; Naryshkin, Y.; Perez Benito, R.; Perrino, R.; Redwine, R. P.; Rodríguez Piñeiro, D.; Rosner, G.; Schneekloth, U.; Seitz, B.; Statera, M.; Thiel, A.; Vardanyan, H.; Veretennikov, D.; Vidal, C.; Winnebeck, A.; Yeganov, V.; Olympus Collaboration

    2017-03-01

    The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2 γ , a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20 ° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5 fb-1 was collected. In the extraction of R2 γ, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2 γ, presented here for a wide range of virtual photon polarization 0.456 <ɛ <0.978 , are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  8. Elastic plastic fracture mechanics

    International Nuclear Information System (INIS)

    Simpson, L.A.

    1978-07-01

    The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)

  9. Foundations of elastoplasticity subloading surface model

    CERN Document Server

    Hashiguchi, Koichi

    2017-01-01

    This book is the standard text book of elastoplasticity in which the elastoplasticity theory is comprehensively described from the conventional theory for the monotonic loading to the unconventional theory for the cyclic loading behavior. Explanations of vector-tensor analysis and continuum mechanics are provided first as a foundation for elastoplasticity theory, covering various strain and stress measures and their rates with their objectivities. Elastoplasticity has been highly developed by the creation and formulation of the subloading surface model which is the unified fundamental law for irreversible mechanical phenomena in solids. The assumption that the interior of the yield surface is an elastic domain is excluded in order to describe the plastic strain rate due to the rate of stress inside the yield surface in this model aiming at the prediction of cyclic loading behavior, although the yield surface enclosing the elastic domain is assumed in all the elastoplastic models other than the subloading surf...

  10. Effect of curing light emission spectrum on the nanohardness and elastic modulus of two bulk-fill resin composites.

    Science.gov (United States)

    Issa, Yaser; Watts, David C; Boyd, Daniel; Price, Richard B

    2016-04-01

    To determine the nanohardness and elastic moduli of two bulk-fill resin based composites (RBCs) at increasing depths from the surface and increasing distances laterally from the center after light curing. Two bulk-fill dental RBCs: Tetric EvoCeram Bulk Fill (TECBF) and Filtek Bulk Fill Flowable (FBFF) were light cured in a metal mold with a 6mm diameter and a 10mm long semi-circular notch. The RBCs were photo-polymerized for 10s using a light emitting diode (LED) Bluephase Style curing light, with the original light probe that lacked the homogenizer. This light has two blue light and one violet light LED emitters. By changing the probe orientation over the mold, the light output from only two LEDs reached the RBC. Measurements were made using: (i) the light from one violet and one blue LED, and (ii) the light from the two blue LEDs. Five specimens of each RBC were made using each LED orientation (total 20 specimens). Specimens were then stored in the dark at 37°C for 24h. Fifty indents were made using an Agilent G200 nanoindentor down to 4mm from the surface and 2.5mm right and left of the centerline. The results were analyzed (alpha=0.05) using multiple paired-sample t-tests, ANOVA, Bonferroni post-hoc tests, and Pearson correlations. The elastic modulus and nanohardness varied according to the depth and the distance from the centerline. For TECBF, no significant difference was found between the spatial variations in the elastic modulus or hardness values when violet-blue or blue-blue LEDs were used. For FBFF, the elastic modulus and nanohardness on the side exposed to the violet emitter were significantly less than the side exposed to the blue emitter. A strong correlation between nanohardness and elastic modulus was found in all groups (r(2)=0.9512-0.9712). Resin polymerization was not uniform throughout the RBC. The nanohardness and elastic modulus across two RBC materials were found to decline differently according to the orientation of the violet and blue

  11. Three-dimensional analysis for piled raft machine foundation embedded in sand

    Directory of Open Access Journals (Sweden)

    Mahmood Mahmood

    2018-01-01

    Full Text Available Three-dimensional analysis for the dynamic response of a piled raft foundation subjected to vertical vibration is presented in this study. The analysis considers several factors affecting the amplitude of displacement for deep foundation such as pile cap embedment, pile cap thickness, relative density of the sand and the boundary effect. A validation for an experimental piled raft model depending on a scale factor of (20 using at (Plaxis 3D computer program was performed. The sand is simulated using Mohr-Coloumb model while the concrete is simulated as linear elastic material. It has been found that embedding the pile cap in the soil and increasing its thickness lead to decrease the maximum amplitude of displacement. Furthermore, the predictions showed that increasing the distance between the foundation and the boundaries and increasing the relative density of the sand can significantly minimize the dynamic response of the foundation.

  12. Elastic and optical behaviour of some europium monochalcogenides

    International Nuclear Information System (INIS)

    Islam, A.K.M.A.; Shahdatullah, M.S.

    1994-11-01

    A study of the elastic and optical properties of some Eu-monochalcogenides with NaCl structure has been carried out in this paper. Various anharmonic properties e.g. thermal expansion, third order elastic constants, Grueneisen parameter, and the pressure and temperature derivatives of second order elastic constants of EuS and EuO are also studied. A comparison of the calculated elastic and dielectric properties with the available experimental results and other theoretical estimates gives an indication of the applicability of the methods applied. (author). 49 refs, 3 figs, 3 tabs

  13. Fluid-Elastic Instability of U-Tube Bundle in Air-Water Two-Phase Flow

    International Nuclear Information System (INIS)

    Chu, In Cheol; Lee, Chang Hee; Yun, Young Jung; Chung, Heung June

    2007-03-01

    Using steam generator U-tube flow-induced vibration test facility, the flow-induced vibration characteristics of U-tube in row 34-44 and line 71-77 were investigated. Air and water at room temperature and near atmospheric pressure were used as working fluids. In the present experiments, followings were evaluated under two-phase cross-flow condition: the fundamental vibration responses and the critical gap velocity for a fluid-elastic instability of U-tubes, the damping ratio and hydrodynamic mass of U-tubes. In addition, the fluid-elastic instability factor, K, was preliminary assessed using Connors' relation. In the case of the U-tubes which are not supported by partial egg-crate in OPR100 steam generator, it has been found that the vibration displacement of those U-tubes are highly possible to exceed the design limit even by a turbulent excitation mechanism. The damping ratio of U-tubes measured in the present experiments was significantly higher than the OPR1000 steam generator design value. The fluid-elastic instability factor of U-tube bundle obtained in the present experiments were preliminary evaluated to be mostly in the range of 6.5-10.5

  14. HAWCStab2 with super element foundations: A new tool for frequency analysis of offshore wind turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Hansen, Anders Melchior; Kragh, Knud Abildgaard

    2013-01-01

    HAWCStab2 is a linear frequency domain aero-elastic tool, developed by DTU Wind Energy, suitable for frequency and stability analysis of horizontal axis 3 bladed wind turbines [1]. This tool has now been extended to also handle complex offshore foundation types, such as jacket structures...... and floating structures with mooring lines, using super elements calculated by the nonlinear time domain aero-elastic code HAWC2 [2,3]....

  15. Fracton-Elasticity Duality

    Science.gov (United States)

    Pretko, Michael; Radzihovsky, Leo

    2018-05-01

    Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.

  16. The elasticity of Substitution in demand for Non tradable Goods in Latin America. Case Study: Argentina

    OpenAIRE

    Pablo Andres Neumeyer; Martín Gonzalez Rozada

    2003-01-01

    This objective of this paper is to estimate the elasticity of substitution in the demand for non-tradable goods relative to tradable goods in Argentina. This parameter plays a crucial role in the analysis of the macroeconomic equilibrium of a small open economy (Mendoza, Galindo and Izquierdo (2003)). Using two data sets we found estimates for this elasticity of, approximately, 0.40 and 0.48.

  17. Multiparameter elastic full waveform inversion with facies-based constraints

    Science.gov (United States)

    Zhang, Zhen-dong; Alkhalifah, Tariq; Naeini, Ehsan Zabihi; Sun, Bingbing

    2018-06-01

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize FWI beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a priori information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.

  18. Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints

    Science.gov (United States)

    Zhang, Zhen-dong; Alkhalifah, Tariq; Naeini, Ehsan Zabihi; Sun, Bingbing

    2018-03-01

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a prior information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.

  19. Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints

    KAUST Repository

    Zhang, Zhendong

    2018-03-20

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a prior information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.

  20. Elasticity Constants of a Two-Phase Tungsten Thin Film

    Directory of Open Access Journals (Sweden)

    Mohamed Fares Slim

    2018-05-01

    Full Text Available The IET was used to determine the macroscopic elasticity constants of the multiphase coating. In order to determine the macroscopic elasticity constants of the film firstly, a critical assessment of Young’s modulus determination was done by comparing all the models proposed in the literature. The best model was identified and a study was performed to identify and quantify the most influent factors on the global uncertainty. Secondly, an enhanced formulation to determine the shear modulus of coating by IET was developed. The methodology was applied on a tungsten thin film deposited by DC magnetron sputtering.

  1. Visualising elastic anisotropy: theoretical background and computational implementation

    Science.gov (United States)

    Nordmann, J.; Aßmus, M.; Altenbach, H.

    2018-02-01

    In this article, we present the technical realisation for visualisations of characteristic parameters of the fourth-order elasticity tensor, which is classified by three-dimensional symmetry groups. Hereby, expressions for spatial representations of uc(Young)'s modulus and bulk modulus as well as plane representations of shear modulus and uc(Poisson)'s ratio are derived and transferred into a comprehensible form to computer algebra systems. Additionally, we present approaches for spatial representations of both latter parameters. These three- and two-dimensional representations are implemented into the software MATrix LABoratory. Exemplary representations of characteristic materials complete the present treatise.

  2. Measurement of elastic pp scattering at √(s) = 8 TeV in the Coulomb-nuclear interference region: determination of the ρ-parameter and the total cross-section

    International Nuclear Information System (INIS)

    Antchev, G.; Atanassov, I.; Broulim, P.; Eremin, V.; Georgiev, V.; Hammerbauer, J.; Linhart, R.; Oriunno, M.; Palocko, L.; Peroutka, Z.; Aspell, P.; Baechler, J.; Burkhardt, H.; Giani, S.; Karev, A.; Lucas Rodriguez, F.; Oliveri, E.; Palazzi, P.; Radermacher, E.; Ravotti, F.; Redaelli, S.; Ropelewski, L.; Ruggiero, G.; Salvachua, B.; Smajek, J.; Snoeys, W.; Valentino, G.; Wenninger, J.; Avati, V.; Berardi, V.; Quinto, M.; Berretti, M.; Bossini, E.; Bottigli, U.; Latino, G.; Losurdo, L.; Turini, N.; Bozzo, M.; Lo Vetere, M.; Buzzo, A.; Ferro, F.; Macri, M.; Minutoli, S.; Robutti, E.; Cafagna, F.S.; Catanesi, M.G.; Fiergolski, A.; Mercadante, A.; Radicioni, E.; Campanella, C.E.; De Leonardis, F.; D'Orazio, A.; Guaragnella, C.; Passaro, V.; Petruzzelli, V.; Politi, T.; Prudenzano, F.; Csanad, M.; Nemes, F.; Sziklai, J.; Csoergo, T.; Deile, M.; Doubek, M.; Vacek, V.; Eggert, K.; Niewiadomski, H.; Taylor, C.; Garcia, F.; Heino, J.; Lauhakangas, R.; Grzanka, L.; Wyszkowski, P.; Zielinski, K.; Kaspar, J.; Kopal, J.; Kundrat, V.; Lokajicek, M.V.; Prochazka, J.; Lami, S.; Scribano, A.; Lippmaa, E.; Lippmaa, J.; Minafra, N.; Naaranoja, T.; Oljemark, F.; Orava, R.; Oesterberg, K.; Saarikko, H.; Welti, J.

    2016-01-01

    The TOTEM experiment at the CERN LHC has measured elastic proton-proton scattering at the centre-of-mass energy √(s) = 8 TeV and four-momentum transfers squared, vertical stroke t vertical stroke, from 6 x 10"-"4 to 0.2 GeV"2. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12 ± 0.03. The results for the total hadronic cross-section are σ_t_o_t = (102.9 ± 2.3) mb and (103.0 ± 2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements. (orig.)

  3. Third-order elastic moduli for alkali-halide crystals possessing the sodium chloride structure

    International Nuclear Information System (INIS)

    Ray, U.

    2010-01-01

    The values of third-order elastic moduli for alkali halides, having NaCl-type crystal structure are calculated according to the Born-Mayer potential model, considering the repulsive interactions up to the second nearest neighbours and calculating the values of the potential parameters for each crystal, independently, from the compressibility data. This work presents the first published account of the calculation of the third-order elastic moduli taking the actual value of the potential parameter unlike the earlier works. Third-order elastic constants have been computed for alkali halides at 0 and 300 K. The results of the third-order elastic constants are compared with the available experimental and theoretical data. Very good agreement between experimental and theoretical third-order elastic constant data (except C 123 ) is found. We have also computed the values of the pressure derivatives of second-order elastic constants and Anderson-Grueneisen parameter for alkali halides, which agree reasonably well with the experimental values, indicating the satisfactory nature of our computed data for third-order elastic constants.

  4. Influence of foundation mass and surface roughness on dynamic response of beam on dynamic foundation subjected to the moving load

    Science.gov (United States)

    Tran Quoc, Tinh; Khong Trong, Toan; Luong Van, Hai

    2018-04-01

    In this paper, Improved Moving Element Method (IMEM) is used to analyze the dynamic response of Euler-Bernoulli beam structures on the dynamic foundation model subjected to the moving load. The effects of characteristic foundation model parameters such as Winkler stiffness, shear layer based on the Pasternak model, viscoelastic dashpot and characteristic parameter of mass on foundation. Beams are modeled by moving elements while the load is fixed. Based on the principle of the publicly virtual balancing and the theory of moving element method, the motion differential equation of the system is established and solved by means of the numerical integration based on the Newmark algorithm. The influence of mass on foundation and the roughness of the beam surface on the dynamic response of beam are examined in details.

  5. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  6. Entropic vs. elastic models of fragility of glass-forming liquids: Two sides of the same coin?

    Science.gov (United States)

    Sen, Sabyasachi

    2012-10-01

    The two most influential atomistic models that have been proposed in the literature to explain the temperature dependent activation energy of viscous flow of a glass-forming liquid, i.e., its fragility, are the configurational entropy model of Adam and Gibbs [J. Chem. Phys. 43, 139 (1965), 10.1063/1.1696442] and the elastic "shoving" model of Dyre et al. [J. Non-Cryst. Solids 352, 4635 (2006), 10.1016/j.jnoncrysol.2006.02.173]. Here we demonstrate a qualitative equivalence between these two models starting from the well-established general relationships between the interatomic potentials, elastic constants, structural rearrangement, and entropy in amorphous materials. The unification of these two models provides important predictions that are consistent with experimental observations and shed new light into the problem of glass transition.

  7. On the use of elastic-plastic material characteristics for linear-elastic component assessments

    International Nuclear Information System (INIS)

    Kussmaul, K.; Silcher, H.; Eisele, U.

    1995-01-01

    In this paper the procedure of safety assessment of components by fracture mechanics analysis as recommended in TECDOC 717 is applied to two standard specimens of ductile cast iron. It is shown that the use of a pseudo-elastic K IJ -value in linear elastic safety analysis may lead to non-conservative results, when elastic-plastic material behaviour can be expected. (author)

  8. Rayleigh scattering and nonlinear inversion of elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to kpR = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  9. Meta-Analysis of Price Elasticity for Urban Domestic Water Consumption in Iran

    Directory of Open Access Journals (Sweden)

    Mina Tajabadi

    2018-03-01

    Full Text Available Price elasticity plays a critical role in determining water tariff and its system. Many economic decision makers and researchers have estimated demand function for different cities in order to predict the associated income and price elasticity. In this research we reviewed 20 studies on urban domestic water demand function from which 63 price elasticity values were obtained. Since the price elasticity values obtained from these studies had significant statistical differences, the aim of this research is to determine the effective factors in price elasticity values as well as to analyze differences in such values using meta-analysis technique. The meta-analysis technique focuses on variation in water price elasticity results. The statistical meta-analysis technique focuses on two main objectives of publication bias or publication heterogeneity in reported results. The results indicated that publication bias is negligible while publication heterogeneity is significant. The major factors affecting price elasticity values are classified into 4 categories including theoretical, model, data and socio-geographical specifications. The result indicated that variables such as income, time-series datasets, natural logarithm function and use of stone-geary theory which is the basis for predicting many domestic water demand functions, significantly overestimate the price elasticity values. Also the geographical condition of the region, population density and use of OLS technique to estimate the demand parameters underestimates the price elasticity values.

  10. The evaluation method of soil-spring for the analyses of foundation structures on layered bedsoil

    International Nuclear Information System (INIS)

    Satoh, S.; Sasaki, F.

    1985-01-01

    When performing the finite element method analysis of foundation structures, such as mat slab of reactor buildings and turbine buildings, it is very important to evaluate and model the soil-spring mechanism between foundation and soil correctly. In this model, this paper presents the method in which soil-spring mechanism is evaluated from the theoretical solution. In this theory the semi-infinite elastic solid is assumed to be made of multi-layered soil systems. From the analytical example, it is concluded that the stress analysis of foundation structures on multi-layered soil systems cannot be evaluated by the conventional methods. (orig.)

  11. Finite Thin Cover on an Orthotropic Elastic Half Plane

    Directory of Open Access Journals (Sweden)

    Federico Oyedeji Falope

    2016-01-01

    Full Text Available The present work deals with the mechanical behaviour of thin films bonded to a homogeneous elastic orthotropic half plane under plain strain condition and infinitesimal strain. Both the film and semi-infinite substrate display linear elastic orthotropic behaviour. By assuming perfect adhesion between film and half plane together with membrane behaviour of the film, the compatibility condition between the coating and substrate leads to a singular integral equation with Cauchy kernel. Such an equation is straightforwardly solved by expanding the unknown interfacial stress in series of Chebyshev polynomials displaying square-root singularity at the film edges. This approach allows handling the singular behaviour of the shear stress and, in turn, reducing the problem to a linear algebraic system of infinite terms. Results are found for two loading cases, with particular reference to concentrated axial forces acting at the edges of the film. The corresponding mode II stress intensity factor has been assessed, thus providing the stress concentrations at both ends of the covering. Possible applications of the results here obtained range from MEMS, NEMS, and solar Silicon cell for energy harvesting to welded joint and building foundation.

  12. A novel simultaneous photoelastic and two-beam interferometric system: I. Dynamic full-field evaluation of the elasticity modulus profile of polymeric fibres.

    Science.gov (United States)

    Hamza, A A; Sokkar, T Z N; El-Farahaty, K A; Raslan, M I

    2014-06-01

    A novel optical setup for simultaneous capturing of photoelastic and two-beam interference patterns was designed. The designed optical setup was used to simultaneously record two types of patterns. The first pattern is two-beam interference pattern, and the second one is photoelastic interference pattern produced by objects under stress. This simultaneous capturing of the two patterns allowed us to calculate the full-field distribution of the elasticity modulus profile of fibres. A mathematical expression of the profile of the elasticity modulus was derived. This was applied to evaluate the elasticity modulus of anisotropic isotactic polypropylene fibres during stretching processes. The profile of the elasticity modulus was determined for both static and dynamic in situ cases where the propagation of different structural deformations was observed and studied using the designed optical setup. Patterns were given for illustration. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  13. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals.

    Science.gov (United States)

    Zhu, L-F; Friák, M; Lymperakis, L; Titrian, H; Aydin, U; Janus, A M; Fabritius, H-O; Ziegler, A; Nikolov, S; Hemzalová, P; Raabe, D; Neugebauer, J

    2013-04-01

    We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Development of a Tomography Technique for Assessment of the Material Condition of Concrete Using Optimized Elastic Wave Parameters

    Directory of Open Access Journals (Sweden)

    Hwa Kian Chai

    2016-04-01

    Full Text Available Concrete is the most ubiquitous construction material. Apart from the fresh and early age properties of concrete material, its condition during the structure life span affects the overall structural performance. Therefore, development of techniques such as non-destructive testing which enable the investigation of the material condition, are in great demand. Tomography technique has become an increasingly popular non-destructive evaluation technique for civil engineers to assess the condition of concrete structures. In the present study, this technique is investigated by developing reconstruction procedures utilizing different parameters of elastic waves, namely the travel time, wave amplitude, wave frequency, and Q-value. In the development of algorithms, a ray tracing feature was adopted to take into account the actual non-linear propagation of elastic waves in concrete containing defects. Numerical simulation accompanied by experimental verifications of wave motion were conducted to obtain wave propagation profiles in concrete containing honeycomb as a defect and in assessing the tendon duct filling of pre-stressed concrete (PC elements. The detection of defects by the developed tomography reconstruction procedures was evaluated and discussed.

  15. Unraveling complex nonlinear elastic behaviors in rocks using dynamic acousto-elasticity

    Science.gov (United States)

    Riviere, J.; Guyer, R.; Renaud, G.; TenCate, J. A.; Johnson, P. A.

    2012-12-01

    In comparison with standard nonlinear ultrasonic methods like frequency mixing or resonance based measurements that allow one to extract average, bulk variations of modulus and attenuation versus strain level, dynamic acousto-elasticity (DAE) allows to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. This method consists of exciting a sample in Bulk-mode resonance at strains of 10-7 to 10-5 and simultaneously probing with a sequence of high frequency, low amplitude pulses. Time of flight and amplitudes of these pulses, respectively related to nonlinear elastic and dissipative parameters, can be plotted versus vibration strain level. Despite complex nonlinear signatures obtained for most rocks, it can be shown that for low strain amplitude (Pasqualini et al., JGR 2007), but not with the extreme detail of elasticity provided by DAE. Previous quasi-static measurements made in Berea sandstone (Claytor et al, GRL 2009), show that the hysteretic behavior disappears when the protocol is performed at a very low strain-rate (static limit). Therefore, future work will aim at linking quasi-static and dynamic observations, i.e. the frequency or strain-rate dependence, in order to understand underlying physical phenomena.

  16. On the contact interaction of two identical stringers with an elastic semi-infinite continuous or vertically cracked plate

    Science.gov (United States)

    Grigoryan, M. S.

    2018-04-01

    This paper considers two connected contact problems on the interaction of stringers with an elastic semi-infinite plate. In the first problem, an elastic half-infinite continuous plate is reinforced on its boundary by two identical stringers exposed to a tensile external force. In the second problem, in the presence of the same stringers, the plate contains a collinear system of cracks on its vertical axis. The solution of both problems is reduced to the solution of singular integral equations (SIE) that are solved by a known numerical-analytical method.

  17. Elastic anisotropy and low-temperature thermal expansion in the shape memory alloy Cu-Al-Zn.

    Science.gov (United States)

    Kuruvilla, Santhosh Potharay; Menon, C S

    2008-04-01

    Cu-based shape memory alloys are known for their technologically important pseudo-elastic and shapememory properties, which are intimately associated with the martensitic transformation. A combination of deformation theory and finite-strain elasticity theory has been employed to arrive at the expressions for higher order elastic constants of Cu-Al-Zn based on Keating's approach. The second- and third-order elastic constants are in good agreement with the measurements. The aggregate elastic properties like bulk modulus, pressure derivatives, mode Grüneisen parameters of the elastic waves, low temperature limit of thermal expansion, and the Anderson-Grüneisen parameter are also presented.

  18. Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-Pasternak substrate via modified strain gradient theory

    Science.gov (United States)

    Jamalpoor, A.; Ahmadi-Savadkoohi, A.; Hosseini-Hashemi, Sh

    2016-10-01

    This paper deals with the theoretical analysis of free vibration and biaxial buckling of magneto-electro-elastic (MEE) microplate resting on Kelvin-Voigt visco-Pasternak foundation and subjected to initial external electric and magnetic potentials, using modified strain gradient theory (MSGT). Kirchhoff plate model and Hamilton’s principle are employed to extract the governing equations of motion. Governing equations were analytically solved to obtain clear closed-form expression for complex natural frequencies and buckling loads using Navier’s approach. Numerical results are presented to reveal variations of natural frequency and buckling load ratio of MEE microplate against different amounts of the length scale parameter, initial external electric and magnetic potentials, aspect ratio, damping and transverse and shear stiffness parameters of the visco-Pasternak foundation, length to thickness ratio, microplate thickness and higher modes. Numerical results of this study illustrate that by increasing thickness-to-material length scale parameter ratio, both natural frequency and buckling load ratio predicted by MSGT and modified couple stress theory are reduced because the non-dimensional length scale parameter tends to decrease the stiffness of structures and make them more flexible. In addition, results show that initial external electric and initial external magnetic potentials have no considerable influence on the buckling load ratio and frequency of MEE microplate as the microplate thickness increases.

  19. The role of series ankle elasticity in bipedal walking.

    Science.gov (United States)

    Zelik, Karl E; Huang, Tzu-Wei P; Adamczyk, Peter G; Kuo, Arthur D

    2014-04-07

    The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The approach of pp and pp-bar elastic scattering to ''asymptopia''

    International Nuclear Information System (INIS)

    Block, M.M.; Cahn, R.N.

