WorldWideScience

Sample records for two-group interfacial area

  1. Modified two-fluid model for the two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Sun Xiaodong; Ishii, Mamoru; Kelly, Joseph M.

    2003-01-01

    This paper presents a modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not practical to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model

  2. A modified two-fluid model for the application of two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Sun, X.; Ishii, M.; Kelly, J.

    2003-01-01

    This paper presents the modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not desirable to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model

  3. Uncertainty analysis of an interfacial area reconstruction algorithm and its application to two group interfacial area transport equation validation

    International Nuclear Information System (INIS)

    Dave, A.J.; Manera, A.; Beyer, M.; Lucas, D.; Prasser, H.-M.

    2016-01-01

    Wire mesh sensors (WMS) are state of the art devices that allow high resolution (in space and time) measurement of 2D void fraction distribution over a wide range of two-phase flow regimes, from bubbly to annular. Data using WMS have been recorded at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Lucas et al., 2010; Beyer et al., 2008; Prasser et al., 2003) for a wide combination of superficial gas and liquid velocities, providing an excellent database for advances in two-phase flow modeling. In two-phase flow, the interfacial area plays an integral role in coupling the mass, momentum and energy transport equations of the liquid and gas phase. While current models used in best-estimate thermal-hydraulic codes (e.g. RELAP5, TRACE, TRACG, etc.) are still based on algebraic correlations for the estimation of the interfacial area in different flow regimes, interfacial area transport equations (IATE) have been proposed to predict the dynamic propagation in space and time of interfacial area (Ishii and Hibiki, 2010). IATE models are still under development and the HZDR WMS experimental data provide an excellent basis for the validation and further advance of these models. The current paper is focused on the uncertainty analysis of algorithms used to reconstruct interfacial area densities from the void-fraction voxel data measured using WMS and their application towards validation efforts of two-group IATE models. In previous research efforts, a surface triangularization algorithm has been developed in order to estimate the surface area of individual bubbles recorded with the WMS, and estimate the interfacial area in the given flow condition. In the present paper, synthetically generated bubbles are used to assess the algorithm’s accuracy. As the interfacial area of the synthetic bubbles are defined by user inputs, the error introduced by the algorithm can be quantitatively obtained. The accuracy of interfacial area measurements is characterized for different bubbles

  4. Uncertainty analysis of an interfacial area reconstruction algorithm and its application to two group interfacial area transport equation validation

    Energy Technology Data Exchange (ETDEWEB)

    Dave, A.J., E-mail: akshayjd@umich.edu [Department of Nuclear Engineering and Rad. Sciences, University of Michigan, Ann Arbor, MI 48105 (United States); Manera, A. [Department of Nuclear Engineering and Rad. Sciences, University of Michigan, Ann Arbor, MI 48105 (United States); Beyer, M.; Lucas, D. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, 01314 Dresden (Germany); Prasser, H.-M. [Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich (Switzerland)

    2016-12-15

    Wire mesh sensors (WMS) are state of the art devices that allow high resolution (in space and time) measurement of 2D void fraction distribution over a wide range of two-phase flow regimes, from bubbly to annular. Data using WMS have been recorded at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Lucas et al., 2010; Beyer et al., 2008; Prasser et al., 2003) for a wide combination of superficial gas and liquid velocities, providing an excellent database for advances in two-phase flow modeling. In two-phase flow, the interfacial area plays an integral role in coupling the mass, momentum and energy transport equations of the liquid and gas phase. While current models used in best-estimate thermal-hydraulic codes (e.g. RELAP5, TRACE, TRACG, etc.) are still based on algebraic correlations for the estimation of the interfacial area in different flow regimes, interfacial area transport equations (IATE) have been proposed to predict the dynamic propagation in space and time of interfacial area (Ishii and Hibiki, 2010). IATE models are still under development and the HZDR WMS experimental data provide an excellent basis for the validation and further advance of these models. The current paper is focused on the uncertainty analysis of algorithms used to reconstruct interfacial area densities from the void-fraction voxel data measured using WMS and their application towards validation efforts of two-group IATE models. In previous research efforts, a surface triangularization algorithm has been developed in order to estimate the surface area of individual bubbles recorded with the WMS, and estimate the interfacial area in the given flow condition. In the present paper, synthetically generated bubbles are used to assess the algorithm’s accuracy. As the interfacial area of the synthetic bubbles are defined by user inputs, the error introduced by the algorithm can be quantitatively obtained. The accuracy of interfacial area measurements is characterized for different bubbles

  5. Two-group modeling of interfacial area transport in large diameter channels

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, J.P., E-mail: schlegelj@mst.edu [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, 301 W 14th St., Rolla, MO 65409 (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907 (United States)

    2015-11-15

    Highlights: • Implemented updated constitutive models and benchmarking method for IATE in large pipes. • New model and method with new data improved the overall IATE prediction for large pipes. • Not all conditions well predicted shows that further development is still required. - Abstract: A comparison of the existing two-group interfacial area transport equation source and sink terms for large diameter channels with recently collected interfacial area concentration measurements (Schlegel et al., 2012, 2014. Int. J. Heat Fluid Flow 47, 42) has indicated that the model does not perform well in predicting interfacial area transport outside of the range of flow conditions used in the original benchmarking effort. In order to reduce the error in the prediction of interfacial area concentration by the interfacial area transport equation, several constitutive relations have been updated including the turbulence model and relative velocity correlation. The transport equation utilizing these updated models has been modified by updating the inter-group transfer and Group 2 coalescence and disintegration kernels using an expanded range of experimental conditions extending to pipe sizes of 0.304 m [12 in.], gas velocities of up to nearly 11 m/s [36.1 ft/s] and liquid velocities of up to 2 m/s [6.56 ft/s], as well as conditions with both bubbly flow and cap-bubbly flow injection (Schlegel et al., 2012, 2014). The modifications to the transport equation have resulted in a decrease in the RMS error for void fraction and interfacial area concentration from 17.32% to 12.3% and 21.26% to 19.6%. The combined RMS error, for both void fraction and interfacial area concentration, is below 15% for most of the experiments used in the comparison, a distinct improvement over the previous version of the model.

  6. Development of two-group interfacial area transport equation for confined flow-2. Model evaluation

    International Nuclear Information System (INIS)

    Sun, Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2003-01-01

    The bubble interaction mechanisms have been analytically modeled in the first paper of this series to provide mechanistic constitutive relations for the two-group interfacial area transport equation (IATE), which was proposed to dynamically solve the interfacial area concentration in the two-fluid model. This paper presents the evaluation approach and results of the two-group IATE based on available experimental data obtained in confined flow, namely, 11 data sets in or near bubbly flow and 13 sets in cap-turbulent and churn-turbulent flow. The two-group IATE is evaluated in steady state, one-dimensional form. Also, since the experiments were performed under adiabatic, air-water two-phase flow conditions, the phase change effect is omitted in the evaluation. To account for the inter-group bubble transport, the void fraction transport equation for Group-2 bubbles is also used to predict the void fraction for Group-2 bubbles. Agreement between the data and the model predictions is reasonably good and the average relative difference for the total interfacial area concentration between the 24 data sets and predictions is within 7%. The model evaluation demonstrates the capability of the two-group IATE focused on the current confined flow to predict the interfacial area concentration over a wide range of flow regimes. (author)

  7. Modeling strategy of the source and sink terms in the two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Ishii, Mamoru; Sun Xiaodong; Kim, Seungjin

    2003-01-01

    This paper presents the general strategy for modeling the source and sink terms in the two-group interfacial area transport equation. The two-group transport equation is applicable in bubbly, cap bubbly, slug, and churn-turbulent flow regimes to predict the change of the interfacial area concentration. This dynamic approach has an advantage of flow regime-independence over the conventional empirical correlation approach for the interfacial area concentration in the applications with the two-fluid model. In the two-group interfacial area transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Based upon a detailed literature review of the research on the bubble interactions, five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest. A systematic integral approach, in which the significant variations of bubble volume and shape are accounted for, is suggested for the modeling of two-group bubble interactions. To obtain analytical forms for the various bubble interactions, a simplification is made for the bubble number density distribution function

  8. Experimental study on interfacial area transport in downward two-phase flow

    Science.gov (United States)

    Wang, Guanyi

    In view of the importance of two group interfacial area transport equations and lack of corresponding accurate downward flow database that can reveal two group interfacial area transport, a systematic database for adiabatic, air-water, vertically downward two-phase flow in a round pipe with inner diameter of 25.4 mm was collected to gain an insight of interfacial structure and provide benchmarking data for two-group interfacial area transport models. A four-sensor conductivity probe was used to measure the local two phase flow parameters and data was collected with data sampling frequency much higher than conventional data sampling frequency to ensure the accuracy. Axial development of local flow parameter profiles including void fraction, interfacial area concentration, and Sauter mean diameter were presented. Drastic inter-group transfer of void fraction and interfacial area was observed at bubbly to slug transition flow. And the wall peaked interfacial area concentration profiles were observed in churn-turbulent flow. The importance of local data about these phenomenon on flow structure prediction and interfacial area transport equation benchmark was analyzed. Bedsides, in order to investigate the effect of inlet conditions, all experiments were repeated after installing the flow straightening facility, and the results were briefly analyzed. In order to check the accuracy of current data, the experiment results were cross-checked with rotameter measurement as well as drift-flux model prediction, the averaged error is less than 15%. Current models for two-group interfacial area transport equation were evaluated using these data. The results show that two-group interfacial area transport equations with current models can predict most flow conditions with error less than 20%, except some bubbly to slug transition flow conditions and some churn-turbulent flow conditions. The disagreement between models and experiments could result from underestimate of inter-group

  9. Two-group interfacial area concentration correlations of two-phase flows in large diameter pipes

    International Nuclear Information System (INIS)

    Shen, Xiuzhong; Hibiki, Takashi

    2015-01-01

    The reliable empirical correlations and models are one of the important ways to predict the interfacial area concentration (IAC) in two-phase flows. However, up to now, no correlation or model is available for the prediction of the IAC in the two-phase flows in large diameter pipes. This study collected an IAC experimental database of two-phase flows taken under various flow conditions in large diameter pipes and presented a systematic way to predict the IAC for two-phase flows from bubbly, cap-bubbly to churn flow in large diameter pipes by categorizing bubbles into two groups (group-1: spherical and distorted bubble, group-2: cap bubble). Correlations were developed to predict the group-1 void fraction from the void fraction of all bubble. The IAC contribution from group-1 bubbles was modeled by using the dominant parameters of group-1 bubble void fraction and Reynolds number based on the parameter-dependent analysis of Hibiki and Ishii (2001, 2002) using one-dimensional bubble number density and interfacial area transport equations. A new drift velocity correlation for two-phase flow with large cap bubbles in large diameter pipes was derived in this study. By comparing the newly-derived drift velocity correlation with the existing drift velocity correlation of Kataoka and Ishii (1987) for large diameter pipes and using the characteristics of the representative bubbles among the group 2 bubbles, we developed the model of IAC and bubble size for group 2 cap bubbles. The developed models for estimating the IAC are compared with the entire collected database. A reasonable agreement was obtained with average relative errors of ±28.1%, ±54.4% and ±29.6% for group 1, group 2 and all bubbles respectively. (author)

  10. Numerical simulations of air–water cap-bubbly flows using two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Wang, Xia; Sun, Xiaodong

    2014-01-01

    Highlights: • Two-group interfacial area transport equation was implemented into a three-field two-fluid model in Fluent. • Numerical model was developed for cap-bubbly flows in a narrow rectangular flow channel. • Numerical simulations were performed for cap-bubbly flows with uniform void inlets and with central peaked void inlets. • Code simulations showed a significant improve over the conventional two-fluid model. - Abstract: Knowledge of cap-bubbly flows is of great interest due to its role in understanding of the flow regime transition from bubbly to slug or churn-turbulent flows. One of the key characteristics of such flows is the existence of bubbles in different sizes and shapes associated with their distinctive dynamic natures. This important feature is, however, generally not well captured by many available two-phase flow modeling approaches. In this study, a modified two-fluid model, namely a three-field, two-fluid model, is proposed. In this model, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as Group-1 while cap/churn-turbulent bubbles as Group-2. A two-group interfacial area transport equation (IATE) is implemented to describe dynamic changes of interfacial structure in each bubble group, resulting from intra- and inter-group interactions and phase changes due to evaporation and condensation. Attention is also paid to appropriate constitutive relations of the interfacial transfers due to mechanical and thermal non-equilibrium between the different fields. The proposed three-field, two-fluid model is used to predict the phase distributions of adiabatic air–water flows in a confined rectangular duct. Good agreement between the simulation results from the proposed model and relevant experimental data indicates that the proposed model is promising as an improved computational tool for two-phase cap-bubbly flow simulations in rectangular flow ducts

  11. Development of two-group interfacial area transport equation for confined flow-1. Modeling of bubble interactions

    International Nuclear Information System (INIS)

    Sun, Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2003-01-01

    This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equations based on certain assumptions for the confined flow. These models include both intra-group (within a certain group) and inter-group (between two groups) bubble interactions. The comparisons of the prediction by the one-dimensional two-group IATE with experimental data are presented in the second paper of this series. (author)

  12. One-group interfacial area transport in vertical air-water bubbly flow

    International Nuclear Information System (INIS)

    Wu, Q.; Kim, S.; Ishii, M.; Beus, S.G.

    1997-01-01

    In the two-fluid model for two-phase flows, interfacial area concentration is one of the most important closure relations that should be obtained from careful mechanistic modeling. The objective of this study is to develop a one-group interfacial area transport equation together with the modeling of the source and sink terms due to bubble breakage and coalescence. For bubble coalescence, two mechanisms are considered to be dominant in vertical two-phase bubbly flow. These are the random collisions between bubbles due to turbulence in the flow field, and the wake entrainment process due to the relative motion of the bubbles in the wake region of a seeding bubble. For bubble breakup, the impact of turbulent eddies is considered. These phenomena are modeled individually, resulting in a one-group interfacial area concentration transport equation with certain parameters to be determined from experimental data. Compared to the measured axial distribution of the interfacial area concentration under various flow conditions, these parameters are obtained for the reduced one-group, one-dimensional transport equation. The results indicate that the proposed models for bubble breakup and coalescence are appropriate

  13. Interfacial area and interfacial transfer in two-phase systems. DOE final report

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Mamoru; Hibiki, T.; Revankar, S.T.; Kim, S.; Le Corre, J.M.

    2002-07-01

    In the two-fluid model, the field equations are expressed by the six conservation equations consisting of mass, momentum and energy equations for each phase. The existence of the interfacial transfer terms is one of the most important characteristics of the two-fluid model formulation. The interfacial transfer terms are strongly related to the interfacial area concentration and to the local transfer mechanisms such as the degree of turbulence near interfaces. This study focuses on the development of a closure relation for the interfacial area concentration. A brief summary of several problems of the current closure relation for the interfacial area concentration and a new concept to overcome the problem are given.

  14. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2005-01-01

    The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right-hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. In the present paper, the interfacial area transport equations currently available are reviewed to address the feasibility and reliability of the model along with extensive experimental results. These include the data from adiabatic upward air-water two-phase flow in round tubes of various sizes, from a rectangular duct, and from adiabatic co-current downward air-water two-phase flow in round pipes of two sizes. (authors)

  15. Interfacial structures and area transport in upward and downward two-phase flow

    International Nuclear Information System (INIS)

    Paranjape, S. S.; Kim, S.; Ishii, M.; Kelly, J.

    2003-01-01

    An experimental study has been carried out for upward and downward two-phase flow to study local interfacial structures and interfacial area transport. The flow studied, is an adiabatic, air-water, co-current, two-phase flow, in 25.4 mm and 50.8 mm ID test sections. Flow regime map is obtained using the characteristic signals obtained from an impedance void meter, employing neural network based identification methodology. A four sensor conductivity probe is used to measure the local two phase flow parameters, in bubbly flow regime. The local profiles of these parameters as well as their axial development reveal the nature of the interfacial structures and the bubble interaction mechanisms occurring in the flow. Furthermore, this study provides a good database for the development of the interfacial area transport equation, which dynamically models the changes in the interfacial area along a flow field. An interfacial area transport equation is used for downward flow based on that developed for the upward flow, with certain modifications in the bubble interaction terms. The area averaged values of the interfacial area concentration are compared with those predicted by the interfacial area transport model. The differences in the interfacial structures and interfacial area transport in co-current downward and upward two-phase flows are studied

  16. Modeling and measurement of interfacial area concentration in two-phase flow

    International Nuclear Information System (INIS)

    Paranjape, Sidharth; Ishii, Mamoru; Hibiki, Takashi

    2010-01-01

    This paper presents experimental and modeling approaches in characterizing interfacial structures in gas-liquid two-phase flow. For the modeling of the interfacial structure characterization, the interfacial area transport equation proposed earlier has been studied to provide a dynamic and mechanistic prediction tool for two-phase flow analysis. A state-of-the-art four-sensor conductivity probe technique has been developed to obtain detailed local interfacial structure information in a wide range of flow regimes spanning from bubbly to churn-turbulent flows. Newly obtained interfacial area data in 8 x 8 rod-bundle test section are also presented. This paper also reviews available models of the interfacial area sink and source terms and existing databases. The interfacial area transport equation has been benchmarked using condensation bubbly flow data.

  17. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2004-01-01

    Full text of publication follows:In the current thermal-hydraulic system analysis codes using the two-fluid model, the empirical correlations that are based on the two-phase flow regimes and regime transition criteria are being employed as closure relations for the interfacial transfer terms. Due to its inherent shortcomings, however, such static correlations are inaccurate and present serious problems in the numerical analysis. In view of this, a new dynamic approach employing the interfacial area transport equation has been studied. The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Therefore, the interfacial area transport equation can make a leapfrog improvement in the current capability of the two-fluid model from both scientific and practical point of view. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. The coalescence mechanisms include the random collision driven by turbulence, and the entrainment of trailing bubbles in the wake region of the preceding bubble. The disintegration mechanisms include the break-up by turbulence impact, shearing-off at the rim of large cap bubbles and the break-up of large cap

  18. Development of interfacial area transport equation

    International Nuclear Information System (INIS)

    Kim, Seung Jin; Ishii, Mamoru; Kelly, Joseph

    2005-01-01

    The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to churn-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical air-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired in vertical co-current downward air-water two-phase flow through round pipes of two different sizes

  19. Interfacial area transport of subcooled boiling flow in a vertical annulus

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Caleb S.; Ozar, Basar; Hibiki, Takashi; Ishii, Mamoru, E-mail: ishii@purdue.edu

    2014-03-15

    Highlights: • Discussion of boiling and wall nucleation dataset obtained in a vertical annulus. • Overview of the interfacial area transport equation modeling in boiling flow. • Comparison of bubble departure diameter and frequency with existing models. • Evaluation of the interfacial area transport equation prediction in boiling flow. - Abstract: In an effort to improve the prediction of void fraction and heat transfer characteristics in two-phase systems, the two-group interfacial area transport equation has been developed for use with the two-group two-fluid model. The two-group approach treats spherical/distorted bubbles as Group-1 and cap/slug/churn-turbulent bubbles as Group-2. Therefore, the interfacial area transport of steam-water two-phase flow in a vertical annulus has been investigated experimentally, including bulk flow parameters and wall nucleation characteristics. The theoretical modeling of interfacial area transport equation with phase change terms is introduced and discussed along with the experimental results. Benchmark of the interfacial area transport equation is performed considering the effects of bubble interaction mechanisms such as bubble break-up and coalescence, as well as, effects of phase change mechanisms such as wall nucleation and condensation for subcooled boiling. From the benchmark, sensitivity in the constitutive relations for Group-1 phase change mechanisms, such as wall nucleation and condensation is clear. The Group-2 interfacial area transport is shown to be dominated by the interfacial heat transfer mechanism causing expansion of Group-1 bubbles into Group-2 bubbles in the boiling flow.

  20. Interfacial area transport in two-phase flows in a scaled 8X8 rod bundle geometry at elevated pressures

    International Nuclear Information System (INIS)

    Yang, X; Schlegel, J.P.; Paranjape, S.; Liu, Y.; Chen, S.W.; Hibiki, T.; Ishii, M.

