Polar Functions for Anisotropic Gaussian Random Fields
Directory of Open Access Journals (Sweden)
Zhenlong Chen
2014-01-01
Full Text Available Let X be an (N, d-anisotropic Gaussian random field. Under some general conditions on X, we establish a relationship between a class of continuous functions satisfying the Lipschitz condition and a class of polar functions of X. We prove upper and lower bounds for the intersection probability for a nonpolar function and X in terms of Hausdorff measure and capacity, respectively. We also determine the Hausdorff and packing dimensions of the times set for a nonpolar function intersecting X. The class of Gaussian random fields that satisfy our conditions includes not only fractional Brownian motion and the Brownian sheet, but also such anisotropic fields as fractional Brownian sheets, solutions to stochastic heat equation driven by space-time white noise, and the operator-scaling Gaussian random field with stationary increments.
Theory of Random Anisotropic Magnetic Alloys
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1976-01-01
A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different...... spatial directions or different ordering wave vectors. Theoretical predictions based on known parameters for the phase diagrams and magnetic moments for the binary rare-earth alloys of Tb, Dy, Ho, and Er, Tb-Tm, Nd-Pr, and pure double-hcp Nd agree qualitatively with the experimental observations....... Quantitative agreement can be obtained by increasing the interaction between different alloy elements, in particular for alloys with very different axial anisotropy, e.g., Tb-Tm. A model system consisting of a singlet-singlet and singlet-doublet alloy is discussed in detail. A simple procedure to include...
Tang, Dalin; Yang, Chun; Geva, Tal; Gaudette, Glenn; Del Nido, Pedro J
2011-06-01
Multi-physics right and left ventricle (RV/LV) fluid-structure interaction (FSI) models were introduced to perform mechanical stress analysis and evaluate the effect of patch materials on RV function. The FSI models included three different patch materials (Dacron scaffold, treated pericardium, and contracting myocardium), two-layer construction, fiber orientation, and active anisotropic material properties. The models were constructed based on cardiac magnetic resonance (CMR) images acquired from a patient with severe RV dilatation and solved by ADINA. Our results indicate that the patch model with contracting myocardium leads to decreased stress level in the patch area, improved RV function and patch area contractility.
A random sampling procedure for anisotropic distributions
International Nuclear Information System (INIS)
Nagrajan, P.S.; Sethulakshmi, P.; Raghavendran, C.P.; Bhatia, D.P.
1975-01-01
A procedure is described for sampling the scattering angle of neutrons as per specified angular distribution data. The cosine of the scattering angle is written as a double Legendre expansion in the incident neutron energy and a random number. The coefficients of the expansion are given for C, N, O, Si, Ca, Fe and Pb and these elements are of interest in dosimetry and shielding. (author)
Quantum magnets with anisotropic infinite range random interactions.
Arrachea, Liliana; Rozenberg, Marcelo J
2005-04-01
Using exact diagonalization techniques, we study the dynamical response of the anisotropic disordered Heisenberg model for systems of S=1/2 spins with infinite range random exchange interactions at temperature T=0. The model can be considered as a generalization, to the quantum case, of the well-known Sherrington-Kirkpatrick classical spin glass model. We also compute and study the behavior of the Edwards Anderson order parameter and energy per spin as the anisotropy evolves from the Ising to the Heisenberg limits.
Li, Jia; Wu, Pinghui; Chang, Liping
2015-08-24
Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.
Estimating anisotropic diffusion of neutrons near the boundary of a pebble bed random system
Energy Technology Data Exchange (ETDEWEB)
Vasques, R. [Department of Mathematics, Center for Computational Engineering Science, RWTH Aachen University, Schinkel Strasse 2, D-52062 Aachen (Germany)
2013-07-01
Due to the arrangement of the pebbles in a Pebble Bed Reactor (PBR) core, if a neutron is located close to a boundary wall, its path length probability distribution function in directions of flight parallel to the wall is significantly different than in other directions. Hence, anisotropic diffusion of neutrons near the boundaries arises. We describe an analysis of neutron transport in a simplified 3-D pebble bed random system, in which we investigate the anisotropic diffusion of neutrons born near one of the system's boundary walls. While this simplified system does not model the actual physical process that takes place near the boundaries of a PBR core, the present work paves the road to a formulation that may enable more accurate diffusion simulations of such problems to be performed in the future. Monte Carlo codes have been developed for (i) deriving realizations of the 3-D random system, and (ii) performing 3-D neutron transport inside the heterogeneous model; numerical results are presented for three different choices of parameters. These numerical results are used to assess the accuracy of estimates for the mean-squared displacement of neutrons obtained with the diffusion approximations of the Atomic Mix Model and of the recently introduced [1] Non-Classical Theory with angular-dependent path length distribution. The Non-Classical Theory makes use of a Generalized Linear Boltzmann Equation in which the locations of the scattering centers in the system are correlated and the distance to collision is not exponentially distributed. We show that the results predicted using the Non-Classical Theory successfully model the anisotropic behavior of the neutrons in the random system, and more closely agree with experiment than the results predicted by the Atomic Mix Model. (authors)
Anisotropic light diffusion: an oxymoron?
Kienle, Alwin
2007-05-25
Light propagation in anisotropic random media is studied in the steady-state and time domains. Solutions of the anisotropic diffusion equation are compared to results obtained by the Monte Carlo method. Contrary to what has been reported so far, we find that even in the "diffusive regime" the anisotropic diffusion equation does not describe correctly the light propagation in anisotropic random media.
International Nuclear Information System (INIS)
Tsallis, C.; Santos, R.J.V. dos
1983-01-01
On conjectural grounds an equation that provides a very good approximation for the critical temperature of the fully-anisotropic homogeneous quenched bond-random q-state Potts ferromagnet in triangular and honeycomb lattices is presented. Almost all the exact particular results presently known for the square, triangular and honeycomb lattices are recovered; the numerical discrepancy is quite small for the few exceptions. Some predictions that we believe to be exact are made explicite as well. (Author) [pt
Carbone, G; Lorenz, B; Persson, B N J; Wohlers, A
2009-07-01
In this paper we extend the theory of contact mechanics and rubber friction developed by one of us (B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001)) to the case of surfaces with anisotropic surface roughness. As an application we calculate the viscoelastic contribution to the rubber friction. We show that the friction coefficient may depend significantly on the sliding direction, while the area of contact depends weakly on the sliding direction. We have carried out experiments for rubber blocks sliding on unidirectionally polished steel surfaces. The experimental data are in a good qualitative agreement with the theory.
Yueh, S. H.; Kwok, R.
1993-01-01
In this paper, theoretical and numerical results of the polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum are presented for the remote sensing of ocean and soil surfaces. The polarimetric scattered field for rough dielectric surfaces is derived to the second order by the small perturbation method (SPM). It is found that the second-order scattered field is coherent in nature, and its coefficients for different polarizations present the lowest-order corrections to the Fresnel reflection coefficients of the surfaces. In addition, the cross-polarized (HV and VH) components of the coherent fields are reciprocal and not zero for surfaces with anisotropic directional spectrum when the azimuth angle of the incident direction is not aligned with the symmetry directions of surfaces. In order to verify the energy conservation condition of the theoretical results, which is important if the theory is to be applied to the passive polarimetry of rough surfaces, a Monte Carlo simulation is performed to numerically calculate the polarimetric reflectivities of one-dimensional random rough surfaces which are generated with a prescribed power-law spectrum in the spectral domain and transformed to the spatial domain by the FFT. The surfaces simulated by this approach are periodic with the period corresponding to the low-wavenumber cutoff. To calculate the scattering from periodic dielectric surfaces, the authors present a new numerical technique which applies the Floquet theorem to reduce the problem to one period and does not require the evaluation of one-dimensional periodic Green's function used in the conventional method of moment formulation. Once the scattering coefficients are obtained, the polarimetric Stokes vectors for the emission from the random surfaces are then calculated according to the Kirchhoff's law and are illustrated as functions of relative azimuth observation and row directions. The second-order SPM is also
Microwave assessment of two layer composite systems
Energy Technology Data Exchange (ETDEWEB)
Abdelazeez, M.K.; Ahmad, M.S.; Musameh, S.M.; Zihlif, A.M. (Univ. of Jordan, Amman (Jordan)); Martuscelli, E.; Ragosta, G.; Scafora, E. (Instituto di Ricerche su Technologia dei Polimero, Arco Felice (Italy))
This paper reports results of further measurements performed on nickel coated carbon fiber-polypropylene composites at microwave frequencies. These measurements are performed on one and two specimens covering different fiber concentrations with different separating distances in the two specimens case. The measurements cover both of the insertion loss (IL) and the return loss (RL), and the results indicate strong dependence on the frequency and separating distance. The shielding effectiveness (SE) is determined from the measured values of IL and RL with its value exceeding 62 dB at 9 GHz and exceeding 55 dB at 10 GHz for the two specimens case. The two layers case seems to offer an interesting behavior over the frequency band as the separating distance start to exceed 10 mm. This specimen arrangement enhances the SE of this composite material compared with one layer case and offer a promising behavior for different applications.
TWO-LAYER PHASE COMPENSATING INTERFERENCE SYSTEMS
Directory of Open Access Journals (Sweden)
Georgiy V. Nikandrov
2014-09-01
Full Text Available The paper deals with creation of optical interferential coatings, giving the possibility to form the wave front without the change of energy characteristics of the incident and reflected radiation. Correction is achieved due to the layer, which thickness is a function of coordinate of an optical element surface. Selection technique is suggested for refractive index materials, forming two-layer interference coating that creates a coating with a constant coefficient of reflection on the surface of the optical element. By this procedure the change of coefficient of reflection for the optical element surface, arising because of the variable thickness is eliminated. Magnesium oxide and zirconium dioxide were used as the film-forming materials. The paper presents experimentally obtained thickness distribution of the layer, which is a part of the phase compensating coating. A new class of optical coatings proposed in the paper can find its application for correcting the form of a wave front.
Lu, Yisu; Jiang, Jun; Yang, Wei; Feng, Qianjin; Chen, Wufan
2014-01-01
Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.
Modelling large-particle diffusion in porous media as anisotropic continuous-time random walk
Amitai, Shahar; Blumenfeld, Raphael
We test the fidelity of modelling diffusion of finite-size particles in porous media by continuous-time random walk (CTRW), where the step-size and waiting-time distributions of the former, Pl and Pt, are used as input to the latter. As the particle size is increased, the diffusion undergoes a transition from normal to anomalous. We find that, based only on Pl and Pt, CTRW does not predict correctly this transition. We show that the discrepancy is due to the change in effective connectivity (topology) of the porous media with increasing particle size. We propose a method to capture this within the CTRW model by adding anisotropy. This adjustment yields good agreement with the simulated diffusion process, making it possible to use CTRW, with all its advantages, to model diffusion of any finite size particle in confined geometries.
Biometrics encryption combining palmprint with two-layer error correction codes
Li, Hengjian; Qiu, Jian; Dong, Jiwen; Feng, Guang
2017-07-01
To bridge the gap between the fuzziness of biometrics and the exactitude of cryptography, based on combining palmprint with two-layer error correction codes, a novel biometrics encryption method is proposed. Firstly, the randomly generated original keys are encoded by convolutional and cyclic two-layer coding. The first layer uses a convolution code to correct burst errors. The second layer uses cyclic code to correct random errors. Then, the palmprint features are extracted from the palmprint images. Next, they are fused together by XORing operation. The information is stored in a smart card. Finally, the original keys extraction process is the information in the smart card XOR the user's palmprint features and then decoded with convolutional and cyclic two-layer code. The experimental results and security analysis show that it can recover the original keys completely. The proposed method is more secure than a single password factor, and has higher accuracy than a single biometric factor.
Design automation of the two-layered steels welding technology
International Nuclear Information System (INIS)
Strel'tsov, A.I.
2000-01-01
Approach to the design process modeling of two-layered steels welding technology is presented. The area calculation formulas for main, transitive and cladding weld layers are derived. Realization methods of main tasks solved at design of technological processes for two-layered steels welding are described [ru
Analysis of Two-Layered Journal Bearing Lubricated with Ferrofluid
Directory of Open Access Journals (Sweden)
Rao T. V. V. L. N.
2014-07-01
Full Text Available The present study investigates the load capacity and friction coefficient for a two-layered journal bearing lubricated with ferrofluid. A modified Reynolds equation for a two-layered ferrofluid is derived using displaced infinitely long wire magnetic field model. Reynolds boundary conditions are used to obtain nondimensional pressure and shear stress expressions. Nondimensional load capacity and coefficient of friction are analyzed under the influence of lubricant layer’s thickness, viscosities, magnetic field intensity and distance ratio parameter. Ferrofluid lubrication under the influence of magnetic field has potential to enhance load carrying capacity and reduce coefficient of friction for two-layered journal bearing.
Raman spectroscopy of isotopically labeled two-layer graphene
Energy Technology Data Exchange (ETDEWEB)
Kalbac, Martin [J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic); Department of Physical Chemistry, Palacky University, 77146 Olomouc (Czech Republic); Kong, Jing [Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts 02139 (United States); Kavan, Ladislav [J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic); Dresselhaus, Mildred S. [Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts 02139 (United States); Department of Physics, MIT, Cambridge, Massachusetts 02139 (United States)
2012-12-15
A detailed understanding of graphene properties both in its neutral and doped states is an important prerequisite for applications of this new material in electronic devices. We used electrochemical doping to study the influence of charge on isotopically labeled two-layer graphene. No change of the G mode intensity was observed at electrode potentials between -1.5 and 1 V. At high positive electrode potentials (>1 V) we observed enhancement of the G mode intensity due to partial removal of interfering resonant transitions. Hence, we confirmed that in case of absence of the enhancement due to a specific orientation between the two layers the Raman spectroelectrochemistry of non-stacked two-layer graphene mimics that of one-layer graphene. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Raman spectroscopy of isotopically labeled two-layer graphene
International Nuclear Information System (INIS)
Kalbac, Martin; Kong, Jing; Kavan, Ladislav; Dresselhaus, Mildred S.
2012-01-01
A detailed understanding of graphene properties both in its neutral and doped states is an important prerequisite for applications of this new material in electronic devices. We used electrochemical doping to study the influence of charge on isotopically labeled two-layer graphene. No change of the G mode intensity was observed at electrode potentials between -1.5 and 1 V. At high positive electrode potentials (>1 V) we observed enhancement of the G mode intensity due to partial removal of interfering resonant transitions. Hence, we confirmed that in case of absence of the enhancement due to a specific orientation between the two layers the Raman spectroelectrochemistry of non-stacked two-layer graphene mimics that of one-layer graphene. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Benard-Marangoni convection in two-layered liquids
Tokaruk; Molteno; Morris
2000-04-17
We describe experiments on Benard-Marangoni convection in horizontal layers of two immiscible liquids. Unlike previous experiments, which used gases as the upper fluid, we find a square planform close to onset which undergoes a secondary bifurcation to rolls at higher temperature differences. The scale of the convection pattern is that of the thinner lower fluid layer for which buoyancy and surface tension forces are comparable. The wave number of the pattern near onset agrees with the linear stability prediction for the full two-layer problem. The square planform is in qualitative agreement with recent two-layer weakly nonlinear theories, which fail however to predict the transition to rolls.
Bénard-Marangoni Convection in Two-Layered Liquids
Tokaruk, Wayne A.; Molteno, T. C. A.; Morris, Stephen W.
2000-04-01
We describe experiments on Bénard-Marangoni convection in horizontal layers of two immiscible liquids. Unlike previous experiments, which used gases as the upper fluid, we find a square planform close to onset which undergoes a secondary bifurcation to rolls at higher temperature differences. The scale of the convection pattern is that of the thinner lower fluid layer for which buoyancy and surface tension forces are comparable. The wave number of the pattern near onset agrees with the linear stability prediction for the full two-layer problem. The square planform is in qualitative agreement with recent two-layer weakly nonlinear theories, which fail however to predict the transition to rolls.
Material Induced Anisotropic Damage
Niazi, Muhammad Sohail; Wisselink, H.H.; Meinders, Vincent T.; van den Boogaard, Antonius H.; Hora, P.
2012-01-01
The anisotropy in damage can be driven by two different phenomena; anisotropic defor-mation state named Load Induced Anisotropic Damage (LIAD) and anisotropic (shape and/or distribution) second phase particles named Material Induced Anisotropic Damage (MIAD). Most anisotropic damage models are based
Anisotropic universe with anisotropic sources
Aluri, Pavan K.; Panda, Sukanta; Sharma, Manabendra; Thakur, Snigdha
2013-12-01
We analyze the state space of a Bianchi-I universe with anisotropic sources. Here we consider an extended state space which includes null geodesics in this background. The evolution equations for all the state observables are derived. Dynamical systems approach is used to study the evolution of these equations. The asymptotic stable fixed points for all the evolution equations are found. We also check our analytic results with numerical analysis of these dynamical equations. The evolution of the state observables are studied both in cosmic time and using a dimensionless time variable. Then we repeat the same analysis with a more realistic scenario, adding the isotropic (dust like dark) matter and a cosmological constant (dark energy) to our anisotropic sources, to study their co-evolution. The universe now approaches a de Sitter space asymptotically dominated by the cosmological constant. The cosmic microwave background anisotropy maps due to shear are also generated in this scenario, assuming that the universe contains anisotropic matter along with the usual (dark) matter and vacuum (dark) energy since decoupling. We find that they contribute dominantly to the CMB quadrupole. We also constrain the current level of anisotropy and also search for any cosmic preferred axis present in the data. We use the Union 2 Supernovae data to this extent. An anisotropy axis close to the mirror symmetry axis seen in the cosmic microwave background data from Planck probe is found.
Vortex Stability In Two -layer Rotating Shallow-water Flows
Carton, Xavier; Baey, Jean-Michel
The stability of circular vortices subject to an initial normal-mode perturbation is studied in a two-layer shallow-water fluid with rigid lid, flat bottom and constant background rotation. Considerable similarity with quasi-geostrophic dynamics is found for linear (barotropic or baroclinic) instability, except in the frontal and nonlinear barotropic limits. This discrepancy is explained by asymptotic models. In many cases, the elliptical mode of deformation is the most unstable one. The ability of these perturbed circular vortices to stabilize nonlinearly as long-lived multipoles is then investigated. For elliptical perturbations, steady tripoles form from moderately unstable vortices as in the quasi-geostrophic limit. These tripoles, which exhibit various 3D structures, are robust when perturbed by non coherent disturbances. More unstable circular vortices break as two dipoles, propagating in opposite directions. Triangular perturbations can also lead to stationary quadrupoles or to dipolar breaking. The similarity with quasi-geostrophic dynamics, which ext ends to these nonlinear regimes, is related to the weakness of the divergent circulation, as shown by the analysis of the Lighthill equation. J.M. Baey &X. Carton, 2001: "Piecewise-constant vortices in a two-layer shallow - water flow". Advances in mathematical modelling of atmosphere and ocean dynamics, Kluwer Acad. Publ., 61, p.87-92. J.M. Baey &X. Carton, 2002: "Vortex multipoles in two-layer rotating shallow -water flows". To appear in J. Fluid Mech.
Ultrahard carbon film from epitaxial two-layer graphene
Gao, Yang; Cao, Tengfei; Cellini, Filippo; Berger, Claire; de Heer, Walter A.; Tosatti, Erio; Riedo, Elisa; Bongiorno, Angelo
2018-02-01
Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp2 to sp3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.
Optimal resource allocation strategy for two-layer complex networks
Ma, Jinlong; Wang, Lixin; Li, Sufeng; Duan, Congwen; Liu, Yu
2018-02-01
We study the traffic dynamics on two-layer complex networks, and focus on its delivery capacity allocation strategy to enhance traffic capacity measured by the critical value Rc. With the limited packet-delivering capacity, we propose a delivery capacity allocation strategy which can balance the capacities of non-hub nodes and hub nodes to optimize the data flow. With the optimal value of parameter αc, the maximal network capacity is reached because most of the nodes have shared the appropriate delivery capacity by the proposed delivery capacity allocation strategy. Our work will be beneficial to network service providers to design optimal networked traffic dynamics.
Two layers of Australian impact ejecta in the Indian Ocean
Digital Repository Service at National Institute of Oceanography (India)
ShyamPrasad, M.; Gupta, S.M.; Kodagali, V.N.
this core is higher than that of AAS 4/6. The tektite compositions from both locations fall withinthe microtektite compositions from the respective sites. This is seen clearly in the major oxide versus silica plots (Fig. 3).The soda potash contents... circle). Bottom right: Soda-potash plots of the 2 tektites (flangedbutton and tektite fragment) and microtektites from the 2 cores AAS 4/6 and AAS 22/3. Two layers of Australasian impact ejecta in the Indian Ocean? 1379they were discovered. Care...
Migration of radionuclide through two-layered geologic media
International Nuclear Information System (INIS)
Nakayama, Shinichi; Takagi, Ikuji; Nakai, Kunihiro; Higashi, Kunio
1984-01-01
For the safety assessment of geologic disposal of high-level radioactive wastes, an analytical solution was obtained for one-dimensional migration of radionuclide through two-layered geologic media without dispersion. By applying it to geologic media composed of granite and soil layers, the effect of interlayer boundary on the discharge profile of radionuclides in decay chains into biological environment is examined. The time-space profiles of radionuclides in the vicinity of interlayer boundary are much complicated as shown in the results of calculation. Those profiles in case that the groundwater flows through granite followed by soil are quite different from those in case that the groundwater flows through soil followed by granite. Each of complicated dependence of profiles on time and space can be physically explained. The characteristic profiles in the vicinity of interlayer boundary have not been discussed previously. Recently, numerical computer codes has been developed to apply to much more realistic geologic situations. However, the numerical accuracies of the codes are necessary to be confirmed. This is achieved by comparing computational results with results from analytical solutions. The analytical solution presented will serve as a bench-mark for numerical accuracy. (author)
Plume Splitting in a Two-layer Stratified Ambient Fluid
Ma, Yongxing; Flynn, Morris; Sutherland, Bruce
2017-11-01
A line-source plume descending into a two-layer stratified ambient fluid in a finite sized tank is studied experimentally. Although the total volume of ambient fluid is fixed, lower- and upper-layer fluids are respectively removed and added at a constant rate mimicking marine outfall through diffusers and natural and hybrid ventilated buildings. The influence of the plume on the ambient depends on the value of λ, defined as the ratio of the plume buoyancy to the buoyancy loss of the plume as it crosses the ambient interface. Similar to classical filling-box experiments, the plume can always reach the bottom of the tank if λ > 1 . By contrast, if λ < 1 , an intermediate layer eventually forms as a result of plume splitting. Eventually all of the plume fluid spreads within the intermediate layer. The starting time, tv, and the ending time, tt, of the transition process measured from experiments correlate with the value of λ. A three-layer ambient fluid is observed after transition, and the mean value of the measured densities of the intermediate layer fluid is well predicted using plume theory. Acknowledgments: Funding for this study was provided by NSERC.
Generalization and capacity of extensively large two-layered perceptrons
International Nuclear Information System (INIS)
Rosen-Zvi, Michal; Kanter, Ido; Engel, Andreas
2002-01-01
The generalization ability and storage capacity of a treelike two-layered neural network with a number of hidden units scaling as the input dimension is examined. The mapping from the input to the hidden layer is via Boolean functions; the mapping from the hidden layer to the output is done by a perceptron. The analysis is within the replica framework where an order parameter characterizing the overlap between two networks in the combined space of Boolean functions and hidden-to-output couplings is introduced. The maximal capacity of such networks is found to scale linearly with the logarithm of the number of Boolean functions per hidden unit. The generalization process exhibits a first-order phase transition from poor to perfect learning for the case of discrete hidden-to-output couplings. The critical number of examples per input dimension, α c , at which the transition occurs, again scales linearly with the logarithm of the number of Boolean functions. In the case of continuous hidden-to-output couplings, the generalization error decreases according to the same power law as for the perceptron, with the prefactor being different
Highly Anisotropic Conductors.
Wan, Jiayu; Song, Jianwei; Yang, Zhi; Kirsch, Dylan; Jia, Chao; Xu, Rui; Dai, Jiaqi; Zhu, Mingwei; Xu, Lisha; Chen, Chaoji; Wang, Yanbin; Wang, Yilin; Hitz, Emily; Lacey, Steven D; Li, Yongfeng; Yang, Bao; Hu, Liangbing
2017-11-01
Composite materials with ordered microstructures often lead to enhanced functionalities that a single material can hardly achieve. Many biomaterials with unusual microstructures can be found in nature; among them, many possess anisotropic and even directional physical and chemical properties. With inspiration from nature, artificial composite materials can be rationally designed to achieve this anisotropic behavior with desired properties. Here, a metallic wood with metal continuously filling the wood vessels is developed, which demonstrates excellent anisotropic electrical, thermal, and mechanical properties. The well-aligned metal rods are confined and separated by the wood vessels, which deliver directional electron transport parallel to the alignment direction. Thus, the novel metallic wood composite boasts an extraordinary anisotropic electrical conductivity (σ || /σ ⊥ ) in the order of 10 11 , and anisotropic thermal conductivity (κ || /κ ⊥ ) of 18. These values exceed the highest reported values in existing anisotropic composite materials. The anisotropic functionality of the metallic wood enables it to be used for thermal management applications, such as thermal insulation and thermal dissipation. The highly anisotropic metallic wood serves as an example for further anisotropic materials design; other composite materials with different biotemplates/hosts and fillers can achieve even higher anisotropic ratios, allowing them to be implemented in a variety of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
García-Osogobio, Sandra Minerva; Takahashi-Monroy, Takeshi; Velasco, Liliana; Gaxiola, Miguel; Sotres-Vega, Avelina; Santillán-Doherty, Patricio
2006-01-01
The safety of an intestinal anastomosis is usually measured by its complication rate, especially the incidence of anastomotic leakage. A wide variety of methods have been described to reestablish intestinal continuity including single-layer continuous or two-layer interrupted anastomosis. To evaluate if the single-layer continuous anastomosis using polygluconate is safer and reliable than two-layer interrupted anastomosis with chromic catgut and silk. A prospective, experimental, randomized and comparative analysis was conducted in 20 dogs. They were divided in two groups; group 1 underwent two-layer interrupted anastomosis and group 2 underwent sigle-layer continuous technique. Anastomoses were timed. Both groups were under observation. Anastomotic leakage, and other complications were evaluated. The animals were sacrified and the anastomosis was taken out together with 10 cm of colon on both sides of the anastomosis. Breaking strength, histologic evaluation and hydroxyproline determination were performed. Ten two-layer anastomosis and ten single-layer anastomosis were performed. A median of 25 minutes (range: 20-30 minutes) was required to construct the anastomoses in group 1 versus 20 minutes (range: 12-25 minutes) in group 2. All animals survived and no leakage was observed. Wound infection ocurred in four dogs (20%). Median breaking strength was 230 mm Hg in group 1 and 210 mm Hg in group 2. Hydroxyproline concentration was 8.94 mg/g in group 1 (range: 5.33-16.71) and 9.94 mg/g in group 2 (range: 2.96-21.87). There was no difference among groups about the inflammatory response evaluated by pathology. There was no statistical significance in any variable evaluated. CONCLUIONS: This study demonstrates that a single-layer continuous is similar in terms of safety to the two-layer technique, but because of its facility to perform, the single-layer technique could be superior.
A Two-Layer Method for Sedentary Behaviors Classification Using Smartphone and Bluetooth Beacons.
Cerón, Jesús D; López, Diego M; Hofmann, Christian
2017-01-01
Among the factors that outline the health of populations, person's lifestyle is the more important one. This work focuses on the caracterization and prevention of sedentary lifestyles. A sedentary behavior is defined as "any waking behavior characterized by an energy expenditure of 1.5 METs (Metabolic Equivalent) or less while in a sitting or reclining posture". To propose a method for sedentary behaviors classification using a smartphone and Bluetooth beacons considering different types of classification models: personal, hybrid or impersonal. Following the CRISP-DM methodology, a method based on a two-layer approach for the classification of sedentary behaviors is proposed. Using data collected from a smartphones' accelerometer, gyroscope and barometer; the first layer classifies between performing a sedentary behavior and not. The second layer of the method classifies the specific sedentary activity performed using only the smartphone's accelerometer and barometer data, but adding indoor location data, using Bluetooth Low Energy (BLE) beacons. To improve the precision of the classification, both layers implemented the Random Forest algorithm and the personal model. This study presents the first available method for the automatic classification of specific sedentary behaviors. The layered classification approach has the potential to improve processing, memory and energy consumption of mobile devices and wearables used.
Lam, Wai Sze Tiffany
Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for
Anisotropic contrast optical microscope.
Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M
2016-11-01
An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves
Energy Technology Data Exchange (ETDEWEB)
Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)
2017-07-15
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)
Dislocation Coupling-Induced Transition of Synchronization in Two-Layer Neuronal Networks
International Nuclear Information System (INIS)
Qin Hui-Xin; Ma Jun; Wang Chun-Ni; Jin Wu-Yin
2014-01-01
The mutual coupling between neurons in a realistic neuronal system is much complex, and a two-layer neuronal network is designed to investigate the transition of electric activities of neurons. The Hindmarsh—Rose neuron model is used to describe the local dynamics of each neuron, and neurons in the two-layer networks are coupled in dislocated type. The coupling intensity between two-layer networks, and the coupling ratio (Pro), which defines the percentage involved in the coupling in each layer, are changed to observe the synchronization transition of collective behaviors in the two-layer networks. It is found that the two-layer networks of neurons becomes synchronized with increasing the coupling intensity and coupling ratio (Pro) beyond certain thresholds. An ordered wave in the first layer is useful to wake up the rest state in the second layer, or suppress the spatiotemporal state in the second layer under coupling by generating target wave or spiral waves. And the scheme of dislocation coupling can be used to suppress spatiotemporal chaos and excite quiescent neurons. (interdisciplinary physics and related areas of science and technology)
Random-field effects on the order in the diluted weakly anisotropic antiferromagnet K2NixZn1-xF4
DEFF Research Database (Denmark)
Dikken, B. J.; Arts, A. F. M.; Wijn, H. W. de
1984-01-01
With the use of neutron diffraction, the effects of random fields are studied in the diluted quadratic-layer antiferromagnet K2NixZn1-xF4 for x=0.96, 0.85, and 0.75. Upon cooling in external fields as small as H∼0.1 T, the systems quench into a nonequilibrium domain state characterized...
Ultrasound evaluation of the cesarean scar: comparison between one- and two layer uterotomy closure
DEFF Research Database (Denmark)
Glavind, Julie; Madsen, Lene Duch; Uldbjerg, Niels
Objectives: To compare the residual myometrial thickness and the size of the cesarean scar defect after one- and two layer uterotomy closure. Methods: From July 2010 a continuous two-layer uterotomy closure technique replaced a continuous one-layer technique after cesarean delivery...... at the Department of Obstetrics and Gynecology at Aarhus University Hospital. A total of 149 consecutively invited women (68 women with one-layer and 81 women with two-layer closure) had their cesarean scar examined with 2D transvaginal sonography (TVS) 6-16 months post partum. Inclusion criteria were non......-pregnant women with one previous elective cesarean, no post-partum uterine infection or uterine re-operation, and no type 1 diabetes. Scar defect width, depth, and residual myometrial thickness were measured on the sagittal plane, and scar defect length was measured on the transverse plane. Results: The median...
Indian Academy of Sciences (India)
Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.
Anisotropic Concrete Compressive Strength
DEFF Research Database (Denmark)
Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao
2017-01-01
When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...
Free surface simulation of a two-layer fluid by boundary element method
Directory of Open Access Journals (Sweden)
Weoncheol Koo
2010-09-01
Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.
Spin transport in two-layer-CVD-hBN/graphene/hBN heterostructures
Gurram, M.; Omar, S.; Zihlmann, S.; Makk, P.; Li, Q. C.; Zhang, Y. F.; Schönenberger, C.; van Wees, B. J.
2018-01-01
We study room-temperature spin transport in graphene devices encapsulated between a layer-by-layer-stacked two-layer-thick chemical vapor deposition (CVD) grown hexagonal boron nitride (hBN) tunnel barrier, and a few-layer-thick exfoliated-hBN substrate. We find mobilities and spin-relaxation times comparable to that of SiO2 substrate-based graphene devices, and we obtain a similar order of magnitude of spin relaxation rates for both the Elliott-Yafet and D'Yakonov-Perel' mechanisms. The behavior of ferromagnet/two-layer-CVD-hBN/graphene/hBN contacts ranges from transparent to tunneling due to inhomogeneities in the CVD-hBN barriers. Surprisingly, we find both positive and negative spin polarizations for high-resistance two-layer-CVD-hBN barrier contacts with respect to the low-resistance contacts. Furthermore, we find that the differential spin-injection polarization of the high-resistance contacts can be modulated by dc bias from -0.3 to +0.3 V with no change in its sign, while its magnitude increases at higher negative bias. These features point to the distinctive spin-injection nature of the two-layer-CVD-hBN compared to the bilayer-exfoliated-hBN tunnel barriers.
Analysis of Steam Heating of a Two-Layer TBP/N-Paraffin/Nitric Acid Mixtures
International Nuclear Information System (INIS)
Laurinat, J.E.; Hassan, N.M.; Rudisill, T.S.; Askew, N.M.
1998-01-01
This report presents an analysis of steam heating of a two-layer tri-n-butyl phosphate (TBP)/n-paraffin-nitric acid mixture.The purpose of this study is to determine if the degree of mixing provided by the steam jet or by bubbles generated by the TBP/nitric acid reaction is sufficient to prevent a runaway reaction
Learning behavior and temporary minima of two-layer neural networks
Annema, Anne J.; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans
1994-01-01
This paper presents a mathematical analysis of the occurrence of temporary minima during training of a single-output, two-layer neural network, with learning according to the back-propagation algorithm. A new vector decomposition method is introduced, which simplifies the mathematical analysis of
A Two Layer Approach to the Computability and Complexity of Real Functions
DEFF Research Database (Denmark)
Lambov, Branimir Zdravkov
2003-01-01
We present a new model for computability and complexity of real functions together with an implementation that it based on it. The model uses a two-layer approach in which low-type basic objects perform the computation of a real function, but, whenever needed, can be complemented with higher type...
Locomotion based on a two-layers flow of magnetizable nanosuspensions
Energy Technology Data Exchange (ETDEWEB)
Zimmermann, K. [Faculty of Mechanical Engineering, Technische Universitaet Ilmenau, PF 10 05 65, 98684, Ilmenau (Germany)]. E-mail: klaus.zimmermann@tu-ilmenau.de; Zeidis, I. [Faculty of Mechanical Engineering, Technische Universitaet Ilmenau, PF 10 05 65, 98684, Ilmenau (Germany); Naletova, V.A. [Department of Mechanics and Mathematics, Moscow State University, Moscow 119992 (Russian Federation); Turkov, V.A. [Institute of Mechanics, Moscow State University, Michurinskii Pr. 1, Moscow, 119192 (Russian Federation); Bachurin, V.E. [Department of Mechanics and Mathematics, Moscow State University, Moscow 119992 (Russian Federation)
2005-04-15
The possibility of creating the viscous magnetizable fluid flow by means of a nonuniform alternate magnetic field is investigated. The two-layers flow of incompressible magnetizable fluids (nanosuspensions) in a magnetic field is studied within the framework of the viscous fluid model.
Locomotion based on a two-layers flow of magnetizable nanosuspensions
Zimmermann, K.; Zeidis, I.; Naletova, V. A.; Turkov, V. A.; Bachurin, V. E.
2005-04-01
The possibility of creating the viscous magnetizable fluid flow by means of a nonuniform alternate magnetic field is investigated. The two-layers flow of incompressible magnetizable fluids (nanosuspensions) in a magnetic field is studied within the framework of the viscous fluid model.
Two-layer-atmospheric blocking in a medium with high nonlinearity and lateral dispersion
Osman, M. S.; Abdel-Gawad, H. I.; El Mahdy, M. A.
2018-03-01
Herein, the extended coupled Kadomtsev-Petviashvili equation (CKPE) with lateral dispersion is investigated for studying the atmospheric blocking in two layers. A variety of new types of polynomial solutions for the CKPE is obtained using the unified method. Furthermore, we use the Hamiltonian systems with two degrees of freedom to discuss the stability of the obtained solutions through the bifurcation diagrams.
Analysis of Steam Heating of a Two-Layer TBP/N-Paraffin/Nitric Acid Mixtures
Energy Technology Data Exchange (ETDEWEB)
Laurinat, J.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Hassan, N.M.; Rudisill, T.S.; Askew, N.M.
1998-07-22
This report presents an analysis of steam heating of a two-layer tri-n-butyl phosphate (TBP)/n-paraffin-nitric acid mixture.The purpose of this study is to determine if the degree of mixing provided by the steam jet or by bubbles generated by the TBP/nitric acid reaction is sufficient to prevent a runaway reaction.
Anisotropic elliptic optical fibers
Kang, Soon Ahm
1991-05-01
The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.
Tunneling anisotropic magnetoresistance driven by magnetic phase transition.
Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F
2017-09-06
The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.
An anisotropic tertiary creep damage constitutive model for anisotropic materials
International Nuclear Information System (INIS)
Stewart, Calvin M.; Gordon, Ali P.; Ma, Young Wha; Neu, Richard W.
2011-01-01
When an anisotropic material is subject to creep conditions and a complex state of stress, an anisotropic creep damage behavior is observed. Previous research has focused on the anisotropic creep damage behavior of isotropic materials but few constitutive models have been developed for anisotropic creeping solids. This paper describes the development of a new anisotropic tertiary creep damage constitutive model for anisotropic materials. An advanced tensorial damage formulation is implemented which includes both material orientation relative to loading and the degree of creep damage anisotropy in the model. A variation of the Norton-power law for secondary creep is implemented which includes the Hill's anisotropic analogy. Experiments are conducted on the directionally-solidified bucket material DS GTD-111. The constitutive model is implemented in a user programmable feature (UPF) in ANSYS FEA software. The ability of the constitutive model to regress to the Kachanov-Rabotnov isotropic tertiary creep damage model is demonstrated through comparison with uniaxial experiments. A parametric study of both material orientation and stress rotation are conducted. Results indicate that creep deformation is modeled accurately; however an improved damage evolution law may be necessary. - Highlights: → The deformation of anisotropic creeping solid is directionally dependent. → Few constitutive models have been developed to deal with anisotropic behavior. → A transversely-isotropic nickel base superalloy, DS GTD-111, is studied. → A vector constitutive model based on the Kachanov-Rabotnov formulation is developed. → The new model accurately models deformation at various orientations.
Two layers LSTM with attention for multi-choice question answering in exams
Li, Yongbin
2018-03-01
Question Answering in Exams is typical question answering task that aims to test how accurately the model could answer the questions in exams. In this paper, we use general deep learning model to solve the multi-choice question answering task. Our approach is to build distributed word embedding of question and answers instead of manually extracting features or linguistic tools, meanwhile, for improving the accuracy, the external corpus is introduced. The framework uses a two layers LSTM with attention which get a significant result. By contrast, we introduce the simple long short-term memory (QA-LSTM) model and QA-LSTM-CNN model and QA-LSTM with attention model as the reference. Experiment demonstrate superior performance of two layers LSTM with attention compared to other models in question answering task.
Stryukov, D. V.; Mukhortov, V. M.; Golovko, Yu. I.; Biryukov, S. V.
2018-01-01
The structural properties of one- and two-layer heterostructures based on the barium-strontium titanate of various compositions deposited by the Frank-Van der Merve on a magnesium oxide substrate have been studied. The heterostructures have been prepared by the rf sputtering of the stoichiometric ceramic targets in a Plazma 50 SE deposition system. The principal difference of this method of deposition from known analogs is that the growth of single-crystal films occurs from a disperse oxide phase formed in the plasma of a high-current rf discharge during the ceramic target sputtering at the cluster level. The peculiarities of the manifestation of the ferroelectric state in the two-layer heterostructures when changing the sequence order of the films with various compositions of barium-strontium titanate.
Magnetic Fluid Deformable Mirror with a Two-Layer Layout of Actuators †
Directory of Open Access Journals (Sweden)
Zhizheng Wu
2017-03-01
Full Text Available In this paper, a new type of magnetic fluid deformable mirror (MFDM with a two-layer layout of actuators is proposed to improve the correction performance for full-order aberrations with a high spatial resolution. The shape of the magnetic fluid surface is controlled by the combined magnetic field generated by the Maxwell coil and the two-layer array of miniature coils. The upper-layer actuators which have a small size and high density are used to compensate for small-amplitude high-order aberrations and the lower-layer actuators which have a big size and low density are used to correct large-amplitude low-order aberrations. The analytical model of this deformable mirror is established and the aberration correction performance is verified by the experimental results. As a new kind of wavefront corrector, the MFDM has major advantages such as large stroke, low cost, and easy scalability and fabrication.
Using nanofluids in enhancing the performance of a novel two-layer solar pond
International Nuclear Information System (INIS)
Al-Nimr, Moh'd A.; Al-Dafaie, Ameer Mohammed Abbas
2014-01-01
A novel two-layer nanofluid solar pond is introduced. A mathematical model that describes the thermal performance of the pond has been developed and solved. The upper layer of the pond is made of mineral oil and the lower layer is made of nanofluid. Nanofluid is known to be an excellent solar radiation absorber, and this has been tested and verified using the mathematical model. Using nanofluid will increase the extinction coefficient of the lower layer and consequently will improve the thermal efficiency and the storage capacity of the pond. The effects of other parameters have been also investigated. - Highlights: • A novel two-layer solar pond is discussed. • Nanofluid as thermal energy storage is used in this pond. • A mathematical model is developed to predict the performance of the pond. • The mathematical model is solved using Green's function. • The pond is simulated for different values of governing parameter
Estimation of apparent soil resistivity for two-layer soil structure
Energy Technology Data Exchange (ETDEWEB)
Nassereddine, M.; Rizk, J.; Nagrial, M.; Hellany, A. [School of Computing, Engineering and Mathematics, University of Western Sydney (Australia)
2013-07-01
High voltage (HV) earthing design is one of the key elements when it comes to safety compliance of a system. High voltage infrastructure exposes workers and people to unsafe conditions. The soil structure plays a vital role in determining the allowable and actual step/touch voltage. This paper presents vital information when working with two-layer soil structure. It shows the process as to when it is acceptable to use a single layer instead of a two-layer structure. It also discusses the simplification of the soil structure approach depending on the reflection coefficient. It introduces the reflection coefficient K interval which determines if single layer approach is acceptable. Multiple case studies are presented to address the new approach and its accuracy.
Material Induced Anisotropic Damage in DP600
Niazi, Muhammad Sohail; Wisselink, H.H.; Meinders, Vincent T.; van den Boogaard, Antonius H.