    1985-01-01

    The authors study a gray disk model that reproduces these values of σ/sub tot/ and B. As an example, the impact parameter representations for these two models at √s = 40 TeV are shown. The corresponding elastic differential cross sections are shown. They note that when the diffraction minima are filled in by the contribution of the real amplitude (rho not equal to 0), the difference between the disk and the Chou-Yang model is small and would be hard to detect experimentally. In essence, at the SSC energy the Chou-Yang model has already gone over to a grey disk, with a negative curvature parameter, C = 1/2 (d/sup 2/(iota n d σ/dt)/dt/sup 2//sub t=0/. In contrast, at the SPS Collider energy, where C > 0, the differential cross sections are substantially different in the two models. If they define C = 0 as the onset of asymptopia for elastic scattering, they find this will occur near the Tevatron Collider energy, √s = 2 TeV

  1. A new nonlinear parameter in the developed strain-to-applied strain of the soft tissues and its application in ultrasound elasticity imaging.

    Science.gov (United States)

    Xu, Jingping; Tripathy, Sakya; Rubin, Jonathan M; Stidham, Ryan W; Johnson, Laura A; Higgins, Peter D R; Kim, Kang

    2012-03-01

    Strain developed under quasi-static deformation has been mostly used in ultrasound elasticity imaging (UEI) to determine the stiffness change of tissues. However, the strain measure in UEI is often less sensitive to a subtle change of stiffness. This is particularly true for Crohn's disease where we have applied strain imaging to the differentiation of acutely inflamed bowel from chronically fibrotic bowel. In this study, a new nonlinear elastic parameter of the soft tissues is proposed to overcome this limit. The purpose of this study is to evaluate the newly proposed method and demonstrate its feasibility in the UEI. A nonlinear characteristic of soft tissues over a relatively large dynamic range of strain was investigated. A simplified tissue model based on a finite element (FE) analysis was integrated with a laboratory developed ultrasound radio-frequency (RF) signal synthesis program. Two-dimensional speckle tracking was applied to this model to simulate the nonlinear behavior of the strain developed in a target inclusion over the applied average strain to the surrounding tissues. A nonlinear empirical equation was formulated and optimized to best match the developed strain-to-applied strain relation obtained from the FE simulation. The proposed nonlinear equation was applied to in vivo measurements and nonlinear parameters were further empirically optimized. For an animal model, acute and chronic inflammatory bowel disease was induced in Lewis rats with trinitrobenzene sulfonic acid (TNBS)-ethanol treatments. After UEI, histopathology and direct mechanical measurements were performed on the excised tissues. The extracted nonlinear parameter from the developed strain-to-applied strain relation differentiated the three different tissue types with 1.96 ± 0.12 for normal, 1.50 ± 0.09 for the acutely inflamed and 1.03 ± 0.08 for the chronically fibrotic tissue. T-tests determined that the nonlinear parameters between normal, acutely inflamed and fibrotic tissue

  2. Asymmetric Vibrations of a Circular Elastic Plate on an Elastic Half Space

    DEFF Research Database (Denmark)

    Schmidt, H.; Krenk, Steen

    1982-01-01

    The asymmetric problem of a vibrating circular elastic plate in frictionless contact with an elastic half space is solved by an integral equation method, where the contact stress appears as the unknown function. By a trigonometric expansion, the problem is reduced to a number of uncoupled two...

  3. Elastic-plastic dynamic analysis of a reactor building

    International Nuclear Information System (INIS)

    Umemura, Hajime; Tanaka, Hiroshi.

    1976-01-01

    The basic characteristics of the dynamic response of a reactor building to severe earthquake ground motion are very important for the evaluation of the safety of nuclear plant systems. A computer program for elastic-plastic dynamic analysis of reactor buildings using lumped mass models is developed. The box and cylindrical walls of boiling water reactor buildings are treated as vertical beams. The nonlinear moment-rotation and shear force-shear deformation relationships of walls are based in part upon the experiments of prototype structures. The geometrical non-linearity of the soil rocking spring due to foundation separation is also considered. The nonlinear equation of motion is expressed in incremental form using tangent stiffness matrices, following the algorithm developed by E.L. Wilson et al. The damping matrix in the equation is formulated as the combination of the energy evaluation method and Penzien-Wilson's approach to accomodate the different characteristics of soil and building damping. The analysis examples and the comparison of elastic and elastic-plastic analysis results are presented. (auth.)

  4. Study of elastic waves with a camouflage explosion

    Energy Technology Data Exchange (ETDEWEB)

    Dunin, S.Z.; Nagornov, O.V.; Popov, E.A.

    1982-01-01

    Examination is made of the problem concerning the study of elastic waves with an explosion in a porous medium with consideration given to the effect of dilation. Investigation is made of the character of the study of elastic energy at various moments. An analysis is made of the spectral properties of the investigated seismic signal, the effect of strong parameters of the medium, porosity, and the coefficient of dilation on the magnitude of elastic energy, which is emitted during an explosion.

  5. Angular distributions of elastic and quasi elastic heavy-ion collisions. Pattern analysis

    International Nuclear Information System (INIS)

    Da Silveira, R.

    1980-06-01

    The emergence, as well as the evolution, of the most typical patterns observed in the angular distributions of elastic scattering and surface transfer between heavy-nuclei, is discussed. Starting from the semi-classical approximation, Thom's classification theorem is evoked to further illuminate the connection between these patterns and the collision parameters

  6. Measurement of elastic pp scattering at √(s) = 8 TeV in the Coulomb-nuclear interference region: determination of the ρ-parameter and the total cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Antchev, G.; Atanassov, I.; Broulim, P.; Eremin, V.; Georgiev, V.; Hammerbauer, J.; Linhart, R.; Oriunno, M.; Palocko, L.; Peroutka, Z. [University of West Bohemia, Pilsen (Czech Republic); Aspell, P.; Baechler, J.; Burkhardt, H.; Giani, S.; Karev, A.; Lucas Rodriguez, F.; Oliveri, E.; Palazzi, P.; Radermacher, E.; Ravotti, F.; Redaelli, S.; Ropelewski, L.; Ruggiero, G.; Salvachua, B.; Smajek, J.; Snoeys, W.; Valentino, G.; Wenninger, J. [CERN, Geneva (Switzerland); Avati, V. [AGH University of Science and Technology, Krakow (Poland); CERN, Geneva (Switzerland); Berardi, V.; Quinto, M. [INFN Sezione di Bari, Bari (Italy); Dipartimento Interateneo di Fisica di Bari, Bari (Italy); Berretti, M. [Universita degli Studi di Siena and Gruppo Collegato INFN di Siena, Siena (Italy); CERN, Geneva (Switzerland); Bossini, E.; Bottigli, U.; Latino, G.; Losurdo, L.; Turini, N. [Universita degli Studi di Siena and Gruppo Collegato INFN di Siena, Siena (Italy); Bozzo, M.; Lo Vetere, M. [INFN Sezione di Genova, Genoa (Italy); Universita degli Studi di Genova, Genoa (Italy); Buzzo, A.; Ferro, F.; Macri, M.; Minutoli, S.; Robutti, E. [INFN Sezione di Genova, Genoa (Italy); Cafagna, F.S.; Catanesi, M.G.; Fiergolski, A.; Mercadante, A.; Radicioni, E. [INFN Sezione di Bari, Bari (Italy); Campanella, C.E.; De Leonardis, F.; D' Orazio, A.; Guaragnella, C.; Passaro, V.; Petruzzelli, V.; Politi, T.; Prudenzano, F. [INFN Sezione di Bari, Bari (Italy); Dipartimento di Ingegneria Elettrica e dell' Informazione - Politecnico di Bari, Bari (Italy); Csanad, M.; Nemes, F.; Sziklai, J. [Wigner Research Centre for Physics, Budapest (Hungary); Csoergo, T. [Wigner Research Centre for Physics, Budapest (Hungary); KRF University College, Gyoengyoes (Hungary); Deile, M. [Dipartimento di Ingegneria Elettrica e dell' Informazione - Politecnico di Bari, Bari (Italy); Doubek, M.; Vacek, V. [Czech Technical University, Prague (Czech Republic); Eggert, K.; Niewiadomski, H.; Taylor, C. [Case Western Reserve University, Department of Physics, Cleveland, OH (United States); Garcia, F.; Heino, J.; Lauhakangas, R. [Helsinki Institute of Physics, Helsinki (Finland); Grzanka, L.; Wyszkowski, P.; Zielinski, K. [AGH University of Science and Technology, Krakow (Poland); Kaspar, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); CERN, Geneva (Switzerland); Kopal, J.; Kundrat, V.; Lokajicek, M.V.; Prochazka, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Lami, S.; Scribano, A. [INFN Sezione di Pisa, Pisa (Italy); Lippmaa, E.; Lippmaa, J. [National Institute of Chemical Physics and Biophysics NICPB, Tallinn (Estonia); Minafra, N. [Dipartimento Interateneo di Fisica di Bari, Bari (Italy); CERN, Geneva (Switzerland); Naaranoja, T.; Oljemark, F.; Orava, R.; Oesterberg, K.; Saarikko, H.; Welti, J. [Helsinki Institute of Physics, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland)

    2016-12-15

    The TOTEM experiment at the CERN LHC has measured elastic proton-proton scattering at the centre-of-mass energy √(s) = 8 TeV and four-momentum transfers squared, vertical stroke t vertical stroke, from 6 x 10{sup -4} to 0.2 GeV{sup 2}. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12 ± 0.03. The results for the total hadronic cross-section are σ{sub tot} = (102.9 ± 2.3) mb and (103.0 ± 2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements. (orig.)

  7. Elasticity in Elastics-An in-vitro study.

    Science.gov (United States)

    Kamisetty, Supradeep Kumar; Nimagadda, Chakrapani; Begam, Madhoom Ponnachi; Nalamotu, Raghuveer; Srivastav, Trilok; Gs, Shwetha

    2014-04-01

    Orthodontic tooth movement results from application of forces to teeth. Elastics in orthodontics have been used both intra-orally and extra- orally to a great effect. Their use, combined with good patient co-operation provides the clinician with the ability to correct both anteroposterior and vertical discrepancies. Force decay over a period of time is a major problem in the clinical usage of latex elastics and synthetic elastomers. This loss of force makes it difficult for the clinician to determine the actual force transmitted to the dentition. It's the intent of the clinician to maintain optimal force values over desired period of time. The majority of the orthodontic elastics on the market are latex elastics. Since the early 1990s, synthetic products have been offered in the market for latex-sensitive patients and are sold as nonlatex elastics. There is limited information on the risk that latex elastics may pose to patients. Some have estimated that 0.12-6% of the general population and 6.2% of dental professionals have hypersensitivity to latex protein. There are some reported cases of adverse reactions to latex in the orthodontic population but these are very limited to date. Although the risk is not yet clear, it would still be inadvisable to prescribe latex elastics to a patient with a known latex allergy. To compare the in-vitro performance of latex and non latex elastics. Samples of 0.25 inch, latex and non latex elastics (light, medium, heavy elastics) were obtained from three manufacturers (Forestadent, GAC, Glenroe) and a sample size of ten elastics per group was tested. The properties tested included cross sectional area, internal diameter, initial force generated by the elastics, breaking force and the force relaxation for the different types of elastics. Force relaxation testing involved stretching the elastics to three times marketed internal diameter (19.05 mm) and measuring force level at intervals over a period of 48 hours. The data were

  8. Spectral dimension of elastic Sierpinski gaskets with general elastic forces

    International Nuclear Information System (INIS)

    Liu, S.H.; Liu, A.J.

    1985-01-01

    The spectral dimension is calculated for a Sierpinski gasket with the most general elastic restoring forces allowed by symmetry. The elastic forces consist of bond-stretching and angle-bending components. The spectral dimension is the same as that for the bond-stretching-force (central-force) model. This demonstrates that on the Sierpinski gasket the two types of forces belong to the same universality class

  9. Analysis the dynamic response of earth dam in free vibration and forced by introducing the effect of the interaction dam foundation

    Directory of Open Access Journals (Sweden)

    Malika Boumaiza

    2018-01-01

    Full Text Available The present study concerns the analysis of the dynamic response of earth dam, in free and forced vibration (under the effect of earthquake using the finite element method. The analysis is carried out at the end of dam construction without filling. The behavior of the dam materials and the foundation is linear elastic. In free vibration, to better understand the effect of the dam foundation interaction, we will take into account different site conditions and see their influence on the free vibration characteristics of the dam. In forced vibration, to study the seismic response of the dam, the system is subjected to the acceleration of the Boumerdes earthquake of May 21, 2003 recorded at the station n ° 2 of the dam of Kaddara in the base, with a parametric study taking into account the influence of the main parameters such as the mechanical properties of the soil: rigidity, density.

  10. Dynamic-stiffness matrix of embedded and pile foundations by indirect boundary-element method

    International Nuclear Information System (INIS)

    Wolf, J.P.; Darbre, G.R.

    1984-01-01

    The boundary-integral equation method is well suited for the calculation of the dynamic-stiffness matrix of foundations embedded in a layered visco-elastic halfspace (or a transmitting boundary of arbitrary shape), which represents an unbounded domain. It also allows pile groups to be analyzed, taking pile-soil-pile interaction into account. The discretization of this boundary-element method is restricted to the structure-soil interface. All trial functions satisfy exactly the field equations and the radiation condition at infinity. In the indirect boundary-element method distributed source loads of initially unknown intensities act on a source line located in the excavated part of the soil and are determined such that the prescribed boundary conditions on the structure-soil interface are satisfied in an average sense. In the two-dimensional case the variables are expanded in a Fourier integral in the wave number domain, while in three dimensions, Fourier series in the circumferential direction and bessel functions of the wave number domain, while in three dimensions, Fourier series in the circumferential direction and Bessel functions of the wave number in the radial direction are selected. Accurate results arise with a small number of parameters of the loads acting on a source line which should coincide with the structure-soil interface. In a parametric study the dynamic-stiffness matrices of rectangular foundations of various aspect ratios embedded in a halfplane and in a layer built-in at its base are calculated. For the halfplane, the spring coefficients for the translational directions hardly depend on the embedment, while the corresponding damping coefficients increase for larger embedments, this tendency being more pronounced in the horizontal direction. (orig.)

  11. Determination of elastic anisotropy of rocks from P- and S-wave velocities: numerical modelling and lab measurements

    Science.gov (United States)

    Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj

    2014-12-01

    The most common type of waves used for probing anisotropy of rocks in laboratory is the direct P wave. Information potential of the measured P-wave velocity, however, is limited. In rocks displaying weak triclinic anisotropy, the P-wave velocity depends just on 15 linear combinations of 21 elastic parameters, called the weak-anisotropy parameters. In strong triclinic anisotropy, the P-wave velocity depends on the whole set of 21 elastic parameters, but inversion for six of them is ill-conditioned and these parameters are retrieved with a low accuracy. Therefore, in order to retrieve the complete elastic tensor accurately, velocities of S waves must also be measured and inverted. For this purpose, we developed a lab facility which allows the P- and S-wave ultrasonic sounding of spherical rock samples in 132 directions distributed regularly over the sphere. The velocities are measured using a pair of P-wave sensors with the transmitter and receiver polarized along the radial direction and using two pairs of S-wave sensors with the transmitter and receiver polarized tangentially to the spherical sample in mutually perpendicular directions. We present inversion methods of phase and ray velocities for elastic parameters describing general triclinic anisotropy. We demonstrate on synthetic tests that the inversion becomes more robust and stable if the S-wave velocities are included. This applies even to the case when the velocity of the S waves is measured in a limited number of directions and with a significantly lower accuracy than that of the P wave. Finally, we analyse velocities measured on a rock sample from the Outokumpu deep drill hole, Finland. We present complete sets of elastic parameters of the sample including the error analysis for several levels of confining pressure ranging from 0.1 to 70 MPa.

  12. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.

    2013-03-06

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.

  13. Structural, elastic, and electronic properties of new 211 MAX phase Nb{sub 2}GeC from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Shein, I.R. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation)

    2013-02-01

    Very recently (2012, Phys. Rev Lett., 109, 035502) a new hexagonal (s.g. P63/mmc, Music-Sharp-Sign 194) ternary phase Nb{sub 2}GeC, which belongs to so-called 211-like MAX phases, was discovered. In order to get a systematic insight into the structural, elastic, and electronic properties of Nb{sub 2}GeC, we used two complementary DFT-based first-principles approaches (as implemented in the VASP and Wien2k packages) to calculate the optimized structural parameters, band structure, densities of state, Fermi surface, and a set of elastic parameters: elastic constants (C{sub ij}), bulk modulus (B), compressibility ({beta}), shear modulus (G), Young's modulus (Y), and elastic anisotropy indexes, which were discussed in comparison with available data. Besides, the inter-atomic bonding picture for Nb{sub 2}GeC was discussed using electron density maps and Bader's charge analysis.

  14. Morphology, surface roughness, electron inelastic and quasi-elastic scattering in elastic peak electron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Lesiak, B.; Kosinski, A.; Nowakowski, R.; Koever, L.; Toth, J.; Varga, D.; Cserny, I.; Sulyok, A.; Gergely, G.

    2006-01-01

    Complete text of publication follows. Elastic peak electron spectroscopy (EPES) deals with the interaction of electrons with atoms of a solid surface, studying the distribution of electrons backscattered elastically. The nearest vicinity of the elastic peak, (low kinetic energy region) reflects both, electron inelastic and quasi-elastic processes. The incident electrons produce surface excitations, inducing surface plasmons with the corresponding loss peaks separated by 1 - 20 eV energy from the elastic peak. Quasi-elastic losses result from the recoil of scattering atoms of different atomic number, Z. The respective energy shift and Doppler broadening of the elastic peak depend on Z, the primary electron energy, E, and the measurement geometry. Quantitative surface analytical application of EPES, such as determination of parameters describing electron transport, requires a comparison of experimental data with corresponding data derived from Monte Carlo (MC) simulation. Several problems occur in EPES studies of polymers. The intensity of elastic peak, considered in quantitative surface analysis, is influenced by both, the inelastic and quasi-elastic scattering processes (especially for hydrogen scattering atoms and primary electron energy above 1000 eV). An additional factor affecting the elastic peak intensity is the surface morphology and roughness. The present work compares the effect of these factors on the elastic peak intensity for selected polymers (polyethylene, polyaniline and polythiophenes). X-ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for deriving the surface atomic composition and the bulk density, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) for determining surface morphology and roughness. According to presented results, the influence of surface morphology and roughness is larger than those of surface excitations or recoil of hydrogen atoms. The component due to recoil of hydrogen atoms can be

  15. Influence of foundation type and soil stratification on ground vibration - a parameter study

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Prins, Joeri Nithan; Persson, Kent

    2016-01-01

    a significant influence. Thus, in order to achieve fair accuracy in the prediction of ground vibration caused by sources vibrating on a foundation, accurate models of the ground and foundation may be required. However, for assessment of vibration in the design phase, simple models may be preferred. The paper...

  16. Gluon exchange in elastic hadron scattering

    International Nuclear Information System (INIS)

    Jenkovszky, L.L.; Paccanoni, F.; Chikovani, Z.E.

    1991-01-01

    It is generally accepted that the Pomeron, which determines the long-range component of the strong interaction, corresponds to exchange of gluons with the corresponding quantum numbers (the minimum number of such gluons is two). The C-odd partner of the Pomeron, the odderon, corresponds to exchange of an odd number of gluons (three or more). By means of a model of the nonperturbative gluon propagator, restrictions are obtained on the parameters of two-gluon (Pomeron) and three-gluon (odderon) exchange in hadron scattering. In the framework of this model an interpretation is proposed for the various asymptotic regimes in the behavior of the total cross section and of the differential cross section of elastic scattering at high energies

  17. Effects of structural nonlinearity and foundation sliding on probabilistic response of a nuclear structure

    International Nuclear Information System (INIS)

    Hashemi, Alidad; Elkhoraibi, Tarek; Ostadan, Farhang

    2015-01-01

    Highlights: • Probabilistic SSI analysis including structural nonlinearity and sliding are shown. • Analysis is done for a soil and a rock site and probabilistic demands are obtained. • Structural drift ratios and In-structure response spectra are evaluated. • Structural nonlinearity significantly impacts local demands in the structure. • Sliding generally reduces seismic demands and can be accommodated in design. - Abstract: This paper examines the effects of structural nonlinearity and foundation sliding on the results of probabilistic structural analysis of a typical nuclear structure where structural nonlinearity, foundation sliding and soil-structure interaction (SSI) are explicitly included. The evaluation is carried out for a soil and a rock site at 10"4, 10"5, and 10"6 year return periods (1E − 4, 1E − 5, and 1E − 6 hazard levels, respectively). The input motions at each considered hazard level are deaggregated into low frequency (LF) and high frequency (HF) motions and a sample size of 30 is used for uncertainty propagation. The statistical distribution of structural responses including story drifts, and in-structure response spectra (ISRS) as well as foundation sliding displacements are examined. The probabilistic implementation of explicit structural nonlinearity and foundation sliding in combination with the SSI effects are demonstrated using nonlinear response history analysis (RHA) of the structure with the foundation motions obtained from elastic SSI analyses, which are applied as input to fixed-base inelastic analyses. This approach quantifies the expected structural nonlinearity and sliding for the particular structural configuration and provides a robust analytical basis for the estimation of the probabilistic distribution of selected demands parameters both at the design level and beyond design level seismic input. For the subject structure, the inclusion of foundation sliding in the analysis is found to have reduced both

  18. Estimation of macroscopic elastic characteristics for hierarchical anisotropic solids based on probabilistic approach

    Science.gov (United States)

    Smolina, Irina Yu.

    2015-10-01

    Mechanical properties of a cable are of great importance in design and strength calculation of flexible cables. The problem of determination of elastic properties and rigidity characteristics of a cable modeled by anisotropic helical elastic rod is considered. These characteristics are calculated indirectly by means of the parameters received from statistical processing of experimental data. These parameters are considered as random quantities. With taking into account probable nature of these parameters the formulas for estimation of the macroscopic elastic moduli of a cable are obtained. The calculating expressions for macroscopic flexural rigidity, shear rigidity and torsion rigidity using the macroscopic elastic characteristics obtained before are presented. Statistical estimations of the rigidity characteristics of some cable grades are adduced. A comparison with those characteristics received on the basis of deterministic approach is given.

  19. Determination of elastic modulus for hollow spherical shells via resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Xing; Wang, Zongwei [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Chen, Qian; Qian, Menglu [Institute of Acoustic, Tongji University, Shanghai 200092 (China); Meng, Jie [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Shen, Hao [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Gao, Dangzhong, E-mail: dgaocn@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2017-04-15

    Highlights: • The axisymmetric frequency equation of an isotropic hollow two-layer sphere is deduced by three dimension elasticity theory and global matrix method. • The simulated results demonstrate that the natural frequencies of a hollow sphere are more strongly dependent on Young’s modulus than Poisson's ratio. • The Young’s moduli of polymer capsules with an sub-millimeter inner radius are measured accurately with an uncertainty of ∼10%. - Abstract: The elastic property of a capsule is one of the essential parameters both in engineering applications and scientific understanding of material nature in inertial confinement fusion (ICF) experiments. The axisymmetric frequency equation of an isotropic hollow two-layer sphere is deduced by three dimension elasticity theory and global matrix method, and a combined resonant ultrasound spectroscopy(RUS), which consists of a piezoelectric-based resonant ultrasound spectroscopy(PZT-RUS) and a laser-based resonant ultrasound spectroscopy(LRUS), is developed for determining the elastic modulus of capsule. To understand the behavior of natural frequencies varying with elastic properties, the dependence of natural frequencies on Young’s modulus and Poisson’s ratio are calculated numerically. Some representative polymer capsules are measured using PZT-RUS and LRUS. Based on the theoretical and experimental results, the Young’s moduli of these capsules are measured accurately with an uncertainty of ∼10%.

  20. Derivation of capture and reaction cross sections from experimental quasi-elastic and elastic backscattering probabilities

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Adamian, G.G.; Antonenko, N.V.; Gomes, P.R.S.