    2011-01-01

    To improve the prediction accuracy and robustness of the next-generation thermal-hydraulics system analysis code, analytical and experimental research has been undertaken to develop the Interfacial Area Transport Equation (IATE) in a scaled 8x8 rod bundle geometry at elevated pressure conditions. The experiments performed include local measurements of void fraction, interfacial area concentration, and gas velocity at several axial locations using the innovative four-sensor conductivity probe. The test conditions cover a wide range of flow regimes from bubbly, cap-bubbly, cap-turbulent to churn-turbulent at 100 kPa and 300 kPa pressure conditions and the obtained data indicates some spacer effects on the flow parameters. The bubble groups are classified into two groups (Group-1: spherical and distorted bubbles, Group-2: cap and churn turbulent bubbles) based on the bubble transport characteristics. The area-averaged interfacial area transport data have been compared to the prediction by the one-dimensional two-group IATE with mechanistically modeled IAC source and sink terms. The one-group IATE is able to predict the bubbly-flow interfacial area within ±15% error under two pressure conditions. The two-group IATE performance is also very promising in the cap-bubbly flow and churn-turbulent flow regimes, with average error of about ±20%. (author)

  1. Interfacial area measurements in two-phase flow

    International Nuclear Information System (INIS)

    Veteau, J.-M.

    1979-08-01

    A thorough understanding of two-phase flow requires the accurate measurement of the time-averaged interfacial area per unit volume (also called the time-averaged integral specific area). The so-called 'specific area' can be estimated by several techniques described in the literature. These different methods are reviewed and the flow conditions which lead to a rigourous determination of the time-averaged integral specific area are clearly established. The probe technique, involving local measurements seems very attractive because of its large range of application [fr

  2. Determination of Interfacial Area in Gas-Liquid Two Phase by Light Transmission

    International Nuclear Information System (INIS)

    Ghiasi, H.; Safekordi, A. A.; Babazadeh Shareh, F.

    2012-01-01

    The purpose of the present paper is to develop light beam method to measurement of interfacial area in a rectangular gas-liquid bubble column. Total interfacial area can be determined in bubble column filled by transparent liquid by light transmission method. According to pervious researches, the fraction of parallel light is function of interfacial area and optical path length that these two parameters imply Transmission Number or N T . The drop diameters were measured in the range of 2.2 to 5 mm, and in this range, the specific area is found to depend only upon the light transmission. Three different systems with various liquid phases have been used in this work. It had been proved that light transmission method for dilute suspension or stationary gas phase has a good consequence. In this work, good agreement between actual and calculated interfacial area proves that light transmission method would be able to determine interfacial area in multiple scattering, and it is possible to use earlier mathematic model to measure interfacial area in multiple scattering in gas-liquid bubble columns.

  3. Local measurement of interfacial area, interfacial velocity and liquid turbulence in two-phase flow

    International Nuclear Information System (INIS)

    Hibiki, T.; Hogsett, S.; Ishii, M.

    1998-01-01

    Double sensor probe and hotfilm anemometry methods were developed for measuring local flow characteristics in bubbly flow. The formulation for the interfacial area concentration measurement was obtained by improving the formulation derived by Kataoka and Ishii. The assumptions used in the derivation of the equation were verified experimentally. The interfacial area concentration measured by the double sensor probe agreed well with one by the photographic method. The filter to validate the hotfilm anemometry for measuring the liquid velocity and turbulent intensity in bubbly flow was developed based on removing the signal due to the passing bubbles. The local void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter, liquid velocity, and turbulent intensity of vertical upward air-water flow in a round tube with inner diameter of 50.8 mm were measured by using these methods. A total of 54 data sets were acquired consisting of three superficial gas flow rates, 0.039, 0.067, and 0.147 m/s, and three superficial liquid flow rates, 0.60, 1.00, and 1.30 m/s. The measurements were performed at the three locations: L/D=2, 32, and 62. This data is expected to be used for the development of reliable constitutive relations which reflect the true transfer mechanisms in two-phase flow. (author)

  4. Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code

    International Nuclear Information System (INIS)

    Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.

    1992-01-01

    FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime

  5. Measurement of local interfacial area concentration in boiling loop

    International Nuclear Information System (INIS)

    Kyoung, Ho Kang; Byong, Jo Yun; Goon, Cherl Park

    1995-01-01

    An accurate prediction of two-phase flow is essential to many energy systems, including nuclear reactors. To model the two-phase flow, detailed information on the internal flow structure is required. The void fraction and interfacial area concentration are important fundamental parameters characterizing the internal structure of two-phase flow. The interfacial area concentration is defined as the available interfacial area per unit volume of the two-phase mixture in calculations of the interfacial transport of mass, momentum, and energy. Although a number of studies have been made in this area, the interfacial area concentration in two-phase flow has not been sufficiently investigated either experimentally or analytically. Most existing models for interfacial area concentration are limited to area-averaged interfacial area concentration in a flow channel. And the studies on local interfacial area concentration are limited to the case of air-water two-phase flow. However, the internal flow structure of steam-water two-phase flow having various bubble sizes could be quite different from that of air-water two-phase flow, the reliability of which weak in practical applications. In this study, the local interfacial area concentration steam-water two-phase flow has been investigated experimentally in a circular boiling tube having a heating rod in the center, and for the low flow with liquid superficial velocity <1 m/s

  6. Basic equations of interfacial area transport in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Kataoka, I.; Yoshida, K.; Naitoh, M.; Okada, H.; Morii, T.

    2011-01-01

    The rigorous and consistent formulations of basic equations of interfacial area transport were derived using correlation functions of characteristic function of each phase and velocities of each phase. Turbulent transport term of interfacial area concentration was consistently derived and related to the difference between interfacial velocity and averaged velocity of each phase. Constitutive equations of turbulent transport terms of interfacial area concentration were proposed for bubbly flow. New transport model and constitutive equations were developed for churn flow. These models and constitutive equations are validated by experimental data of radial distributions of interfacial area concentration in bubbly and churn flow. (author)

  7. Numerical Treatment of Two-phase Flow in Porous Media Including Specific Interfacial Area

    KAUST Repository

    El-Amin, Mohamed

    2015-06-01

    In this work, we present a numerical treatment for the model of two-phase flow in porous media including specific interfacial area. For numerical discretization we use the cell-centered finite difference (CCFD) method based on the shifting-matrices method which can reduce the time-consuming operations. A new iterative implicit algorithm has been developed to solve the problem under consideration. All advection and advection-like terms that appear in saturation equation and interfacial area equation are treated using upwind schemes. Selected simulation results such as pc–Sw–awn surface, capillary pressure, saturation and specific interfacial area with various values of model parameters have been introduced. The simulation results show a good agreement with those in the literature using either pore network modeling or Darcy scale modeling.

  8. Experimental and analytical study of interfacial area transport phenomena in a vertical two-phase flow

    International Nuclear Information System (INIS)

    Huh, Byung-Gil; Euh, Dong-Jin; Yun, Byong-Jo; Youn, Young-Jung; Yoon, Han-Yeong; Song, Chul-Hwa

    2005-03-01

    The number density transport equations for various bubble groups are used to predict the void fraction and the interfacial area concentration. As the closure relations for number density transport equation, the coalescence due to random collisions and the breakup due to the impact of turbulent eddies is modified based on the previous studies and the bubble expansion term due to the pressure reduction is considered. Also, the coalescence due to a wake entrainment is modeled newly to apply to the number density transport equation. In order to predict the local experimental data, the code is developed that the two-fluid model is coupled systematically with the number density transport equation for each bubble group. As for the results of the numerical analysis, the void fraction and interfacial area concentration are predicted well by the developed code and models although some deviations exist in the values between the prediction and experiment, especially, for the high void fraction conditions

  9. Experimental and analytical study of interfacial area transport phenomena in a vertical two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Byung-Gil; Euh, Dong-Jin; Yun, Byong-Jo; Youn, Young-Jung; Yoon, Han-Yeong; Song, Chul-Hwa

    2005-03-01

    The number density transport equations for various bubble groups are used to predict the void fraction and the interfacial area concentration. As the closure relations for number density transport equation, the coalescence due to random collisions and the breakup due to the impact of turbulent eddies is modified based on the previous studies and the bubble expansion term due to the pressure reduction is considered. Also, the coalescence due to a wake entrainment is modeled newly to apply to the number density transport equation. In order to predict the local experimental data, the code is developed that the two-fluid model is coupled systematically with the number density transport equation for each bubble group. As for the results of the numerical analysis, the void fraction and interfacial area concentration are predicted well by the developed code and models although some deviations exist in the values between the prediction and experiment, especially, for the high void fraction conditions.

  10. Interfacial area concentration in gas–liquid bubbly to churn-turbulent flow regime

    International Nuclear Information System (INIS)

    Ozar, B.; Dixit, A.; Chen, S.W.; Hibiki, T.; Ishii, M.

    2012-01-01

    Highlights: ► A systematic approach to predict the interfacial area concentration is presented. ► Two group approach for categorizing bubbles is used. ► Prediction of Group-1 bubble size and void fraction are key elements of this work. ► The proposed approach compares well with selected databases. - Abstract: There are very few established correlations to predict the interfacial area concentration beyond the bubbly flow regime in cap-slug and churn-turbulent flow regimes. Present study shows a systematic approach to estimate the interfacial area concentration in bubbly, cap-slug and churn-turbulent flow regimes. Ishii and Mishima’s (1980) formulation and the two group approach for categorizing bubbles (Group-1: spherical or distorted bubble, Group-2: cap bubble) are used to estimate the interfacial area concentration. The key parameters in this framework are the estimation of Group-1 bubble size and the amount of void in the liquid slug, which is a function of Group-1 void fraction. Hibiki and Ishii’s (2002) correlation is utilized to predict the size of the Group-1 bubbles. A correlation is developed to estimate the Group-1 void fraction. The developed model for the estimation of interfacial area concentration is compared with the three existing datasets. These are data for air–water flow taken in annular geometry and round tube and also for air–NaOH solution taken in round tube. The estimation accuracies for these data sets are ±36.4%, ±26.5% and ±37.4%, respectively. These datasets cover a wide range of flow regimes and different physical properties.

  11. Implementation of a one-group interfacial area transport equation in a CFD code for the simulation of upward adiabatic bubbly flow

    International Nuclear Information System (INIS)

    Pellacani, F.; Macian, R.; Chiva, S.; Pena, C.

    2011-01-01

    In this paper upward, isothermal and turbulent bubbly flow in tubes is numerically modeled by using ANSYS CFX 12.1 with the aim of creating a basis for the reliable simulation of the flow along a vertical channel in a nuclear reactor as long term goal. Two approaches based on the mono-dispersed model and on the one-group Interfacial Area Transport Equation (IATE) model are used in order to maintain the computational effort as low as possible. This work represents the necessary step to implement a two-group interfacial area transport equation that will be able to dynamically represent the changes in interfacial structure in the transition region from bubbly to slug flow. The drag coefficient is calculated using the Grace model and the interfacial non-drag forces are also included. The Antal model is used for the calculation of the wall lubrication force coefficient. The lift force coefficient is obtained from the Tomiyama model. The turbulent dispersion force is taken into account and is modeled using the FAD (Favre averaged drag) approach, while the turbulence transfer is simulated with the Sato's model. The liquid velocity is in the range between 0.5 and 2 m/s and the average void fraction varies between 5 and 15%.The source and sink terms for break-up and coalescence needed for the calculation of the implemented Interfacial Area Density are those proposed by Yao and Morel. The model has been checked using experimental results by Mendez. Radial profile distributions of void fraction, interfacial area density and bubble mean diameter are shown at the axial position equivalent to z/D=56. The results obtained by the simulations have a good agreement with the experimental data but show also the need of a better study of the coalescence and breakup phenomena to develop more accurate interaction models. (author)

  12. Interfacial structures in downward two-phase bubbly flow

    International Nuclear Information System (INIS)

    Paranjape, S.S.; Kim, S.; Ishii, M.; Kelly, J.

    2003-01-01

    Downward two-phase flow was studied considering its significance in view of Light Water Reactor Accidents (LWR) such as Loss of Heat Sink (LOHS) by feed water loss or secondary pipe break. The flow studied, was an adiabatic, air-water, co-current, vertically downward two-phase flow. The experimental test sections had internal hydraulic diameters of 25.4 mm and 50.8 mm. Flow regime map was obtained using the characteristic signals obtained from an impedance void meter, employing neural network based identification methodology to minimize the subjective judgment in determining the flow regimes. A four sensor conductivity probe was used to measure the local two phase flow parameters, which characterize the interfacial structures. The local time averaged two-phase flow parameters measured were: void fraction (α), interfacial area concentration (a i ), bubble velocity (v g ), and Sauter mean diameter (D Sm ). The flow conditions were from the bubbly flow regime. The local profiles of these parameters as well as their axial development revealed the nature of the interfacial structures and the bubble interaction mechanisms occurring in the flow. Furthermore, this study provided a good database for the development of the interfacial area transport equation, which dynamically models the changes in the interfacial area along the flow field. An interfacial area transport equation was developed for downward flow based on that developed for the upward flow, with certain modifications in the bubble interaction terms. The area averaged values of the interfacial area concentration were compared with those predicted by the interfacial area transport model. (author)

  13. Interfacial area, velocity and void fraction in two-phase slug flow

    International Nuclear Information System (INIS)

    Kojasoy, G.; Riznic, J.R.

    1997-01-01

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections

  14. Modeling interfacial area transport in multi-fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, Stephen Lee [Univ. of California, Berkeley, CA (United States)

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  15. The two-phase flow IPTT method for measurement of nonwetting-wetting liquid interfacial areas at higher nonwetting saturations in natural porous media.

    Science.gov (United States)

    Zhong, Hua; Ouni, Asma El; Lin, Dan; Wang, Bingguo; Brusseau, Mark L

    2016-07-01

    Interfacial areas between nonwetting-wetting (NW-W) liquids in natural porous media were measured using a modified version of the interfacial partitioning tracer test (IPTT) method that employed simultaneous two-phase flow conditions, which allowed measurement at NW saturations higher than trapped residual saturation. Measurements were conducted over a range of saturations for a well-sorted quartz sand under three wetting scenarios of primary drainage (PD), secondary imbibition (SI), and secondary drainage (SD). Limited sets of experiments were also conducted for a model glass-bead medium and for a soil. The measured interfacial areas were compared to interfacial areas measured using the standard IPTT method for liquid-liquid systems, which employs residual NW saturations. In addition, the theoretical maximum interfacial areas estimated from the measured data are compared to specific solid surface areas measured with the N 2 /BET method and estimated based on geometrical calculations for smooth spheres. Interfacial areas increase linearly with decreasing water saturation over the range of saturations employed. The maximum interfacial areas determined for the glass beads, which have no surface roughness, are 32±4 and 36±5 cm -1 for PD and SI cycles, respectively. The values are similar to the geometric specific solid surface area (31±2 cm -1 ) and the N 2 /BET solid surface area (28±2 cm -1 ). The maximum interfacial areas are 274±38, 235±27, and 581±160 cm -1 for the sand for PD, SI, and SD cycles, respectively, and ~7625 cm -1 for the soil for PD and SI. The maximum interfacial areas for the sand and soil are significantly larger than the estimated smooth-sphere specific solid surface areas (107±8 cm -1 and 152±8 cm -1 , respectively), but much smaller than the N 2 /BET solid surface area (1387±92 cm -1 and 55224 cm -1 , respectively). The NW-W interfacial areas measured with the two-phase flow method compare well to values measured using the standard

  16. State-of-the-art report on the theoretical modeling of interfacial area concentration

    International Nuclear Information System (INIS)

    Lee, Won Jae; Euh, Dong Jin

    1998-03-01

    Classical approaches based on experimental correlations and the mechanistic approaches based on the interfacial area concentration were reviewed. The study focuses on the state-of-the-art researches based on the mechanistic modeling of the interfacial area concentration. The investigation is performed by classifying the mechanistic modeling approaches into those using the number density transport equations supported with a simple algebraic relation for obtaining interfacial area concentration and those using the direct interfacial area transport equations. The modeling approaches are subdivided into one group and multi-group models. The state-of-the-art source terms of transport equations are also investigated for their applicability and limitations. (author). 62 refs., 6 tabs., 49 figs

  17. Sensitivity analysis of bubble size and probe geometry on the measurements of interfacial area concentration in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Kataoka, Isao; Ishii, Mamoru; Serizawa, Akimi

    1994-01-01

    Interfacial area concentration measurement is quite important in gas-liquid two-phase flow. To determine the accuracy of measurement of the interfacial area using electrical resistivity probes, numerical simulations of a passing bubble through sensors are carried out. The two-sensors method, the four-sensors method and the correlative method are tested and the effects of sensor spacing, bubble diameter and hitting angle of the bubbles on the accuracy of each measurement method are investigated. The results indicated that the two-sensors method is insensitive to the ratio between sensor spacing and bubble diameter, and hitting angle. It overestimates the interfacial area for small hitting angles while it gives a reasonable accuracy for smaller bubbles and large hitting angles. The four-sensors method gives accurate interfacial area measurements particularly for the larger bubble diameters and smaller hitting angles, while for smaller bubbles and larger hitting angles, the escape probability of bubbles through the sensors becomes large and the accuracy becomes worse. The correlative method gives an overall accuracy for interfacial area measurement. Particularly, it gives accurate measurements for large bubbles and larger hitting angles while for smaller hitting angles, the spatial dependence of the correlation functions affects the accuracy. (orig.)

  18. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  19. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  20. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  1. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  2. New modeling and experimental approaches for characterization of two-phase flow interfacial structure

    International Nuclear Information System (INIS)

    Ishii, Mamoru; Sun, Xiaodong

    2004-01-01

    This paper presents new experimental and modeling approaches in characterizing interfacial structures in gas-liquid two-phase flow. For the experiments, two objective approaches are developed to identify flow regimes and to obtain local interfacial structure data. First, a global measurement technique using a non-intrusive ring-type impedance void-meter and a self-organizing neural network is presented to identify the one-dimensional'' flow regimes. In the application of this measurement technique, two methods are discussed, namely, one based on the probability density function of the impedance probe measurement (PDF input method) and the other based on the sorted impedance signals, which is essentially the cumulative probability distribution function of the impedance signals (instantaneous direct signal input method). In the latter method, the identification can be made close to instantaneously since the required signals can be acquired over a very short time period. In addition, a double-sensor conductivity probe can also be used to obtain ''local'' flow regimes by using the instantaneous direct signal input method with the bubble chord length information. Furthermore, a newly designed conductivity probe with multiple double-sensor heads is proposed to obtain ''two-dimensional'' flow regimes across the flow channel. Secondly, a state-of-the-art four-sensor conductivity probe technique has been developed to obtain detailed local interfacial structure information. The four-sensor conductivity probe accommodates the double-sensor probe capability and can be applied in a wide range of flow regimes spanning from bubbly to churn-turbulent flows. The signal processing scheme is developed such that it categorizes the acquired parameters into two groups based on bubble cord length information. Furthermore, for the modeling of the interfacial structure characterization, the interfacial area transport equation proposed earlier has been studied to provide a dynamic and

  3. Interfacial area transport of vertical upward air-water two-phase flow in an annulus at elevated pressures

    International Nuclear Information System (INIS)

    Ozar, Basar; Hibiki, Takashi; Ishii, Mamoru; Euh, Dong-Jin

    2009-01-01

    The interfacial area transport of vertical, upward, air-water two-phase flows in an annular channel has been investigated at different system pressures. The inner and outer diameters of the annular channel were 19.1 mm and 38.1 mm, respectively. Twenty three inlet flow conditions were selected, which coverED bubbly, cap-slug, and churn-turbulent flows. These flow conditions also overlapped with twelve conditions of our previous study for comparison. The local flow parameters, such as void fractions, interfacial area concentrations (IAC), and bubble interface velocities, were measured at nine radial positions for the three axial locations (z/D h =52, 149 and 230) and converted into area-averaged parameters. The axial evolutions of local flow structure was interpreted in terms of bubble coalescence, breakup, expansion of the gas-phase due to pressure drop and system pressure. An assessment of interfacial area transport equation (IATE) was made and compared with the experimental data. A discussion of the comparison between model prediction and the experimental results were made. (author)

  4. Development and validation of bubble breakup and coalescence constitutive models for the one-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Pellacani, Filippo

    2012-01-01

    A local mechanistic model for bubble coalescence and breakup for the one-group interfacial area transport equation has been developed, in agreement and within the limits of the current understanding, based on an exhaustive survey of the theory and of the state of the art models for bubble dynamics simulation. The new model has been tested using the commercial 3D CFD code ANSYS CFX. Upward adiabatic turbulent air-water bubbly flow has been simulated and the results have been compared with the data obtained in the experimental facility PUMA. The range of the experimental data available spans between 0.5 to 2 m/s liquid velocity and 5 to 15 % volume fraction. For the implementation of the models, both the monodispersed and the interfacial area transport equation approaches have been used. The first one to perform a detailed analysis of the forces and models to reproduce the dynamic of the dispersed phase adequately and to be used in the next phases of the work. Also two different bubble induced turbulence models have been tested to consider the effect of the presence of the gas phase on the turbulence of the liquid phase. The interfacial area transport equation has been successfully implemented into the CFD code and the state of the art breakup and coalescence models have been used for simulation. The limitations of the actual theory have been shown and a new bubble interactions model has been developed. The simulations showed that a considerable improvement is achieved if compared to the state of the art closure models. Limits in the implementation derive from the actual understanding and formulation of the bubbly dynamics. A strong dependency on the interfacial non-drag force models and coefficients have been shown. More experimental and theory work needs to be done in this field to increase the prediction capability of the simulation tools regarding the distribution of the phases along the pipe radius.