2013-01-01
Plasticity induced damage development in metals is anisotropic by nature. The anisotropy in damage is driven by two different phenomena; anisotropic deformation state i.e. Load Induced Anisotropic Damage (LIAD) and anisotropic microstructure i.e. Material Induced Anisotropic Damage (MIAD). The
Particle-bearing currents in uniform density and two-layer fluids
Sutherland, Bruce R.; Gingras, Murray K.; Knudson, Calla; Steverango, Luke; Surma, Christopher
2018-02-01
Lock-release gravity current experiments are performed to examine the evolution of a particle bearing flow that propagates either in a uniform-density fluid or in a two-layer fluid. In all cases, the current is composed of fresh water plus micrometer-scale particles, the ambient fluid is saline, and the current advances initially either over the surface as a hypopycnal current or at the interface of the two-layer fluid as a mesopycnal current. In most cases the tank is tilted so that the ambient fluid becomes deeper with distance from the lock. For hypopycnal currents advancing in a uniform density fluid, the current typically slows as particles rain out of the current. While the loss of particles alone from the current should increase the current's buoyancy and speed, in practice the current's speed decreases because the particles carry with them interstitial fluid from the current. Meanwhile, rather than settling on the sloping bottom of the tank, the particles form a hyperpycnal (turbidity) current that advances until enough particles rain out that the relatively less dense interstitial fluid returns to the surface, carrying some particles back upward. When a hypopycnal current runs over the surface of a two-layer fluid, the particles that rain out temporarily halt their descent as they reach the interface, eventually passing through it and again forming a hyperpycnal current. Dramatically, a mesopycnal current in a two-layer fluid first advances along the interface and then reverses direction as particles rain out below and fresh interstitial fluid rises above.
TWO-LAYER SECURE PREVENTION MECHANISM FOR REDUCING E-COMMERCE SECURITY RISKS
Sen-Tarng Lai
2015-01-01
E-commerce is an important information system in the network and digital age. However, the network intrusion, malicious users, virus attack and system security vulnerabilities have continued to threaten the operation of the e-commerce, making e-commerce security encounter serious test. How to improve ecommerce security has become a topic worthy of further exploration. Combining routine security test and security event detection procedures, this paper proposes the Two-Layer Secure ...
On two-layer models and the similarity functions for the PBL
Brown, R. A.
1982-01-01
An operational Planetary Boundary Layer model which employs similarity principles and two-layer patching to provide state-of-the-art parameterization for the PBL flow is used to study the popularly used similarity functions, A and B. The expected trends with stratification are shown. The effects of baroclinicity, secondary flow, humidity, latitude, surface roughness variation and choice of characteristic height scale are discussed.
Forced Vibrations of a Two-Layer Orthotropic Shell with an Incomplete Contact Between Layers
Ghulghazaryan, L. G.; Khachatryan, L. V.
2018-01-01
Forced vibrations of a two-layer orthotropic shell, with incomplete contact conditions between layers, when the upper face of the shell is free and the lower one is subjected to a dynamic action are considered. By an asymptotic method, the solution of the corresponding dynamic equations and correlations of a 3D problem of elasticity theory is obtained. The amplitudes of forced vibrations are determined, and resonance conditions are established.
Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches
Li, Hailong; Boufadel, Michel C.
2010-02-01
Oil spilled from the tanker Exxon Valdez in 1989 (refs 1, 2) persists in the subsurface of gravel beaches in Prince William Sound, Alaska. The contamination includes considerable amounts of chemicals that are harmful to the local fauna. However, remediation of the beaches was stopped in 1992, because it was assumed that the disappearance rate of oil was large enough to ensure a complete removal of oil within a few years. Here we present field data and numerical simulations of a two-layered beach with a small freshwater recharge in the contaminated area, where a high-permeability upper layer is underlain by a low-permeability lower layer. We find that the upper layer temporarily stored the oil, while it slowly and continuously filled the lower layer wherever the water table dropped below the interface of the two layers, as a result of low freshwater recharge from the land. Once the oil entered the lower layer, it became entrapped by capillary forces and persisted there in nearly anoxic conditions that are a result of the tidal hydraulics in the two-layered beaches. We suggest that similar dynamics could operate on tidal gravel beaches around the world, which are particularly common in mid- and high-latitude regions, with implications for locating spilled oil and for its biological remediation.
Qualitative experiment of unsaturated water vadose through two-layer porous media
International Nuclear Information System (INIS)
Wang Zhiming; Jiang Hong; Yao Laigen; Li Shushen
2003-01-01
The method and main results of qualitative experiment of unsaturated water vadose through two-layer porous media is introduced in this paper. Two types of compositions of porous media, i.e. coarse-fine quartz sand (Type I) and quartz sand-loess (Type II), were used for the experiment. The experiment box is made of glass. And tracers used for the experiment are Rhodamine B and Eosin Y. The vadose path and expansion of tracers through two-layer porous media were observed under artificial sprinkling from top surface for 'top release' of Type I and II as well as for 'middle release' of Type II, respectively. The detouring flow phenomenon of unsaturated water through two-layer porous media is observed, whether they are made up of coarse and fine quartz sand or quartz sand and loess, even though the coarse particle layer is very thin. An obvious space is formed at the lower part of the coarse particle layer at longer time of releasing tracer from the top. And a narrow tracer zone is formed at the lower part of coarse particle layer for releasing tracer from mixed tracer and quartz sand layer in the middle of loess. The complementary scenario is observed for both mentioned above. Moreover, the tracer, which is initially put in coarse particle layer within loess, expanded up and down into loess and the expansion extent increases with retention period under no water sprinkling
Anisotropic Concrete Compressive Strength
DEFF Research Database (Denmark)
Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao
2017-01-01
When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...... correlation to the curing time. The experiments show no correlation between the anisotropy and the curing time and a small strength difference between the two drilling directions. The literature shows variations on which drilling direction that is strongest. Based on a Monto Carlo simulation of the expected...
Transient anisotropic magnetic field calculation
International Nuclear Information System (INIS)
Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan
2006-01-01
For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement
Mass transfer model for two-layer TBP oxidation reactions: Revision 1
International Nuclear Information System (INIS)
Laurinat, J.E.
1994-01-01
To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the Canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. Bubbles containing reaction products enhance the rate of transfer of water from the aqueous layer to the organic layer. These bubbles are generated by the oxidation of TBP and its reaction products in the organic layer and by the oxidation of butanol in the aqueous layer. Butanol is formed by the hydrolysis of TBP in the organic layer. For aqueous-layer bubbling to occur, butanol must transfer into the aqueous layer. Consequently, the rate of oxidation and bubble generation in the aqueous layer strongly depends on the rate of transfer of butanol from the organic to the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments
Theory of Nonlinear Guided Electromagnetic Waves in a Plane Two-Layered Dielectric Waveguide
Directory of Open Access Journals (Sweden)
Valeria Yu. Kurseeva
2017-01-01
Full Text Available Propagation of transverse electric electromagnetic waves in a homogeneous plane two-layered dielectric waveguide filled with a nonlinear medium is considered. The original wave propagation problem is reduced to a nonlinear eigenvalue problem for an equation with discontinuous coefficients. The eigenvalues are propagation constants (PCs of the guided waves that the waveguide supports. The existence of PCs that do not have linear counterparts and therefore cannot be found with any perturbation method is proven. PCs without linear counterparts correspond to a novel propagation regime that arises due to the nonlinearity. Numerical results are also presented; the comparison between linear and nonlinear cases is made.
Two-layer synchronized ternary quantum-dot cellular automata wire crossings
2012-01-01
Quantum-dot cellular automata are an interesting nanoscale computing paradigm. The introduction of the ternary quantum-dot cell enabled ternary computing, and with the recent development of a ternary functionally complete set of elementary logic primitives and the ternary memorizing cell design of complex processing structures is becoming feasible. The specific nature of the ternary quantum-dot cell makes wire crossings one of the most problematic areas of ternary quantum-dot cellular automata circuit design. We hereby present a two-layer wire crossing that uses a specific clocking scheme, which ensures the crossed wires have the same effective delay. PMID:22507371
Theoretical properties of the global optimizer of two layer neural network
Boob, Digvijay; Lan, Guanghui
2017-01-01
In this paper, we study the problem of optimizing a two-layer artificial neural network that best fits a training dataset. We look at this problem in the setting where the number of parameters is greater than the number of sampled points. We show that for a wide class of differentiable activation functions (this class involves "almost" all functions which are not piecewise linear), we have that first-order optimal solutions satisfy global optimality provided the hidden layer is non-singular. ...
SH-TM mathematical analogy for the two-layer case. A magnetotellurics application
Directory of Open Access Journals (Sweden)
J. Carcione
2017-02-01
Full Text Available The same mathematical formalism of the wave equation can be used to describe anelastic and electromagnetic wave propagation. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of two layers, considering the presence of anisotropy and attenuation -- viscosity in the viscoelastic case and resistivity in the electromagnetic case. The analogy is illustrated for SH (shear-horizontally polarised and TM (transverse-magnetic waves. In particular, we illustrate examples related to the magnetotelluric method applied to geothermal systems and consider the effects of anisotropy. The solution is tested with the classical solution for stratified isotropic media.
Pairing susceptibility of iron-based superconductors within a two-layer Hubbard model
Wei, Dan; Wang, Jingyao; Wu, Yang; Liang, Ying; Ma, Tianxing
2017-12-01
By using the determinant quantum Monte Carlo method, we studied the dominant pairing susceptibility of iron-based superconductors within an extended Hubbard model, which describes the underlying electronic structure of both iron pnictides and iron chalcogenides. The extended Hubbard model is constructed by two iron layers, each of which forms two sublattices on a square structure. Although the coupling between the two layers has different effects on the behavior of pairings in iron pnictides and iron chalcogenides, our non-biased numerical simulations reveal that the pairing with Sxy symmetry dominates over the studied parameter for both materials.
Directory of Open Access Journals (Sweden)
Yang Le
2017-01-01
Full Text Available Fiber reinforced anisotropic material abounds in biological world. It has been demonstrated in previous theoretical and experimental works that growth of biological soft tubular tissue plays a significant role in morphogenesis and pathology. Here we investigate growth-induced buckling of anisotropic cylindrical tissue, focusing on the effects of type of growth(constraint/unconstraint, isotropic/anisotropic, fiber property(orientation, density and strength, geometry and any interaction between these factors. We studied one-layer and two-layer models and obtained a rich spectrum of results. For one-layer model, we demonstrate that circumferential fiber orientation has a consistent stabilizing effect under various scenarios of growth. Higher fiber density has a destabilizing effect by disabling high-mode buckling. For two-layer model, we found that critical buckling strain at inner boundary is an invariant under same isotropic growth rate ratio between inner/ outer layer(g1 /g0. Then we applied our model to wound healing and illustrate the effects of skin residual stress, fiber property, proliferation region width and wound size on the wound edge stability. We conclude that fiber-reinforcement is an important factor to consider when investigating growth induced instability of anisotropic soft tissue.
Yang, Le; Witten, Tarynn M.; Pidaparti, Ramana M.
2017-01-01
Fiber reinforced anisotropic material abounds in biological world. It has been demonstrated in previous theoretical and experimental works that growth of biological soft tubular tissue plays a significant role in morphogenesis and pathology. Here we investigate growth-induced buckling of anisotropic cylindrical tissue, focusing on the effects of type of growth(constraint/unconstraint, isotropic/anisotropic), fiber property(orientation, density and strength), geometry and any interaction between these factors. We studied one-layer and two-layer models and obtained a rich spectrum of results. For one-layer model, we demonstrate that circumferential fiber orientation has a consistent stabilizing effect under various scenarios of growth. Higher fiber density has a destabilizing effect by disabling high-mode buckling. For two-layer model, we found that critical buckling strain at inner boundary is an invariant under same isotropic growth rate ratio between inner/ outer layer(g1 /g0). Then we applied our model to wound healing and illustrate the effects of skin residual stress, fiber property, proliferation region width and wound size on the wound edge stability. We conclude that fiber-reinforcement is an important factor to consider when investigating growth induced instability of anisotropic soft tissue.
Thermodynamics of anisotropic branes
Energy Technology Data Exchange (ETDEWEB)
Ávila, Daniel [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Fernández, Daniel [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Patiño, Leonardo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)
2016-11-22
We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a ‘Minkowski embedding’, in which they lie outside of the horizon, and a ‘black hole embedding’, in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.
Directory of Open Access Journals (Sweden)
Qiong-Tao Xie
2014-06-01
Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.
Modelling of fast jet formation under explosion collision of two-layer alumina/copper tubes
Directory of Open Access Journals (Sweden)
I Balagansky
2017-09-01
Full Text Available Under explosion collapse of two-layer tubes with an outer layer of high-modulus ceramics and an inner layer of copper, formation of a fast and dense copper jet is plausible. We have performed a numerical simulation of the explosion collapse of a two-layer alumina/copper tube using ANSYS AUTODYN software. The simulation was performed in a 2D-axis symmetry posting on an Eulerian mesh of 3900x1200 cells. The simulation results indicate two separate stages of the tube collapse process: the nonstationary and the stationary stage. At the initial stage, a non-stationary fragmented jet is moving with the velocity of leading elements up to 30 km/s. The collapse velocity of the tube to the symmetry axis is about 2 km/s, and the pressure in the contact zone exceeds 700 GPa. During the stationary stage, a dense jet is forming with the velocity of 20 km/s. Temperature of the dense jet is about 2000 K, jet failure occurs when the value of effective plastic deformation reaches 30.
Nonlinear internal wave at the interface of two-layer liquid due to a moving hydrofoil
Wang, Zhen; Wu, Changhong; Zou, Li; Wang, Qianxi; Ding, Qi
2017-07-01
This paper is concerned with the internal wave at the interface of two layers of liquids due to a hydrofoil in the lower layer liquid. The two-layer fluid is assumed moving parallel to the interface at different velocities. The stratified flow is modeled based on the incompressible potential flow theory, with the nonlinear boundary conditions at the interface. Boundary integral equations are formulated for the fully nonlinear interfacial wave generated by the hydrofoil. The numerical model results in a set of nonlinear algebra equations, which are solved using the quasi-Newton method. We show that the quasi-Newton method is more efficient than Newton's method, which is often used for solving these types of equations in the literature. The wave profiles were analyzed in terms of the location and thickness of the hydrofoil, the Froude number, and the ratio of the densities of the two fluids. The computations show that the interfacial wave amplitude showed a trend first of increase and then of decrease with the distance between the hydrofoil and the still interface.
Photoacoustic investigation of the effective diffusivity of two-layer semiconductors
Energy Technology Data Exchange (ETDEWEB)
Medina, J; Gurevich, Yu. G; Logvinov G, N; Rodriguez, P; Gonzalez de la Cruz, G. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)
2001-08-01
In this work, the problem of the effective thermal diffusivity of two-layer systems is investigated using the photoacoustic spectroscopy. The experimental results are examined in terms of the effective thermal parameters of the composite system determined from an homogeneous material which produces the same physical response under an external perturbation in the detector device. It is shown, that the effective thermal conductivity is not symmetric under exchange of the two layers of the composite; i.e., the effective thermal parameters depend upon which layer is illuminated in the photoacoustic experiments. Particular emphasis is given to the characterization of the interface thermal conductivity between the layer-system. [Spanish] En el presente trabajo se utiliza la espectroscopia fotoacustica para medir la difusividad termica de un sistema de dos capas. Los resultados experimentales son analizados en terminos de los parametros termicos efectivos determinados a partir de un material homogeneo, el cual produce la misma respuesta fisica bajo una perturbacion externa. Se puso particular enfasis en la caracterizacion de los efectos de interfase en el flujo de calor en el sistema de dos capas. Los resultados experimentales se comparan con el modelo teorico propuesto en este trabajo.
Two-Layer Tight Frame Sparsifying Model for Compressed Sensing Magnetic Resonance Imaging
Directory of Open Access Journals (Sweden)
Shanshan Wang
2016-01-01
Full Text Available Compressed sensing magnetic resonance imaging (CSMRI employs image sparsity to reconstruct MR images from incoherently undersampled K-space data. Existing CSMRI approaches have exploited analysis transform, synthesis dictionary, and their variants to trigger image sparsity. Nevertheless, the accuracy, efficiency, or acceleration rate of existing CSMRI methods can still be improved due to either lack of adaptability, high complexity of the training, or insufficient sparsity promotion. To properly balance the three factors, this paper proposes a two-layer tight frame sparsifying (TRIMS model for CSMRI by sparsifying the image with a product of a fixed tight frame and an adaptively learned tight frame. The two-layer sparsifying and adaptive learning nature of TRIMS has enabled accurate MR reconstruction from highly undersampled data with efficiency. To solve the reconstruction problem, a three-level Bregman numerical algorithm is developed. The proposed approach has been compared to three state-of-the-art methods over scanned physical phantom and in vivo MR datasets and encouraging performances have been achieved.
Reverse-feeding effect of epidemic by propagators in two-layered networks
International Nuclear Information System (INIS)
Wu Dayu; Zhao Yanping; Zheng Muhua; Zhou Jie; Liu Zonghua
2016-01-01
Epidemic spreading has been studied for a long time and is currently focused on the spreading of multiple pathogens, especially in multiplex networks. However, little attention has been paid to the case where the mutual influence between different pathogens comes from a fraction of epidemic propagators, such as bisexual people in two separated groups of heterosexual and homosexual people. We here study this topic by presenting a network model of two layers connected by impulsive links, in contrast to the persistent links in each layer. We let each layer have a distinct pathogen and their interactive infection is implemented by a fraction of propagators jumping between the corresponding pairs of nodes in the two layers. By this model we show that (i) the propagators take the key role to transmit pathogens from one layer to the other, which significantly influences the stabilized epidemics; (ii) the epidemic thresholds will be changed by the propagators; and (iii) a reverse-feeding effect can be expected when the infective rate is smaller than its threshold of isolated spreading. A theoretical analysis is presented to explain the numerical results. (paper)
Reverse-feeding effect of epidemic by propagators in two-layered networks
Dayu, Wu; Yanping, Zhao; Muhua, Zheng; Jie, Zhou; Zonghua, Liu
2016-02-01
Epidemic spreading has been studied for a long time and is currently focused on the spreading of multiple pathogens, especially in multiplex networks. However, little attention has been paid to the case where the mutual influence between different pathogens comes from a fraction of epidemic propagators, such as bisexual people in two separated groups of heterosexual and homosexual people. We here study this topic by presenting a network model of two layers connected by impulsive links, in contrast to the persistent links in each layer. We let each layer have a distinct pathogen and their interactive infection is implemented by a fraction of propagators jumping between the corresponding pairs of nodes in the two layers. By this model we show that (i) the propagators take the key role to transmit pathogens from one layer to the other, which significantly influences the stabilized epidemics; (ii) the epidemic thresholds will be changed by the propagators; and (iii) a reverse-feeding effect can be expected when the infective rate is smaller than its threshold of isolated spreading. A theoretical analysis is presented to explain the numerical results. Project supported by the National Natural Science Foundation of China (Grant Nos. 11135001, 11375066, and 11405059) and the National Basic Key Program of China (Grant No. 2013CB834100).
Quantitative experiment of unsaturated water vadose through two-layer porous media
International Nuclear Information System (INIS)
Wang Zhiming; Yao Laigen; Jiang Hong; Li Shushen
2003-01-01
It is of very important significance to understand unsaturated water vadose through two-layer porous media in design of cover of near surface repository of radioactive waste. The device, method and results of the quantitative experiment of unsaturated water vadose through two-layer porous media, made up of loess (fine particle layer) and quartz sand (coarse particle layer), are introduced in this paper. It can be seen from the experiment that the detouring flow phenomenon of infiltration water occurred when the infiltrated unsaturated water from loess encounters quartz sand layer even though the quartz sand layer is very thin. The relative detouring flow amount decreases with increase of sprinkling rate and increases with thickness of quartz sand layer. Moreover, it is found from the experiment that some of detouring flow water moves close to lower surface of the quartz sand layer. From the deduced results by this experiment, it can be seen that the thickness of quartz sand layer, by which detouring flow do not happen, is less than or equal to 1 mm and the sprinkling rate, at which relative detouring flow amount is up to 100%, is less than 5 mm/d when thickness of the quartz sand layer is greater than or equal to 2 mm
Multiple states and hysteresis in a two-layer loop current type system
Kuehl, J.; Sheremet, V.
2017-12-01
Rotating table experiments are considered of a two-layer loop current type or gap-leaping system. Such experiments are representative of oceanic regions including the Kuroshio current crossing the Luzon Strait, the Gulf of Mexico Loop Current, the Northeast Chanel of the Gulf of Maine where Scotian shelf water leaps directly from Browns bank to Georges Bank and more. Systems such as these are known to admit two dominant states: leaping across the gap or penetrating into the gap forming a loop current. Which state the system will assume and when transitions between states will occur are open problems. We show that such systems admit multiple steady states with hysteresis when the strength of the current is varied. When the state of the system is viewed in a parameter space representing inertia and vorticity constraint, the system is found to be characterized by a cusp topology of solutions. The existence of such dynamics in two-layer quasi-geostrophic systems has significant implications for oceanographic predictability.
Temporal evolution of periodic disturbances in two-layer Couette flow
Energy Technology Data Exchange (ETDEWEB)
Coward, A.V.; Renardy, M. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States); Richards, J.R. [Du Pont Central Research and Development, Wilmington, DE (United States)] [and others
1997-04-01
The time-dependent motion for a two-layer Couette flow consisting of fluids of different viscosities is simulated numerically by using an algorithm based on the Volume of Fluid (VOF) method. Interfacial tension is included via a continuous surface force (CSF) algorithm. The algorithm is fine-tuned to handle the motion which is driven by a shear-induced interfacial instability due to the viscosity stratification. The code is validated against linear theory. Two proto-typical situations are presented, one at a moderately high Reynolds number and the other at a lower Reynolds number. The initial condition is seeded with the eigenmode of largest growth rate, with amplitudes that are varied from those that capture the linear regime to larger values for nonlinear regimes. Issues of free surface advection and viscosity interpolation are discussed. The onset of nonlinearity occurs at the interface and is quadratic, followed by wave steepening. 33 refs., 14 figs., 2 tabs.
Synthesis of PVA/PVP hydrogels having two-layer by radiation and their physical properties
Energy Technology Data Exchange (ETDEWEB)
Park, K.R.; Nho, Y.C
2003-06-01
In these studies, two-layer hydrogels which consisted of polyurethane membrane and a mixture of polyvinyl alcohol(PVA)/poly-N-vinylpyrrolidone(PVP)/glycerin/chitosan were made for the wound dressing. Polyurethane was dissolved in solvent, the polyurethane solution was poured on the mould, and then dried to make the thin membrane. Hydrophilic polymer solutions were poured on the polyurethane membranes, they were exposed to gamma irradiation or two steps of 'freezing and thawing' and gamma irradiation doses to make the hydrogels. The physical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the hydrogels for wound dressing. The physical properties of hydrogels such as gelation and gel strength was greatly improved when polyurethane membrane was used as a covering layer of hydrogel, and the evaporation speed of water in hydrogel was reduced.
Two-Layer 16 Tesla Cosθ Dipole Design for the FCC
Energy Technology Data Exchange (ETDEWEB)
Holik, Eddie Frank [Fermilab; Ambrosio, Giorgio [Fermilab; Apollinari, G. [Fermilab
2018-02-13
The Future Circular Collider or FCC is a study aimed at exploring the possibility to reach 100 TeV total collision energy which would require 16 tesla dipoles. Upon the conclusion of the High Luminosity Upgrade, the US LHC Accelerator Upgrade Pro-ject in collaboration with CERN will have extensive Nb3Sn magnet fabrication experience. This experience includes robust Nb3Sn conductor and insulation scheming, 2-layer cos2θ coil fabrication, and bladder-and-key structure and assembly. By making im-provements and modification to existing technology the feasibility of a two-layer 16 tesla dipole is investigated. Preliminary designs indicate that fields up to 16.6 tesla are feasible with conductor grading while satisfying the HE-LHC and FCC specifications. Key challenges include accommodating high-aspect ratio conductor, narrow wedge design, Nb3Sn conductor grading, and especially quench protection of a 16 tesla device.
Numerical Analysis of the Influence of Fibre Orientations in a two-layered Biomimetic Flapping Wing
Directory of Open Access Journals (Sweden)
Rayhan Saiaf Bin
2017-01-01
Full Text Available A numerical study was carried out to investigate the effects of fibre orientation angles in an adopted biomimetic flapping wing having two-layered Carbon/Epoxy Composite T300/5208. The purpose of this paper is to understand how different orientation angles with different combinations affect the stresses of a flapping-wing. One flapping cycle was divided into twelve segments and both maximum stress and deformation were calculated for all the segments. The results revealed that, the maximum stress was produced in [0/-45] combination, where the least was found for [45/0]. For all the simulated wings, deformation was found less than 1.8 mm. ANSYS DesignModeler and Static Structural was used to design and perform structural analysis. The findings are helpful in answering why insect wings are so impeccable, thus providing a possibility of improving the design of flapping-wing aerial vehicles.
A Two-Layer Mathematical Modelling of Drug Delivery to Biological Tissues
Chakravarty, Koyel; Dalal, D. C.
2016-10-01
Local drug delivery has received much recognition in recent years, yet it is still unpredictable how drug efficacy depends on physicochemical properties and delivery kinetics. The purpose of the current study is to provide a useful mathematical model for drug release from a drug delivery device and consecutive drug transport in biological tissue, thereby aiding the development of new therapeutic drug by a systemic approach. In order to study the complete process, a two-layer spatio-temporal model depicting drug transport between the coupled media is presented. Drug release is described by considering solubilisation dynamics of drug particle, diffusion of the solubilised drug through porous matrix and also some other processes like reversible dissociation / recrystallization, drug particle-receptor binding and internalization phenomena. The model has led to a system of partial differential equations describing the important properties of drug kinetics. This model contributes towards the perception of the roles played by diffusion, mass-transfer, particle binding and internalization parameters.
Sparse/DCT (S/DCT) two-layered representation of prediction residuals for video coding.
Kang, Je-Won; Gabbouj, Moncef; Kuo, C-C Jay
2013-07-01
In this paper, we propose a cascaded sparse/DCT (S/DCT) two-layer representation of prediction residuals, and implement this idea on top of the state-of-the-art high efficiency video coding (HEVC) standard. First, a dictionary is adaptively trained to contain featured patterns of residual signals so that a high portion of energy in a structured residual can be efficiently coded via sparse coding. It is observed that the sparse representation alone is less effective in the R-D performance due to the side information overhead at higher bit rates. To overcome this problem, the DCT representation is cascaded at the second stage. It is applied to the remaining signal to improve coding efficiency. The two representations successfully complement each other. It is demonstrated by experimental results that the proposed algorithm outperforms the HEVC reference codec HM5.0 in the Common Test Condition.
The Rayleigh-Taylor instability in a self-gravitating two-layer viscous sphere
Mondal, Puskar; Korenaga, Jun
2018-03-01
The dispersion relation of the Rayleigh-Taylor instability in the spherical geometry is of profound importance in the context of the Earth's core formation. Here we present a complete derivation of this dispersion relation for a self-gravitating two-layer viscous sphere. Such relation is, however, obtained through the solution of a complex transcendental equation, and it is difficult to gain physical insights directly from the transcendental equation itself. We thus also derive an empirical formula to compute the growth rate, by combining the Monte Carlo sampling of the relevant model parameter space with linear regression. Our analysis indicates that the growth rate of Rayleigh-Taylor instability is most sensitive to the viscosity of inner layer in a physical setting that is most relevant to the core formation.
Central-Upwind Schemes for Two-Layer Shallow Water Equations
Kurganov, Alexander
2009-01-01
We derive a second-order semidiscrete central-upwind scheme for one- and two-dimensional systems of two-layer shallow water equations. We prove that the presented scheme is well-balanced in the sense that stationary steady-state solutions are exactly preserved by the scheme and positivity preserving; that is, the depth of each fluid layer is guaranteed to be nonnegative. We also propose a new technique for the treatment of the nonconservative products describing the momentum exchange between the layers. The performance of the proposed method is illustrated on a number of numerical examples, in which we successfully capture (quasi) steady-state solutions and propagating interfaces. © 2009 Society for Industrial and Applied Mathematics.
Exposure buildup factors for a cobalt-60 point isotropic source for single and two layer slabs
International Nuclear Information System (INIS)
Chakarova, R.
1992-01-01
Exposure buildup factors for point isotropic cobalt-60 sources are calculated by the Monte Carlo method with statistical errors ranging from 1.5 to 7% for 1-5 mean free paths (mfp) thick water and iron single slabs and for 1 and 2 mfp iron layers followed by water layers 1-5 mfp thick. The computations take into account Compton scattering. The Monte Carlo data for single slab geometries are approximated by Geometric Progression formula. Kalos's formula using the calculated single slab buildup factors may be applied to reproduce the data for two-layered slabs. The presented results and discussion may help when choosing the manner in which the radiation field gamma irradiation units will be described. (author)
Modified two-layer social force model for emergency earthquake evacuation
Zhang, Hao; Liu, Hong; Qin, Xin; Liu, Baoxi
2018-02-01
Studies of crowd behavior with related research on computer simulation provide an effective basis for architectural design and effective crowd management. Based on low-density group organization patterns, a modified two-layer social force model is proposed in this paper to simulate and reproduce a group gathering process. First, this paper studies evacuation videos from the Luan'xian earthquake in 2012, and extends the study of group organization patterns to a higher density. Furthermore, taking full advantage of the strength in crowd gathering simulations, a new method on grouping and guidance is proposed while using crowd dynamics. Second, a real-life grouping situation in earthquake evacuation is simulated and reproduced. Comparing with the fundamental social force model and existing guided crowd model, the modified model reduces congestion time and truly reflects group behaviors. Furthermore, the experiment result also shows that a stable group pattern and a suitable leader could decrease collision and allow a safer evacuation process.
Initial stresses in two-layer metal domes due to imperfections of their production and assemblage
Directory of Open Access Journals (Sweden)
Lebed Evgeniy Vasil’evich
2015-04-01
Full Text Available The process of construction of two-layer metal domes is analyzed to illustrate the causes of initial stresses in the bars of their frames. It has been noticed that it is impossible to build such structures with ideal geometric parameters because of imperfections caused by objective reasons. These imperfections cause difficulties in the process of connection of the elements in the joints. The paper demonstrates the necessity of fitting operations during assemblage that involve force fitting and yield initial stresses due to imperfections. The authors propose a special method of computer modeling of enforced elimination of possible imperfections caused by assemblage process and further confirm the method by an analysis of a concrete metal dome.
Physics of thermal waves in homogeneous and inhomogeneous (two-layer) samples
Energy Technology Data Exchange (ETDEWEB)
Gurevich, Yuriy G.; Cruz, Gerardo G. de la [Departamento de Fisica, CINVESTAV del I.P.N., Apartado Postal 14-740, 073000, D.F. (Mexico); Logvinov, Georgiy N. [Instituto Politecnico Nacional, Seccion de Estudios de Posgrado e Investigacion, ESIME Culhuacan, Av. Santa Ana 1000, Col. San Francisco, C.D. 04430, D.F., Culhuacan (Mexico); Lopez, Gabino Espejo [CICATA-IPN, Garcia Obeso 306, Col. Centro 58000, Mor., Mich. (Mexico)
2003-01-01
Thermal waves produced by a periodic heat generation in homogeneous and inhomogeneous solids are examined from the theoretical point of view. The analysis is done for boundary conditions, thermal wave attenuation in a non-dissipate medium and the physical meaning of ''reflected thermal waves''. Separately it is discussed the comparison with electromagnetic waves. A new approach is suggested for calculation effective thermal conductivity and effective thermal diffusivity in two-layer structures within the frames of photothermal experiments. It is shown that the effective parameters depend on the physical properties of separate layers and interface, the manner of measuring these parameters, and the points of measuring. (authors)
Calculation of AC loss in two-layer superconducting cable with equal currents in the layers
Energy Technology Data Exchange (ETDEWEB)
Erdogan, Muzaffer, E-mail: merdogan@nku.edu.tr
2016-12-15
A new method for calculating AC loss of two-layer SC power transmission cables using the commercial software Comsol Multiphysics, relying on the approach of the equal partition of current between the layers is proposed. Applying the method to calculate the AC-loss in a cable composed of two coaxial cylindrical SC tubes, the results are in good agreement with the analytical ones of duoblock model. Applying the method to calculate the AC-losses of a cable composed of a cylindrical copper former, surrounded by two coaxial cylindrical layers of superconducting tapes embedded in an insulating medium with tape-on-tape and tape-on-gap configurations are compared. A good agreement between the duoblock model and the numerical results for the tape-on-gap cable is observed.
Analysis of data recorded by the LCTPC equipped with a two layer GEM-system
Ljunggren, M
2012-01-01
wire based readout. The prototype TPC is placed in a 1 Tesla magnet at DESY and tested using an electron beam. Analyses of data taken during two different measurement series, in 2009 and 2010, are presented here. The TPC was instrumented with a two layer GEM system and read out using modified electronics from the ALICE experiment, including the programmable charge sensitive preamp-shaper PCA16. The PCA16 chip has a number of programmable parameters which allows studies to determine the settings optimal to the final TPC. Here, the impact of the shaping time on the space resolution in the drift direction was studied. It was found that a shaping time of 60 ns is the b...
Development of analytical theory of the physical libration for a two-layer Moon
Petrova, Natalia; Barkin, Yurii; Gusev, Alexander; Ivanova, Tamara
2010-05-01
-project. Prognosis recommendations are made for the future experiment. The model of free rotation of the two-layer Moon is constructed, the periods of the free modes and of the librational motion of a pole are received, effects of influence of a lunar core on behavior of LPhL-harmonics caused by the solid-state rotation of the Moon are deduced. Computer simulating has revealed the sensitivity of the free libration periods to core's ellipticity and to core-mantle boundary dissipation parameters. Geometrical interpretation of the pole motion owing to the free libration is given. For the first time the theoretical model of tidal potential of the Moon is developed, on the basis of the model the analytical formulae for variations of the Stockes coefficients of the 2-nd order and of the speed of the Lunar rotation is received in dependence on time. For a two-layer structure of the Moon and the Mercury Cassini's law were stated at the first time: 1. a two-layer Moon keeps its own stationary rotation; 2. there is a splitting of Cassini nodes and angular momentums of Lunar mantle and core; 3. the same phenomenon will be observed for any two-layer planet (Mercury); 4. the differential rotation of a core and mantle is inherent to a planet as result of a generalized Cassini's Laws. Theoretical and practical methods of construction of the theory of rotation of the Earth have been successfully applied in the development of the theory of rotation of the Moon, in
Disadvantage factor for anisotropic scattering
International Nuclear Information System (INIS)
Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.
1990-01-01
The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters
Photon states in anisotropic media
Indian Academy of Sciences (India)
Abstract. Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.
Directory of Open Access Journals (Sweden)
Ricardo M Holdo
Full Text Available The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1 we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2 subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future
Artery buckling analysis using a two-layered wall model with collagen dispersion.
Mottahedi, Mohammad; Han, Hai-Chao
2016-07-01
Artery buckling has been proposed as a possible cause for artery tortuosity associated with various vascular diseases. Since microstructure of arterial wall changes with aging and diseases, it is essential to establish the relationship between microscopic wall structure and artery buckling behavior. The objective of this study was to developed arterial buckling equations to incorporate the two-layered wall structure with dispersed collagen fiber distribution. Seven porcine carotid arteries were tested for buckling to determine their critical buckling pressures at different axial stretch ratios. The mechanical properties of these intact arteries and their intima-media layer were determined via pressurized inflation test. Collagen alignment was measured from histological sections and modeled by a modified von-Mises distribution. Buckling equations were developed accordingly using microstructure-motivated strain energy function. Our results demonstrated that collagen fibers disperse around two mean orientations symmetrically to the circumferential direction (39.02°±3.04°) in the adventitia layer; while aligning closely in the circumferential direction (2.06°±3.88°) in the media layer. The microstructure based two-layered model with collagen fiber dispersion described the buckling behavior of arteries well with the model predicted critical pressures match well with the experimental measurement. Parametric studies showed that with increasing fiber dispersion parameter, the predicted critical buckling pressure increases. These results validate the microstructure-based model equations for artery buckling and set a base for further studies to predict the stability of arteries due to microstructural changes associated with vascular diseases and aging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Holdo, Ricardo M.
2013-01-01
The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models. PMID
Anisotropic nonequilibrium hydrodynamic attractor
Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.
2018-02-01
We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.
Optical measurements of absorption changes in two-layered diffusive media
International Nuclear Information System (INIS)
Fabbri, Francesco; Sassaroli, Angelo; Henry, Michael E; Fantini, Sergio
2004-01-01
We have used Monte Carlo simulations for a two-layered diffusive medium to investigate the effect of a superficial layer on the measurement of absorption variations from optical diffuse reflectance data processed by using: (a) a multidistance, frequency-domain method based on diffusion theory for a semi-infinite homogeneous medium; (b) a differential-pathlength-factor method based on a modified Lambert-Beer law for a homogeneous medium and (c) a two-distance, partial-pathlength method based on a modified Lambert-Beer law for a two-layered medium. Methods (a) and (b) lead to a single value for the absorption variation, whereas method (c) yields absorption variations for each layer. In the simulations, the optical coefficients of the medium were representative of those of biological tissue in the near-infrared. The thickness of the first layer was in the range 0.3-1.4 cm, and the source-detector distances were in the range 1-5 cm, which is typical of near-infrared diffuse reflectance measurements in tissue. The simulations have shown that (1) method (a) is mostly sensitive to absorption changes in the underlying layer, provided that the thickness of the superficial layer is ∼0.6 cm or less; (2) method (b) is significantly affected by absorption changes in the superficial layer and (3) method (c) yields the absorption changes for both layers with a relatively good accuracy of ∼4% for the superficial layer and ∼10% for the underlying layer (provided that the absorption changes are less than 20-30% of the baseline value). We have applied all three methods of data analysis to near-infrared data collected on the forehead of a human subject during electroconvulsive therapy. Our results suggest that the multidistance method (a) and the two-distance partial-pathlength method (c) may better decouple the contributions to the optical signals that originate in deeper tissue (brain) from those that originate in more superficial tissue layers
Masoudi Rad, Maryam; Nouri Khorasani, Saied; Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Foroughi, Mohammad Reza; Kharaziha, Mahshid; Saadatkish, Niloufar; Ramakrishna, Seeram
2017-11-01
Membranes used in dentistry act as a barrier to prevent invasion of intruder cells to defected area and obtains spaces that are to be subsequently filled with new bone and provide required bone volume for implant therapy when there is insufficient volume of healthy bone at implant site. In this study a two-layered bioactive membrane were fabricated by electrospinning whereas one layer provides guided bone regeneration (GBR) and fabricated using poly glycerol sebacate (PGS)/polycaprolactone (PCL) and Beta tri-calcium phosphate (β-TCP) (5, 10 and 15%) and another one containing PCL/PGS and chitosan acts as guided tissue regeneration (GTR). The morphology, chemical, physical and mechanical characterizations of the membranes were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), tensile testing, then biodegradability and bioactivity properties were evaluated. In vitro cell culture study was also carried out to investigate proliferation and mineralization of cells on different membranes. Transmission electron microscope (TEM) and SEM results indicated agglomeration of β-TCP nanoparticles in the structure of nanofibers containing 15% β-TCP. Moreover by addition of β-TCP from 5% to 15%, contact angle decreased due to hydrophilicity of nanoparticles and bioactivity was found to increase. Mechanical properties of the membrane increased by incorporation of 5% and 10% of β-TCP in the structure of nanofibers, while addition of 15% of β-TCP was found to deteriorate mechanical properties of nanofibers. Although the presence of 5% and 10% of nanoparticles in the nanofibers increased proliferation of cells on GBR layer, cell proliferation was observed to decrease by addition of 15% β-TCP in the structure of nanofibers which is likely due to agglomeration of nanoparticles in the nanofiber structure. Our overall results revealed PCL/PGS containing 10% β-TCP could be selected as the optimum GBR membrane
Convergence of Extreme Value Statistics in a Two-Layer Quasi-Geostrophic Atmospheric Model
Directory of Open Access Journals (Sweden)
Vera Melinda Gálfi
2017-01-01
Full Text Available We search for the signature of universal properties of extreme events, theoretically predicted for Axiom A flows, in a chaotic and high-dimensional dynamical system. We study the convergence of GEV (Generalized Extreme Value and GP (Generalized Pareto shape parameter estimates to the theoretical value, which is expressed in terms of the partial information dimensions of the attractor. We consider a two-layer quasi-geostrophic atmospheric model of the mid-latitudes, adopt two levels of forcing, and analyse the extremes of different types of physical observables (local energy, zonally averaged energy, and globally averaged energy. We find good agreement in the shape parameter estimates with the theory only in the case of more intense forcing, corresponding to a strong chaotic behaviour, for some observables (the local energy at every latitude. Due to the limited (though very large data size and to the presence of serial correlations, it is difficult to obtain robust statistics of extremes in the case of the other observables. In the case of weak forcing, which leads to weaker chaotic conditions with regime behaviour, we find, unsurprisingly, worse agreement with the theory developed for Axiom A flows.
Characteristics of phonation onset in a two-layer vocal fold model.
Zhang, Zhaoyan
2009-02-01
Characteristics of phonation onset were investigated in a two-layer body-cover continuum model of the vocal folds as a function of the biomechanical and geometric properties of the vocal folds. The analysis showed that an increase in either the body or cover stiffness generally increased the phonation threshold pressure and phonation onset frequency, although the effectiveness of varying body or cover stiffness as a pitch control mechanism varied depending on the body-cover stiffness ratio. Increasing body-cover stiffness ratio reduced the vibration amplitude of the body layer, and the vocal fold motion was gradually restricted to the medial surface, resulting in more effective flow modulation and higher sound production efficiency. The fluid-structure interaction induced synchronization of more than one group of eigenmodes so that two or more eigenmodes may be simultaneously destabilized toward phonation onset. At certain conditions, a slight change in vocal fold stiffness or geometry may cause phonation onset to occur as eigenmode synchronization due to a different pair of eigenmodes, leading to sudden changes in phonation onset frequency, vocal fold vibration pattern, and sound production efficiency. Although observed in a linear stability analysis, a similar mechanism may also play a role in register changes at finite-amplitude oscillations.
A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks
Directory of Open Access Journals (Sweden)
Wei Liang
2014-03-01
Full Text Available This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient’s ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen.
Clustering Approaches for Pragmatic Two-Layer IoT Architecture
Directory of Open Access Journals (Sweden)
J. Sathish Kumar
2018-01-01
Full Text Available Connecting all devices through Internet is now practical due to Internet of Things. IoT assures numerous applications in everyday life of common people, government bodies, business, and society as a whole. Collaboration among the devices in IoT to bring various applications in the real world is a challenging task. In this context, we introduce an application-based two-layer architectural framework for IoT which consists of sensing layer and IoT layer. For any real-time application, sensing devices play an important role. Both these layers are required for accomplishing IoT-based applications. The success of any IoT-based application relies on efficient communication and utilization of the devices and data acquired by the devices at both layers. The grouping of these devices helps to achieve the same, which leads to formation of cluster of devices at various levels. The clustering helps not only in collaboration but also in prolonging overall network lifetime. In this paper, we propose two clustering algorithms based on heuristic and graph, respectively. The proposed clustering approaches are evaluated on IoT platform using standard parameters and compared with different approaches reported in literature.
Display of the β-effect in the Black Sea Two-Layer Model
Directory of Open Access Journals (Sweden)
A.A. Pavlushin
2016-10-01
Full Text Available The research is a continuation of a series of numerical experiments on modeling formation of wind currents and eddies in the Black Sea within the framework of a two-layer eddy-resolving model. The main attention is focused on studying the β-effect role. The stationary cyclonic wind is used as an external forcing and the bottom topography is not considered. It is shown that at the β-effect being taken into account, the Rossby waves propagating from east to west are observed both during the currents’ formation and at the statistical equilibrium mode when the mesoscale eddies are formed. In the integral flows’ field the waves are visually manifested in a form of the alternate large-scale cyclonic gyres and zones in which the meso-scale anti-cyclones are formed. This spatial pattern constantly propagates to the west that differs from the results of calculations using the constant Coriolis parameter when the spatially alternate cyclonic and anti-cyclonic vortices are formed, but hold a quasi-stationary position. The waves with the parameters of the Rossby wave first barotropic mode for the closed basin are most clearly pronounced. Interaction of the Rossby waves with large-scale circulation results in intensification of the of the currents’ hydrodynamic instability and in formation of the mesoscale eddies. Significant decrease of kinetic and available potential energy as compared to the values obtained at the constant Coriolis parameter is also a consequence of the eddy formation intensification.