    2014-01-01

    We suggest simple and useful methods to extract reaction and capture (fusion) cross sections from the experimental elastic and quasi-elastic backscattering data.The direct measurement of the reaction or capture (fusion) cross section is a difficult task since it would require the measurement of individual cross sections of many reaction channels, and most of them could be reached only by specific experiments. This would require different experimental setups not always available at the same laboratory and, consequently, such direct measurements would demand a large amount of beam time and would take probably some years to be reached. Because of that, the measurements of elastic scattering angular distributions that cover full angular ranges and optical model analysis have been used for the determination of reaction cross sections. This traditional method consists in deriving the parameters of the complex optical potentials which fit the experimental elastic scattering angular distributions and then of deriving the reaction cross sections predicted by these potentials. Even so, both the experimental part and the analysis of this latter method are not so simple. In the present work we present a much simpler method to determine reaction and capture (fusion) cross sections. It consists of measuring only elastic or quasi-elastic scattering at one backward angle, and from that, the extraction of the reaction or capture cross sections can easily be performed. (author)

  1. Competition of elastic and adhesive properties of carbon nanotubes anchored to atomic force microscopy tips

    International Nuclear Information System (INIS)

    Bernard, Charlotte; Marsaudon, Sophie; Boisgard, Rodolphe; Aime, Jean-Pierre

    2008-01-01

    In this paper we address the mechanical properties of carbon nanotubes anchored to atomic force microscopy (AFM) tips in a detailed analysis of experimental results and exhaustive description of a simple model. We show that volume elastic and surface adhesive forces both contribute to the dynamical AFM experimental signals. Their respective weights depend on the nanotube properties and on an experimental parameter: the oscillation amplitude. To quantify the elastic and adhesive contributions, a simple analytical model is used. It enables analytical expressions of the resonance frequency shift and dissipation that can be measured in the atomic force microscopy dynamical frequency modulation mode. It includes the nanotube adhesive contribution to the frequency shift. Experimental data for single-wall and multi-wall carbon nanotubes compare well to the model predictions for different oscillation amplitudes. Three parameters can be extracted: the distance necessary to unstick the nanotube from the surface and two spring constants corresponding to tube compression and to the elastic force required to overcome the adhesion force

  2. Optimal elastic coupling in form of one mechanical spring to improve energy efficiency of walking bipedal robots

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Fabian; Römer, Ulrich, E-mail: ulrich.roemer@kit.edu; Fidlin, Alexander; Seemann, Wolfgang [Institute of Engineering Mechanics, Karlsruhe Institute of Technology (Germany)

    2016-11-15

    This paper presents a method to optimize the energy efficiency of walking bipedal robots by more than 80 % in a speed range from 0.3 to 2.3 m/s using elastic couplings—mechanical springs with movement speed independent parameters. The considered planar robot consists of a trunk, two two-segmented legs, two actuators in the hip joints, two actuators in the knee joints and an elastic coupling between the shanks. It is modeled as underactuated system to make use of its natural dynamics and feedback controlled via input–output linearization. A numerical optimization of the joint angle trajectories as well as the elastic couplings is performed to minimize the average energy expenditure over the whole speed range. The elastic couplings increase the swing leg motion’s natural frequency thus making smaller steps more efficient which reduce the impact loss at the touchdown of the swing leg. The process of energy turnover is investigated in detail for the robot with and without elastic coupling between the shanks. Furthermore, the influences of the elastic couplings’ topology and of joint friction are analyzed. It is shown that the optimization of the robot’s motion and elastic coupling towards energy efficiency leads to a slightly slower convergence rate of the controller, yet no loss of stability, but a lower sensitivity with respect to disturbances. The optimal elastic coupling discovered via numerical optimization is a linear torsion spring with transmissions between the shanks. A design proposal for this elastic coupling—which does not affect the robot’s trunk and parallel shank motion and can be used to enhance an existing robot—is given for planar as well as spatial robots.

  3. Structure-soil-structure interaction of nuclear structures

    International Nuclear Information System (INIS)

    Snyder, M.D.; Shaw, D.E.; Hall, J.R. Jr.

    1975-01-01

    Structure-to-structure interaction resulting from coupling of the foundations through the soil has traditionally been neglected in the seismic analysis of nuclear power plants. This paper examines the phenomenon and available methods of analytical treatment, including finite element and lumped parameter methods. Finite element techniques have lead to the treatment of through soil coupling of structural foundations using two dimensional plane strain models owing to the difficulty of considering three dimensional finite element models. The coupling problem is treated by means of a lumped parameter model derived from elastic half-space considerations. Consequently, the method is applicable to the interaction of any number of foundations and allows the simultaneous application of tri-directional excitation. The method entails the idealization of interacting structures as lumped mass/shear beams with lumped soil springs and dampers beneath each foundation plus a coupling matrix between the interacting foundations. Utilizing classical elastic half-space methods, the individual foundation soil springs and dampers may be derived, accounting for the effects of embedment and soil layering, analogous to the methods used for single soil-structure, interaction problems. The coupling matrix is derived by generating influence coefficients based on the geometric relationship of the structures using classical half-space solutions. The influence coefficients form the coupling flexibility matrix which is inverted to yield the coupling matrix for the lumped parameter model

  4. Bending of a nonlinear beam reposing on an unilateral foundation

    Directory of Open Access Journals (Sweden)

    Machalová J.

    2011-06-01

    Full Text Available This article is going to deal with bending of a nonlinear beam whose mathematical model was proposed by D. Y. Gao in (Gao, D. Y., Nonlinear elastic beam theory with application in contact problems and variational approaches,Mech. Research Communication, 23 (1 1996. The model is based on the Euler-Bernoulli hypothesis and under assumption of nonzero lateral stress component enables moderately large deflections but with small strains. This is here extended by the unilateralWinkler foundation. The attribution unilateral means that the foundation is not connected with the beam. For this problem we demonstrate a mathematical formulation resulting from its natural decomposition which leads to a saddle-point problem with a proper Lagrangian. Next we are concerned with methods of solution for our problem by means of the finite element method as the paper (Gao, D. Y., Nonlinear elastic beam theory with application in contact problems and variational approaches, Mech. Research Communication, 23 (1 1996 has no mention of it. The main alternatives are here the solution of a system of nonlinear nondifferentiable equations or finding of a saddle point through the use of the augmented Lagrangian method. This is illustrated by an example in the final part of the article.

  5. varying elastic parameters distributions

    KAUST Repository

    Moussawi, Ali

    2014-12-01

    The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.

  6. Inverse methods for 3D quantitative optical coherence elasticity imaging (Conference Presentation)

    Science.gov (United States)

    Dong, Li; Wijesinghe, Philip; Hugenberg, Nicholas; Sampson, David D.; Munro, Peter R. T.; Kennedy, Brendan F.; Oberai, Assad A.

    2017-02-01

    In elastography, quantitative elastograms are desirable as they are system and operator independent. Such quantification also facilitates more accurate diagnosis, longitudinal studies and studies performed across multiple sites. In optical elastography (compression, surface-wave or shear-wave), quantitative elastograms are typically obtained by assuming some form of homogeneity. This simplifies data processing at the expense of smearing sharp transitions in elastic properties, and/or introducing artifacts in these regions. Recently, we proposed an inverse problem-based approach to compression OCE that does not assume homogeneity, and overcomes the drawbacks described above. In this approach, the difference between the measured and predicted displacement field is minimized by seeking the optimal distribution of elastic parameters. The predicted displacements and recovered elastic parameters together satisfy the constraint of the equations of equilibrium. This approach, which has been applied in two spatial dimensions assuming plane strain, has yielded accurate material property distributions. Here, we describe the extension of the inverse problem approach to three dimensions. In addition to the advantage of visualizing elastic properties in three dimensions, this extension eliminates the plane strain assumption and is therefore closer to the true physical state. It does, however, incur greater computational costs. We address this challenge through a modified adjoint problem, spatially adaptive grid resolution, and three-dimensional decomposition techniques. Through these techniques the inverse problem is solved on a typical desktop machine within a wall clock time of 20 hours. We present the details of the method and quantitative elasticity images of phantoms and tissue samples.

  7. First-Principle Calculations for Elastic and Thermodynamic Properties of Diamond

    International Nuclear Information System (INIS)

    Fu Zhijian; Chen Xiangrong; Gou Qingquan; Ji Guangfu

    2009-01-01

    The elastic constants and thermodynamic properties of diamond are investigated by using the CRYSTAL03 program. The lattice parameters, the bulk modulus, the heat capacity, the Grueneisen parameter, and the Debye temperature are obtained. The results are in good agreement with the available experimental and theoretical data. Moreover, the relationship between V/V 0 and pressure, the elastic constants under high pressure are successfully obtained. Especially, the elastic constants of diamond under high pressure are firstly obtained theoretically. At the same time, the variations of the thermal expansion α with pressure P and temperature Tare obtained systematically in the ranges of 0-870 GPa and 0-1600 K. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1

  9. Shaping through buckling in elastic gridshells: from camping tents to architectural roofs

    Science.gov (United States)

    Reis, Pedro

    Elastic gridshells comprise an initially planar network of elastic rods that is actuated into a 3D shell-like structure by loading its extremities. This shaping results from elastic buckling and the subsequent geometrically nonlinear deformation of the grid structure. Architectural elastic gridshells first appeared in the 1970's. However, to date, only a limited number of examples have been constructed around the world, primarily due to the challenges involved in their structural design. Yet, elastic gridshells are highly appealing: they can cover wide spans with low self-weight, they allow for aesthetically pleasing shapes and their construction is typically simple and rapid. We study the mechanics of elastic gridshells by combining precision model experiments that explore their scale invariance, together with computer simulations that employ the Discrete Elastic Rods method. Excellent agreement is found between the two. Upon validation, the numerics are then used to systematically explore parameter space and identify general design principles for specific target final shapes. Our findings are rationalized using the theory of discrete Chebyshev nets, together with the group theory for crystals. Higher buckling modes occur for some configurations due to geometric incompatibility at the boundary and result in symmetry breaking. Along with the systematic classification of the various possible modes of deformation, we provide a reduced model that rationalizes form-finding in elastic gridshells. This work was done in collaboration with Changyeob Baek, Khalid Jawed and Andrew Sageman-Furnas. We are grateful to the NSF for funding (CAREER, CMMI-1351449).

  10. Applying the elastic model for various nucleus-nucleus fusion

    International Nuclear Information System (INIS)

    HASSAN, G.S.; RAGAB, H.S.; SEDDEEK, M.K.

    2000-01-01

    The Elastic Model of two free parameters m,d given by Scalia has been used for wider energy regions to fit the available experimental data for potential barriers and cross sections. In order to generalize Scalia's formula in both sub- and above-barrier regions, we calculated m, d for pairs rather than those given by Scalia and compared the calculated cross sections with the experimental data. This makes a generalization of the Elastic Model in describing fusion process. On the other hand, Scalia's range of interacting systems was 24 ≤ A ≤194 where A is the compound nucleus mass number. Our extension of that model includes an example of the pairs of A larger than his final limit aiming to make it as a general formula for any type of reactants: light, intermediate or heavy systems. A significant point is the comparison of Elastic Model calculations with the well known methods studying complete fusion and compound nucleus formation, namely with the resultants of using Proximity potential with either Sharp or Smooth cut-off approximations

  11. Elastic Anisotropy of Basalt

    Science.gov (United States)

    Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.

    2005-12-01

    Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are

  12. The effect of disorder geometry on the critical force in disordered elastic systems

    International Nuclear Information System (INIS)

    Démery, Vincent; Lecomte, Vivien; Rosso, Alberto

    2014-01-01

    We address the effect of disorder geometry on the critical force in disordered elastic systems. We focus on the model system of a long-range elastic line driven in a random landscape. In the collective pinning regime, we compute the critical force perturbatively. Not only does our expression for the critical force confirm previous results on its scaling with respect to the microscopic disorder parameters, but it also provides its precise dependence on the disorder geometry (represented by the disorder two-point correlation function). Our results are successfully compared with the results of numerical simulations for random field and random bond disorders. (paper)

  13. Seismic response of pile foundations and pile forces caused by kinematic and inertial interaction

    International Nuclear Information System (INIS)

    Hartmann, H.G.; Waas, G.

    1985-01-01

    The horizontal motion and pile forces of pile groups subjected to earthquake excitation are analysed. The piles are modelled as linear elastic beam elements embedded in a layered linear visco-elastic soil medium. Pile-soil-pile interaction is included. The earthquake excitation results from vertically propagating shear waves. Kinematic and inertial interaction effects on foundation motion and pile forces are studied for a single pile, a small pile group and a large pile group. Soft and stiff soil conditions are considered, and the effect of a flexible vs. a rigid halfspace below the soil layers is shown. (orig.)

  14. Compressor Foundation Analysis Tool(COFANTO)

    NARCIS (Netherlands)

    Eijk, A.; Lentzen, S.S.K; Zuada Coelho, B.E.; Galanti, F.M.B.

    2012-01-01

    Reciprocating compressors are generally supported on a heavy concrete foundation. In spite of the large inertia and stiffness of the foundation, problems can occur due to interaction between the mechanical installation and the foundation. Two types of problems may occur. In the first type, the

  15. Measurement of the $M_A^{QE}$ parameter using multiple quasi-elastic dominated sub-samples in the minos near detector

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Nathan Samuel [Indiana Univ., Bloomington, IN (United States)

    2011-12-05

    The Main Injector Neutrino Oscillation Search (MINOS) is a two detector, long baseline neutrino oscillation experiment. The MINOS near detector is an ironscintillator tracking/sampling calorimeter and has recorded the world’s largest data set of neutrino interactions in the 0-5 GeV region. This high statistics data set is used to make precision measurements of neutrino interaction cross-sections on iron. The Q2 dependence in charged current quasi-elastic (CCQE) scattering probes the axial and vector structure (form factor) of the nucleon/nuclear target, and nuclear effects in neutrino scattering. Presented here is a study of the MINOS Data that will introduce a method that improves the existing MINOS CCQE analysis. This analysis uses an additional CCQE dominated sub-sample from a different kinematic region to reduce correlations between fit parameters in the existing MINOS CCQE analysis. The measured value of the axial-vector mass is MQE A = 1.312+0.037 -0.038(fit)+0.123 -0.265(syst.) GeV.

  16. Extreme values of the analyzing power in dα elastic scattering

    International Nuclear Information System (INIS)

    Jenny, B.; Grueebler, W.; Koenig, V.; Schmelzbach, P.A.

    1985-01-01

    An investigation of states of maximum possible polarization in dα elastic scattering has been carried out between 3 and 43 MeV deuteron energy. Two different types of such maxima were found. In the first type, analyzing power components reach their theoretical maximum values. A second type does not generally yield observables with maximum possible values, but has parameters that lie well within the range allowed. It is particular combination of values that constitutes a state of maximum possible polarization. The search for the two types of maxima was made with the aid of a phase-shift analysis. Several maxima of both kinds were found in the elastic scattering under investigation. The energies and scattering angles for these points have been determined. In most cases a state of maximum polarization indicates a resonant state in the compound system. (orig.)

  17. Elastic fingering in rotating Hele-Shaw flows

    KAUST Repository

    Carvalho, Gabriel D.; Gadê lha, Hermes; Miranda, José A.

    2014-01-01

    The centrifugally driven viscous fingering problem arises when two immiscible fluids of different densities flow in a rotating Hele-Shaw cell. In this conventional setting an interplay between capillary and centrifugal forces makes the fluid-fluid interface unstable, leading to the formation of fingered structures that compete dynamically and reach different lengths. In this context, it is known that finger competition is very sensitive to changes in the viscosity contrast between the fluids. We study a variant of such a rotating flow problem where the fluids react and produce a gellike phase at their separating boundary. This interface is assumed to be elastic, presenting a curvature-dependent bending rigidity. A perturbative weakly nonlinear approach is used to investigate how the elastic nature of the interface affects finger competition events. Our results unveil a very different dynamic scenario, in which finger length variability is not regulated by the viscosity contrast, but rather determined by two controlling quantities: a characteristic radius and a rigidity fraction parameter. By properly tuning these quantities one can describe a whole range of finger competition behaviors even if the viscosity contrast is kept unchanged. © 2014 American Physical Society.

  18. Elastic fingering in rotating Hele-Shaw flows

    KAUST Repository

    Carvalho, Gabriel D.

    2014-05-21

    The centrifugally driven viscous fingering problem arises when two immiscible fluids of different densities flow in a rotating Hele-Shaw cell. In this conventional setting an interplay between capillary and centrifugal forces makes the fluid-fluid interface unstable, leading to the formation of fingered structures that compete dynamically and reach different lengths. In this context, it is known that finger competition is very sensitive to changes in the viscosity contrast between the fluids. We study a variant of such a rotating flow problem where the fluids react and produce a gellike phase at their separating boundary. This interface is assumed to be elastic, presenting a curvature-dependent bending rigidity. A perturbative weakly nonlinear approach is used to investigate how the elastic nature of the interface affects finger competition events. Our results unveil a very different dynamic scenario, in which finger length variability is not regulated by the viscosity contrast, but rather determined by two controlling quantities: a characteristic radius and a rigidity fraction parameter. By properly tuning these quantities one can describe a whole range of finger competition behaviors even if the viscosity contrast is kept unchanged. © 2014 American Physical Society.

  19. Measurement of Elastic pp Scattering at $\\sqrt{s}$ = 8 TeV in the Coulomb-Nuclear Interference Region – Determination of the $\\rho$ Parameter and the Total Cross-Section

    CERN Document Server

    AUTHOR|(CDS)2069260; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Broulím, P.; Buzzo, A.; Cafagna, F.S.; Campanella, C.E.; Catanesi, M.G.; Csanád, M.; Csörgö, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Guaragnella, C.; Hammerbauer, J.; Heino, J.; Karev, A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lippmaa, E.; Lippmaa, J.; Lokajíček, M.V.; Losurdo, L; Lo Vetere, M.; Lucas Rodriguez, F.; Macrí, M.; Mercadante, A.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Paločko, L.; Passaro, V.; Peroutka, Z.; Petruzzelli, V.; Politi, T.; Procházka, J.; Prudenzano, F.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Wyszkowski, P.; Zielinski, K.

    2016-01-01

    The TOTEM experiment at the CERN LHC has measured elastic proton-proton scattering at the centre-of-mass energy $\\sqrt{s}$ = 8 TeV and four-momentum transfers squared, $|t|$, from $6\\times10^{-4}$ GeV$^2$ to 0.2 GeV$^2$. Near the lower end of the $t$-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the $\\rho$-pa...

  20. Conical Refraction of Elastic Waves by Anisotropic Metamaterials and Application for Parallel Translation of Elastic Waves.

    Science.gov (United States)

    Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young

    2017-08-30

    Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.

  1. Theoretical aspects of high energy elastic nucleon scattering

    CERN Document Server

    Kundrat, Vojtech; Lokajicek, Milos

    2010-01-01

    The eikonal model must be denoted as strongly preferable for the analysis of elastic high-energy hadron collisions. The given approach allows to derive corresponding impact parameter profiles that characterize important physical features of nucleon collisions, e.g., the range of different forces. The contemporary phenomenological analysis of experimental data is, however, not able to determine these profiles unambiguously, i.e., it cannot give the answer whether the elastic hadron collisions are more central or more peripheral than the inelastic ones. However, in the collisions of mass objects (like protons) the peripheral behavior of elastic collisions should be preferred.

  2. Contribution to research on the elastic and elastoplastic behavior of porous materials

    International Nuclear Information System (INIS)

    Frappier, J.-C.

    1979-11-01

    This three-part study concerns the mechanical behavior of porous materials. Part one, a bibliographical survey on the mechanical properties of porous materials, deals in turn with the following subjects: elastic properties, elasto-plastic boundary, plastic flow laws, fracture behavior and characterization methods. Part two is devoted to elastic behavior, giving the results of an experimental study on the elastic properties of a sintered nickel within a wide porosity range (5% to 55%) and establishing a theoretical law for the prediction of such characteristics; apart from the total porosity fraction and the elastic properties of the matrix this law can integrate parameters which represent the morphology of the material and may be determined empirically or by a modelisation, also proposed, of the structure of the material. Part three describes elastoplastic, behavior and includes experimental results obtained on sintered nickel in cases of simple mechanical stress, the demonstration - based on energy considerations of a theoretical plasticity criterion accounting for the substance, a theoretical definition of the plastic Poisson's ratio and the establishment of flow laws associated with this criterion [fr

  3. Method of control of machining accuracy of low-rigidity elastic-deformable shafts

    Directory of Open Access Journals (Sweden)

    Antoni Świć

    Full Text Available The paper presents an analysis of the possibility of increasing the accuracy and stability of machining of low-rigidity shafts while ensuring high efficiency and economy of their machining. An effective way of improving the accuracy of machining of shafts is increasing their rigidity as a result of oriented change of the elastic-deformable state through the application of a tensile force which, combined with the machining force, forms longitudinal-lateral strains. The paper also presents mathematical models describing the changes of the elastic-deformable state resulting from the application of the tensile force. It presents the results of experimental studies on the deformation of elastic low-rigidity shafts, performed on a special test stand developed on the basis of a lathe. An estimation was made of the effectiveness of the method of control of the elastic-deformable state with the use, as the regulating effects, the tensile force and eccentricity. It was demonstrated that controlling the two parameters: tensile force and eccentricity, one can improve the accuracy of machining, and thus achieve a theoretically assumed level of accuracy.

  4. Computing elastic anisotropy to discover gum-metal-like structural alloys

    Science.gov (United States)

    Winter, I. S.; de Jong, M.; Asta, M.; Chrzan, D. C.

    2017-08-01

    The computer aided discovery of structural alloys is a burgeoning but still challenging area of research. A primary challenge in the field is to identify computable screening parameters that embody key structural alloy properties. Here, an elastic anisotropy parameter that captures a material's susceptibility to solute solution strengthening is identified. The parameter has many applications in the discovery and optimization of structural materials. As a first example, the parameter is used to identify alloys that might display the super elasticity, super strength, and high ductility of the class of TiNb alloys known as gum metals. In addition, it is noted that the parameter can be used to screen candidate alloys for shape memory response, and potentially aid in the optimization of the mechanical properties of high-entropy alloys.

  5. Identification of the parameters of an elastic material model using the constitutive equation gap method

    KAUST Repository

    Florentin, Éric

    2010-04-23

    Today, the identification ofmaterialmodel parameters is based more and more on full-field measurements. This article explains how an appropriate use of the constitutive equation gap method (CEGM) can help in this context. The CEGM is a well-known concept which, until now, has been used mainly for the verification of finite element simulations. This has led to many developments, especially concerning the techniques for constructing statically admissible stress fields. The originality of the present study resides in the application of these recent developments to the identification problem. The proposed CEGM is described in detail, then evaluated through the identification of heterogeneous isotropic elastic properties. The results obtained are systematically compared with those of the equilibrium gap method, which is a well-known technique for the resolution of such identification problems. We prove that the use of the enhanced CEGM significantly improves the quality of the results. © Springer-Verlag 2010.

  6. Prediction of e± elastic scattering cross-section ratio based on phenomenological two-photon exchange corrections

    Science.gov (United States)

    Qattan, I. A.

    2017-06-01

    I present a prediction of the e± elastic scattering cross-section ratio, Re+e-, as determined using a new parametrization of the two-photon exchange (TPE) corrections to electron-proton elastic scattering cross section σR. The extracted ratio is compared to several previous phenomenological extractions, TPE hadronic calculations, and direct measurements from the comparison of electron and positron scattering. The TPE corrections and the ratio Re+e- show a clear change of sign at low Q2, which is necessary to explain the high-Q2 form factors discrepancy while being consistent with the known Q2→0 limit. While my predictions are in generally good agreement with previous extractions, TPE hadronic calculations, and existing world data including the recent two measurements from the CLAS and VEPP-3 Novosibirsk experiments, they are larger than the new OLYMPUS measurements at larger Q2 values.

  7. Some Differential Geometric Relations in the Elastic Shell

    Directory of Open Access Journals (Sweden)

    Xiaoqin Shen

    2016-01-01

    Full Text Available The theory of the elastic shells is one of the most important parts of the theory of solid mechanics. The elastic shell can be described with its middle surface; that is, the three-dimensional elastic shell with equal thickness comprises a series of overlying surfaces like middle surface. In this paper, the differential geometric relations between elastic shell and its middle surface are provided under the curvilinear coordinate systems, which are very important for forming two-dimensional linear and nonlinear elastic shell models. Concretely, the metric tensors, the determinant of metric matrix field, the Christoffel symbols, and Riemann tensors on the three-dimensional elasticity are expressed by those on the two-dimensional middle surface, which are featured by the asymptotic expressions with respect to the variable in the direction of thickness of the shell. Thus, the novelty of this work is that we can further split three-dimensional mechanics equations into two-dimensional variation problems. Finally, two kinds of special shells, hemispherical shell and semicylindrical shell, are provided as the examples.

  8. Optimal Inversion Parameters for Full Waveform Inversion using OBS Data Set

    Science.gov (United States)

    Kim, S.; Chung, W.; Shin, S.; Kim, D.; Lee, D.

    2017-12-01

    In recent years, full Waveform Inversion (FWI) has been the most researched technique in seismic data processing. It uses the residuals between observed and modeled data as an objective function; thereafter, the final subsurface velocity model is generated through a series of iterations meant to minimize the residuals.Research on FWI has expanded from acoustic media to elastic media. In acoustic media, the subsurface property is defined by P-velocity; however, in elastic media, properties are defined by multiple parameters, such as P-velocity, S-velocity, and density. Further, the elastic media can also be defined by Lamé constants, density or impedance PI, SI; consequently, research is being carried out to ascertain the optimal parameters.From results of advanced exploration equipment and Ocean Bottom Seismic (OBS) survey, it is now possible to obtain multi-component seismic data. However, to perform FWI on these data and generate an accurate subsurface model, it is important to determine optimal inversion parameters among (Vp, Vs, ρ), (λ, μ, ρ), and (PI, SI) in elastic media. In this study, staggered grid finite difference method was applied to simulate OBS survey. As in inversion, l2-norm was set as objective function. Further, the accurate computation of gradient direction was performed using the back-propagation technique and its scaling was done using the Pseudo-hessian matrix.In acoustic media, only Vp is used as the inversion parameter. In contrast, various sets of parameters, such as (Vp, Vs, ρ) and (λ, μ, ρ) can be used to define inversion in elastic media. Therefore, it is important to ascertain the parameter that gives the most accurate result for inversion with OBS data set.In this study, we generated Vp and Vs subsurface models by using (λ, μ, ρ) and (Vp, Vs, ρ) as inversion parameters in every iteration, and compared the final two FWI results.This research was supported by the Basic Research Project(17-3312) of the Korea Institute of

  9. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    International Nuclear Information System (INIS)

    Guryn, W.