  5. Investigation of one-dimensional interfacial area transport for vertical upward air–water two-phase flow in an annular channel at elevated pressures

    International Nuclear Information System (INIS)

    Ozar, B.; Brooks, C.S.; Euh, D.J.; Hibiki, T.; Ishii, M.

    2013-01-01

    Highlights: • Interfacial area transport equation (IATE) for a rectangular duct is modified for an annulus. • IATE predicts interfacial area transport in bubbly-to-churn flow. • Scalability of IATE to elevated pressure conditions is validated. • Detailed 1D interfacial area transport data are presented. • Detailed interfacial area transport mechanisms are discussed. -- Abstract: The interfacial area transport of vertical, upward, air–water two-phase flows in an annular channel has been investigated at different system pressures. The inner and outer diameters of the annular channel were 19.1 mm and 38.1 mm, respectively. Twenty three inlet flow conditions were selected, which covered bubbly, cap-bubbly, and churn-turbulent flows. These flow conditions also overlapped with twelve conditions of a previous study for comparison. The local flow parameters, such as void fractions, interfacial area concentrations (IAC), and bubble interface velocities, were measured at nine radial positions for the three axial locations and converted into area-averaged parameters. The axial evolutions of local flow structure were interpreted in terms of bubble coalescence, breakup, expansion of the gas-phase due to pressure drop and system pressure. An assessment of interfacial area transport equation (IATE) was made and compared with the experimental data. A discussion of the comparison between model prediction and the experimental results were made

  6. Investigation of one-dimensional interfacial area transport for vertical upward air–water two-phase flow in an annular channel at elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Ozar, B., E-mail: ozar@fauske.com [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States); Brooks, C.S. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States); Euh, D.J. [Korea Atomic Energy Research Institute, 150 Deokjin, Yuseong, Daejeon 305-353 (Korea, Republic of); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)

    2013-10-15

    Highlights: • Interfacial area transport equation (IATE) for a rectangular duct is modified for an annulus. • IATE predicts interfacial area transport in bubbly-to-churn flow. • Scalability of IATE to elevated pressure conditions is validated. • Detailed 1D interfacial area transport data are presented. • Detailed interfacial area transport mechanisms are discussed. -- Abstract: The interfacial area transport of vertical, upward, air–water two-phase flows in an annular channel has been investigated at different system pressures. The inner and outer diameters of the annular channel were 19.1 mm and 38.1 mm, respectively. Twenty three inlet flow conditions were selected, which covered bubbly, cap-bubbly, and churn-turbulent flows. These flow conditions also overlapped with twelve conditions of a previous study for comparison. The local flow parameters, such as void fractions, interfacial area concentrations (IAC), and bubble interface velocities, were measured at nine radial positions for the three axial locations and converted into area-averaged parameters. The axial evolutions of local flow structure were interpreted in terms of bubble coalescence, breakup, expansion of the gas-phase due to pressure drop and system pressure. An assessment of interfacial area transport equation (IATE) was made and compared with the experimental data. A discussion of the comparison between model prediction and the experimental results were made.

  7. Interfacial structures of confined air-water two-phase bubbly flow

    International Nuclear Information System (INIS)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-01-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C 0 = 1.35

  8. Interfacial area transport in a confined Bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Sun, X.; Ishii, M. [Purdue Univ., Lafayette, IN (United States). School of Nuclear Engineering; Lincoln, F. [Bettis Atomic Power Lab., West Mifflin, Bechtel Bettis, Inc., PA (United States)

    2001-07-01

    The interfacial area transport equation applicable to the bubbly flow is presented. The model is evaluated against the data acquired in an adiabatic air-water upward two-phase flow loop with a test section of 20 cm in width and 1 cm in gap. In general, a good agreement, within the measurement error of {+-}10%, is observed for a wide range in the bubbly flow regime. The sensitivity analysis on the individual particle interaction mechanisms demonstrates the active interactions between the bubbles and highlights the mechanisms playing the dominant role in interfacial area transport. (author)

  9. Interfacial structures of confined air-water two-phase bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  10. Measurement of Interfacial Area Production and Permeability within Porous Media

    International Nuclear Information System (INIS)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.

    2010-01-01

    An understanding of the pore-level interactions that affect multi-phase flow in porous media is important in many subsurface engineering applications, including enhanced oil recovery, remediation of dense non-aqueous liquid contaminated sites, and geologic CO 2 sequestration. Standard models of two-phase flow in porous media have been shown to have several shortcomings, which might partially be overcome using a recently developed model based on thermodynamic principles that includes interfacial area as an additional parameter. A few static experimental studies have been previously performed, which allowed the determination of static parameters of the model, but no information exists concerning the interfacial area dynamic parameters. A new experimental porous flow cell that was constructed using stereolithography for two-phase gas-liquid flow studies was used in conjunction with an in-house analysis code to provide information on dynamic evolution of both fluid phases and gas-liquid interfaces. In this paper, we give a brief introduction to the new generalized model of two-phase flow model and describe how the stereolithography flow cell experimental setup was used to obtain the dynamic parameters for the interfacial area numerical model. In particular, the methods used to determine the interfacial area permeability and production terms are shown.

  11. Interfacial area concentration in gas–liquid bubbly to churn flow regimes in large diameter pipes

    International Nuclear Information System (INIS)

    Shen, Xiuzhong; Hibiki, Takashi

    2015-01-01

    Highlights: • A systematic method to predict interfacial area concentration (IAC) is presented. • A correlation for group 1 bubble void fraction is proposed. • Correlations of IAC and bubble diameter are developed for group 1 bubbles. • Correlations of IAC and bubble diameter are developed for group 2 bubbles. • The newly-developed two-group IAC model compares well with collected databases. - Abstract: This study performed a survey on existing correlations for interfacial area concentration (IAC) prediction and collected an IAC experimental database of two-phase flows taken under various flow conditions in large diameter pipes. Although some of these existing correlations were developed by partly using the IAC databases taken in the low-void-fraction two-phase flows in large diameter pipes, no correlation can satisfactorily predict the IAC in the two-phase flows changing from bubbly, cap bubbly to churn flow in the collected database of large diameter pipes. So this study presented a systematic way to predict the IAC for the bubbly-to-churn flows in large diameter pipes by categorizing bubbles into two groups (group 1: spherical or distorted bubble, group 2: cap bubble). A correlation was developed to predict the group 1 void fraction by using the void fraction for all bubble. The group 1 bubble IAC and bubble diameter were modeled by using the key parameters such as group 1 void fraction and bubble Reynolds number based on the analysis of Hibiki and Ishii (2001, 2002) using one-dimensional bubble number density and interfacial area transport equations. The correlations of IAC and bubble diameter for group 2 cap bubbles were developed by taking into account the characteristics of the representative bubbles among the group 2 bubbles and the comparison between a newly-derived drift velocity correlation for large diameter pipes and the existing drift velocity correlation of Kataoka and Ishii (1987) for large diameter pipes. The predictions from the newly

  12. Interfacial structures in confined cap-turbulent and churn-turbulent flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Kim, Seungjin; Cheng Ling; Ishii, Mamoru; Beus, Stephen G.

    2004-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined flow passage. Experiments of a total of 13 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200 mm in width and 10 mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. Bubble characteristics captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired local parameters are time-averaged void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for each group of bubbles. Also, the line-averaged and area-averaged data are presented and discussed in detail. The comparisons of these parameters at different elevations demonstrate the development of interfacial structures along the flow direction due to bubble interactions and the hydrodynamic effects. Furthermore, these data can serve as one part of the experimental data for investigation of the interfacial area transport in a confined two-phase flow

  13. Numerical Treatment of Two-phase Flow in Porous Media Including Specific Interfacial Area

    KAUST Repository

    El-Amin, Mohamed; Meftah, R.; Salama, Amgad; Sun, Shuyu

    2015-01-01

    -matrices method which can reduce the time-consuming operations. A new iterative implicit algorithm has been developed to solve the problem under consideration. All advection and advection-like terms that appear in saturation equation and interfacial area equation

  14. Interfacial area transport of bubbly flow in a small diameter pipe

    International Nuclear Information System (INIS)

    Hibiki, Takashi; Takamasa, Tomoji; Ishii, Mamoru

    2001-01-01

    In relation to the development of the interfacial area transport equation, this study focused on modeling of the interfacial area transport mechanism of vertical adiabatic air-water bubbly flows in a relatively small diameter pipe where the bubble size-to-pipe diameter ratio was relatively high and the radial motion of bubbles was restricted by the presence of the pipe wall. The sink term of the interfacial area concentration was modeled by considering wake entrainment as a possible bubble coalescence mechanism, whereas the source term was neglected by assuming negligibly small bubble breakup for low liquid velocity conditions based on visual observation. One-dimensional interfacial area transport equation with the derived sink term was evaluated by using five datasets of vertical adiabatic air-water bubbly flows measured in a 9.0 mm-diameter pipe (superficial gas velocity: 0.013-0.052 m/s, superficial liquid velocity: 0.58-1.0 m/s). The modeled interfacial area transport equation could reproduce the proper trend of the axial interfacial area transport and predict the measured interfacial area concentrations within an average relative deviation of ±11.1%. It was recognized that the present model would be promising for predicting the interfacial area transport of the examined bubbly flows. (author)

  15. Flow regime, void fraction and interfacial area transport and characteristics of co-current downward two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Lokanathan, Manojkumar [School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088 (United States); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)

    2016-10-15

    are studied. Moreover, the interfacial area concentration and the bubble coalescence and breakup mechanisms are shown to vary in the axial direction as well as with flow rate, flow area and pressure drop. The liquid velocity field, bubble shape and shear stress are studied for a stationary slug bubble with downward liquid flow. Furthermore, the relationship between the plug and foam flow shape profiles, relative velocity, void fraction and gas slug velocity at an elevated pressure of 0.2 MPa studied by Sekoguchi et al. (1996) are also analyzed, together with the five plug flow sub-regime groups located in the low slip and high slip velocity regions. For the annular flow, the relationship between liquid film thickness, entrainment mechanisms, film velocity and shear stress are studied as well. Alike to plug flow, five sub-regimes in the annular flow are also examined along with the bubble and droplet entrainment mechanisms. The paper also discusses the pressure drop for bubbly, slug, foam, falling film and annular flow regimes, with a particular focus on the most accurate interfacial friction factor correlation for annular flow and its applicability for a wide range of pipe diameters. The flow instability of a system such as static and dynamic instability in the presence of a downcomer, for both single and parallel heated channels are examined too. Finally, the most accurate and versatile drift-flux correlation applicable to all downward flow regimes is highlighted and compared to drift-flux type correlations as it will be a stepping stone to attain a more accurate co-current downward flow transition model. Further experimental effort is essential to achieve a strong foothold in the understanding of co-current downward two-phase flow, as it is vital for nuclear engineering applications.

  16. Prediction of interfacial area transport in a scaled 8×8 BWR rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Schlegel, J.P.; Liu, Y.; Paranjape, S.; Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Bajorek, S.; Ireland, A. [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

    2016-12-15

    In the two-fluid model, it is important to give an accurate prediction for the interfacial area concentration. In order to achieve this goal, the interfacial area transport equation has been developed. This study focuses on the benchmark of IATE performance in a rod bundle geometry. A set of interfacial area concentration source and sink term models are proposed for a rod bundle geometry based on the confined channel IATE model. This model was selected as a basis because of the relative similarity of the two geometries. Benchmarking of the new model with interfacial area concentration data in an 8×8 rod bundle test section which has been scaled from an actual BWR fuel bundle is performed. The model shows good agreement in bubbly and cap-bubbly flows, which are similar in many types of geometries, while it shows some discrepancy in churn-turbulent flow regime. This discrepancy may be due to the geometrical differences between the actual rod bundle test facility and the facility used to collect the data which benchmarked the original source and sink models.

  17. Stability of interfacial waves in two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W S [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    The influence of the interfacial pressure and the flow distribution in the one-dimensional two-fluid model on the stability problems of interfacial waves is discussed. With a proper formulation of the interfacial pressure, the following two-phase phenomena can be predicted from the stability and stationary criteria of the interfacial waves: onset of slug flow, stationary hydraulic jump in a stratified flow, flooding in a vertical pipe, and the critical void fraction of a bubbly flow. It can be concluded that the interfacial pressure plays an important role in the interfacial wave propagation of the two-fluid model. The flow distribution parameter may enhance the flow stability range, but only plays a minor role in the two-phase characteristics. (author). 20 refs., 3 tabs., 4 figs.

  18. Fundamental study on interfacial area transport model (I) (contract research)

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Nakamura, Hideo

    2001-03-01

    Recently, improvement in the best-estimate (BE) code predictive capability is attempted by incorporating the interfacial area transport model (IATM) into a one-dimensional two-fluid model to represent gas-liquid two-phase flows in detail with less uncertainty in the flow predictions. Internationally, the nuclear regulatory commission (NRC) and Purdue University in the U.S.A. and CEA in France have promoted the renewal of their BE codes such as TRAC, RELAP5 and CATHARE, by introducing the IATM in cooperative manner. In Japan, JAERI is underway to develop a one-dimensional code based primarily on the IATM against the licensing procedures of next-generation nuclear reactors. The IATM has a possibility to correctly predict flow transient along flow path for such flows as developing flows, multi-dimensional flows, transitional flows, boiling flows, which are difficult to accurately predict by the two-fluid models employed in the current BE codes. The newly developed code with the IATM would dramatically improve the accuracy in the flow prediction. The model, however, is under development and needs great effort to overcome many difficulties with plenty of theoretical considerations based on much of data bases to be acquired further. This study attempts to measure interfacial area in air-water two-phase flows in a large-diameter tube to understand the characteristic of multi-dimensional flows that usually appear in large-diameter tube flows, and provide data bases, to contribute the development of the IATM. The results obtained by such institutes as Purdue University and CEA France were reviewed first. Clarified are the current status and problems of the IATM, basics and practical methods to measure the interfacial area using multi-sensor miniature local probes; metal needle electro-resistance probe and fiber-optic probe. It was found that the applicability of the IATM is limited mostly to a one-dimensional bubbly flow, and is far from satisfactory for multi

  19. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    International Nuclear Information System (INIS)

    Sun, X.; Kim, S.; Cheng, L.; Ishii, M.; Beus, S.G.

    2001-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in a cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 20-cm in width and 1-cm in gap. The miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions

  20. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    International Nuclear Information System (INIS)

    Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii; Beus, Stephen G.

    2002-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)

  1. The Gas-Absorption/Chemical-Reaction Method for Measuring Air-Water Interfacial Area in Natural Porous Media

    Science.gov (United States)

    Lyu, Ying; Brusseau, Mark L.; El Ouni, Asma; Araujo, Juliana B.; Su, Xiaosi

    2017-11-01

    The gas-absorption/chemical-reaction (GACR) method used in chemical engineering to quantify gas-liquid interfacial area in reactor systems is adapted for the first time to measure the effective air-water interfacial area of natural porous media. Experiments were conducted with the GACR method, and two standard methods (X-ray microtomographic imaging and interfacial partitioning tracer tests) for comparison, using model glass beads and a natural sand. The results of a series of experiments conducted under identical conditions demonstrated that the GACR method exhibited excellent repeatability for measurement of interfacial area (Aia). Coefficients of variation for Aia were 3.5% for the glass beads and 11% for the sand. Extrapolated maximum interfacial areas (Am) obtained with the GACR method were statistically identical to independent measures of the specific solid surface areas of the media. For example, the Am for the glass beads is 29 (±1) cm-1, compared to 32 (±3), 30 (±2), and 31 (±2) cm-1 determined from geometric calculation, N2/BET measurement, and microtomographic measurement, respectively. This indicates that the method produced accurate measures of interfacial area. Interfacial areas determined with the GACR method were similar to those obtained with the standard methods. For example, Aias of 47 and 44 cm-1 were measured with the GACR and XMT methods, respectively, for the sand at a water saturation of 0.57. The results of the study indicate that the GACR method is a viable alternative for measuring air-water interfacial areas. The method is relatively quick, inexpensive, and requires no specialized instrumentation compared to the standard methods.

  2. Specific interface area and self-stirring in a two-liquid system experiencing intense interfacial boiling below the bulk boiling temperatures of both components

    Science.gov (United States)

    Goldobin, Denis S.; Pimenova, Anastasiya V.

    2017-04-01

    We present an approach to theoretical assessment of the mean specific interface area (δ S/δ V) for a well-stirred system of two immiscible liquids experiencing interfacial boiling. The assessment is based on the balance of transformations of mechanical energy and the laws of the momentum and heat transfer in the turbulent boundary layer. The theory yields relations between the specific interface area and the characteristics of the system state. In particular, this allows us to derive the equations of self-cooling dynamics of the system in the absence of external heat supply. The results provide possibility for constructing a self-contained mathematical description of the process of interfacial boiling. In this study, we assume the volume fractions of two components to be similar as well as the values of their kinematic viscosity and molecular heat diffusivity.

  3. Prediction of adiabatic bubbly flows in TRACE using the interfacial area transport equation

    International Nuclear Information System (INIS)

    Talley, J.; Worosz, T.; Kim, S.; Mahaffy, J.; Bajorek, S.; Tien, K.

    2011-01-01

    The conventional thermal-hydraulic reactor system analysis codes utilize a two-field, two-fluid formulation to model two-phase flows. To close this model, static flow regime transition criteria and algebraic relations are utilized to estimate the interfacial area concentration (a i ). To better reflect the continuous evolution of two-phase flow, an experimental version of TRACE is being developed which implements the interfacial area transport equation (IATE) to replace the flow regime based approach. Dynamic estimation of a i is provided through the use of mechanistic models for bubble coalescence and disintegration. To account for the differences in bubble interactions and drag forces, two-group bubble transport is sought. As such, Group 1 accounts for the transport of spherical and distorted bubbles, while Group 2 accounts for the cap, slug, and churn-turbulent bubbles. Based on this categorization, a two-group IATE applicable to the range of dispersed two-phase flows has been previously developed. Recently, a one-group, one-dimensional, adiabatic IATE has been implemented into the TRACE code with mechanistic models accounting for: (1) bubble breakup due to turbulent impact of an eddy on a bubble, (2) bubble coalescence due to random collision driven by turbulent eddies, and (3) bubble coalescence due to the acceleration of a bubble in the wake region of a preceding bubble. To demonstrate the enhancement of the code's capability using the IATE, experimental data for a i , void fraction, and bubble velocity measured by a multi-sensor conductivity probe are compared to both the IATE and flow regime based predictions. In total, 50 air-water vertical co-current upward and downward bubbly flow conditions in pipes with diameters ranging from 2.54 to 20.32 cm are evaluated. It is found that TRACE, using the conventional flow regime relation, always underestimates a i . Moreover, the axial trend of the a i prediction is always quasi-linear because a i in the

  4. Internal structure and interfacial velocity development for bubbly two-phase flow

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; Huang, W.D.

    1994-01-01

    This paper describes an experimental study of the internal structure of air-water flowing horizontally. The double-sensor resistivity probe technique was applied for measurements of local interfacial parameters, including void fraction, interfacial area concentration, bubble size distributions, bubble passing frequency and bubble interface velocity. Bubbly flow patterns at several flow conditions were examined at three axial locations, L/D=25, 148 and 253, in which the first measurement represents the entrance region where the flow develops, and the second and third may represent near fully developed bubbly flow patterns. The experimental results are presented in three-dimensional perspective plots of the interfacial parameters over the cross-section. These multi-dimensional presentations showed that the local values of the void fraction, interfacial area concentration and bubble passing frequency were nearly constant over the cross-section at L/D=25, with slight local peaking close to the channel wall. Although similar local peakings were observed at the second and third locations, the internal flow structure segregation due to buoyancy appeared to be very strong in the axial direction. A simple comparison of profiles of the interfacial parameters at the three locations indicated that the flow pattern development was a continuous process. Finally, it was shown that the so-called ''fully developed'' bubbly two-phase flow pattern cannot be established in a horizontal pipe and that there was no strong correspondence between void fraction and interface velocity profiles. ((orig.))