A two-layer recurrent neural network for nonsmooth convex optimization problems.
Qin, Sitian; Xue, Xiaoping
2015-06-01
In this paper, a two-layer recurrent neural network is proposed to solve the nonsmooth convex optimization problem subject to convex inequality and linear equality constraints. Compared with existing neural network models, the proposed neural network has a low model complexity and avoids penalty parameters. It is proved that from any initial point, the state of the proposed neural network reaches the equality feasible region in finite time and stays there thereafter. Moreover, the state is unique if the initial point lies in the equality feasible region. The equilibrium point set of the proposed neural network is proved to be equivalent to the Karush-Kuhn-Tucker optimality set of the original optimization problem. It is further proved that the equilibrium point of the proposed neural network is stable in the sense of Lyapunov. Moreover, from any initial point, the state is proved to be convergent to an equilibrium point of the proposed neural network. Finally, as applications, the proposed neural network is used to solve nonlinear convex programming with linear constraints and L1 -norm minimization problems.
A two-layer genetic algorithm for the design of reliable cellular manufacturing systems
Directory of Open Access Journals (Sweden)
Hassan Rezazadeh
2017-06-01
Full Text Available This study presents a new mathematical model for the design of reliable cellular manufacturing systems, which leads to reduced manufacturing costs, improved product quality and improved total reliability of the manufacturing system. This model is expected to provide a more noticeable improvement in time and solution quality in comparison with other existing models. Each part to be manufactured may select each of the predefined manufacturing routes, such that the total reliability of the system is increased. On the other hand, the model adopts to categorize the machines to determine the manufacturing cells (cell formation and reduce the transportation costs. Thereby, both criteria of system reliability and manufacturing costs will be simultaneously improved. Due to the complexity of cell formation problems, a two-layer genetic algorithm is applied on the problem in order to achieve near optimal solutions. Furthermore, the performance of the proposed algorithm is shown for solving some computational experiments. Finally, the results of a practical study for designing a cellular manufacturing system as a case study in Iranian Diesel Engine Manufacturing Co., Tabriz, Iran are present.
Two-layer tissue engineered urethra using oral epithelial and muscle derived cells.
Mikami, Hiroshi; Kuwahara, Go; Nakamura, Nobuyuki; Yamato, Masayuki; Tanaka, Masatoshi; Kodama, Shohta
2012-05-01
We fabricated novel tissue engineered urethral grafts using autologously harvested oral cells. We report their viability in a canine model. Oral tissues were harvested by punch biopsy and divided into mucosal and muscle sections. Epithelial cells from mucosal sections were cultured as epithelial cell sheets. Simultaneously muscle derived cells were seeded on collagen mesh matrices to form muscle cell sheets. At 2 weeks the sheets were joined and tubularized to form 2-layer tissue engineered urethras, which were autologously grafted to surgically induced urethral defects in 10 dogs in the experimental group. Tissue engineered grafts were not applied to the induced urethral defect in control dogs. The dogs were followed 12 weeks postoperatively. Urethrogram and histological examination were done to evaluate the grafting outcome. We successfully fabricated 2-layer tissue engineered urethras in vitro and transplanted them in dogs in the experimental group. The 12-week complication-free rate was significantly higher in the experimental group than in controls. Urethrogram confirmed urethral patency without stricture in the complication-free group at 12 weeks. Histologically urethras in the transplant group showed a stratified epithelial layer overlying well differentiated submucosa. In contrast, urethras in controls showed severe fibrosis without epithelial layer formation. Two-layer tissue engineered urethras were engineered using cells harvested by minimally invasive oral punch biopsy. Results suggest that this technique can encourage regeneration of a functional urethra. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks
Liang, Wei; Zhang, Yinlong; Tan, Jindong; Li, Yang
2014-01-01
This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient's ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS) filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs) are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC) in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN) platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen. PMID:24681668
Polarization-selective infrared bandpass filter based on a two-layer subwavelength metallic grating
Hohne, Andrew J.; Moon, Benjamin; Baumbauer, Carol L.; Gray, Tristan; Dilts, James; Shaw, Joseph A.; Dickensheets, David L.; Nakagawa, Wataru
2017-08-01
We present the design, fabrication, and characterization of a polarization-selective infrared bandpass filter based on a two-layer subwavelength metallic grating for use in polarimetric imaging. Gold nanowires were deposited via physical vapor deposition (PVD) onto a silicon surface relief grating that was patterned using electron beam lithography (EBL) and fabricated using standard silicon processing techniques. Optical characterization with a broad-spectrum tungsten halogen light source and a grating spectrometer showed normalized peak TM transmission of 53% with a full-width at half-maximum (FWHM) of 122 nm, which was consistent with rigorous coupled-wave analysis (RCWA) simulations. Simulation results suggested that device operation relied on suppression of the TM transmission caused by surface plasmon polariton (SPP) excitation at the gold-silicon interface and an increase in TM transmission caused by a Fabry-Perot (FP) resonance in the cavity between the gratings. TE rejection occurred at the initial air/gold interface. We also present simulation results of an improved design based on a two-dielectric grating where two different SPP resonances allowed us to improve the shape of the passband by suppressing the side lobes. This newer design resulted in improved side-band performance and increased peak TM transmission.
Dynamic problem for two-layered stripe on the rigid basis
Directory of Open Access Journals (Sweden)
Yuriy P. Glukhov
2014-12-01
Full Text Available The intermediate results of the study of planar problems about perturbation by movable surface load of multilayer base with initial (residual stresses are presented. Within the bounds of linearizired theory of elasticity for bodies with initial stresses there are considered the statement and method of solving a planar problem of the perturbation of the surface load moving with a constant speed of two-layered pre-stressed stripe with the rigid basis. The model of the layered medium “a plate and pre-stressed layer” is considered. Equations of plate motion are written taking into account the shift and rotary inertia. Layer material is assumed compressible, isotropic in the natural state. The form of elastic potential has a general form and must be specified only while implementation of numeral calculations. With the help of the Fourier integral transform method a fundamental solution to the problem is obtained in general form under various conditions of contact and speeds of load.
International Nuclear Information System (INIS)
Wang Zhiming; Yao Laigen; Jiang Hong
2004-01-01
Water potential reflects energy level of soil water and the gradient of water potential is an impotent factor describing direction and velocity of water flow. The main experimental methods and results of determining water potential distribution and variation for unsaturated water vadose passing through two-layer porous media made of loess (fine particle) and quartz sand (coarse particle) are introduced in this paper in order to analyze and explain further detouring flow phenomenon observed in former work. It can be seen from the results that: water potential in quartz sand layer decreases with increasing thickness of the quartz sand layer under fixed sprinkling rate and increases with increasing sprinkling rate under fixed thickness of quartz sand layer; some of water above quartz sand layer flows down through the quartz sand layer and some flows down along edges of the quartz sand layer; some of water detoured the quartz sand layer flows into the region below the quartz sand layer closely along lower surface of the quartz sand layer. These are some phenomena to be worthing further study. (authors)
Synthesis of PVA/PVP hydrogels having two layers by radiation and their physical properties
International Nuclear Information System (INIS)
Nho, Y.C.; Park, K.R.
2002-01-01
Complete text of publication follows. The radiation can induce chemical reaction to modify polymer under even the solid state or in the low temperature. The radiation crosslinking can be easily adjusted by controlling the radiation dose and is reproducible. The finished product contains no residuals of substances required to initiate the chemical crosslinking that can restrict the application possibilities. In these studies, two layer's hydrogel which consisted of urethane membrane and a mixture of polyvinyl alcohol/poly-N-vinylpyrrolidone /glycerin/chitosan was made by gamma-ray irradiation or two steps of 'freezing and thawing' and gamma-ray irradiation for wound dressing. The physical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the hydrogels for wound dressing. Urethane was dissolved in solvent, the urethane solution was poured on the mould, and then dried to make the thin membrane. Hydrophilic polymer solutions were poured on the urethane membranes, they were exposed to gamma irradiation or 'freezing and thawing' and gamma irradiation doses of 25, 35, 50 and 60 kGy to evaluate the physical properties of hydrogels. The physical properties of hydrogels such as gelation and gel strength were improved, and the evaporation speed of water in hydrogel was low when urethane membrane was used
PURCELL EFFECT IN EXTREMELY ANISOTROPIC ELLIPTIC METAMATERIALS
Directory of Open Access Journals (Sweden)
Alexander V. Chebykin
2014-11-01
Full Text Available The paper deals with theoretical demonstration of Purcell effect in extremely anisotropic metamaterials with elliptical isofrequency surface. This effect is free from association with divergence in density of states unlike the case of hyperbolic metamaterials. It is shown that a large Purcell factor can be observed without excitation of modes with large wave vectors in one direction, and the component of the wave vector normal to the layers is less than k0. For these materials the possibility is given for increasing of the power radiated in the medium, as well as the power radiated from material into free space across the medium border situated transversely to the layers. We have investigated isofrequency contours and the dependence of Purcell factor from the frequency for infinite layered metamaterial structure. In the visible light range strong spatial dispersion gives no possibility to obtain enhancement of spontaneous emission in metamaterial with unit cell which consists of two layers. This effect can be achieved in periodic metal-dielectric layered nanostructures with a unit cell containing two different metallic layers and two dielectric ones. Analysis of the dependences for Purcell factor from the frequency shows that the spontaneous emission is enhanced by a factor of ten or more only for dipole orientation along metamaterial layers, but in the case of the transverse orientation radiation can be enhanced only 2-3 times at most. The results can be used to create a new type of metamaterials with elliptical isofrequency contours, providing a more efficient light emission in the far field.
Continuum mechanics of anisotropic materials
Cowin, Stephen C
2013-01-01
Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.
Anisotropic hydrodynamics: Motivation and methodology
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael
2014-06-15
In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.
Lee, I-Chi; Lin, Wei-Ming; Shu, Jwu-Ching; Tsai, Shau-Wei; Chen, Chih-Hao; Tsai, Meng-Tsan
2017-01-01
Dissolving microneedles (MNs) display high efficiency in delivering poorly permeable drugs and vaccines. Here, two-layer dissolving polymeric MN patches composed of gelatin and sodium carboxymethyl cellulose (CMC) were fabricated with a two-step casting and centrifuging process to localize the insulin in the needle and achieve efficient transdermal delivery of insulin. In vitro skin insertion capability was determined by staining with tissue-marking dye after insertion, and the real-time penetration depth was monitored using optical coherence tomography. Confocal microscopy images revealed that the rhodamine 6G and fluorescein isothiocyanate-labeled insulin (insulin-FITC) can gradually diffuse from the puncture sites to deeper tissue. Ex vivo drug-release profiles showed that 50% of the insulin was released and penetrated across the skin after 1 h, and the cumulative permeation reached 80% after 5 h. In vivo and pharmacodynamic studies were then conducted to estimate the feasibility of the administration of insulin-loaded dissolving MN patches on diabetic mice for glucose regulation. The total area above the glucose level versus time curve as an index of hypoglycemic effect was 128.4 ± 28.3 (% h) at 0.25 IU/kg. The relative pharmacologic availability and relative bioavailability (RBA) of insulin from MN patches were 95.6 and 85.7%, respectively. This study verified that the use of gelatin/CMC MN patches for insulin delivery achieved a satisfactory RBA compared to traditional hypodermic injection and presented a promising device to deliver poorly permeable protein drugs for diabetic therapy. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 84-93, 2017. © 2016 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Xiaoping Ma
2018-01-01
Full Text Available The wireless monitoring system is always destroyed by the insufficient energy of the sensors in railway. Hence, how to optimize the communication protocol and extend the system lifetime is crucial to ensure the stability of system. However, the existing studies focused primarily on cluster-based or multihop protocols individually, which are ineffective in coping with the complex communication scenarios in the railway wireless monitoring system (RWMS. This study proposes a hybrid protocol which combines the cluster-based and multihop protocols (CMCP to minimize and balance the energy consumption in different sections of the RWMS. In the first hierarchy, the total energy consumption is minimized by optimizing the cluster quantities in the cluster-based protocol and the number of hops and the corresponding hop distances in the multihop protocol. In the second hierarchy, the energy consumption is balanced through rotating the cluster head (CH in the subnetworks and further optimizing the hops and the corresponding hop distances in the backbone network. On this basis, the system lifetime is maximized with the minimum and balance energy consumption among the sensors. Furthermore, the hybrid particle swarm optimization and genetic algorithm (PSO-GA are adopted to optimize the energy consumption from the two-layer hierarchy. Finally, the effectiveness of the proposed CMCP is verified in the simulation. The performances of the proposed CMCP in system lifetime, residual energy, and the corresponding variance are all superior to the LEACH protocol widely applied in the previous research. The effective protocol proposed in this study can facilitate the application of the wireless monitoring network in the railway system and enhance safety operation of the railway.
Traffic Offloading in Unlicensed Spectrum for 5G Cellular Network: A Two-Layer Game Approach
Directory of Open Access Journals (Sweden)
Yan Li
2018-01-01
Full Text Available Licensed Assisted Access (LAA is considered one of the latest groundbreaking innovations to provide high performance in future 5G. Coexistence schemes such as Listen Before Talk (LBT and Carrier Sensing and Adaptive Transmission (CSAT have been proven to be good methods to share spectrums, and they are WiFi friendly. In this paper, a modified LBT-based CSAT scheme is proposed which can effectively reduce the collision at the moment when Long Term Evolution (LTE starts to transmit data in CSAT mode. To make full use of the valuable spectrum resources, the throughput of both LAA and WiFi systems should be improved. Thus, a two-layer Coalition-Auction Game-based Transaction (CAGT mechanism is proposed in this paper to optimize the performance of the two systems. In the first layer, a coalition among Access Points (APs is built to balance the WiFi stations and maximize the WiFi throughput. The main idea of the devised coalition forming is to merge the light-loaded APs with heavy-loaded APs into a coalition; consequently, the data of the overloaded APs can be offloaded to the light-loaded APs. Next, an auction game between the LAA and WiFi systems is used to gain a win–win strategy, in which, LAA Base Station (BS is the auctioneer and AP coalitions are bidders. Thus, the throughput of both systems are improved. Simulation results demonstrate that the proposed scheme in this paper can improve the performance of both two systems effectively.
Muda, Hilmi M; Saad, Puteh; Othman, Razib M
2011-08-01
Remote protein homology detection and fold recognition refer to detection of structural homology in proteins where there are small or no similarities in the sequence. To detect protein structural classes from protein primary sequence information, homology-based methods have been developed, which can be divided to three types: discriminative classifiers, generative models for protein families and pairwise sequence comparisons. Support Vector Machines (SVM) and Neural Networks (NN) are two popular discriminative methods. Recent studies have shown that SVM has fast speed during training, more accurate and efficient compared to NN. We present a comprehensive method based on two-layer classifiers. The 1st layer is used to detect up to superfamily and family in SCOP hierarchy using optimized binary SVM classification rules. It used the kernel function known as the Bio-kernel, which incorporates the biological information in the classification process. The 2nd layer uses discriminative SVM algorithm with string kernel that will detect up to protein fold level in SCOP hierarchy. The results obtained were evaluated using mean ROC and mean MRFP and the significance of the result produced with pairwise t-test was tested. Experimental results show that our approaches significantly improve the performance of remote protein homology detection and fold recognition for all three different version SCOP datasets (1.53, 1.67 and 1.73). We achieved 4.19% improvements in term of mean ROC in SCOP 1.53, 4.75% in SCOP 1.67 and 4.03% in SCOP 1.73 datasets when compared to the result produced by well-known methods. The combination of first layer and second layer of BioSVM-2L performs well in remote homology detection and fold recognition even in three different versions of datasets. Copyright © 2011 Elsevier Ltd. All rights reserved.
Juher, David; Saldaña, Joan
2018-03-01
We study the properties of the potential overlap between two networks A ,B sharing the same set of N nodes (a two-layer network) whose respective degree distributions pA(k ) ,pB(k ) are given. Defining the overlap coefficient α as the Jaccard index, we prove that α is very close to 0 when A and B are random and independently generated. We derive an upper bound αM for the maximum overlap coefficient permitted in terms of pA(k ) , pB(k ) , and N . Then we present an algorithm based on cross rewiring of links to obtain a two-layer network with any prescribed α inside the range (0 ,αM) . A refined version of the algorithm allows us to minimize the cross-layer correlations that unavoidably appear for values of α beyond a critical overlap αcpresent a very simple example of a susceptible-infectious-recovered epidemic model with information dissemination and use the algorithms to determine the impact of the overlap on the final outbreak size predicted by the model.
International Nuclear Information System (INIS)
Pustovalov, V.K.; Astafyeva, L.G.; Zharov, V.P.
2013-01-01
Modeling of nonlinear dependences of optical properties of spherical two-layered gold core and some material shell nanoparticles (NPs) placed in water on parameters of core and shell was carried out on the basis of the extended Mie theory. Efficiency cross-sections of absorption, scattering and extinction of radiation with wavelength 532 nm by core–shell NPs in the ranges of core radii r 00 =5–40 nm and of relative NP radii r 1 /r 00 =1–8 were calculated (r 1 —radius of two-layered nanoparticle). Shell materials were used with optical indexes in the ranges of refraction n 1 =0.2–1.5 and absorption k 1 =0–3.5 for the presentation of optical properties of wide classes of shell materials (including dielectrics, metals, polymers, vapor shell around gold core). Results show nonlinear dependences of optical properties of two-layered NPs on optical indexes of shell material, core r 00 and relative NP r 1 /r 00 radii. Regions with sharp decrease and increase of absorption, scattering and extinction efficiency cross-sections with changing of core and shell parameters were investigated. These dependences should be taken into account for applications of two-layered NPs in laser nanomedicine and optical diagnostics of tissues. The results can be used for experimental investigation of shell formation on NP core and optical determination of geometrical parameters of core and shell of two-layered NPs. -- Highlights: • Absorption, scattering and extinction of two-layered nanoparticles are studied. • Shell materials change in wide regions of materials (metals, dielectrics, vapor). • Effect of sharp decrease and increase of optical characteristics is established. • Explanation of sharp decreasing and increasing optical characteristics is presented
Magnetic relaxation in anisotropic magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1971-01-01
The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...
Failure in imperfect anisotropic materials
DEFF Research Database (Denmark)
Legarth, Brian Nyvang
2005-01-01
The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...
Long-range interaction of anisotropic systems
Zhang, Junyi
2015-02-01
The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.
Characterization of a two-layer aquifer using well drawdown data
Vanclooster, M.; Frippiat, C. C.; Holeyman, A.; Peeters, G.
2009-12-01
Well drawdown data are usually exploited as an indicator of aquifer and well performance. When expressed under the form of specific capacity, defined as well production per unit decline in head, it is also quite widely used to estimate aquifer transmissivity, mainly from empirical relationships. Analytical models have also been used to relate specific capacity to transmissivity, but additional corrections (e.g. for nonlinear head losses) have to be accounted for. In this paper, we explore the possibility of using well drawdown data to characterize a two-layer unconfined aquifer. The test site is located in Louvain-la-Neuve, Belgium. The aquifer consists of a deep layer of less conductive Landenian sand and a shallower layer of more conductive Brusselean sand, in which the water table is located. Drawdown data obtained in a pumping well fully penetrating both layers down to the bedrock exhibited a very atypical behavior. At low pumping rates, specific capacity remained relatively constant. At a certain threshold pumping rate, drawdown started to increase drastically. While such a behavior could be attributed to the unconfined nature of the aquifer, or to laminar and turbulent head losses near the well, we show that it is mainly a consequence of the dewatering of the upper, more conductive layer of the aquifer. The approach adopted in this study required the development of a detailed numerical model of saturated flow towards the well using the code FEHM (Finite Element Heat and Mass transport code, developed at Los Alamos National Laboratory). The well was represented as cells with unit porosity and high permeability. The model was automatically inverted using UCODE 2005 in order to estimate permeabilities of both layers and the position of their interface from steady-state well drawdown data collected for various pumping rates. The estimated value of permeability of the lower, less conductive layer was also compared to results from slug tests performed in near
Directory of Open Access Journals (Sweden)
Li-Chun Wang
2015-03-01
Full Text Available In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine.
Lai, Yen-Shou; Tsai, Hung-Hsu; Yu, Pao-Ta
2011-01-01
This paper proposes a new presentation system integrating a Microsoft PowerPoint presentation in a two-layer method, called the TL system, to promote learning in a physical classroom. With the TL system, teachers can readily control hints or annotations as a way of making them visible or invisible to students so as to reduce information load. In…
Tsang, L.; Kong, J. A.
1974-01-01
With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.
Abakarova, D S
2007-01-01
Characteristics of the main components of a new effective long-lasting dosage form--biopolymer two-layer adhesive solcoseryl containing film Diplen-denta C--are presented. It has a potent wound-healing action on oral mucosa, retains therapeutic properties during long time, is self dissolving and can be easily fixed on oral mucous membrane.
Two-Layer Coding Rate Optimization in Relay-Aided Systems
DEFF Research Database (Denmark)
Sun, Fan
2011-01-01
-layer coding scheme is proposed, where physical layer channel coding is utilized within each packet for error-correction and random network coding is applied on top of channel coding for network error-control. There is a natural tradeoff between the physical layer coding rate and the network coding rate given...... requirement. Numerical results are also provided to show the optimized physical layer coding and network coding rate pairs in different system scenarios....
Metafluid with anisotropic dynamic mass
International Nuclear Information System (INIS)
Gumen, L.N.; Arriaga, J.; Krokhin, A.A.
2011-01-01
We show that a fluid filling the space between metallic cylinders arranged in a two-dimensional lattice exhibits anisotropic dynamic mass for sound waves propagating through the lattice, if its unit cell is anisotropic. Using the plane-waves expansion method we derive (in the long wavelength limit) a formula for the effective mass tensor of the metafluid. The proposed formula is very general - it is valid for arbitrary Bravais lattices and arbitrary filling fractions of the cylinders. We apply our method to a periodic structure with very high anisotropy, when other known methods fail. In particular, we calculate the effective mass tensor for sound waves in air with embedded lattice of aluminum cylinders having rectangular cross sections, and obtain excellent agreement with experiment. The proposed method of calculation may find numerous applications for tailoring of metafluids with prescribed anisotropy.
Anisotropic Ripple Deformation in Phosphorene.
Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng
2015-05-07
Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.
Exact anisotropic polytropic cylindrical solutions
Sharif, M.; Sadiq, Sobia
2018-03-01
In this paper, we study anisotropic compact stars with static cylindrically symmetric anisotropic matter distribution satisfying polytropic equation of state. We formulate the field equations as well as the corresponding mass function for the particular form of gravitational potential z(x)=(1+bx)^{η } (η =1, 2, 3) and explore exact solutions of the field equations for different values of the polytropic index. The values of arbitrary constants are determined by taking mass and radius of compact star (Her X-1). We find that resulting solutions show viable behavior of physical parameters (density, radial as well as tangential pressure, anisotropy) and satisfy the stability condition. It is concluded that physically acceptable solutions exist only for η =1, 2.
Probabilistic pseudostatic analysis of pile in laterally spreading ground: Two layer soil profile
Directory of Open Access Journals (Sweden)
Reda Farag
2014-06-01
Full Text Available Coupling the finite element model of pile under lateral spread with the Monte Carlo Simulation is frequently prohibited by excessive lengthily computations. In the present paper, a simplified pseudostatic method is integrated with an improved response surface scheme to evaluate the reliability of pile subjected to lateral spread. The pseudostatic model takes both geometric and soil nonlinearities into account, while, the response surface formulation takes; load, geometry, material and model uncertainties into consideration. First; the improved response surface scheme is suggested and validated with the help of a simple example. Then, the pseudostatic model of a full size pile under lateral spread is integrated with the improved response surface scheme in order to assess the pile reliability. In the considered example, for both operational and structural possible modes of failure, it has been found that the most influential random variables are lateral displacement, and pile radius, respectively.
Baraglia, Ranieri; Dazzi, Patrizio; Mordacchini, Matteo; Ricci, Laura
2013-01-01
ATLAAS-P2P is a two-layered P2P architecture for developing systems providing resource aggregation and approximated discovery in P2P networks. Such systems allow users to search the desired resources by specifying their requirements in a flexible and easy way. From the point of view of resource providers, this system makes available an effective solution supporting providers in being reached by resource requests.
Preparation, structures and magnetic properties of Dy/Zr and Ho/Zr two-layers and multi-layers
International Nuclear Information System (INIS)
Luche, M.C.
1993-01-01
The first part of the report is devoted to the description of the ultra-vacuum evaporation equipment, to the sample preparation conditions and to the characterization of the two-layers and multi-layers through reflection and glancing incidence X diffraction and transmission electron microscopy. In the second part, the magnetic properties of the samples are studied and relations between properties and structures are examined. 37 fig., 35 ref
Laboratory Research of the Two-Layer Liquid Dynamics at the Wind Surge in a Strait Canal
Directory of Open Access Journals (Sweden)
S.F. Dotsenko
2017-06-01
Full Text Available The results of laboratory experiments in a straight aerohydrocanal of the rectangular cross-section filled with the two-layer (fresh-salty liquid are represented. The disturbance generator is the air flow directed to the area above the canal. The cases of the two-layer liquid dynamics in the canal with the horizontal flat bottom and in the presence of the bottom obstacle of finite width are considered. It is shown that during the surge in the straight canal, one of the possible exchange mechanisms on the boundary of fresh and salty layers may consist in the salt water emissions (resulted from the Kelvin-Helmholtz instability to the upper freshwater layer. The subsequent eviction can possibly be accompanied by occurrence of undulations at the interface. Besides, the evictions can be followed by formation of the oscillating layer, i.e. the layer with maximum density gradient the oscillations of which propagate to the overlying layers. Presence of the bottom obstacle complicates the structure of the two-layer liquid motions. In particular, it results in emergence of the mixed layers and transformation of the flow behind the obstacle into a turbulent one, formation of the wave-like disturbances over the obstacle, sharp change of the interface position and occurrence of large-scale vortices with the horizontal axes. It is revealed that the maximum peak of the flow velocity horizontal component is shifted upstream from the obstacle.
Directory of Open Access Journals (Sweden)
Atefeh Karimzadeh
Full Text Available Abstract The purpose of this study was to investigate the effects of shade and material type and shape in dental polymer composites on the hardness and shrinkage stress of bulk and two-layered restoration systems. For this purpose, some bulk and layered specimens from three different shades of dental materials were prepared and light-cured. The experiments were carried out on three types of materials: conventional restorative composite, nanohybrid composite and nanocomposite. Micro-indentation experiment was performed on the bulk and also on each layer of layered restoration specimens using a Vicker's indenter. The interface between the two layers was studied by scanning electron microscopy (SEM. The results revealed significant differences between the values of hardness for different shades in the conventional composite and also in the nanohybrid composite. However, no statistically significant difference was observed between the hardness values for different shades in the nanocomposite samples. The layered restoration specimens of different restorative materials exhibited lower hardness values with respect to their bulk specimens. The reduction in the hardness value of the layered conventional composite samples was higher than those of the nanocomposite and nanohybrid composite specimens indicating more shrinkage stresses generated in the conventional composite restorations. According to the SEM images, a gap was observed between the two layers in the layered restorations.
Dirac directional emission in anisotropic zero refractive index photonic crystals.
He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen
2015-08-14
A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.
Anisotropic and nonlinear optical waveguides
Someda, CG
1992-01-01
Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an
Sur, Shouvik; Lee, Sung-Sik
2016-11-01
We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.
Reflection of light from an anisotropic medium
Ignatovich, Filipp V.; Ignatovich, Vladimir
2010-01-01
We present here a general approach to treat reflection and refraction of light of arbitrary polarization from single axis anisotropic plates. We show that reflection from interface inside the anisotropic medium is accompanied by beam splitting and can create surface waves.
Directory of Open Access Journals (Sweden)
Bertan Hallacoglu
Full Text Available We introduce a multi-distance, frequency-domain, near-infrared spectroscopy (NIRS method to measure the optical coefficients of two-layered media and the thickness of the top layer from diffuse reflectance measurements. This method features a direct solution based on diffusion theory and an inversion procedure based on the Levenberg-Marquardt algorithm. We have validated our method through Monte Carlo simulations, experiments on tissue-like phantoms, and measurements on the forehead of three human subjects. The Monte Carlo simulations and phantom measurements have shown that, in ideal two-layered samples, our method accurately recovers the top layer thickness (L, the absorption coefficient (µ a and the reduced scattering coefficient (µ' s of both layers with deviations that are typically less than 10% for all parameters. Our method is aimed at absolute measurements of hemoglobin concentration and saturation in cerebral and extracerebral tissue of adult human subjects, where the top layer (layer 1 represents extracerebral tissue (scalp, skull, dura mater, subarachnoid space, etc. and the bottom layer (layer 2 represents cerebral tissue. Human subject measurements have shown a significantly greater total hemoglobin concentration in cerebral tissue (82±14 µM with respect to extracerebral tissue (30±7 µM. By contrast, there was no significant difference between the hemoglobin saturation measured in cerebral tissue (56%±10% and extracerebral tissue (62%±6%. To our knowledge, this is the first time that an inversion procedure in the frequency domain with six unknown parameters with no other prior knowledge is used for the retrieval of the optical coefficients and top layer thickness with high accuracy on two-layered media. Our absolute measurements of cerebral hemoglobin concentration and saturation are based on the discrimination of extracerebral and cerebral tissue layers, and they can enhance the impact of NIRS for cerebral hemodynamics and
Efficient Wavefield Extrapolation In Anisotropic Media
Alkhalifah, Tariq
2014-07-03
Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.
King, Charlotte L; Tayles, Nancy; Higham, Charles; Strand-Viđarsdóttir, Una; Bentley, R Alexander; Macpherson, Colin G; Nowell, Geoff
2015-09-01
The nature of the agricultural transition in Southeast Asia has been a topic of some debate for archaeologists over the past decades. A prominent model, known as the two-layer hypothesis, states that indigenous hunter-gatherers were subsumed by the expansion of exotic Neolithic farmers into the area around 2000 BC. These farmers had ultimate origins in East Asia and brought rice and millet agriculture. Ban Non Wat is one of the few archaeological sites in Southeast Asia where this model can potentially be tested. The site is located in the Mun River valley of Northeast Thailand, and divided into 12 phases that span over 2,000 years, from about 1750 BC to the end of the Iron Age (ca. 500 AD). These phases exhibit successive cultural changes, and current interpretation of the site is of an early hunter-gatherer population, with agriculturalists immigrating into the later phases. We analyzed strontium, oxygen, and carbon isotopes in tooth enamel from over 150 individuals, dating from the Neolithic to Iron Age, to assess extrinsic origins and differences in diet between early and later phases. We find evidence of dietary and cultural differences between groups at Ban Non Wat during its early occupation, but little evidence for immigration from distinct environments beyond the Khorat Plateau of Northeast Thailand. The lack of consistent isotopic differences between early and later Neolithic occupants at Ban Non Wat means that the site does not conclusively support the two-layer hypothesis. © 2015 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Jingmin Wang
2015-02-01
Full Text Available The aim of the present study was to develop tamsulosin hydrochloride sustained-release pellets using two-layered membrane techniques. Centrifugal granulator and fluidized-bed coater were employed to prepare drug-loaded pellets and to employ two-layered membrane coating respectively. The prepared pellets were evaluated for physicochemical characterization, subjected to differential scanning calorimetry (DSC and in vitro release of different pH. Different release models and scanning electron microscopy (SEM were utilized to analyze the release mechanism of Harnual® and home-made pellets. By comparing the dissolution profiles, the ratio and coating weight gain of Eudragit® NE30D and Eudragit® L30D55 which constitute the inside membrane were identified as 18:1 and 10%–11%. The coating amount of outside membrane containing Eudragit® L30D55 was determined to be 0.8%. The similarity factors (f2 of home-made capsule and commercially available product (Harnual® were above 50 in different dissolution media. DSC studies confirmed that drug and excipients had good compatibility and SEM photographs showed the similarities and differences of coating surface between Harnual® and self-made pellets before and after dissolution. According to Ritger-Peppas model, the two dosage form had different release mechanism.
Directory of Open Access Journals (Sweden)
U. Marschner
2014-09-01
Full Text Available Two-layer flexure beams often serve as basic transducers in actuators and sensors. In this paper a generalized description of their stimuli-influenced mechanical behavior is derived. For small deflection angles this description includes a multi-port circuit or network representation with lumped elements for a beam part of finite length. A number of coupled finite beam parts model the dynamic behavior including the first natural frequencies of the beam. For piezoelectric and piezomagnetic interactions, reversible transducer models are developed. The piezomagnetic two-layer beam model is extended to include solenoid and planar coils. Linear network theory is applied in order to determine network parameters and to simplify the circuit representation. The resulting circuit model is the basis for a fast simulation of the dynamic system behavior with advanced circuit simulators and, thus, the optimization of the system. It is also a useful tool for understanding and explaining this multi-domain system through basic principles of general system theory.
Wang, Zhongpeng; Chen, Fangni; Qiu, Weiwei; Chen, Shoufa; Ren, Dongxiao
2018-03-01
In this paper, a two-layer image encryption scheme for a discrete cosine transform (DCT) precoded orthogonal frequency division multiplexing (OFDM) visible light communication (VLC) system is proposed. Firstly, in the proposed scheme the transmitted image is first encrypted by a chaos scrambling sequence,which is generated from the hybrid 4-D hyper- and Arnold map in the upper-layer. After that, the encrypted image is converted into digital QAM modulation signal, which is re-encrypted by chaos scrambling sequence based on Arnold map in physical layer to further enhance the security of the transmitted image. Moreover, DCT precoding is employed to improve BER performance of the proposed system and reduce the PAPR of OFDM signal. The BER and PAPR performances of the proposed system are evaluated by simulation experiments. The experiment results show that the proposed two-layer chaos scrambling schemes achieve image secure transmission for image-based OFDM VLC. Furthermore, DCT precoding can reduce the PAPR and improve the BER performance of OFDM-based VLC.
Stability of anisotropic stellar filaments
Bhatti, M. Zaeem-ul-Haq; Yousaf, Z.
2017-12-01
The study of perturbation of self-gravitating celestial cylindrical object have been carried out in this paper. We have designed a framework to construct the collapse equation by formulating the modified field equations with the background of f(R , T) theory as well as dynamical equations from the contracted form of Bianchi identities with anisotropic matter configuration. We have encapsulated the radial perturbations on metric and material variables of the geometry with some known static profile at Newtonian and post-Newtonian regimes. We examined a strong dependence of unstable regions on stiffness parameter which measures the rigidity of the fluid. Also, the static profile and matter variables with f(R , T) dark source terms control the instability of compact cylindrical system.
Warm anisotropic inflationary universe model
International Nuclear Information System (INIS)
Sharif, M.; Saleem, Rabia
2014-01-01
This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)
Warm anisotropic inflationary universe model
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2014-02-15
This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)
International Nuclear Information System (INIS)
Abreu, Marcos Pimenta de
2006-01-01
In this article, we extend the one-speed multi-layer models to neutron reflection and transmission developed in our earlier work (de Abreu, M.P., 2005. Multi-layer models to neutron reflection and transmission for whole-core transport calculations, Annals of Nuclear Energy 32, 215) to multigroup transport theory. We begin by considering a two-layer boundary region, and we develop for such a region discrete ordinates models to the diffuse reflection and transmission of neutrons for multigroup nuclear reactor core problems with anisotropic scattering. We perform numerical experiments to show that our models to neutron reflection and transmission can be used to replace efficiently and accurately two nonactive boundary layers in whole-core transport calculations. We conclude this article with an inductive extension of our two-layer results to a boundary region with an arbitrary number of layers
Finite-volume scheme for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)
2016-02-01
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
Kustas, William P.
1990-08-01
One of the applications of remotely sensed surface temperature is to determine the latent heat flux (LE) or evapotranspiration (ET) from held to regional scales. A common approach has been to use surface-air temperature differences in a bulk resistance equation for estimating sensible beat flux, H, and to subsequently solve for LE as a residual in the one-dimensional energy balance equation. This approach has been successfully applied over uniform terrain with nearly full, actively transpiring vegetative cover; however, serious discrepancies between estimated and measured ET have been observed when there is partial canopy cover.In an attempt to improve the estimates of H and as a result compute more accurate values of ET over partial canopy cover, one- and two-layer resistance models are developed to account for some of the factors causing the poor agreement between computed and measured ET.The utility of these two approaches for estimating ET at the field scale is tested with remotely sensed and micrometeorological data collected in an and environment from a furrowed cotton field with 20 percent cover and a dry soil surface. The estimates of LE are compared with values measured using eddy correlation and energy balance methods. It is found that the one-layer model generally performed better than the two-layer model under thew conditions; but only when using a bluff-body correction to the resistance based on a conceptual model of beat and water vapor transfer at the surface taking place by molecular diffusion into Kolmogorov-scale eddies. The empirical adjustment to the surface resistance with the one-layer approach assumed to be applicable for a fairly wide range of conditions was found to be inappropriate. This result is attributed to the significant size of the furrows relative to the height of the vegetation.Furthermore, a sensitivity analysis showed that the one-layer model with the empirical adjustment for the resistance was significantly affected by the
Two-layer radio frequency MEMS fractal capacitors in PolyMUMPS for S-band applications
Elshurafa, Amro M.
2012-07-23
In this Letter, the authors fabricate for the first time MEMS fractal capacitors possessing two layers and compare their performance characteristics with the conventional parallel-plate capacitor and previously reported state-of-the-art single-layer MEMS fractal capacitors. Explicitly, a capacitor with a woven structure and another with an interleaved configuration were fabricated in the standard PolyMUMPS surface micromachining process and tested at S-band frequencies. The self-resonant frequencies of the fabricated capacitors were close to 10GHz, which is better than that of the parallel-plate capacitor, which measured only 5.5GHz. Further, the presented capacitors provided a higher capacitance when compared with the state-of-the-art-reported MEMS fractal capacitors created using a single layer at the expense of a lower quality factor. © 2012 The Institution of Engineering and Technology.
A two-layer diagnostic model of the long-term physical evolution of warm-core ring 82B
Olson, D. B.; Schmitt, R. W.; Kennelly, M.; Joyce, T. M.
1985-01-01
The present shipboard data in the 1982 time series on a single Gulf Stream warm core ring are composited on a cylindrical coordinate system following ring motion; 10 C-isotherm depth measurements are used in a two-layer model of the ring's structure to compute gradient current, kinetic energy, available potential energy (APE), and potential vorticity. The ring's evolution can be divided into two periods: April-late June, while the ring is isolated from strong Gulf Stream interaction, during which the ring loses APE at a low rate, and from July onward, following ring interactions with the Gulf Stream and topography with much higher energy loss. Within measurement errors, the potential vorticity at the center of the ring is conserved from April through August, implying nearly inviscid dynamics.
Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan
2016-06-07
Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. However, most of the existing membrane-protein predictors have the following problems: (1) they do not predict whether a given protein is a membrane protein or not; (2) they are limited to predicting membrane proteins with single-label functional types but ignore those with multi-functional types; and (3) there is still much room for improvement for their performance. To address these problems, this paper proposes a two-layer multi-label predictor, namely Mem-ADSVM, which can identify membrane proteins (Layer I) and their multi-functional types (Layer II). Specifically, given a query protein, its associated gene ontology (GO) information is retrieved by searching a compact GO-term database with its homologous accession number. Subsequently, the GO information is classified by a binary support vector machine (SVM) classifier to determine whether it is a membrane protein or not. If yes, it will be further classified by a multi-label multi-class SVM classifier equipped with an adaptive-decision (AD) scheme to determine to which functional type(s) it belongs. Experimental results show that Mem-ADSVM significantly outperforms state-of-the-art predictors in terms of identifying both membrane proteins and their multi-functional types. This paper also suggests that the two-layer prediction architecture is better than the one-layer for prediction performance. For reader׳s convenience, the Mem-ADSVM server is available online at http://bioinfo.eie.polyu.edu.hk/MemADSVMServer/. Copyright © 2016 Elsevier Ltd. All rights reserved.
Viscous anisotropic hydrodynamics for the Gubser flow
Martinez, M.; McNelis, M.; Heinz, U.
2017-11-01
In this work we describe the dynamics of a highly anisotropic system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion (Gubser flow) for arbitrary shear viscosity to entropy density ratio. We derive the equations of motion of dissipative anisotropic hydrodynamics by applying to this situation the moments method recently derived by Molnár et al. (MNR) [E. Molnar, H. Niemi, and D. H. Rischke, "Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation," Phys. Rev. D93 no. 11, (2016) 114025, arxiv:arXiv:1602.00573 [nucl-th], E. Molnar, H. Niemi, and D. H. Rischke, "Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of a moment of the Boltzmann equation," Phys. Rev. D94 no. 12, (2016) 125003, arxiv:arXiv:1606.09019 [nucl-th
Anisotropic magnetoresistance in a Fermi glass
International Nuclear Information System (INIS)
Ovadyahu, Z.; Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84120)
1986-01-01
Insulating thin films of indium oxide exhibit negative, anisotropic magnetoresistance. The systematics of these results imply that the magnetoresistance mechanism may give different weight to the distribution of the localization lengths than that given by the hopping conductivity
Modelling Coulomb Collisions in Anisotropic Plasmas
Hellinger, P.; Travnicek, P. M.
2009-12-01
Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand
2013-06-18
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Penetration effect in uniaxial anisotropic metamaterials
Vytovtov, K.; Barabanova, E.; Zouhdi, S.
2018-02-01
Plane harmonic wave propagation along an interface between vacuum and a semi-infinite anisotropic metamaterial is considered. Possibility of penetration effect in the considered case is studied. It is shown that there is a bulk wave within the anisotropic metamaterial with an arbitrary orientation of the anisotropy axis. It is also proved that a reflected wave must propagate perpendicularly to the interface in the case of the extraordinary wave. Moreover, no wave is reflected in the case of ordinary wave propagation.
An anisotropic elastoplasticity model implemented in FLAG
Energy Technology Data Exchange (ETDEWEB)
Buechler, Miles Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-12
Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the material will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.
Mechanics of anisotropic spring networks.
Zhang, T; Schwarz, J M; Das, Moumita
2014-12-01
We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, p(x) and p(y), for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of p(x) and p(y). We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.
Rotational discontinuities in anisotropic plasmas
International Nuclear Information System (INIS)
Omidi, N.