    1998-02-01

    The authors are describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from √s = 50 GeV to √s = 500 GeV in two kinematical regions. In the Coulomb Nuclear Interference (CNI) region, 0.0005 2 , they will measure and study the s dependence of the total and elastic cross sections, σ tot and σ el ; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, ρ; and the nuclear slope parameter of the pp elastic scattering, b. In the medium |t|-region, |t| 2 , they plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, dσ el /dt, and the s and |t| dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin states Δσ T , the analyzing power, A N , and the transverse spin correlation parameter A NN . The behavior of the analyzing power A N at RHIC energies in the dip region of dσ el /dt, where a pronounced structure was found at fixed-target experiments will be studied. The relation of pp elastic scattering to the beam polarization measurement at RHIC is also discussed

  10. Prototype bucket foundation for wind turbines

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers...... and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental...... estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models...

  11. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    International Nuclear Information System (INIS)

    Guryn, W.

    1995-01-01

    The author is describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from √s = 60 GeV to √s = 500 GeV in two kinematical regions .In the Coulomb Nuclear Interference (CNI) region, 0.0005 2 , we will measure and study the s dependence of the total and elastic cross sections, σ tot and σ el ; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, ρ; and the nuclear slope parameter of the pp elastic scattering, b. In the medium |t|, |t| ≤ 1.5 (GeV/c) 2 , we plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, dσ el /dt, and the s and |t| dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin stated Δσ T , the analyzing power, A N , and the transverse spin correlation parameter A NN . The behavior of the analyzing power A N at RHIC energies in the dip region of dσ el /dt, where a pronounced structure was found at fixed-target experiments will be studied

  12. The elastic free energy of a tandem modular protein under force.

    Science.gov (United States)

    Valle-Orero, Jessica; Eckels, Edward C; Stirnemann, Guillaume; Popa, Ionel; Berkovich, Ronen; Fernandez, Julio M

    2015-05-01

    Recent studies have provided a theoretical framework for including entropic elasticity in the free energy landscape of proteins under mechanical force. Accounting for entropic elasticity using polymer physics models has helped explain the hopping behavior seen in single molecule experiments in the low force regime. Here, we expand on the construction of the free energy of a single protein domain under force proposed by Berkovich et al. to provide a free energy landscape for N tandem domains along a continuous polypeptide. Calculation of the free energy of individual domains followed by their concatenation provides a continuous free energy landscape whose curvature is dominated by the worm-like chain at forces below 20 pN. We have validated our free energy model using Brownian dynamics and reproduce key features of protein folding. This free energy model can predict the effects of changes in the elastic properties of a multidomain protein as a consequence of biological modifications such as phosphorylation or the formation of disulfide bonds. This work lays the foundations for the modeling of tissue elasticity, which is largely determined by the properties of tandem polyproteins. Copyright © 2015. Published by Elsevier Inc.

  13. Geometrical foundations of continuum mechanics an application to first- and second-order elasticity and elasto-plasticity

    CERN Document Server

    Steinmann, Paul

    2015-01-01

    This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity.   After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear con...

  14. THE NEW STRUCTURE OF A PLATE-PILE FOUNDATION

    Directory of Open Access Journals (Sweden)

    SAMORODOV О. V.

    2016-01-01

    Full Text Available Raising of problem. In the construction of high-rise buildings with significant loads on foundations and bedding at the base of not rocky soils tend to use the most common pile foundation to reduce the deformation and correspond to regulations [1] on the maximum permissible deformation. Monitoring of the stress-strain state (SSS pile foundations constructed buildings shows the existing reserves of bearing capacity on the one hand - soil bases of the second group of limit states, on the other - the foundation of the first group of limit states by regulating the SSS foundation during construction and exploitation. Therefore, are increasingly using more progressive structure of foundations consisting of piles and of plate, as well as methods for their construction [2 - 10], however, in their design there are a number of disadvantages associated with the ambiguity of the application of methods for the calculation of such structures, which allows to do only partial conclusions and recommendations. Purpose. Is proposing the new structure of a plate-pile foundation, which overcomes the drawbacks of the existing design solutions and methods of consruction their, as well as is proposing an engineering method of a determination of basic parameters. Conclusion. Is proposes the new structure of a plate-pile foundation and the method of a determination of basic parameters his in the design of a soil base to the maximum permissible deformation Su buildings. Efficiency of application this type plate-pile foundation obtained by rational distribution resistance between a plate and piles, when under load from the building to the first work fully incorporated plate that allows maximum deformed for plate, and then the piles - due to of the hinge connection with the plate. Thus, depending on the maximum permissible deformation for buildings resistance of plate part of a full load of more than 50%, that significantly reduces the consumption of concrete.

  15. X-ray diffraction study of elastic strains for modelling γ/γ' two-phase behavior

    International Nuclear Information System (INIS)

    Durand, L.; Massaoudi, M.; Lavelle, B.

    2005-01-01

    To describe the two-phase monocrystals behavior, we used has X-rays diffraction method. Our study is based on the mechanics of the continuous media framework in elasticity. We extend to the quadratic structure the study by X-rays developed at the laboratory on cubic materials with coarse grains. We show that the two phases γ and γ' undergo a tetragonal distortion and that the strains are not constant in each phase. Our results are in agreement with a study by the finite element method developed in addition

  16. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    KAUST Repository

    Gao, Kai

    2015-06-05

    The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.

  17. A mathematical model of the rail track presented as a bar on elastic and dissipative supports under the influence of moving loads

    Directory of Open Access Journals (Sweden)

    Darenskiy Alexander

    2017-01-01

    Full Text Available At present, the most common track model is the one in which rails are presented as bars of infinite length rested on continuous elastic foundation. However, some specialists consider the model to be rather ideal for railways in terms of track and the technical state of track. Calculation of track as a bar rested on numerous elastic supports with variable characteristics of stiffness under static loads has shown that application of methods of elastic foundation gives results understated by 17-24%. The study presents mathematic models of the vehicle/track dynamic system, and a design scheme of track presented as a bar on numerous elastic dissipative supports with non-linear characteristics, which is taken on the base of this system. The authors developed models and methods to define the reduced vertical stiffness of the track in the wheel/rail contact point, which considers rail elastic and geometric characteristics, stiffness of supports, distance between supports and distributed track mass. The value of stiffness is variable by time for each wheel at any time and various for the vehicle’s wheels. The mathematical model proposed has been implemented in Matlab software and will make it possible to conduct numerical research into the track/vehicle dynamics.

  18. Appraisal of elastic follow up

    International Nuclear Information System (INIS)

    Roche, R.L.

    1981-08-01

    The aim of this paper is to provide indications to choose what fraction of a self limiting stress can be considered as secondary. At first, considerations are given to a simple structure which could be called ''creep relaxation tensile test''. A bar (with constant cross section) is loaded by an elastic spring in order to obtain a given elongation of the assembly. The stress evolution is studied. Then the creep damage is computed, and compared to the damage corresponding to the elastic computed stress. This comparison gives the fraction of the self limiting stress which must be considered as primary. This involve the structural parameter 0 which is the initial value of the ratio of elastic energy to dissipating power. Extension of the rule is made with the help of KACHANOV approximation. As a conclusion a procedure is described which determines what fraction of a self limiting stress must be considered as primary

  19. A thin two-phase foils deformed by an interfacial dislocation in anisotropic elasticity

    Directory of Open Access Journals (Sweden)

    Madani, Salah

    2005-04-01

    Full Text Available The purpose of this work is the numerical resolution, in the case of anisotropic elasticity, of the problem of a dislocation parallel and near to the two free surfaces of a thin bicrystal. This case is obtained while making the period of a network of misfit dislocations much greater than the thickness of the two foils. As a result, in the vicinity of the dislocation, the limiting bondary conditions will be close to that of Volterra translation dislocation. The elastic fields of displacement and stress are calculated for various orientations of the burgers vector. Before this calculation, we tested the precision of the results of the program by comparing the interfacial relative displacement obtained from this one to the results of the analytical expression describing this same displacement. The thin bicristal Al/Al2Cu, that made the object of several investigations, is treated like example. The results obtained are compared to those obtained in isotropic elasticity.

    Este trabajo aborda la resolución numérica en anisotropía elástica, del problema de una dislocación paralela cercana a las superficies libres de un bi-cristal delgado. Este problema se genera cuando el periodo de la red de dislocaciones desplazadas es mucho mayor que el espesor de la bi-lámina. Como resultados, en la vecindad de la dislocación, las condiciones de contorno estarán cercanas a la dislocación de traslación de Volterra. Los campos elásticos de desplazamiento y las tensiones se calcularon para distintas orientaciones del vector de burgers. Como paso previo a los cálculos, se comprobó la precisión de los resultados del programa comparando le desplazamiento relativo interracial obtenido con los resultados de la expresión analítica que describen dicho desplazamiento. Se emplearon como ejemplo bi-cristales de Al/Al2Cu, debido a su empleo en varias investigaciones. Los resultados fueron comparados con los obtenidos en elasticidad isótropa.

  20. The buckling transition of two-dimensional elastic honeycombs: numerical simulation and Landau theory

    International Nuclear Information System (INIS)

    Jagla, E A

    2004-01-01

    I study the buckling transition under compression of a two-dimensional, hexagonal, regular elastic honeycomb. Under isotropic compression, the system buckles to a configuration consisting of a unit cell containing four of the original hexagons. This buckling pattern preserves the sixfold rotational symmetry of the original lattice but is chiral, and can be described as a combination of three different elemental distortions in directions rotated by 2π/3 from each other. Non-isotropic compression may induce patterns consisting of a single elemental distortion or a superposition of two of them. The numerical results compare very well with the outcome of a Landau theory of second-order phase transitions

  1. Hadron elastic scattering at small angles

    CERN Multimedia

    2002-01-01

    This experiment is an extension of the measurements of the WA9 experiment up to the highest energies available in the North Area. It will measure the differential cross-section for hadron elastic scattering in the t-range 0.002-0.05 (GeV/c)$^{2}$ using an ionization chamber for the measurement of the energy and the angle of the recoil and a magnet-WC spectrometer to measure the momentum and direction of the forward particle. From these measurements will be obtained the ratio $\\rho$ of the real to imaginary parts of the forward elastic amplitude and the exponential slope parameter b of the hadronic amplitude at small t. The precision expected in these measurements is $\\Delta \\rho \\approx \\pm 0.01$ and $\\Delta$b $\\approx \\pm 0.2$ (GeV/c)$^{-2}$. \\\\ \\\\ The experimental programme includes: \\\\\\\\ i) measurements of $\\rho$ and b for $\\pi$p elastic scattering at incident momenta between 150 GeV/c and 300 GeV/c; \\\\ ii) measurements of $\\rho$ and b for $\\pi^{+}$p and pp elastic scattering at incident momenta between 5...

  2. Elastic and inelastic scattering of {sup 15}N ions by {sup 9}Be at 84 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Rudchik, A.T., E-mail: rudchik@kinr.kiev.ua [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Chercas, K.A. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Kemper, K.W. [Physics Department, Florida State University, Tallahassee, FL 32306-4350 (United States); Rusek, K. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Rudchik, A.A.; Herashchenko, O.V. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Koshchy, E.I. [Kharkiv National University, pl. Svobody 4, 61077 Kharkiv (Ukraine); Pirnak, Val.M. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Piasecki, E.; Trzcińska, A. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Sakuta, S.B. [Russian Research Center “Kurchatov Institute”, Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Siudak, R. [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Strojek, I. [National Center for Nuclear Researches, ul. Hoża 69, PL-00-681 Warsaw (Poland); Stolarz, A. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Ilyin, A.P.; Ponkratenko, O.A.; Stepanenko, Yu.M.; Shyrma, Yu.O. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Szczurek, A. [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Uleshchenko, V.V. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine)

    2016-03-15

    Angular distributions of the {sup 9}Be + {sup 15}N elastic and inelastic scattering were measured at E{sub lab}({sup 15}N) = 84 MeV (E{sub c.m.} = 31.5 MeV) for the 0–6.76 MeV states of {sup 9}Be and 0–6.32 MeV states of {sup 15}N. The data were analyzed within the optical model and coupled-reaction-channels method. The elastic and inelastic scattering, spin reorientations of {sup 9}Be in ground and excited states and {sup 15}N in excited states as well as the most important one- and two-step transfer reactions were included in the channels-coupling scheme. The parameters of the {sup 9}Be + {sup 15}N optical potential of Woods–Saxon form as well as deformation parameters of these nuclei were deduced. The analysis showed that the {sup 9}Be + {sup 15}N pure potential elastic scattering dominates at the forward angles whereas the ground state spin reorientation of {sup 9}Be gives a major contribution to the elastic scattering cross sections at the large angles. Contributions from particle transfers are found to be negligible for the present scattering system.

  3. Dynamic Response Analysis of Microflow Electrochemical Sensors with Two Types of Elastic Membrane

    Directory of Open Access Journals (Sweden)

    Qiuzhan Zhou

    2016-05-01

    Full Text Available The Molecular Electric Transducer (MET, widely applied for vibration measurement, has excellent sensitivity and dynamic response at low frequencies. The elastic membrane in the MET is a significant factor with an obvious effect on the performance of the MET in the low frequency domain and is the focus of this paper. In simulation experiments, the elastic membrane and the reaction cavity of the MET were analysed in a model based on the multiphysics finite element method. Meanwhile, the effects caused by the elastic membrane elements are verified in this paper. With the numerical simulation and practical experiments, a suitable elastic membrane can be designed for different cavity structures. Thus, the MET can exhibit the best dynamic response characteristics to measure the vibration signals. With the new method presented in this paper, it is possible to develop and optimize the characteristics of the MET effectively, and the dynamic characteristics of the MET can be improved in a thorough and systematic manner.

  4. Facies Constrained Elastic Full Waveform Inversion

    KAUST Repository

    Zhang, Z.

    2017-05-26

    Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.

  5. Facies Constrained Elastic Full Waveform Inversion

    KAUST Repository

    Zhang, Z.; Zabihi Naeini, E.; Alkhalifah, Tariq Ali

    2017-01-01

    Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.

  6. Foundations of measurement

    CERN Document Server

    Suppes, Patrick

    1989-01-01

    Foundations of Measurement offers the most coherently organized treatment of the topics and issues central to measurement. Much of the research involved has been scattered over several decades and a multitude of journals--available in many instances only to specialties. With the publication of Volumes two and three of this important work, Foundations of Measurement is the most comprehensive presentation in the area of measurement.

  7. Controlling elastic waves with small phononic crystals containing rigid inclusions

    KAUST Repository

    Peng, Pai

    2014-05-01

    We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.

  8. Dynamic Analysis of Thick Plates Including Deep Beams on Elastic Foundations Using Modified Vlasov Model

    Directory of Open Access Journals (Sweden)

    Korhan Ozgan

    2013-01-01

    Full Text Available Dynamic analysis of foundation plate-beam systems with transverse shear deformation is presented using modified Vlasov foundation model. Finite element formulation of the problem is derived by using an 8-node (PBQ8 finite element based on Mindlin plate theory for the plate and a 2-node Hughes element based on Timoshenko beam theory for the beam. Selective reduced integration technique is used to avoid shear locking problem for the evaluation of the stiffness matrices for both the elements. The effect of beam thickness, the aspect ratio of the plate and subsoil depth on the response of plate-beam-soil system is analyzed. Numerical examples show that the displacement, bending moments and shear forces are changed significantly by adding the beams.

  9. Modifications of nucleons in nuclei in quasi-elastic electron-nucleus scattering

    International Nuclear Information System (INIS)

    Mulders, P.J.

    1988-01-01

    In inelastic electron scattering two scaling regions are observed in which the scattering is dominated by quasi-elastic scattering. For large momentum transfers, √Q 2 > 2 GeV/c, the scattering process is dominated by quasi-elastic scattering off quarks, whereas for √Q 2 ≅ 0.5 GeV/c the dominant contribution is quasi-elastic scattering off nucleons. This corresponds nicely to our first order picture of the nucleus consisting of nucleons, which in turn are composed of quarks. In the nucleon-scaling region, possible modifications of nucleon properties show up through a study of the Q 2 dependence and the relative strength of the transverse and longitudinal cross sections. Results of both inclusive (e,e') and exclusive (e,e'p) experiments in the quasi-elastic scattering region indeed show a behavior that could indicate modifications of intrinsic properties of individual nucleons in the nucleus, although the question remains if one has correctly disentangled the effects of the (long range) interactions between nucleons and those connected to the internal structure of nucleons. Even so, a simple (one-parameter) size rescaling for nucleons appears to be inconsistent with the data and also with some known conventional nuclear physics observables. Therefore the inclusion of two-nucleon correlations appears necessary in order to be able to understand the data. Such correlations can for instance be due to the effect of the Pauli principle on the quark level. (orig.)

  10. Stochastic response of rigid foundations

    International Nuclear Information System (INIS)

    Pais, A.L.; Kausel, E.

    1986-01-01

    While the study of Kinematic Interaction effects calls, in general, for advanced analytical and numerical techniques, an excellent approximation was proposed recently by Iguchi. This approximation was used by the authors to analyze embedded foundations subjected to spatially random SH-wave fields, i.e., motions that exhibit some degree of incoherence. The wave fields considered ranged from perfectly coherent motions (resulting from seismic waves arriving from a single direction) to chaotic motions resulting from waves arriving simultaneously from all directions. Additional parameters considered were the shape of the foundation (cylindrical, rectangular) and the degree of embedment. It was found that kinematic interaction usually reduces the severity of the motions transmitted to the structure, and that incoherent motions do not exhibit the frequency selectivity (i.e., narrow valleys in the foundation response spectra) that coherent motions do

  11. Phason elasticity and surface roughening

    International Nuclear Information System (INIS)

    Tang Leihan; Jaric, M.V.

    1990-01-01

    The phason elasticity of two-dimensional (2D) equilibrium quasicrystals is discussed in analogy with surface roughening phenomena. Taking a Penrose tiling model as an example, we show that the phason elastic energy is linear in the phason strain at zero temperature (T = 0), but becomes quadratic at any T > 0 and sufficiently small strain. Heuristic and real-space renormalization group arguments are given for the thermal roughening of the hyper-surface which represents quasicrystal tiling. Monte Carlo method is applied to illustrate the logarithmically diverging phason fluctuations and power-law diffraction intensities at T > 0. For three-dimensional systems, we present arguments which suggest a finite temperature transition between two quasicrystal phases, characterized by linear and quadratic phason elastic energy, respectively. (author). 17 refs, 12 figs

  12. Online Identification and Verification of the Elastic Coupling Torsional Stiffness

    Directory of Open Access Journals (Sweden)

    Wanyou Li

    2016-01-01

    Full Text Available To analyze the torsional vibration of a diesel engine shaft, the torsional stiffness of the flexible coupling is a key kinetic parameter. Since the material properties of the elastic element of the coupling might change after a long-time operation due to the severe working environment or improper use and the variation of such properties will change dynamic feature of the coupling, it will cause a relative large calculation error of torsional vibration to the shaft system. Moreover, the torsional stiffness of the elastic coupling is difficult to be determined, and it is inappropriate to measure this parameter by disassembling the power unit while it is under normal operation. To solve these problems, this paper comes up with a method which combines the torsional vibration test with the calculation of the diesel shafting and uses the inherent characteristics of shaft torsional vibration to identify the dynamic stiffness of the elastic coupling without disassembling the unit. Analysis results show that it is reasonable and feasible to identify the elastic coupling dynamic torsional stiffness with this method and the identified stiffness is accurate. Besides, this method provides a convenient and practical approach to examine the dynamic behavior of the long running elastic coupling.

  13. Remarks on some reference materials for applications in elastic peak electron spectroscopy

    International Nuclear Information System (INIS)

    Jablonski, A.; Zemek, J.

    2010-01-01

    The quantification of results of electron spectroscopies, AES and XPS, requires knowledge of the inelastic mean free path (IMFP) of signal electrons in solids. This parameter determines the surface sensitivity of both techniques. There are two methods of determining the IMFPs that provide these parameters in agreement with the definition: (1) calculations based on the experimental optical data, and (2) calculations based on measurements of the electron elastic backscattering intensity. The latter method requires the use of some reference material for which the IMFP is known. In 1999, an extensive analysis of the published IMFPs has been performed; the results indicated that there is a very good agreement between the calculated and measured IMFPs for four elemental solids: Ni, Cu, Ag and Au. The averaged IMFPs for these elements are known under the name of the recommended IMFPs. However, no preference among these four elements has been established. In the present work, an attempt is made to select an element for which the recommended IMFPs result in the best agreement between the calculated and measured intensities of elastic electron backscattering. For this purpose, the elastic backscattering intensity has been measured at eight electron energies varying from 200 to 1500 eV. At each energy, the intensity was measured over a wide range of emission angles from 35deg to 74deg. The experiments were accompanied with Monte Carlo calculations of the elastic backscattering probability for the same energies and experimental configurations. It has been found, from comparison, that the best agreement is observed for Au, and this element is thus recommended as the reference material. It has been shown that the shape of the emission angle dependence of the elastic backscattering intensity is noticeably influenced by the surface energy losses. (author)

  14. The logical foundations of mathematics

    CERN Document Server

    Hatcher, William S

    1981-01-01

    The Logical Foundations of Mathematics offers a study of the foundations of mathematics, stressing comparisons between and critical analyses of the major non-constructive foundational systems. The position of constructivism within the spectrum of foundational philosophies is discussed, along with the exact relationship between topos theory and set theory.Comprised of eight chapters, this book begins with an introduction to first-order logic. In particular, two complete systems of axioms and rules for the first-order predicate calculus are given, one for efficiency in proving metatheorems, and

  15. Dynamics of pre-strained bi-material elastic systems linearized three-dimensional approach

    CERN Document Server

    Akbarov, Surkay D

    2015-01-01

    This book deals with dynamics of pre-stressed or pre-strained bi-material elastic systems consisting of stack of pre-stressed layers, stack of pre-stressed layers and pre-stressed half space (or half plane), stack of pre-stressed layers as well as absolute rigid foundation, pre-stressed compound solid and hollow cylinders and pre-stressed sandwich hollow cylinders. The problems considered in the book relate to the dynamics of a moving and oscillating moving load, forced vibration caused by linearly located or point located time-harmonic forces acting to the foregoing systems. Moreover, a considerable part of the book relate to the problems regarding the near surface, torsional and axisymmetric longitudinal waves propagation and dispersion in the noted above bi-material elastic systems. The book carries out the investigations within the framework of the piecewise homogeneous body model with the use of the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies.

  16. Elastic model of the traction behavior of two traction lubricants

    Science.gov (United States)

    Loewenthal, S. H.; Rohn, D. A.

    1984-01-01

    In the analysis of rolling-sliding concentrated contacts, such as gears, bearings and traction drives, the traction characteristics of the lubricant are of prime importance. The elastic shear modulus and limiting shear stress properties of the lubricant dictate the traction/slip characteristics and power loss associated with an EHD contact undergoing slip and/or spin. These properties can be deducted directly from the initial slope m and maximum traction coefficient micron of an experimental traction curve. In this investigation, correlation equations are presented to predict m and micron for two modern traction fluids based on the regression analysis of 334 separate traction disk machine experiments. The effects of contact pressure, temperature, surface velocity, ellipticity ratio are examined. Problems in deducing lubricant shear moduli from disk machine tests are discussed. Previously announced in STAR as N83-20116

  17. The directional propagation characteristics of elastic wave in two-dimensional thin plate phononic crystals

    International Nuclear Information System (INIS)

    Wen Jihong; Yu, Dianlong; Wang Gang; Zhao Honggang; Liu Yaozong; Wen Xisen

    2007-01-01

    The directional propagation characteristics of elastic wave during pass bands in two-dimensional thin plate phononic crystals are analyzed by using the lumped-mass method to yield the phase constant surface. The directions and regions of wave propagation in phononic crystals for certain frequencies during pass bands are predicted with the iso-frequency contour lines of the phase constant surface, which are then validated with the harmonic responses of a finite two-dimensional thin plate phononic crystals with 16x16 unit cells. These results are useful for controlling the wave propagation in the pass bands of phononic crystals

  18. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    KAUST Repository

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin R.

    2015-01-01

    The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters

  19. First-principles calculations for elastic properties of OsB2 under pressure

    International Nuclear Information System (INIS)

    Yang Junwei; Chen Xiangrong; Luo Fen; Ji Guangfu

    2009-01-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  20. First-principles calculations for elastic properties of OsB 2 under pressure

    Science.gov (United States)

    Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  1. Elastic-plastic and creep analyses by assumed stress finite elements

    International Nuclear Information System (INIS)

    Pian, T.H.H.; Spilker, R.L.; Lee, S.W.