  5. An Implementation of Interfacial Transport Equation into the CUPID code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik Kyu; Cho, Heong Kyu; Yoon, Han Young; Jeong, Jae Jun

    2009-11-15

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components for a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted a three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAS, semi-implicit ICE, SIMPLE. The governing equations for a 2-phase flow are composed of mass, momentum, and energy conservation equations for each phase. These equation sets are closed by the interfacial transfer rate of mass, momentum, and energy. The interfacial transfer of mass, momentum, and energy occurs through the interfacial area, and this area plays an important role in the transfer rate. The flow regime based correlations are used for calculating the interracial area in the traditional style 2-phase flow model. This is dependent upon the flow regime and is limited to the fully developed 2-phase flow region. Its application to the multi-dimensional 2-phase flow has some limitation because it adopts the measured results of 2-phase flow in the 1-dimensional tube. The interfacial area concentration transport equation had been suggested in order to calculate the interfacial area without the interfacial area correlations. The source terms to close the interfacial area transport equation should be further developed for a wide ranger usage of it. In this study, the one group interfacial area concentration transport equation has been implemented into the CUPID code. This interfacial area concentration transport equation can be used instead of the interfacial area concentration correlations for the bubbly flow region.

  6. An Implementation of Interfacial Transport Equation into the CUPID code

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Cho, Heong Kyu; Yoon, Han Young; Jeong, Jae Jun

    2009-11-01

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components for a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted a three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAS, semi-implicit ICE, SIMPLE. The governing equations for a 2-phase flow are composed of mass, momentum, and energy conservation equations for each phase. These equation sets are closed by the interfacial transfer rate of mass, momentum, and energy. The interfacial transfer of mass, momentum, and energy occurs through the interfacial area, and this area plays an important role in the transfer rate. The flow regime based correlations are used for calculating the interracial area in the traditional style 2-phase flow model. This is dependent upon the flow regime and is limited to the fully developed 2-phase flow region. Its application to the multi-dimensional 2-phase flow has some limitation because it adopts the measured results of 2-phase flow in the 1-dimensional tube. The interfacial area concentration transport equation had been suggested in order to calculate the interfacial area without the interfacial area correlations. The source terms to close the interfacial area transport equation should be further developed for a wide ranger usage of it. In this study, the one group interfacial area concentration transport equation has been implemented into the CUPID code. This interfacial area concentration transport equation can be used instead of the interfacial area concentration correlations for the bubbly flow region

  7. Numerical evaluation for a five-sensor probe method to measure the interfacial area concentration under the bubble fluctuation condition

    International Nuclear Information System (INIS)

    Euh, D. J.; Yun, B. J.; Song, C. H.

    2003-01-01

    Interfacial area concentration is an important parameter in the two phase flow models. Currently, two types of probe methods, double-sensor and four-sensor, are widely used to measure the interfacial area concentration. In this study, a configuration of five-sensor probe sensor tips and a measuring method for the interfacial area concentration by using the probe are proposed to improve the performance of the previous probe methods. The five-sensor probe method proposed in this study is essentially based on the four-sensor probe method but improves it by adapting one more sensor. The passing types of the interfaces through the sensors are categorized into four and independent methods are applied to the interfaces belonging to each category. This method has an advantage such that a more systematic approach for missing bubbles can be made when compared with the classical four sensor probe method. To verify the applicability of the five-sensor probe method, numerical tests are performed with consideration of the bubble lateral movement. The effects of bubble size and intensity of the bubble lateral motion on the measurement of the interfacial area concentration are also investigated. The bubble parameters related to the bubble fluctuation and interface geometry are determined by the Monte Carlo approach

  8. Development and validation of a new solver based on the interfacial area transport equation for the numerical simulation of sub-cooled boiling with OpenFOAM CFD code for nuclear safety applications

    Energy Technology Data Exchange (ETDEWEB)

    Alali, Abdullah

    2014-02-21

    The one-group interfacial area transport equation has been coupled to a wall heat flux partitioning model in the framework of two-phase Eulerian approach using the OpenFOAM CFD code for better prediction of subcooled boiling phenomena which is essential for safety analysis of nuclear reactors. The interfacial area transport equation has been modified to include the effect of bubble nucleation at the wall and condensation by subcooled liquid in the bulk that governs the non-uniform bubble size distribution.

  9. Development and validation of a new solver based on the interfacial area transport equation for the numerical simulation of sub-cooled boiling with OpenFOAM CFD code for nuclear safety applications

    International Nuclear Information System (INIS)

    Alali, Abdullah

    2014-01-01

    The one-group interfacial area transport equation has been coupled to a wall heat flux partitioning model in the framework of two-phase Eulerian approach using the OpenFOAM CFD code for better prediction of subcooled boiling phenomena which is essential for safety analysis of nuclear reactors. The interfacial area transport equation has been modified to include the effect of bubble nucleation at the wall and condensation by subcooled liquid in the bulk that governs the non-uniform bubble size distribution.

  10. Contact mechanics: contact area and interfacial separation from small contact to full contact

    International Nuclear Information System (INIS)

    Yang, C; Persson, B N J

    2008-01-01

    We present a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. The numerical calculations mainly focus on the contact area and the interfacial separation from small contact (low load) to full contact (high load). For a small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For a high load the contact area approaches the nominal contact area (i.e. complete contact), and the interfacial separation approaches zero. The numerical results have been compared with analytical theory and experimental results. They are in good agreement with each other. The present findings may be very important for soft solids, e.g. rubber, or for very smooth surfaces, where complete contact can be reached at moderately high loads without plastic deformation of the solids

  11. Influence of small amounts of additives on gas hold-up, bubble size, and interfacial area

    NARCIS (Netherlands)

    Cents, A. H. G.; Jansen, D. J. W.; Brilman, D. W. F.; Versteeg, G. F.

    2005-01-01

    The gas-liquid interfacial area, which is determined by the gas hold-up and the Sauter mean bubble diameter, determines the production rate in many industrial processes. The effect of additives on this interfacial area is, especially in multiphase systems (gas-liquid-solid, gas-liquid-liquid), often

  12. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    Science.gov (United States)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness

  13. Establishing a Quantitative Functional Relationship between Capillary Pressure Saturation and Interfacial Area

    International Nuclear Information System (INIS)

    Carlo Montemagno

    2002-01-01

    We propose to continue our collaborative research focused on advanced technologies for subsurface contamination problems. Our approach combines new multi-phase flow theory, novel laboratory experiments, and non-traditional computational simulators to investigate practical approaches to include interfacial areas in descriptions of subsurface contaminant transport and remediation. Because all inter-phase mass transfer occurs at fluid-fluid interfaces, and it is this inter-phase mass transfer that leads to the difficult, long-term ground-water contamination problems, it is critical to include interfacial behavior in the problem description. This is currently lacking in all standard models of complex ground-water contamination problems. In our earlier project, we developed tools appropriate for inclusion of interfacial areas under equilibrium conditions. These include advanced laboratory techniques and targeted computational experiments that validated certain key theoretical conjecture s. However, it has become clear that to include interfacial behavior fully into a description of the multi-phase flow and contamination problems, the fully dynamic case must be considered. Therefore, we need to develop both experimental and computational tools that can capture the dynamic nature of interfacial movements. Development and application of such tools will allow the theory to be evaluated, and will lead to significant improvements in our understanding of complex subsurface contamination problems, thereby allowing us to develop and evaluate improved remediation technologies

  14. Laser Ablation Increases PEM/Catalyst Interfacial Area

    Science.gov (United States)

    Whitacre, Jay; Yalisove, Steve

    2009-01-01

    An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken

  15. Monte Carlo studies on the interfacial properties and interfacial structures of ternary symmetric blends with gradient copolymers.

    Science.gov (United States)

    Sun, Dachuan; Guo, Hongxia

    2012-08-09

    Using Monte Carlo simulation methods, the effects of the comonomer sequence distribution on the interfacial properties (including interfacial tension, interfacial thickness, saturated interfacial area per copolymer, and bending modulus) and interfacial structures (including chain conformations and comonomer distributions of the simulated copolymers at the interfaces) of a ternary symmetric blend containing two immiscible homopolymers and one gradient copolymer are investigated. We find that copolymers with a larger composition gradient width have a broader comonomer distribution along the interface normal, and hence more pronouncedly enlarge the interfacial thickness and reduce the interfacial tension. Furthermore, the counteraction effect, which arises from the tendency of heterogeneous segments in gradient copolymers to phase separate and enter their miscible phases to reduce the local enthalpy, decreases the stretching of copolymers along the interface normal direction. As a result, copolymers with a larger width of gradient composition can occupy a larger interfacial area and form softer monolayers at saturation and are more efficient in facilitating the formation of bicontinuous microemulsions. Additionally, chain length ratio, segregation strength, and interactions between homopolymers and copolymers can alter the interfacial character of gradient copolymers. There exists a strong coupling between the comonomer sequence distribution, chain conformation, and interfacial properties. Especially, bending modulus is mainly determined by the complicated interplay of interfacial copolymer density and interfacial chain conformation.

  16. Establishing a Quantitative Functional Relationship between Capillary Pressure Saturation and Interfacial Area; FINAL

    International Nuclear Information System (INIS)

    Carlo Montemagno

    2002-01-01

    We propose to continue our collaborative research focused on advanced technologies for subsurface contamination problems. Our approach combines new multi-phase flow theory, novel laboratory experiments, and non-traditional computational simulators to investigate practical approaches to include interfacial areas in descriptions of subsurface contaminant transport and remediation. Because all inter-phase mass transfer occurs at fluid-fluid interfaces, and it is this inter-phase mass transfer that leads to the difficult, long-term ground-water contamination problems, it is critical to include interfacial behavior in the problem description. This is currently lacking in all standard models of complex ground-water contamination problems. In our earlier project, we developed tools appropriate for inclusion of interfacial areas under equilibrium conditions. These include advanced laboratory techniques and targeted computational experiments that validated certain key theoretical conjecture s. However, it has become clear that to include interfacial behavior fully into a description of the multi-phase flow and contamination problems, the fully dynamic case must be considered. Therefore, we need to develop both experimental and computational tools that can capture the dynamic nature of interfacial movements. Development and application of such tools will allow the theory to be evaluated, and will lead to significant improvements in our understanding of complex subsurface contamination problems, thereby allowing us to develop and evaluate improved remediation technologies

  17. Interfacial self-organization of bolaamphiphiles bearing mesogenic groups: relationships between the molecular structures and their self-organized morphologies.

    Science.gov (United States)

    Song, Bo; Liu, Guanqing; Xu, Rui; Yin, Shouchun; Wang, Zhiqiang; Zhang, Xi

    2008-04-15

    This article discusses the relationship between the molecular structure of bolaamphiphiles bearing mesogenic groups and their interfacial self-organized morphology. On the basis of the molecular structures of bolaamphiphiles, we designed and synthesized a series of molecules with different hydrophobic alkyl chain lengths, hydrophilic headgroups, mesogenic groups, and connectors between the alkyl chains and the mesogenic group. Through investigating their interfacial self-organization behavior, some experiential rules are summarized: (1) An appropriate alkyl chain length is necessary to form stable surface micelles; (2) different categories of headgroups have a great effect on the interfacial self-organized morphology; (3) different types of mesogenic groups have little effect on the structure of the interfacial assembly when it is changed from biphenyl to azobenzene or stilbene; (4) the orientation of the ester linker between the mesogenic group and alkyl chain can greatly influence the interfacial self-organization behavior. It is anticipated that this line of research may be helpful for the molecular engineering of bolaamphiphiles to form tailor-made morphologies.

  18. Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column

    International Nuclear Information System (INIS)

    Lim, Dae Ho; Yoo, Dong Jun; Kang, Yong

    2015-01-01

    Characteristics of gas-liquid mass transfer and interfacial area were investigated in a bubble column of diameter and height of 0.102 m and 2.5 m, respectively. Effects of gas and liquid velocities on the volumetric gas-liquid mass transfer coefficient (k L a), interfacial area (a) and liquid side true mass transfer coefficient (k L ) were examined. The interfacial area and volumetric gas-liquid mass transfer coefficient were determined directly by adopting the simultaneous physical desorption of O 2 and chemical absorption of CO 2 in the column. The values of k L a and a increased with increasing gas velocity but decreased with increasing liquid velocity in the bubble column which was operated in the churn turbulent flow regime. The value of k L increased with increasing gas velocity but did not change considerably with increasing liquid velocity. The liquid side mass transfer was found to be related closely to the liquid circulation as well as the effective contacting frequency between the bubbles and liquid phases

  19. Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dae Ho; Yoo, Dong Jun; Kang, Yong [Chungnam National University, Daejeon (Korea, Republic of)

    2015-02-15

    Characteristics of gas-liquid mass transfer and interfacial area were investigated in a bubble column of diameter and height of 0.102 m and 2.5 m, respectively. Effects of gas and liquid velocities on the volumetric gas-liquid mass transfer coefficient (k{sub L}a), interfacial area (a) and liquid side true mass transfer coefficient (k{sub L}) were examined. The interfacial area and volumetric gas-liquid mass transfer coefficient were determined directly by adopting the simultaneous physical desorption of O{sub 2} and chemical absorption of CO{sub 2} in the column. The values of k{sub L}a and a increased with increasing gas velocity but decreased with increasing liquid velocity in the bubble column which was operated in the churn turbulent flow regime. The value of k{sub L} increased with increasing gas velocity but did not change considerably with increasing liquid velocity. The liquid side mass transfer was found to be related closely to the liquid circulation as well as the effective contacting frequency between the bubbles and liquid phases.

  20. Wavelet analysis of interfacial waves in cocurrent two-phase flow in horizontal duct

    International Nuclear Information System (INIS)

    Kondo, Masaya; Kukita, Yutaka

    1996-07-01

    Wavelet analysis was applied to spatially-growing interfacial waves in a cocurrent gas/liquid two-phase flow. The wave growth plays a key role in the transition from stratified-wavy to slug flow, which is an important phenomena in many engineering applications. Of particular interest to the present study was the quick growth or decay of particular waves which were observed in experiments together with the general growth of waves with distance in the flow direction. Among the several wavelet functions tested in the present study, the Morlet wavelet and the Gabor function were found to have spectral and spatial resolutions suitable to the analysis of interfacial wave data taken by the authors. The analysis revealed that 1) the spectral components composing the interfacial waves are propagating at different phase velocities which agree to the theoretical velocities of deep-water waves, 2) the group velocity of the waves also agrees to the deep-water theory, and 3) the quick growth and decay of particular waves occur as a result of the superposition of spectral components with different phase velocities. (author)

  1. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2012-12-01

    Full Text Available In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As two-phase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  2. Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact

    OpenAIRE

    Yang, C.; Persson, B. N. J.

    2007-01-01

    We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the i...

  3. Uniqueness of Specific Interfacial Area–Capillary Pressure–Saturation Relationship Under Non-Equilibrium Conditions in Two-Phase Porous Media Flow

    KAUST Repository

    Joekar-Niasar, Vahid

    2012-02-23

    The capillary pressure-saturation (P c-S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a hypothetical porous medium using a dynamic pore-network model called DYPOSIT, which has been employed and extended for this study: (a) P c-S w relationship is measured empirically under equilibrium conditions. It is then used in Darcy-based simulations for all dynamic conditions. This is only valid if there is a guarantee that this relationship is unique for a given flow process (drainage or imbibition) independent of dynamic conditions; (b) It is also known that P c-S w relationship is flow process dependent. Depending on drainage and imbibition, different curves can be achieved, which are referred to as "hysteresis". A thermodynamically derived theory (Hassanizadeh and Gray, Water Resour Res 29: 3389-3904, 1993a) suggests that, by introducing a new state variable, called the specific interfacial area (a nw, defined as the ratio of fluid-fluid interfacial area to the total volume of the domain), it is possible to define a unique relation between capillary pressure, saturation, and interfacial area. This study investigates these two aspects of capillary pressure-saturation relationship using a dynamic pore-network model. The simulation results imply that P c-S w relation not only depends on flow process (drainage and imbibition) but also on dynamic conditions for a given flow process. Moreover, this study attempts to obtain the first preliminary insights into the global functionality of capillary pressure-saturation-interfacial area relationship under equilibrium and non-equilibrium conditions and the uniqueness of P c-S w-a nw relationship. © 2012 The Author(s).

  4. Procurement of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials

    Science.gov (United States)

    2015-12-31

    SECURITY CLASSIFICATION OF: After acquiring the Infrared Imaging Microscope with large area mapping capabilities for structure -function research and...Inorganic Interfacial Analysis in Biological Materials The views, opinions and/or findings contained in this report are those of the author(s) and should...of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials Report Title After acquiring the Infrared

  5. Determination of the interfacial area of a continuous integrated mixer/separator (CINC) using a chemical reaction method

    NARCIS (Netherlands)

    Schuur, B.; Jansma, W. J.; Winkelman, J. G. M.; Heeres, H. J.

    The effect of the liquid flow rates (18-100 mL/min) and rotor frequency (30-60 Hz) on the interfacial area of a liquid-liquid system in a CINC-V02 continuous integrated mixer/separator have been studied using a chemical reaction method. Topical specific interfacial areas were in the range of 3.2 x

  6. Interfacial heat transfer - State of the art

    International Nuclear Information System (INIS)

    Yadigaroglu, G.

    1987-01-01

    Interfacial heat exchanges control the interfacial mass exchange rate, depend on the interfacial area, and are tied to the prediction of thermal nonequilibrium. The nature of the problem usually requires the formulation of mechanistic laws and precludes the general use of universal correlations. This is partly due to the fact that the length scale controlling the interfacial exchanges varies widely from one situation to another and has a strong influence on the exchange coefficients. Within the framework of the ''two-fluid models'', the exchanges occurring at the interfaces are explicitly taken into consideration by the jump condition linking the volumetric mass exchange (evaporation) rate between the phases, to the interfacial energy transfer rates

  7. Distribution characteristics of interfacial parameter in downward gas-liquid two-phase flow in vertical circular tube

    International Nuclear Information System (INIS)

    Liu Guoqiang; Yan Changqi; Tian Daogui; Sun Licheng

    2014-01-01

    Experimental study was performed on distribution characteristics of interfacial parameters of downward gas-liquid flow in a vertical circular tube with the measurement by a two-sensor optical fiber probe. The test section is a circular pipe with the inner diameter of 50 mm and the length of 2000 mm. The superficial velocities of the gas and the liquid phases cover the ranges of 0.004-0.077 m/s and 0.43-0.71 m/s, respectively. The results show that the distributions of the interfacial parameters in downward bubbly flows are quite different from those in upward bubbly flows. For the case of upward flow, the parameters present the 'wall-peak' or 'core-peak' distributions, but for the case of downward flow, they show 'wall-peak' or 'wide-peak' distributions. The average value of void fraction in vertical downward flow is about 119.6%-145.0% larger than that in upward flow, and the interfacial area concentration is about 18.8%-82.5% larger than that in upward flow. The distribution of interfacial parameters shows an obvious tendency of uniformity. (authors)

  8. Establishing a quantitative functional relationship between capillary pressure, saturation and interfacial area. 1997 annual progress report

    International Nuclear Information System (INIS)

    Montemagno, C.D.