1992-01-01
The kinetic structure of rotational discontinuities (RDs) in anisotropic plasmas with T perpendicular /T parallel > 1 is investigated by using a one-dimensional electromagnetic hybrid code. To form the RD, a new approach is used where the plasma is injected from one boundary and reflected from the other, resulting in the generation of a traveling fast shock and an RD. Unlike the previously used methods, no a priori assumptions are made regarding the initial structure (i.e. width or sense of rotation) of the rotational discontinuity. The results show that across the RD both the magnetic field strength and direction, as well as the plasma density change. Given that such a change can also be associated with an intermediate shock, the Rankine-Hugoniot relations are used to confirm that the observed structures are indeed RDs. It is found that the thickness of RDs is a few ion inertial lengths and is independent of the rotation angle. Also, the preferred sense of rotation is in the electron sense; however, RDs with a rotation angle larger than 180 degree are found to be unstable, changing their rotation to a stable ion sense
Directory of Open Access Journals (Sweden)
Abdullah U. Çatli
2012-01-01
Full Text Available One thousand two hundred 1-day-old Lohmann LSL white and Lohmann Brown layer chickens were fed diets supplemented with either an antibiotic growth promoter (AGP or an herbal essential oil mixture (EOM till 58 wk of age to reveal the long-term effects of those additives on growth, performance and wholesome egg quality parameters. The study was arranged in a 2x3 factorial design with two layer strains and three feed additive regimens. Thus, the layer birds of both strains were randomly assigned to the three dietary treatments, i.e., standard basal diet (control, control with AGP (specifically, avilamycin, 10 mg/kg diet and control with EOM (24 mg/kg diet. The data regarding egg production were recorded between 22 to 58 weeks of age. Neither the dietary treatments nor the bird strain influenced the body weight and mortality of the birds in both the growing and laying period. AGP or EOM supplementation to the laying hen diet significantly increased the egg production rate and egg weight as compared to the control diet alone, but egg mass output, feed consumption, and feed conversion ratio were not effected by the dietary treatments. Neither dietary treatment created any statistically significantly differences in egg quality parameters with the exception of Haugh unit. The research findings have confirmed the beneficial effects of supplementation with feed-grade EOM on the laying rate and egg weight of both white and brown layers. Indeed, EOM, being a novel feed additive natural origin, proved to be as efficacious as AGP in promoting egg yield.
Detection of Human Impacts by an Adaptive Energy-Based Anisotropic Algorithm
Directory of Open Access Journals (Sweden)
Manuel Prado-Velasco
2013-10-01
Full Text Available Boosted by health consequences and the cost of falls in the elderly, this work develops and tests a novel algorithm and methodology to detect human impacts that will act as triggers of a two-layer fall monitor. The two main requirements demanded by socio-healthcare providers—unobtrusiveness and reliability—defined the objectives of the research. We have demonstrated that a very agile, adaptive, and energy-based anisotropic algorithm can provide 100% sensitivity and 78% specificity, in the task of detecting impacts under demanding laboratory conditions. The algorithm works together with an unsupervised real-time learning technique that addresses the adaptive capability, and this is also presented. The work demonstrates the robustness and reliability of our new algorithm, which will be the basis of a smart falling monitor. This is shown in this work to underline the relevance of the results.
Maldonado, Sergio; Borthwick, Alistair G L
2018-02-01
We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119 , 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.
Thin and Broadband Two-Layer Microwave Absorber in 4-12 GHz with Developed Flaky Cobalt Material
Gill, Neeraj; Singh, Jaydeep; Puthucheri, Smitha; Singh, Dharmendra
2018-03-01
Microwave absorbing materials (MAMs) in the frequency range of 2.0-18.0 GHz are essential for the stealth and communication applications. Researchers came up with effective MAMs for the higher frequency regions, i.e., 8.0-18.0 GHz, while absorbers with comparable properties in the lower frequency band are still not in the limelight. Designing a MAM for the lower frequency range is a critical task. It is known that the factors governing the absorption in this frequency predominantly depend on the permeability and conductivity of the material, whereas the shape anisotropy of the particles can initiate different absorption mechanisms like multiple internal reflections, phase cancellations, surface charge polarization and enhanced conductivity that can promote the microwave absorption towards lower frequencies. But the material alone may not serve the purpose of getting broad absorption bandwidth. With the effective use of advanced electromagnetic technique like multi-layering this problem may be solved. Therefore, in this paper, a material with shape anisotropy (cobalt flakes with high shape anisotropy) has been prepared and a two-layer structure is developed which gives the absorption bandwidth in 4.17-12.05 GHz at a coating thickness of 2.66 mm.
Huan, Daoming; Wang, Zhiquan; Wang, Zhenbin; Peng, Ranran; Xia, Changrong; Lu, Yalin
2016-02-01
Driven by the mounting concerns on global warming and energy crisis, intermediate temperature solid-oxide fuel cells (IT-SOFCs) have attracted special attention for their high fuel efficiency, low toxic gas emission, and great fuel flexibility. A key obstacle to the practical operation of IT-SOFCs is their sluggish oxygen reduction reaction (ORR) kinetics. In this work, we applied a new two-layered Ruddlesden-Popper (R-P) oxide, Sr3Fe2O7-δ (SFO), as the material for oxygen ion conducting IT-SOFCs. Density functional theory calculation suggested that SFO has extremely low oxygen ion formation energy and considerable energy barrier for O(2-) diffusion. Unfortunately, the stable SrO surface of SFO was demonstrated to be inert to O2 adsorption and dissociation reaction, and thus restricts its catalytic activity toward ORR. Based on this observation, Co partially substituted SFO (SFCO) was then synthesized and applied to improve its surface vacancy concentration to accelerate the oxygen adsorptive reduction reaction rate. Electrochemical performance results suggested that the cell using the SFCO single phase cathode has a peak power density of 685 mW cm(-2) at 650 °C, about 15% higher than those when using LSCF cathode. Operating at 200 mA cm(-2), the new cell using SFCO is quite stable within the 100-h' test.
DEFF Research Database (Denmark)
Hansen, K.; Personne, E.; Skjøth, C.A.
2017-01-01
of the forest ecosystems, a period with full developed canopy (MMSF) and a senescent period for the DK-Sor site, with leaf fall and leaf litter build-up. Both datasets indicate emissions of NH3 from the forest to the atmosphere. The two-layer NH3 compensation point model SURFATM-NH3 was used in combination...... layer NH3 emission potential (Гg) was successfully applied using the plant area index (PAI) to represent the build-up of a litter layer in the leaf fall period. For a closed green forest canopy (MMSF), unaffected by agricultural NH3 sources, NH3 was emitted with daytime fluxes up to 50ng NH3-N m−2s−1...... and nighttime fluxes up to 30ng NH3-N m−2s−1. For a senescing forest (DK-Sor), located in an agricultural region, deposition rates of 250ng NH3-N m−2s−1 were measured prior to leaf fall, and emission rates up to 670ng NH3-N m−2s−1 were measured following leaf fall. For MMSF, simulated stomatal NH3 emissions...
International Nuclear Information System (INIS)
Wang Zhiming; Li Shushen; Zhao Yingjie; Wu Qinghua
2005-01-01
Radionuclide migration experiment in unsaturated loess under sprinkling condition is briefly introduced in this paper. The tracers used for the experiment are 90 Sr and some transuraniums ( 237 Np, 238 Pu, 241 Am). Tracer source is mixture of nitrate solution of the above-mentioned tracers and quartz sand. Particle sizes of quartz sand range from 0.2 mm to 0.45 mm. Dimension of the tracer layer which was put 50 cm below ground is 120 cm x 50 cm and thickness 0.7 cm. Sprinkling rate is 5 mm/h and 3 h/d. A column was collected from experiment pit per half year and cut into samples. Specific activities of radionuclides in samples were measured in laboratory in order to obtain their longitudinal specific activity distribution. The data processing on the results for 90 Sr is conducted in this paper. It is found from the results that lowest valley of specific activity distribution is appeared during radionuclides migration in two-layer porous media. Taking 90 Sr as an example, the forming and characteristics of lowest valley are discussed. Water, which acts as a carrier of radionuclides, formed detouring flow because there exist quartz sand and hence migration distance of 90 Sr below quartz sand layer is much less than that of 85 Sr in single loess medium. (authors)
Maldonado, Sergio; Borthwick, Alistair G. L.
2018-02-01
We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119, 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.
Anisotropic nanomaterials: structure, growth, assembly, and functions
Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil
2011-01-01
Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867
Effective medium theory for anisotropic metamaterials
Zhang, Xiujuan
2015-01-20
Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.
Klöppel, Thomas; Wall, Wolfgang A
2011-07-01
A novel finite element approach is presented to simulate the mechanical behavior of human red blood cells (RBC, erythrocytes). As the RBC membrane comprises a phospholipid bilayer with an intervening protein network, we propose to model the membrane with two distinct layers. The fairly complex characteristics of the very thin lipid bilayer are represented by special incompressible solid shell elements and an anisotropic viscoelastic constitutive model. Properties of the protein network are modeled with an isotropic hyperelastic third-order material. The elastic behavior of the model is validated with existing optical tweezers studies with quasi-static deformations. Employing material parameters consistent with literature, simulation results are in excellent agreement with experimental data. Available models in literature neglect either the surface area conservation of the RBC membrane or realistic loading conditions of the optical tweezers experiments. The importance of these modeling assumptions, that are both included in this study, are discussed and their influence quantified. For the simulation of the dynamic motion of RBC, the model is extended to incorporate the cytoplasm. This is realized with a monolithic fully coupled fluid-structure interaction simulation, where the fluid is described by the incompressible Navier-Stokes equations in an arbitrary Lagrangian Eulerian framework. It is shown that both membrane viscosity and cytoplasm viscosity have significant influence on simulation results. Characteristic recovery times and energy dissipation for varying strain rates in dynamic laser trap experiments are calculated for the first time and are found to be comparable with experimental data.
Head-wave coefficients in anisotropic media
Chapman, Chris
2018-03-01
Reflections and transmissions from interfaces can generate head waves. Although the kinematic properties of head waves are modelled simply using ray concepts, the dynamic properties require an extension of ray theory or the use of wave theory. Head waves are important in exploration and crustal seismology as they indicate the existence of an interface and the velocity of the generating wave. Head waves have been described in the literature for isotropic media but the extension to anisotropic media seems to be lacking. The expressions for the head-wave coefficients using ray concepts or wave theory differ, and their equality is not obvious. This paper extends the theory for head-wave coefficients to anisotropic media using both ray theory and wave theory, and generalizes the proof of equality of the two methods. Simple numerical examples confirm this equality and indicate how the head-wave results can be calculated in anisotropic media and included in a ray-tracing algorithm.
Elastic properties of spherically anisotropic piezoelectric composites
International Nuclear Information System (INIS)
En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon
2010-01-01
Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)
Obtuse triangle suppression in anisotropic meshes
Sun, Feng
2011-12-01
Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.
Generalized Fractional Derivative Anisotropic Viscoelastic Characterization
Directory of Open Access Journals (Sweden)
Harry H. Hilton
2012-01-01
Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.
Reichel, Katharina; Totsche, Kai Uwe
2013-04-01
Biogeochemical interfaces in soils (Totsche et al. 2010) are the "hot spots" of microbial activity and the processing of organic compounds in soils. The production and relocation of mobile organic matter (MOM) and biocolloids like microorganisms are key processes for the formation and depth propagation of biogeochemical interfaces in soils (BGI). Phenanthrene (PHE) has been shown to affect microbial communities in soils (Ding et al. 2012) and may induce shifts in MOM quantity and quality (amount, type and properties of MOM). We hypothesize that the properties of BGI in soil change significantly due to the presence of PHE. The objectives of this study are (i) to evaluate the effect of PHE on soil microbial communities and on MOM quantity and quality under flow conditions with single- and two-layer column experiments and (ii) to assess the role of these processes for the physicochemical, mechanical and sorptive properties of BGI in soils. The soil columns were operated under water-unsaturated conditions. The top layer (source layer, SL, 2 cm) is made of sieved soil material (Luvisol, Scheyern, Germany) spiked with PHE (0.2 mg/g). The bottom layer (reception layer, RL, 10 cm) comprised the same soil without PHE. PHE-free columns were conducted in parallel as reference. Release and transport of MOM in mature soil of a single-layer column experiment was found to depend on the transport regime. The release of larger sized MOM (>0.45 µm) was restricted to an increased residence time during flow interruptions. Steady flow conditions favor the release of smaller MOM (10.3389/fmicb.2012.00290.
Wen, Guoyong; Marshak, Alexander; Varnai, Tamas; Levy, Robert
2016-01-01
A transition zone exists between cloudy skies and clear sky; such that, clouds scatter solar radiation into clear-sky regions. From a satellite perspective, it appears that clouds enhance the radiation nearby. We seek a simple method to estimate this enhancement, since it is so computationally expensive to account for all three-dimensional (3-D) scattering processes. In previous studies, we developed a simple two-layer model (2LM) that estimated the radiation scattered via cloud-molecular interactions. Here we have developed a new model to account for cloud-surface interaction (CSI). We test the models by comparing to calculations provided by full 3-D radiative transfer simulations of realistic cloud scenes. For these scenes, the Moderate Resolution Imaging Spectroradiometer (MODIS)-like radiance fields were computed from the Spherical Harmonic Discrete Ordinate Method (SHDOM), based on a large number of cumulus fields simulated by the University of California, Los Angeles (UCLA) large eddy simulation (LES) model. We find that the original 2LM model that estimates cloud-air molecule interactions accounts for 64 of the total reflectance enhancement and the new model (2LM+CSI) that also includes cloud-surface interactions accounts for nearly 80. We discuss the possibility of accounting for cloud-aerosol radiative interactions in 3-D cloud-induced reflectance enhancement, which may explain the remaining 20 of enhancements. Because these are simple models, these corrections can be applied to global satellite observations (e.g., MODIS) and help to reduce biases in aerosol and other clear-sky retrievals.
Anisotropic nanomaterials preparation, properties, and applications
Li, Quan
2015-01-01
In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi
Modelling of CMUTs with Anisotropic Plates
DEFF Research Database (Denmark)
la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt
2012-01-01
Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...... calculations match perfectly with FEM while an isotropic approach causes up to 10% deviations in deflection profile. Furthermore, we show how commonly used analytic modelling methods such as static calculations of the pull-in voltage and dynamic modelling through an equivalent circuit representation can...
A Variational Approach to Perturbed Discrete Anisotropic Equations
Directory of Open Access Journals (Sweden)
Amjad Salari
2016-01-01
Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.
The Effect of Anisotropic Scatter on Atmospheric Neutron Transport
2015-03-26
THE EFFECT OF ANISOTROPIC SCATTER ON ATMOSPHERIC NEUTRON TRANSPORT THESIS MARCH 2015 Nicholas J...iii AFIT-ENP-MS-15-M-085 THE EFFECT OF ANISOTROPIC SCATTER ON ATMOSPHERIC NEUTRON TRANSPORT THESIS Presented to the...EFFECT OF ANISOTROPIC SCATTER ON ATMOSPHERIC NEUTRON TRANSPORT Nicholas J. McIntee, BSE Major, USA Committee Membership: Dr. Kirk A. Mathews
Salimbeni, S.; Pondrelli, S.; Margheriti, L.; Levin, V.; Park, J.; Plomerova, J.
2006-12-01
The multidisciplinary RETREAT project (REtreating-Trench, Extension and Accretion Tectonics) is focused on the development of a 3D self-consistent dynamic model of the syn-convergent extension in the Northern Apennines. The seismological deployment of the Project started on 2003 and closed on September 2006, using 10 instruments lent by the GFU and 25 instruments lent by PASSCAL, added to the permanent stations of the Italian National Network. Many of the stations were deployed along a NE-SW transect across the Apennine chain. We present here new results of seismic anisotropy analysis obtained from SKS core-refracted shear waves. The study of SKS splitting is applied on twenty teleseismic earthquakes; for all of them we calculate the anisotropic parameters (delay time and fast polarization direction) by minimizing the energy in the transverse component. Our analysis assesses uncertainty by testing the parameters for stability to noise. Previous studies of splitting analysis have found in the study region evidence for tectonic domains in which a coherent splitting signal can be found. The Tuscany domain (Tyrrhenian side) shows homogeneous NW-SE fast axes directions; the Po-Plain domain (Eastern side of the Apennines) shows a N-S to NE-SW directions, here strongly influenced by backazimuth. To better define the complex structure that may exist below the Northern Apennines and Po Plain we apply the cross convolution method of Menke and Levin (2003) to discriminate whether a two-layer anisotropic model fits the splitting pattern more convincingly that a simple one-layer model. Previous analysis suggested that structure beneath the Tuscany side is simpler; a single anisotropic layer with a NW-SE fast polarization direction is in agreement with all the dataset. Beneath the Po Plain the complexity of the structure is confirmed in the analysis of most stations.
Hypersurface-homogeneous cosmological models with anisotropic ...
Indian Academy of Sciences (India)
2016-12-05
Dec 5, 2016 ... DOI 10.1007/s12043-016-1317-4. Hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez–Ballester theory of gravitation. M K VERMA1, S CHANDEL2 and SHRI RAM2,∗. 1Department of Mathematics, Baba Banarasi Das National Institute of Technology & Management,.
Anisotropic Hanle line shape via magnetothermoelectric phenomena
Das, Kumar; Dejene, Fasil; van Wees, Bart; Vera Marun, Ivan
2016-01-01
We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times
Adaptive slices for acquisition of anisotropic BRDF
Czech Academy of Sciences Publication Activity Database
Vávra, Radomír; Filip, Jiří
(2018) ISSN 2096-0433 R&D Projects: GA ČR GA17-18407S Institutional support: RVO:67985556 Keywords : anisotropic BRDF * slice * sampling Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2018/RO/vavra-0486116.pdf
Theory of anisotropic diamagnetism, local moment magnetization ...
Indian Academy of Sciences (India)
Theory of anisotropic diamagnetism, local moment magnetization and carrier spin-polarization in Pb1-EuTe ... Gopalpur 761 002, India; Department of Physics, Jagannath Institute for Technology and Management, Parlakhemundi 761 211, India; Department of Physics, Berhampur University, Berhampur 760 007, India ...
Hypersurface-homogeneous cosmological models with anisotropic ...
Indian Academy of Sciences (India)
The present study deals with hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez–Ballester theory of gravitation. Exact solutions of field equations are obtained by applying a special law of variation of Hubble's parameter that yields a constant negative value of the deceleration parameter.
Minimally coupled scalar field cosmology in anisotropic ...
Indian Academy of Sciences (India)
We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar ...
Algebraic solution of an anisotropic nonquadratic potential
International Nuclear Information System (INIS)
Boschi Filho, H.; Vaidya, A.N.
1990-06-01
We show that an anisotropic nonquadratic potential, for which a path integral treatment had been recently discussed in the literature, possesses the (SO(2,1)xSO(2,1))ΛSO(2,1) dynamical symmetry and constructs its Green function algebraically. A particular case which generates new eigenvalues and eigenfunctions is also discussed. (author). 11 refs
Modelling anisotropic water transport in polymer composite
Indian Academy of Sciences (India)
This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...
A new algorithm for anisotropic solutions
Indian Academy of Sciences (India)
We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed ...
Acoustic reflection from the boundary of anisotropic ...
Indian Academy of Sciences (India)
Vertical slownesses of waves at a boundary of an anisotropic thermoviscoelastic medium are calculated as roots of a polynomial equation of degree eight. Out of the corresponding eight waves, the four, which travel towards the boundary are identiﬁed as upgoing waves. Remaining four waves travel away from the boundary ...
Ray tracing in anisotropic media with singularities
Czech Academy of Sciences Publication Activity Database
Vavryčuk, Václav
2001-01-01
Roč. 145, č. 1 (2001), s. 265-276 ISSN 0956-540X R&D Projects: GA ČR GA205/00/1350 Institutional research plan: CEZ:AV0Z3012916 Keywords : anisotropic media * ray tracing * singularities Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.366, year: 2001
Minimally coupled scalar field cosmology in anisotropic ...
Indian Academy of Sciences (India)
2017-01-03
Jan 3, 2017 ... a phantom field [24,25], quintom [26,27], k-essence. [28], tachyon [29] and so forth. It is well known that the evolution of the Uni- verse admits a scenario of anisotropic expansion and gains a lot of interest, under the light of the recently announced Planck Probe results [7]. The Bianchi models, which describe ...
Modelling anisotropic water transport in polymer composite ...
Indian Academy of Sciences (India)
Abstract. This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation ...
The method of images for anisotropic media
International Nuclear Information System (INIS)
Iosilevskii, Ya.A.
1978-01-01
The method of images is suggested to construct a scalar macroscopic field (dynamic or static) of a point source in an anisotropic half-space or flat slab. The field is found for an arbitrary orientation of the boundaries with respect to the crystallographic axes. (Auth.)
Anisotropic power-law k-inflation
Ohashi, Junko; Soda, Jiro; Tsujikawa, Shinji
2013-11-01
It is known that power-law k-inflation can be realized for the Lagrangian P=Xg(Y), where X=-(∂ϕ)2/2 is the kinetic energy of a scalar field ϕ and g is an arbitrary function in terms of Y=Xeλϕ/Mpl (λ is a constant and Mpl is the reduced Planck mass). In the presence of a vector field coupled to the inflaton with an exponential coupling f(ϕ)∝eμϕ/Mpl, we show that the models with the Lagrangian P=Xg(Y) generally give rise to anisotropic inflationary solutions with Σ/H=constant, where Σ is an anisotropic shear and H is an isotropic expansion rate. Provided these anisotropic solutions exist in the regime where the ratio Σ/H is much smaller than 1, they are stable attractors irrespective of the forms of g(Y). We apply our results to concrete models of k-inflation such as the generalized dilatonic ghost condensate and the Dirac-Born-Infeld model and we numerically show that the solutions with different initial conditions converge to the anisotropic power-law inflationary attractors. Even in the de Sitter limit (λ→0) such solutions can exist, but in this case the null energy condition is generally violated. The latter property is consistent with the Wald’s cosmic conjecture stating that the anisotropic hair does not survive on the de Sitter background in the presence of matter respecting the dominant/strong energy conditions.
Lv, S.; Wen, J.; Zeng, Yijian; Tian, H.; Su, Zhongbo
2014-01-01
The effective soil temperature (Teff) is essential for the retrieval of soil moisture information, when satellite microwave remote sensing data are used. In this investigation, a new two-layer scheme (Lv's scheme) is developed to estimate Teff considering wavelength, soil moisture, sampling depth,
Views on the Anisotropic Nature of Ilva Valley Region
Directory of Open Access Journals (Sweden)
GABRIELA-ALINA MUREŞAN
2012-01-01
Full Text Available There are two concepts important for the authors of this article: anisotropic region and anisotropic space. Anisotropic region is defined by A. Dauphiné, the geographer (-mathematician, as a territorial unit whose structure results from the organisation of space along one or more axes. From the point of view of a territorial system, this type of region has some characteristics which differentiate it both from the homogeneous region and from the polarised one. These specificities have been analysed for Ilva Valley. The region of Ilva Valley is formed along the morphological axis represented by the Ilva River. The aim is to identify these specificities or their absence within this region. In this way we can determine whether this region is an anisotropic one or just an anisotropic space, namely whether it can be considered as evolving towards an anisotropic region, not yet complying with all characteristics of anisotropic regions.
Cosmological signatures of anisotropic spatial curvature
Energy Technology Data Exchange (ETDEWEB)
Pereira, Thiago S. [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina – PR (Brazil); Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006, Madrid (Spain); Carneiro, Saulo, E-mail: tspereira@uel.br, E-mail: mena@iem.cfmac.csic.es, E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador – BA (Brazil)
2015-07-01
If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.
Equilibrium-Based Nonhomogeneous Anisotropic Beam Element
DEFF Research Database (Denmark)
Krenk, Steen; Couturier, Philippe
2017-01-01
The stiffness matrix and the nodal forces associated with distributed loads are obtained for a nonhomogeneous anisotropic elastic beam element by the use of complementary energy. The element flexibility matrix is obtained by integrating the complementary-energy density corresponding to six beam...... equilibrium states, and then inverted and expanded to provide the element-stiffness matrix. Distributed element loads are represented via corresponding internal-force distributions in local equilibrium with the loads. The element formulation does not depend on assumed shape functions and can, in principle......, include any variation of cross-sectional properties and load variation, provided that these are integrated with sufficient accuracy in the process. The ability to represent variable cross-sectional properties, coupling from anisotropic materials, and distributed element loads is illustrated by numerical...
Dynamics of anisotropic particles under waves
Dibenedetto, Michelle; Ouellette, Nicholas; Koseff, Jeffrey
2017-11-01
We present results on anisotropic particles in wavy flows in order to gain insight into the transport and mixing of microplastic particles in the near-shore environment. From theory and numerical simulations, we find that the rate of alignment of the particles is not constant and depends strongly on their initial orientation; thus, variations in initial particle orientation result in dispersion of anisotropic-particle plumes. We find that this dispersion is a function of the particle's eccentricity and the ratio of the settling and wave time scales. Experiments in which non-spherical particles of various shapes are released under surface gravity waves were also performed. Our main goal is to explore the effects of particle shape under various wave scenarios. We vary the aspect ratio of the particle in our experiments while holding other variables constant. Our results demonstrate that particle shape can be important when predicting transport.
Wireless energy transfer between anisotropic metamaterials shells
Energy Technology Data Exchange (ETDEWEB)
Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es
2014-06-15
The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.
The shear viscosity in anisotropic phases
Energy Technology Data Exchange (ETDEWEB)
Jain, Sachin [Department of Physics, Cornell University,Ithaca, New York 14853 (United States); Samanta, Rickmoy; Trivedi, Sandip P. [Department of Theoretical Physics, Tata Institute of Fundamental Research,Colaba, Mumbai 400005 (India)
2015-10-06
We construct anisotropic black brane solutions and analyse the behaviour of some of their metric perturbations. These solutions correspond to field theory duals in which rotational symmetry is broken due an externally applied, spatially constant, force. We find, in several examples, that when the anisotropy is sufficiently big compared to the temperature, some components of the viscosity tensor can become very small in units of the entropy density, parametrically violating the KSS bound. We obtain an expression relating these components of the viscosity, in units of the entropy density, to a ratio of metric components at the horizon of the black brane. This relation is generally valid, as long as the forcing function is translationally invariant, and it directly connects the parametric violation of the bound to the anisotropy in the metric at the horizon. Our results suggest the possibility that such small components of the viscosity tensor might also arise in anisotropic strongly coupled fluids found in nature.
Anisotropic instability of a stretching film
Xu, Bingrui; Li, Minhao; Deng, Daosheng
2017-11-01
Instability of a thin liquid film, such as dewetting arising from Van der Waals force, has been well studied, and is typically characterized by formation of many droplets. Interestingly, a thin liquid film subjected to an applied stretching during a process of thermal drawing is evolved into an array of filaments, i.e., continuity is preserved along the direction of stretching while breakup occurs exclusively in the plane of cross section. Here, to understand this anisotropic instability, we build a physical model by considering both Van der Waals force and the effect of stretching. By using the linear instability analysis method and then performing a numerical calculation, we find that the growth rate of perturbations at the cross section is larger than that along the direction of stretching, resulting in the anisotropic instability of the stretching film. These results may provide theoretical guidance to achieve more diverse structures for nanotechnology.
Anisotropic magnetocapacitance in ferromagnetic-plate capacitors
Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.
2015-04-01
The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.
Symmetry analysis for anisotropic field theories
International Nuclear Information System (INIS)
Parra, Lorena; Vergara, J. David
2012-01-01
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
Anisotropic diffusion tensor applied to temporal mammograms
DEFF Research Database (Denmark)
Karemore, Gopal; Brandt, Sami; Sporring, Jon
2010-01-01
changes related to specific effects like Hormonal Replacement Therapy (HRT) and aging. Given effect-grouped patient data, we demonstrated how anisotropic diffusion tensor and its coherence features computed in an anatomically oriented breast coordinate system followed by statistical learning...
Anisotropic conducting films for electromagnetic radiation applications
Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard
2015-06-16
Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.
Electromagnetic field representation in inhomogeneous anisotropic media
Mohsen, A.
1973-01-01
Some of the basic developments in the theory of electromagnetic field representation in terms of Hertz vectors are reviewed. A solution for the field in an inhomogeneous anisotropic medium is given in terms of the two Hertz vectors. Conditions for presentation of the field in terms of uncoupled transverse electric and transverse magnetic modes, in a general orthogonal coordinate system, are derived when the permeability and permittivity tensors have only diagonal components. These conditions are compared with some known special cases.
Acoustic anisotropic wavefields through perturbation theory
Alkhalifah, Tariq Ali
2013-09-01
Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.
Anisotropic cosmological solutions in massive vector theories
International Nuclear Information System (INIS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-01-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v 2 || φ 2 are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w DE in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w DE (iso) typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.
Bryan's effect and anisotropic nonlinear damping
Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.
2018-03-01
In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.
ARTc: Anisotropic reflectivity and transmissivity calculator
Malehmir, Reza; Schmitt, Douglas R.
2016-08-01
While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.
ANALYSIS OF DEFORMABILITY OF ANISOTROPIC AGRILLITE CLAYSTONES
Directory of Open Access Journals (Sweden)
Ponomaryov Andrey Budimirovicn
2017-08-01
Full Text Available In the paper, the results of deformability study of agrillite claystones are used for determination of the Jointed rock model parameters. The number of stamp, pressuremeter and compressive tests allowed to research anisotropic deformability of argillite claystone in vertical and horizontal direction. The following problems were solved during the study: 1 the in-place and laboratory experiments to calculate the anisotropy coefficient were done for anisotropic agrillite claystones with both natural moisture and total water saturation; 2 the deformation parameters were determined and the numerical simulation of the stress-strain state of claystone in field tests was carried out with the use of Plaxis 2D software application; 3 the comparative analysis was done for calculated claystone deformation and the values obtained during the in-place tests. The authors proved that agrillite claystones shows two times less deformation under loading in the horizontal direction than vertically. The ratio is obtained to determine the parameters for numerical simulation of the Jointed Rock model used as a practical tool for analysis of stress-strain behavior of anisotropic soils. The authors provided a recommended practice for consideration of specific properties of argillite claystones when carrying out foundation works.
Longitudinal fluctuations and decorrelation of anisotropic flow
Energy Technology Data Exchange (ETDEWEB)
Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-12-15
We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.
Understanding conoscopic interference patterns in anisotropic crystals
Olorunsola, Oluwatobi Gabriel
The interference patterns observed in conoscopy are important in studying the optical and geometrical properties of anisotropic materials. They have also been used to identify minerals and to explore the structure of biological tissues. In a conoscopic interferometer, an optically anisotropic specimen is placed between two crossed linear polarizers and illuminated by a convergent light beam. The interference patterns are produced because in an anisotropic material an incident light is split into two eigenwaves, namely the ordinary and the extraordinary waves. We report our work on the theoretical simulation and experimental observation of the conoscopic interference patterns in anisotropic crystals. In our simulation, the interference patterns are decomposed into fringes of isogyres and isochromates. For each light propagation direction inside the crystal there exist two eigenwaves that have their own characteristic velocities and vibration directions. The isogyres are obtained by computing the angle between the polarization of the incident light and the vibration directions of the two eigenwaves. The isochromates are obtained by computing the phase retardance between the two eigenwaves inside the crystal. The interference patterns are experimentally observed in several crystals, with their optic axes either parallel or perpendicular to their surfaces. An external electric field is applied to deform the crystals from uniaxial to biaxial. The results of our experimental observation agree well with our computer simulation. In conventional interferometers the isochromatic interference fringes are observed by using a circular polarizer and a circular analyzer, both constructed by a linear polarizer and a quarter wave plate. However, due to the dispersion of the quarter wave plates, the phase-retardance between the two light waves inside the quarter wave plates is wavelength-dependent, which results in different conoscopic interference patterns for different colors of
International Nuclear Information System (INIS)
Muresan, Cristian; Vaillon, Rodolphe; Menezo, Christophe; Morlot, Rodolphe
2004-01-01
The coupled conductive radiative heat transfer in a two-layer slab with Fresnel interfaces subject to diffuse and obliquely collimated irradiation is solved. The collimated and diffuse components problems are treated separately. The solution for diffuse radiation is obtained by using a composite discrete ordinates method and includes the development of adaptive directional quadratures to overcome the difficulties usually encountered at the interfaces. The complete radiation numerical model is validated against the predictions obtained by using the Monte Carlo method
High-Sensitive Two-Layer Photoresistors Based on p-Cd x Hg1-x Te with a Converted Near-Surface Layer
Ismailov, N. D.; Talipov, N. Kh.; Voitsekhovskii, A. V.
2018-04-01
The results of an experimental study of photoelectric characteristics of two-layer photoresistors based on p-Cd x Hg1-x Te (x = 0.24-0.28) with a thin near-surface layer of n-type obtained by treatment in atmospheric gas plasma are presented. It is shown that the presence of a potential barrier between the p- and n-regions causes high photosensitivity and speed of operation of such photoresistors at T = 77 K
International Nuclear Information System (INIS)
Nakahata, Masaaki; Amemiya, Naoyuki
2008-01-01
Two-dimensional electromagnetic field analyses were undertaken using two representative cross sections of two-layer cables consisting of coated conductors with magnetic and non-magnetic substrates. The following two arrangements were used for the coated conductors between the inner and outer layers: (1) tape-on-tape and (2) alternate. The calculated magnetic flux profile around each coated conductor was visualized. In the case of the non-magnetic substrate, the magnetic field to which coated conductors in the outer layer are exposed contains more perpendicular component to the conductor wide face (perpendicular field component) when compared to that in the inner layer. On the other hand, for the tape-on-tape arrangement of coated conductors with a magnetic substrate, the reverse is true. In the case of the alternate arrangement of the coated conductor with a magnetic substrate, the magnetic field to which the coated conductors in the inner and outer layers are exposed experiences a small perpendicular field component. When using a non-magnetic substrate, the AC loss in the superconductor layer of the coated conductors in the two-layer cables is dominated by that in the outer layer, whereas the reverse is true in the case of a magnetic substrate. When comparing the AC losses in superconductor layers of coated conductors with non-magnetic and magnetic substrates in two-layer cables, the latter is larger than the former, but the influence of the magnetism of substrates on AC losses in superconductor layers is not remarkable
Holod, I; Zagorodny, A; Weiland, J
2005-04-01
The problem of random motion of charged particles in an external magnetic field is studied under the assumption that the Langevin sources produce anisotropic diffusion in velocity space and the friction force is dependent on the direction of particle motion. It is shown that in the case under consideration, the kinetic equation describing particle transitions in phase space is reduced to the equation with a Fokker-Planck collision term in the general form (non-isotropic friction coefficient and nonzero off-diagonal elements of the diffusion tensor in the velocity space). The solution of such an equation has been obtained and the explicit form of the transition probability is found. Using the obtained transition probability, the mean-square particle displacements in configuration and velocity space were calculated and compared with the results of numerical simulations, showing good agreement. The obtained results are used to generalize the theory of large-scale fluctuations in plasmas to the case of anisotropic diffusion across an external magnetic field. Such diffusion is expected to be observed in the case of an anisotropic k spectrum of fluctuations generating random particle motion (for example, in the case of drift-wave turbulence).
Anisotropic resonant scattering from polymer photonic crystals.
Haines, Andrew I; Finlayson, Chris E; Snoswell, David R E; Spahn, Peter; Hellmann, G Peter; Baumberg, Jeremy J
2012-11-20
Hyperspectral goniometry reveals anisotropic scattering which dominates the visual appearance of self-assembled polymer opals. The technique allows reconstruction of the reciprocal-space of nanostructures, and indicates that chain defects formed during shear-ordering are responsible for the anisotropy in these samples. Enhanced scattering with improving order is shown to arise from increased effective refractive index contrast, while broadband background scatter is suppressed by absorptive dopants. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An approach to anisotropic cosmologies. 6
International Nuclear Information System (INIS)
Raychaudhuri, A.K.
1989-01-01
In this paper the motivation for the study of anisotropic cosmological models is set out. Then the mathematical basis for the study of such models as well as the description of some of the exact solutions of this genre are given. Killing vectors that spell out spacetime symmetries, are defined and the Bianchi classification of spacetimes based on the structure of the Killing vectors described. After a consideration of the kinematics of matter flow some of the known solutions are presented and their properties described. (author)
Anisotropic Density Estimation in Global Illumination
DEFF Research Database (Denmark)
Schjøth, Lars
2009-01-01
and bias in estimates. Good results are obtained by the use of anisotropic filtering. Two methods handles the most common cases; filtering illumination reflected from object surfaces. One methods extends filtering to the temporal domain and one performs filtering on illumination from participating media......Density estimation employed in multi-pass global illumination algorithms gives cause to a trade-off problem between bias and noise. The problem is seen most evident as blurring of strong illumination features. This thesis addresses the problem, presenting four methods that reduce both noise...
Creating an anisotropic plasma resistivity with waves
International Nuclear Information System (INIS)
Fisch, N.J.; Boozer, A.H.
1980-05-01
An anisotropic plasma resistivity may be created by preferential heating of electrons traveling in one direction. This can result in a steady-state toroidal current in a tokamak even in the absence of net wave momentum. In fact, at high wave phase velocities, the current associated with the change in resistivity is greater than that associated with net momentum input. An immediate implication is that other waves, such as electron cyclotron waves, may be competitive with lower-hybrid waves as a means for generating current. An analytical expression is derived for the current generated per power dissipated which agrees remarkably well with numerical calculations
Generalised model for anisotropic compact stars
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Deb, Debabrata [Indian Institute of Engineering Science and Technology, Shibpur, Department of Physics, Howrah, West Bengal (India)
2016-12-15
In the present investigation an exact generalised model for anisotropic compact stars of embedding class 1 is sought with a general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model presented here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates RXJ 1856-37, SAX J 1808.4-3658 (SS1) and SAX J 1808.4-3658 (SS2) are concerned. (orig.)
Effective Medium Theory for Anisotropic Metamaterials
Zhang, Xiujuan
2017-11-12
This dissertation includes the study of effective medium theories (EMTs) and their applications in describing wave propagation in anisotropic metamaterials, which can guide the design of metamaterials. An EMT based on field averaging is proposed to describe a peculiar anisotropic dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. This dispersion relation is associated with the topological transition of the iso-frequency contours (IFCs), suggesting interesting wave propagation behaviors from beam shaping to beam splitting. In the framework of coherent potential approximation, an analytical EMT is further developed, with the ability to build a direct connection between the microscopic structure and the macroscopic material properties, which overcomes the requirement of prior knowledge of the field distributions. The derived EMT is valid beyond the long-wavelength limit. Using the EMT, an anisotropic zero-index metamaterial is designed. Moreover, the derived EMT imposes a condition that no scattered wave is generated in the ambient medium, which suggests the input signal cannot detect any object that might exist, making it invisible. Such correspondence between the EMT and the invisibilityinspires us to explore the wave cloaking in the same framework of coherent potential approximation. To further broaden the application realm of EMT, an EMT using the parameter retrieval method is studied in the regimes where the previously-developed EMTs are no longer accurate. Based on this study, in conjunction with the EMT mentioned above, a general scheme to realize coherent perfect absorption (CPA) in anisotropic metamaterials is proposed. As an exciting area in metamaterials, the field of metasurfaces has drawn great attention recently. As an easily attainable device, a grating may be the simplest version of metasurfaces. Here, an analytical EMT for gratings made of cylinders is developed by using the multiple scattering
RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS
Energy Technology Data Exchange (ETDEWEB)
López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)
2016-11-20
A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.
Analysis of anisotropic shells containing flowing fluid
International Nuclear Information System (INIS)
Lakis, A.A.
1983-01-01
A general theory for the dynamic analysis of anisotropic thin cylindrical shells containing flowing fluid is presented. The shell may be uniform or non-uniform, provided it is geometrically axially symmetric. This is a finite- element theory, using cylindrical finite elements, but the displacement functions are determined by using classical shell theory. A new solution of the wave equation of the liquid finite element leads to an expression of the fluid pressure, p, as a function of the nodal displacements of the element and three operative forces (inertia, centrifugal and Coriolis) of the moving fluid. (Author) [pt
Anisotropic elliptic PDEs for feature classification.
Wang, Shengfa; Hou, Tingbo; Li, Shuai; Su, Zhixun; Qin, Hong
2013-10-01
The extraction and classification of multitype (point, curve, patch) features on manifolds are extremely challenging, due to the lack of rigorous definition for diverse feature forms. This paper seeks a novel solution of multitype features in a mathematically rigorous way and proposes an efficient method for feature classification on manifolds. We tackle this challenge by exploring a quasi-harmonic field (QHF) generated by elliptic PDEs, which is the stable state of heat diffusion governed by anisotropic diffusion tensor. Diffusion tensor locally encodes shape geometry and controls velocity and direction of the diffusion process. The global QHF weaves points into smooth regions separated by ridges and has superior performance in combating noise/holes. Our method's originality is highlighted by the integration of locally defined diffusion tensor and globally defined elliptic PDEs in an anisotropic manner. At the computational front, the heat diffusion PDE becomes a linear system with Dirichlet condition at heat sources (called seeds). Our new algorithms afford automatic seed selection, enhanced by a fast update procedure in a high-dimensional space. By employing diffusion probability, our method can handle both manufactured parts and organic objects. Various experiments demonstrate the flexibility and high performance of our method.
Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials.
Dierking, Ingo; Al-Zangana, Shakhawan
2017-10-01
Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.
The Effective Coherence Length in Anisotropic Superconductors
International Nuclear Information System (INIS)
Polturak, E.; Koren, G.; Nesher, O
1999-01-01
If electrons are transmitted from a normal conductor(N) into a superconductor(S), common wisdom has it that the electrons are converted into Cooper pairs within a coherence length from the interface. This is true in conventional superconductors with an isotropic order parameter. We have established experimentally that the situation is rather different in high Tc superconductors having an anisotropic order parameter. We used epitaxial thin film S/N bilayers having different interface orientations in order to inject carriers from S into N along different directions. The distance to which these carriers penetrate were determined through their effect on the Tc of the bilayers. We found that the effective coherence length is 20A only along the a or b directions, while in other directions we find a length of 250dr20A out of plane, and an even larger value for in-plane, off high symmetry directions. These observations can be explained using the Blonder-Tinkham-Klapwijk model adapted to anisotropic superconductivity. Several implications of our results on outstanding problems with high Tc junctions will be discussed
Finite-difference schemes for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)
2014-09-01
In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.
Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials
Directory of Open Access Journals (Sweden)
Ingo Dierking
2017-10-01
Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.
Quantum electrodynamics of inhomogeneous anisotropic media
Energy Technology Data Exchange (ETDEWEB)
Lopez, Adrian E.R.; Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, Buenos Aires (Argentina); IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-02-01
In this work we calculate the closed time path generating functional for the electromagnetic (EM) field interacting with inhomogeneous anisotropic matter. For this purpose, we first find a general expression for the electromagnetic field's influence action from the interaction of the field with a composite environment consisting in the quantum polarization degrees of freedom in each point of space, at arbitrary temperatures, connected to thermal baths. Then we evaluate the generating functional for the gauge field, in the temporal gauge, by implementing the Faddeev-Popov procedure. Finally, through the point-splitting technique, we calculate closed expressions for the energy, the Poynting vector, and the Maxwell tensor in terms of the Hadamard propagator. We show that all the quantities have contributions from the field's initial conditions and also from the matter degrees of freedom. Throughout the whole work we discuss how the gauge invariance must be treated in the formalism when the EM-field is interacting with inhomogeneous anisotropic matter. We study the electrodynamics in the temporal gauge, obtaining the EM-field's equation and a residual condition. Finally we analyze the case of the EM-field in bulk material and also discuss several general implications of our results in relation with the Casimir physics in a non-equilibrium scenario. (orig.)
Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials
Dierking, Ingo
2017-01-01
Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide. PMID:28974025
Elastic Modes of an Anisotropic Ridge Waveguide
Directory of Open Access Journals (Sweden)
Ameya Galinde
2012-01-01
Full Text Available A semi-analytical method for finding the elastic modes propagating along the edge of an anisotropic semi-infinite plate is presented. Solutions are constructed as linear combinations of a finite number of the corresponding infinite plate modes with the constraint that they decay in the direction perpendicular to the edge and collectively satisfy the free boundary condition over the edge surface. Such modes that are confined to the edge can be used to approximate solutions of acoustic ridge waveguides whose supporting structures are sufficiently far away from the free edge. The semi-infinite plate or ridge is allowed to be oriented arbitrarily in the anisotropic crystal. Modifications to the theory to find symmetric and antisymmetric solutions for special crystal orientations are also presented. Accuracy of the solutions can be improved by including more plate modes in the series. Numerical techniques to find modal dispersion relations and orientation dependent modal behavior, are discussed. Results for ridges etched in single crystal Silicon are found to be in good agreement with Finite Element simulations. It is found that variations in modal phase velocity with respect to crystal orientation are not significant, suggesting that anisotropy may not be a critical issue while designing ridge waveguides in Silicon.
Electrically Anisotropic Layered Perovskite Single Crystal
Li, Ting-You
2016-04-01
Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.
Anisotropic dark energy and CMB anomalies
International Nuclear Information System (INIS)
Battye, Richard; Moss, Adam
2009-01-01
We investigate the breaking of global statistical isotropy caused by a dark energy component with an energy-momentum tensor which has point symmetry, that could represent a cubic or hexagonal crystalline lattice. In such models Gaussian, adiabatic initial conditions created during inflation can lead to anisotropies in the cosmic microwave background whose spherical harmonic coefficients are correlated, contrary to the standard assumption. We develop an adaptation of the line of sight integration method that can be applied to models where the background energy-momentum tensor is isotropic, but whose linearized perturbations are anisotropic. We then show how this can be applied to the cases of cubic and hexagonal symmetry. We compute quantities which show that such models are indistinguishable from isotropic models even in the most extreme parameter choices, in stark contrast to models with anisotropic initial conditions based on inflation. The reason for this is that the dark energy based models contribute to the CMB anisotropy via the integrated Sachs-Wolfe effect, which is only relevant when the dark energy is dominant, that is, on the very largest scales. For inflationary models, however, the anisotropy is present on all scales.
Relativistic model for anisotropic strange stars
Deb, Debabrata; Chowdhury, Sourav Roy; Ray, Saibal; Rahaman, Farook; Guha, B. K.
2017-12-01
In this article, we attempt to find a singularity free solution of Einstein's field equations for compact stellar objects, precisely strange (quark) stars, considering Schwarzschild metric as the exterior spacetime. To this end, we consider that the stellar object is spherically symmetric, static and anisotropic in nature and follows the density profile given by Mak and Harko (2002) , which satisfies all the physical conditions. To investigate different properties of the ultra-dense strange stars we have employed the MIT bag model for the quark matter. Our investigation displays an interesting feature that the anisotropy of compact stars increases with the radial coordinate and attains its maximum value at the surface which seems an inherent property for the singularity free anisotropic compact stellar objects. In this connection we also perform several tests for physical features of the proposed model and show that these are reasonably acceptable within certain range. Further, we find that the model is consistent with the energy conditions and the compact stellar structure is stable with the validity of the TOV equation and Herrera cracking concept. For the masses below the maximum mass point in mass vs radius curve the typical behavior achieved within the framework of general relativity. We have calculated the maximum mass and radius of the strange stars for the three finite values of bag constant Bg.
Building an Anisotropic Meniscus with Zonal Variations
Higashioka, Michael M.; Chen, Justin A.; Hu, Jerry C.
2014-01-01
Toward addressing the difficult problems of knee meniscus regeneration, a self-assembling process has been used to re-create the native morphology and matrix properties. A significant problem in such attempts is the recapitulation of the distinct zones of the meniscus, the inner, more cartilaginous and the outer, more fibrocartilaginous zones. In this study, an anisotropic and zonally variant meniscus was produced by self-assembly of the inner meniscus (100% chondrocytes) followed by cell seeding the outer meniscus (coculture of chondrocytes and meniscus cells). After 4 weeks in culture, the engineered, inner meniscus exhibited a 42% increase in both instantaneous and relaxation moduli and a 62% increase in GAG/DW, as compared to the outer meniscus. In contrast, the circumferential tensile modulus and collagen/DW of the outer zone was 101% and 129% higher, respectively, than the values measured for the inner zone. Furthermore, there was no difference in the radial tensile modulus between the control and zonal engineered menisci, suggesting that the inner and outer zones of the engineered zonal menisci successfully integrated. These data demonstrate that not only can biomechanical and biochemical properties be engineered to differ by the zone, but they can also recapitulate the anisotropic behavior of the knee meniscus. PMID:23931258
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
physics pp. 669–673. Anisotropic cosmological models and generalized scalar tensor theory. SUBENOY CHAKRABORTY1,*, BATUL CHANDRA SANTRA2 and ... Anisotropic cosmological models; general scalar tensor theory; inflation. PACS Nos 98.80.Hw; 04.50.+h; 98.80.Cq. 1. Introduction. Brans–Dicke theory [1] (BD ...
Anisotropic static solutions in modelling highly compact bodies
Indian Academy of Sciences (India)
Einstein field equations for static anisotropic spheres are solved and exact interior solutions obtained. This paper extends earlier treatments to include anisotropic models which accommodate a wider variety of physically viable energy densities. Two classes of solutions are possible. The first class contains the limiting case ...
Wave velocities in a pre-stressed anisotropic elastic medium
Indian Academy of Sciences (India)
Wave velocities in a pre-stressed anisotropic elastic medium. M D Sharma ... Modiﬁed Christoffel equations are derived for three-dimensional wave propagation in a general anisotropic medium under initial stress.The three roots of a ... Department of Mathematics, Kurukshetra University, Kurukshetra 136 119, India. UIET ...
Orthonormal bases for anisotropic α-modulation spaces
DEFF Research Database (Denmark)
Rasmussen, Kenneth Niemann
In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we s...
Wave propagation in a general anisotropic poroelastic medium ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Earth System Science; Volume 116; Issue 4. Wave propagation in a general anisotropic poroelastic medium: Biot's theories and homogenisation theory. M D Sharma. Volume 116 Issue 4 August ... Keywords. Anisotropic poroelastic (APE) solid; Biot's theory; homogenisation theory; phase velocity.
Modeling and Measurements of CMUTs with Square Anisotropic Plates
DEFF Research Database (Denmark)
la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Dahl-Petersen, Christian
2013-01-01
The conventional method of modeling CMUTs use the isotropic plate equation to calculate the deflection, leading to deviations from FEM simulations including anisotropic effects of around 10% in center deflection. In this paper, the deflection is found for square plates using the full anisotropic ...
Anisotropic Flow Measurements in ALICE at the Large Hadron Collider
Bilandzic, A.
2012-01-01
Anisotropic ﬂow is one of the observables which is sensitive to the properties of the created hot and dense system in heavy-ion collisions. In noncentral heavy-ion collisions the initial volume of the interacting system is anisotropic in coordinate space. Due to multiple interactions this anisotropy
Existence of longitudinal waves in pre-stressed anisotropic elastic ...
Indian Academy of Sciences (India)
In a pre-stressed anisotropic elastic medium, three types of quasi-waves propagate along an arbi- trary direction. In general, none of the waves is truly longitudinal. The present study finds the specific directions in a pre-stressed anisotropic elastic medium along which longitudinal waves may propagate. This paper ...
On the origins of the anisotropic mechanical behaviour of extruded ...
Indian Academy of Sciences (India)
This paper presents some experimental investigations about the origins of the anisotropic behaviour in cyclic loadings of ... In the second step, microstructural investigations were performed in order to understand the origins of the anisotropic ..... [20] Djebli A, Aid A, Bendouba M, Amrouche A, Benguediab M and Benseddiq ...
Orthonormal bases for anisotropic α-modulation spaces
DEFF Research Database (Denmark)
Rasmussen, Kenneth Niemann
2012-01-01
In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we s...
Critical frontier of anisotropic planar Potts ferromagnets : a new conjucture
International Nuclear Information System (INIS)
Tsallis, C.
1982-01-01
The critical frontier of the nearest-neighbour q-state Potts ferromagnet in the fully anisotropic 3-12 lattice is conjectured through a star-triangle transformation. It recovers all the available exact results concerning particular cases, namely: (i) anisotropic square lattice for all q; (ii) anisotropic triangular and honeycomb lattices for all q; (iii) anisotropic Kagome and diced lattices for q=2; (iv) isotropic 3-12 and Asanoha lattices for q=2. It provides proposals for several other planar lattices, in particular for the anisotropic Kagome (and diced) one for q different 2, where it slightly differs from the Wu 1979 conjecture (Which also satisfies the cases (i) and (iii)). The bond percolation critical probabilities on the 3-12 and Kagome lattices are determined to be respectively p sub(c) = 0.739830... and p sub(c) = 0.522372.... (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
2009-11-20
Poroelastic analysis usually progresses from assumed knowledge of dry or drained porous media to the predicted behavior of fluid-saturated and undrained porous media. Unfortunately, the experimental situation is often incompatible with these assumptions, especially when field data (from hydrological or oil/gas reservoirs) are involved. The present work considers several different experimental scenarios typified by one in which a set of undrained poroelastic (stiffness) constants has been measured using either ultrasound or seismic wave analysis, while some or all of the dry or drained constants are normally unknown. Drained constants for such a poroelastic system can be deduced for isotropic systems from available data if a complete set of undrained compliance data for the principal stresses are available - together with a few other commonly measured quantities such as porosity, fluid bulk modulus, and grain bulk modulus. Similar results are also developed here for anisotropic systems having up to orthotropic symmetry if the system is granular (i.e., composed of solid grains assembled into a solid matrix, either by a cementation process or by applied stress) and the grains are known to be elastically homogeneous. Finally, the analysis is also fully developed for anisotropic systems with nonhomogeneous (more than one mineral type), but still isotropic, grains - as well as for uniform collections of anisotropic grains as long as their axes of symmetry are either perfectly aligned or perfectly random.
Sanchez-Mejia, Zulia Mayari; Papuga, Shirley A.
2017-11-01
In semiarid regions, where water resources are limited and precipitation dynamics are changing, understanding land surface-atmosphere interactions that regulate the coupled soil moisture-precipitation system is key for resource management and planning. We present a modeling approach to study soil moisture and albedo controls on planetary boundary layer height (PBLh). We used Santa Rita Creosote Ameriflux and Tucson Airport atmospheric sounding data to generate empirical relationships between soil moisture, albedo, and PBLh. Empirical relationships showed that ˜50% of the variation in PBLh can be explained by soil moisture and albedo with additional knowledge gained by dividing the soil profile into two layers. Therefore, we coupled these empirical relationships with soil moisture estimated using a two-layer bucket approach to model PBLh under six precipitation scenarios. Overall we observed that decreases in precipitation tend to limit the recovery of the PBL at the end of the wet season. However, increases in winter precipitation despite decreases in summer precipitation may provide opportunities for positive feedbacks that may further generate more winter precipitation. Our results highlight that the response of soil moisture, albedo, and the PBLh will depend not only on changes in annual precipitation, but also on the frequency and intensity of this change. We argue that because albedo and soil moisture data are readily available at multiple temporal and spatial scales, developing empirical relationships that can be used in land surface-atmosphere applications have great potential for exploring the consequences of climate change.
Energy Technology Data Exchange (ETDEWEB)
Kataoka, M.; Okamoto, Y. [Chiba Institute of Technology, Chiba (Japan); Endo, M.; Noguchi, K. [Waseda University, Tokyo (Japan); Teramachi, Y.; Akabane, H. [University of Industrial Technology, Kanagawa (Japan); Agu, M. [Ibaraki University, Ibaraki (Japan)
1997-05-27
An efficient calculation method of potential distribution in the presence of an embedded body in multi-layer earth has been proposed by expanding the method of image with a consideration of multiple reflection between the ground surface and each underground boundary. For this method, when solving boundary integral equation with the potential of embedded body surface as only one unknown, i.e., when obtaining discretization equation, ordinary boundary element program developed for analyzing the finite closed region can be used. As an example, numerical calculation was conducted for the two-layer earth. The analysis expression of potential distribution in the case of the certain embedded body in two-layer earth has never published. Accordingly, the calculated results were compared with those by the integral equation method. As a result, it was concluded that the primary potential obtained from the present method agreed well with that obtained from the integral equation method. However, there was a disregarded difference in the secondary potential. For confirming the effectiveness, it was necessary to compare with another numerical calculation method, such as finite element method. 5 refs., 5 figs.
Directory of Open Access Journals (Sweden)
Олена Юріївна Балалаєва
2015-10-01
Full Text Available The article presents the improved design of the elastic element of the slide direction error compensator. The two-layer elastic element consisting of upper and lower elastic plates of variable thickness is placed between supporting surfaces of the slide and the die upper plate. The joint between the upper and lower plates is stepped The rigidity of this compound elastic element is specified so that at the processing load deformation of the elastic element can not exceed 20-25% of its total height. The optimal value of the horizontal displacement of the upper plate necessary to achieve the necessary rigidity of the elastic element is defined in the article. It has been found that the displacement of the upper plate of of two-layer elastic element should be multiple to the height of the press bed deformation at processing loads. Variable thickness of the compound elastic element may also be used to adjust the interdie space. The processing loads range has been widened as well as the application of the compensator for the «press-and-die» system errors. The proposed design of the compensator elastic element is simple and with minimum of expenses, makes it possible to withstand several million compression cycles
Directory of Open Access Journals (Sweden)
Mi Gan
2014-01-01
Full Text Available The multiproduct two-layer supply chain is very common in various industries. In this paper, we introduce a possible modeling and algorithms to solve a multiproduct two-layer supply chain network design problem. The decisions involved are the DCs location and capacity design decision and the initial distribution planning decision. First we describe the problem and give a mixed integer programming (MIP model; such problem is NP-hard and it is not easy to reduce the complexity. Inspired by it, we develop a transformation mechanism of relaxing the fixed cost and adding some virtual nodes and arcs to the original network. Thus, a network flow problem (NFP corresponding to the original problem has been formulated. Given that we could solve the NFP as a minimal cost flow problem. The solution procedures and network simplex algorithm (INS are discussed. To verify the effectiveness and efficiency of the model and algorithms, the performance measure experimental has been conducted. The experiments and result showed that comparing with MIP model solved by genetic algorithm (GA and Benders, decomposition algorithm (BD the NFP model and INS are also effective and even more efficient for both small-scale and large-scale problems.
Experimental study of multiple scattering in anisotropic titanium alloys
Baelde, Aurelien; Laurent, Jérôme; Coulette, Richard; Khalifa, Warida Ben; Duclos, Daniel; Jenson, Frédéric; Fink, Mathias; Prada, Claire
2017-02-01
Ultrasonic testing of jet engine titanium alloys is of high importance for the aircraft manufacturing industry. The quality of ultrasonic non-destructive testing is severely impacted by the titanium complex microstructure. These alloys have been extensively studied and single scattering models are now well known and implemented in ultrasonic propagation simulators. In addition, titanium billets and forged parts have been known to exhibit a highly anisotropic microstructure. We studied ultrasonic wave scattering in Ti17 forged disk, through statistical analysis of the backscattered noise generated by the microstructure. More specifically, we focused on the quantification of multiple scattering relative to single scattering in the backscattered wave. To that end, we used the full matrix capture acquisition with a linear transducer array. Two phenomena were used to quantify the proportion of single scattering with respect to multiple scattering. The first is the coherent backscattering effect, used as a binary indicator of multiple scattering. The second is a repurposed version of the multiple scattering filter, recently developed on random rod forest and applied on Inconel alloys. With these methods, significant level of multiple scattering was consistently measured in Ti17 forged disks, showing that ultrasonic testing could be enhanced by filtering the multiple scattering contribution.
Anisotropic phenomena in gauge/gravity duality
International Nuclear Information System (INIS)
Zeller, Hansjoerg
2014-01-01
In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the
Liao, Zhaoliang; Koster, Gertjan; Huijben, Mark; Rijnders, A.J.H.M.
2017-01-01
An anisotropic double exchange interaction driven giant transport anisotropy is demonstrated in a canonic double exchange system of La2/3Sr1/3MnO3 ultrathin films epitaxially grown on NdGaO3 (110) substrates. The oxygen octahedral coupling at the La2/3Sr1/3MnO3/NdGaO3 interface induces a planar
Anisotropic plasmas from axion and dilaton deformations
Energy Technology Data Exchange (ETDEWEB)
Donos, Aristomenis [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,South Rd., Durham (United Kingdom); Gauntlett, Jerome P. [Blackett Laboratory, Imperial College,Prince Consort Rd., London (United Kingdom); Sosa-Rodriguez, Omar [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,South Rd., Durham (United Kingdom)
2016-11-02
We construct black hole solutions of type IIB supergravity that are holographically dual to anisotropic plasmas arising from deformations of an infinite class of four-dimensional CFTs. The CFTs are dual to AdS{sub 5}×X{sub 5}, where X{sub 5} is an Einstein manifold, and the deformations involve the type IIB axion and dilaton, with non-trivial periodic dependence on one of the spatial directions of the CFT. At low temperatures the solutions approach smooth domain wall solutions with the same AdS{sub 5}×X{sub 5} solution appearing in the far IR. For sufficiently large deformations an intermediate scaling regime appears which is governed by a Lifshitz-like scaling solution. We calculate the DC thermal conductivity and some components of the shear viscosity tensor.
Analytical study of anisotropic compact star models
Ivanov, B. V.
2017-11-01
A simple classification is given of the anisotropic relativistic star models, resembling the one of charged isotropic solutions. On the ground of this database, and taking into account the conditions for physically realistic star models, a method is proposed for generating all such solutions. It is based on the energy density and the radial pressure as seeding functions. Numerous relations between the realistic conditions are found and the need for a graphic proof is reduced just to one pair of inequalities. This general formalism is illustrated with an example of a class of solutions with linear equation of state and simple energy density. It is found that the solutions depend on three free constants and concrete examples are given. Some other popular models are studied with the same method.
Analytical study of anisotropic compact star models
Energy Technology Data Exchange (ETDEWEB)
Ivanov, B.V. [Bulgarian Academy of Science, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)
2017-11-15
A simple classification is given of the anisotropic relativistic star models, resembling the one of charged isotropic solutions. On the ground of this database, and taking into account the conditions for physically realistic star models, a method is proposed for generating all such solutions. It is based on the energy density and the radial pressure as seeding functions. Numerous relations between the realistic conditions are found and the need for a graphic proof is reduced just to one pair of inequalities. This general formalism is illustrated with an example of a class of solutions with linear equation of state and simple energy density. It is found that the solutions depend on three free constants and concrete examples are given. Some other popular models are studied with the same method. (orig.)
Fluid flow through anisotropic porous medium
International Nuclear Information System (INIS)
Telles, A.S.; Massarani, G.
1975-01-01
Darcy's equation represents a simplified form of the equation of motion for the fluid flowing through a porous medium. The simplifications concern the elimination of the acceleration, the divergence of the extra stress terms, and the assumption of existence of a linear form in the velocity for the resistive force the fluid exerts upon the solid. This hypothesis may not be valid for all anisotropic media. In some instances, measurements of directional resistivity suggest existence of the resistivity tensor, leaving entirely open the question of symmetry. In connection with this important question, an experimental scheme for the determination of the antisymmetric part of this tensor is suggested. The conclusion is that material symmetries is the only macroscopic concept that imposes restrictions on the form of the resistivity and extra stress tensors [pt
Patterning of Structurally Anisotropic Composite Hydrogel Sheets.
Prince, Elisabeth; Alizadehgiashi, Moien; Campbell, Melissa; Khuu, Nancy; Albulescu, Alexandra; De France, Kevin; Ratkov, Dimitrije; Li, Yunfeng; Hoare, Todd; Kumacheva, Eugenia
2018-04-09
Compositional and structural patterns play a crucial role in the function of many biological tissues. In the present work, for nanofibrillar hydrogels formed by chemically cross-linked cellulose nanocrystals (CNC) and gelatin, we report a microextrusion-based 3D printing method to generate structurally anisotropic hydrogel sheets with CNCs aligned in the direction of extrusion. We prepared hydrogels with a uniform composition, as well as hydrogels with two different types of compositional gradients. In the first type of gradient hydrogel, the composition of the sheet varied parallel to the direction of CNC alignment. In the second hydrogel type, the composition of the sheet changed orthogonally to the direction of CNC alignment. The hydrogels exhibited gradients in structure, mechanical properties, and permeability, all governed by the compositional patterns, as well as cytocompatibility. These hydrogels have promising applications for both fundamental research and for tissue engineering and regenerative medicine.
Silicon as an anisotropic mechanical material
DEFF Research Database (Denmark)
Thomsen, Erik Vilain; Reck, Kasper; Skands, Gustav Erik
2014-01-01
While silicon is an anisotropic material it is often in literature treated as an isotropic material when it comes to plate calculations. This leads to considerable errors in the calculated deflection. To overcome this problem, we present an in-depth analysis of the bending behavior of thin...... both exact analytical expressions and approximate expressions calculated by the Galerkin method. The results are applied to plates made on silicon (0 0 1), (0 1 1) and (1 1 1) substrates, respectively, and analytical equations for the deflection, strain energy and resonance frequency of such plates...... analytical models involving crystalline plates, such as those often found in the field of micro electro mechanical systems. The effect of elastic boundary conditions is taken into account by using an effective radius of the plate....
Anisotropic dynamic mass density for fluidsolid composites
Wu, Ying
2012-10-01
By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.
Spectral functions from anisotropic lattice QCD
Aarts, G.; Allton, C.; Amato, A.; Evans, W.; Giudice, P.; Harris, T.; Kelly, A.; Kim, S. Y.; Lombardo, M. P.; Praki, K.; Ryan, S. M.; Skullerud, J.-I.
2016-12-01
The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.
Derivation of the optical constants of anisotropic
Aronson, J. R.; Emslie, A. G.; Smith, E. M.; Strong, P. F.
1985-07-01
This report concerns the development of methods for obtaining the optical constants of anisotropic crystals of the triclinic and monoclinic systems. The principal method used, classical dispersion theory, is adapted to these crystal systems by extending the Lorentz line parameters to include the angles characterizing the individual resonances, and by replacing the dielectric constant by a dielectric tensor. The sample crystals are gypsium, orthoclase and chalcanthite. The derived optical constants are shown to be suitable for modeling the optical properties of particulate media in the infrared spectral region. For those materials where suitable size single crystals are not available, an extension of a previously used method is applied to alabaster, a polycrystalline material of the monoclinic crystal system.
Anisotropic thermal expansion in flexible materials
Romao, Carl P.
2017-10-01
A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αi i) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yi i). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αi i on Yi i suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.
The Anisotropic Glassy Properties of Decagonal Quasicrystals
Directory of Open Access Journals (Sweden)
Dragoş-Victor Anghel
2013-01-01
Full Text Available We use an extended version of the standard tunneling model to explain the anisotropic sound absorption in decagonal quasicrystals. The glassy properties are determined by an ensemble of two level systems (TLSs, arbitrarily oriented. The TLS is characterized by a 3 × 3 symmetric tensor, [T], which couples to the strain field, [S], through a 3 × 3 × 3 × 3 tensor of coupling constants, [R]. The structure of [R] reflects the symmetry of the quasicrystal. We also analyze the probability distributions of the elements of [T] in this particular model for a better understanding of the characteristics of “isotropic” and “anisotropic” distributions of the ensemble of TLSs. We observe that the distribution of the elements is neither simple nor intuitive and therefore it is difficult to guess it a priory, using qualitative arguments based on the symmetry properties.
Final fate of charged anisotropic fluid collapse
Khan, Suhail; Shah, Hassan; Ahmad, Zahid; Ramzan, Muhammad
2017-11-01
This paper studies the effects of charge on spherically symmetric collapse of anisotropic fluid with a positive cosmological constant. It is observed that electromagnetic field places restriction on the bounds of cosmological constant, which acts as repulsive force against the contraction of matter content and hence the rate of destruction is faster in the presence of electromagnetic field. We have also noted that the presence of charge affects the time interval between the formation of cosmological horizon (CH) and black hole horizon (BHH). When the electric field strength E(t, r) vanishes, our investigations are in full agreement with the results obtained by Ahmad and Malik [Int. J. Theor. Phys. 55, 600 (2016)].
Turbulent Output-Based Anisotropic Adaptation
Park, Michael A.; Carlson, Jan-Renee
2010-01-01
Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.
Adiabatic theory for anisotropic cold molecule collisions
Energy Technology Data Exchange (ETDEWEB)
Pawlak, Mariusz [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń (Poland); Shagam, Yuval; Narevicius, Edvardas [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Moiseyev, Nimrod [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000 (Israel)
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.
Effective stress law for anisotropic elastic deformation
International Nuclear Information System (INIS)
Carroll, M.M.
1979-01-01
An effective stress law is derived analytically to describe the effect of pore fluid pressure on the linearly elastic response of saturated porous rocks which exhibit anisotropy. For general anisotropy the difference between the effective stress and the applied stress is not hydrostatic. The effective stress law involves two constants for transversely isotropic response and three constants for orthotropic response; these constants can be expressed in terms of the moduli of the porous material and of the solid material. These expressions simplify considerably when the anisotropy is structural rather than intrinsic, i.e., in the case of an isotropic solid material with an anisotropic pore structure. In this case the effective stress law involves the solid or grain bulk modulus and two or three moduli of the porous material, for transverse isotropy and orthotropy, respectively. The law reduces, in the case of isotropic response, to that suggested by Geertsma (1957) and by Skempton (1961) and derived analytically by Nur and Byerlee
A FDM anisotropic formulation for EEG simulation.
Bruno, P; Hyttinen, J; Inchingolo, P; Magrofuoco, A; Mininel, S; Vatta, F
2006-01-01
Accurate head modeling is required to properly simulate bioelectric phenomena in 3-D as well as to estimate the 3-D bioelectric activity starting from superficial bioelectric measurements and 3-D imaging. Aiming to build an accurate and realistic representation of the volume conductor of the head, also the anisotropy of head tissues should be taken into account. In this paper we describe a new finite-difference method (FDM) formulation which accounts for anisotropy of the various head tissues. Our proposal, being based on FDM, derives the head model directly from patient's specific clinical images. We present here the details of the numerical formulation and the method validation by comparing our numerical proposal and known analytical results using a multi-shell anisotropic head model with skull anisotropy. Furthermore, we analyzed also different numerical grid refinement and EEG source characteristics. The comparison with previously developed FDM methods shows a good performance of the proposed method.
Anisotropic magnetism in field-structured composites
International Nuclear Information System (INIS)
Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.
2000-01-01
Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society
An Anisotropic Hardening Model for Springback Prediction
International Nuclear Information System (INIS)
Zeng, Danielle; Xia, Z. Cedric
2005-01-01
As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test
Recent developments in anisotropic heterogeneous shell theory
Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G
2016-01-01
This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.
Predictions from an anisotropic inflationary era
International Nuclear Information System (INIS)
Pitrou, Cyril; Uzan, Jean-Philippe; Pereira, Thiago S
2008-01-01
This paper investigates the predictions of an inflationary phase starting from a homogeneous and anisotropic universe of the Bianchi I type. After discussing the evolution of the background spacetime, focusing on the number of e-folds and the isotropization, we solve the perturbation equations and predict the power spectra of the curvature perturbations and gravity waves at the end of inflation. The main features of the early anisotropic phase is (1) a dependence of the spectra on the direction of the modes, (2) a coupling between curvature perturbations and gravity waves and (3) the fact that the two gravity wave polarizations do not share the same spectrum on large scales. All these effects are significant only on large scales and die out on small scales where isotropy is recovered. They depend on a characteristic scale that can, but a priori must not, be tuned to some observable scale. To fix the initial conditions, we propose a procedure that generalizes the one standardly used in inflation but that takes into account the fact that the WKB regime is violated at early times when the shear dominates. We stress that there exist modes that do not satisfy the WKB condition during the shear-dominated regime and for which the amplitude at the end of inflation depends on unknown initial conditions. On such scales, inflation loses its predictability. This study paves the way for the determination of the cosmological signature of a primordial shear, whatever the Bianchi I spacetime. It thus stresses the importance of the WKB regime to draw inflationary predictions and demonstrates that, when the number of e-folds is large enough, the predictions converge toward those of inflation in a Friedmann–Lemaître spacetime but that they are less robust in the case of an inflationary era with a small number of e-folds
Effective orthorhombic anisotropic models for wavefield extrapolation
Ibanez-Jacome, W.
2014-07-18
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.
Development of laser ablation plasma by anisotropic self-radiation
Directory of Open Access Journals (Sweden)
Ohnishi Naofumi
2013-11-01
Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.
Directory of Open Access Journals (Sweden)
Astafyeva Liudmila
2011-01-01
Full Text Available Abstract Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell, created under laser heating of nanoparticle in water, were theoretically investigated. Vapor shell expansion leads to decreasing up to one to two orders of magnitude in comparison with initial values of scattering and extinction of the radiation with wavelengths 532 and 633 nm by system while shell radius is increased up to value of about two radii of nanoparticle. Subsequent increasing of shell radius more than two radii of nanoparticle leads to rise of scattering and extinction properties of system over initial values. The significant decrease of radiation scattering and extinction by system of nanoparticle-vapor shell can be used for experimental detection of the energy threshold of vapor shell formation and investigation of the first stages of its expansion. PACS: 42.62.BE. 78.67. BF
Piasecka-Belkhayat, Alicja; Korczak, Anna
2018-01-01
In the paper a description of heat transfer in a one-dimensional two-layered metal film is considered. The fuzzy coupled lattice Boltzmann equations for electrons and phonons supplemented by appropriate boundary and initial conditions are applied to analyse the thermal process in a thin metal film. The model with fuzzy values of relaxation times and boundary-initial conditions for gold and titanium is proposed. The problem considered is solved by the fuzzy lattice Boltzmann method using α-cuts and the rules of directed interval arithmetic. The application of α-cuts allows one to avoid complicated arithmetical operations in the fuzzy numbers set. In the final part of the paper an example for a numerical solution is presented.
Amirkhanov, I V; Muzafarov, D Z; Puzynin, I V; Puzynina, T P; Sarker, N R; Sarhadov, I; Sharipov, Z A
2005-01-01
A system of equations for temperatures of electronic gas and lattice around and along a trajectory of a 710-MeV heavy ion of bismuth $^{209}$Bi in a two-layer material Ni(2 $\\mu $m)/W at constant thermal parameters is solved numerically in an axial-symmetric cylindrical system of coordinates. On the basis of the obtained dependences of lattice temperature on radius around the ion trajectory and depth, one can make a conclusion that the ionization energy losses of bismuth ion in the target material are sufficient for melting. The sizes of regions with maximum radius and depth in the target material, where the phase transformations can take place, are estimated.
Matthews, M. W.; Bernard, S.
2013-12-01
A two-layered sphere model is used to investigate the impact of gas vacuoles on the inherent optical properties (IOPs) of the cyanophyte Microcystis aeruginosa. Enclosing a vacuole-like particle within a chromatoplasm shell layer significantly altered spectral scattering and increased backscattering. The two-layered sphere model reproduced features in the spectral attenuation and volume scattering function (VSF) that have previously been attributed to gas vacuoles. This suggests the model is good at least as a first approximation for investigating how gas vacuoles alter the IOPs. Measured Rrs was used to provide a range of values for the central value of the real refractive index, 1 + ɛ, for the shell layer using measured IOPs and a radiative transfer model. Sufficient optical closure was obtained for 1 + ɛ between 1.1 and 1.14, which had corresponding Chl a-specific phytoplankton backscattering, bbφ*, between 3.9 and 7.2 × 10-3 m2 mg-1 at 510 nm. The bbφ* values are in close agreement with the literature and in situ particulate backscattering measurements. Rrs simulated for a population of vacuolate cells was greatly enlarged relative to a homogeneous population. A sensitivity analysis of empirical algorithms for estimating Chl a in eutrophic/hypertrophic waters suggests these are robust under variable constituent concentrations and likely to be species-sensitive. The study confirms that gas vacuoles cause significant increase in backscattering and are responsible for the high Rrs values observed in buoyant cyanobacterial blooms. Gas vacuoles are therefore one of the most important bio-optical substructures influencing the IOPs in phytoplankton.
Matthews, M. W.; Bernard, S.
2013-06-01
A two-layered sphere model is used to investigate the impact of gas vacuoles on the inherent optical properties (IOPs) of the cyanophyte Microcystis aeruginosa. Enclosing a vacuole-like particle within a chromatoplasm shell layer significantly altered spectral scattering and increased backscattering. The two-layered sphere model reproduced features in the spectral attenuation and volume scattering function (VSF) that have previously been attributed to gas vacuoles. This suggests the model is good at least as a first approximation for investigating how gas vacuoles alter the IOPs. The central value of the real refractive index, 1+ ɛ, for the shell layer was determined using a radiative transfer model and measured remote sensing reflectance, Rrs, and IOP data. For a cell with 50% vacuole volume, the mean 1+ ɛ value for the shell layer was 1.12. The corresponding chl a specific phytoplankton backscattering coefficient, bbφ*, ranged between 3.9 × 10-3 and 7.2 × 10-3 m2 mg-1 at 510 nm. This agrees closely with in situ particulate backscattering measurements and values reported elsewhere. Rrs simulated for a population of vacuolate cells was greatly enlarged relative to a homogeneous population. Empirical algorithms based on Rrs were derived for estimating chl a in eutrophic/hypertrophic waters dominated by M. aeruginosa. The study confirms that gas vacuoles cause significant increase in backscattering and are responsible for the high Rrs values observed in buoyant cyanobacterial blooms. Gas vacuoles are therefore one of the most important bio-optical substructures influencing the IOPs in phytoplankton.
Markov Random Fields on Triangle Meshes
DEFF Research Database (Denmark)
Andersen, Vedrana; Aanæs, Henrik; Bærentzen, Jakob Andreas
2010-01-01
In this paper we propose a novel anisotropic smoothing scheme based on Markov Random Fields (MRF). Our scheme is formulated as two coupled processes. A vertex process is used to smooth the mesh by displacing the vertices according to a MRF smoothness prior, while an independent edge process labels...
Reinterpreting aircraft measurements in anisotropic scaling turbulence
Directory of Open Access Journals (Sweden)
S. J. Hovde
2009-07-01
Full Text Available Due to both systematic and turbulent induced vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic or "quasi isotropic" in the sense that their exponents are the same in all directions. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is scaling but anisotropic. In this paper, we show how such turbulence can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.
We demonstrate this using 16 legs of Gulfstream 4 aircraft near the top of the troposphere following isobars each between 500 and 3200 km in length. First we show that over wide ranges of scale, the horizontal spectra of the aircraft altitude are nearly k^{-5/3}. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations; for scales less than ≈40 km (on average the wind fluctuations lead the pressure and altitude, whereas for larger scales, the pressure fluctuations leads the wind. At the same transition scale, there is a break in the wind spectrum which we argue is caused by the aircraft starting to accurately follow isobars at the larger scales. In comparison, the temperature and humidity have low coherencies and phases and there are no apparent scale breaks, reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.
Using spectra and structure functions for the wind, we then estimate their exponents (β, H at small (5/3, 1/3 and large scales (2
Hydrodynamic cavitation in Stokes flow of anisotropic fluids.
Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G; Sengupta, Anupam
2017-05-30
Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.
Liquid Crystal Elastomer Actuators from Anisotropic Porous Polymer Template.
Wang, Qian; Yu, Li; Yu, Meina; Zhao, Dongyu; Song, Ping; Chi, Hun; Guo, Lin; Yang, Huai
2017-08-01
Controlling self-assembly behaviors of liquid crystals is a fundamental issue for designing them as intelligent actuators. Here, anisotropic porous polyvinylidene fluoride film is utilized as a template to induce homogeneous alignment of liquid crystals. The mechanism of liquid crystal alignment induced by anisotropic porous polyvinylidene fluoride film is illustrated based on the relationship between the alignment behavior of liquid crystals and surface microstructure of anisotropic polyvinylidene fluoride film. Liquid crystal elastomer actuators with fast responsiveness, large strain change, and reversible actuation behaviors are achieved by the photopolymerization of liquid crystal monomer in liquid crystal cells coated with anisotropic porous films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acoustic frequency filter based on anisotropic topological phononic crystals
Chen, Zeguo
2017-11-02
We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.
Two-dimensional static deformation of an anisotropic medium
Indian Academy of Sciences (India)
1989). Chou (1976) and Ting (1995) discussed antiplane strain deformation of an anisotropic medium. Garg et al (1996) obtained representations of seismic sources causing antiplane strain deformations of orthotropic media. The corresponding ...
Change of energy of photons passing through rotating anisotropic elements
Bagini, V; Santarsiero, M; Frezza, F; Schettini, G; Schirripa-Spagnolo, G
1994-01-01
We discuss simple experiments where the concept of angular momentum of a photon can be put to use in order to explain the photon energy changes that are produced by the passage of light beams through rotating anisotropic elements. (author)
Fabrication of anisotropic multifunctional colloidal carriers
Jerri, Huda A.
The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally
Spin and orbital angular momentum propagation in anisotropic media: theory
International Nuclear Information System (INIS)
Picón, Antonio; Benseny, Albert; Mompart, Jordi; Calvo, Gabriel F
2011-01-01
This paper is devoted to a study of the propagation of light beams carrying orbital angular momentum in optically anisotropic media. We first review some properties of homogeneous anisotropic media, and describe how the paraxial formalism is modified in order to proceed with a new approach dealing with the general setting of paraxial propagation along uniaxial inhomogeneous media. This approach is suitable for describing space-variant optical-axis phase plates
Hybrid anisotropic materials for wind power turbine blades
Golfman, Yosif
2012-01-01
Based on rapid technological developments in wind power, governments and energy corporations are aggressively investing in this natural resource. Illustrating some of the crucial new breakthroughs in structural design and application of wind energy generation machinery, Hybrid Anisotropic Materials for Wind Power Turbine Blades explores new automated, repeatable production techniques that expand the use of robotics and process controls. These practices are intended to ensure cheaper fabrication of less-defective anisotropic material composites used to manufacture power turbine blades. This boo
Anisotropic wave-equation traveltime and waveform inversion
Feng, Shihang
2016-09-06
The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.
Stress propagation in isotropic packs with anisotropic boundaries
Krapf, Nathan; Witten, Thomas
2010-03-01
Stresses in marginally jammed, anisotropic packs built up from a solid floor propagate along oblique rays toward the floor footnotetext D. A. Head, A. V. Tkachenko, and T. A. Witten. Eur. Phys. J. E 6, 99-105 (2001)). This clear anisotropic propagation must result from anisotropic packing and/or anisotropic boundary conditions. Here we numerically isolate the effect of anisotropic boundaries by using an explicitly isotropic periodic pack in a marginally jammed, isostatic state. We then remove the periodicity in one direction and anchor the beads along one edge to a substrate. This preserves the isostatic condition while rendering the boundary anisotropic. However, we find hyperstatic modes along one edge of the pack and hypostatic modes at the other. We show that these extra modes decay rapidly away from the boundaries. Remarkably the hypostatic modes cause the pack to be unstable under any force applied to a single bead. This instability can be remedied by applying a suitable cluster of forces to adjacent beads, allowing a clear measurement of the bulk response. We discuss the resulting stress response.
A unified theoretical and experimental study of anisotropic hardening
International Nuclear Information System (INIS)
Boehler, J.P.; Raclin, J.
1981-01-01
The purpose of this work is to develop a consistent formulation of the constitutive relations regarding anisotropic hardening materials. Attention is focused on the appearance and the evolution of mechanical anisotropies during irreversible processes, such as plastic forming and inelastic deformation of structures. The representation theorems for anisotropic tensor functions constitute a theoretical basis, allowing to reduce arbitrariness and to obtain a unified formulation of anisotropic hardening. In this approach, a general three-dimensional constitutive law is developed for prestrained initially orthotropic materials. Introduction of the plastic behavior results in the general forms of both the flow-law and the yield criterion. The developed theory is then specialized for the case of plane stress and different modes of anisotropic hardening are analyzed. A new generalization of the Von Mises criterion is proposed, in considering a homogeneous form of order two in stress and employing the simplest combinations of the basic invariants entering the general form of the yield condition. The proposed criterion involves specific terms accounting for the initial anisotropy, the deformation induced anisotropy and correlative terms between initial and induced anisotropy. The effects of prestrainings result in both isotropic and anisotropic hardening. An adequate experimental program, consisting of uniaxial tensile tests on oriented specimens of prestrained sheet-metal, was performed, in order to determine the specific form and the evolution of the anisotropic failure criterion for soft-steel subjected to different irreversible prestrainings. (orig.)
Coefficient adaptive triangulation for strongly anisotropic problems
Energy Technology Data Exchange (ETDEWEB)
D`Azevedo, E.F.; Romine, C.H.; Donato, J.M.
1996-01-01
Second order elliptic partial differential equations arise in many important applications, including flow through porous media, heat conduction, the distribution of electrical or magnetic potential. The prototype is the Laplace problem, which in discrete form produces a coefficient matrix that is relatively easy to solve in a regular domain. However, the presence of anisotropy produces a matrix whose condition number is increased, making the resulting linear system more difficult to solve. In this work, we take the anisotropy into account in the discretization by mapping each anisotropic region into a ``stretched`` coordinate space in which the anisotropy is removed. The region is then uniformly triangulated, and the resulting triangulation mapped back to the original space. The effect is to generate long slender triangles that are oriented in the direction of ``preferred flow.`` Slender triangles are generally regarded as numerically undesirable since they tend to cause poor conditioning; however, our triangulation has the effect of producing effective isotropy, thus improving the condition number of the resulting coefficient matrix.
Schroedinger covariance states in anisotropic waveguides
International Nuclear Information System (INIS)
Angelow, A.; Trifonov, D.
1995-03-01
In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs
Anisotropic Charged Fluid Sphere in Isotropic Coordinates
Directory of Open Access Journals (Sweden)
Neeraj Pant
2014-01-01
Full Text Available We have presented a class of charged superdense star models, starting with a static spherically symmetric metric in isotropic coordinates for anisotropic fluid by considering Hajj-Boutros-(1986 type metric potential and a specific choice of electrical intensity E and anisotropy factor Δ which involve charge parameter K and anisotropy parameter α. The solution is well behaved for all the values of Schwarzschild compactness parameter u lying in the range 0
Numerical calculation of spatially variant anisotropic metamaterials
Gulib, Asad Ullah Hil
3D printing, or additive manufacturing, is rapidly evolving into a mainstream manufacturing technology that is creating new opportunities for electromagnetics and circuits. 3D printing permits circuits to fully utilize the third dimension allowing more functions in the same amount of space and allows the devices to have arbitrary form factors. 3D printing is letting us discover new physics that is not possible in standard 2D circuits and devices. However, evolving electromagnetics and circuits into three dimensions introduces some serious problems like thermal management, interference, and mutual coupling between the components which degrades performance and hurts signal integrity. Metamaterials are engineered composites that exhibit extreme electromagnetic properties and allow extraordinary control over electromagnetic fields. The EM Lab is developing spatially-variant anisotropic metamaterials (SVAMs) as a solution to mitigate mutual coupling between components. The concept of SVAMs is to electrically stretch the space between components to reduce mutual coupling. To do this, alternating layers of different dielectric must bisect adjacent components. However, the overall dielectric fill must also conform around dozens of electrical components and be smooth, continuous, and defect free. The research described here is the first prototype of an algorithm which generates a SVAM infill between all of the electrical components of a circuit in order to reduce the mutual coupling.