    1975-01-01

    A formulation is presented of incremental finite element solutions for both initial stress and initial strain problems based on modified complementary energy principle with relaxed inter-element continuity requirement. The corresponding finite element model is the assumed stress hybrid model which has stress parameters in the interior of each element and displacements at the individual nodes as unknowns. The formulation includes an important consideration that the states of stress and strain and the beginning of each increment may not satisfy the equilibrium and compatibility equations. These imbalance and mismatch conditions all lead to correction terms for the equivalent nodal forces of the matrix equations. The initial stress method is applied to elastic-plastic analysis of structures. In this case the stress parameters for the individual elements can be eliminated resulting to a system of equations with only nodal displacements as unknowns. Two different complementary energy principles can be formulated, in one of which the equilibrium of the final state of stress is maintained while in the other the equilibrium of the stress increments is maintained. Each of these two different formulations can be combined with different iterative schemes to be used at each incremental steps of the elastic-plastic analysis. It is also indicated clearly that for the initial stress method the state of stress at the beginning of each increments is in general, not in equilibrium and an imbalance correction is needed. Results of a comprehensive evaluation of various solution procedures by the initial stress method using the assumed stress hybrid elements are presented. The example used is the static response of a thick wall cylinder of elastic-perfectly plastic material under internal pressure. Solid of revolution elements with rectangular cross sections are used

  2. Wave Forces on Windturbine Foundations

    DEFF Research Database (Denmark)

    Larsen, Brian Juul; Frigaard, Peter

    A testprogramme has been performed to determine the wave forces on two types of foundations for an offshore windturbine. the tested foundation types are a monopile and cone. Furthermore the shaft of the cone has been tested....

  3. Nematic elastomers: from a microscopic model to macroscopic elasticity theory.

    Science.gov (United States)

    Xing, Xiangjun; Pfahl, Stephan; Mukhopadhyay, Swagatam; Goldbart, Paul M; Zippelius, Annette

    2008-05-01

    A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity. These phenomenological theories of elasticity are thereby derived from a microscopic model, and it is furthermore demonstrated that they are universal mean-field descriptions of the elasticity for all chemical gels and vulcanized media.

  4. Justification of parameters and selection of equipment for laboratory researches of a rammer's operating element dynamics in a soil foundation of a tank for oil and oil products storage

    Science.gov (United States)

    Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.

    2017-08-01

    The development of technology for a directional soil compaction of tank foundations for oil and oil products storage is a relevant problem which solution will enable simultaneously provide required operational characteristics of a soil foundation and reduce time and material costs to prepare the foundation. The impact dynamics of rammers' operating elements on the soil foundation is planned to specify in the course of laboratory studies. A specialized technique is developed to justify the parameters and select the equipment for laboratory researches. The usage of this technique enabled us to calculate dimensions of the models, of a test bench and specifications of the recording equipment, and a lighting system. The necessary equipment for laboratory studies was selected. Preliminary laboratory tests were carried out. The estimate of accuracy for planned laboratory studies was given.

  5. Pricing perpetual American options under multiscale stochastic elasticity of variance

    International Nuclear Information System (INIS)

    Yoon, Ji-Hun

    2015-01-01

    Highlights: • We study the effects of the stochastic elasticity of variance on perpetual American option. • Our SEV model consists of a fast mean-reverting factor and a slow mean-revering factor. • A slow scale factor has a very significant impact on the option price. • We analyze option price structures through the market prices of elasticity risk. - Abstract: This paper studies pricing the perpetual American options under a constant elasticity of variance type of underlying asset price model where the constant elasticity is replaced by a fast mean-reverting Ornstein–Ulenbeck process and a slowly varying diffusion process. By using a multiscale asymptotic analysis, we find the impact of the stochastic elasticity of variance on the option prices and the optimal exercise prices with respect to model parameters. Our results enhance the existing option price structures in view of flexibility and applicability through the market prices of elasticity risk

  6. Robertson-Walker type solutions with Carter and Quintana-type elasticity

    International Nuclear Information System (INIS)

    Lukacs, B.

    1976-03-01

    The problem of elastic matter in gravitational field having six parameter symmetry is studied by help of the more general theory of Carter and Quintana. The results are compared to the author's earlier calculations using the less general Rayner's formalism. It is shown that previous results remain valid if the equation of state is chosed specially. The Hookean limit of the two theories differ from one another but there is no essential difference between the behaviours of the solutions. (Sz.N.Z.)

  7. New focus for elastic and diffractive scattering

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1995-01-01

    A regular feature of the international physics calendar is the International Conference on Elastic and Diffractive Scattering, known also as the Blois Workshops, after their 1985 birthplace in France. The content of this year's meeting embraced a broad spectrum of problems ranging from the classical analysis of elastic scattering and total cross-sections to the ''hard'' or deep inelastic phenomena which test the underlying quark-gluon structure of hadrons. These meetings have traditionally concentrated on broad questions of elastic and diffractive scattering, however the shift of emphasis in physics is now reflected at Blois by interest in the wide range of 'soft' hadronic processes which dominate reaction cross-sections. On the traditional side, a substantial part of the conference was devoted to analysis of forward scattering parameters like total cross-sections, real parts etc, using dispersion relations and fundamental asymptotic theorems which bound the possible growth of those parameters with energy. The present experimental situation in this field was summarized by S. Pruss, followed by theoretical presentations by B. Nicolescu, A. Donnachie, T.T. Wu, A. Martin and others. The data for proton-proton and proton-antiproton scattering seem to support dominance of the 'crossing-even' part of the scattering amplitude (which contributes equally to both proton-proton and protonantiproton scattering), with little evidence for a substantial 'odderon' term which contributes with opposite sign in the two cases. The 'pomeron' physics of high energy behaviour was a central feature of the conference. The experimental data seem to suggest that behaviour with increasing energy depends on the magnitude of the scale which characterizes the process - i.e. whether the process is ''soft'' or ''hard''. Hard processes, in general, show a much more rapid increase with increasing

  8. Influence of surface topography on elastically backscattered electrons

    International Nuclear Information System (INIS)

    Ding, X; Da, B; Gong, J B; Ding, Z J; Mao, S F

    2014-01-01

    A Monte Carlo simulation, taking into account of the detailed surface roughness of a realistic solid sample, has been performed to study the surface topography influence on elastic peak intensity. To describe quantitatively the surface topography effect, here we introduce surface roughness parameter (SRP) according to the ratio of elastic peak intensities between a rough surface and an ideal planar surface. Simulation results for Al sample have shown that SRP varies with surface roughness particularly at large incidence/emission angles

  9. Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes

    Science.gov (United States)

    Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.

    2001-01-01

    Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.

  10. Effective elastic properties of damaged isotropic solids

    International Nuclear Information System (INIS)

    Lee, U Sik

    1998-01-01

    In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids

  11. Modeling Pseudo-elastic Behavior of Springback

    International Nuclear Information System (INIS)

    Xia, Z. Cedric

    2005-01-01

    One of the principal foundations of mathematical theory of conventional plasticity for rate-independent metals is that there exists a well-defined yield surface in stress space for any material point under deformation. A material point can undergo further plastic deformation if the applied stresses are beyond current yield surface which is generally referred as 'plastic loading'. On the other hand, if the applied stress state falls within or on the yield surface, the metal will deform elastically only and is said to be undergoing 'elastic unloading'. Although it has been always recognized throughout the history of development of plasticity theory that there is indeed inelastic deformation accompanying elastic unloading, which leads to metal's hysteresis behavior, its effects were thought to be negligible and were largely ignored in the mathematical treatment.Recently there have been renewed interests in the study of unloading behavior of sheet metals upon large plastic deformation and its implications on springback prediction. Springback is essentially an elastic recovery process of a formed sheet metal blank when it is released from the forming dies. Its magnitude depends on the stress states and compliances of the deformed sheet metal if no further plastic loading occurs during the relaxation process. Therefore the accurate determination of material compliances during springback and its effective incorporation into simulation software are important aspects for springback calculation. Some of the studies suggest that the unloading curve might deviate from linearity, and suggestions were made that a reduced elastic modulus be used for springback simulation.The aim of this study is NOT to take a position on the debate of whether elastic moduli are changed during sheet metal forming process. Instead we propose an approach of modeling observed psuedoelastic behavior within the context of mathematical theory of plasticity, where elastic moduli are treated to be

  12. Analysis of elastic-plastic problems using edge-based smoothed finite element method

    International Nuclear Information System (INIS)

    Cui, X.Y.; Liu, G.R.; Li, G.Y.; Zhang, G.Y.; Sun, G.Y.

    2009-01-01

    In this paper, an edge-based smoothed finite element method (ES-FEM) is formulated for stress field determination of elastic-plastic problems using triangular meshes, in which smoothing domains associated with the edges of the triangles are used for smoothing operations to improve the accuracy and the convergence rate of the method. The smoothed Galerkin weak form is adopted to obtain the discretized system equations, and the numerical integration becomes a simple summation over the edge-based smoothing domains. The pseudo-elastic method is employed for the determination of stress field and Hencky's total deformation theory is used to define effective elastic material parameters, which are treated as field variables and considered as functions of the final state of stress fields. The effective elastic material parameters are then obtained in an iterative manner based on the strain controlled projection method from the uniaxial material curve. Some numerical examples are investigated and excellent results have been obtained demonstrating the effectivity of the present method.

  13. Modelling and Intelligent Control of an Elastic Link Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Malik Loudini

    2013-01-01

    Full Text Available In this paper, precise control of the end-point position of a planar single-link elastic manipulator robot is discussed. The Timoshenko beam theory (TBT has been used to characterize the structural link elasticity including important damping mechanisms. A suitable nonlinear model is derived based on the Lagrangian assumed modes method. Elastic link manipulators are classified as systems possessing highly complex dynamics. In addition, the environment in which they operate may have a lot of disturbances. These give rise to special problems that may be solved using intelligent control techniques. The application of two advanced control strategies based on fuzzy set theory is investigated. The first closed-loop control scheme to be applied is the standard Proportional-Derivative (PD type fuzzy logic controller (FLC, also known as PD-type Mamdani's FLC (MPDFLC. Then, a genetic algorithm (GA is used to optimize the MPDFLC parameters with innovative tuning procedures. Both the MPDFLC and the GA optimized FLC (GAOFLC are implemented and tested to achieve a precise control of the manipulator end-point. The performances of the adopted closed-loop intelligent control strategies are examined via simulation experiments.

  14. Regional electric power demand elasticities of Japan's industrial and commercial sectors

    International Nuclear Information System (INIS)

    Hosoe, Nobuhiro; Akiyama, Shu-ichi

    2009-01-01

    In the assessment and review of regulatory reforms in the electric power market, price elasticity is one of the most important parameters that characterize the market. However, price elasticity has seldom been estimated in Japan; instead, it has been assumed to be as small as 0.1 or 0 without proper examination of the empirical validity of such a priori assumptions. We estimated the regional power demand functions for nine regions, in order to quantify the elasticity, and found the short-run price elasticity to be 0.09-0.30 and the long-run price elasticity to be 0.12-0.56. Inter-regional comparison of our estimation results suggests that price elasticity in rural regions is larger than that in urban regions. Popular assumptions of small elasticity of 0.1, for example, could be suitable for examining Japan's aggregate power demand but not power demand functions that focus on respective regions. Furthermore, assumptions about smaller elasticity values such as 0.01 and 0 could not be supported statistically by this study.

  15. Vibration analysis of viscoelastic single-walled carbon nanotubes resting on a viscoelastic foundation

    International Nuclear Information System (INIS)

    Zhang, Da Peng; Lei, Yong Jun; Shen, Zhi Bin; Wang, Cheng Yuan

    2017-01-01

    Vibration responses were investigated for a viscoelastic Single-walled carbon nanotube (visco-SWCNT) resting on a viscoelastic foundation. Based on the nonlocal Euler-Bernoulli beam model, velocity-dependent external damping and Kelvin viscoelastic foundation model, the governing equations were derived. The Transfer function method (TFM) was then used to compute the natural frequencies for general boundary conditions and foundations. In particular, the exact analytical expressions of both complex natural frequencies and critical viscoelastic parameters were obtained for the Kelvin-Voigt visco-SWCNTs with full foundations and certain boundary conditions, and several physically intuitive special cases were discussed. Substantial nonlocal effects, the influence of geometric and physical parameters of the SWCNT and the viscoelastic foundation were observed for the natural frequencies of the supported SWCNTs. The study demonstrates the efficiency and robustness of the developed model for the vibration of the visco-SWCNT-viscoelastic foundation coupling system

  16. Minijets and the real part of the elastic amplitudes

    International Nuclear Information System (INIS)

    Innocente, V.; Capella, A.; Van, J.T.T.

    1988-01-01

    In the framework of the perturbative reggeon calculus, including a hard pomeron, we perform a fit of pp and anti pp total, elastic and diffractive cross section data and the ratio ρ. The parameters of the hard pomeron are deduced from the minijet cross section measured by the UA1 Collaboration. We obtain a value of the real part of the anti pp elastic amplitude compatible with the recent UA4 measurement. (orig.)

  17. Think Again: Higher Elasticity of Substitution Increases Economic Resilience

    OpenAIRE

    P. Dumas; S. Hallegatte

    2009-01-01

    This paper shows that, counter-intuitively, a higher elasticity of substitution in model production function can lead to reduced economic resilience and larger vulnerability to shocks in production factor prices. This result is due to the fact that assuming a higher elasticity of substitution requires a recalibration of the production function parameters to keep the model initial state unchanged. This result has consequences for economic analysis, e.g., on the economic vulnerability to climat...

  18. Spin entanglement in elastic electron scattering from lithium atoms

    Science.gov (United States)

    Bartschat, K.; Santos, S. Fonseca dos

    2017-04-01

    In two recent papers [Blum and Lohmann, Phys. Rev. Lett. 116, 033201 (2016), 10.1103/PhysRevLett.116.033201; Lohmann et al., Phys. Rev. A 94, 032331 (2016), 10.1103/PhysRevA.94.032331], the possibility of continuously varying the degree of entanglement between an elastically scattered electron and the valence electron of an alkali-metal target was discussed. To estimate how well such a scheme may work in practice, we present results for elastic electron scattering from lithium in the energy regime of 1 -5 eV and the full range of scattering angles 0∘-180∘ . The most promising regime for Bell correlations in this particular collision system are energies between about 1.5 and 3.0 eV, in an angular range around 110∘±10∘ . In addition to the relative exchange asymmetry parameter, we present the differential cross section that is important when estimating the count rate and hence the feasibility of experiments using this system.

  19. Theory of elastic thin shells solid and structural mechanics

    CERN Document Server

    Gol'Denveizer, A L; Dryden, H L

    1961-01-01

    Theory of Elastic Thin Shells discusses the mathematical foundations of shell theory and the approximate methods of solution. The present volume was originally published in Russian in 1953, and remains the only text which formulates as completely as possible the different sets of basic equations and various approximate methods of shell analysis emphasizing asymptotic integration. The book is organized into five parts. Part I presents the general formulation and equations of the theory of shells, which are based on the well-known hypothesis of the preservation of the normal element. Part II is

  20. SIMULATION OFTHERMO-ELASTICS PROPERTIESOFTHERMALBARRIERCOATINGS

    Directory of Open Access Journals (Sweden)

    A.M.Ferouani M. Ferouani

    2015-07-01

    Full Text Available Thermal barrier coatings are used to protect different parts in compressors and turbines from heat. They are generally composed of two layers, one metallic layer providing resistance to heat corrosion and oxidation, and one thermally insulating ceramic layer. Two different techniques are industrially used. Plasma spray results in a lamellar structure granting a low thermal conductivity, but with a low thermal expansion compliance. Electron Beam Physical Vapour Deposition generates a columnar structure allowing a better accommodation of the thermal expansion stresses, entailing improved lifetime of the coating, but with a higher thermal conductivity. The aim of the paper presented here is to develop a procedure of analysis based on the micro structural observation for the prediction of the properties of new coatings in court of industrial development and to predict the effect of the posterior thermal treatment on the properties of the coatings carried out. For a given coating, one has to calculate linear elasticity and its evolution with the temperature as well as thermal expansion, aiming at predicting different parameters related to the in service deterioration.  

  1. Elastic frequency-domain finite-difference contrast source inversion method

    International Nuclear Information System (INIS)

    He, Qinglong; Chen, Yong; Han, Bo; Li, Yang

    2016-01-01

    In this work, we extend the finite-difference contrast source inversion (FD-CSI) method to the frequency-domain elastic wave equations, where the parameters describing the subsurface structure are simultaneously reconstructed. The FD-CSI method is an iterative nonlinear inversion method, which exhibits several strengths. First, the finite-difference operator only relies on the background media and the given angular frequency, both of which are unchanged during inversion. Therefore, the matrix decomposition is performed only once at the beginning of the iteration if a direct solver is employed. This makes the inversion process relatively efficient in terms of the computational cost. In addition, the FD-CSI method automatically normalizes different parameters, which could avoid the numerical problems arising from the difference of the parameter magnitude. We exploit a parallel implementation of the FD-CSI method based on the domain decomposition method, ensuring a satisfactory scalability for large-scale problems. A simple numerical example with a homogeneous background medium is used to investigate the convergence of the elastic FD-CSI method. Moreover, the Marmousi II model proposed as a benchmark for testing seismic imaging methods is presented to demonstrate the performance of the elastic FD-CSI method in an inhomogeneous background medium. (paper)

  2. Controlling elastic waves with small phononic crystals containing rigid inclusions

    KAUST Repository

    Peng, Pai; Qiu, Chunyin; Liu, Zhengyou; Wu, Ying

    2014-01-01

    waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic

  3. A study of self-propelled elastic cylindrical micro-swimmers using modeling and computation

    Science.gov (United States)

    Shi, Lingling; Čanić, Sunčica; Quaini, Annalisa; Pan, Tsorng-Whay

    2016-06-01

    We study propulsion of micro-swimmers in 3D creeping flow. The swimmers are assumed to be made of elastic cylindrical hollow tubes. The swimming is generated by the contractions of the tube's elastic membrane walls producing a traveling wave in the form of a ;step-function; traversing the swimmer from right to left, propelling the swimmer from left to right. The problem is motivated by medical applications such as drug delivery. The influence of several non-dimensional design parameters on the velocity of the swimmer is investigated, including the swimmer aspect ratio, and the amplitude of the traveling wave relative to the swimmer radius. An immersed boundary method based on a finite element method approach is successfully combined with an elastic spring network model to simulate the two-way fluid-structure interaction coupling between the elastic cylindrical tube and the flow of a 3D viscous, incompressible fluid. To gain a deeper insight into the influence of various parameters on the swimmer speed, a reduced 1D fluid-structure interaction model was derived and validated. It was found that fast swimmers are those with large tube aspect ratios, and with the amplitude of the traveling wave which is roughly 50% of the reference swimmer radius. It was shown that the speed of our ;optimal swimmer; is around 1.5 swimmer lengths per second, which is at the top of the class of all currently manufactured micro-swimmers swimming in low Reynolds number flows (Re =10-6), reported in [11].

  4. Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-09-01

    In this article, the size-dependent and porosity-dependent vibrational behavior of magneto-electro-elastic functionally graded (MEE-FG) nanoscale beams on two-parameter elastic substrate is presented via a third-order shear deformation beam model. Porosity-dependent material coefficients of the nanobeam are compositionally graded throughout the thickness according to a modified power-law model. Incorporation of small size effect is carried out based on Eringen's nonlocal elasticity theory. Through Hamilton's principle, derivation of nonlocal governing equations is performed. After analytically solving these equations, the influences of porosity, elastic foundation, magnetic potential, applied voltage, scale coefficient, material gradation and slenderness ratio on the frequencies of the porous MEE-FG nanobeams are examined.

  5. Alignment creation in atomic ensembles by elastic electron scattering; the case of 138Ba(...6s6p 1P1) atoms

    International Nuclear Information System (INIS)

    Trajmar, S.; Kanik, I.; LeClair, L.R.; Khakoo, M.A.; Bray, I.; Fursa, D.; Csanak, G.

    1998-01-01

    We describe some of our results from a joint experimental and theoretical program concerning elastic electron scattering by 138 Ba(...6s6p 1 P 1 ) atoms. From the experimental results, we derived various scattering parameters and magnetic sublevel specific differential elastic scattering cross sections at impact energy (E 0 ) of 20.0 eV and at scattering angles (θ) of 10deg, 15deg, and 20deg. The same parameters and cross sections were calculated by the convergent close coupling (CCC) approximation and compared to the experimental results. An excellent agreement, found for the two sets of data, gave us confidence in the CCC method and allowed us to extend the angular and energy ranges for the purpose of generating integral elastic scattering cross sections needed for the deduction of the alignment creation cross sections. (J.P.N.)

  6. A hybrid algorithm for solving inverse problems in elasticity

    Directory of Open Access Journals (Sweden)

    Barabasz Barbara

    2014-12-01

    Full Text Available The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formulated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer template obtained during step and flash imprint lithography.

  7. Price Elasticities of Food Demand: Compensated vs Uncompensated.

    Science.gov (United States)

    Clements, Kenneth W; Si, Jiawei

    2016-11-01

    Two recent studies have provided a comprehensive review/summary of a large number of estimates of the price elasticity of food consumption using a meta-regression approach. In this letter, we introduce a way of removing the income effect from these elasticities to recover the compensated elasticities. Although the income effect is small, the compensated elasticities vary by income group. Both types of elasticity should possibly be considered when assessing the impact of policy changes on food consumption. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  9. Two-parameter asymptotics in magnetic Weyl calculus

    International Nuclear Information System (INIS)

    Lein, Max

    2010-01-01

    This paper is concerned with small parameter asymptotics of magnetic quantum systems. In addition to a semiclassical parameter ε, the case of small coupling λ to the magnetic vector potential naturally occurs in this context. Magnetic Weyl calculus is adapted to incorporate both parameters, at least one of which needs to be small. Of particular interest is the expansion of the Weyl product which can be used to expand the product of operators in a small parameter, a technique which is prominent to obtain perturbation expansions. Three asymptotic expansions for the magnetic Weyl product of two Hoermander class symbols are proven as (i) ε<< 1 and λ<< 1, (ii) ε<< 1 and λ= 1, as well as (iii) ε= 1 and λ<< 1. Expansions (i) and (iii) are impossible to obtain with ordinary Weyl calculus. Furthermore, I relate the results derived by ordinary Weyl calculus with those obtained with magnetic Weyl calculus by one- and two-parameter expansions. To show the power and versatility of magnetic Weyl calculus, I derive the semirelativistic Pauli equation as a scaling limit from the Dirac equation up to errors of fourth order in 1/c.

  10. Comparative study of flexural strength and elasticity modulus in two types of direct fiber-reinforced systems.

    Science.gov (United States)

    Gaspar Junior, Alfredo de Aquino; Lopes, Manuela Wanderley Ferreira; Gaspar, Gabriela da Silveira; Braz, Rodivan

    2009-01-01

    The objective of this study was to compare the flexural strength and elasticity modulus of two types of staple reinforcement fibers, Interlig - Angelus/glass (Londrina, PR, Brazil) and Connect - KerrLab(R)/polyethylene (MFG Co., West Collins Orange, CA, USA), which are widely used in Dentistry for chairside use, after varying the number of layers employed and submitting or not to thermocycling. This study was performed on 72 specimens, divided into 8 groups: G1 - single layer of Interlig fibers without thermocycling; G2 - double layer of Interlig fibers without thermocycling; G3 - single layer of Interlig fibers with thermocycling; and G4 - double layer of Interlig fibers with thermocycling; G5 - single layer of Connect fibers without termocycling; G6 - double layer of Connect fibers without termocycling; G7 - single layer of Connect fibers with termocycling; G8 - double layer of Connect fibers with termocycling. For each group, values for flexural strength and elasticity modulus were obtained. The polyethylene fiber employed in a double layer presented the highest flexural strength (p elasticity modulus, when compared to the other groups (p < 0.05). Within the limits of this study, it was concluded that the polyethylene fiber in a double layer appears to be more resistant, regardless of whether it was submitted to thermocycling or not.

  11. Bifurcations of Eigenvalues of Gyroscopic Systems with Parameters Near Stability Boundaries

    DEFF Research Database (Denmark)

    Seyranian, Alexander P.; Kliem, Wolfhard

    1999-01-01

    , as well as first derivatives of the system matrices (or operators) with respect to parameters. These results provide simple and constructive stability and instability criteria. The presented theory is exemplified by two mechanical problems: a rotating elastic shaft carrying a disk, and an axially moving...

  12. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves

    Science.gov (United States)

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-01

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  13. Water hammer in elastic pipes

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2002-01-01

    One dimensional two-fluid six-equation model of two-phase flow, that can be found in computer codes like RELAP5, TRAC, and CATHARE, was upgraded with additional terms, which enable modelling of the pressure waves in elastic pipes. It is known that pipe elasticity reduces the propagation velocity of the shock and other pressure waves in the piping systems. Equations that include the pipe elasticty terms are used in WAHA code, which is being developed within the WAHALoads project of 5't'h EU research program.(author)

  14. Effect of different electron elastic-scattering cross sections on inelastic mean free paths obtained from elastic-backscattering experiments

    International Nuclear Information System (INIS)

    Jablonskiz, A.; Salvatz, F.; Powellz, C.J.