    1997-01-01

    'There is a fundamental knowledge gap associated with the in situ remediation of non-aqueous phase pollutants. Currently it is not possible to accurately determine the interfacial surface area of non-aqueous contaminants. As a result it is impossible to (1) accurately establish the health and environmental risk associated with the pollution: (2) precisely quantify and evaluate the potential efficacy of various in situ treatment technologies; and (3) conduct reliable performance assessments of the applied remediation technology during and after the clean-up. The global goal of this investigation is to try to remedy these shortcomings through the development of a formalized functional relationship between interfacial area (a), phase saturation (S) and capillary pressure (P). The development of this relationship will allow the direct determination of the fluid-fluid interfacial area from field measurements. Quantitative knowledge of the surface area of the non-aqueous phase pollutant facilitates accurate predictions of both the rate of dissolution and the contact area available for treatment. In addition. if saturation and capillary pressure measurements are made during the remediation process. both the spatial and temporal effectiveness of the remediation technology can be quantified. This information can then be used to optimize the restoration program. The project objective will be achieved through an integrated and focused research program that is comprised of theoretical computational and experimental efforts. These efforts are organized into a framework of four tasks: (1) improve on newly developed laboratory techniques to quantify and directly measure the functional relationship between phase interfacial area (a), saturation (S) and capillary pressure (P). (2) Develop new computational algorithms in conjunction with laboratory measurements to predict P, S and a. (3) Test existing theory and develop new theory to describe the relationship between P, S and a at

  9. Interfacial structures - Thermodynamical and experimental studies of the interfacial mass transfer

    International Nuclear Information System (INIS)

    Morel, Jean-Emile

    1972-01-01

    In the first section, we put forward hypotheses concerning the structure of the interfacial regions between two immiscible liquid phases. It appears that the longitudinal structure is comparable with that of a crystallized solid and that the transversal structure is nearest of that of a liquid. In the second section, we present a thermodynamical treatment of the irreversible phenomena in the interfacial region. The equation of evolution of a system consisting of two immiscible liquid phases are deduced. The third part allows an experimental verification of the theoretical relations. We also make clear, in certain cases, the appearance of a great 'interfacial resistance' which slows down the interfacial mass transfer. (author) [fr

  10. Modeling of bubble coalescence and disintegration in confined upward two-phase flow

    International Nuclear Information System (INIS)

    Sun Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2004-01-01

    This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equation in the confined flow. These models include both intra-group and inter-group bubble interactions

  11. Liquid-vapor equilibrium and interfacial properties of square wells in two dimensions

    Science.gov (United States)

    Armas-Pérez, Julio C.; Quintana-H, Jacqueline; Chapela, Gustavo A.

    2013-01-01

    Liquid-vapor coexistence and interfacial properties of square wells in two dimensions are calculated. Orthobaric densities, vapor pressures, surface tensions, and interfacial thicknesses are reported. Results are presented for a series of potential widths λ* = 1.4, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5, where λ* is given in units of the hard core diameter σ. Critical and triple points are explored. No critical point was found for λ* Armas-Pérez et al. [unpublished] as a hexatic phase transition. It is located at reduced temperatures T* = 0.47 and 0.35 for λ* = 1.4 and 1.5, respectively. Properties such as the surface tension, vapor pressure, and interfacial thickness do not present any discontinuity at these points. This amorphous solid branch does not follow the corresponding state principle, which is only applied to liquids and gases.

  12. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior

    International Nuclear Information System (INIS)

    Park, Soo-Jin; Kim, Byung-Joo

    2005-01-01

    The gas phase ozone treatment was used as a method to bind acidic oxygen functional groups on carbon fiber surfaces. The ozone treatment on carbon fibers was varied with the ozone concentration and treatment time. Surface analyses of the carbon fibers before and after treatments were performed by FT-IR, X-ray photoelectron spectrometer (XPS), and dynamic contact angle measurements. Mechanical interfacial properties of the fibers/polymer composites were investigated by using critical stress intensity factor (K IC ) and critical energy release rate (G IC ) measurements. From the results of FT-IR and XPS, it was observed that the oxygen functional groups, such as -OH, O-C=O, C=O, and C-O, were attached on the carbon fiber surfaces after the ozone treatment. The mechanical interfacial properties of the composites also showed higher values than those of untreated composites. Ozone treatment is attributed to the increase of both the acidic functional groups and the degree of adhesion at interfaces between the fibers and polymeric resin in composites

  13. An arbitrary Lagrangian-Eulerian method for interfacial flows with insoluble surfactants

    Science.gov (United States)

    Yang, Xiaofeng

    Interfacial flows, fluid flows involving two or more fluids that do not mix, are common in many natural and industrial processes such as rain drop formation, crude oil recovery, polymer blending, fuel spray formation, and so on. Surfactants (surface active substances) play an important role in such processes because they significantly change the interfacial dynamics. In this thesis, an arbitrary Lagrangian-Eulerian (ALE) method has been developed to numerically simulate interfacial flows with insoluble surfactants. The interface is captured using a coupled level set and volume of fluid method. To evolve the surfactant concentration, the method directly tracks the surfactant mass and the interfacial area. The surfactant concentration, which determines the local surface tension through an equation of state, is then computed as surfactant mass per interfacial area. By directly tracking the surfactant mass, the method conserves the surfactant mass exactly. To accurately approximate the interfacial area, the fluid interface is reconstructed using piecewise parabolas. The evolution of the level set function, volume fraction, interfacial area, and the surfactant mass is performed using an ALE approach. The fluid flow is governed by Stokes equations, which are solved using a finite element method. The surface forces are included in the momentum equation using a continuum surface stress formulation. To efficiently resolve the complex interfacial dynamics, interfacial regions of high surface curvature, and near contact regions between two interacting interfaces, the grid near the interface is adaptively refined. The method is extendible to axisymmetric and 3D spaces, and can be coupled with other flow solvers, such as Navier-Stokes and viscoelastic flow solvers, as well. The method has been applied to study the effect of surfactants on drop deformation and breakup in an extensional flow. Drop deformation results are compared with available experimental and theoretical

  14. Development of the interfacial area concentration measurement method using a five sensor conductivity probe

    International Nuclear Information System (INIS)

    Euh, Dong Jin; Yun, Byong Jo; Song, Chul Hwa; Kwon, Tae Soon; Chung, Moon Ki; Lee, Un Chul

    2000-01-01

    The interfacial area concentration(IAC) is one of the most important parameters in the two-fluid model for two-phase flow analysis. The IAE can be measured by a local conductivity probe method that uses the difference of conductivity between water and air/steam. The number of sensors in the conductivity probe may be differently chosen by considering the flow regime of two-phase flow. The four sensor conductivity probe method predicts the IAC without any assumptions of the bubble shape. The local IAC can be obtained by measuring the three dimensional velocity vector elements at the measuring point, and the directional cosines of the sensors. The five sensor conductivity probe method proposed in this study is based on the four sensor probe method. With the five sensor probe, the local IAC for a given referred measuring area of the probe can be predicted more exactly than the four sensor prober. In this paper, the mathematical approach of the five sensor probe method for measuring the IAC is described, and a numerical simulation is carried out for ideal cap bubbles of which the sizes and locations are determined by a random number generator

  15. An interfacial shear term evaluation study for adiabatic dispersed air–water two-phase flow with the two-fluid model using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Schlegel, J.P. [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Buchanan, J.R.; Hogan, K.J. [Bettis Laboratory, Naval Nuclear Laboratory, West Mifflin, PA (United States); Guilbert, P.W. [ANSYS UK Ltd, Oxfordshire (United Kingdom)

    2017-02-15

    Highlights: • Closure form of the interfacial shear term in three-dimensional form is investigated. • Assessment against adiabatic upward bubbly air–water flow data using CFD. • Effect of addition of the interfacial shear term on the phase distribution. - Abstract: In commercially available Computational Fluid Dynamics (CFD) codes such as ANSYS CFX and Fluent, the interfacial shear term is missing in the field momentum equations. The derivation of the two-fluid model (Ishii and Hibiki, 2011) indicates the presence of this term as a momentum source in the right hand side of the field momentum equation. The inclusion of this term is considered important for proper modeling of the interfacial momentum coupling between phases. For separated flows, such as annular flow, the importance of the shear term is understood in the one-dimensional (1-D) form as the major mechanism by which the wall shear is transferred to the gas phase (Ishii and Mishima, 1984). For gas dispersed two-phase flow CFD simulations, it is important to assess the significance of this term in the prediction of phase distributions. In the first part of this work, the closure of this term in three-dimensional (3-D) form in a CFD code is investigated. For dispersed gas–liquid flow, such as bubbly or churn-turbulent flow, bubbles are dispersed in the shear layer of the continuous phase. The continuous phase shear stress is mainly due to the presence of the wall and the modeling of turbulence through the Boussinesq hypothesis. In a 3-D simulation, the continuous phase shear stress can be calculated from the continuous fluid velocity gradient, so that the interfacial shear term can be closed using the local values of the volume fraction and the total stress of liquid phase. This form also assures that the term acts as an action-reaction force for multiple phases. In the second part of this work, the effect of this term on the volume fraction distribution is investigated. For testing the model two

  16. Measurement of interfacial areas with the chemical method for a system with alternating dispersed phases

    NARCIS (Netherlands)

    van Woezik, B.A.A.; Westerterp, K.R.

    2000-01-01

    The interfacial area for a liquid–liquid system has been determined by the chemical reaction method. The saponification of butyl formate ester with 8 M sodium hydroxide has been used to this end. A correlation has been derived to describe the mole flux of ester through the interface and the kinetic

  17. Interfacial and Surface Science | Materials Science | NREL

    Science.gov (United States)

    Science group within the Material Science Center. He oversees research studies of surfaces and interfaces Interfacial and Surface Science Interfacial and Surface Science Image of irregular-outlined, light address a broad range of fundamental and applied issues in surface and interfacial science that are

  18. Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Thomas, E-mail: t.hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Deendarlianto,; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany)

    2011-10-15

    In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-{omega} turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.

  19. Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model

    Energy Technology Data Exchange (ETDEWEB)

    Hohne, T.; Deendarlianto; Vallee, C.; Lucas, D.; Beyer, M., E-mail: t.hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Inst. of Safety Research, Dresden (Germany)

    2011-07-01

    In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz-Zentrum Dresden- Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a SST turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all ANSYS CFX users, with the possibility of the implementation of their own correlations. (author)

  20. Unsteady interfacial coupling of two-phase flow models

    International Nuclear Information System (INIS)

    Hurisse, O.

    2006-01-01

    The primary coolant circuit in a nuclear power plant contains several distinct components (vessel, core, pipes,...). For all components, specific codes based on the discretization of partial differential equations have already been developed. In order to obtain simulations for the whole circuit, the interfacial coupling of these codes is required. The approach examined within this work consists in coupling codes by providing unsteady information through the coupling interface. The numerical technique relies on the use of an interface model, which is combined with the basic strategy that was introduced by Greenberg and Leroux in order to compute approximations of steady solutions of non-homogeneous hyperbolic systems. Three different coupling cases have been examined: (i) the coupling of a one-dimensional Euler system with a two-dimensional Euler system; (ii) the coupling of two distinct homogeneous two-phase flow models; (iii) the coupling of a four-equation homogeneous model with the standard two-fluid model. (author)

  1. Analytical expression for the evolution of interfacial area density between transformed grains during nucleation and growth transformations

    DEFF Research Database (Denmark)

    Rios, P.R.; Godiksen, R.B.; Schmidt, Søren

    2006-01-01

    This paper shows that interfacial area density between transformed grains during nucleation and growth transformations and the contiguity are useful descriptors of microstructural evolution. These descriptors are evaluated analytically and compared with results from computer simulation. Usage...

  2. Interplay of interfacial noise and curvature-driven dynamics in two dimensions

    Science.gov (United States)

    Roy, Parna; Sen, Parongama

    2017-02-01

    We explore the effect of interplay of interfacial noise and curvature-driven dynamics in a binary spin system. An appropriate model is the generalized two-dimensional voter model proposed earlier [M. J. de Oliveira, J. F. F. Mendes, and M. A. Santos, J. Phys. A: Math. Gen. 26, 2317 (1993), 10.1088/0305-4470/26/10/006], where the flipping probability of a spin depends on the state of its neighbors and is given in terms of two parameters, x and y . x =0.5 andy =1 correspond to the conventional voter model which is purely interfacial noise driven, while x =1 and y =1 correspond to the Ising model, where coarsening is fully curvature driven. The coarsening phenomena for 0.5 x y =1 is studied in detail. The dynamical behavior of the relevant quantities show characteristic differences from both x =0.5 and 1. The most remarkable result is the existence of two time scales for x ≥xc where xc≈0.7 . On the other hand, we have studied the exit probability which shows Ising-like behavior with a universal exponent for any value of x >0.5 ; the effect of x appears in altering the value of the parameter occurring in the scaling function only.

  3. Geometric effects of 90-degree vertical elbows on local two-phase flow parameters

    International Nuclear Information System (INIS)

    Yadav, M.; Worosz, T.; Kim, S.

    2011-01-01

    This study presents the geometric effects of 90-degree vertical elbows on the development of the local two-phase flow parameters. A multi-sensor conductivity probe is used to measure local two-phase flow parameters. It is found that immediately downstream of the vertical-upward elbow, the bubbles have a bimodal distribution along the horizontal radius of the pipe cross-section causing a dual-peak in the profiles of local void fraction and local interfacial area concentration. Immediately downstream of the vertical-downward elbow it is observed that the bubbles tend to migrate towards the inside of the elbow's curvature. The axial transport of void fraction and interfacial area concentration indicates that the elbows promote bubble disintegration. Preliminary predictions are obtained from group-one interfacial area transport equation (IATE) model for vertical-upward and vertical-downward two-phase flow. (author)

  4. Application of a new concept for multi-scale interfacial structures to the dam-break case with an obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Hänsch, Susann, E-mail: s.haensch@hzdr.de; Lucas, Dirk; Höhne, Thomas; Krepper, Eckhard

    2014-11-15

    Highlights: • A concept for modeling transitions between different gaseous morphologies is presented. • The Eulerian multi-field model includes dispersed and continuous gas phases. • Interfacial transfer models are found considering free surfaces within MUSIG framework. • A new source term for sub-grid waves and instabilities is introduced. - Abstract: New results of a generalized concept developed for the simulation of two-phase flows with multi-scale interfacial structures are presented in this paper. By extending the inhomogeneus Multiple Size Group-model, the concept enables transitions between dispersed and continuous gas morphologies, including the appearance and evanescence of one of these particular gas phases. Adequate interfacial transfer formulations, which are consistent with such an approach, are introduced for interfacial area density and drag. A new drag-formulation considers shear stresses occurring within the free surface area. The application of the concept to a collapsing water column demonstrates the breakup of continuous gas into a polydispersed phase forming different bubble sizes underneath the free surface. Thus, both resolved free surface structures as well as the entrainment of bubbles and their coalescence and breakup underneath the surface can be described in the same time. The simulations have been performed with the CFD-code CFX 14.0 and will be compared with experimental images. The paper will further investigate the possible improvement of such free surface simulations by including sub-grid information about small waves and instabilities at the free surface. A comparison of the results will be used for a discussion of possible new mass transfer models between filtered free surface areas and dispersed bubble size groups as part of the future work.

  5. Numerical analysis of interfacial growth and deformation in horizontal stratified two-phase flow by lattice Boltzmann method

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi

    2005-03-01

    Two-phase flow is one of the important phenomena in nuclear reactors and heat exchangers at nuclear plants. It is desired for the optimum design and safe operation of such equipment to understand and predict the two-phase flow phenomenon by numerical analysis. In the present, the two-fluid model is widely used for the numerical analysis of two-phase flow. The numerical analysis method using the two-fluid model solves macroscopic hydrodynamic equations, in which fluid is regarded as continuum, with the boundary conditions at the wall, the inlet and outlet, and the interface between two phases. Since the interfacial and the wall boundary conditions utilized by this method are given as the model, such as the flow regime map and correlation, which is usually constructed on the basis of experimental results, the accuracy of the two-phase flow analysis using the two-fluid model depends on that of the utilized model or the experiment result for modeling. Tremendous progress of the computer performance and the development of new computational methods make the numerical simulation of two-phase flow with the interfacial motion possible in resent years. In such circumstances, the lattice-gas method and the lattice Boltzmann method, which represent fluid by many particles or the particle distribution function on the spatial lattice, was proposed in 1990s and these methods are applied to the numerical simulation of two-phase flow. The main feature of the two-phase fluid model of those methods is the capability of the simulation of two-phase flow without the procedure for tracking the interfacial position and shape owing to the inlet-particle potential generating the interface. Therefore it is expected that the lattice-gas method and the lattice Boltzmann method possess the predictability of the experiment by the numerical analysis of two-phase flow as well as the possibility of giving the substitute of the flow regime map and the correlation used by the two-fluid model. In this

  6. Two-point concrete resistivity measurements: interfacial phenomena at the electrode–concrete contact zone

    International Nuclear Information System (INIS)

    McCarter, W J; Taha, H M; Suryanto, B; Starrs, G

    2015-01-01

    Ac impedance spectroscopy measurements are used to critically examine the end-to-end (two-point) testing technique employed in evaluating the bulk electrical resistivity of concrete. In particular, this paper focusses on the interfacial contact region between the electrode and specimen and the influence of contacting medium and measurement frequency on the impedance response. Two-point and four-point electrode configurations were compared and modelling of the impedance response was undertaken to identify and quantify the contribution of the electrode–specimen contact region on the measured impedance. Measurements are presented in both Bode and Nyquist formats to aid interpretation. Concretes mixes conforming to BSEN206-1 and BS8500-1 were investigated which included concretes containing the supplementary cementitious materials fly ash and ground granulated blast-furnace slag. A measurement protocol is presented for the end-to-end technique in terms of test frequency and electrode–specimen contacting medium in order to minimize electrode–specimen interfacial effect and ensure correct measurement of bulk resistivity. (paper)

  7. Phase field study of interfacial diffusion-driven spheroidization in a composite comprized of two mutually insoluble phases

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Liang [Ames Laboratory; Russell, Alan [Ames Laboratory

    2014-03-27

    The phase field approach is a powerful computational technique to simulate morphological and microstructural evolution at the mesoscale. Spheroidization is a frequently observed morphological change of mesoscale heterogeneous structures during annealing. In this study, we used the diffuse interface phase field method to investigate the interfacial diffusion-driven spheroidization of cylindrical rod structures in a composite comprised of two mutually insoluble phases in a two-dimensional case. Perturbation of rod radius along a cylinder's axis has long been known to cause the necessary chemical potential gradient that drives spheroidization of the rod by Lord Rayleigh's instability theory. This theory indicates that a radius perturbation wavelength larger than the initial rod circumference would lead to cylindrical spheroidization. We investigated the effect of perturbation wavelength, interfacial energy, volume diffusion, phase composition, and interfacial percentage on the kinetics of spheroidization. The results match well with both the Rayleigh's instability criterion and experimental observations.

  8. Model of interfacial melting

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Zuckermann, Martin J.

    1987-01-01

    A two-dimensional model is proposed to describe systems with phase transitions which take place in terms of crystalline as well as internal degrees of freedom. Computer simulation of the model shows that the interplay between the two sets of degrees of freedom permits observation of grain-boundar......-boundary formation and interfacial melting, a nonequilibrium process by which the system melts at the boundaries of a polycrystalline domain structure. Lipid membranes are candidates for systems with pronounced interfacial melting behavior....

  9. On the Bias in the Danckwerts’ Plot Method for the Determination of the Gas–Liquid Mass-Transfer Coefficient and Interfacial Area

    Directory of Open Access Journals (Sweden)

    German E. Cortes Garcia

    2018-02-01

    Full Text Available The Danckwerts’ plot method is a commonly used graphical technique to independently determine the interfacial area and mass-transfer coefficient in gas–liquid contactors. The method was derived in 1963 when computational capabilities were limited and intensified process equipment did not exist. A numerical analysis of the underlying assumptions of the method in this paper has shown a bias in the technique, especially for situations where mass-transfer rates are intensified, or where there is limited liquid holdup in the bulk compared to the film layers. In fact, systematic errors of up to 50% in the interfacial area, and as high as 90% in the mass-transfer coefficients, can be expected for modern, intensified gas–liquid contactors, even within the commonly accepted validity limits of a pseudo-first-order reaction and Hatta numbers in the range of 0.3 < Ha < 3. Given the current computational capabilities and the intensified mass-transfer rates in modern gas–liquid contactors, it is therefore imperative that the equations for reaction and diffusion in the liquid films are numerically solved and subsequently used to fit the interfacial area and mass-transfer coefficient to experimental data, which would traditionally be used in the graphical Danckwerts’ method.

  10. Simulation of two-phase flows in vertical tubes with the CTFD code FLUBOX

    International Nuclear Information System (INIS)

    Graf, Udo; Papadimitriou, Pavlos

    2007-01-01

    The computational two-fluid dynamics (CTFD) code FLUBOX is developed at GRS for the multidimensional simulation of two-phase flows. The single-pressure two-fluid model is used as basis of the simulation. A basic mathematical property of the two-fluid model of FLUBOX is the hyperbolic character of the advection. The numerical solution methods of FLUBOX make explicit use of the hyperbolic structure of the coefficient matrices. The simulation of two-phase flow phenomena needs, apart from the conservation equations for each phase, an additional transport equation for the interfacial area concentration. The concentration of the interfacial area is one of the key parameters for the modeling of interfacial friction forces and interfacial transfer terms. A new transport equation for the interfacial area concentration is in development. It describes the dynamic change of the interfacial area concentration due to mass exchange and a force balance at the phase boundary. Results from FLUBOX calculations for different experiments of two-phase flows in vertical tubes are presented as part of the validation

  11. Numerical evaluation of the five sensor probe method for measurement of local interfacial area concentration of cap bubbles

    International Nuclear Information System (INIS)

    Euh, D.J.; Yun, B.J.; Song, C.H.; Kwon, T.S.; Chung, M.K.; Lee, U.C.