P wave anisotropic tomography of the Alps
Hua, Yuanyuan; Zhao, Dapeng; Xu, Yixian
2017-06-01
The first tomographic images of P wave azimuthal and radial anisotropies in the crust and upper mantle beneath the Alps are determined by joint inversions of arrival time data of local earthquakes and teleseismic events. Our results show the south dipping European plate with a high-velocity (high-V) anomaly beneath the western central Alps and the north dipping Adriatic plate with a high-V anomaly beneath the Eastern Alps, indicating that the subduction polarity changes along the strike of the Alps. The P wave azimuthal anisotropy is characterized by mountain chain-parallel fast-velocity directions (FVDs) in the western central Alps and NE-SW FVDs in the Eastern Alps, which may be caused by mantle flow induced by the slab subductions. Our results reveal a negative radial anisotropy (i.e., Vph Vph > Vpv) in the low-velocity mantle wedge, which may reflect the subvertical plate subduction and its induced mantle flow. The results of anisotropic tomography provide important new information on the complex mantle structure and dynamics of the Alps and adjacent regions.
Anisotropic behaviour of human gallbladder walls.
Li, W G; Hill, N A; Ogden, R W; Smythe, A; Majeed, A W; Bird, N; Luo, X Y
2013-04-01
Inverse estimation of biomechanical parameters of soft tissues from non-invasive measurements has clinical significance in patient-specific modelling and disease diagnosis. In this paper, we propose a fully nonlinear approach to estimate the mechanical properties of the human gallbladder wall muscles from in vivo ultrasound images. The iteration method consists of a forward approach, in which the constitutive equation is based on a modified Hozapfel-Gasser-Ogden law initially developed for arteries. Five constitutive parameters describing the two orthogonal families of fibres and the matrix material are determined by comparing the computed displacements with medical images. The optimisation process is carried out using the MATLAB toolbox, a Python code, and the ABAQUS solver. The proposed method is validated with published artery data and subsequently applied to ten human gallbladder samples. Results show that the human gallbladder wall is anisotropic during the passive refilling phase, and that the peak stress is 1.6 times greater than that calculated using linear mechanics. This discrepancy arises because the wall thickness reduces by 1.6 times during the deformation, which is not predicted by conventional linear elasticity. If the change of wall thickness is accounted for, then the linear model can used to predict the gallbladder stress and its correlation with pain. This work provides further understanding of the nonlinear characteristics of human gallbladder. Copyright © 2013 Elsevier Ltd. All rights reserved.
Anisotropic reflectance characteristics of natural Earth surfaces.
Brennan, B; Bandeen, W R
1970-02-01
The patterns of reflection of solar radiation from cloud, water, and land surfaces were measured with an aircraft-borne medium resolution radiometer. Reflectances in the 0.2-4.0-micro and 0.55-0.85-micro portions of the electromagnetic spectrum were investigated. Results indicate that the reflectance characteristics of most of the surface types measured are anisotropic. The anisotropy is dependent on the type of surface and the angles of incidence and reflection. In general, the anisotropy increases with increasing solar zenith angle. Clouds and forests show similar reflectance patterns, with forward and backward scattering peaks. Ocean surfaces yield a pattern similar to those of the clouds and forests but with an additional peak which is associated with sun glitter. Reflectances measured in the 0.2-4.0-micro band are generally lower than those in the 0.55-0.85-micro band under cloudy conditions. Anisotropy and spectral bandwidth should be accounted for when computing the albedo of the earth from narrow field-of-view measurements from satellites; otherwise, large errors may be expected to occur.
Knospe, Steffen H G
2010-04-01
We study anisotropic spatial autocorrelation in differential synthetic aperture radar interferometric (dInSAR) measurements and its impact on geophysical parameter estimations. The dInSAR phase acquired by the satellite sensor is a superposition of different contributions, and when studying geophysical processes, we are usually only interested in the surface deformation part of the signal. Therefore, to obtain high-quality results, we would like to characterize and/or remove other phase components. A stochastic model has been found to be appropriate to describe atmospheric phase delay in dInSAR images. However, these phase delays are usually modeled as being isotropic, which is a simplification, because InSAR images often show directional atmospheric anomalies. Here, we analyze anisotropic structures and show validation results using both real and simulated data. We calculate experimental semivariograms of the dInSAR phase in several European Remote Sensing satellite-1/2 tandem interferograms. Based on the theory of random functions (RFs), we then fit anisotropic variogram models in the spatial domain, employing Matérn-and Bessel-family correlation functions in nested models to represent complex dInSAR covariance structures. The presented covariance function types, in the statistical framework of stationary RFs, are consistent with tropospheric delay models. We find that by using anisotropic data covariance information to weight dInSAR measurements, we can significantly improve both the precision and accuracy of geophysical parameter estimations. Furthermore, the improvement is dependent on how similar the deformation pattern is to the dominant structure of the anisotropic atmospheric signals. © 2009 IEEE.
Kundin, Julia; Ajmal Choudhary, Muhammad
2017-07-01
In this article, we present the recent advances in the development of the anisotropic phase-field crystal (APFC) model. These advances are important in basic researches for multiferroic and thermoelectric materials with anisotropic crystal lattices and in thin-film applications. We start by providing a general description of the model derived in our previous studies based on the crystal symmetry and the microscopic dynamical density functional theory for anisotropic interactions and show that there exist only two possible degrees of freedom for the anisotropic lattices which are described by two independent parameters. New findings concerning the applications of the APFC model for the estimation of the elastic modules of anisotropic systems including sheared and stretched lattices as well as for the investigation of the heterogeneous thin film growth are described. The simulation results demonstrate the strong dependency of the misfit dislocation formation during the film growth on the anisotropy and reveal the asymmetric behavior in the cases of positive and negative misfits. We also present the development of the amplitude representation for the full APFC model of two orientation variants and show the relationship between the wave vectors and the base angles of the anisotropic lattices.
Sreelash, K.; Buis, Samuel; Sekhar, M.; Ruiz, Laurent; Kumar Tomer, Sat; Guérif, Martine
2017-03-01
Characterization of the soil water reservoir is critical for understanding the interactions between crops and their environment and the impacts of land use and environmental changes on the hydrology of agricultural catchments especially in tropical context. Recent studies have shown that inversion of crop models is a powerful tool for retrieving information on root zone properties. Increasing availability of remotely sensed soil and vegetation observations makes it well suited for large scale applications. The potential of this methodology has however never been properly evaluated on extensive experimental datasets and previous studies suggested that the quality of estimation of soil hydraulic properties may vary depending on agro-environmental situations. The objective of this study was to evaluate this approach on an extensive field experiment. The dataset covered four crops (sunflower, sorghum, turmeric, maize) grown on different soils and several years in South India. The components of AWC (available water capacity) namely soil water content at field capacity and wilting point, and soil depth of two-layered soils were estimated by inversion of the crop model STICS with the GLUE (generalized likelihood uncertainty estimation) approach using observations of surface soil moisture (SSM; typically from 0 to 10 cm deep) and leaf area index (LAI), which are attainable from radar remote sensing in tropical regions with frequent cloudy conditions. The results showed that the quality of parameter estimation largely depends on the hydric regime and its interaction with crop type. A mean relative absolute error of 5% for field capacity of surface layer, 10% for field capacity of root zone, 15% for wilting point of surface layer and root zone, and 20% for soil depth can be obtained in favorable conditions. A few observations of SSM (during wet and dry soil moisture periods) and LAI (within water stress periods) were sufficient to significantly improve the estimation of AWC
Semerdzhiev, Slav A; Shvadchak, Volodymyr V; Subramaniam, Vinod; Claessens, Mireille M A E
2017-08-09
Although the function of biopolymer hydrogels in nature depends on structural anisotropy at mesoscopic length scales, the self-assembly of such anisotropic structures in vitro is challenging. Here we show that fibrils of the protein α-synuclein spontaneously self-assemble into structurally anisotropic hydrogel particles. While the fibrils in the interior of these supra-fibrillar aggregates (SFAs) are randomly oriented, the fibrils in the periphery prefer to cross neighboring fibrils at high angles. This difference in organization coincides with a significant difference in polarity of the environment in the central and peripheral parts of the SFA. We rationalize the structural anisotropy of SFAs in the light of the observation that αS fibrils bind a substantial amount of counterions. We propose that, with the progress of protein polymerization into fibrils, this binding of counterions changes the ionic environment which triggers a change in fibril organization resulting in anisotropy in the architecture of hydrogel particles.
Energy Technology Data Exchange (ETDEWEB)
Mota, Leonardo; Gomes da Silva, Marcelo; Pereira de Souza, Vanessa [Laboratorio de Ciencias Fisicas, Centro de Ciencia e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602, Campos dos Goytacazes, RJ (Brazil); Vargas, Helion, E-mail: vargas@uenf.b [Laboratorio de Ciencias Fisicas, Centro de Ciencia e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602, Campos dos Goytacazes, RJ (Brazil); Ferreira Guimaraes, Valtency; Ramos Paes, Herval [Laboratorio de Materiais Avancados, Centro de Ciencia e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602, Campos dos Goytacazes, RJ (Brazil)
2010-11-01
In this work, lanthanum strontium cobalt ferrite (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}}) films deposited by spray-pyrolysis onto commercial yttria stabilized zirconia substrates were investigated by photothermal spectroscopy. It is shown that by using the thermal-electrical analogy model it is possible to obtain the thermal properties of two-layer composite systems simultaneously, without the need to spread them, and thus to evaluate the thermal mismatch between the substrate and the deposited film. The thermal diffusivity of the 8YSZ substrate was found to be 6.6 x 10{sup -3} cm{sup 2}s{sup -1}, whereas for the La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} films it ranged between 0.47 and 9.26 x 10{sup -4} cm{sup 2}s{sup -1}. We have found that for film thickness beyond 3.06 {mu}m the thermal expansion coefficient becomes relevant, indicating that the optimum film deposition time lies between 10 and 20 min.
Directory of Open Access Journals (Sweden)
Piero Battista
2016-09-01
Full Text Available The estimation of site water budget is important in Mediterranean areas, where it represents a crucial factor affecting the quantity and quality of traditional crop production. This is particularly the case for spatially fragmented, multi-layer agricultural ecosystems such as olive groves, which are traditional cultivations of the Mediterranean basin. The current paper aims at demonstrating the effectiveness of spatialized meteorological data and remote sensing techniques to estimate the actual evapotranspiration (ETA and the soil water content (SWC of an olive orchard in Central Italy. The relatively small size of this orchard (about 0.1 ha and its two-layer structure (i.e., olive trees and grasses require the integration of remotely sensed data with different spatial and temporal resolutions (Terra-MODIS, Landsat 8-OLI and Ikonos. These data are used to drive a recently proposed water balance method (NDVI-Cws and predict ETA and then site SWC, which are assessed through comparison with sap flow and soil wetness measurements taken in 2013. The results obtained indicate the importance of integrating satellite imageries having different spatio-temporal properties in order to properly characterize the examined olive orchard. More generally, the experimental evidences support the possibility of using widely available remotely sensed and ancillary datasets for the operational estimation of ETA and SWC in olive tree cultivation systems.
Taizo Kobayashi,; Taisuke Funamoto,; Makoto Hosaka,; Satoshi Konishi,
2010-07-01
This paper presents a novel type of centrifugation device that is based on the two-layer laminar flow in micro flow channels for continuous blood cell/plasma separation. We propose to rotate the flow channels which are arranged along the circumference around the rotational axis. Downsizing the channel width reduced both the cell sedimentation time and the required centrifugal force, because the channel width corresponds to the centrifugal sedimentation length. First, plasma and cells were continuously extracted from pig blood in each of the branch channels using a milled acrylic prototype device (channel width = 800 μm, volume = 150 μl). Next, the relationship between the channel width (125, 250, and 500 μm) and the sedimentation time taken for various centrifugal forces (2.3, 9, 36, and 145 G) was evaluated using the downsized microchannels fabricated by hot-embossing and thermal bonding technologies. Using downsized microchannels with a width of 125 μm successfully reduced the sedimentation time to 85 s as compared to the sedimentation time of 270 s for a channel of a width of 500 μm, when a centrifugal force of 2.3 G was applied. The use of the proposed device did not result in obvious hemolysis at the centrifugal forces lower than 335 G.
Bataev, V. A.; Golkovski, M. G.; Samoylenko, V. V.; Ruktuev, A. A.; Polyakov, I. A.; Kuksanov, N. K.
2018-04-01
The study has been conducted in line with the current approach to investigation of materials obtained by considerably deep surface alloying of the titanium substrate with Ta, Nb, and Zr. The thickness of the resulting alloyed layer was equal to 2 mm. The coating was formed through weld deposition of a powder with the use of a high-voltage electron beam in the air. It has been lately demonstrated that manufactured such a way alloyed layers possess corrosion resistance which is significantly higher than the resistance of titanium substrates. It has already been shown that such two-layered materials are weldable. The study objective is to investigate the feasibility of rolling for necking the sheets with the Ti-Ta-Nb anticorrosion coating with further fourfold decrease in their thickness. The research is also aimed at investigation of the material properties after rolling. Anticorrosion layers were formed both on CP-titanium and on VT14 (Ti-4Al-3Mo-1 V) durable titanium alloy. The results of chemical composition determination, structure examination, X-ray phase analysis and mechanical properties observations (including bending properties of the alloyed layers) are presented in the paper. The combination of welding, rolling, and bending enables the manufacture of corrosion-resistant vessels and process pipes which are made from the developed material and find technological application.
Huang, Guoxin; Huang, Yuanying; Hu, Hongyan; Liu, Fei; Zhang, Ying; Deng, Renwei
2015-07-01
A novel two-layer heterotrophic-autotrophic denitrification (HAD) permeable reactive barrier (PRB) was proposed for remediating nitrate-nitrogen contaminated groundwater in an oxygen rich environment, which has a packing structure of an upstream pine bark layer and a downstream spongy iron and river sand mixture layer. The HAD PRB involves biological deoxygenation, heterotrophic denitrification, hydrogenotrophic denitrification, and anaerobic Fe corrosion. Column and batch experiments were performed to: (1) investigate the NO3(-)-N removal and inorganic geochemistry; (2) explore the nitrogen transformation and removal mechanisms; (3) identify the hydrogenotrophic denitrification capacity; and (4) evaluate the HAD performance by comparison with other approaches. The results showed that the HAD PRB could maintain constant high NO3(-)-N removal efficiency (>91%) before 38 pore volumes (PVs) of operation (corresponding to 504d), form little or even negative NO2(-)-N during the 45 PVs, and produce low NH4(+)-N after 10 PVs. Aerobic heterotrophic bacteria played a dominant role in oxygen depletion via aerobic respiration, providing more CO2 for hydrogenotrophic denitrification. The HAD PRB significantly relied on heterotrophic denitrification. Hydrogenotrophic denitrification removed 10-20% of the initial NO3(-)-N. Effluent total organic carbon decreased from 403.44mgL(-1) at PV 1 to 9.34mgL(-1) at PV 45. Packing structure had a noticeable effect on its denitrification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
M. Holtzer
2011-04-01
Full Text Available Steel casts in Z.N. POMET were produced in moulds made of the moulding sand Floster. This sand did not have good knocking outproperties, required a significant binder addition (4.5-5.0 parts by weight, and the casting surface quality gave rise to clients objections.Therefore a decision of implementing two-layer moulds, in which the facing sand would consist of the moulding sand with an alkalineorganic binder while the backing sand would be made of the moulding sand with an inorganic binder also of an alkaline character - wasundertaken. The fraction of this last binder in the moulding sand mass would be smaller than that of the binder used up to now (waterglass. The application of two moulding sands of the same chemical character (highly alkaline should facilitate the reclamation processand improve the obtained reclaimed material quality, due to which it would be possible to increase the reclaim fraction in the mouldingsand (up to now it was 50%. The results of the laboratory investigations of sands with the RUDAL binder are presented in the paper.
Kayastha, Shilva; Kunimoto, Ryo; Horvath, Dragos; Varnek, Alexandre; Bajorath, Jürgen
2017-11-01
The analysis of structure-activity relationships (SARs) becomes rather challenging when large and heterogeneous compound data sets are studied. In such cases, many different compounds and their activities need to be compared, which quickly goes beyond the capacity of subjective assessments. For a comprehensive large-scale exploration of SARs, computational analysis and visualization methods are required. Herein, we introduce a two-layered SAR visualization scheme specifically designed for increasingly large compound data sets. The approach combines a new compound pair-based variant of generative topographic mapping (GTM), a machine learning approach for nonlinear mapping, with chemical space networks (CSNs). The GTM component provides a global view of the activity landscapes of large compound data sets, in which informative local SAR environments are identified, augmented by a numerical SAR scoring scheme. Prioritized local SAR regions are then projected into CSNs that resolve these regions at the level of individual compounds and their relationships. Analysis of CSNs makes it possible to distinguish between regions having different SAR characteristics and select compound subsets that are rich in SAR information.
Liu, Yifei; Li, Dawei; Zhang, Qiong; Song, Chi; Zhong, Caihong; Zhang, Xudong; Wang, Ying; Yao, Xiaohong; Wang, Zupeng; Zeng, Shaohua; Wang, Ying; Guo, Yangtao; Wang, Shuaibin; Li, Xinwei; Li, Li; Liu, Chunyan; McCann, Honour C; He, Weiming; Niu, Yan; Chen, Min; Du, Liuwen; Gong, Junjie; Datson, Paul M; Hilario, Elena; Huang, Hongwen
2017-07-01
Reticulate speciation caused by interspecific hybridization is now recognized as an important mechanism in the creation of biological diversity. However, depicting the patterns of phylogenetic networks for lineages that have undergone interspecific gene flow is challenging. Here we sequenced 25 taxa representing natural diversity in the genus Actinidia with an average mapping depth of 26× on the reference genome to reconstruct their reticulate history. We found evidence, including significant gene tree discordance, cytonuclear conflicts, and changes in genome-wide heterozygosity across taxa, collectively supporting extensive reticulation in the genus. Furthermore, at least two separate parental species pairs were involved in the repeated origin of the hybrid lineages, in some of which a further phase of syngameon was triggered. On the basis of the elucidated hybridization relationships, we obtained a highly resolved backbone phylogeny consisting of taxa exhibiting no evidence of hybrid origin. The backbone taxa have distinct demographic histories and are the product of recent rounds of rapid radiations via sorting of ancestral variation under variable climatic and ecological conditions. Our results suggest a mode for consecutive plant diversification through two layers of radiations, consisting of the rapid evolution of backbone lineages and the formation of hybrid swarms derived from these lineages. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Kayastha, Shilva; Kunimoto, Ryo; Horvath, Dragos; Varnek, Alexandre; Bajorath, Jürgen
2017-11-01
The analysis of structure-activity relationships (SARs) becomes rather challenging when large and heterogeneous compound data sets are studied. In such cases, many different compounds and their activities need to be compared, which quickly goes beyond the capacity of subjective assessments. For a comprehensive large-scale exploration of SARs, computational analysis and visualization methods are required. Herein, we introduce a two-layered SAR visualization scheme specifically designed for increasingly large compound data sets. The approach combines a new compound pair-based variant of generative topographic mapping (GTM), a machine learning approach for nonlinear mapping, with chemical space networks (CSNs). The GTM component provides a global view of the activity landscapes of large compound data sets, in which informative local SAR environments are identified, augmented by a numerical SAR scoring scheme. Prioritized local SAR regions are then projected into CSNs that resolve these regions at the level of individual compounds and their relationships. Analysis of CSNs makes it possible to distinguish between regions having different SAR characteristics and select compound subsets that are rich in SAR information.
2D seismic reflection tomography in strongly anisotropic media
Huang, Guangnan; Zhou, Bing; Li, Hongxi; Zhang, Hua; Li, Zelin
2014-12-01
Seismic traveltime tomography is an effective method to reconstruct underground anisotropic parameters. Currently, most anisotropic tomographic methods were developed under the assumption of weak anisotropy. The tomographic method proposed here can be implemented for imaging subsurface targets in strongly anisotropic media with a known tilted symmetry axis, since the adopted ray tracing method is suitable for anisotropic media with arbitrary degree. There are three kinds of reflection waves (qP, qSV and qSH waves) that were separately used to invert the blocky abnormal body model. The reflection traveltime tomographiy is developed here because a surface observation system is the most economical and practical way compared with crosswell and VSP. The numerical examples show that the traveltimes of qP reflection wave have inverted parameters {{c}11},{{c}13},{{c}33} \\text{and} {{c}44} successfully. Traveltimes of qSV reflection wave have inverted parameters {{c}11},{{c}33} \\text{and} {{c}44} successfully, with the exception of the {{c}13}, since it is less sensitive than other parameters. Traveltimes of qSH reflection wave also have inverted parameters {{c}44} \\text{and} {{c}66} successfully. In addition, we find that the velocity sensitivity functions (derivatives of phase velocity with respect to elastic moduli parameters) and raypath illuminating angles have a great influence on the qualities of tomograms according to the inversion of theoretical models. Finally, the numerical examples confirm that the reflection traveltime tomography can be applied to invert strongly anisotropic models.
Formulation of cross-anisotropic failure criterion for soils
Directory of Open Access Journals (Sweden)
Yi-fei Sun
2013-10-01
Full Text Available Inherently anisotropic soil fabric has a considerable influence on soil strength. To model this kind of inherent anisotropy, a three-dimensional anisotropic failure criterion was proposed, employing a scalar-valued anisotropic variable and a modified general threedimensional isotropic failure criterion. The scalar-valued anisotropic variable in all sectors of the deviatoric plane was defined by correlating a normalized stress tensor with a normalized fabric tensor. Detailed comparison between the available experimental data and the corresponding model predictions in the deviatoric plane was conducted. The proposed failure criterion was shown to well predict the failure behavior in all sectors, especially in sector II with the Lode angle ranging between 60° and 120°, where the prediction was almost in accordance with test data. However, it was also observed that the proposed criterion overestimated the strength of dense Santa Monica Beach sand in sector III where the intermediate principal stress ratio b varied from approximately 0.2 to 0.8, and slightly underestimated the strength when b was between approximately 0.8 and 1. The difference between the model predictions and experimental data was due to the occurrence of shear bending, which might reduce the measured strength. Therefore, the proposed anisotropic failure criterion has a strong ability to characterize the failure behavior of various soils and potentially allows a better description of the influence of the loading direction with respect to the soil fabric.
Tajabadi, Mehdi; Zare, Mohammad; Chitsazan, Manouchehr
2018-03-01
Maharlou saline lake is the outlet of Shiraz closed basin in southern Iran, surrounded by several disconnected alluvial fresh water aquifers. These aquifers in the west and northwest of the lake are recharged by karstic anticlines such as Kaftarak in the north and Barmshour in the south. Here groundwater salinity varies along the depth so that better quality water is located below brackish or saline waters. The aim of this study is to investigate the reason for the salinity anomaly and the origin of the fresher groundwater in lower depth. Hence, the change in groundwater salinity along depth has been investigated by means of a set of geoelectrical, hydrogeological, hydrogeochemical, and environmental isotopes data. The interpretation of geoelectrical profiles and hydrogeological data indicates that the aquifer in the southeast of Shiraz plain is a two-layer aquifer separated by a fine-grained (silt and clay) layer with an approximate thickness of 40 m at the depth of about 100-120 m. Hydrgeochemistry showed that the shallow aquifer is recharged by Kaftarak karstic anticline and is affected by the saline lake water. The lake water fraction varies in different parts from zero for shallow aquifer close to the karstic anticlines to ∼70 percent in the margin of the lake. The deep aquifer is protected from the intrusion of saline lake water due to the presence of the above-mentioned confining layer with lake water fraction of zero. The stable isotopes signatures also indicate that the 'fresh' groundwater belonging to the deep aquifer is not subject to severe evaporation or mixing which is typical of the karstic water of the area. It is concluded that the characteristics of the deep aquifer are similar to those of the karstic carbonate aquifer. This karstic aquifer is most probably the Barmshour carbonated anticline buried under the shallow aquifer in the southern part. It may also be the extension of the Kaftarak anticline in the northern part.
Stecura, S.
1980-01-01
A promising two-layer thermal barrier coating system (TBS), Ni-16.4Cr-5.1A1-0.15Y/ZrO2-6.1Y2O3 (all in weight percent), was identified for directionally solidified Ni-Al-Mo (gamma/gamma' alpha). In cyclic furnace tests at 1095 C this system on gamma/gamma' alpha was better than Ni-16. 4Cr-5.1Al-0.15Y/ZrO2-7.8Y2O3 by about 50 percent. In natural gas - oxygen torch rig tests at 1250 C the ZrO2-6.1Y2O3 coating was better than the ZrO2-7.8Y2O3 coating by 95 percent, on MAR-M509 substrates and by 60 percent on gamma/gamma' alpha substrates. Decreasing the coefficient of thermal expansion of the substrate material from 17-18x10 to the -6 power/C (MAR-M200 + Hf and MAR-M509) to 11x10 to the -6 power/C (gamma/gamma' alpha) also resulted in improved TBS life. For example, in natural gas - oxygen torch rig tests at 1250 C, the life of Ni-16.4Cr-5.1Al-0.15Y/ZrO26.1Y2O3 was about 30 percent better on gamma/gamma' alpha than on MAR-M509 substrates. Thus compositional changes in the bond and thermal barrier coatings were shown to have a greater effect on TBS life than does the coefficient of thermal expansion.
Directory of Open Access Journals (Sweden)
A. V. Chernyshev
2017-01-01
Full Text Available In carrying out eddy current thickness measurement of two-layer conductive objects one from the interfering factors is the presence of variations in the value of the electrical conductivity of the material of the upper layer (coating when moving from point to point on the surface of object of control or when passing from one object of control to another. The aim of this work is to evaluate the accuracy of determining the thickness of the conductive coating disposed on a conducting ferromagnetic basis, using the phase method of eddy current testing. The reason of the error is variation of the electrical conductivity of the material of coating.Determination of the error is based on calculations using known analytical expressions for the loop with current of sinusoidal form arranged over the infinite half space with a covering as a thin layer. Selected in calculating electromagnetic parameters of coating and substrate approximately correspond to the case -chromium layer on a nickel base. Calculations are performed for different frequencies of current passed through coil.It is shown that at reduction of frequency of the current passes through the coil the error is reduced. The value of the lowest possible operating frequency of the excitation current is determined by the condition of absence influence on the phase introduced into the superimposed transducer emf variations in the thickness of the basis.To reduce the indicated error it is proposed to determine, on the basis of phase method at a relatively high frequency transducer current excitation, conductivity of the material of coating. After this, at a low frequency excitation current and using phase method, the coating thickness is determined, taking into consideration the previously determined value of the conductivity of coating. Also discussed ways to improve the accuracy of phase measurements in the MHz region of the excitation current frequency.
3-D waveform tomography sensitivity kernels for anisotropic media
Djebbi, Ramzi
2014-01-01
The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.
Anomalously large anisotropic magnetoresistance in a perovskite manganite.
Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X Z; Matsui, Y; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E Ward; Zhang, Jiandi
2009-08-25
The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La(0.69)Ca(0.31)MnO(3), leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a "colossal" AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings.
Electromagnetic waves in uniaxial anisotropic chiral waveguides in magnetized plasma
Ghaffar, A.; Alkanhal, Majeed A. S.
2015-07-01
The characteristics of guided modes in circular waveguides of a uniaxial anisotropic chiral core and a cladding filled with anisotropic plasma are presented. The cladding region is assumed to be infinitely extended with an external applied magnetic field oriented along the direction of propagation in the waveguide. The characteristics equation for the modes in this waveguide are obtained. The variations of the propagation properties with the plasma parameters, chiral parameters, and the cyclotron frequency of plasma have been investigated. Particularly, the effects of the chirality and the cyclotron frequency of plasma on the magnitude and orientation of the energy flux of the guided modes for three kinds of uniaxial anisotropic chiral media have been numerically investigated. Comparisons of the computed results of the presented formulations with published results for some special cases confirm the accuracy of the presented analyses.
Detection of the default mode network by an anisotropic analysis
Forero, Aura; Romero, Eduardo
2017-11-01
This document presents a proposal devoted to improve the detection of the default mode network (DMN) in resting state functional magnetic resonance imaging in noisy conditions caused by head movement. The proposed approach is inspired by the hierarchical treatment of information, in particular at the level of the brain basal ganglia. Essentially, the fact that information must be selected and reduced suggests propagation of information in the Central Nervous System (CNS) is anisotropic. Under this hypothesis, the reconstruction of information of activation should follow an anisotropic pattern. In this work, an anisotropic filter is used to recover the DMN that is perturbed by simulated motion artifacts. Results obtained show this approach outperforms the state-of-the-art methods by 5.93% PSNR.
Anisotropic spreading of liquid metal on a rough intermetallic surface
Directory of Open Access Journals (Sweden)
Liu Wen
2011-01-01
Full Text Available An anisotropic wicking of molten Sn-Pb solder over an intermetallic rough surface has been studied. The phenomenon features preferential spreading and forming of an elliptical spread domain. A theoretically formulated model was established to predict the ratio of the wicking distance along the long axis (rx to that along the short axis (ry of the final wicking pattern. The phenomenon was simultaneously experimentally observed and recorded with a hotstage microscopy technique. The anisotropic wicking is established to be caused by a non-uniform topography of surface micro structures as opposed to an isotropic wicking on an intermetallic surface with uniformly distributed surface micro features. The relative deviation between the theoretically predicted rx/ry ratio and the corresponding average experimental value is 5%. Hence, the small margin of error confirms the validity of the proposed theoretical model of anisotropic wicking.
Investigation of anisotropic scattering for optical tomography in biological tissues
International Nuclear Information System (INIS)
Mercimek, M.; Yildirim, H.; Geckinli, M.; Aydin, M.; Aydin, E. D.
2009-01-01
Photons with wavelengths in near infrared region are used in optical tomography. Radiation transport theory should be preferred instead of diffusion theory for numerical modelling of photon migration in biological tissues, where diffusion theory is invalid. For example, diffusion theory is not sufficient in the regions of close to boundaries, sources or sinks and highly absorbing or void-like media. Also anisotropic scattering must be considered in the numerical models since scattering is generally highly anisotropic in biological tissues. In addition to the absorption and scattering coefficients, a suitable phase function must be known in anisotropic scattering study. Here we have compared scattering phase functions for anisotropy. Then we have calculated Legendre moments which are necessary for the implementation of anisotropy factors into the transport code, PARTISN. Discrete ordinates method (SN) has been used in the transport calculations. We have obtained solutions first a homogeneous and then heterogeneous medium.
Thermodynamics and instabilities of a strongly coupled anisotropic plasma
Mateos, David; Trancanelli, Diego
2011-07-01
We extend our analysis of a IIB supergravity solution dual to a spatially anisotropic finite-temperature mathcal{N} = 4 super Yang-Mills plasma. The solution is static, possesses an anisotropic horizon, and is completely regular. The full geometry can be viewed as a renormalization group flow from an AdS geometry in the ultraviolet to a Lifshitz-like geometry in the infrared. The anisotropy can be equivalently understood as resulting from a position-dependent θ-term or from a non-zero number density of dissolved D7-branes. The holographic stress tensor is conserved and anisotropic. The presence of a conformal anomaly plays an important role in the thermodynamics. The phase diagram exhibits homogeneous and inhomogeneous (i.e. mixed) phases. In some regions the homogeneous phase displays instabilities reminiscent of those of weakly coupled plasmas. We comment on similarities with QCD at finite baryon density and with the phenomenon of cavitation.
Anomalously large anisotropic magnetoresistance in a perovskite manganite
Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi
2009-01-01
The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504
Nonlinear, anisotropic, and giant photoconductivity in intrinsic and doped graphene
Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit
2018-01-01
We present a framework to calculate the anisotropic and nonlinear photoconductivity for two band systems with application to graphene. In contrast to the usual perturbative (second order in the optical field strength) techniques, we calculate photoconductivity to all orders in the optical field strength. In particular, for graphene, we find the photoresponse to be giant (at large optical field strengths) and anisotropic. The anisotropic photoresponse in graphene is correlated with polarization of the incident field, with the response being similar to that of a half-wave plate. We predict that the anisotropy in the simultaneous measurement of longitudinal (σx x) and transverse (σy x) photoconductivity, with four probes, offers a unique experimental signature of the photovoltaic response, distinguishing it from the thermal-Seebeck and bolometric effects in photoresponse.
Modeling of charged anisotropic compact stars in general relativity
Energy Technology Data Exchange (ETDEWEB)
Dayanandan, Baiju; Maurya, S.K.; T, Smitha T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)
2017-06-15
A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e{sup λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model. (orig.)
Self-force on dislocation segments in anisotropic crystals
International Nuclear Information System (INIS)
Fitzgerald, S P; Aubry, S
2010-01-01
A dislocation segment in a crystal experiences a 'self-force', by virtue of the orientation dependence of its elastic energy. If the crystal is elastically isotropic, this force is manifested as a couple acting to rotate the segment toward the lower energy of the pure screw orientation (i.e. acting to align the dislocation line with its Burgers vector). If the crystal is anisotropic, there are additional contributions to the couple, arising from the more complex energy landscape of the lattice itself. These effects can strongly influence the dynamic evolution of dislocation networks, and via their governing role in dislocation multiplication phenomena, control plastic flow in metals. In this paper we develop a model for dislocation self-forces in a general anisotropic crystal, and briefly consider the technologically important example of α-iron, which becomes increasingly anisotropic as the temperature approaches that of the α-γ phase transition at 912 0 C.
Gao, Kai
2015-06-05
The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.
Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): A new radiomics descriptor.
Prasanna, Prateek; Tiwari, Pallavi; Madabhushi, Anant
2016-11-22
In this paper, we introduce a new radiomic descriptor, Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe) for capturing subtle differences between benign and pathologic phenotypes which may be visually indistinguishable on routine anatomic imaging. CoLlAGe seeks to capture and exploit local anisotropic differences in voxel-level gradient orientations to distinguish similar appearing phenotypes. CoLlAGe involves assigning every image voxel an entropy value associated with the co-occurrence matrix of gradient orientations computed around every voxel. The hypothesis behind CoLlAGe is that benign and pathologic phenotypes even though they may appear similar on anatomic imaging, will differ in their local entropy patterns, in turn reflecting subtle local differences in tissue microarchitecture. We demonstrate CoLlAGe's utility in three clinically challenging classification problems: distinguishing (1) radiation necrosis, a benign yet confounding effect of radiation treatment, from recurrent tumors on T1-w MRI in 42 brain tumor patients, (2) different molecular sub-types of breast cancer on DCE-MRI in 65 studies and (3) non-small cell lung cancer (adenocarcinomas) from benign fungal infection (granulomas) on 120 non-contrast CT studies. For each of these classification problems, CoLlAGE in conjunction with a random forest classifier outperformed state of the art radiomic descriptors (Haralick, Gabor, Histogram of Gradient Orientations).
Fabrication of Aligned-Carbon-Nanotube-Composite Paper with High and Anisotropic Conductivity
Directory of Open Access Journals (Sweden)
Yuki Fujitsuka
2012-01-01
Full Text Available A functional carbon-nanotube (CNT-composite paper is described in which the CNTs are aligned. This “aligned-CNT composite paper” is a flexible composite material that has CNT functionality (e.g., electrical conductivity despite being a paper. An advanced fabrication method was developed to overcome the problem of previous CNT-composite papers, that is, reduced conductivity due to random CNT alignment. Aligning the CNTs by using an alternating current (AC field was hypothesized to increase the electrical conductivity and give the paper an anisotropic characteristic. Experimental results showed that a nonionic surfactant was not suitable as a CNT dispersant for fabricating aligned-CNT composite paper and that catechin with its six-membered rings and hydrophilic groups was suitable. Observation by scanning electron microscopy of samples prepared using catechin showed that the CNTs were aligned in the direction of the AC field on the paper fibers. Measurement of the electric conductivity showed that the surface resistance was different between the direction of the aligned CNTs (high conductivity and that of verticality (low. The conductivity of the aligned-CNT-composite paper samples was higher than that of nonaligned samples. This unique and functional paper, which has high and anisotropic conductivity, is applicable to a conductive material to control the direction of current.
Description and comparison of algorithms for correcting anisotropic magnification in cryo-EM images.
Zhao, Jianhua; Brubaker, Marcus A; Benlekbir, Samir; Rubinstein, John L
2015-11-01
Single particle electron cryomicroscopy (cryo-EM) allows for structures of proteins and protein complexes to be determined from images of non-crystalline specimens. Cryo-EM data analysis requires electron microscope images of randomly oriented ice-embedded protein particles to be rotated and translated to allow for coherent averaging when calculating three-dimensional (3D) structures. Rotation of 2D images is usually done with the assumption that the magnification of the electron microscope is the same in all directions. However, due to electron optical aberrations, this condition is not met with some electron microscopes when used with the settings necessary for cryo-EM with a direct detector device (DDD) camera. Correction of images by linear interpolation in real space has allowed high-resolution structures to be calculated from cryo-EM images for symmetric particles. Here we describe and compare a simple real space method, a simple Fourier space method, and a somewhat more sophisticated Fourier space method to correct images for a measured anisotropy in magnification. Further, anisotropic magnification causes contrast transfer function (CTF) parameters estimated from image power spectra to have an apparent systematic astigmatism. To address this problem we develop an approach to adjust CTF parameters measured from distorted images so that they can be used with corrected images. The effect of anisotropic magnification on CTF parameters provides a simple way of detecting magnification anisotropy in cryo-EM datasets. Copyright © 2015 Elsevier Inc. All rights reserved.
Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold
International Nuclear Information System (INIS)
Kim, Geun Hyung
2008-01-01
To design an ideal scaffold, various factors should be considered, such as pore size and morphology, mechanical properties versus porosity, surface properties and appropriate biodegradability. Of these factors, the importance of mechanical properties on cell growth is particularly obvious in tissues such as bone, cartilage, blood vessels, tendons and muscles. Although electrospun nanofibers provide easily applicable nano-sized structures which could be used as biomedical scaffolds, the mechanical properties are poor since an increased pore size and porosity are generally accompanied by a decrease in mechanical properties. In addition, the general electrospinning has been limited to the fabrication of a variety of anisotropic mechanical properties, which are extremely important parameters for designing a musculoskeletal system. In this study, scaffolds consisting of variously oriented nanofibers were produced using an electrospinning process modified with an auxiliary electrode and a two-axis robot collecting system. Using an auxiliary electrode, a stable Taylor cone and initial spun jets were obtained. The influence of the electrode was evaluated with electric field simulation. Using the modified electrospinning process, various directions of orientation of electrospun fibers could be acquired and the fabricated oriented nanofiber webs showed a mechanically anisotropic behavior and a higher hydrophilic property compared to randomly distributed fibrous mats
Lower critical field of an anisotropic type-II superconductor
International Nuclear Information System (INIS)
Klemm, R.A.; Clem, J.R.
1980-01-01
We consider the Ginzburg-Landau free energy of the anisotropic mass form in the presence of a magnetic field of arbitrary fixed direction. It is shown that the free energy may be transformed into the isotropic Ginsburg-Landau form with a kappa that depends upon the direction of the magnetic induction B relative to the crystal lattice. The lower critical field H/sub c/1 is then found for arbitrary direction of B. For highly anisotropic crystals the angular dependence of H/sub c/1 can exhibit a discontinuity or a cusp. The special case of a crystal with uniaxial symmetry is considered in detail
Anisotropic extension of Finch and Skea stellar model
Sharma, Ranjan; Das, Shyam; Thirukkanesh, S.
2017-12-01
In this paper, the spacetime geometry of Finch and Skea [Class. Quantum Gravity 6:467, 1989] has been utilized to obtain closed-form solutions for a spherically symmetric anisotropic matter distribution. By examining its physical admissibility, we have shown that the class of solutions can be used as viable models for observed pulsars. In particular, a specific class of solutions can be used as an `anisotropic switch' to examine the impact of anisotropy on the gross physical properties of a stellar configuration. Accordingly, the mass-radius relationship has been analyzed.
Anisotropic Liquid Microcapsules from Biomimetic Self-Folding Polymer Films.
Zakharchenko, Svetlana; Ionov, Leonid
2015-06-17
We demonstrated a novel approach for the fabrication of anisotropic capsules with liquid content using biomimetic self-folding thermoresponsive polymer films. The behavior of self-folding films is very similar to actuation in plants, where nonhomogenous swelling results in complex movements such as twisting, bending, or folding. This approach allows the design of anisotropic liquid capsules with rodlike and dumbbell-like morphologies. We found that these capsules are able to assemble into different complex structures, such as nematic-like one and 3D network depending on their morphology.
Remarks on anisotropy of inertia in an anisotropic cosmos
Treder, Hans-Juergen
1992-03-01
The astronomical and physical meaning of the anisotropy of inertia is analyzed with respect to the relativity of inertia and anisotropic distributions of gravitating matter in the universe. Attention is given to the theoretical compatibility of the anisotropy of inertial masses with Mach's principle of the relativity of inertia and the Mach-Einstein doctrine of general relativity. Mach's principle does not imply anisotropy of inertial masses in an anisotropic universe, and the isotropy of cosmological mass is supported by the Mach-Einstein theories.
Anisotropic behavior of quantum transport in graphene superlattices
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Cummings, Aron W.; Roche, Stephan
2014-01-01
We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength of multi...... orders of magnitude, and suggesting the possibility of building graphene electronic circuits based on the unique properties of chiral massless Dirac fermions in graphene.......We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength...
All spherically symmetric charged anisotropic solutions for compact stars
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)
2017-06-15
In the present paper we develop an algorithm for all spherically symmetric anisotropic charged fluid distributions. Considering a new source function ν(r) we find a set of solutions which is physically well behaved and represents compact stellar models. A detailed study specifically shows that the models actually correspond to strange stars in terms of their mass and radius. In this connection we investigate several physical properties like energy conditions, stability, mass-radius ratio, electric charge content, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent agreement with the already available evidence in theory as well as observations. (orig.)
Correlation theory of crystal field and anisotropic exchange effects
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1985-01-01
A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds. The the......A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds...... on the susceptibility, the first and second moment frequencies and the line shape are calculated self-consistently....
Tunable waveguide bends with graphene-based anisotropic metamaterials
Chen, Zhao-xian
2016-01-15
We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.
The Theory of Random Laser Systems
Energy Technology Data Exchange (ETDEWEB)
Jiang, Xunya [Iowa State Univ., Ames, IA (United States)
2001-01-01
Studies of random laser systems are a new direction with promising potential applications and theoretical interest. The research is based on the theories of localization and laser physics. So far, the research shows that there are random lasing modes inside the systems which is quite different from the common laser systems. From the properties of the random lasing modes, they can understand the phenomena observed in the experiments, such as multi-peak and anisotropic spectrum, lasing mode number saturation, mode competition and dynamic processes, etc. To summarize, this dissertation has contributed the following in the study of random laser systems: (1) by comparing the Lamb theory with the Letokhov theory, the general formulas of the threshold length or gain of random laser systems were obtained; (2) they pointed out the vital weakness of previous time-independent methods in random laser research; (3) a new model which includes the FDTD method and the semi-classical laser theory. The solutions of this model provided an explanation of the experimental results of multi-peak and anisotropic emission spectra, predicted the saturation of lasing modes number and the length of localized lasing modes; (4) theoretical (Lamb theory) and numerical (FDTD and transfer-matrix calculation) studies of the origin of localized lasing modes in the random laser systems; and (5) proposal of using random lasing modes as a new path to study wave localization in random systems and prediction of the lasing threshold discontinuity at mobility edge.