    2004-01-01

    Inelastic mean free paths (IMFPs) of electrons with energies between 100 eV and 5,000 eV have been frequently obtained from measurements of elastic-backscattering probabilities for different specimen materials. A calculation of these probabilities is also required to determine IMFPs. We report calculations of elastic-backscattering probabilities for gold at energies of 100 eV and 500 eV with differential elastic-scattering cross sections obtained from the Thomas-Fermi-Dirac potential and the more reliable Dirac-Hartree-Fock potential. For two representative experimental configurations, the average deviation between IMFPs obtained with cross sections from the two potentials was 11.4 %. (author)

  15. Mean load effects on the fatigue life of offshore wind turbine monopile foundations

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Natarajan, Anand

    2013-01-01

    This paper discusses the importance of mean load effects on the estimation of the fatigue damage in offshore wind turbine monopile foundations. The mud line bending moment time series are generated using a fully coupled aero-hydro-elastic model accounting for non-linear water waves and sea current....... The fatigue damage is analysed in terms of the lifetime fatigue damage equivalent bending moment. Three different mean value correction techniques are considered, namely, Goodman, Walker, and mean sensitivity factor. An increase in the lifetime fatigue damage equivalent bending moment between 6% (mean...... of the fatigue life of offshore wind turbine monopile foundations. Moreover, it is shown that a nonlinear hydrodynamic model is required in order to correctly account for the effect of the current....

  16. Conformation and elasticity of a charged polymer chain bridging two nanoparticles

    International Nuclear Information System (INIS)

    Nowicki, W.; Nowicka, G.

    2013-01-01

    A complex composed of a charged flexible polymer chain irreversibly attached with its ends to surfaces of two nanoparticles was investigated using the Metropolis Monte Carlo method on a simple cubic lattice. The simulations were performed in the presence of explicit ions. The bridging chain and the nanoparticles bearing the same and the opposite sign charges were considered. Changes in the free energy of the complex upon its stretching or compression, together with the magnitude of the elastic force, were examined. The relative roles of energetic and entropic effects in determining the properties of the complex were identified. Also, the adsorption of charged monomers on the opposite-sign charged nanoparticles and its influence on the examined quantities was studied. Moreover, a simple semi-analytical approach to the thermodynamics of the polymer bridge was derived

  17. The seasonal variation in skin hydration, sebum, scaliness, brightness and elasticity in Korean females.

    Science.gov (United States)

    Nam, G W; Baek, J H; Koh, J S; Hwang, J-K

    2015-02-01

    Age, gender, regional, and ethnic differences influence skin conditions. The purpose of this study was to observe the effects of environments, especially the air temperature, relative humidity, air pressure, duration of sunshine, and precipitation on skin, and the seasonal variation in skin hydration, sebum, scales, brightness, and elasticity in Korean females. The study included 89 Korean subjects, aged 29.7 ± 6.2 years. The five skin biophysical parameters (skin hydration, sebum, scales, brightness, and elasticity) were measured at six sites: forehead, under the eye, frontal cheek, crow's foot, lateral cheek, and inner forearm. Skin hydration was measured using the Corneometer® CM 825. Skin sebum was measured with Sebumeter® SM 815. Skin scaliness was measured with Visioscan® VC 98. Skin brightness (L* value) was measured by using Spectrophotometer. A suction chamber device, Cutometer® MPA 580, was used to measure the skin elasticity. The measurements were performed every month for 13 months, from April 2007 to April 2008. There were significantly seasonal variations in environmental factors. The air temperature was the lowest in January (-1.7°C), and the highest in August (26.5°C). The relative humidity was the lowest in February (46%), and the highest in July and August (75%). There was a negative correlation between skin scaliness and three environmental factors such as air temperature, relative humidity, and highest precipitation. There was a positive correlation between skin scaliness and two environmental factors such as air pressure and duration of sunshine. Elasticity was correlated with air temperature positively and with air pressure negatively. The correlations shown between the skin biophysical parameters and environmental factors demonstrate that the skin biophysical parameters are affected by environmental factors. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Evaluation of crack interaction effect for in-plane surface cracks using elastic finite element analyses

    International Nuclear Information System (INIS)

    Huh, Nam Su; Choi, Suhn; Park, Keun Bae; Kim, Jong Min; Choi, Jae Boong; Kim, Young Jin

    2008-01-01

    The crack-tip stress fields and fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Such a crack interaction effect due to multiple cracks can magnify the fracture mechanics assessment parameters. There are many factors to be considered, for instance the relative distance between adjacent cracks, crack shape and loading condition, to quantify a crack interaction effect on the fracture mechanics assessment parameters. Thus, the current guidance on a crack interaction effect (crack combination rule), including ASME Sec. XI, BS7910, British Energy R6 and API RP579, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates a crack interaction effect by evaluating the elastic stress intensity factor of adjacent surface cracks in a plate along the crack front through detailed 3-dimensional elastic finite element analyses. The effects of the geometric parameters, the relative distance between cracks and the crack shape, on the stress intensity factor are systematically investigated. As for the loading condition, only axial tension is considered. Based on the elastic finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed

  19. First-principles calculations for elastic properties of OsB{sub 2} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yang Junwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Chen Xiangrong, E-mail: x.r.chen@tom.co [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China); Luo Fen [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Ji Guangfu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China)

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB{sub 2} are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB{sub 2} under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB{sub 2} tend to increase with increasing pressure. It is predicted that OsB{sub 2} is not a superhard material from our calculations.

  20. An H(∞) approach for elasticity properties reconstruction.

    Science.gov (United States)

    Liu, Huafeng; Hu, Hongjie; Sinusas, Albert J; Shi, Pengcheng

    2012-01-01

    Quantification of object elasticity properties has significant technical implications as well as important practical applications, such as medical disease diagnosis. In general, given noisy measurements on the kinematic states of the objects from imaging data, the aim is to recover the elasticity parameters for assumed material constitutive models of the objects. The implementation is complicated caused by the large dimensionality of the parameters. Various versions of the least-square (LS) methods have been widely used, which, however, do not perform well under reasonably realistic levels of disturbances. Another popular strategy, based on the extended Kalman filter (EKF), is also far from optimal and subject to divergence if either the initializations are poor or the noises are not Gaussian. In this paper, the authors propose a robust system identification paradigm for the quantitative analysis of object elasticity. It is derived and extended from the H(∞) filtering principles and is particularly powerful for real-world situations where the types and levels of the disturbances are unknown. Using synthetic data, the authors investigate the sensitivity of the strategies toward different types (Gaussian and Poisson) and levels of noises, as well as various initializations. The experimental results show consistently superior performance of the proposed method over the LS and EKF algorithms in reliably identifying object elastic modulus distributions. Results from phase contrast imaging data of canine hearts and human MRI data are also presented, which demonstrate the power of the framework.

  1. Structural phase transition and elastic properties of mercury chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)

    2012-08-15

    Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.

  2. Frequency-domain elastic full waveform inversion using encoded simultaneous sources

    Science.gov (United States)

    Jeong, W.; Son, W.; Pyun, S.; Min, D.

    2011-12-01

    Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results

  3. Modeling elastic anisotropy in strained heteroepitaxy.

    Science.gov (United States)

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2017-09-20

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.

  4. Modeling elastic anisotropy in strained heteroepitaxy

    Science.gov (United States)

    Krishna Dixit, Gopal; Ranganathan, Madhav

    2017-09-01

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to facets on the surface.

  5. Foundation heat transfer analysis for buildings with thermal piles

    International Nuclear Information System (INIS)

    Almanza Huerta, Luis Enrique; Krarti, Moncef

    2015-01-01

    Highlights: • A numerical transient thermal model for thermo-active foundations is developed. • Thermal interactions between thermal piles and building foundations are evaluated. • A simplified analysis method of thermal interactions between thermal piles and building foundations is developed. - Abstract: Thermal piles or thermo-active foundations utilize heat exchangers embedded within foundation footings to heat and/or cool buildings. In this paper, the impact of thermal piles on building foundation heat transfer is investigated. In particular, a simplified analysis method is developed to estimate the annual ground-coupled foundation heat transfer when buildings are equipped with thermal piles. First, a numerical analysis of the thermal performance of thermo-active building foundations is developed and used to assess the interactions between thermal piles and slab-on-grade building foundations. The impact of various design parameters and operating conditions is evaluated including foundation pile depth, building slab width, foundation insulation configuration, and soil thermal properties. Based on the results of a series of parametric analyses, a simplified analysis method is presented to assess the impact of the thermal piles on the annual heat fluxes toward or from the building foundations. A comparative evaluation of the predictions of the simplified analysis method and those obtained from the detailed numerical analysis indicated good agreement with prediction accuracy lower than 5%. Moreover, it is found that thermal piles can affect annual building foundation heat loss/gain by up to 30% depending on foundation size and insulation level

  6. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    Science.gov (United States)

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  7. Elastic hadron scattering and optical theorem

    CERN Document Server

    Lokajicek, Milos V.; Prochazka, Jiri

    2014-01-01

    In principle all contemporary phenomenological models of elastic hadronic scattering have been based on the assumption of optical theorem validity that has been overtaken from optics. It will be shown that the given theorem which has not been actually proved cannot be applied to short-ranged strong interactions in any case. The actual progress in description of collision processes might then exist only if the initial states are specified on the basis of impact parameter values of colliding particles and probability dependence on this parameter is established.

  8. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-05-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.

  9. Numerical determination of elastic positron- and electron-atom scattering phaseshifts

    International Nuclear Information System (INIS)

    Page, B.A.P.

    1976-01-01

    Numerical investigations of both the positron- and electron-hydrogen systems in the elastic scattering energy region are presented. For the positron-hydrogen system, modifications of the Kohn variational method are used in which the quantities etasub(v) and etasub(Q) are related to the trial wavefunction PSIsub(t) through integral expressions using approximations to the target wavefunction psi. The quantities etasub(v) and etasub(Q) become the Kohn elastic phaseshifts when the exact target wavefunction is used. From the results obtained for the positron-hydrogen system it is conjectured that if the values of either etasub(v) or etasub(Q) display a local maximum when all the nonlinear parameters of PSIsub(t) are varied, then this local maximum value is a good approximation to the Kohn elastic phaseshifts that would be obtained by replacing the approximate psi with the exact psi in the particular PSIsub(t) used in the calculations. Application of this procedure to the positron-helium elastic scattering system is given using Hylleraas-type approximations to the helium ground-state wavefunction. Both the positron- and electron-hydrogen systems are analysed in the elastic scattering energy region using a modified optical potential method. The results suggest that the local maximum value of the modified optical potential phaseshift when all the nonlinear parameters of PSIsub(t) are varied, is reasonably close to the normal optical potential phaseshift obtained when the exact psi is used. (author)

  10. Elastic properties of some transition metal arsenides

    Science.gov (United States)

    Nayak, Vikas; Verma, U. P.; Bisht, P. S.

    2018-05-01

    The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.

  11. Elastic and thermal properties of silicon compounds from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Haijun; Zhu, H.J. [Yancheng Institute of Technology (China). School of Materials Engineering; Cheng, W.H. [Yancheng Institute of Technology (China). Dept. of Light Chemical Engineering; Xie, L.H. [Sichuan Normal Univ., Chengdu (China). Inst. of Solid State Physics and School of Physics and Electronic Engineering

    2016-11-01

    The structural and elastic properties of V-Si (V{sub 3}Si, VSi{sub 2}, V{sub 5}Si{sub 3}, and V{sub 6}Si{sub 5}) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grueneisen parameter, and Debye temperature of V-Si compounds have been calculated.

  12. A hyper elasticity method for interactive virtual design of hearing aids

    DEFF Research Database (Denmark)

    Darkner, Sune; Erleben, Kenny

    2011-01-01

    We present a computational efficient method for isotropic hyper elasticity based on functional analysis. By selecting a class of shape functions, we arrive at a computational scheme which yields very sparse tensors. This enables fast computations of the hyper elastic energy potential and its...... derivatives. We achieve efficiency and performance through the use of shape functions that are linear in their parameters and through rotation into the eigenspace of the right Cauchy–Green strain tensor. This makes near real time evaluation of hyper elasticity of complex meshes on CPU relatively easy...... to implement. The approach does not rely on a specific shape function or material model but offers a general framework for isotropic hyper elasticity. The method is aimed at interactive and accurate non-linear hyper elastic modeling for a wide range of industrial virtual design applications, which we exemplify...

  13. Some fundamental definitions of the elastic parameters for homogeneous isotropic linear elastic materials in pavement design and analysis

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available - wave and ρ the material density. The elastic moduli P-wave modulus, M, is defined so that M = K + 4µ / 3 and M can then be determined by Equation 11, with a known speed Vp P MV 2 ρ = (11) It should however also... gas (such as air within compacted road materials), the adiabatic bulk modulus KS is approximately given by pKS κ= (4) Where: κ is the adiabatic index, (sometimes calledγ ); p is the pressure. In a fluid (such as moisture...

  14. Hybrid elastic solids

    KAUST Repository

    Lai, Yun; Wu, Ying; Sheng, Ping; Zhang, Zhaoqing

    2011-01-01

    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  15. Hybrid elastic solids

    KAUST Repository

    Lai, Yun

    2011-06-26

    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  16. Autonomic Vertical Elasticity of Docker Containers with ElasticDocker

    OpenAIRE

    Al-Dhuraibi , Yahya; Paraiso , Fawaz; Djarallah , Nabil; Merle , Philippe

    2017-01-01

    International audience; Elasticity is the key feature of cloud computing to scale computing resources according to application workloads timely. In the literature as well as in industrial products, much attention was given to the elasticity of virtual machines, but much less to the elasticity of containers. However, containers are the new trend for packaging and deploying microservices-based applications. Moreover, most of approaches focus on horizontal elasticity, fewer works address vertica...

  17. Effect of Rotation in an Orthotropic Elastic Slab

    Directory of Open Access Journals (Sweden)

    Santra S.

    2017-02-01

    Full Text Available The fundamental equations of the two dimensional generalized thermoelasticity (L-S model with one relaxation time parameter in orthotropic elastic slab has been considered under effect of rotation. The normal mode analysis is used to the basic equations of motion and heat conduction equation. Finally, the resulting equations are written in the form of a vector-matrix differential equation which is then solved by the eigenvalue approach. The field variables in the space time domain are obtained numerically. The results corresponding to the cases of conventional thermoelasticity CTE, extended thermoelasticity (ETE and temperature rate dependent thermoelasticity (TRDTE are compared by means of graphs.

  18. In-Plane free Vibration Analysis of an Annular Disk with Point Elastic Support

    Directory of Open Access Journals (Sweden)

    S. Bashmal

    2011-01-01

    Full Text Available In-plane free vibrations of an elastic and isotropic annular disk with elastic constraints at the inner and outer boundaries, which are applied either along the entire periphery of the disk or at a point are investigated. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. Boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to account for different boundary conditions. The frequency parameters for different boundary conditions of the outer edge are evaluated and compared with those available in the published studies and computed from a finite element model. The computed mode shapes are presented for a disk clamped at the inner edge and point supported at the outer edge to illustrate the free in-plane vibration behavior of the disk. Results show that addition of point clamped support causes some of the higher modes to split into two different frequencies with different mode shapes.

  19. Structural and elastic properties of AIBIIIC 2 VI semiconductors

    Science.gov (United States)

    Kumar, V.; Singh, Bhanu P.

    2018-01-01

    The plane wave pseudo-potential method within density functional theory has been used to calculate the structural and elastic properties of AIBIIIC 2 VI semiconductors. The electronic band structure, density of states, lattice constants (a and c), internal parameter (u), tetragonal distortion (η), energy gap (Eg), and bond lengths of the A-C (dAC) and B-C (dBC) bonds in AIBIIIC 2 VI semiconductors have been calculated. The values of elastic constants (Cij), bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio (υ), Zener anisotropy factor (A), Debye temperature (ϴD) and G/B ratio have also been calculated. The values of all 15 parameters of CuTlS2 and CuTlSe2 compounds, and 8 parameters of 20 compounds of AIBIIIC 2 VI family, except AgInS2 and AgInSe2, have been calculated for the first time. Reasonably good agreement has been obtained between the calculated, reported and available experimental values.

  20. Elastic properties

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1983-01-01

    This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites

  1. Estimation of Single-Crystal Elastic Constants of Polycrystalline Materials from Back-Scattered Grain Noise

    International Nuclear Information System (INIS)

    Haldipur, P.; Margetan, F. J.; Thompson, R. B.

    2006-01-01

    Single-crystal elastic stiffness constants are important input parameters for many calculations in material science. There are well established methods to measure these constants using single-crystal specimens, but such specimens are not always readily available. The ultrasonic properties of metal polycrystals, such as velocity, attenuation, and backscattered grain noise characteristics, depend in part on the single-crystal elastic constants. In this work we consider the estimation of elastic constants from UT measurements and grain-sizing data. We confine ourselves to a class of particularly simple polycrystalline microstructures, found in some jet-engine Nickel alloys, which are single-phase, cubic, equiaxed, and untextured. In past work we described a method to estimate the single-crystal elastic constants from measured ultrasonic velocity and attenuation data accompanied by metallographic analysis of grain size. However, that methodology assumes that all attenuation is due to grain scattering, and thus is not valid if appreciable absorption is present. In this work we describe an alternative approach which uses backscattered grain noise data in place of attenuation data. Efforts to validate the method using a pure copper specimen are discussed, and new results for two jet-engine Nickel alloys are presented

  2. About the identification of behaviour law parameters of clayey rocks

    International Nuclear Information System (INIS)

    Lecampion, B.

    2002-09-01

    This work aims at developing identification methods for clayey rock parameters. These methods are necessary for the interpretation of the numerous data obtained at the ANDRA's Meuse/Haute-Marne underground laboratory. Two main rheological aspects have been considered: the poro-elastic behaviour and the elasto-visco-plastic behaviour. The first part of the study focusses on the poro-elastic parameters. Chapter 2 recalls the direct problem and discusses some important points of the identification inverse problem. Chapter 3 deals with the formulation of gradient calculation techniques for the linear poro-elastic case. The resolution using the finite-element method is discussed. The direct and associated state differentiation methods are validated for a 2D numerical example using the finite-element code Cast3M. The identification of poro-elastic coefficients of the Meuse/Haute-Marne argillaceous rocks is discussed in detail in chapter 4. The use of approximate semi-explicit solutions of the direct problems allows to obtain a fast identification method. The second part deals with the identification of elasto-visco-plastic parameters. The visco-plastic behaviour of Meuse/Haute-Marne rocks is discussed in chapter 5 and a visco-plastic model with nonlinear isotropic cold-drawing is proposed which allows to reproduce the tests. The parameters of this behaviour law are identified on a 1D creep test in drained conditions. Thus, the delayed deformations come from the poro-elastic and visco-plastic behaviour of the rock. It is shown that both phenomena can be separated. All poro-elasto-visco-plastic parameters are identified and a semi-explicit solution of the creep test is used. Chapter 6 presents an identification method of the elasto-visco-plastic parameters for the general case. The identification is equivalent to the minimization of a cost functional. The gradient of the functional is calculated by direct differentiation. The direct differentiation method is developed in

  3. Microstructural evolution in inhomogeneous elastic media

    International Nuclear Information System (INIS)

    Jou, H.J.; Leo, P.H.; Lowengrub, J.S.

    1997-01-01

    We simulate the diffusional evolution of microstructures produced by solid state diffusional transformations in elastically stressed binary alloys in two dimensions. The microstructure consists of arbitrarily shaped precipitates embedded coherently in an infinite matrix. The precipitate and matrix are taken to be elastically isotropic, although they may have different elastic constants (elastically inhomogeneous). Both far-field applied strains and mismatch strains between the phases are considered. The diffusion and elastic fields are calculated using the boundary integral method, together with a small scale preconditioner to remove ill-conditioning. The precipitate-matrix interfaces are tracked using a nonstiff time updating method. The numerical method is spectrally accurate and efficient. Simulations of a single precipitate indicate that precipitate shapes depend strongly on the mass flux into the system as well as on the elastic fields. Growing shapes (positive mass flux) are dendritic while equilibrium shapes (zero mass flux) are squarish. Simulations of multiparticle systems show complicated interactions between precipitate morphology and the overall development of microstructure (i.e., precipitate alignment, translation, merging, and coarsening). In both single and multiple particle simulations, the details of the microstructural evolution depend strongly o the elastic inhomogeneity, misfit strain, and applied fields. 57 refs., 24 figs

  4. Characterization of Elastic and Plastic Behaviors in Steel Plate Based on Eddy Current Technique Using a Portable Impedance Analyzer

    Directory of Open Access Journals (Sweden)

    Meng Fanlin

    2017-01-01

    Full Text Available A portable impedance analyzer (PIA was developed based on a TiePie-HS3 device to provide the comparable impedance measurement accuracy of the Agilent 4294a impedance analyzer in the frequency range of 0~250 kHz. Then the PIA was applied to monitor the tensile stress-induced variation of the eddy current sensor’s impedance in a medium-carbon steel sample. A model of equivalent magnetic field induced by the elastic stress and the number of pinning sites indicated that the inductance of the eddy current loop firstly increased with the increase in the tensile stress and then decreased at the yield point of the material. The experimental results testified that the variation of impedance amplitude, the variation of phase angle, and the shift of two featured frequencies demonstrated opposite variation trends before and after the yield point, as predicated by the model. A new parameter, which combined the impedance variation information of the selected two frequencies, was found to exhibit nearly monotonous dependency on the tensile stress in elastic and plastic stages. The new parameter together with the developed portable impedance analyzer provided the solution to identify the elastic and plastic behaviors in ferromagnetic materials in practical applications with an eddy current technique.

  5. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics

    Directory of Open Access Journals (Sweden)

    van Gulik Walter M

    2006-12-01

    Full Text Available Abstract Background Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (disfunctioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so many parameters that their identifiability from experimental data forms a serious problem. Recently, approximative rate equations, based on the linear logarithmic (linlog format have been proposed as a suitable alternative with fewer parameters. Results In this paper we present a method for estimation of the kinetic model parameters, which are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we address the question of parameter identifiability from dynamic perturbation data in the presence of noise. The method is illustrated using metabolite data generated with a dynamic model of the glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are estimated from the generated data, which define the complete linlog kinetic model of the glycolysis. The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable subset of parameters is determined using information on the standard deviations of the estimated elasticities through Monte Carlo (MC simulations. Conclusion The parameter estimation within the linlog kinetic framework as presented here allows the determination of the elasticities directly from experimental data from typical dynamic and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only

  6. The scattering potential of partial derivative wavefields in 3-D elastic orthorhombic media: an inversion prospective

    KAUST Repository

    Oh, Ju-Won

    2016-07-04

    Multiparameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multicomponent sensors, the potential for trade-off between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22, and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23, and C12 suffer from strong trade-offs with C55, C44, and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P–SV and SV–SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH–SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.

  7. Modelling of the Elasticity Modulus for Rock Using Genetic Expression Programming

    Directory of Open Access Journals (Sweden)

    Umit Atici

    2016-01-01

    Full Text Available In rock engineering projects, statically determined parameters are more reflective of actual load conditions than dynamic parameters. This study reports a new and efficient approach to the formulation of the static modulus of elasticity Es applying gene expression programming (GEP with nondestructive testing (NDT methods. The results obtained using GEP are compared with the results of multivariable linear regression analysis (MRA, univariate nonlinear regression analysis (URA, and the dynamic elasticity modulus (Ed. The GEP model was found to produce the most accurate calculation of Es. The proposed approach is a simple, nondestructive, and practical way to determine Es for anisotropic and heterogeneous rocks.

  8. Elastic properties of fly ash-stabilized mixes

    Directory of Open Access Journals (Sweden)

    Sanja Dimter

    2015-12-01

    Full Text Available Stabilized mixes are used in the construction of bearing layers in asphalt and concrete pavement structures. Two nondestructive methods: resonant frequency method and ultrasonic pulse velocity method, were used for estimation of elastic properties of fly ash–stabilized mixes. Stabilized mixes were designed containing sand from the river Drava and binder composed of different share of cement and fly ash. The aim of the research was to analyze the relationship between the dynamic modulus of elasticity determined by different nondestructive methods. Data showed that average value of elasticity modulus obtained by the ultrasound velocity method is lower than the values of elasticity modulus obtained by resonant frequency method. For further analysis and enhanced discussion of elastic properties of fly ash stabilized mixes, see Dimter et al. [1].

  9. To optimal elasticity of adhesives mimicking gecko foot-hairs

    International Nuclear Information System (INIS)

    Filippov, A.E.; Popov, V.

    2006-01-01

    Artificial structure of a plate with elastic fibers interacting with rough fractal surface by Van der Waals forces is simulated numerically to find an optimal relation between the system parameters. The force balance equations are solved numerically for different values of elastic constant and variable surface roughness. An optimal elasticity is found to provide maximum cohesion force between the plate and surface. It is shown that high flexibility of the fibers is not always good to efficiency of the system, artificial adhesives must be made from stiff enough polymers. If the ellasticity is close to an optimum, the force is almost constant at a wide interval of the surface roughness. It is desirable to make system adaptive to wide spectrum of applications

  10. Determination of elastic modulus of ceramics using ultrasonic testing

    Science.gov (United States)

    Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung

    2018-04-01

    Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.

  11. Estimating price elasticities when there is smuggling: the sensitivity of smoking to price in Canada.

    Science.gov (United States)

    Gruber, Jonathan; Sen, Anindya; Stabile, Mark

    2003-09-01

    A central parameter for evaluating tax policies is the price elasticity of demand for cigarettes. But in many countries this parameter is difficult to estimate reliably due to widespread smuggling, which significantly biases estimates using legal sales data. An excellent example is Canada, where widespread smuggling in the early 1990s, in response to large tax increases, biases upwards the response of legal cigarette sales to price. We surmount this problem through two approaches: excluding the provinces and years where smuggling was greatest; and using household level expenditure data on smoking. These two approaches yield a tightly estimated elasticity in the range of -0.45 to -0.47. We also show that the sensitivity of smoking to price is much larger among lower income Canadians. In the context of recent behavioral models of smoking, whereby higher taxes reduce unwanted smoking among price sensitive populations, this finding suggests that cigarette taxes may not be as regressive as previously suggested. Finally, we show that price increases on cigarettes do not increase, and may actually decrease, consumption of alcohol; as a result, smuggling of cigarettes may have raised consumption of alcohol as well.