    2000-01-01

    The interfacial area concentration (IAC) is one of the most important parameters in the two-fluid model for two-phase flow analysis. The IAC can be measured by a local conductivity probe method that uses the difference of conductivity between water and air/steam. The number of sensors in the conductivity probe may be differently chosen by considering the flow regime of two-phase flow. The four sensor conductivity probe method predicts the IAC without any assumptions of the bubble shape. The local IAC can be obtained by measuring the three dimensional velocity vector elements at the measuring point, and the directional cosines of the sensors. The five sensor conductivity probe method proposed in this study is based on the four sensor probe method. With the five sensor probe, the local IAC for a given referred measuring area of the probe can be predicted more exactly. In this paper, the mathematical approach of the five sensor probe method for measuring the IAC is described, and a numerical simulation is carried out for ideal cap bubbles of which the sizes and locations are determined by a random number generator. (author)

  12. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Quijano, Guillermo [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios, Avanzados del IPN (Cinvestav), Apdo. Postal 14-740, 07360 Mexico, D.F. (Mexico); Rocha-Rios, Jose [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Departamento de Ingenieria de Procesos e Hidraulica (IPH), Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 Mexico, D.F. (Mexico); Hernandez, Maria; Villaverde, Santiago [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Revah, Sergio [Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa, c/o IPH, UAM-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 Mexico, D.F. (Mexico); Munoz, Raul, E-mail: mutora@iq.uva.es [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Thalasso, Frederic [Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios, Avanzados del IPN (Cinvestav), Apdo. Postal 14-740, 07360 Mexico, D.F. (Mexico)

    2010-03-15

    The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a{sub g}) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a{sub g} were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a{sub g} were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O{sub 2} L{sup -1} h{sup -1} and 1.3 g O{sub 2} L{sup -1} h{sup -1} were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a{sub g} rather than to the establishment of a high-performance gas/vector/water transfer pathway.

  13. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors

    International Nuclear Information System (INIS)

    Quijano, Guillermo; Rocha-Rios, Jose; Hernandez, Maria; Villaverde, Santiago; Revah, Sergio; Munoz, Raul; Thalasso, Frederic

    2010-01-01

    The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a g ) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a g were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a g were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O 2 L -1 h -1 and 1.3 g O 2 L -1 h -1 were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a g rather than to the establishment of a high-performance gas/vector/water transfer pathway.

  14. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene: both in stacking and sliding assembly pathways

    Science.gov (United States)

    Lv, Wenping; Wu, Ren'an

    2013-03-01

    A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial water, the dynamical and structural properties as well as the status of hydrogen bonds (H-bonds) for interfacial water were investigated. We found that the compact, ordered structure and abundant H-bonds of the MWF could be taken as the fundamental aspects of the ``hindering role'' of interfacial water for the hydrophobic assembly of nanographene. These findings are displaying a potential to further understand the hydrophobic assembly which mostly dominate the behaviors of nanomaterials, proteins etc. in aqueous solutions.A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial

  15. Determination of the two methyl group orientations at vapor/acetone interface with polarization null angle method in SFG vibrational spectroscopy

    Science.gov (United States)

    Chen, Hua; Gan, Wei; Wu, Bao-hua; Wu, Dan; Zhang, Zhen; Wang, Hong-fei

    2005-06-01

    We report a direct measurement of the orientation of the two CH 3 groups of acetone molecule at the vapor/acetone interface. The interfacial acetone molecule is found well-ordered, with one methyl group points away around 14.4° ± 1.9° and another into the bulk liquid around 102.8° ± 1.9° from the interface normal, and thus the C dbnd O group points into the bulk around 135.8° ± 1.9°. These results directly confirmed the highly ordered and even crystal like interfacial structure of the vapor/acetone interface from previous MD simulation. The general formulation and accurate determination of the orientational parameter D can be used to treat interfaces with complex molecular orientations.

  16. Interfacial shear stress and hold-up in an air-water annular two-phase flow

    International Nuclear Information System (INIS)

    Fukano, T.; Ousaka, A.; Kawakami, Y.; Tominaga, A.

    1991-01-01

    This paper reports on an experimental investigation that was made into hold-up, frictional pressure drop and interfacial shear stress of an air-water two-phase annular flow in horizontal and vertical up- and downward flows to make clear the effects of tube diameter and flow direction on them. The tube diameters examined are 10mm, 16mm and 26mm. Both the hold-up and the pressure drop considerably changed with time. Especially, the amplitude of the variation of the hold-up was quite larger in comparison with its averaged value in the cause of disturbance wave flow. for the time averaged hold-up and interfacial friction factor, we got new correlations, by which we can estimate them within an accuracy of ±20% and ±30%, respectively, independent of the flow direction and the tube diameter

  17. Interfacial shear modeling in two-phase annular flow

    International Nuclear Information System (INIS)

    Kumar, R.; Edwards, D.P.

    1996-11-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment

  18. Interfacial shear modeling in two-phase annular flow

    International Nuclear Information System (INIS)

    Kumar, R.; Edwards, D.P.

    1996-07-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment

  19. Dentin-cement Interfacial Interaction

    Science.gov (United States)

    Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline caustic effect of the calcium silicate cement’s hydration products degrades the collagenous component of the interfacial dentin. This degradation leads to the formation of a porous structure which facilitates the permeation of high concentrations of Ca2+, OH-, and CO32- ions, leading to increased mineralization in this region. Comparison of the dentin-restorative interfaces shows that there is a dentin-mineral infiltration with the Biodentine, whereas polyacrylic and tartaric acids and their salts characterize the penetration of the GIC. A new type of interfacial interaction, “the mineral infiltration zone”, is suggested for these calcium-silicate-based cements. PMID:22436906

  20. Incorporating interfacial phenomena in solidification models

    Science.gov (United States)

    Beckermann, Christoph; Wang, Chao Yang

    1994-01-01

    A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.

  1. The analysis of interfacial waves

    International Nuclear Information System (INIS)

    Galimov, Azat Yu.; Drew, Donald A.; Lahey, Richard T.; Moraga, Francisco J.

    2005-01-01

    We present analytical results for stable stratified wavy two-phase flow and functional forms for the various interfacial force densities in a two-fluid model. In particular, we have derived analytically the components of the non-drag interfacial force density [Drew, D.A., Passman, S.L., 1998. Theory of Multicomponent Fluids. Springer-Verlag, New York; Nigmatulin, T.R., Drew, D.A., Lahey, R.T., Jr., 2000. An analysis of wavy annular flow. In: International Conference on Multiphase Systems, ICMS'2000, Ufa, Russia, June 15-17], Reynolds stress tensor, and the term, (p-bar cl i -p-bar cl )-bar α cl , where p-bar cl i is interfacial average pressure, p-bar cl the average pressure, and α cl is the volume fraction of the continuous liquid phase. These functional forms should be useful for assessing two-fluid closure relations and Computational Multiphase Fluid Dynamics (CMFD) numerical models for stratified wavy flows. Moreover, it appears that this approach can be generalized to other flow regimes (e.g., annular flows)

  2. Interfacial thermodynamics of water and six other liquid solvents.

    Science.gov (United States)

    Pascal, Tod A; Goddard, William A

    2014-06-05

    We examine the thermodynamics of the liquid-vapor interface by direct calculation of the surface entropy, enthalpy, and free energy from extensive molecular dynamics simulations using the two-phase thermodynamics (2PT) method. Results for water, acetonitrile, cyclohexane, dimethyl sulfoxide, hexanol, N-methyl acetamide, and toluene are presented. We validate our approach by predicting the interfacial surface tensions (IFT--excess surface free energy per unit area) in excellent agreement with the mechanical calculations using Kirkwood-Buff theory. Additionally, we evaluate the temperature dependence of the IFT of water as described by the TIP4P/2005, SPC/Ew, TIP3P, and mW classical water models. We find that the TIP4P/2005 and SPC/Ew water models do a reasonable job of describing the interfacial thermodynamics; however, the TIP3P and mW are quite poor. We find that the underprediction of the experimental IFT at 298 K by these water models results from understructured surface molecules whose binding energies are too weak. Finally, we performed depth profiles of the interfacial thermodynamics which revealed long tails that extend far into what would be considered bulk from standard Gibbs theory. In fact, we find a nonmonotonic interfacial free energy profile for water, a unique feature that could have important consequences for the absorption of ions and other small molecules.

  3. On the inclusion of the interfacial area between phases in the physical and mathematical description of subsurface multiphase flow. 1998 annual progress report

    International Nuclear Information System (INIS)

    Gray, W.G.; Soll, W.E.; Tompson, A.

    1998-01-01

    'Improved capabilities for modeling multiphase flow in the subsurface requires that several aspects of the system which impact the flow and transport processes be more properly accounted for. A distinguishing feature of multiphase flow in comparison to single phase flow is the existence of interfaces between fluids. At the microscopic (pore) scale, these interfaces are known to influence system behavior by supporting non-zero stresses such that the pressures in adjacent phases are not equal. In problems of interphase transport at the macroscopic (core) scale, knowledge of the total amount of interfacial area in the system provides a clue to the effectiveness of the communication between phases. Although interfacial processes are central to multiphase flow physics, their treatment in traditional porous-media theories has been implicit rather than explicit; and no attempts have been made to systematically account for the evolution of the interfacial area in dynamic systems or to include the dependence of constitutive functions, such as capillary pressure, on the interfacial area. This project implements a three-pronged approach to assessing the importance of various features of multiphase flow to its description. The research contributes to the improved understanding and precise physical description of multiphase subsurface flow by combining: (1) theoretical derivation of equations, (2) lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and (3) solution of the field-scale equations using a discrete numerical method to assess the advantages and disadvantages of the complete theory. This approach includes both fundamental scientific inquiry and a path for inclusion of the scientific results obtained in a technical tool that will improve assessment capabilities for multiphase flow situations that have arisen due to the introduction of organic materials in the natural environment. This report summarizes work after 1.5 years of a 3

  4. Improving Multi-Functional Properties in Polymer Based Nano Composites by Interfacial

    Science.gov (United States)

    Tajaddod, Navid

    Polymer nanocomposites (PNCs) have become an area of increasing interest for study in the field of polymer science and technology since the rise of nanotechnology research. Despite the significant amount of progress being made towards producing high quality PNC materials, improvement in the mechanical, electrical, thermal and other functional properties still remain a challenge. To date, these properties are only a fraction of the expected theoretical values predicted for these materials. Development of interfacial regions between the filler and matrix within the composite has been found to be an important focus in terms of processing. Proper interfacial control and development may ensure excellent interaction and property transfer between the filler and polymer matrix in addition to improvement of multi-functional properties of PNCs. The property-structure importance for the existence of the interfacial and interphase region within PNCs is discussed in this thesis work. Two specific PNC systems are selected for study as part of this dissertation in order to understand the effect of interfacial region development on influencing multi-functional property trends. Polyethylene (PE)/boron nitride (BN) and polyacrylonitrile (PAN)/carbon nanotube (CNT) composites were selected to investigate their mechanical performance and thermal and electrical conductivity properties, respectively. For these systems it was found that the interfacial region structure is directly related to the enhancement of the subsequent multi-functional properties.

  5. Interfacial phenomenon theory

    International Nuclear Information System (INIS)

    Kim, Jong Deuk

    2000-02-01

    This book is composed of 8 chapters. It tells what interfacial phenomenon is by showing interfacial energy, characteristic of interface and system of interface from chapter 1. It also introduces interfacial energy and structure theory, molecular structure and orientation theory, and interfacial electricity phenomenon theory in the following 3 chapters. It still goes on by introducing super molecule cluster, disequilibrium dispersion, and surface and film through 3 chapters. And the last chapter is about colloid and application of interface.

  6. Effect of rotary cutting instruments on the resin-tooth interfacial ultra structure: An in vivo study.

    Science.gov (United States)

    Sherawat, Sudhir; Tewari, Sanjay; Duhan, Jigyasa; Gupta, Alpa; Singla, Rakesh

    2014-12-01

    To evaluate the effect of cutting teeth with different types of burs at various speeds on surface topography of tooth surface and interfacial gap formation at resin-tooth interface. The human molars were divided into seven groups: Diamond bur in airrotor (DA) & micromotor (DM), crosscut carbide bur in airrotor (CCA) & micromotor (CCM), plain carbide bur in airrotor (CA) & micromotor (CM) and #600-grit silicon carbide paper (SiC). In five samples from each group Class II box-only cavities were restored. The occlusal surface of four teeth per group was flattened. Two out of four teeth were acid etched. Teeth were subjected for scanning electron microscopy (SEM). Interfacial gap was observed in all groups with no significant difference. SEM observations revealed CA, CCA & DA were coarser than CM, CCM, DM and SiC. SEM of etched tooth surfaces revealed complete removal of amorphous smear layer in CA & CM, partial removal in CCA, CCM, DA & DM and no removal in SiC. Selecting an appropriate bur and its speed may not play an important role in bonding in terms of interfacial gap formation. Variable changes were observed in surface topography with different burs before and after acid etching. Key words:Surface topography, resin-tooth interface, interfacial gap, bonding.

  7. Modeling of isothermal bubbly flow with interfacial area transport equation and bubble number density approach

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Salih [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Erguen, Sule [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey)

    2009-03-15

    In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data.

  8. Modeling of isothermal bubbly flow with interfacial area transport equation and bubble number density approach

    International Nuclear Information System (INIS)

    Sari, Salih; Erguen, Sule; Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi

    2009-01-01

    In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data

  9. Liquid-liquid interfacial tension of electrolyte solutions

    OpenAIRE

    Bier, Markus; Zwanikken, Jos; van Roij, Rene

    2008-01-01

    It is theoretically shown that the excess liquid-liquid interfacial tension between two electrolyte solutions as a function of the ionic strength I behaves asymptotically as O(- I^0.5) for small I and as O(+- I) for large I. The former regime is dominated by the electrostatic potential due to an unequal partitioning of ions between the two liquids whereas the latter regime is related to a finite interfacial thickness. The crossover between the two asymptotic regimes depends sensitively on mat...

  10. Two-phase flow structure in large diameter pipes

    International Nuclear Information System (INIS)

    Smith, T.R.; Schlegel, J.P.; Hibiki, T.; Ishii, M.

    2012-01-01

    Highlights: ► Local profiles of various quantities measured in large diameter pipe. ► Database for interfacial area in large pipes extended to churn-turbulent flow. ► Flow regime map confirms previous models for flow regime transitions. ► Data will be useful in developing interfacial area transport models for large pipes. - Abstract: Flow in large pipes is important in a wide variety of applications. In the nuclear industry in particular, understanding of flow in large diameter pipes is essential in predicting the behavior of reactor systems. This is especially true of natural circulation Boiling Water Reactor (BWR) designs, where a large-diameter chimney above the core provides the gravity head to drive circulation of the coolant through the reactor. The behavior of such reactors during transients and during normal operation will be predicted using advanced thermal–hydraulics analysis codes utilizing the two-fluid model. Essential to accurate two-fluid model calculations is reliable and accurate computation of the interfacial transfer terms. These interfacial transfer terms can be expressed as the product of one term describing the potential driving the transfer and a second term describing the available surface area for transfer, or interfacial area concentration. Currently, the interfacial area is predicted using flow regime dependent empirical correlations; however the interfacial area concentration is best computed through the use of the one-dimensional interfacial area transport equation (IATE). To facilitate the development of IATE source and sink term models in large-diameter pipes a fundamental understanding of the structure of the two-phase flow is essential. This understanding is improved through measurement of the local void fraction, interfacial area concentration and gas velocity profiles in pipes with diameters of 0.102 m and 0.152 m under a wide variety of flow conditions. Additionally, flow regime identification has been performed to

  11. Uncertainty in RELAP5/MOD3.2 calculations for interfacial drag in downward two-phase flow

    International Nuclear Information System (INIS)

    Clark, Collin; Schlegel, Joshua P.; Hibiki, Takashi; Ishii, Mamoru; Kinoshita, Ikuo

    2016-01-01

    Highlights: • Uncertainty propagation is key for best estimate code reliability. • Uncertainty in drift flux correlations used to evaluate uncertainty in interfacial drag. • Bias and error have been compared for various models. - Abstract: RELAP5/MOD3.2 is a thermal-hydraulic system analysis code used to predict the response of nuclear reactor coolant systems in the event of certain accident scenarios. It is important that RELAP and other system analysis codes are able to accurately predict various two-phase flow phenomena, particularly the interfacial transfers between the liquid and gas phases. It is also important to understand how much uncertainty exists in these predictions due to uncertainties in the constitutive relations used to close the two-fluid model. In this paper, the uncertainty in the interfacial drag calculated by RELAP5/MOD3.2 due to errors in the drift-flux models used to close the model is evaluated and compared to the correlation developed by Goda et al. (2003). The case of downward flow is considered due to the importance of co-current and counter-current downward flow for predicting behavior in the downcomer of reactor systems during small-break Loss of Coolant Accidents (LOCAs) in nuclear reactor systems. The overall uncertainty in the interfacial force calculations due to error in the distribution parameter models were found to have a bias of +8.1% and error of 20.1% for the models used in RELAP5, and a bias of −30.8% and error of 23.1% for the correlation of Goda et al. (2003). However this analysis neglects the effects of compensating errors in the drift-flux parameters, as the drift velocity is assumed to be perfectly accurate. More physically meaningful results could be obtained if the distribution parameter and drift velocity were calculated directly from local phase concentration and velocity measurements, however no studies were available which included all of this information.

  12. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Science.gov (United States)

    Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng

    2015-02-01

    The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  13. The influence of interfacial properties on two-phase liquid flow of organic contaminants in groundwater

    International Nuclear Information System (INIS)

    Hayes, K.F.; Demond, A.H.

    1991-09-01

    The purpose of this project is to investigate how changes in interfacial chemical properties affect two-phase transport relationships. Specifically, the objective is to develop a quantitative means that will enable the prediction of changes in the capillary pressure-saturation relationship, a fundamental constitutive relationship in multiphase flow, from changes in interfacial properties, such as adsorption and electrophoretic mobility, through a knowledge of their effect on wettability. The information presented here summarizes the progress we have made in the past eight months of the second project period. Working with a system composed of air-water-silica-cetyltrimethylammonium bromide (CTAB), we have obtained a relationship between degree of adsorption and the surface charge of silica (as measured by electrophoretic mobility), and the drainage and imbibition capillary pressure relationships of system. The bulk of this report describes the completed set of measurements for the air-water-silica-CTAB system at pH 6. We are currently working on a comparable set of measurements for the xylene-water-silica-CTAB system at pH 6. Described here are the interfacial tension, contact angle and preliminary drainage capillary pressure measurements. Our work to date shows a dependence of surface properties on pH. Consequently, in the coming year, we will also complete a set of measurements at another pH value to show the effect of pH on capillary pressure relationships

  14. Computing optimal interfacial structure of modulated phases

    OpenAIRE

    Xu, Jie; Wang, Chu; Shi, An-Chang; Zhang, Pingwen

    2016-01-01

    We propose a general framework of computing interfacial structures between two modulated phases. Specifically we propose to use a computational box consisting of two half spaces, each occupied by a modulated phase with given position and orientation. The boundary conditions and basis functions are chosen to be commensurate with the bulk structures. It is observed that the ordered nature of modulated structures stabilizes the interface, which enables us to obtain optimal interfacial structures...

  15. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiwen [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Jia, Zhixin, E-mail: zxjia@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Yuanfang; Jia, Demin [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Peng, Zheng [Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang 524001 (China)

    2015-02-15

    Highlights: • Substantiate the ring open reaction between Si-OH of silica and epoxy groups of ENR. • ENR can act as a bridge between NR and silica to enhance the interfacial interaction. • As a modifier, ENR gets the potential to be used in the tread of green tire for improving the wet skid resistance apparently. - Abstract: The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress–strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  16. Irradiation of Oil / Water Biphasic Systems: the Importance of Interfacial Surface Area on the Production of Hydrogen and Other Deleterious Products

    International Nuclear Information System (INIS)

    Causey, Patrick-W.; Stuart, Craig-R.