The Theory of Random Laser Systems
International Nuclear Information System (INIS)
Xunya Jiang
2002-01-01
Studies of random laser systems are a new direction with promising potential applications and theoretical interest. The research is based on the theories of localization and laser physics. So far, the research shows that there are random lasing modes inside the systems which is quite different from the common laser systems. From the properties of the random lasing modes, they can understand the phenomena observed in the experiments, such as multi-peak and anisotropic spectrum, lasing mode number saturation, mode competition and dynamic processes, etc. To summarize, this dissertation has contributed the following in the study of random laser systems: (1) by comparing the Lamb theory with the Letokhov theory, the general formulas of the threshold length or gain of random laser systems were obtained; (2) they pointed out the vital weakness of previous time-independent methods in random laser research; (3) a new model which includes the FDTD method and the semi-classical laser theory. The solutions of this model provided an explanation of the experimental results of multi-peak and anisotropic emission spectra, predicted the saturation of lasing modes number and the length of localized lasing modes; (4) theoretical (Lamb theory) and numerical (FDTD and transfer-matrix calculation) studies of the origin of localized lasing modes in the random laser systems; and (5) proposal of using random lasing modes as a new path to study wave localization in random systems and prediction of the lasing threshold discontinuity at mobility edge
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
2015-01-01
Roč. 25, - (2015), s. 109-155 ISSN 2336-3827 Institutional support: RVO:67985530 Keywords : integral superposition of paraxial Gaussian beams * inhomogeneous anisotropic media * S waves in weakly anisotropic media Subject RIV: DC - Siesmology, Volcanology, Earth Structure
A Morphing framework to couple non-local and local anisotropic continua
Azdoud, Yan
2013-05-01
In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.
Luhar, Ashok K.; Woodhouse, Matthew T.; Galbally, Ian E.
2018-03-01
Dry deposition at the Earth's surface is an important sink of atmospheric ozone. Currently, dry deposition of ozone to the ocean surface in atmospheric chemistry models has the largest uncertainty compared to deposition to other surface types, with implications for global tropospheric ozone budget and associated radiative forcing. Most global models assume that the dominant term of surface resistance in the parameterisation of ozone dry deposition velocity at the oceanic surface is constant. There have been recent mechanistic parameterisations for air-sea exchange that account for the simultaneous waterside processes of ozone solubility, molecular diffusion, turbulent transfer, and first-order chemical reaction of ozone with dissolved iodide and other compounds, but there are questions about their performance and consistency. We present a new two-layer parameterisation scheme for the oceanic surface resistance by making the following realistic assumptions: (a) the thickness of the top water layer is of the order of a reaction-diffusion length scale (a few micrometres) within which ozone loss is dominated by chemical reaction and the influence of waterside turbulent transfer is negligible; (b) in the water layer below, both chemical reaction and waterside turbulent transfer act together and are accounted for; and (c) chemical reactivity is present through the depth of the oceanic mixing layer. The new parameterisation has been evaluated against dry deposition velocities from recent open-ocean measurements. It is found that the inclusion of only the aqueous iodide-ozone reaction satisfactorily describes the measurements. In order to better quantify the global dry deposition loss and its interannual variability, modelled 3-hourly ozone deposition velocities are combined with the 3-hourly MACC (Monitoring Atmospheric Composition and Climate) reanalysis ozone for the years 2003-2012. The resulting ozone dry deposition is found to be 98.4 ± 30.0 Tg O3 yr-1 for the ocean
International Nuclear Information System (INIS)
Yokoyama, Kenji
2006-10-01
A proposed method for gradually restructuring to the two-level system of next generation analysis system by reusing the conventional analysis system, called 'incremental method', was applied and evaluated. The following functions were selected for the evaluation: Neutron diffusion calculation for the three-dimensional XYZ system based on finite differential method, and input utilities of the cross-section data file used in the conventional system. In order to evaluate the effect of the restructuring, 'Module Coupling Index (MCI)' and 'McCabe's Cyclomatic Complexity (MCC)' were used for quantifying the quality of the modular design and the complexity of the program sequence of each module. Although MCIs of each module before restructuring were mainly 6 - 7 degrees, it was possible to reduce them to under 4 degrees in most module by restructuring with the incremental method. And, it is found that the modules under 4 degrees of MCI can be easily combined with different programming languages, which are necessary for building the two-layer system. In the meantime, MCCs in most module before restructuring were over 20 and some were over 50. The incremental method could reduce them to under 10 when C++ was used, and reduce them to under 20 when FORTRAN was used. It is correspondent to reduction of the error frequency occurred in its modification from 20 - 40% to 5 - 10%. The total number of MCC could be reduced to 1/3 when C++ was used, and to 1/2 when FORTRAN was used. By using the restructured functions in the present study and some previously developed functions, a reactor analysis tool was systematized and applied to criticality analysis of the Experimental Fast Reactor 'JOYO' MR-I. In addition, the following two functionality expansion tests were performed: To add cross section direct perturbation functionality, and to add control rod criticality position search functionality. In the tests, both the functionality expansions were carried out satisfying the condition
Ray-optics analysis of inhomogeneous optically anisotropic media
Sluijter, M.
2010-01-01
When the optical behavior of light in a medium depends on the direction in which light is traveling, the medium is called optically anisotropic. Light is an electromagnetic wave and in this thesis, we discuss the electromagnetic theory on optical anisotropy. We do this with the assumption that the
On the origins of the anisotropic mechanical behaviour of extruded ...
Indian Academy of Sciences (India)
Mater. Sci., Vol. 40, No. 2, April 2017, pp. 395–406. c Indian Academy of Sciences. DOI 10.1007/s12034-017-1383-3. On the origins of the anisotropic mechanical behaviour of extruded. AA2017 aluminium alloy. A MAY. Laboratoire Génie des Matériaux, Ecole Militaire Polytechnique, BP 17, Bordj El Bahri 16046, Algeria.
Negative index of refraction in anisotropic nonmagnetic materials
Czech Academy of Sciences Publication Activity Database
Dvořák, Vladimír; Kužel, Petr
2006-01-01
Roč. 338, - (2006), s. 195-203 ISSN 0015-0193 R&D Projects: GA AV ČR 1ET300100401 Institutional research plan: CEZ:AV0Z10100520 Keywords : anisotropic dielectric * negative refractive index * surface modes * guided modes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.389, year: 2006
Finite-difference modelling of anisotropic wave scattering in discrete ...
Indian Academy of Sciences (India)
A M Ekanem
2018-04-05
Apr 5, 2018 ... fractured hydrocarbon reservoirs to complement the use of other seismic attributes. Despite the con- certed effort in research and development related to seismic characterization of fractured reservoirs using anisotropic wave scattering, pragmatic uti- lization of this attribute in geophysical exploration.
Autofocus imaging : Experimental results in an anisotropic austenitic weld
Zhang, J.; Drinkwater, B.W.; Wilcox, P.D.; Hunter, A.J.
2012-01-01
The quality of an ultrasonic array image, especially for anisotropic material, depends on accurate information about acoustic properties. Inaccuracy of acoustic properties causes image degradation, e.g., blurring, errors in locating of reflectors and introduction of artifacts. In this paper, for an
On the interpretation of time-resolved anisotropic diffraction patterns
DEFF Research Database (Denmark)
Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm
2010-01-01
In this paper, we review existing systematic treatments for the interpretation of anisotropic diffraction patterns from partially aligned symmetric top molecules. Such patterns arise in the context of time-resolved diffraction experiments. We calculate diffraction patterns for ground-state Na...
On the origins of the anisotropic mechanical behaviour of extruded ...
Indian Academy of Sciences (India)
This paper presents some experimental investigations about the origins of the anisotropic behaviour in cyclic loadings of AA2017 aluminium alloy. In the first step, fatigue damage evolutions were quantified for controlled proportional cyclic loadings in axial and shear directions. In this stage, the aim was to confirm the ...
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous ﬂuid, both exponential and power-law solutions have been studied and some assumptions among the ...
Propagation of waves in a gravitating and rotating anisotropic heat ...
African Journals Online (AJOL)
Bheema
(1956) equations neglecting the heat flux vector. Gravitational instability on propagation of magnetohydrodynamic (MHD) waves in astrophysical plasma is investigated by Alemayehu and Tessema (2013a) by considering the effect of gravitational instability and viscosity with anisotropic pressure tensor and heat conducting.
Three anisotropic benchmark problems for adaptive finite element methods
Czech Academy of Sciences Publication Activity Database
Šolín, Pavel; Čertík, O.; Korous, L.
2013-01-01
Roč. 219, č. 13 (2013), s. 7286-7295 ISSN 0096-3003 R&D Projects: GA AV ČR IAA100760702 Institutional support: RVO:61388998 Keywords : benchmark problem * anisotropic solution * boundary layer Subject RIV: BA - General Mathematics Impact factor: 1.600, year: 2013
Metastability thresholds for anisotropic bootstrap percolation in three dimensions
Van Enter, A.C.D.; Fey, A.
2012-01-01
In this paper we analyze several anisotropic bootstrap percolation models in three dimensions. We present the order of magnitude for the metastability thresholds for a fairly general class of models. In our proofs, we use an adaptation of the technique of dimensional reduction. We find that the
Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions
Van Enter, A.C.D.; Fey, A.
2012-01-01
In this paper we analyze several anisotropic bootstrap percolation models in three dimensions. We present the order of magnitude for the metastability thresholds for a fairly general class of models. In our proofs, we use an adaptation of the technique of dimensional reduction. We find that the
Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections
van Enter, Aernout C. D.; Hulshof, Tim
In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.
Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions
Enter, Aernout C.D. van; Fey, Anne
In this paper we analyze several anisotropic bootstrap percolation models in three dimensions. We present the order of magnitude for the metastability thresholds for a fairly general class of models. In our proofs, we use an adaptation of the technique of dimensional reduction. We find that the
Some dynamical properties of anisotropic collisionless stellar systems
International Nuclear Information System (INIS)
Bertin, G.; Pegoraro, F.
1989-01-01
The linear stability analysis of collisionless anisotropic spherical stellar systems presents many unresolved issues. Planning to study the stability of a simple and astrophysically interesting equilibrium seuence ∞ for such stellar systems, we describe here some analytical characterizations of the ∞-distribution functions, formulate the linearized equations for stability, and discuss the relevant boundary conditions. (author). 19 refs.; 1 tab
New exact models for anisotropic matter with electric field
Indian Academy of Sciences (India)
Jefta M Sunzu
2017-09-05
Sep 5, 2017 ... In our models, we consider the stellar object that is anisotropic and charged with linear equation of state consistent with quark stars. ... Einstein–Maxwell equations; anisotropy; charged matter; equation of state. PACS Nos 04.20. .... Sunzu et al [3] which was a general cubic polynomial. However, our choice ...
Wave propagation in a general anisotropic poroelastic medium ...
Indian Academy of Sciences (India)
equations (Auriault et al 1985) in terms of solid displacement and fluid pressure, whereas Biot's equations were in terms of displacements of both the solid and fluid phases. Homogenisation has proven that .... (8) to (10) imply that, in homogenisation approach, the anisotropic inertial coupling is hiding in the tensor {ˆρij}.
Exact anisotropic sphere with polytropic equation of state
Indian Academy of Sciences (India)
Abstract. We study static spherically symmetric spacetime to describe compact objects with anisotropic matter distribution. We express the system of Einstein field equations as a new system of differential equations using a coordinate transformation, and then write the system in another form with polytropic equation of state ...
Anisotropic Born-Mayer potential in lattice dynamics of Vanadium
International Nuclear Information System (INIS)
Onwuagba, B.N.
1988-01-01
A microscopic theory of the lattice dynamics of the transition metal vanadium is developed based on the Animalu's transition metal model potential (TMMP). The Born-Mayer potential associated with the distribution of the transition metal d-electrons is treated as anisotropic. Good agreement with experimental phonon dispersion curves longitudinal branches in the [111] direction
Anisotropic strain and phonon deformation potentials in GaN
International Nuclear Information System (INIS)
Darakchieva, V.; Arwin, H.; Paskov, P. P.; Monemar, B.; Paskova, T.; Hommel, D.; Schubert, M.; Heuken, M.; Off, J.; Scholz, F.; Haskell, B. A.; Fini, P. T.; Speck, J. S.; Nakamura, S.
2007-01-01
We report optical phonon frequency studies in anisotropically strained c-plane- and a-plane-oriented GaN films by generalized infrared spectroscopic ellipsometry and Raman scattering spectroscopy. The anisotropic strain in the films is obtained from high-resolution x-ray diffraction measurements. Experimental evidence for splitting of the GaN E 1 (TO), E 1 (LO), and E 2 phonons under anisotropic strain in the basal plane is presented, and their phonon deformation potentials c E 1 (TO) , c E 1 (LO) , and c E 2 are determined. A distinct correlation between anisotropic strain and the A 1 (TO) and E 1 (LO) frequencies of a-plane GaN films reveals the a A 1 (TO) , b A 1 (TO) , a E 1 (LO) , and b E 1 (LO) phonon deformation potentials. The a A 1 (TO) and b A 1 (TO) are found to be in very good agreement with previous results from Raman experiments [V. Yu. Davydov et al., J. Appl. Phys. 82, 5097 (1997)]. Our a A 1 (TO) and a E 1 (LO) phonon deformation potentials agree well with recently reported theoretical estimations [J.-M. Wagner and F. Bechstedt, Phys. Rev. B 66, 115202 (2002)], while b A 1 (TO) and b E 1 (LO) are found to be significantly larger than the theoretical values. A discussion of the observed differences is presented
Double anisotropic electrically conductive flexible Janus-typed membranes.
Li, Xiaobing; Ma, Qianli; Tian, Jiao; Xi, Xue; Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Xinlu; Wang, Jinxian; Liu, Guixia
2017-12-07
Novel type III anisotropic conductive films (ACFs), namely flexible Janus-typed membranes, were proposed, designed and fabricated for the first time. Flexible Janus-typed membranes composed of ordered Janus nanobelts were constructed by electrospinning, which simultaneously possess fluorescence and double electrically conductive anisotropy. For the fabrication of the Janus-typed membrane, Janus nanobelts comprising a conductive side and an insulative-fluorescent side were primarily fabricated, and then the Janus nanobelts are arranged into parallel arrays using an aluminum rotary drum as the collector to obtain a single anisotropically conductive film. Subsequently, a secondary electrospinning process was applied to the as-prepared single anisotropically conductive films to acquire the final Janus-typed membrane. For this Janus-typed membrane, namely its left-to-right structure, anisotropic electrical conduction synchronously exists on both sides, and furthermore, the two electrically conductive directions are perpendicular. By modulating the amount of Eu(BA) 3 phen complex and conducting polyaniline (PANI), the characteristics and intensity of the fluorescence-electricity dual-function in the membrane can be tuned. The high integration of this peculiar Janus-typed membrane with simultaneous double electrically conductive anisotropy-fluorescent dual-functionality is successfully realized in this study. This design philosophy and preparative technique will provide support for the design and construction of new types of special nanostructures with multi-functionality.
Anisotropic cosmological models in f (R, T) theory of gravitation
Indian Academy of Sciences (India)
Bianchi spaces are useful tools for constructing spatially homogeneous and anisotropic cosmological models in general relativity and scalar–tensor theories of gravitation. Adhav [14] obtained exact solutions of the field equations for LRS. Bianchi type-I space-time with perfect fluid in the framework of f (R, T) theory of grav-.
Anisotropic Bianchi-I universe with phantom field and cosmological ...
Indian Academy of Sciences (India)
We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the ...
Gmax for Sand by Bender Elements at Anisotropic Stress States
DEFF Research Database (Denmark)
Bødker, L.
1996-01-01
elements for two types of sand and with void ratios varying from minimum to maximum. The tests performed are carried out in the Danish Triaxial Cell, and Gmax are determined at different isotropic and anisotropic stress states. The main result of the test program is that Gmax is primarily influenced...
Charged anisotropic star on paraboloidal space-time
Indian Academy of Sciences (India)
... is the central pressure. At the boundary of the star r = R, pr must vanish, which gives r = R as the radius of the star. This form of radial pressure is prescribed by Sharma and Ratanpal [18] to describe anisotropic stellar model admitting a quadratic equation of state on paraboloidal space-time. Equations (8) and (4) give ν =.
New exact models for anisotropic matter with electric field
Indian Academy of Sciences (India)
2017-09-05
Sep 5, 2017 ... We can also obtain particular anisotropic models obtained by Maharaj, Sunzu, and Ray. The exact solutions corresponding to our models are found explicitly in terms of elementary functions. The graphical plots generated for the matter variables and the electric field are well behaved. We also generate ...
Anisotropic colloids: bulk phase behavior and equilibrium sedimentation
Marechal, M.A.T.
2009-01-01
This thesis focuses on the phase behavior of anisotropically shaped (i.e. non-spherical) colloids using computer simulations. Only hard-core interactions between the colloids are taken into account to investigate the effects of shape alone. The bulk phase behavior of three different shapes of
Surface waves in fibre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Abstract. Though the decoupling of displacement potentials in case of fibre- reinfoced anisotropic elastic media is not possible in the general case, an attempt has been made to decouple the equation as a particular case. The assumptions made in this paper satisfy both set of equations formed by the displacement ...
Fracture of anisotropic materials with plastic strain-gradient effects
DEFF Research Database (Denmark)
Legarth, Brian Nyvang
2013-01-01
A unit cell is adopted to numerically analyze the effect of plastic anisotropy on frac-ture evolution in a micro-reinforced fiber-composite. The matrix material exhibit size-effects and an anisotropic strain-gradient plasticity model accounting for such size-effects through a mate-rial length scale...
Anisotropic Bianchi-I universe with phantom field and cosmological ...
Indian Academy of Sciences (India)
The anisotropy of the universe decreases and the universe transits to an isotropic flat FRW universe accommodating the present acceleration. A class of new cosmological solutions is obtained for an anisotropic universe in case an initial anisotropy exists which is bigger than the value determined by the parameter of the ...
Angle-domain common-image gathers from anisotropic Gaussian ...
Indian Academy of Sciences (India)
s12040-016-0783-x. Angle-domain common-image gathers from anisotropic ..... are not flat. The test results demonstrate that anisotropy has a great influence on GB-PSDM in. VTI media, and ignoring anisotropy in migration may lead to obvious ...
Exact anisotropic sphere with polytropic equation of state
Indian Academy of Sciences (India)
self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density, which invariably leads to non-integrable equations [32]. However, our treatment of anisotropic fluids with polytropic equation of state gets some flexibility in solving the. Einstein field equations with uncharged matter in static ...
Dynamical anisotropic response of black phosphorus under magnetic field
Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong
2018-04-01
Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.
Theory of Spin Waves in Strongly Anisotropic Magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Cooke, J. F.
1976-01-01
A new infinite-order perturbation approach to the theory of spin waves in strongly anisotropic magnets is introduced. The system is transformed into one with effective two-ion anisotropy and considerably reduced ground-state corrections. A general expression for the spin-wave energy, valid to any...
Minimal Sampling for Effective Acquisition of Anisotropic BRDFs
Czech Academy of Sciences Publication Activity Database
Vávra, Radomír; Filip, Jiří
2016-01-01
Roč. 35, č. 7 (2016), s. 299-309 ISSN 0167-7055 R&D Projects: GA ČR(CZ) GA14-02652S Institutional support: RVO:67985556 Keywords : BRDF * anisotropic * measurement Subject RIV: BD - Theory of Information Impact factor: 1.611, year: 2016 http://library.utia.cas.cz/separaty/2016/RO/vavra-0463872.pdf
Viscoelastic materials with anisotropic rigid particles: stress-deformation behavior
Sagis, L.M.C.; Linden, van der E.
2001-01-01
In this paper we have derived constitutive equations for the stress tensor of a viscoelastic material with anisotropic rigid particles. We have assumed that the material has fading memory. The expressions are valid for slow and small deformations from equilibrium, and for systems that are nearly
Wave velocities in a pre-stressed anisotropic elastic medium
Indian Academy of Sciences (India)
Modiﬁed Christoffel equations are derived for three-dimensional wave propagation in a general anisotropic medium under initial stress.The three roots of a cubic equation deﬁne the phase velocities of three quasi-waves in the medium.Analytical expressions are used to calculate the directional derivatives of phase ...
Propagation of waves in a gravitating and rotating anisotropic heat ...
African Journals Online (AJOL)
An inviscid, unbounded, collisionless, gravitating, rotating and heat conducting anisotropic plasma medium which is drifting is considered. The medium is assumed to be embedded in a strong magnetic field. A general dispersion relation is derived using normal mode analysis and its various limiting cases are discussed, ...
Finite-difference modelling of anisotropic wave scattering in discrete ...
Indian Academy of Sciences (India)
2
attribute in geophysical exploration is still restricted perhaps as a result of the ambiguity in its. 51 quantification and difficulty in its interpretation in terms of rock properties (Jeng et al., 1999,. 52. MacBeth, 1999; Rongrong et al., 2006). Thus, the task of using anisotropic wave scattering for fracture. 53 prediction in the Earth's ...
Fourth-order discrete anisotropic boundary-value problems
Directory of Open Access Journals (Sweden)
Maciej Leszczynski
2015-09-01
Full Text Available In this article we consider the fourth-order discrete anisotropic boundary value problem with both advance and retardation. We apply the direct method of the calculus of variations and the mountain pass technique to prove the existence of at least one and at least two solutions. Non-existence of non-trivial solutions is also undertaken.
Prestack exploding reflector modelling and migration for anisotropic media
Alkhalifah, Tariq Ali
2014-10-09
The double-square-root equation is commonly used to image data by downward continuation using one-way depth extrapolation methods. A two-way time extrapolation of the double-square-root-derived phase operator allows for up and downgoing wavefields but suffers from an essential singularity for horizontally travelling waves. This singularity is also associated with an anisotropic version of the double-square-root extrapolator. Perturbation theory allows us to separate the isotropic contribution, as well as the singularity, from the anisotropic contribution to the operator. As a result, the anisotropic residual operator is free from such singularities and can be applied as a stand alone operator to correct for anisotropy. We can apply the residual anisotropy operator even if the original prestack wavefield was obtained using, for example, reverse-time migration. The residual correction is also useful for anisotropic parameter estimation. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach. It also proves useful in approximately imaging the Vertical Transverse Isotropic Marmousi model.
Angle-domain common-image gathers from anisotropic Gaussian ...
Indian Academy of Sciences (India)
An approach for extracting angle-domain common-image gathers (ADCIGs) from anisotropic Gaussian beam prestack depth migration (GB-PSDM) is presented in this paper. The propagation angle is calcu- lated in the process of migration using the real-value traveltime information of Gaussian beam. Based on the above ...
Anisotropic properties of aligned SWNT modified poly (methyl ...
Indian Academy of Sciences (India)
The electrical and mechanical properties of PMMA/SWNT composite were studied as a function of SWNT orientation and concentration. The aligned SWNT modified PMMA/SWNT composite presented highly anisotropic properties. The experimental results showed that the electrical conductivity and mechanical properties of ...
Surface waves in fibre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
MS received 1 March 2002. Abstract. In the paper under discussion, the problem of surface waves in fibre- reinforced anisotropic elastic media has been studied. The authors express the plane strain displacement components in terms of two scalar potentials to decouple the plane motion into P and SV waves. In the present ...
Crystal structure of vanadite: Refinement of anisotropic displacement parameters
Czech Academy of Sciences Publication Activity Database
Laufek, F.; Skála, Roman; Haloda, J.; Císařová, I.
2006-01-01
Roč. 51, 3-4 (2006), s. 271-275 ISSN 1210-8197 Institutional research plan: CEZ:AV0Z30130516 Keywords : anisotropic displacement parameter * crystal structure * single-crystal X-ray refinement * vanadinite Subject RIV: DB - Geology ; Mineralogy
Finite-difference modelling of anisotropic wave scattering in discrete ...
Indian Academy of Sciences (India)
2
cells containing equivalent anisotropic medium by the use of the linear slip equivalent model. Our. 16 results show ...... frequency regression predicted by equation (21) can be distorted by the effects of multiple scattering. 337 ..... other seismic attributes, at least for the relatively simple geometries of subsurface structure. 449.
Reliability improvement for anisotropic biased compensated α/β contamination meter
Energy Technology Data Exchange (ETDEWEB)
Coulon, R., E-mail: romain.coulon@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Montagu, T. [CEA, LIST, Laboratoire de Modélisation et Simulation des Systèmes, F-91191 Gif-sur-Yvette (France); Schoepff, V. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Menaa, N.; Ulmann, A. Gallozzi; Blanc de Lanaute, N. [CANBERRA France, F-78182 St Quentin en Yvelines (France)
2016-11-21
Nuclear instruments such as alpha/beta contamination meter are frequently used in a compensated mode where the contribution of gamma radiation background is compensated by a guard detector. The signal of interest is then the subtraction of counting from both channels. In practice, the noise signal measured by the guard detector is not strictly equal to the noise contribution into the first detector due to anisotropic biases. The random error (under Poisson assumption) is taken into account to build a hypothesis test. The system is also designed to minimize the systematic error but in some cases, this bias could not be completely removed. The measurement system then shows different behavior when the surrounding environment changes exhibiting inopportune false alarms. A method allowing the false alarms to be suppressed is addressed in this study for compensated measurement. An improvement in terms of reliability has been proven.
Reliability improvement for anisotropic biased compensated α/β contamination meter
International Nuclear Information System (INIS)
Coulon, R.; Montagu, T.; Schoepff, V.; Menaa, N.; Ulmann, A. Gallozzi; Blanc de Lanaute, N.
2016-01-01
Nuclear instruments such as alpha/beta contamination meter are frequently used in a compensated mode where the contribution of gamma radiation background is compensated by a guard detector. The signal of interest is then the subtraction of counting from both channels. In practice, the noise signal measured by the guard detector is not strictly equal to the noise contribution into the first detector due to anisotropic biases. The random error (under Poisson assumption) is taken into account to build a hypothesis test. The system is also designed to minimize the systematic error but in some cases, this bias could not be completely removed. The measurement system then shows different behavior when the surrounding environment changes exhibiting inopportune false alarms. A method allowing the false alarms to be suppressed is addressed in this study for compensated measurement. An improvement in terms of reliability has been proven.
Goel, Pooja; Vinokur, Rostislav; Weichold, Oliver
2010-12-15
The electrical behaviour of hybrid poly(ethylene terephthalate) films containing localised, percolating networks of silver nanoparticles separated by pure polymer is studied. The films resemble an array of parallel wires in the submicron range and, thus, exhibit anisotropic conductivity. In the high-conductivity direction at low amplitudes, the films show Ohmic behaviour, while at moderate voltage, non-linearity and a decreasing resistance is observed. The samples were found to heat up during the measurements and the deviation from Ohm's law coincides with the Tg of the polymer. Microstructural analysis of the samples revealed an irreversible agglomeration of the particles at moderate voltages leading to the formation of filaments with higher metallic character than the random particle network. Copyright © 2010 Elsevier Inc. All rights reserved.
Brazilian Tensile Strength of Anisotropic Rocks: Review and New Insights
Directory of Open Access Journals (Sweden)
Tianshou Ma
2018-01-01
Full Text Available Strength anisotropy is one of the most distinct features of anisotropic rocks, and it also normally reveals strong anisotropy in Brazilian test Strength (“BtS”. Theoretical research on the “BtS” of anisotropic rocks is seldom performed, and in particular some significant factors, such as the anisotropic tensile strength of anisotropic rocks, the initial Brazilian disc fracture points, and the stress distribution on the Brazilian disc, are often ignored. The aim of the present paper is to review the state of the art in the experimental studies on the “BtS” of anisotropic rocks since the pioneering work was introduced in 1964, and to propose a novel theoretical method to underpin the failure mechanisms and predict the “BtS” of anisotropic rocks under Brazilian test conditions. The experimental data of Longmaxi Shale-I and Jixi Coal were utilized to verify the proposed method. The results show the predicted “BtS” results show strong agreement with experimental data, the maximum error is only ~6.55% for Longmaxi Shale-I and ~7.50% for Jixi Coal, and the simulated failure patterns of the Longmaxi Shale-I are also consistent with the test results. For the Longmaxi Shale-I, the Brazilian disc experiences tensile failure of the intact rock when 0° ≤ βw ≤ 24°, shear failure along the weakness planes when 24° ≤ βw ≤ 76°, and tensile failure along the weakness planes when 76° ≤ βw ≤ 90°. For the Jixi Coal, the Brazilian disc experiences tensile failure when 0° ≤ βw ≤ 23° or 76° ≤ βw ≤ 90°, shear failure along the butt cleats when 23° ≤ βw ≤ 32°, and shear failure along the face cleats when 32° ≤ βw ≤ 76°. The proposed method can not only be used to predict the “BtS” and underpin the failure mechanisms of anisotropic rocks containing a single group of weakness planes, but can also be generalized for fractured rocks containing multi-groups of weakness planes.
Veen, P.M. van
1980-01-01
In the Upper Devonian (Tournaisian 1a and 1b) of southern Ireland, camerate spores provided with a two-layered outer well are regular components of palynological assemblages. These forms are attributed to the formgenus Diducites Van Veen nov. gen. The four species recognised [D. plicabilis Van Veen
Influence of copper foil polycrystalline structure on graphene anisotropic etching
Energy Technology Data Exchange (ETDEWEB)
Sharma, Kamal P. [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Mahyavanshi, Rakesh D. [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)
2017-01-30
Graphical abstract: Hexagonal hole formation with anisotropic etching independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. - Highlights: • Reveal the influence of copper polycrystalline structure on anisotropic etching of graphene. • Hexagonal hole formation with etching is observed to be independent of stripes and wrinkles in graphene. • Variation in etched pattern of graphene depending on the base Cu grain is confirmed. • This finding will help to understand the nature of microscopic etched pattern in graphene. - Abstract: Anisotropic etching of graphene and other two dimensional materials is an important tool to understand the growth process as well as enabling fabrication of various well-defined structures. Here, we reveal the influence of copper foil polycrystalline structure on anisotropic etching process of as-synthesized graphene. Graphene crystals were synthesized on the polycrystalline Cu foil by a low-pressure chemical vapor deposition (LPCVD) system. Microscopic analysis shows difference in shape, size and stripes alignment of graphene crystals with dissimilar nucleation within closure vicinity of neighboring Cu grains. Post-growth etching of such graphene crystals also significantly affected by the crystallographic nature of Cu grains as observed by the field emission scanning electron microscope (FE-SEM) and electron back scattered diffraction (EBSD) analysis. Hexagonal hole formation with anisotropic etching is observed to be independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. The findings can facilitate to understand the nature of microscopic etched pattern depending on metal
Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy
Alkhalifah, Tariq Ali
2014-04-30
Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.
Energy Technology Data Exchange (ETDEWEB)
Borgne, H.
2004-12-01
Seismic imaging is an important tool for ail exploration. From the filtered seismic traces and a subsurface velocity model, migration allows to localize the reflectors and to estimate physical properties of these interfaces. The subsurface is split up into a reference medium, corresponding to the low spatial frequencies (a smooth medium), and a perturbation medium, corresponding to the high spatial frequencies. The propagation of elastic waves in the medium of reference is modelled by the ray theory. The association of this theory with a principle of diffraction or reflection allows to take into account the high spatial frequencies: the Kirchhoff approach represents so the medium of perturbations with continuous surfaces, characterized by reflection coefficients. The target of the quantitative migration is to reconstruct this reflection coefficient, notably its behaviour according to the incidence angle. These information will open the way to seismic characterization of the reservoir domain, with. a stratigraphic inversion for instance. In order to improve the qualitative and quantitative migration results, one of the current challenges is to take into account the anisotropy of the subsurface. Taking into account rocks anisotropy in the imaging process of seismic data requires two improvements from the isotropic case. The first one roughly concerns the modelling aspect: an anisotropic propagator should be used to avoid a mis-positioning or bad focusing of the imaged reflectors. The second correction concerns the migration aspect: as anisotropy affects the reflectivity of subsurface, a specific anisotropic imaging formula should be applied in the migration kernel, in order to recover the correct A V A behavior of the subsurface reflectors, If the first correction is DOW made in most so-called anisotropic imaging algorithms, the second one is currently ignored. The first part of my work concerns theoretical aspects. 1 study first the preservation of amplitudes in the
Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes
Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.
2018-03-01
The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.
Optical characterization of isotropic and anisotropic layered media
Jakopic, G
2000-01-01
This work deals with the interaction of electromagnetic radiation in the UV/IR region with layered media and the inversion of photometric and ellipsometric spectra. A method is presented how to calculate the dielectric function of an ensemble of different anisotropic oscillators. A way is proposed how to extract both components of the dielectric tensor of uniaxial oligomers out of spectroscopic measurements at normal incidence, if it is possible to make two different structural modifications of the oligomer. Then, effective medium theories with an expansion on anisotropic media are treated and the result is used to model the optical properties of the rough surface of an organic thin film. Further, a new unified analytical inversion of reflectometric and ellipsometric data of strongly absorbing media is presented. A method is shown how to calculate simultaneously the thickness and the optical constants of weakly absorbing films out of one spectroscopic reflection or transmission measurement. The last topic are...
A resistor interpretation of general anisotropic cardiac tissue.
Shao, Hai; Sampson, Kevin J; Pormann, John B; Rose, Donald J; Henriquez, Craig S
2004-02-01
This paper describes a spatial discretization scheme for partial differential equation systems that contain anisotropic diffusion. The discretization method uses unstructured finite volumes, or the boxes, that are formed as a secondary geometric structure from an underlying triangular mesh. We show how the discretization can be interpreted as a resistive circuit network, where each resistor is assigned at each edge of the triangular element. The resistor is computed as an anisotropy dependent geometric quantity of the local mesh structure. Finally, we show that under certain conditions, the discretization gives rise to negative resistors that can produce non-physical hyperpolarizations near depolarizing stimuli. We discuss how the proper choice of triangulation (anisotropic Delaunay triangulation) can ensure monotonicity (i.e. all resistors are positive).
Anisotropic hypersonic phonon propagation in films of aligned ellipsoids.
Beltramo, Peter J; Schneider, Dirk; Fytas, George; Furst, Eric M
2014-11-14
A material with anisotropic elastic mechanical properties and a direction-dependent hypersonic band gap is fabricated using ac electric field-directed convective self-assembly of colloidal ellipsoids. The frequency of the gap, which is detected in the direction perpendicular to particle alignment and entirely absent parallel to alignment, and the effective sound velocities can be tuned by the particle aspect ratio. We hypothesize that the band gap originates from the primary eigenmode peak, the m-splitted (s,1,2) mode, of the particle resonating with the effective medium. These results reveal the potential for powerful control of the hypersonic phononic band diagram by combining anisotropic particles and self-assembly.
Coupled polaritonic band gaps in the anisotropic piezoelectric superlattices
Tang, Zheng-Hua; Jiang, Zheng-Sheng; Chen, Tao; Jiang, Chun-Zhi; Lei, Da-Jun; Huang, Jian-Quan; Qiu, Feng; Yao, Min; Huang, Xiao-Yi
2018-01-01
Anisotropic piezoelectric superlattices (APSs) with the periodic arrangement of polarized anisotropic piezoelectric domains in a certain direction are presented, in which the coupled polaritonic band gaps (CPBGs) can be obtained in the whole Brillouin Zone and the maximum relative bandwidth (band-gap sizes divided by their midgap frequencies) of 5.1% can be achieved. The general characteristics of the APSs are similar to those of the phononic crystals composed of two types of materials, with the main difference being the formation mechanism of the CPBGs, which originate from the couplings between lattice vibrations along two different directions and electromagnetic waves rather than from the periodical modulation of density and elastic constants. In addition, there are no lattice mismatches because the APSs are made of the same material. Thus, the APSs can also be extended to the construction of novel acousto-optic devices.
Anisotropic mechanical properties of graphene sheets from molecular dynamics
International Nuclear Information System (INIS)
Ni Zhonghua; Bu Hao; Zou Min; Yi Hong; Bi Kedong; Chen Yunfei
2010-01-01
Anisotropic mechanical properties are observed for a sheet of graphene along different load directions. The anisotropic mechanical properties are attributed to the hexagonal structure of the unit cells of the graphene. Under the same tensile loads, the edge bonds bear larger load in the longitudinal mode (LM) than in the transverse mode (TM), which causes fracture sooner in LM than in TM. The Young's modulus and the third order elastic modulus for the LM are slightly larger than that for the TM. Simulation also demonstrates that, for both LM and TM, the loading and unloading stress-strain response curves overlap as long as the graphene is unloaded before the fracture point. This confirms that graphene sustains complete elastic and reversible deformation in the elongation process.
Local deposition of anisotropic nanoparticles using scanning electrochemical microscopy (SECM).
Fedorov, Roman G; Mandler, Daniel
2013-02-28
We demonstrate localized electrodeposition of anisotropic metal nanoobjects, namely Au nanorods (GNR), on indium tin oxide (ITO) using scanning electrochemical microscopy (SECM). A gold microelectrode was the source of the gold ions whereby double pulse chronoamperometry was employed to generate initially Au seeds which were further grown under controlled conditions. The distance between the microelectrode and the ITO surface as well as the different experimental parameters (electrodeposition regime, solution composition and temperature) were optimized to produce faceted gold seeds with the required characteristics (size and distribution). Colloidal chemical synthesis was successfully exploited for better understanding the role of the surfactant and different additives in breaking the crystallographic symmetry and anisotropic growth of GNR. Experiments performed in a conventional three-electrode cell revealed the most appropriate electrochemical conditions allowing high yield synthesis of nanorods with well-defined shape as well as nanocubes and bipyramids.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.
Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P
2015-12-18
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.
Anisotropic plasmons, excitons, and electron energy loss spectroscopy of phosphorene
Ghosh, Barun; Kumar, Piyush; Thakur, Anmol; Chauhan, Yogesh Singh; Bhowmick, Somnath; Agarwal, Amit
2017-07-01
In this article, we explore the anisotropic electron energy loss spectrum (EELS) in monolayer phosphorene based on ab initio time-dependent density-functional-theory calculations. Similarly to black phosphorus, the EELS of undoped monolayer phosphorene is characterized by anisotropic excitonic peaks for energies in the vicinity of the band gap and by interband plasmon peaks for higher energies. On doping, an additional intraband plasmon peak also appears for energies within the band gap. Similarly to other two-dimensional systems, the intraband plasmon peak disperses as ωpl∝√{q } in both the zigzag and armchair directions in the long-wavelength limit and deviates for larger wave vectors. The anisotropy of the long-wavelength plasmon intraband dispersion is found to be inversely proportional to the square root of the ratio of the effective masses: ωpl(q y ̂) /ωpl(q x ̂) =√{mx/my } .
Interactions, strings and isotopies in higher order anisotropic superspaces
Vacaru, Sergiu Ion
2001-01-01
The monograph summarizes the author's results on the geometry of anholonomic and locally anisotropic interactions, published in J. Math. Phys., Nucl. Phys. B, Ann. Phys. (NY), JHEP, Rep. Math. Phys., Int. J. Theor. Phys. and in some former Soviet Union and Romanian scientific journals. The main subjects are in the theory of field interactions, strings and diffusion processes on spaces, superspaces and isospaces with higher order anisotropy and inhomogeneity. The approach proceeds by developing the concept of higher order anisotropic (super)space which unifies the logical and manthematical aspects of modern Kaluza--Klein theories and generalized Lagrange and Finsler geometry and leads to modeling of physical processes on higher order fiber (super)bundles provided with nonlinear and distinguished connections and metric structures. This book can be also considered as a pedagogical survey on the mentioned subjects.
Timoshenko beam element with anisotropic cross-sectional properties
DEFF Research Database (Denmark)
Stäblein, Alexander; Hansen, Morten Hartvig
2016-01-01
Beam models are used for the aeroelastic time and frequency domain analysis of wind turbines due to their computational efficiency. Many current aeroelastic tools for the analysis of wind turbines rely on Timoshenko beam elements with classical crosssectional properties (EA, EI, etc.). Those cross......-sectional properties do not reflect the various couplings arising from the anisotropic behaviour of the blade material. A twonoded, three-dimensional Timoshenko beam element was therefore extended to allow for anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape functions are identical...... to the original formulation. The new element was implemented into a co-rotational formulation and validated against natural frequencies and several static load cases of previous works....
Anisotropic Friction of Wrinkled Graphene Grown by Chemical Vapor Deposition.
Long, Fei; Yasaei, Poya; Yao, Wentao; Salehi-Khojin, Amin; Shahbazian-Yassar, Reza
2017-06-21
Wrinkle structures are commonly seen on graphene grown by the chemical vapor deposition (CVD) method due to the different thermal expansion coefficient between graphene and its substrate. Despite the intensive investigations focusing on the electrical properties, the nanotribological properties of wrinkles and the influence of wrinkle structures on the wrinkle-free graphene remain less understood. Here, we report the observation of anisotropic nanoscale frictional characteristics depending on the orientation of wrinkles in CVD-grown graphene. Using friction force microscopy, we found that the coefficient of friction perpendicular to the wrinkle direction was ∼194% compare to that of the parallel direction. Our systematic investigation shows that the ripples and "puckering" mechanism, which dominates the friction of exfoliated graphene, plays even a more significant role in the friction of wrinkled graphene grown by CVD. The anisotropic friction of wrinkled graphene suggests a new way to tune the graphene friction property by nano/microstructure engineering such as introducing wrinkles.
Driven Anisotropic Diffusion at Boundaries: Noise Rectification and Particle Sorting
Bo, Stefano; Eichhorn, Ralf
2017-08-01
We study the diffusive dynamics of a Brownian particle in the proximity of a flat surface under nonequilibrium conditions, which are created by an anisotropic thermal environment with different temperatures being active along distinct spatial directions. By presenting the exact time-dependent solution of the Fokker-Planck equation for this problem, we demonstrate that the interplay between anisotropic diffusion and hard-core interaction with the plain wall rectifies the thermal fluctuations and induces directed particle transport parallel to the surface, without any deterministic forces being applied in that direction. Based on current micromanipulation technologies, we suggest a concrete experimental setup to observe this novel noise-induced transport mechanism. We furthermore show that it is sensitive to particle characteristics, such that this setup can be used for sorting particles of different sizes.
Dynamics of anisotropic power-law f( R) cosmology
Shamir, M. F.
2016-12-01
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f( R) theory has been investigated extensively due to important f( R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f( R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f( R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f( R) gravity supports the crucial issue of accelerated expansion of the universe.
Theoretical Investigation of Anisotropic Damping in Exchange Bias Systems
Farrar, Alison; Beik Mohammadi, Jamileh; Mewes, Tim; Mewes, Claudia
An accurate description of the magnetization dynamics of exchange bias systems is essential for further development of computer read heads and STT-MRAM. There have been several theoretical predictions of an anisotropic Gilbert damping tensor, influenced by the symmetry of the crystal structure, in place of the scalar Gilbert damping parameter in the Landau-Lifshitz-Gilbert equation of motion. However, experimental confirmation is difficult as the anisotropy of the damping parameter is expected to be small for single crystals. We follow up on our experimental discovery of a strong unidirectional contribution to the relaxation of exchange bias systems by implementing an anisotropic damping tensor in our Matlab-based micromagnetics code M3. We present results for a damping tensor with unidirectional anisotropy with respect to the instantaneous orientation of the magnetization. NSF-CAREER No 1452670 and 0952929, UA Computer-Based Honors Program.