  12. The time-lapse AVO difference inversion for changes in reservoir parameters

    Science.gov (United States)

    Longxiao, Zhi; Hanming, Gu; Yan, Li

    2016-12-01

    The result of conventional time-lapse seismic processing is the difference between the amplitude and the post-stack seismic data. Although stack processing can improve the signal-to-noise ratio (SNR) of seismic data, it also causes a considerable loss of important information about the amplitude changes and only gives the qualitative interpretation. To predict the changes in reservoir fluid more precisely and accurately, we also need the quantitative information of the reservoir. To achieve this aim, we develop the method of time-lapse AVO (amplitude versus offset) difference inversion. For the inversion of reservoir changes in elastic parameters, we apply the Gardner equation as the constraint and convert the three-parameter inversion of elastic parameter changes into a two-parameter inversion to make the inversion more stable. For the inversion of variations in the reservoir parameters, we infer the relation between the difference of the reflection coefficient and variations in the reservoir parameters, and then invert reservoir parameter changes directly. The results of the theoretical modeling computation and practical application show that our method can estimate the relative variations in reservoir density, P-wave and S-wave velocity, calculate reservoir changes in water saturation and effective pressure accurately, and then provide reference for the rational exploitation of the reservoir.

  13. Aeroelastic response and stability of tiltrotors with elastically-coupled composite rotor blades. Ph.D. Thesis

    Science.gov (United States)

    Nixon, Mark W.

    1993-01-01

    There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via

  14. Uniqueness theorems in linear elasticity

    CERN Document Server

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  15. Observation of elastic topological states in soft materials.

    Science.gov (United States)

    Li, Shuaifeng; Zhao, Degang; Niu, Hao; Zhu, Xuefeng; Zang, Jianfeng

    2018-04-10

    Topological elastic metamaterials offer insight into classic motion law and open up opportunities in quantum and classic information processing. Theoretical modeling and numerical simulation of elastic topological states have been reported, whereas the experimental observation remains relatively unexplored. Here we present an experimental observation and numerical simulation of tunable topological states in soft elastic metamaterials. The on-demand reversible switch in topological phase has been achieved by changing filling ratio, tension, and/or compression of the elastic metamaterials. By combining two elastic metamaterials with distinct topological invariants, we further demonstrate the formation and dynamic tunability of topological interface states by mechanical deformation, and the manipulation of elastic wave propagation. Moreover, we provide a topological phase diagram of elastic metamaterials under deformation. Our approach to dynamically control interface states in soft materials paves the way to various phononic systems involving thermal management and soft robotics requiring better use of energy.

  16. Modelling the elastic properties of cellulose nanopaper

    DEFF Research Database (Denmark)

    Mao, Rui; Goutianos, Stergios; Tu, Wei

    2017-01-01

    The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network...

  17. Problem solving in foundation engineering using foundationPro

    CERN Document Server

    Yamin, Mohammad

    2016-01-01

    This book is at once a supplement to traditional foundation engineering textbooks and an independent problem-solving learning tool. The book is written primarily for university students majoring in civil or construction engineering taking foundation analysis and design courses to encourage them to solve design problems. Its main aim is to stimulate problem solving capability and foster self-directed learning. It also explains the use of the foundationPro software, available at no cost, and includes a set of foundation engineering applications. Taking a unique approach, Dr. Yamin summarizes the general step-by-step procedure to solve various foundation engineering problems, illustrates traditional applications of these steps with longhand solutions, and presents the foundationPro solutions. The special structure of the book allows it to be used in undergraduate and graduate foundation design and analysis courses in civil and construction engineering. The book stands as valuable resource for students, faculty, ...

  18. Prototype bucket foundation for wind turbines - natural frequency estimation

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models capable of simulating dynamic frequency dependent behaviour of the structure-foundation system. (au)

  19. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data.

    Science.gov (United States)

    Becker, Natalia; Toedt, Grischa; Lichter, Peter; Benner, Axel

    2011-05-09

    Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net.We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone.Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error.Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters.The penalized SVM

  20. A study of hydro-elastic instabilities of a weir

    International Nuclear Information System (INIS)

    Lacroix, C.; Viollet, P.L.

    1987-01-01

    Following low-frequency oscillations which appeared during the initial isothermal tests of Super-Phenix, LNH developed a scale model together with an analytical model approach. The hydro-elastic model allowed to set the phenomena to evidence and quantify the depending parameters influence, while the analytical approach allowed to have a better understanding of the phenomena and of the main parameters dependence [fr

  1. Distributions of electric and elastic fields at domain boundaries

    International Nuclear Information System (INIS)

    Novak, Josef; Fousek, Jan; Maryska, Jiri; Marvan, Milan

    2005-01-01

    In this paper we describe the application of the finite element method (FEM) in modelling spatial distributions of electric and elastic fields in a ferroelectric crystals with two domains separated by a 90 deg. domain wall. The domain boundary is idealized as a two-dimensional defect in an electro-elastic continuum. It represents the source of inhomogenity and internal distortion in both elastic and electric fields. The main results are distributions of electric field, strain and mechanical force along the domain boundary

  2. On model-independent analyses of elastic hadron scattering

    International Nuclear Information System (INIS)

    Avila, R.F.; Campos, S.D.; Menon, M.J.; Montanha, J.

    2007-01-01

    By means of an almost model-independent parametrization for the elastic hadron-hadron amplitude, as a function of the energy and the momentum transfer, we obtain good descriptions of the physical quantities that characterize elastic proton-proton and antiproton-proton scattering (total cross section, r parameter and differential cross section). The parametrization is inferred on empirical grounds and selected according to high energy theorems and limits from axiomatic quantum field theory. Based on the predictive character of the approach we present predictions for the above physical quantities at the Brookhaven RHIC, Fermilab Tevatron and CERN LHC energies. (author)

  3. Analytical Study on Dynamic Response of Deep Foundation Pit Support Structure under the Action of Subway Train Vibration Load: A Case Study of Deep Foundation Pit of the New Museum Near Metro Line 2 in Chengdu, China

    Directory of Open Access Journals (Sweden)

    Zhu Dapeng

    2015-01-01

    Full Text Available Presently, foundation pit support structures are generally regarded as the temporary structures and the impact of vibration loads is often overlooked. As opposed to static and seismic loads, the vibration loads of subway trains are a type of cyclic load with a relatively long duration of action and a definite cycle; it is of great importance for the design of foundation pit support structures to correctly evaluate the impact of subway train vibrations on deep foundation pit and support works. In this paper, a dynamic three-dimensional numerical model is built that considers the vibration load of subway trains on the basis of the static numerical model for deep foundation pit support structures and simplified train loads to study the impact of train vibrations on deep foundation pit and permanent support structures. Studies have shown that the dynamic response of surface displacement mainly occurs in the early period of dynamic load, the vibration load of subway trains has little impact on ground subsidence, the support pile structure is in an elastic state during dynamic response under the action of subway train vibrations, and the action of train vibration loads is inimical to the safety of foundation pit support structures and should be closely studied.

  4. Multi-stage full waveform inversion strategy for 2D elastic VTI media

    KAUST Repository

    Oh, Juwon

    2015-08-19

    One of the most important issues in the multi-parametric full waveform inversion (FWI) is to find an optimal parameterization, which helps us recover the subsurface anisotropic parameters as well as seismic velocities, with minimal tradeoff. As a result, we analyze three different parameterizations for elastic VTI media in terms of the influence of the S-waves on the gradient direction for c13, the spatial coverage of gradient direction and the degree of trade-offs between the parameters. Based on the dependency results, we design a multi-stage elastic VTI FWI strategy to enhance both the spatial coverage of the FWI and the robustness to the trade-offs among the parameters as well as FWI for the c13 structure.

  5. Empirical parametrization of the two-photon-exchange effect contributions to the electron-proton elastic scattering cross section

    International Nuclear Information System (INIS)

    Qattan, I. A.; Alsaad, A.

    2011-01-01

    The most recent electron-proton elastic scattering data were re-analyzed using an empirical parametrization of the two-photon-exchange (TPE) effect contributions to σ R . The TPE effect contribution F(Q 2 ,ε) was double Taylor series expanded as a polynomial of order n keeping only terms linear in ε to account for the experimentally observed and verified linearity of the Rosenbluth plots. We fix the ratio R=G Ep /G Mp to be that obtained from a fit to the recoil-polarization data and parametrize σ R first by a three-parameter formula (fit I) and then by a two-parameter formula (fit III). In contrast to previous analyses, the fit parameter G Mp 2 as obtained from these fits is either smaller or equal to the values obtained from our conventional Rosenbluth fit (fit II) but never larger. The ratio g(Q 2 )/G Mp 2 which represents the ratio of the TPE and one-photon-exchange (OPE) effect contributions to the intercept of σ R is large and it ranges 3%-88%. The ratio R 1γx2γ =τf(Q 2 )/G Ep 2 which represents the ratio of the TPE and OPE effect contributions to the slope of σ R is also large, reaching a value of 12.0-14.4 at Q 2 = 5.25 (GeV/c) 2 . The ratio R 1γx2γ as obtained from fits I and III is consistent, within error, with those obtained from previous analyses. Our formulas seem to explain the linearity of σ R . Moreover, our analysis shows that the extracted G Ep 2 and G Mp 2 using the conventional Rosenbluth separation method can in fact be broken into the usual OPE and TPE contributions. Therefore, σ R can in fact be derived under weaker conditions than those imposed by the Born approximation. Our results show that the TPE amplitudes, g(Q 2 )/G Mp 2 and f(Q 2 )/G Mp 2 , are sizable and grow with Q 2 value up to Q 2 ∼6 (GeV/c) 2 in agreement with previous studies. A revision of and comparison to previous analyses are also presented.

  6. Ion conducting behavior in secondary battery materials detected by quasi-elastic neutron scattering measurements

    International Nuclear Information System (INIS)

    Nozaki, Hiroshi

    2014-01-01

    Ionic conducting behaviors in secondary battery materials, i.e. cathode and solid electrolyte, were studied with quasi-elastic neutron scattering (QENS) measurements. Although the incoherent scattering length for Li and Na is lower by two orders of magnitude than that for H, the QENS spectra were clearly detected using the combination of an intense neutron source and a low background spectrometer. The fundamental parameters, such as, the activation energy, the jump distance, and the diffusion coefficient were obtained by analyzing QENS spectra. These parameters are consistent with the previous results estimated by muon-spin relaxation (μSR) measurements and first principles calculations. (author)

  7. Shear and foundation effects on crack root rotation and mode-mixity in moment- and force-loaded single cantilever beam sandwich specimen

    DEFF Research Database (Denmark)

    Saseendran, Vishnu; Carlsson, Leif A.; Berggreen, Christian

    2017-01-01

    Foundation effects play a crucial role in sandwich fracture specimens with a soft core. Accurate estimation of deformationcharacteristics at the crack front is vital in understanding compliance, energy release rate and mode-mixity infracture test specimens. Beam on elastic foundation analysis...... modulus is proposed that closely agrees with the numerical compliance and energy release rate results forall cases considered. An analytical expression for crack root rotation of the loaded upper face sheet provides consistentresults for both loading configurations. For the force-loaded single cantilever...

  8. Elasticities and the link between demographic and evolutionary dynamics

    NARCIS (Netherlands)

    Van Tienderen, P.H.

    2000-01-01

    Multivariate selection models and demographic matrix projections are closely related. The subtle differences among the parameters of both approaches (sensitivities, elasticities, selection differentials, and gradients) can be confusing. I suggest a hierarchical framework for analysis using

  9. First-principles study of elastic and thermodynamic properties of orthorhombic OsB4 under high pressure

    Science.gov (United States)

    Yan, Hai-Yan; Zhang, Mei-Guang; Huang, Duo-Hui; Wei, Qun

    2013-04-01

    The first-principles study on the elastic properties, elastic anisotropy and thermodynamic properties of the orthorhombic OsB4 is reported using density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation. The calculated equilibrium parameters are in good agreement with the available theoretical data. A complete elastic tensor and crystal anisotropies of the ultra-incompressible OsB4 are determined in the pressure range of 0-50 GPa. By the elastic stability criteria, it is predicted that the orthorhombic OsB4 is stable below 50 GPa. By using the quasi-harmonic Debye model, the heat capacity, the coefficient of thermal expansion, and the Grüneisen parameter of OsB4 are also successfully obtained in the present work.

  10. Decoupled deblurring filter and its application to elastic migration and inversion

    KAUST Repository

    Feng, Zongcai

    2017-08-17

    We present a decoupled deblurring filter that approximates the multiparameter Hessian inverse by using local filters to approximate its submatrices for the same and different parameter classes. Numerical tests show that the filter not only reduces the footprint noise, balances the amplitudes and increases the resolution of the elastic migration images, but also mitigates the crosstalk artifacts. When used as a preconditioner, it accelerates the convergence rate for elastic inversion.

  11. Elastic kirchhoff migration for vertical seismic profiles

    International Nuclear Information System (INIS)

    Keho, T.H.; Wu, R.S.

    1987-01-01

    Elastic Kirchhoff migration is implemented for the VSP recording geometry. The resulting migration formula requires measurement of the stress as well as the displacement. Since stress is not measured in a VSP, and in many cases the horizontal component of displacement is not measured, approximate migration formulas are given for these cases. The elastic migration formula for the case where only the vertical components are available, is the same as the acoustic migration formula, where the pressure data are replaced by the magnitudes of the elastic data as reconstructed from the vertical components, and the acoustic Green's functions are replaced with either the P or S wave elastic Green's functions. Two expressions for migration of two component displacement data are presented. In the first, the terms involving traction data are simply ignored. In the second, an improved backpropagation operator for the displacement field is obtained by replacing the traction data in the Kirchhoff integral by displacement data using Hooke's law. The migration expressions for the cases where two component data are available produce images which are less contaminated by artifacts than the migration images of one component data

  12. Phenomenological models of elastic nucleon scattering and predictions for LHC

    CERN Document Server

    Kundrat, V; Lokajicek, M; Prochazka, J

    2011-01-01

    The hitherto analyses of elastic collisions of charged nucleons involving common influence of Coulomb and hadronic scattering have been based practically on West and Yennie formula. However, this approach has been shown recently to be inadequate from experimental as well as theoretical points of view. The eikonal model enabling to determine physical characteristics in impact parameter space seems to be more pertinent. The contemporary phenomenological models admit, of course, different distributions of collision processes in the impact parameter space and cannot give any definite answer. Nevertheless, some predictions for the planned LHC energy that have been given on their basis may be useful, as well as the possibility of determining the luminosity from elastic scattering. (C) 2010 Elsevier B.V. All rights reserved.

  13. Mathematical foundation of quantum annealing

    International Nuclear Information System (INIS)

    Morita, Satoshi; Nishimori, Hidetoshi

    2008-01-01

    Quantum annealing is a generic name of quantum algorithms that use quantum-mechanical fluctuations to search for the solution of an optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. The present paper reviews the mathematical and theoretical foundations of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schroedinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence for both the Schroedinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping

  14. Dynamic Interaction of Interfacial Point Source Loading and Cylinder in an Elastic Quarter with Anti-plane Shear

    Science.gov (United States)

    Chun, Gao; Hui, Qi; Nan, Pan Xiang; Bo, Zhao Yuan

    2017-07-01

    Theoretical steady state solution of a semi-circular cylinder impacted by an anti-plane point loading in a vertical bound of an elastic quarter is formulated in this paper through using image method and wave function expansion series. The elastic quarter is extended as a half space, and the semi-circular interfacial cylinder is extended as a circular cylinder. Displacement field is constructed as series of Fourier-Hankel and Fourier-Bessel wave functions. At last, circular boundary is expanded as Fourier series to determine coefficients of wave function. Numerical results show that material parameters have two widely divergent effects on the radial and circumferential dynamic stress distribution.

  15. Quantification the Effect of the Thickness of Thin Films on their Elastic Parameters

    International Nuclear Information System (INIS)

    Gacem, A.; Doghmane, A.; Hadjoub, Z

    2011-01-01

    The determination of the characteristics and properties of thin films deposited on substrates is necessary in any device application in various fields. Adequate mechanical properties are highly required for the majority of surface waves and semiconductor devices. In this context, modelling the ultrasonic-material interaction, we present results of simulation curves of acoustic signatures for multiple thin film/substrate combinations. The results obtained on several structures (Al, SiO 2 , ZnO, Cu, AlN, SiC and Cr)/(Al 2 O 3 , Si, Cu or Quartz) showed a velocity dispersion of the Rayleigh wave as a function of layer thickness. The development of a theoretical calculation model based on the acoustic behaviour of these structures has enabled us to quantify the dispersive evolution (positive and negative) density. Thus, we have established a universal relationship describing the density-thickness variation. In addition, networks of dispersion curves, representing the evolution of elasticity modulus (Young and shear), were determined. These charts can be used to extract the influence of thickness of layers on the variation of elastic constants.(author)

  16. First-Principles and Thermodynamic Simulation of Elastic Stress Effect on Energy of Hydrogen Dissolution in Alpha Iron

    Science.gov (United States)

    Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.

    2018-04-01

    Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.

  17. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: determination of the most discriminatory parameter.

    Science.gov (United States)

    Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel

    2014-09-01

    The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p shear wave elastography parameter was higher than that of ultrasound (p shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio

  18. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    Science.gov (United States)

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  19. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates

    International Nuclear Information System (INIS)

    Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng

    2015-01-01

    Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)

  20. Regional electric power demand elasticities of Japan's industrial and commercial sectors

    Energy Technology Data Exchange (ETDEWEB)

    Hosoe, Nobuhiro [National Graduate Institute for Policy Studies, 7-22-1 Roppongi, Minato, Tokyo 106-8677 (Japan); Akiyama, Shu-ichi [Kushiro Public University of Economics, 4-1-1 Ashino, Kushiro, Hokkaido 085-8585 (Japan)

    2009-11-15

    In the assessment and review of regulatory reforms in the electric power market, price elasticity is one of the most important parameters that characterize the market. However, price elasticity has seldom been estimated in Japan; instead, it has been assumed to be as small as 0.1 or 0 without proper examination of the empirical validity of such a priori assumptions. We estimated the regional power demand functions for nine regions, in order to quantify the elasticity, and found the short-run price elasticity to be 0.09-0.30 and the long-run price elasticity to be 0.12-0.56. Inter-regional comparison of our estimation results suggests that price elasticity in rural regions is larger than that in urban regions. Popular assumptions of small elasticity of 0.1, for example, could be suitable for examining Japan's aggregate power demand but not power demand functions that focus on respective regions. Furthermore, assumptions about smaller elasticity values such as 0.01 and 0 could not be supported statistically by this study. (author)

  1. MATERIAL PARAMETER OF RUBBER GLOVE VULCANIZED USING COMBINED INFRARED AND HOT-AIR HEATING

    OpenAIRE

    Tipapon Khamdaeng; Numpon Panyoyai; Thanasit Wongsiriamnuay

    2014-01-01

    Vulcanization is an important chemical-thermal process in production of rubber products resulting in change of material properties, increased elasticity and strength. In general, Young’s modulus is used as an indicator of elastic deformation at loading configuration. However, rubber is not truly elastic and a single parameter is insufficient to describe the whole deformation contributed by microstructure of rubber network. Therefore, we present the material parameters concerning the mec...

  2. Fully coupled heat conduction and deformation analyses of visco-elastic solids

    KAUST Repository

    Khan, Kamran

    2012-04-21

    Visco-elastic materials are known for their capability of dissipating energy. This energy is converted into heat and thus changes the temperature of the materials. In addition to the dissipation effect, an external thermal stimulus can also alter the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling between the thermal and mechanical response that is attributed to the dissipation of energy, heat conduction, and temperature-dependent material parameters on the overall response of visco-elastic solids. The non-linearly viscoelastic constitutive model proposed by Schapery (Further development of a thermodynamic constitutive theory: stress formulation, 1969,Mech. Time-Depend. Mater. 1:209-240, 1997) is used and modified to incorporate temperature- and stress-dependent material properties. This study also formulates a non-linear energy equation along with a dissipation function based on the Gibbs potential of Schapery (Mech. Time-Depend. Mater. 1:209-240, 1997). A numerical algorithm is formulated for analyzing a fully coupled thermo-visco-elastic response and implemented it in a general finite-element (FE) code. The non-linear stress- and temperature-dependent material parameters are found to have significant effects on the coupled thermo-visco-elastic response of polymers considered in this study. In order to obtain a realistic temperature field within the polymer visco-elastic bodies undergoing a non-uniform heat generation, the role of heat conduction cannot be ignored. © Springer Science+Business Media, B. V. 2012.

  3. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    Science.gov (United States)

    Hasell, D. K.; OLYMPUS Collaboration

    2018-02-01

    The OLYMPUS collaboration has recently made a precise measurement of the positron-proton to electron-proton elastic scattering cross section ratio, R 2γ, over a wide range of the virtual photon polarization, 0.456 reasonable agreement with predictions based on phenomenological fits to the available form factor data. The motivation for measuring R 2γ will be presented followed by a description of the OLYMPUS experiment. The importance of radiative corrections in the analysis will be shown also. Then we will present the OLYMPUS results and compare with results from two similar experiments and theoretical calculations.

  4. Sensorless State-Space Control of Elastic Two-Inertia Drive System Using a Minimum State Order Observer

    Directory of Open Access Journals (Sweden)

    V. Comnac

    2009-12-01

    Full Text Available The paper presents sensorless state-space control of two-inertia drive system with resilient coupling. The control structure contains an I+PI controller for load speed regulation and a state feedback controller for effective vibration suppression of the elastic coupling. Mechanical state variable of two-inertia drive are obtained by using a linear minimum-order (Gopinath state observer. The design of the combined (I+PI and state feedback controller is achieved with the extended version of the modulus criterion [5]. The dynamic behavior of presented control structure has been examined, for different conditions, using MATLAB/SIMULINK simulation.

  5. Studying neutrino oscillations using quasi-elastic events in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Kumaratunga, Sujeewa Terasita [Univ. of Minnesota, Minneapolis, MN (United States)

    2008-02-01

    MINOS (Main Injector Neutrino Oscillation Search), is a long baseline neutrino experiment designed to search for neutrino oscillations using two detectors at Fermi National Accelerator Laboratory, IL (Near Detector) and Soudan, MN (Far Detector). It will study vμ → vτ oscillations and make a measurement on the oscillation parameters, Δm$2\\atop{23}$ and sin223, via a vμ beam made at Fermilab. Charge current neutrino interactions in the MINOS detectors are of three types: quasi-elastic scattering (QEL), resonance scattering (RES) and deep inelastic scattering (DIS). Of these, quasi-elastic scattering leaves the cleanest signal with just one μ and one proton in the final state, thus rendering the reconstruction of the neutrino energy more accurate. This thesis will outline a method to separate QEL events from the others in the two detectors and perform a calculation of Δm$2\\atop{23}$ and sin223 using those events. The period under consideration was May 2005 to February 2006. The number of observed quasi-elastic events with energies below 10 GeV was 29, where the expected number was 60 ± 3. A fit to the energy distribution of these events gives Δm$2\\atop{23}$ = 2.91$+0.49\\atop{-0.53}$(stat)$+0.08\\atop{-0.09}$(sys) x 10-3 eV2 and sin223 = 0.990-0.180(stat)-0.030(sys).

  6. Disaggregated seismic hazard and the elastic input energy spectrum: An approach to design earthquake selection

    Science.gov (United States)

    Chapman, Martin Colby

    1998-12-01

    The design earthquake selection problem is fundamentally probabilistic. Disaggregation of a probabilistic model of the seismic hazard offers a rational and objective approach that can identify the most likely earthquake scenario(s) contributing to hazard. An ensemble of time series can be selected on the basis of the modal earthquakes derived from the disaggregation. This gives a useful time-domain realization of the seismic hazard, to the extent that a single motion parameter captures the important time-domain characteristics. A possible limitation to this approach arises because most currently available motion prediction models for peak ground motion or oscillator response are essentially independent of duration, and modal events derived using the peak motions for the analysis may not represent the optimal characterization of the hazard. The elastic input energy spectrum is an alternative to the elastic response spectrum for these types of analyses. The input energy combines the elements of amplitude and duration into a single parameter description of the ground motion that can be readily incorporated into standard probabilistic seismic hazard analysis methodology. This use of the elastic input energy spectrum is examined. Regression analysis is performed using strong motion data from Western North America and consistent data processing procedures for both the absolute input energy equivalent velocity, (Vsbea), and the elastic pseudo-relative velocity response (PSV) in the frequency range 0.5 to 10 Hz. The results show that the two parameters can be successfully fit with identical functional forms. The dependence of Vsbea and PSV upon (NEHRP) site classification is virtually identical. The variance of Vsbea is uniformly less than that of PSV, indicating that Vsbea can be predicted with slightly less uncertainty as a function of magnitude, distance and site classification. The effects of site class are important at frequencies less than a few Hertz. The regression

  7. Two-parameter fracture mechanics: Theory and applications

    International Nuclear Information System (INIS)

    O'Dowd, N.P.; Shih, C.F.