    2012-09-01

    -water interfacial surface area, control of headspace gas composition, and removal of sample aliquots. Results highlight the importance of interfacial surface area in affecting the radiolytic degradation of the studied hydrocarbons. In particular, experiments having higher oil-water interfacial surface areas generate greater quantities of oil degradation products as compared with lower surface area samples. As expected, one notable result from these irradiations was the formation of significant quantities of hydrogen, which was found to be dependent on the interfacial surface area. Presented here is a review of the radiolytic degradation of insoluble organic material in aqueous systems, a summary of experimental results focusing on biphasic systems and a description of a strategy to mitigate the effects of insoluble organic material ingress and to aid in developing station-appropriate responses. (authors)

  17. Effects of Interfacial Charge Depletion in Organic Thin-Film Transistors with Polymeric Dielectrics on Electrical Stability

    Directory of Open Access Journals (Sweden)

    Jaehoon Park

    2010-06-01

    Full Text Available We investigated the electrical stabilities of two types of pentacene-based organic thin-film transistors (OTFTs with two different polymeric dielectrics: polystyrene (PS and poly(4-vinyl phenol (PVP, in terms of the interfacial charge depletion. Under a short-term bias stress condition, the OTFT with the PVP layer showed a substantial increase in the drain current and a positive shift of the threshold voltage, while the PS layer case exhibited no change. Furthermore, a significant increase in the off-state current was observed in the OTFT with the PVP layer which has a hydroxyl group. In the presence of the interfacial hydroxyl group in PVP, the holes are not fully depleted during repetitive operation of the OTFT with the PVP layer and a large positive gate voltage in the off-state regime is needed to effectively refresh the electrical characteristics. It is suggested that the depletion-limited holes at the interface, i.e., interfacial charge depletion, between the PVP layer and the pentacene layer play a critical role on the electrical stability during operation of the OTFT.

  18. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    Science.gov (United States)

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-06

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  19. Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: Theory, two-temperature molecular dynamics, and thermal circuit

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2016-02-01

    The standard two-temperature equations for electron-phonon coupled thermal transport across metal/nonmetal interfaces are modified to include the possible coupling between metal electrons with substrate phonons. The previous two-temperature molecular dynamics (TT-MD) approach is then extended to solve these equations numerically at the atomic scale, and the method is demonstrated using Cu/Si interface as an example. A key parameter in TT-MD is the nonlocal coupling distance of metal electrons and nonmetal phonons, and here we use two different approximations. The first is based on Overhauser's "joint-modes" concept, while we use an interfacial reconstruction region as the length scale of joint region rather than the phonon mean-free path as in Overhauser's original model. In this region, the metal electrons can couple to the joint phonon modes. The second approximation is the "phonon wavelength" concept where electrons couple to phonons nonlocally within the range of one phonon wavelength. Compared with the original TT-MD, including the cross-interface electron-phonon coupling can slightly reduce the total thermal boundary resistance. Whether the electron-phonon coupling within the metal block is nonlocal or not does not make an obvious difference in the heat transfer process. Based on the temperature profiles from TT-MD, we construct a new mixed series-parallel thermal circuit. We show that such a thermal circuit is essential for understanding metal/nonmetal interfacial transport, while calculating a single resistance without solving temperature profiles as done in most previous studies is generally incomplete. As a comparison, the simple series circuit that neglects the cross-interface electron-phonon coupling could overestimate the interfacial resistance, while the simple parallel circuit in the original Overhauser's model underestimates the total interfacial resistance.

  20. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties

    Directory of Open Access Journals (Sweden)

    Shayesteh eHaghighatpanah

    2014-09-01

    Full Text Available Molecular dynamics and molecular mechanics methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube – polyethylene and single walled carbon nanotube – polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the single walled carbon nanotubes with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1% to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the single walled carbon nanotube wall.

  1. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wilson [Univ. of California, Irvine, CA (United States)

    2018-02-03

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules and TiO2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting

  2. Requirement of lid2 for interfacial activation of a family I.3 lipase with unique two lid structures.

    Science.gov (United States)

    Cheng, Maria; Angkawidjaja, Clement; Koga, Yuichi; Kanaya, Shigenori

    2012-10-01

    A family I.3 lipase from Pseudomonas sp. MIS38 (PML) is characterized by the presence of two lids (lid1 and lid2) that greatly change conformation upon substrate binding. While lid1 represents the commonly known lid in lipases, lid2 is unique to PML and other family I.3 lipases. To clarify the role of lid2 in PML, a lid2 deletion mutant (ΔL2-PML) was constructed by deleting residues 35-64 of PML. ΔL2-PML requires calcium ions for both lipase and esterase activities as does PML, suggesting that it exhibits activity only when lid1 is fully open and anchored by the catalytically essential calcium ion, as does PML. However, when the enzymatic activity was determined using triacetin, the activity of PML exponentially increased as the substrate concentration reached and increased beyond the critical micellar concentration, while that of ΔL2-PML did not. These results indicate that PML undergoes interfacial activation, while ΔL2-PML does not. The activities of ΔL2-PML for long-chain triglycerides significantly decreased while its activity for fatty acid ethyl esters increased, compared with those of PML. Comparison of the tertiary models of ΔL2-PML in a closed and open conformation, which are optimized by molecular dynamics simulation, with the crystal structures of PML suggests that the hydrophobic surface area provided by lid1 and lid2 in an open conformation is considerably decreased by the deletion of lid2. We propose that the hydrophobic surface area provided by these lids is necessary to hold the micellar substrates firmly to the active site and therefore lid2 is required for interfacial activation of PML. © 2012 The Authors Journal compilation © 2012 FEBS.

  3. Topology-generating interfacial pattern formation during liquid metal dealloying.

    Science.gov (United States)

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  4. Long-range interfacial electron transfer and electrocatalysis of molecular scale Prussian Blue nanoparticles linked to Au(111)-electrode surfaces by different chemical contacting groups

    DEFF Research Database (Denmark)

    Zhu, Nan; Ulstrup, Jens; Chi, Qijin

    2017-01-01

    We have explored interfacial electrochemical electron transfer (ET) and electrocatalysis of 5–6 nm Prussian Blue nanoparticles (PBNPs) immobilized on Au(111)-electrode surfaces via molecular wiring with variable-length, and differently functionalized thiol-based self-assembled molecular monolayers...... (SAMs). The SAMs contain positively (−NH3+) or negatively charged (–COO–) terminal group, as well an electrostatically neutral hydrophobic terminal group (–CH3). The surface microscopic structures of the immobilized PBNPs were characterized by high-resolution atomic force microscopy (AFM) directly...... in aqueous electrolyte solution under the same conditions as for electrochemical measurements. The PBNPs displayed fast and reversible interfacial ET on all the surfaces, notably in multi-ET steps as reflected in narrow voltammetric peaks. The ET kinetics can be controlled by adjusting the length of the SAM...

  5. Interfacial Thermal Transport via One-Dimensional Atomic Junction Model

    Directory of Open Access Journals (Sweden)

    Guohuan Xiong

    2018-03-01

    Full Text Available In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM and the non-equilibrium Green’s function (NEGF method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.

  6. Implementation of a new interfacial mass and energy transfer model in RETRAN-3D

    International Nuclear Information System (INIS)

    Macian, R.; Cebulh, P.; Coddington, P.; Paulsen, M.

    1999-01-01

    The RETRAN-3D MOD002.0 best estimate code includes a five-equation flow field model developed to deal with situations in which thermodynamic non-equilibrium phenomena are important. Several applications of this model to depressurization and pressurization transients showed serious convergence problems. An analysis of the causes for the numerical instabilities identified the models for interfacial heat and mass transfer as the source of the problems. A new interfacial mass and energy transfer model has thus been developed and implemented in RETRAN-3D. The heat transfer for each phase is equal to the product of the interfacial area density, a heat transfer coefficient and the temperature difference between the interface at saturation and the bulk temperature of the respective phase. However, in the context of RETRAN-3D, the vapor remains saturated in a two-phase volume, and no vapor heat transfer is thus calculated. The values of interfacial area density and heat transfer coefficient are obtained based on correlations appropriate for different flow regimes. A flow regime map, based on the work of Taitel and Dukler, with void fraction and mixture mass flux as map coordinates, is used to identify the flow regime present in a given volume. The new model has performed well when assessed against data from four experimental facilities covering depressurization, condensation and steady state void distribution. The results also demonstrate the viability of the approach followed to develop the new model for a five-equation based code. (author)

  7. The influence of interfacial properties on the two-phase liquid flow of organic contaminants in groundwater

    International Nuclear Information System (INIS)

    Demond, A.H.; Desai, F.N.; Hayes, K.F.

    1992-01-01

    DOE's waste sites are contaminated with a variety of organic liquids. Because of their low solubility in water, organic liquids such as these will persist as separate liquid phases and be transported as such in the subsurface. Thus, an improved understanding of the factors influencing the movement of a separate organic liquid phase in the subsurface is important to DOE's efforts to control groundwater contamination. Wettability is sometimes cited as the most important factor influencing two-phase flow in porous media. The wetting phase migrates preferentially through the smaller pores, whereas the nonwetting phase is concentrated in the larger pores. Typically, aquifers are thought of as strongly water-wet, implying that the organic liquid preferentially occupies the larger pores. But in fact, that state depends on the properties of the three interfaces of the system: between the organic liquid and water, water and the solid, and the organic liquid and the solid. Characteristics of the system which affect the interfacial properties also impact the wettability, such as the nature of the aquifer solids' surfaces, the composition of the goundwater and the properties of the organic contaminant. The alteration of wettability at DOE waste sites may be dominated by the presence of co-contaminants such as organic acids and bases which behave as surface-active agents or surfactants. Because of their physicochemical nature, surfactants will sorb preferentially at the interfaces of the system, thereby impacting the wettability and the distribution of the liquids in the porous medium. The over-all objective of this research was to determine how changes in interfacial properties affect two-phase flow. Specifically, the objective was to examine the effect of surfactant sorption on capillary pressure relationships by correlating measurements of sorption, zeta potential, interfacial tension and contact angle, with changes in the capillary pressure-saturation relationships

  8. DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development.

    Science.gov (United States)

    Ye, Dekai; Zuo, Xiaolei; Fan, Chunhai

    2018-06-12

    Biosensors represent biomimetic analytical tools for addressing increasing needs in medical diagnosis, environmental monitoring, security, and biodefense. Nevertheless, widespread real-world applications of biosensors remain challenging due to limitations of performance, including sensitivity, specificity, speed, and reproducibility. In this review, we present a DNA nanotechnology-enabled interfacial engineering approach for improving the performance of biosensors. We first introduce the main challenges of the biosensing interfaces, especially under the context of controlling the DNA interfacial assembly. We then summarize recent progress in DNA nanotechnology and efforts to harness DNA nanostructures to engineer various biological interfaces, with a particular focus on the use of framework nucleic acids. We also discuss the implementation of biosensors to detect physiologically relevant nucleic acids, proteins, small molecules, ions, and other biomarkers. This review highlights promising applications of DNA nanotechnology in interfacial engineering for biosensors and related areas.

  9. On two populations of sunspot groups

    International Nuclear Information System (INIS)

    Kuklin, G.V.

    1980-01-01

    The principal component method was applied studying the sunspot groups distribution in respect to the maximum area for the individual 11-year cycles 12 to 19 (Lopez Arroyo and Lahulla, 1974) and for the years 1900 to 1964 (Mandrykina, 1974). The existence of two populations of sunspot groups is confirmed. The variations of the importance parameter q, which determines the population shares, in the 80-, 22- and 11-year cycles are considered. The obtained maximal area distributions for populations I and II are approximated by linear combination of logarithmic-normal distributions, the subpopulations Ia, Ib, Ic by the most probable maximum areas of 22, 298 and 90 mvh, respectively, and the subpopulations IIa, IIb, IIc by the most probable maximal areas of 6, 142 and 754 mvh, respectively. The characteristic distinction between populations I and II is apparently the magnetic structure of the groups belonging to them (bipolar and unipolar ones). (author)

  10. Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe.

    Science.gov (United States)

    Park, Yu Sun; Chang, Soon Heung

    2011-04-04

    A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.

  11. Interfacial effects in multilayers

    International Nuclear Information System (INIS)

    Barbee, T.W. Jr.

    1998-01-01

    Interfacial structure and the atomic interactions between atoms at interfaces in multilayers or nano-laminates have significant impact on the physical properties of these materials. A technique for the experimental evaluation of interfacial structure and interfacial structure effects is presented and compared to experiment. In this paper the impact of interfacial structure on the performance of x-ray, soft x-ray and extreme ultra-violet multilayer optic structures is emphasized. The paper is concluded with summary of these results and an assessment of their implications relative to multilayer development and the study of buried interfaces in solids in general

  12. Mesoscale Interfacial Dynamics in Magnetoelectric Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Shashank, Priya [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2009-12-14

    Biphasic composites are the key towards achieving enhanced magnetoelectric response. In order understand the control behavior of the composites and resultant symmetry of the multifunctional product tensors, we need to synthesized model material systems with the following features (i) interface formation through either deposition control or natural decomposition; (ii) a very high interphase-interfacial area, to maximize the ME coupling; and (iii) an equilibrium phase distribution and morphology, resulting in preferred crystallographic orientation relations between phases across the interphase-interfacial boundaries. This thought process guided the experimental evolution in this program. We initiated the research with the co-fired composites approach and then moved on to the thin film laminates deposited through the rf-magnetron sputtering and pulsed laser deposition process

  13. Specific interface area in a thin layer system of two immiscible liquids with vapour generation at the contact interface

    Science.gov (United States)

    Pimenova, Anastasiya V.; Gazdaliev, Ilias M.; Goldobin, Denis S.

    2017-06-01

    For well-stirred multiphase fluid systems the mean interface area per unit volume, or “specific interface area” SV, is a significant characteristic of the system state. In particular, it is important for the dynamics of systems of immiscible liquids experiencing interfacial boiling. We estimate the value of parameter SV as a function of the heat influx {\\dot{Q}}V to the system or the average system overheat above the interfacial boiling point. The derived results can be reformulated for the case of an endothermic chemical reaction between two liquid reagents with the gaseous form of one of the reaction products. The final results are restricted to the case of thin layers, where the potential gravitational energy of bubbles leaving the contact interface is small compared to their surface tension energy.

  14. Monte-Carlo calculation of the calibration factors for the interfacial area concentration and the velocity of the bubbles for double sensor conductivity probe

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Pena, J.; Chiva, S.; Mendez, S.

    2007-01-01

    This paper presents a study of the estimation of the correction factors for the interfacial area concentration and the bubble velocity in two phase flow measurements using the double sensor conductivity probe. Monte-Carlo calculations of these correction factors have been performed for different values of the relative distance (ΔS/D) between the tips of the conductivity probe and different values of the relative bubble velocity fluctuation parameter. Also this paper presents the Monte-Carlo calculation of the expected value of the calibration factors for bubbly flow assuming a log-normal distribution of the bubble sizes. We have computed the variation of the expected values of the calibration factors with the relative distance (ΔS/D) between the tips and the velocity fluctuation parameter. Finally, we have performed a sensitivity study of the variation of the average values of the calibration factors for bubbly flow with the geometrical standard deviation of the log-normal distribution of bubble sizes. The results of these calculations show that the total interfacial area correction factor is very close to 2, and depends very weakly on the velocity fluctuation, and the relative distance between tips. For the velocity calibration factor, the Monte-Carlo results show that for moderate values of the relative bubble velocity fluctuation parameter (H max ≤ 0.3) and values of the relative distance between tips not too small (ΔS/D ≥ 0.2), the correction velocity factor for the bubble sensor conductivity probe is close to unity, ranging from 0.96 to 1

  15. The molecular understanding of interfacial interactions of functionalized graphene and chitosan

    International Nuclear Information System (INIS)

    Zhang, Hong-ping; Luo, Xue-gang; Lin, Xiao-yan; Lu, Xiong; Tang, Youhong

    2016-01-01

    Graphical abstract: The type of the functional groups can be used to modulating interactions between graphene sheet and chitosan. - Highlights: • Investigate interfacial interactions between chitosan and functionalized graphene by DFT. • Observe covalent linkages between COOH-modified graphene and chitosan units. • Multi-functionalized graphene regulates the interfacial interactions with chitosan. • It is useful for guiding the preparation of graphene/chitosan composites. - Abstract: Graphene-reinforced chitosan scaffolds have been extensively studied for several years as promising hard tissue replacements. However, the interfacial interactions between graphene and chitosan are strongly related to the solubility, processability, and mechanical properties of graphene-reinforced chitosan (G–C) composites. The functionalization of graphene is regarded as the most effective way to improve the abovementioned properties of the G–C composite. In this study, the interfacial interactions between chitosan and functionalized graphene sheets with carboxylization (COOH-), amination (NH 2 -), and hydroxylation (OH-) groups were systematically studied at the electronic level using the method of ab initio simulations based on quantum mechanics theory and the observations were compared with reported experimental results. The covalent linkages between COOH-modified graphene and the chitosan units were demonstrated and the combination of multi-functionalization on graphene could regulate the interfacial interactions between graphene and the chitosan. The interfacial interactions between chitosan and properly functionalized graphene are critical for the preparation of G–C-based composites for tissue engineering scaffolds and other applications.

  16. Interfacial Interaction in Anodic Aluminum Oxide Templates Modifies Morphology, Surface Area, and Crystallization of Polyamide-6 Nanofibers.

    Science.gov (United States)

    Xue, Junhui; Xu, Yizhuang; Jin, Zhaoxia

    2016-03-08

    Here, we demonstrated that, when the precipitation process of polyamide-6 (PA6) solution happens in cylindrical channels of an anodized aluminum oxide membrane (AAO), interface interactions between a solid surface, solvent, non-solvent, and PA6 will influence the obtained polymer nanostructures, resulting in complex morphologies, increased surface area, and crystallization changes. With the enhancing interaction of PA6 and the AAO surface, the morphology of PA6 nanostructures changes from solid nanofibers, mesoporous, to bamboo-like, while at the same time, metastable γ-phase domains increase in these PA6 nanostructures. Brunauer-Emmett-Teller (BET) surface areas of solid, bamboo-like, and mesoporous PA6 nanofibers rise from 16, 20.9, to 25 m(2)/g. This study shows that interfacial interaction in AAO template fabrication can be used in manipulating the morphology and crystallization of one-dimensional polymer nanostructures. It also provides us a simple and novel method to create porous PA6 nanofibers with a large surface area.

  17. Microfluidic ultralow interfacial tensiometry with magnetic particles.

    Science.gov (United States)

    Tsai, Scott S H; Wexler, Jason S; Wan, Jiandi; Stone, Howard A

    2013-01-07

    We describe a technique that measures ultralow interfacial tensions using paramagnetic spheres in a co-flow microfluidic device designed with a magnetic section. Our method involves tuning the distance between the co-flowing interface and the magnet's center, and observing the behavior of the spheres as they approach the liquid-liquid interface-the particles either pass through or are trapped by the interface. Using threshold values of the magnet-to-interface distance, we make estimates of the two-fluid interfacial tension. We demonstrate the effectiveness of this technique for measuring very low interfacial tensions, O(10(-6)-10(-5)) N m(-1), by testing solutions of different surfactant concentrations, and we show that our results are comparable with measurements made using a spinning drop tensiometer.

  18. Interfacial patterns in magnetorheological fluids: Azimuthal field-induced structures.

    Science.gov (United States)

    Dias, Eduardo O; Lira, Sérgio A; Miranda, José A

    2015-08-01

    Despite their practical and academic relevance, studies of interfacial pattern formation in confined magnetorheological (MR) fluids have been largely overlooked in the literature. In this work, we present a contribution to this soft matter research topic and investigate the emergence of interfacial instabilities when an inviscid, initially circular bubble of a Newtonian fluid is surrounded by a MR fluid in a Hele-Shaw cell apparatus. An externally applied, in-plane azimuthal magnetic field produced by a current-carrying wire induces interfacial disturbances at the two-fluid interface, and pattern-forming structures arise. Linear stability analysis, weakly nonlinear theory, and a vortex sheet approach are used to access early linear and intermediate nonlinear time regimes, as well as to determine stationary interfacial shapes at fully nonlinear stages.