Ultraviolet laser-induced voltage in anisotropic shale
Miao, Xinyang; Zhu, Jing; Li, Yizhang; Zhao, Kun; Zhan, Honglei; Yue, Wenzheng
2018-01-01
The anisotropy of shales plays a significant role in oil and gas exploration and engineering. Owing to various problems and limitations, anisotropic properties were seldom investigated by direct current resistivity methods. Here in this work, a 248 nm ultraviolet laser was employed to assess the anisotropic electrical response of a dielectric shale. Angular dependence of laser-induced voltages (V p) were obtained, with a data symmetry at the location of 180° and a ~62.2% V p anisotropy of the sample. The double-exponential functions have provided an explanation for the electrical field controlled carrier transportation process in horizontal and vertical directions. The results demonstrate that the combination of optics and electrical logging analysis (Opti-electrical Logging) is a promising technology for the investigation of unconventional reservoirs.
Static anisotropic solutions in f(T) theory
Energy Technology Data Exchange (ETDEWEB)
Daouda, M.H.; Rodrigues, Manuel E. [Universidade Federal do Espirito Santo, Centro de Ciencias Exatas, Departamento de Fisica, Av. Fernando Ferrari s/n, Campus de Goiabeiras, CEP29075-910, Vitoria, ES (Brazil); Houndjo, M.J.S. [Universidade Federal da Bahia, Instituto de Fisica, Salvador, BA (Brazil)
2012-02-15
In previous work, we undertook to study static and anisotropic content in f(T) theory and obtained new spherically symmetric solutions considering a constant torsion and some particular conditions for the pressure. In this paper, still in the framework of f(T) theory, new spherically symmetric solutions are obtained, first considering the general case of an isotropic fluid and later the anisotropic content case in which the generalized conditions for the matter content are considered such that the energy density, the radial and tangential pressures depend on the algebraic f(T) and its derivative f{sub T} (T). Moreover, we obtain the algebraic function f(T) through the reconstruction method for two cases and also study a polytropic model for the stellar structure. (orig.)
Newton–Hooke-type symmetry of anisotropic oscillators
International Nuclear Information System (INIS)
Zhang, P.M.; Horvathy, P.A.; Andrzejewski, K.; Gonera, J.; Kosiński, P.
2013-01-01
Rotation-less Newton–Hooke-type symmetry, found recently in the Hill problem, and instrumental for explaining the center-of-mass decomposition, is generalized to an arbitrary anisotropic oscillator in the plane. Conversely, the latter system is shown, by the orbit method, to be the most general one with such a symmetry. Full Newton–Hooke symmetry is recovered in the isotropic case. Star escape from a galaxy is studied as an application. -- Highlights: ► Rotation-less Newton–Hooke (NH) symmetry is generalized to an arbitrary anisotropic oscillator. ► The orbit method is used to find the most general case for rotation-less NH symmetry. ► The NH symmetry is decomposed into Heisenberg algebras based on chiral decomposition
An anisotropic diffusion approximation to thermal radiative transfer
Energy Technology Data Exchange (ETDEWEB)
Johnson, Seth R.; Larsen, Edward W., E-mail: sethrj@umich.edu, E-mail: edlarsen@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2011-07-01
This paper describes an anisotropic diffusion (AD) method that uses transport-calculated AD coefficients to efficiently and accurately solve the thermal radiative transfer (TRT) equations. By assuming weak gradients and angular moments in the radiation intensity, we derive an expression for the radiation energy density that depends on a non-local function of the opacity. This nonlocal function is the solution of a transport equation that can be solved with a single steady-state transport sweep once per time step, and the function's second angular moment is the anisotropic diffusion tensor. To demonstrate the AD method's efficacy, we model radiation flow down a channel in 'flatland' geometry. (author)
The boundary sources method with arbitrary order anisotropic scattering
International Nuclear Information System (INIS)
Gert Van den, Eynde; Beauwens, R.; Mund, E.
2005-01-01
The Boundary Sources Method (BSM) is an integral method for solving the one-speed neutron transport equation that makes capital out of the exact knowledge of a transport kernel for the classical geometries: planar, spherical and cylindrical. We have developed a slab (multi-region) BSM code that allows for arbitrary order anisotropic scattering. The basic ingredient of our method is the calculation of (angular moments of) infinite medium Green's functions. We have used the singular Eigen-expansion (SEE) method developed for anisotropic scattering by Mika and Case and have developed a robust and accurate method to calculate its two parts: the discrete and continuum spectrum. We use several one-dimensional neutron transport benchmarks to show its high accuracy. We have treated 3 types of problems: 2-cell (U-H 2 O) disadvantage factors, the Reed problem and an extreme scattering problem
Statistical ensembles and molecular dynamics studies of anisotropic solids. II
International Nuclear Information System (INIS)
Ray, J.R.; Rahman, A.
1985-01-01
We have recently discussed how the Parrinello--Rahman theory can be brought into accord with the theory of the elastic and thermodynamic behavior of anisotropic media. This involves the isoenthalpic--isotension ensemble of statistical mechanics. Nose has developed a canonical ensemble form of molecular dynamics. We combine Nose's ideas with the Parrinello--Rahman theory to obtain a canonical form of molecular dynamics appropriate to the study of anisotropic media subjected to arbitrary external stress. We employ this isothermal--isotension ensemble in a study of a fcc→ close-packed structural phase transformation in a Lennard-Jones solid subjected to uniaxial compression. Our interpretation of the Nose theory does not involve a scaling of the time variable. This latter fact leads to simplifications when studying the time dependence of quantities
Anisotropic models are unitary: A rejuvenation of standard quantum cosmology
Pal, Sridip; Banerjee, Narayan
2016-12-01
The present work proves that the folklore of the pathology of non-conservation of probability in quantum anisotropic models is wrong. It is shown in full generality that all operator ordering can lead to a Hamiltonian with a self-adjoint extension as long as it is constructed as a symmetric operator. It is indicated that the self-adjoint extension, however, is not unique and this non-uniqueness is suspected not to be a feature of anisotropic models only, in the sense that there exists operator orderings such that Hamiltonian for an isotropic homogeneous cosmological model does not have unique self-adjoint extension. For isotropic model, there is a special unique extension associated with quadratic form of Hamiltonian, i.e., a Friedrich's extension. Details of calculations are carried out for a Bianchi III model as an example.
Anisotropic charged physical models with generalized polytropic equation of state
Nasim, A.; Azam, M.
2018-01-01
In this paper, we found the exact solutions of Einstein-Maxwell equations with generalized polytropic equation of state (GPEoS). For this, we consider spherically symmetric object with charged anisotropic matter distribution. We rewrite the field equations into simple form through transformation introduced by Durgapal (Phys Rev D 27:328, 1983) and solve these equations analytically. For the physically acceptability of these solutions, we plot physical quantities like energy density, anisotropy, speed of sound, tangential and radial pressure. We found that all solutions fulfill the required physical conditions. It is concluded that all our results are reduced to the case of anisotropic charged matter distribution with linear, quadratic as well as polytropic equation of state.
Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.
Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S
2016-02-10
Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.
Anisotropic to Isotropic Phase Transitions in the Early Universe
Directory of Open Access Journals (Sweden)
Ajaib M. A.
2012-04-01
Full Text Available We attempt to develop a minimal formalism to describe an anisotropic to isotropic tran- sition in the early Universe. Assuming an underlying theory that violates Lorentz in- variance, we start with a Dirac like equation, involving four massless fields, and which does not exhibit Lorentz invariance. We then perform transformations that restore it to its covariant form along with a mass term for the fermion field. It is proposed that these transformations can be visualized as waves traveling in an anisotropic media. The trans- formation it = ℏ ! is then utilized to transit to a statistical thermodynamics system and the partition function then gives a better insight into the character of this transition. The statistical system hence realized is a two level system with each state doubly degenerate. We propose that modeling the transition this way can help explain the matter antimatter asymmetry of the Universe.
Holographic Fermions in Anisotropic Einstein-Maxwell-Dilaton-Axion Theory
Directory of Open Access Journals (Sweden)
Li-Qing Fang
2015-01-01
Full Text Available We investigate the properties of the holographic Fermionic system dual to an anisotropic charged black brane bulk in Einstein-Maxwell-Dilaton-Axion gravity theory. We consider the minimal coupling between the Dirac field and the gauge field in the bulk gravity theory and mainly explore the dispersion relation exponents of the Green functions of the dual Fermionic operators in the dual field theory. We find that along both the anisotropic and the isotropic directions the Fermi momentum will be effected by the anisotropy of the bulk theory. However, the anisotropy has influence on the dispersion relation which is almost linear for massless Fermions with charge q=2. The universal properties that the mass and the charge of the Fermi possibly correspond to nonlinear dispersion relation are also investigated.
Life prediction and constitutive models for anisotropic materials
Bill, R. C.
1982-01-01
The intent of this program is to develop a basic understanding of cyclic creep-fatigue deformation mechanisms and damage accumulation, a capability for reliable life prediction, and the ability to model the constitutive behavior of anisotropic single crystal (SC) and directionally solidified or recrystallized (DSR) comprise the program, and the work breakdown for each option reflects a distinct concern for two classes of anisotropic materials, SC and DSR materials, at temperatures encountered in the primary gas path (airfoil temperatures), and at temperatures typical of the blade root attachment and shank area. Work directed toward the higher temperature area of concern in the primary gas path includes effects of coatings on the behavior and properties of the materials of interest. The blade root attachment work areas will address the effects of stress concentrations associated with attachment features.
Theory for propulsion and transport in an anisotropic fluid
Powers, Thomas; Krieger, Madison; Spagnolie, Saverio
2013-11-01
Swimming microorganisms are typically found in complex fluids, which are full of polymers. When these polymers align, the fluid becomes anisotropic. We seek to understand how anisotropy affects swimming when the stroke is prescribed. We model the anisotropic fluid with a nematic liquid crystal. The swimmer is a two-dimensional sheet deforming via propagating transverse or longitudinal waves. We find that the nature of anchoring conditions for the nematic degrees of freedom plays a critical role in determining the swimming speed. Furthermore, we study the fluid transport induced by the swimmers motion by calculating the flux of fluid in the laboratory frame. Finally, we elucidate the various limits of the nematic theory, such as the six-fold symmetric hexatic case and Ericksen's transversely isotropic fluid.
Pseudorapidity Dependence of Anisotropic Azimuthal Flow with the ALICE Detector
DEFF Research Database (Denmark)
Hansen, Alexander Colliander
In ultra-relativistic heavy-ion collisions a new state of matter known as the strongly interacting quark-gluon plasma (sQGP) is produced. A key observable in the study of the sQGP is anisotropic azimuthal ow. The anisotropies are described by ow harmonics, vn. In this thesis, bias arising from no...... Detector and Silicon Pixel Detector at the CERN Large Hadron Collider (LHC). The results are compared to other LHC experiments andprevious experiments at lower collision energies....
Wave propagation in layered anisotropic media with application to composites
Nayfeh, AH
1995-01-01
Recent advances in the study of the dynamic behavior of layered materials in general, and laminated fibrous composites in particular, are presented in this book. The need to understand the microstructural behavior of such classes of materials has brought a new challenge to existing analytical tools. This book explores the fundamental question of how mechanical waves propagate and interact with layered anisotropic media. The chapters are organized in a logical sequence depending upon the complexity of the physical model and its mathematical treatment.
The second critical density and anisotropic generalised condensation
Directory of Open Access Journals (Sweden)
M. Beau
2010-01-01
Full Text Available In this letter we discuss the relevance of the 3D Perfect Bose gas (PBG condensation in extremely elongated vessels for the study of anisotropic condensate coherence and the "quasi-condensate". To this end we analyze the case of exponentially anisotropic (van den Berg boxes, when there are two critical densities ρc<ρm for a generalised Bose-Einstein Condensation (BEC. Here ρc is the standard critical density for the PBG. We consider three examples of anisotropic geometry: slabs, squared beams and "cigars" to demonstrate that the "quasi-condensate" which exists in domain ρc<ρ<ρm is in fact the van den Berg-Lewis-Pulé generalised condensation (vdBLP-GC of the type III with no macroscopic occupation of any mode. We show that for the slab geometry the second critical density ρm is a threshold between quasi-two-dimensional (quasi-2D condensate and the three dimensional (3D regime when there is a coexistence of the "quasi-condensate" with the standard one-mode BEC. On the other hand, in the case of squared beams and "cigars" geometries, critical density ρm separates quasi-1D and 3D regimes. We calculate the value of the difference between ρc, ρm (and between corresponding critical temperatures Tm, Tc to show that the observed space anisotropy of the condensate coherence can be described by a critical exponent γ(T related to the anisotropic ODLRO. We compare our calculations with physical results for extremely elongated traps that manifest "quasi-condensate".
Theoretical assessment of sound absorption coefficient for anisotropic nonwovens
Klara Kalinova
2012-01-01
The anisotropy factor as a function of fiber arrangement, fiber fineness and sample thickness has been derived from the theories of soundwave transformation due to phase changing. The sound absorption coefficient of the anisotropic fibrous material is then theoretically calculated. The fibrous materials were prepared so that the fibers are arranged parallel (perpendicularly laid fiber web called STRUTO technology) in the direction of soundwave propagation or perpendicularly (longitudinally la...
Existence of longitudinal waves in pre-stressed anisotropic elastic ...
Indian Academy of Sciences (India)
In the absence of pre-stresses, i.e., taking. S11 = S22 = S33 = 0, all the expressions, derived in this section, will reduce to the results which are same as in Ting (2006). 4. Triclinic materials. A triclinic material is the most general anisotropic medium, and the elastic compliance b11(N) in this medium is as defined by equation ...
Anisotropic static solutions in modelling highly compact bodies
Indian Academy of Sciences (India)
x2µ(x)dx which is the mass function. The radial pressure pr = p + 2S/. √. 3 and the tangential pressure p⊥ = p − S/. √. 3 are not equal for anisotropic matter. The magnitude S provides a measure of anisotropy. The field equations (1)–(3) were integrated by Chaisi and Maharaj [12] for the energy density. µ = j r2. + k + lr2,. (4).
Charged anisotropic star on paraboloidal space-time
Indian Academy of Sciences (India)
dr2 − r2 ( dθ2 + sin2 θdφ2). ,. (1) with the energy–momentum tensor for anisotropic charged fluid,. Tij = diag. ( ρ + E2, pr − E2, pt + E2, pt + E2). ,. (2) where ρ is the energy density, pr is the radial pressure, pt is the tangential pressure and. E is the electric field intensity. These quantities are measured relative to the comoving.
Anisotropic shift of the irreversibility line by neutron irradiation
International Nuclear Information System (INIS)
Sauerzopf, F.M.; Wiesinger, H.P.; Weber, H.W.; Crabtree, G.W.; Frischherz, M.C.; Kirk, M.A.
1991-09-01
The irreversibility line of high-T c superconductors is shifted considerably by irradiating the material with fast neutrons. The anisotropic and non-monotonous shift is qualitatively explained by a simple model based on an interaction between three pinning mechanisms, the intrinsic pinning by the ab-planes, the weak pinning by the pre-irradiation defect structure, and strong pinning by neutron induced defect cascades. A correlation between the cascade density and the position of the irreversibility line is observed
Efficient light propagation for multiple anisotropic volume scattering
Energy Technology Data Exchange (ETDEWEB)
Max, N. [Lawrence Livermore National Lab., CA (United States)]|[California Univ., Davis, CA (United States)
1993-12-01
Realistic rendering of participating media like clouds requires multiple anisotropic light scattering. This paper presents a propagation approximation for light scattered into M direction bins, which reduces the ``ray effect`` problem in the traditional ``discrete ordinates`` method. For a volume of n{sup 3} elements, it takes O(M n{sup 3} log n + M{sup 2} n{sup 3}) time and O(M n{sup 3}) space.
Circumferential gap propagation in an anisotropic elastic bacterial sacculus
Taneja, Swadhin; Levitan, Benjamin A.; Rutenberg, Andrew D.
2013-01-01
We have modelled stress concentration around small gaps in anisotropic elastic sheets, corresponding to the peptidoglycan sacculus of bacterial cells, under loading corresponding to the effects of turgor pressure in rod-shaped bacteria. We find that under normal conditions the stress concentration is insufficient to mechanically rupture bacteria, even for gaps up to a micron in length. We then explored the effects of stress-dependent smart-autolysins, as hypothesised by Arthur L Koch [Advance...
Model and calculation of in situ stresses in anisotropic formations
Energy Technology Data Exchange (ETDEWEB)
Yuezhi, W.; Zijun, L.; Lixin, H. [Jianghan Petroleum Institute, (China)
1997-08-01
In situ stresses in transversely isotropic material in relation to wellbore stability have been investigated. Equations for three horizontal in- situ stresses and a new formation fracture pressure model were described, and the methodology for determining the elastic parameters of anisotropic rocks in the laboratory was outlined. Results indicate significantly smaller differences between theoretically calculated pressures and actual formation pressures than results obtained by using the isotropic method. Implications for improvements in drilling efficiency were reviewed. 13 refs., 6 figs.
Anisotropic square lattice Potts ferromagnet: renormalization group treatment
International Nuclear Information System (INIS)
Oliveira, P.M.C. de; Tsallis, C.
1981-01-01
The choice of a convenient self-dual cell within a real space renormalization group framework enables a satisfactory treatment of the anisotropic square lattice q-state Potts ferromagnet criticality. The exact critical frontier and dimensionality crossover exponent PHI as well as the expected universality behaviour (renormalization flow sense) are recovered for any linear scaling factor b and all values of q(q - [pt
Anisotropic magnetoresistance of GaMnAs ferromagnetic semiconductors
Czech Academy of Sciences Publication Activity Database
Vašek, Petr; Svoboda, Pavel; Novák, Vít; Cukr, Miroslav; Výborný, Karel; Jurka, Vlastimil; Stuchlík, Jiří; Orlita, Milan; Maude, D. K.
2010-01-01
Roč. 23, č. 6 (2010), 1161-1163 ISSN 1557-1939 R&D Projects: GA AV ČR KAN400100652; GA MŠk MEB020928 Grant - others:EU EuroMagNET II(XE) Egide 19535NF Institutional research plan: CEZ:AV0Z10100521 Keywords : GaMnAs * anisotropic magnetoresistance * hydrogenation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.014, year: 2010
LIGHT ABERRATION IN OPTICAL ANISOTROPIC SINGLE-AXIS MEDIUM
Directory of Open Access Journals (Sweden)
V. M. Svishch
2017-10-01
Full Text Available The entrainment of the light flux by a uniaxial anisotropic medium and its influence on the measurement of stellar aberration are analyzed. The influence of the entrainment of the light flux by an isotropic medium on the measurement of stellar aberration was considered by Fresnel early. The absence of such influence was confirmed by Erie's experience when filling the telescope tube with water. The formula itself was perfectly confirmed by Fizeau's experiments with moving water and the repetition of this experiment with an increase in the accuracy of measurements by Michelson, Zeeman, and others. G.A. Lorentz already on the basis of the electromagnetic theory specified the formula with allowance for the frequency dispersion of the light flux. A. Einstein made an analysis of the schemes of experiments for determining the drag coefficient, covering all possible variants of similar experiments. As a result, he obtained Fresnel and Lorentz formulas, taking into account the frequency dispersion of light, starting from the theory of relativity. The entrainment of light and its influence on the measurement of stellar aberration by a uniaxial anisotropic medium have not been considered anywhere. An analysis of such influence is carried out. The results of the analysis indicate the possibility of measuring the current value of stellar aberration using a uniaxial anisotropic medium. The concept of active light aberration is introduced. The proposed schemes of experiments of using the entrainment of a light flux by an anisotropic substance for measuring the current value of stellar aberration are investigated. It is concluded that it is possible to study the determination of the current velocity of an inertial system relative to the light flux.
Jones phase microscopy of transparent and anisotropic samples.
Wang, Zhuo; Millet, Larry J; Gillette, Martha U; Popescu, Gabriel
2008-06-01
We developed an interferometric microscopy technique, referred to as Jones phase microscopy, capable of extracting the spatially resolved Jones polarization matrix associated with transparent and anisotropic samples. This is a generalization of quantitative phase imaging, which is recovered from one diagonal element of the measured matrix. The principle of the technique is demonstrated with measurements of a liquid crystal spatial light modulator and the potential for live cell imaging with experiments on live neurons in culture.
Pseudorapidity Dependence of Anisotropic Azimuthal Flow with the ALICE Detector
DEFF Research Database (Denmark)
Hansen, Alexander Colliander
In ultra-relativistic heavy-ion collisions a new state of matter known as the strongly interacting quark-gluon plasma (sQGP) is produced. A key observable in the study of the sQGP is anisotropic azimuthal ow. The anisotropies are described by ow harmonics, vn. In this thesis, bias arising from non...... Detector and Silicon Pixel Detector at the CERN Large Hadron Collider (LHC). The results are compared to other LHC experiments andprevious experiments at lower collision energies....
Rational synthesis and self-assembly of anisotropic plasmonic nanoparticles
Scarabelli, Leonardo
2016-01-01
This thesis work has been carried out in the framework of the ERC Advanced Grant Plasmaquo (nº 267867), which focused on the development of novel nanostructured plasmonic materials based on crystalline assemblies of anisotropic nanoparticles, to be used as optical enhancers for the surface enhanced Raman scattering detection of bacterial Quorum Sensing signaling molecules. More specifically, the thesis was oriented toward the design of such nanostructures, and on the characterization of their...
Anisotropic expansion of a thermal dipolar Bose gas
Tang, Yijun; Sykes, Andrew G.; Burdick, Nathaniel Q.; DiSciacca, Jack M.; Petrov, Dmitry S.; Lev, Benjamin L.
2016-01-01
We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the post-expansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipol...
Modeling Anisotropic Elastic Wave Propagation in Jointed Rock Masses
Hurley, R.; Vorobiev, O.; Ezzedine, S. M.; Antoun, T.
2016-12-01
We present a numerical approach for determining the anisotropic stiffness of materials with nonlinearly-compliant joints capable of sliding. The proposed method extends existing ones for upscaling the behavior of a medium with open cracks and inclusions to cases relevant to natural fractured and jointed rocks, where nonlinearly-compliant joints can undergo plastic slip. The method deviates from existing techniques by incorporating the friction and closure states of the joints, and recovers an anisotropic elastic form in the small-strain limit when joints are not sliding. We present the mathematical formulation of our method and use Representative Volume Element (RVE) simulations to evaluate its accuracy for joint sets with varying complexity. We then apply the formulation to determine anisotropic elastic constants of jointed granite found at the Nevada Nuclear Security Site (NNSS) where the Source Physics Experiments (SPE), a campaign of underground chemical explosions, are performed. Finally, we discuss the implementation of our numerical approach in a massively parallel Lagrangian code Geodyn-L and its use for studying wave propagation from underground explosions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Investigation of Anisotropic Bonded Magnets in Permanent Magnet Machine Applications
Khazdozian, H. A.; McCall, S. K.; Kramer, M. J.; Paranthaman, M. P.; Nlebedim, I. C.
Rare earth elements (REE) provide the high energy product necessary for permanent magnets, such as sintered Nd2Fe14B, in many applications like wind energy generators. However, REEs are considered critical materials due to risk in their supply. To reduce the use of critical materials in permanent magnet machines, the performance of anisotropic bonded NdFeB magnets, aligned under varying magnetic field strength, was simulated using 3D finite element analysis in a 3MW direct-drive permanent magnet generator (DDPMG), with sintered N42 magnets used as a baseline for comparison. For direct substitution of the anisotropic bonded magnets, approximately 85% of the efficiency of the baseline model was achieved, irrespective of the alignment field. The torque and power generation of the DDPMG was not found to vary significantly with increase in the alignment field. Finally, design changes were studied to allow for the achievement of rated torque and power with the use of anisotropic bonded magnets, demonstrating the potential for reduction of critical materials in permanent magnets for renewable energy applications. This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.
Efficient anisotropic wavefield extrapolation using effective isotropic models
Alkhalifah, Tariq Ali
2013-06-10
Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.
Stochastic self-propagating star formation with anisotropic probability distribution
Jungwiert, B.; Palous, J.
1994-07-01
We present a 2D computer code for stochastic self-propagating star formation (SSPSF) in differentially rotating galaxies. The isotropic probability distribution, used in previous models of Seiden, Gerola and Schulman (Seiden & Schulman, 1990, and references therein), is replaced by an anisotropic one. The motivation is provided by models of expanding large-scale supernova remnants (SNR) in disks with shear (Palous et al. 1990): the distortion of the SNR leads to uneven density distribution along its periphery and, consequently, to uneven distribution of new star forming sites. To model anisotropic SSPSF, we process in two steps: first, we eliminate artificial anisotropies inherent to the technique used by Seiden, Gerola and Schulman and, second, we define the probability ellipse on each star forming site. The anisotropy is characterized by its axes ratio and inclination with respect to the galactic center. We show that anisotropic SSPSF is able to produce highly organized spiral structures. Depending on the character of the probability ellipse, we can obtain continous spiral arms of different length, thickness and pitch angle. The relation of the probability ellipse to rotation curves interstellar medium (ISM) density and metallicity is discussed as well as its variation along the Hubble sequence and van den Bergh's luminosity classification of galaxies. To demonstrate applications, we compare our results with two different classes of galaxies: M 101-type grand-design spirals with open and robust arms and NGC 2841-type flocculent galaxies with thin and tightly wound arms.
Anisotropic fluid spheres of embedding class one using Karmarkar condition
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Maharaj, S.D. [School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, Private Bag X54001, Durban (South Africa)
2017-05-15
We obtain a new anisotropic solution for spherically symmetric spacetimes by analyzing the Karmarkar embedding condition. For this purpose we construct a suitable form of one of the gravitational potentials to obtain a closed form solution. This form of the remaining gravitational potential allows us to solve the embedding equation and integrate the field equations. The resulting new anisotropic solution is well behaved, which can be utilized to construct realistic static fluid spheres. Also we estimated the masses and radii of fluid spheres for LMC X-4, EXO 1785-248, PSR J1903+327 and 4U 1820-30 by using observational data set values. The masses and radii obtained show that our anisotropic solution can represent fluid spheres to a very good degree of accuracy. The physical validity of the solution depends on the parameter values of a, b and c. The solution is well behaved for the wide range of parameters values 0.00393 ≤ a ≤ 0.0055, 0.0002 ≤ b ≤ 0.0025 and 0.0107 ≤ c ≤ 0.0155. The range of corresponding physical parameters for the different compact stars are 0.3266 ≤ v{sub r0} ≤ 0.3708, 0.1583 ≤ v{sub t0} ≤ 0.2558, 0.3256 ≤ z{sub s} ≤ 0.4450 and 4.3587 ≤ Γ{sub 0} ≤ 5.6462. (orig.)
Pattern formation of a nonlocal, anisotropic interaction model
Burger, Martin
2017-11-24
We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.
Tuning particle geometry of chemically anisotropic dumbbell-shaped colloids.
van Ravensteijn, Bas G P; Kegel, Willem K
2017-03-15
Chemically anisotropic dumbbell-shaped colloids are prepared starting from cross-linked polymer seed particles coated with a chlorinated outer layer. These chlorinated seeds are swollen with monomer. Subsequently, a liquid protrusion is formed on the surface of the seed particle by phase separation between the monomer and the swollen polymer network. Solidification of these liquid lobes by polymerization leads to the desired dumbbell-shaped colloids. The chlorine groups remain confined on the seed lobe of the particles, ensuring chemical anisotropy of the resulting particles. Exploiting the asymmetric distribution of the chemically reactive surface chlorine groups allows for site-specific surface modifications. Here we show that the geometry of the resulting chemically anisotropic dumbbells can be systematically tuned by a number of experimental parameters including the volume of styrene by which the seeds are swollen, the cross-link density of the chlorinated seeds and chemical composition/thickness of the chlorinated coating deposited on the seed particles. Being able to control the particle geometry, and therefore the Janus balance of these chemically anisotropic particles, provides a promising starting point for the synthesis of sophisticated building blocks for future (self-assembly) studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing
Energy Technology Data Exchange (ETDEWEB)
Asuncion, Maria Christine Tankeh, E-mail: christine.asuncion@u.nus.edu [National University of Singapore, Department of Biomedical Engineering (Singapore); Goh, James Cho-Hong [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Orthopedic Surgery (Singapore); Toh, Siew-Lok [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Mechanical Engineering (Singapore)
2016-10-01
Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. - Highlights: • Silk/gelatin scaffolds with unidirectional alignment were fabricated using a simple and scalable process • Presence of gelatin in silk resulted to lesser shrinkage, better water retention and improved cell proliferation. • Mesenchymal stem cells were shown to align themselves according to the fiber alignment.
Nanoparticle-Structured Highly Sensitive and Anisotropic Gauge Sensors.
Zhao, Wei; Luo, Jin; Shan, Shiyao; Lombardi, Jack P; Xu, Yvonne; Cartwright, Kelly; Lu, Susan; Poliks, Mark; Zhong, Chuan-Jian
2015-09-16
The ability to tune gauge factors in terms of magnitude and orientation is important for wearable and conformal electronics. Herein, a sensor device is described which is fabricated by assembling and printing molecularly linked thin films of gold nanoparticles on flexible microelectrodes with unusually high and anisotropic gauge factors. A sharp difference in gauge factors up to two to three orders of magnitude between bending perpendicular (B(⊥)) and parallel (B(||)) to the current flow directions is observed. The origin of the unusual high and anisotropic gauge factors is analyzed in terms of nanoparticle size, interparticle spacing, interparticle structure, and other parameters, and by considering the theoretical aspects of electron conduction mechanism and percolation pathway. A critical range of resistivity where a very small change in strain and the strain orientation is identified to impact the percolation pathway in a significant way, leading to the high and anisotropic gauge factors. The gauge anisotropy stems from molecular and nanoscale fine tuning of interparticle properties of molecularly linked nanoparticle assembly on flexible microelectrodes, which has important implication for the design of gauge sensors for highly sensitive detection of deformation in complex sensing environment or on complex curved surfaces such as wearable electronics and skin sensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sound localization in an anisotropic plate using electret microphones.
Hoseini Sabzevari, S Amir; Moavenian, Majid
2017-01-01
Acoustic source localization without knowing the velocity profile in anisotropic plates is still one of the most challenging areas in this field. The current time-of-flight based approaches for localization in anisotropic media, are based on using six high sampling sensors. The number of sensors and the corresponding large amount of data, would make those methods inefficient in practical applications. Although there are many different non-time-of-flight based approaches such as machine learning, or soft computing based methods that can be used for localization with a less number of sensors, they are not as accurate as time-of-flight based techniques. In this article, a new approach which requires only four low sampling rate sensors to localize acoustic source in an anisotropic plate is proposed. In this technique, four electret low sampling rate sensors in two clusters are installed on the plate surface. The presented method uses attenuation analysis in a suitable frequency band to decrease the number of sensors. The approach is experimentally tested and verified on an airplane composite nose by applying artificially generated acoustic emissions (Hsu-Nielsen source). The results reveal that the accuracy of proposed technique depends on distinction of dominant frequency band. A stethoscope as a physical filter is employed to reduce the sensitivity of the technique and delineation of frequency band. The suggested technique improves the accuracy of localization prediction. Copyright © 2016 Elsevier B.V. All rights reserved.
Overview of thermal conductivity models of anisotropic thermal insulation materials
Skurikhin, A. V.; Kostanovsky, A. V.
2017-11-01
Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.
Surface waves in an heterogeneous anisotropic continental lithosphere
Maupin, V.
2003-04-01
At global as well as at regional scale, the lithosphere appears usually faster to Love waves than to Rayleigh waves. This Love-Rayleigh discrepancy can be modelled by introducing transverse isotropy in the mantle. In continental structures, the amount of transverse isotropy necessary to explain the discrepancy is however often quite large and not compatible with results of SKS-splitting analysis and azimuthal variation of surface wave velocities, at least in the simple framework of large scale uniform olivine orientation in the continental lithosphere. Models where the orientation of the olivine is incoherent at the scale of a few hundred km have been proposed to reconcile the different datasets, but the surface wave characteristics in such anisotropic heterogeneous models have not yet been analysed in detail. Using a mode-coupling scheme for calculating surface wave propagation in heterogeneous anisotropic structures, we analyse the characteristics of Rayleigh and Love waves in such laterally varying anisotropic models. We generate 3-D stochastic models of olivine orientation with different characteristics: preferred orientation dominantly horizontal, vertical or equally distributed in all directions, and use different correlation lengths in the horizontal and vertical directions to constrain the scale at which the anisotropy is coherent. We analyse the apparent Love-Rayleigh discrepancy and the phase velocity azimuthal variation these models generate and the mode-coupling and polarisation anomalies they produce.
Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.
Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B
2016-10-20
Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.
Anisotropic diffusion of volatile pollutants at air-water interface
Directory of Open Access Journals (Sweden)
Li-ping Chen
2013-04-01
Full Text Available The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3 release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.
Surface Waves Propagating on Grounded Anisotropic Dielectric Slab
Directory of Open Access Journals (Sweden)
Zhuozhu Chen
2018-01-01
Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.
A methodology for developing anisotropic AAA phantoms via additive manufacturing.
Ruiz de Galarreta, Sergio; Antón, Raúl; Cazón, Aitor; Finol, Ender A
2017-05-24
An Abdominal Aortic Aneurysm (AAA) is a permanent focal dilatation of the abdominal aorta at least 1.5 times its normal diameter. The criterion of maximum diameter is still used in clinical practice, although numerical studies have demonstrated the importance of biomechanical factors for rupture risk assessment. AAA phantoms could be used for experimental validation of the numerical studies and for pre-intervention testing of endovascular grafts. We have applied multi-material 3D printing technology to manufacture idealized AAA phantoms with anisotropic mechanical behavior. Different composites were fabricated and the phantom specimens were characterized by biaxial tensile tests while using a constitutive model to fit the experimental data. One composite was chosen to manufacture the phantom based on having the same mechanical properties as those reported in the literature for human AAA tissue; the strain energy and anisotropic index were compared to make this choice. The materials for the matrix and fibers of the selected composite are, respectively, the digital materials FLX9940 and FLX9960 developed by Stratasys. The fiber proportion for the composite is equal to 0.15. The differences between the composite behavior and the AAA tissue are small, with a small difference in the strain energy (0.4%) and a maximum difference of 12.4% in the peak Green strain ratio. This work represents a step forward in the application of 3D printing technology for the manufacturing of AAA phantoms with anisotropic mechanical behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media
Waheed, Umair bin
2014-05-01
Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.
Directory of Open Access Journals (Sweden)
Hyeon Seo
Full Text Available Subdural cortical stimulation (SuCS is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5 that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.
Energy Technology Data Exchange (ETDEWEB)
Cunningham, Patrick D.; Souza, João B.; Fedin, Igor; She, Chunxing; Lee, Byeongdu; Talapin, Dmitri V.
2016-06-28
Semiconductor nanorods can emit linear-polarized light at efficiencies over 80%. Polarization of light in these systems, confirmed through single-rod spectroscopy, can be explained on the basis of the anisotropy of the transition dipole moment and dielectric confinement effects. Here we report emission polarization in macroscopic semiconductor polymer composite films containing CdSe/CdS nanorods and colloidal CdSe nanoplatelets. Anisotropic nanocrystals dispersed in polymer films of poly butyl-co-isobutyl methacrylate (PBiBMA) can be stretched mechanically in order to obtain unidirectionally aligned arrays. A high degree of alignment, corresponding to an orientation factor of 0.87, was achieved and large areas demonstrated polarized emission, with the contrast ratio I-parallel to/I-perpendicular to= 5.6, making these films viable candidates for use in liquid crystal display (LCD) devices. To some surprise, we observed significant optical anisotropy and emission polarization for 2D CdSe nanoplatelets with the electronic structure of quantum wells. The aligned nanorod arrays serve as optical funnels, absorbing unpolarized light and re-emitting light from deep-green to red with quantum efficiencies over 90% and high degree of linear polarization. Our results conclusively demonstrate the benefits of anisotropic nanostructures for LCD backlighting. The polymer films with aligned CdSe/CdS dot-in-rod and rod-in-rod nanostructures show more than 2-fold enhancement of brightness compared to the emitter layers with randomly oriented nanostructures. This effect can be explained as the combination of linearly polarized luminescence and directional emission from individual nanostructures.
International Nuclear Information System (INIS)
Chen, F.H.; Horng, W.C.; Hsu, H.T.; Tseng, T.Y.
1995-01-01
The field-cooled magnetization of high-T c superconducting ceramics measured in low magnetic field exhibits the paramagnetic Meissner effect (PME), i.e., the diamagnetic signal initially increases with decrease in temperature but reaches a maximum at temperature T d and later decreases with decrease in temperature. Even in some samples the signal is ultimately able to transform inversely into a paramagnetic regime once the sample is cooled below a temperature T p as long as the applied field is sufficiently small. This PME has been observed in various high-T c cuprates and is explained by disparate aspects. An anisotropic model, in which the granular superconductors are assumed to be ideally anisotropic, was first alternatively proposed in the present work so as to theoretically account for this effect. On the other hand, an isotropic model, suitable for granular superconductors with randomly oriented grains, was proposed to deal with the samples prepared by a conventional solid-state reaction method. The anomalous magnetization behavior in the present model was demonstrated to be the superposition of the diamagnetic signal, which occurs as a result of the intragranular shielding currents, over the paramagnetic one due to the induction of the intergranular component induced by these currents where the intergranular one behaved as the effective pinning centers. The PME was demonstrated by this model to exist parasitically in granular superconductors. This intergranular effect is therefore worthy of remark when evaluating the volume fraction of superconductivity for the samples from the Meissner signal, in particular, at a low magnetic field
TOPICAL REVIEW Textured silicon nitride: processing and anisotropic properties
Directory of Open Access Journals (Sweden)
Xinwen Zhu and Yoshio Sakka
2008-01-01
Full Text Available Textured silicon nitride (Si3N4 has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW and templated grain growth (TGG. The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3 N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured
Directory of Open Access Journals (Sweden)
Mola R.
2015-12-01
Full Text Available The paper present the results of physical simulation of the deformation of the two-layered AZ31/eutectic material using the Gleeble 3800 metallurgical processes simulator. The eutectic layer was produced on the AZ31 substrate using thermochemical treatment. The specimens of AZ31 alloy were heat treated in contact with aluminium powder at 445°C in a vacuum furnace. Depending on the heating time, Al-enriched surface layers with a thickness of 400, 700 and 1100 μm were fabricated on a substrate which was characterized by an eutectic structure composed of the Mg17Al12 phase and a solid solution of aluminium in magnesium. In the study, physical simulation of the fabricated two-layered specimens with a varying thickness of the eutectic layer were deformed using the plane strain compression test at various values of strain rates. The testing results have revealed that it is possible to deform the two-layered AZ31/eutectic material at low strain rates and small deformation values.
Edgington, Eugene
2007-01-01
Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani
Directory of Open Access Journals (Sweden)
Chao Wan
2012-01-01
Full Text Available The history of methods for the electromagnetic scattering by an anisotropic sphere has been reviewed. Two main methods, angular expansion method and T-matrix method, which are widely used for the anisotropic sphere, are expressed in Cartesian coordinate firstly. The comparison of those and the further exploration on the scattering field are illustrated afterwards. Based on the most general form concluded by variable separation method, the coupled electric field and magnetic field of radial anisotropic sphere can be derived. By simplifying the condition, simpler case of uniaxial anisotropic media is expressed with confirmed coefficients for the internal and external field. Details of significant phenomenon are presented.
National Research Council Canada - National Science Library
Lyon, L
2000-01-01
This volume contains a series of papers originally presented at Symposium C, "Anisotropic Nanoparticles Synthesis, Characterization and Applications," at the 2000 MRS Fall Meeting in Boston, Massachusetts...
Energy Technology Data Exchange (ETDEWEB)
Davis, A.B. [Los Alamos National Lab., NM (United States). Space and Remote Sensing Science Group; Clothiaux, E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Meteorology
1999-03-01
Because of Earth`s gravitational field, its atmosphere is strongly anisotropic with respect to the vertical; the effect of the Earth`s rotation on synoptic wind patterns also causes a more subtle form of anisotropy in the horizontal plane. The authors survey various approaches to statistically robust anisotropy from a wavelet perspective and present a new one adapted to strongly non-isotropic fields that are sampled on a rectangular grid with a large aspect ratio. This novel technique uses an anisotropic version of Multi-Resolution Analysis (MRA) in image analysis; the authors form a tensor product of the standard dyadic Haar basis, where the dividing ratio is {lambda}{sub z} = 2, and a nonstandard triadic counterpart, where the dividing ratio is {lambda}{sub x} = 3. The natural support of the field is therefore 2{sup n} pixels (vertically) by 3{sup n} pixels (horizontally) where n is the number of levels in the MRA. The natural triadic basis includes the French top-hat wavelet which resonates with bumps in the field whereas the Haar wavelet responds to ramps or steps. The complete 2D basis has one scaling function and five wavelets. The resulting anisotropic MRA is designed for application to the liquid water content (LWC) field in boundary-layer clouds, as the prevailing wind advects them by a vertically pointing mm-radar system. Spatial correlations are notoriously long-range in cloud structure and the authors use the wavelet coefficients from the new MRA to characterize these correlations in a multifractal analysis scheme. In the present study, the MRA is used (in synthesis mode) to generate fields that mimic cloud structure quite realistically although only a few parameters are used to control the randomness of the LWC`s wavelet coefficients.
Multimesh anisotropic adaptivity for the Boltzmann transport equation
International Nuclear Information System (INIS)
Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Farrell, P.E.; Eaton, M.D.; Warner, P.
2013-01-01
Highlights: ► We solve the Boltzmann transport equation using anisotropically adaptive finite element meshes. ► The finite element mesh is resolved with minimal user input. ► Anisotropic adaptivity uses less elements than adaptive mesh refinement for the same finite element error. ► This paper also demonstrates the use of separate meshes for each energy group within the multigroup discretisation. ► The methods are applied to a range of fixed source and eigenvalue problems. - Abstract: This article presents a new adaptive finite element based method for the solution of the spatial dimensions of the Boltzmann transport equation. The method applies a curvature based error metric to locate the under and over resolved regions of a solution and this, in turn, is used to guide the refinement and coarsening of the spatial mesh. The error metrics and re-meshing procedures are designed such that they enable anisotropic resolution to form in the mesh should it be appropriate to do so. The adaptive mesh enables the appropriate resolution to be applied throughout the whole domain of a problem and so increase the efficiency of the solution procedure. Another new approach is also described that allows independent adaptive meshes to form for each of the energy group fluxes. The use of independent meshes can significantly improve computational efficiency when solving problems where the different group fluxes require high resolution over different regions. The mesh to mesh interpolation is made possible through the use of a ‘supermeshing’ procedure that ensures the conservation of particles when calculating the group to group scattering sources. Finally it is shown how these methods can be incorporated within a solver to resolve both fixed source and eigenvalue problems. A selection of both fixed source and eigenvalue problems are solved in order to demonstrate the capabilities of these methods
Quarkonium states in an anisotropic quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Guo Yun
2009-09-10
In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schroedinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavy-quark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma. (orig.)
Anisotropic Alfven-ballooning modes in the Earth's magnetosphere
International Nuclear Information System (INIS)
Chan, A.A.; Xia, Mengfen; Chen, Liu
1993-05-01
We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth's inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P perpendicular > P parallel. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value β o B ∼ 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P parallel > P perpendicular, or due to increased ballooning-mirror destabilization when P perpendicular > P parallel. We use a ''β-6 stability diagram'' to display the regions of instability with respect to the equatorial values of the parameters bar β and δ, where bar β = (1/3)(β parallel + 2 β perpendicular) is an average beta value and δ = 1 - P parallel/P perpendicular is a measure of the plasma anisotropy