    1993-02-01

    A family of self-similar fields provides the two parameters required to characterize the full range of high- and low-triaxiality crack tip states. The two parameters, J and Q, have distinct roles: J sets the size scale of the process zone over which large stresses and strains develop, while Q scales the near-tip stress distribution relative to a high triaxiality reference stress state. An immediate consequence of the theory is this: it is the toughness values over a range of crack tip constraint that fully characterize the material's fracture resistance. It is shown that Q provides a common scale for interpreting cleavage fracture and ductile tearing data thus allowing both failure modes to be incorporated in a single toughness locus. The evolution of Q, as plasticity progresses from small scale yielding to fully yielded conditions, has been quantified for several crack geometries and for a wide range of material strain hardening properties. An indicator of the robustness of the J-Q fields is introduced; Q as a field parameter and as a pointwise measure of stress level is discussed

  8. Sensitivity of Tumor Motion Simulation Accuracy to Lung Biomechanical Modeling Approaches and Parameters

    OpenAIRE

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional com...

  9. A comparative study of soil-structure interaction in the case of frame structures with raft foundation

    Directory of Open Access Journals (Sweden)

    Móczár Balázs

    2016-06-01

    Full Text Available Design and modelling of raft foundations and selecting the value of coefficient of vertical subgrade reaction are still actively discussed topics in geotechnical and structural engineering. In everyday practice, soil–structure interaction is mostly taken into account by using the theory of ‘beam on elastic foundation’, in which the soil is substituted by a certain set of coefficients of subgrade reaction. In this study, finite element analysis of a building was performed using a geotechnical software (Plaxis 3D, which is capable of modelling the subsoil as a continuum, and a structural software (Axis VM, which uses the concept of ‘beam on elastic foundation’. The evaluation of the results and recommendations for everyday engineering practice are introduced in this paper.

  10. Torsion of cracked nanorods using a nonlocal elasticity model

    International Nuclear Information System (INIS)

    Loya, J A; Aranda-Ruiz, J; Fernández-Sáez, J

    2014-01-01

    This paper presents a nonlocal cracked-rod model from which we have analysed the torsional vibrations of a carbon nanotube with a circumferential crack. Several types of boundary conditions, including the consideration of a buckyball at the end of the nanotube, have been studied. The nonlocal Eringen elasticity theory is used to formulate the problem. The cracked rod is modelled by dividing the cracked element into two segments connected by a torsional linear spring whose stiffness is related to the crack severity. The effect of the nonlocal small-scale parameter, crack severity, cracked section position, different boundary conditions and attached mass are examined in this work. (paper)

  11. Scattering phase shift for elastic two pion scattering and the rho resonance in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gutzwiller, Simone

    2012-10-08

    In this thesis we use lattice QCD to compute scattering phase shifts for elastic two-pion scattering in the isospin I=1 channel. Using Luescher's formalism, we derive the scattering phase shifts for different total momenta of the two-pion system in a non-rest frame. Furthermore we analyse the symmetries of the non-rest frame lattices and construct 2-pion and rho operators transforming in accordance with these symmetries. The data was collected for a 32{sup 3} x 64 and a 40{sup 3} x 64 lattice with N{sub f}=2 clover improved Wilson fermions at a pion mass around 290 MeV and a lattice spacing of about 0.072 fm.

  12. Scattering phase shift for elastic two pion scattering and the rho resonance in lattice QCD

    International Nuclear Information System (INIS)

    Gutzwiller, Simone

    2012-01-01

    In this thesis we use lattice QCD to compute scattering phase shifts for elastic two-pion scattering in the isospin I=1 channel. Using Luescher's formalism, we derive the scattering phase shifts for different total momenta of the two-pion system in a non-rest frame. Furthermore we analyse the symmetries of the non-rest frame lattices and construct 2-pion and rho operators transforming in accordance with these symmetries. The data was collected for a 32 3 x 64 and a 40 3 x 64 lattice with N f =2 clover improved Wilson fermions at a pion mass around 290 MeV and a lattice spacing of about 0.072 fm.

  13. The elastic and thermodynamic properties of ZrMo2 from first principles calculations

    International Nuclear Information System (INIS)

    Liu, Xian-Kun; Zhou, Wei; Zheng, Zhou; Peng, Shu-Ming

    2014-01-01

    Highlights: • Elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are calculated by first principles. • Mechanical stability is testified from elastic constants at zero pressure. • Phonon scattering of ZrMo 2 under different temperature are obtained. - Abstract: The elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are investigated by first-principles calculations based on pseudopotential plane-wave density functional theory (DFT) within the generalized gradient approximation (GGA) and quasi-harmonic Debye model. The calculated lattice parameters are in good agreement with the available experimental data. The calculated elastic constants of ZrMo 2 increase monotonically with increasing pressure, and the relationship between the elastic constants and pressure show that ZrMo 2 satisfies the mechanical stability criteria under applied pressure (0–65 GPa). The related mechanical properties such as bulk modulus (B), shear modulus (G), Young’s modulus (E), and Poisson’s ratio (v) are also studied for polycrystalline of ZrMo 2 . The calculated B/G value shows that ZrMo 2 behaves in a ductile manner, and higher pressure can significantly improve the ductility of ZrMo 2 . The pressure and temperature dependencies of the relative volume, the bulk modulus, the elastic constants, the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameters are obtained and discussed by the quasi-harmonic Debye model in the ranges of 0–1800 K and 0–65 GPa

  14. Graphene nanoribbon as an elastic damper

    Science.gov (United States)

    Evazzade, Iman; Lobzenko, Ivan P.; Saadatmand, Danial; Korznikova, Elena A.; Zhou, Kun; Liu, Bo; Dmitriev, Sergey V.

    2018-05-01

    Heterostructures composed of dissimilar two-dimensional nanomaterials can have nontrivial physical and mechanical properties which are potentially useful in many applications. Interestingly, in some cases, it is possible to create heterostructures composed of weakly and strongly stretched domains with the same chemical composition, as has been demonstrated for some polymer chains, DNA, and intermetallic nanowires supporting this effect of two-phase stretching. These materials, at relatively strong tension forces, split into domains with smaller and larger tensile strains. Within this region, average strain increases at constant tensile force due to the growth of the domain with the larger strain, at the expense of the domain with smaller strain. Here, the two-phase stretching phenomenon is described for graphene nanoribbons with the help of molecular dynamics simulations. This unprecedented feature of graphene that is revealed in our study is related to the peculiarities of nucleation and the motion of the domain walls separating the domains of different elastic strain. It turns out that the loading–unloading curves exhibit a hysteresis-like behavior due to the energy dissipation during the domain wall nucleation and motion. Here, we put forward the idea of implementing graphene nanoribbons as elastic dampers, efficiently converting mechanical strain energy into heat during cyclic loading–unloading through elastic extension where domains with larger and smaller strains coexist. Furthermore, in the regime of two-phase stretching, graphene nanoribbon is a heterostructure for which the fraction of domains with larger and smaller strain, and consequently its physical and mechanical properties, can be tuned in a controllable manner by applying elastic strain and/or heat.

  15. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  16. For two regional health foundations, returns from the Kentucky Health Issues Poll are worth the investments.

    Science.gov (United States)

    Walsh, Sarah E; Myers, Gail; Chubinski, Jennifer; Zepeda, Susan G

    2014-09-01

    With finite resources to advance their missions, regional health foundations should critically evaluate the investments they make. This article reviews the costs and associated benefits of large-scale public opinion polling--specifically, the annual Kentucky Health Issues Poll, which is sponsored by the Foundation for a Healthy Kentucky and Interact for Health, formerly the Health Foundation of Greater Cincinnati. In addition to the information generated by the poll, the sponsoring foundations have benefited from increased name recognition and credibility with key stakeholders, including state policy makers and the media. Furthermore, jointly funding the poll has strengthened the relationship between the sponsoring foundations and has fostered other key collaborations. We find that the benefits from this poll more than justify its modest costs ($120,000 per year) and hope that this assessment may prove informative for other funders considering similar investments. Project HOPE—The People-to-People Health Foundation, Inc.

  17. Seismic Performance of CAP1400 Nuclear Power Station considering Foundation Uplift

    Directory of Open Access Journals (Sweden)

    Ling-Yun Peng

    2018-01-01

    Full Text Available Under earthquake action, the reinforced concrete structure at the edge of the CAP1400 nuclear power plant foundation slab will be uplifted. In order to determine the seismic performance of this structure, a 1 : 12 scale shaking table test model was fabricated using gypsum as simulated concrete in order to meet scaled design requirements. By testing this model, the seismic response of the structure with consideration of the foundation uplift was obtained. Numerical analyses of the test model and the prototype structure were conducted to gain a better understanding of the structural seismic performance. When subjected to earthquakes, the foundation slab of the nuclear power plant experiences a slight degree of uplift but remains in the elastic stage due to the weight of the structure above, which provides an antioverturning moment. The numerical simulation is in general agreement with the test results, suggesting numerical simulations could be accurately employed in place of physical tests. The superstructure displacement response was found not to affect the safety of adjacent structures, and the seismic performance of the structure was shown to meet the relevant design requirements, demonstrating that this approach to modelling can serve as a design basis for the CAP1400 nuclear power demonstration project.

  18. Piezoelectric excitation of elastic waves in centrosymmetrical potassium tantalate crystal

    International Nuclear Information System (INIS)

    Smolenskij, G.A.; Lemanov, V.V.; Sotnikov, A.V.; Syrnikov, P.P.; Yushin, N.K.

    1981-01-01

    Experiment results on excitation of elastic oscillations in potassium tantalate crystals are considered. The experiment has been conducted by usual for supersonic measurements technique: an impulse of the variable electric field has been applied to one of plane-parallel sample end-faces, at the same end-face signals corresponding to elastic pulses propagating in the crystal have been detected. Basic radiopulses parameters: basic frequency 30 MHz, duration 1-2 μs, pulse recurrence frequency 500 Hz, power 10 W. The investigation carried out has shown that the application to the sample at T=80 K temperature of constant external electrical field parallel to direction of elastic wave propagation leads to hysteresis dependence of elastic waves amplitude on the external voltage value. With temperature increase the hysteresis loop is deformed. It has been found when investigating temperature dependence of elastic wave amplitude that in the absence of external constant electrical field in short-circuited by constant current samples the oxillation excitation effect disappears at T approximately equal to 200 K. An essential influence on the elastic wave amplitude value is exerted by illumination of the crystal surface by light with 360-630 nm wave length. At T 130 K bacaee of photovoltaic effect in illuminated samples [ru

  19. Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.

    Science.gov (United States)

    Kinnunen, Matti; Kauppila, Antti; Karmenyan, Artashes; Myllylä, Risto

    2011-09-15

    Optical tweezers can be used to manipulate small objects and cells. A trap can be used to fix the position of a particle during light scattering measurements. The places of two separately trapped particles can also be changed. In this Letter we present elastic light scattering measurements as a function of scattering angle when two trapped spheres are illuminated with a He-Ne laser. This setup is suitable for trapping noncharged homogeneous spheres. We also demonstrate measurement of light scattering patterns from two separately trapped red blood cells. Two different illumination schemes are used for both samples.

  20. Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali

    2016-11-01

    The analysis of wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanobeam is performed in the framework of classical beam theory. To capture small-scale effects, the nonlocal elasticity theory of Eringen is applied. Furthermore, the material properties of nanobeam are assumed to vary gradually through the thickness based on power-law form. Nonlocal governing equations of MEE-FG nanobeam have been derived employing Hamilton's principle. The results of present research have been validated by comparing with those of previous investigations. An analytical solution of governing equations is utilized to obtain wave frequencies, phase velocities and escape frequencies. Effects of various parameters such as wave number, nonlocal parameter, gradient index, axial load, magnetic potential and electric voltage on wave dispersion characteristics of MEE-FG nanoscale beams are studied in detail.

  1. Foundations of predictive analytics

    CERN Document Server

    Wu, James

    2012-01-01

    Drawing on the authors' two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts. The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish--Fisher expansion and o

  2. On the role of modeling parameters in IMRT plan optimization

    International Nuclear Information System (INIS)

    Krause, Michael; Scherrer, Alexander; Thieke, Christian

    2008-01-01

    The formulation of optimization problems in intensity-modulated radiotherapy (IMRT) planning comprises the choice of various values such as function-specific parameters or constraint bounds. In current inverse planning programs that yield a single treatment plan for each optimization, it is often unclear how strongly these modeling parameters affect the resulting plan. This work investigates the mathematical concepts of elasticity and sensitivity to deal with this problem. An artificial planning case with a horse-shoe formed target with different opening angles surrounding a circular risk structure is studied. As evaluation functions the generalized equivalent uniform dose (EUD) and the average underdosage below and average overdosage beyond certain dose thresholds are used. A single IMRT plan is calculated for an exemplary parameter configuration. The elasticity and sensitivity of each parameter are then calculated without re-optimization, and the results are numerically verified. The results show the following. (1) elasticity can quantify the influence of a modeling parameter on the optimization result in terms of how strongly the objective function value varies under modifications of the parameter value. It also can describe how strongly the geometry of the involved planning structures affects the optimization result. (2) Based on the current parameter settings and corresponding treatment plan, sensitivity analysis can predict the optimization result for modified parameter values without re-optimization, and it can estimate the value intervals in which such predictions are valid. In conclusion, elasticity and sensitivity can provide helpful tools in inverse IMRT planning to identify the most critical parameters of an individual planning problem and to modify their values in an appropriate way

  3. Dynamics of a neuron model in different two-dimensional parameter-spaces

    Science.gov (United States)

    Rech, Paulo C.

    2011-03-01

    We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades.

  4. Efficient education policy: A second-order elasticity rule

    OpenAIRE

    Richter, Wolfram F.

    2010-01-01

    Assuming a two-period model with endogenous choices of labour, education, and saving, efficient education policy is characterized for a Ramsey-like scenario in which the government is constrained to use linear instruments. It is shown that education should be effectively subsidized if, and only if, the elasticity of the earnings function is increasing in education. The strength of second-best subsidization increases in the elasticity of the elasticity of the earnings function. This second-ord...

  5. Identification of the parameters of an elastic material model using the constitutive equation gap method

    KAUST Repository

    Florentin, É ric; Lubineau, Gilles

    2010-01-01

    study resides in the application of these recent developments to the identification problem. The proposed CEGM is described in detail, then evaluated through the identification of heterogeneous isotropic elastic properties. The results obtained

  6. Elastic properties of magnetostrictive rare-earth-iron alloys

    International Nuclear Information System (INIS)

    Cullen, J.R.; Blessing, G.; Rinaldi, S.

    1978-01-01

    The elastic properties of certain magnetostrictive rare-earth-iron alloys, namely polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2), Smsub(0.88)Dysub(0.12)Fesub(2)and amorphous TbFesub(2), were investigated ultrasonically. In all cases two shear waves were observed propagating simultaneously when a magnetic field was applied perpendicular to the direction of propagation. A model to explain this behaviour, based on magnetic-elastic coupling within local regions of these disordered materials, is developed and discussed in two limiting cases: (i) strongly coupled regions for which an effective isotropic magneto-elastic coupling is appropriate, and (ii) materials for which the elastic properties of the conglomerate are determined by averaging over those of independent regions. Experimental results up to fields of 25 kOe on the alloys mentioned above are exhibited and compared with the limiting cases (i) and (ii). In the case of polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2) further comparison is made between the determination of the magneto-elastic coupling constants using this model and the determination by using the results of a previous single-crystal study. (author)

  7. Thermodynamics of two-parameter quantum group Bose and Fermi gases

    International Nuclear Information System (INIS)

    Algin, A.

    2005-01-01

    The high and low temperature thermodynamic properties of the two-parameter deformed quantum group Bose and Fermi gases with SU p/q (2) symmetry are studied. Starting with a SU p/q (2)-invariant bosonic as well as fermionic Hamiltonian, several thermodynamic functions of the system such as the average number of particles, internal energy and equation of state are derived. The effects of two real independent deformation parameters p and q on the properties of the systems are discussed. Particular emphasis is given to a discussion of the Bose-Einstein condensation phenomenon for the two-parameter deformed quantum group Bose gas. The results are also compared with earlier undeformed and one-parameter deformed versions of Bose and Fermi gas models. (author)

  8. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-01-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects

  9. Asperity interaction in elastic-plastic contact of rough surfaces in presence of adhesion

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Banerjee, Atanu

    2005-01-01

    This paper presents an analysis of the effect of asperity interaction in elastic-plastic contact of rough surfaces in the presence of adhesion. The micro-contact model of asperity interactions, developed by Zhao and Chang (2001 Trans. ASME: J. Tribol. 123 857-64), is integrated into the elastic-plastic contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19) to allow the asperity interaction and elastic-plastic deformation in the presence of surface forces to be considered simultaneously. The well-established elastic and plastic adhesion indices are used to consider the different conditions that arise as a result of varying load and material parameters. Results show that asperity interaction influences the loading-unloading behaviour in elastic-plastic adhesive contact of rough surfaces and in general asperity interactions reduce the effect of surface forces

  10. Elasticity and Density of Paleozoic Shales from Bornholm

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Haugwitz, C.; Larsen, Pernille Birkelund

    2017-01-01

    Darcy. We found that solid density and elastic stiffness parameters only vary insignificantly with solid composition, when TOC is lower than 5%, but that mass density and TOC are correlated when TOC is higher than 5%. A similar correlation was not seen for TOC and Sonic logging data. A reason can...

  11. The influence of drawing parameters on the mechanical properties of two beta-titanium alloys.

    Science.gov (United States)

    Shastry, C V; Goldberg, A J

    1983-10-01

    The total cold reduction and reduction per pass used during the drawing of fine wires affected the mechanical properties of two beta-titanium alloys. Both Ti-11.5Mo-6Zr-4.5Sn and Ti-13V-11Cr-3Al showed increased yield strengths and low moduli of elasticity, which resulted in wires appropriate for orthodontic application.

  12. Sloan foundation nuclear education program

    International Nuclear Information System (INIS)

    Kursunoglu, B.N.

    1992-01-01

    The Alfred P. Sloan Foundation realized the time had come for a real and significant contribution to the enlightenment of university students concerning nuclear matters. The Sloan Foundation chose to educate the youth of four-year colleges and universities with a curriculum established with the resource information sieved from three workshops for professors in these institutions. The three workshops were organized by groups at Harvard-MIT (two-week Summer Program on Nuclear Weapons and Arms Control), the University of California, San Diego (two-week Summer Seminar on Global Security and Arms Control), and the University of Miami (one-week Winter Workshop on Enlightenment: The Best Security in a Nuclear-Armed World). In this report the author focuses on a unified presentation of the basic facts, aims, and results of the Sloan Foundation Nuclear Education Program based on three workshops directed by Jack Ruina (MIT), Herbert York (USCD), and Behram Kursunoglu (UM) and offered from 1983-1990

  13. The effect of inclusions on macroscopic composite elasticity: A systematic finite-element analysis of constituent and bulk elastic properties

    International Nuclear Information System (INIS)

    Yoneda, A; Sohag, F H

    2010-01-01

    The bulk physical properties of composite systems are difficult to predict - even when the properties of the constituent materials in the system are well known. We conducted a finite-element method simulation to examine the inclusion effect by substituting an inclusion phase (second phase) into a host phase (first phase). We have organized the simulation results as a function of the elasticity of host and inclusion phases. In this procedure, special attention was paid to the initial change of elastic constants as the inclusion volume ratio was varied. To accomplish this, we introduced a new parameter D ij defined as the derivatives of the normalized stiffness elastic constant over the inclusion volume ratio. We succeeded in obtaining useful systematic formulations for D ij . These formulations are expected to be applicable to the study of composite systems in many disciplines, such as geophysics, mechanics, material engineering, and biology. The present results provide much more effective constraints on the physical properties of composite systems, like rocks, than traditional methods, such as the Voigt-Reuss bounds.

  14. Elastic-plastic transition: A universal law

    Directory of Open Access Journals (Sweden)

    Chen Zhong

    2016-01-01

    Full Text Available Although the initial stress-strain behavior in a tensile test is often characterized as linear elastic up to a yield stress and nonlinear plastic thereafter, the pre-yield transition region is known to exhibit significant curvature and hysteresis. Hundreds of high-precision loading-unloading-loading tensile tests were performed using 26 commercial sheet alloys exhibiting a wide range of strength, ductility and crystal structure. Analysis of the results reveals the following: 1.There is no significant linear elastic region; the proportional limit is ~0 MPa when measured with sufficient sensitivity. 2.Each of the hundreds of measured transitional stress-strain curves can be characterized by a single parameter, here called the “modulus reduction rate.”The corresponding equation captures ~80% of the observed variation, a factor of 3 to 6 better than a one-parameter linear approximation. 3.Most interestingly, the transitional behavior for all alloys follows a “Universal Law” requiring no fit parameters. The law depends only upon the strength of the material and its Young’s modulus, both of which are can be measured by independent tests or adopted from handbooks. The Universal Law captures ~90% of the variation represented by the one-parameter representation and eliminates the need for mechanical testing to implement and apply. The practical and theoretical implications of these results are discussed. The results provide a simple path to significantly improving applied constitutive models in the transitional regime. The consistency of the effect for such a wide range of metals and suggests that the origin of the behavior lies in the pile-up and relaxation of dislocation arrays.

  15. Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    Full Text Available In this study, the vibration behavior of annular and circular graphene sheet coupled with temperature change and under in-plane pre-stressed is studied. Influence of the surrounding elastic medium 011 the fundamental frequencies of the single-layered graphene sheets (SLGSs is investigated. Both Winkler-type and Pasternak- type models are employed to simulate the interaction of the graphene sheets with a surrounding elastic medium. By using the nonlocal elasticity theory the governing equation is derived for SLGSs. The closed-form solution for frequency vibration of circular graphene sheets lias been obtained and nonlocal parameter, inplane pre-stressed, the parameters of elastic medium and temperature change appears into arguments of Bessel functions. The results are subsequently compared with valid result reported in the literature and the molecular dynamics (MD results. The effects of the small scale, pre-stressed, mode number, temperature change, elastic medium and boundary conditions on natural frequencies are investigated. The non-dimensional frequency decreases at high temperature case with increasing the temperature change for all boundary conditions. The effect of temperature change 011 the frequency vibration becomes the opposite at high temperature case in compression with the low temperature case. The present research work thus reveals that the nonlocal parameter, boundary conditions and temperature change have significant effects on vibration response of the circular nanoplates. The present results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene.

  16. Measurements of the spin rotation parameter R in high energy elastic scattering and helicity amplitudes at Serpukhov energies

    International Nuclear Information System (INIS)

    Pierrard, J.; Bruneton, C.; Bystricky, J.; Cozzika, G.; Deregel, J.; Ducros, Y.; Gaidot, A.; Khantine-Langlois, F.; Lehar, F.; Lesquen, A. de; Merlo, J.P.; Miyashita, S.; Movchet, J.; Raoul, J.C.; Van Rossum, L.; Kanavets, V.P.

    1975-01-01

    The spin rotation parameter R in pp and π + p elastic scattering at 45GeV/c has been measured at the Serpukhov accelerator, for /t/ ranging from 0.2 to 0.5(GeV/c) 2 . The results are presented, together with previous R measurements at 3.8, 6, 16 and 40GeV/c, and are compared with the predictions of Regge pole models. The equality of the values for R in proton-proton and pion-proton scattering, within the experimental errors, is a test of factorization of the residues. An s-channel helicity amplitude analysis for pion-nucleon scattering at 40GeV/c is made using all available data. Significant results are obtained for the non flip amplitude in isoscalar exchange and for flip amplitudes on both isovector and isoscalar exchanges. The helicity flip in isoscalar exchange is non negligible. The energy dependence of this amplitude, at 6, 16 and 40GeV/c, is compared with predictions of Regge pole models [fr

  17. Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities

    Science.gov (United States)

    Baylin-Stern, Adam C.

    This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.

  18. Investigations of structural, elastic, electronic and thermodynamic properties of lutetium filled skutterudite LuFe4P12 under pressure effect: FP-LMTO method

    Directory of Open Access Journals (Sweden)

    Boudia Keltouma

    2015-12-01

    Full Text Available Structural, elastic, electronic and thermodynamic properties of ternary cubic filled skutterudite compound were calculated. We have computed the elastic modulus and its pressure dependence. From the elastic parameter behavior, it is inferred that this compound is elastically stable and ductile in nature. Through the quasi-harmonic Debye model, in which phononic effects are considered, the effect of pressure P (0 to 50 GPa and temperature T (0 to 3000 °C on the lattice constant, elastic parameters, bulk modulus B, heat capacity, thermal expansion coefficient α, internal energy U, entropy S, Debye temperature θD, Helmholtz free energy A, and Gibbs free energy G are investigated.

  19. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.

    Science.gov (United States)

    Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R

    2013-06-18

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Cell elasticity with altered cytoskeletal architectures across multiple cell types.

    Science.gov (United States)

    Grady, Martha E; Composto, Russell J; Eckmann, David M

    2016-08-01

    The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (~0.5kPa) when compared to the three healthy cell lines (~2kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes. Copyright © 2016 Elsevier Ltd. All rights reserved.