  19. Non-Darcy interfacial dynamics of air-water two-phase flow in rough fractures under drainage conditions.

    Science.gov (United States)

    Chang, Chun; Ju, Yang; Xie, Heping; Zhou, Quanlin; Gao, Feng

    2017-07-04

    Two-phase flow interfacial dynamics in rough fractures is fundamental to understanding fluid transport in fractured media. The Haines jump of non-Darcy flow in porous media has been investigated at pore scales, but its fundamental processes in rough fractures remain unclear. In this study, the micron-scale Haines jump of the air-water interface in rough fractures was investigated under drainage conditions, with the air-water interface tracked using dyed water and an imaging system. The results indicate that the interfacial velocities represent significant Haines jumps when the meniscus passes from a narrow "throat" to a wide "body", with jump velocities as high as five times the bulk drainage velocity. Locally, each velocity jump corresponds to a fracture aperture variation; statistically, the velocity variations follow an exponential function of the aperture variations at a length scale of ~100 µm to ~100 mm. This spatial-scale-invariant correlation may indicate that the high-speed local velocities during the Haines jump would not average out spatially for a bulk system. The results may help in understanding the origin of interface instabilities and the resulting non-uniform phase distribution, as well as the micron-scale essence of the spatial and temporal instability of two-phase flow in fractured media at the macroscopic scale.

  20. Monte Carlo estimates of interfacial tension in the two-dimensional Ising model from non-equilibrium methods

    International Nuclear Information System (INIS)

    Híjar, Humberto; Sutmann, Godehard

    2008-01-01

    Non-equilibrium methods for estimating free energy differences are used in order to calculate the interfacial tension between domains with opposite magnetizations in two-dimensional Ising lattices. Non-equilibrium processes are driven by changing the boundary conditions for two opposite sides of the lattice from periodic to antiperiodic and vice versa. This mechanism, which promotes the appearance and disappearance of the interface, is studied by means of Monte Carlo simulations performed at different rates and using different algorithms, thus allowing for testing the applicability of non-equilibrium methods for processes driven far from or close to equilibrium. Interfaces in lattices with different widths and heights are studied and the interface tension as a function of these quantities is obtained. It is found that the estimates of the interfacial tension from non-equilibrium procedures are in good agreement with previous reports as well as with exact results. The efficiency of the different procedures used is analyzed and the dynamics of the interface under these perturbations is briefly discussed. A method for determining the efficiency of non-equilibrium methods as regards thermodynamic perturbation is also presented. It is found that for all cases studied, the Crooks non-equilibrium method for estimating free energy differences is the most efficient one

  1. Numerical predictions of bubbly two-phase flows with OpenFOAM

    International Nuclear Information System (INIS)

    Michta, E.; Fu, K.; Anglart, H.; Angele, K.

    2011-01-01

    A new model for simulation of bubbly two-phase flows has been developed and implemented into an open-source Computational Fluid Dynamics (CFD) code OpenFOAM. The model employs the two-fluid framework with closure relationships for the interfacial momentum transfer. The bubble size is calculated based on the solution of the interfacial area concentration equations. The predictions are validated against a wide range of experimental data containing measured void fraction, the phasic velocity and the interfacial area concentration. The new model demonstrates the ability to capture the wall peaking of void fraction for small bubbles. The predicted levels of void fraction and phasic velocities are in good agreement with measured data. (author)

  2. Numerical modelling of isothermal gas-liquid two-phase bubbly flow in vertical pipes

    International Nuclear Information System (INIS)

    Yamoah, S.

    2014-07-01

    In order to qualify CFD codes for accurate numerical predictions of transient evolution of flow regimes in a vertical gas-liquid two-phase flow, suitable closure models are needed. The current study focuses on detailed numerical investigation of the interfacial driving force models and assessment of two population balance model approaches viz. the MUltiple-Size-Group (MUSIG) and one-group Interfacial Area Transport Equation (lATE) using the two-fluid modelling approach. Numerical predictions of five primitive variables: gas volume fraction, interfacial area concentration, Sauter mean bubble diameter, gas velocity and liquid velocity; have been validated against experimental data of Monros et al., (2013). Three specific objectives have been completed in this study. Firstly, under the assumption of mono-disperse bubbles, a consistent set of interfacial force models have been investigated. The effect of drag, lift, wall lubrication and turbulent dispersion forces has been assessed. New parameters have been introduced in the wall lubrication force models of Antal et al., (1991) and Frank et al., (2004, 2008) as well as implementing additional drag coefficient models using CFX Expression Language (CEl). The Tomiyama, (1998) lift coefficient model has been modified in this study. In general, the predictions from the sets of interfacial force models yielded satisfactory agreement with the experimental data. A set of Grace drag coefficient model, Tomiyama lift coefficient model, Antal wall force model, and Favre averaged turbulent dispersion force were found to provide the best agreement with the experimental data. Secondly, a model validation study to assess the performance of existing coalescence and breakup models of the MUSIG model in simulating bubbly flow in vertical configuration has been conducted. The breakup model of Luo and Svendsen, (1996) and coalescence model of Prince and Blanch, (1990) have been implemented. Detailed analysis has been performed for the wall

  3. Interfacial behaviour of biopolymer multilayers

    NARCIS (Netherlands)

    Corstens, Meinou N.; Osorio Caltenco, Lilia A.; Vries, de Renko; Schroën, Karin; Berton-Carabin, Claire C.

    2017-01-01

    Although multilayered emulsions have been related to reduced lipolysis, the involved interfacial phenomena have never been studied directly. In this work, we systematically built multilayers of whey protein and pectin, which we further subjected to digestive conditions, using two different

  4. Reduction of benzene and naphthalene mass transfer from crude oils by aging-induced interfacial films.

    Science.gov (United States)

    Ghoshal, Subhasis; Pasion, Catherine; Alshafie, Mohammed

    2004-04-01

    Semi-rigid films or skins form at the interface of crude oil and water as a result of the accumulation of asphaltene and resin fractions when the water-immiscible crude oil is contacted with water for a period of time or "aged". The time varying patterns of area-independent mass transfer coefficients of two compounds, benzene and naphthalene, for dissolution from crude oil and gasoline were determined. Aqueous concentrations of the compounds were measured in the eluent from flow-through reactors, where a nondispersed oil phase and constant oil-water interfacial area were maintained. For Brent Blend crude oil and for gasoline amended with asphaltenes and resins, a rapid decrease in both benzene and naphthalene mass transfer coefficients over the first few days of aging was observed. The mass transfer coefficients of the two target solutes were reduced by up to 80% over 35 d although the equilibrium partition coefficients were unchanged. Aging of gasoline, which has negligible amounts of asphaltene and resin, did not result in a change in the solute mass transfer coefficients. The study demonstrates that formation of crude oil-water interfacial films comprised of asphaltenes and resins contribute to time-dependent decreases in rates of release of environmentally relevant solutes from crude oils and may contribute to the persistence of such solutes at crude oil-contaminated sites. It is estimated that the interfacial film has an extremely low film mass transfer coefficient in the range of 10(-6) cm/min.

  5. Partitioning and interfacial tracers for differentiating NAPL entrapment configuration: column-scale investigation.

    Science.gov (United States)

    Dai, D; Barranco, F T; Illangasekare, T H

    2001-12-15

    Research on the use of partitioning and interfacial tracers has led to the development of techniques for estimating subsurface NAPL amount and NAPL-water interfacial area. Although these techniques have been utilized with some success at field sites, current application is limited largely to NAPL at residual saturation, such as for the case of post-remediation settings where mobile NAPL has been removed through product recovery. The goal of this study was to fundamentally evaluate partitioning and interfacial tracer behavior in controlled column-scale test cells for a range of entrapment configurations varying in NAPL saturation, with the results serving as a determinant of technique efficacy (and design protocol) for use with complexly distributed NAPLs, possibly at high saturation, in heterogeneous aquifers. Representative end members of the range of entrapment configurations observed under conditions of natural heterogeneity (an occurrence with residual NAPL saturation [discontinuous blobs] and an occurrence with high NAPL saturation [continuous free-phase LNAPL lens]) were evaluated. Study results indicated accurate prediction (using measured tracer retardation and equilibrium-based computational techniques) of NAPL amount and NAPL-water interfacial area for the case of residual NAPL saturation. For the high-saturation LNAPL lens, results indicated that NAPL-water interfacial area, but not NAPL amount (underpredicted by 35%), can be reasonably determined using conventional computation techniques. Underprediction of NAPL amount lead to an erroneous prediction of NAPL distribution, as indicated by the NAPL morphology index. In light of these results, careful consideration should be given to technique design and critical assumptions before applying equilibrium-based partitioning tracer methodology to settings where NAPLs are complexly entrapped, such as in naturally heterogeneous subsurface formations.

  6. Numerical Predictions of Bubbly Two-Phase Flows with OpenFOAM

    Directory of Open Access Journals (Sweden)

    Edouard Michta

    2012-12-01

    Full Text Available A new model for simulation of bubbly two-phase flows has been developed and implemented into an open-source Computational Fluid Dynamics (CFD code OpenFOAM. The model employs the two-fluid framework with closure relationships for the interfacial momentum transfer. The bubble size is calculated based on the solution of the transport equation of the interfacial area concentration. The predictions are validated against selected data obtained in the DEDALE experiment and containing the measured void fraction, the phasic velocities and the interfacial area concentration. In general, good agreement between calculated and measured data is demonstrated; however, the relative phasic velocity is systematically over-predicted. The levels of void fraction and the observed wall void peaking are well captured in the calculations.

  7. Interfacial Properties of EXXPRO(TM) and General Purpose Elastomers

    Science.gov (United States)

    Zhang, Y.; Rafailovich, M.; Sokolov, Jon; Qu, S.; Ge, S.; Ngyuen, D.; Li, Z.; Peiffer, D.; Song, L.; Dias, J. A.; McElrath, K. O.

    1998-03-01

    EXXPRO(Trademark) elastomers are used for tires and many other applications. This elastomer (denoted as BIMS) is a random copolymer of p-methylstyrene (MS) and polyisobutylene (I) with varying degrees of PMS content and bromination (B) on the p-methyl group. BIMS is impermeable to gases, and has good heat, ozone and flex resistance. Very often general purpose elastomers are blended with BIMS. The interfacial width between polybutadiene and BIMS is a sensitive function of the Br level and PMS content. By neutron reflectivity (NR), we studied the dynamics of interface formation as a function of time and temperature for BIMS with varying degrees of PMS and Br. We found that in addition to the bulk parameters, the total film thickness and the proximity of an interactive surface can affect the interfacial interaction rates. The interfacial properties can also be modified by inclusion of particles, such as carbon black (a filler component in tire rubbers). Results will be presented on the relation between the interfacial width as measured by NR and compatibilization studies via AFM and LFM.

  8. Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures

    KAUST Repository

    Torrealba, V. A.

    2017-11-08

    This article introduces a consistent and robust model that predicts interfacial tensions for all microemulsion Winsor types and overall compositions. The model incorporates film bending arguments and Huh\\'s equation and is coupled to phase behavior so that simultaneous tuning of both interfacial tension (IFT) and phase behavior is possible. The oil-water interfacial tension and characteristic length are shown to be related to each other through the hydrophilic-lipophilic deviation (HLD). The phase behavior is tied to the micelle curvatures, without the need for using the net average curvature (NAC). The interfacial tension model is related to solubilization ratios in order to introduce a coupled interfacial tension-phase behavior model for all phase environments. The approach predicts two- and three-phase interfacial tensions and phase behavior (i.e., tie lines and tie triangles) for changes in composition and HLD input parameters, such as temperature, pressure, surfactant structure, and oil equivalent alkane carbon number. Comparisons to experimental data show excellent fits and predictive capability.

  9. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.

    Science.gov (United States)

    Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2017-09-11

    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.

  10. Paleozoic stratigraphy of two areas in southwestern Indiana

    International Nuclear Information System (INIS)

    Droste, J.B.

    1976-09-01

    Two areas recommended for evaluation as solid waste disposal sites lie along the strike of Paleozoic rocks in southwestern Indiana. Thin Pennsylvanian rocks and rocks of the upper Mississippian are at the bedrock surface in maturely dissected uplands in both areas. The gross subsurface stratigraphy beneath both areas is the same, but facies and thickness variation in some of the subsurface Paleozoic units provide for some minor differences between the areas. Thick middle Mississippi carbonates grade downward into clastics of lower Mississippian (Borden Group) and upper Devonian (New Albany Shale) rocks. Middle Devonian and Silurian rocks are dominated by carbonate lithologies. Upper Ordovician (Maquoketa Group) overly carbonates of middle Ordovician age. Thick siltstone and shale of the Borden Group-New Albany Shale zone and Maquoketa Group rocks should be suitable for repository development

  11. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  12. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  13. A Novel, Diazonium-Phenolic Resin Two-Layer Resist System Utilizing Photoinduced Interfacial Insolubilization

    Science.gov (United States)

    Uchino, Shou-ichi; Iwayanagi, Takao; Ueno, Takumi; Hashimoto, Michiaki; Nonogaki, Saburo

    1987-08-01

    This paper deals with a negative two-layer photoresist system utilizing a photoinduced insolubilization process at the interface. The bottom layer is a phenolic resin either with or without aromatic azide and the top layer is a photosensitive layer comprised of an aromatic diazonium compound and a water soluble polymer. Upon exposure to light, the diazo compound decomposes to cause insolubilization at the interface between the two layers. The system exhibits high contrast due to the combination of interfacial insolubilization and contrast enhancement by photobleaching of the diazonium compound. Patterns of 0.5 um lines and spaces are obtained using an i-line stepper and a resist system containing 4-diazo-N,N-dimethylaniline chloride zinc chloride in the top layer and 3-(4-azidostyry1)- 5,5-dimethyl- 2-cyclohexen-1-one in the bottom layer. Resists with varying spectral responses from mid-UV to g-line can be designed by selecting the kind of diazo compound used in the top layer.

  14. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    NARCIS (Netherlands)

    Raaijmakers, Michiel

    2015-01-01

    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  15. Tuning the Interfacial Mechanical Behaviors of Monolayer Graphene/PMMA Nanocomposites.

    Science.gov (United States)

    Wang, Guorui; Dai, Zhaohe; Liu, Luqi; Hu, Hai; Dai, Qing; Zhang, Zhong

    2016-08-31

    The van der Waals (vdW) force dominated interface between graphene and polymer matrix creates weak points in the mechanical sense. Chemical functionalization was expected to be an effective approach in transfer of the outstanding performance of graphene across multiple length scales up to the macroscopic level, due to possible improvements in the interfacial adhesion. However, published works showed the contradiction that improvements, insensitivity, or even worsening of macro-mechanical performance have all been reported in graphene-based polymer nanocomposites. Particularly central cause of such discrepancy is the variations in graphene/polymer interfacial chemistry, which is critical in nanocomposites with vast interfacial area. Herein, O3/H2O gaseous mixture was utilized to oxidize monolayer graphene sheet with controlled functionalization degrees. Hydrogen bonds (H bonds) are expected to form between oxidized graphene sheet/poly(methyl methacrylate) (PMMA) at the interface. On the basis of in situ tensile-micro Raman spectroscopy, the impacts of bonding types (vdW and H-bonds) on both key interfacial parameters (such as interfacial shear strength and critical length) and failure modes of graphene/PMMA nanocomposite were clarified for the first time at the microscopic level. Our results show that owing to improved interfacial interaction via H bonds, the interface tends to be stiffening and strengthening. Moreover, the mechanical properties of the functionalized graphene/PMMA interface will be set by the competition between the enhanced interfacial adhesion and the degraded elastic modulus of graphene, which was caused by structural defects in the graphene sheet during the functionalization process and could lead to catastrophic failure of graphene sheets in our experimental observation. Our results will be helpful to design various nanofiller-based nanocomposites with high mechanical performance.

  16. Polyindole/ carboxylated-multiwall carbon nanotube composites produced by in-situ and interfacial polymerization

    International Nuclear Information System (INIS)

    Joshi, Leela; Singh, Arun Kumar; Prakash, Rajiv

    2012-01-01

    Composites of polyindole (PIn), a conducting polymer, with carboxylated-multiwalled carbon nanotubes (c-MWCNT/PIn) were synthesized; the synthesis was done using (i) two miscible solvents (in-situ method) and (ii) two immiscible solvents (interfacial method). A tubular composite, with a uniform coating of the polymer over c-MWCNTs, was observed in the case of interfacial synthesis. However, the in-situ synthesis of c-MWCNT/PIn composites exhibited a densely packed spherical morphology, with c-MWCNT incorporated within the polymer spheres. The spherical morphology was probably obtained due to fast polymerization kinetics and the formation of micelles in case of in-situ polymerization, whereas tubular morphology was obtained in case of interfacial polymerization due to the sufficient time provided for the growth of polymer chains over the c-MWCNT surfaces. Nanoscale electrical properties of composites, in a metal/(c-MWCNT/PIn) configuration, were studied using current sensing atomic force microscopy. Interfacial c-MWCNT/PIn composite, on Al metal substrate, exhibited a typical rectifying diode behavior. This composite had manifested enormous potential for electronic applications and fabrication of nanoscale organic devices. Highlights: ► Polyindole/c-MWNT nanocomposites produced by in-situ and interfacial polymerization. ► Densely packed spherical morphology was observed in in-situ polymerization route. ► Tubular core-shell morphology was observed in interfacial polymerization route. ► Interfacial nanocomposite manifested a nano-schottky junction with Al metal.

  17. Experimental determination and modelling of interface area concentration in horizontal stratified flow

    International Nuclear Information System (INIS)

    Junqua-Moullet, Alexandra

    2003-01-01

    This research thesis concerns the modelling and experimentation of biphasic liquid/gas flows (water/air) while using the two-fluid model, a six-equation model. The author first addresses the modelling of interfacial magnitudes for a known topology (problem of two-fluid model closure, closure relationships for some variables, equation for a given configuration). She reports the development of an equation system for interfacial magnitudes. The next parts deal with experiments and report the study of stratified flows in the THALC experiment, and more particularly the study of the interfacial area concentration and of the liquid velocities in such flows. Results are discussed, as well as their consistency

  18. Adsorption of ionic surfactants at microscopic air-water interfaces using the micropipette interfacial area-expansion method

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-01-01

    The dynamic adsorption of ionic surfactants at air-water interfaces have been less-well studied than that of the simpler non-ionics since experimental limitations on dynamic surface tension (DST) measurements create inconsistencies in their kinetic analysis. Using our newly designed "Micropipette...... interfacial area-expansion method", we have measured and evaluated both equilibrium and dynamic adsorption of a well-known anionic surfactant, sodium dodecyl sulphate (SDS), in the absence or presence of 100mM NaCl. Our focus was to determine if and to what extent the inclusion of a new correction parameter...... for the "ideal ionic activity", A±i, can renormalize both equilibrium and dynamic surface tension measurements and provide better estimates of the diffusion coefficient of ionic surfactants in aqueous media obtained from electroneutral models, namely extended Frumkin isotherm and Ward-Tordai adsorption models...

  19. Interfacial characterization of CVI-SiC/SiC composites

    International Nuclear Information System (INIS)

    Yang, W.; Kohyama, A.; Noda, T.; Katoh, Y.; Hinoki, T.; Araki, H.; Yu, J.

    2002-01-01

    The mechanical properties of the interfaces of two families of chemical vapor infiltration SiC/SiC composites, advanced Tyranno-SA and Hi-Nicalon fibers reinforced SiC/SiC composites with various carbon and SiC/C interlayers, were investigated by single fiber push-out/push-back tests. Interfacial debonding and fibers sliding mainly occurred adjacent to the first carbon layer on the fibers. The interfacial debonding strengths and frictional stresses for both Tyranno-SA/SiC and Hi-Nicalon/SiC composites were correlated with the first carbon layer thickness. Tyranno-SA/SiC composites exhibited much larger interfacial frictional stresses compared to Hi-Nicalon/SiC composites. This was assumed to be mainly contributed by the rather rough surface of the Tyranno-SA fiber

  20. Bonding to CAD-CAM Composites: An Interfacial Fracture Toughness Approach.

    Science.gov (United States)

    Eldafrawy, M; Ebroin, M G; Gailly, P A; Nguyen, J-F; Sadoun, M J; Mainjot, A K

    2018-01-01

    The objective of this study was to evaluate the interfacial fracture toughness (IFT) of composite cement with dispersed filler (DF) versus polymer-infiltrated ceramic network (PICN) computer-aided design and computer-aided manufacturing (CAD-CAM) composite blocks after 2 different surface pretreatments using the notchless triangular prism (NTP) test. Two DFs (Cerasmart [CRT] and Lava Ultimate [LVA]), 2 PICNs (Enamic [ENA] and experimental PICN [EXP]), and e.max CAD lithium disilicate glass-ceramic (EMX, control) prism samples were bonded to their counterparts with Variolink Esthetic DC composite cement after either hydrofluoric acid etching (HF) or gritblasting (GR). Both procedures were followed by silanization. All samples ( n = 30 per group) were thermocycled (10,000 cycles) and tested for their IFT in a water bath at 36°C. Moreover, representative samples from each group were subjected to a developed interfacial area ratio (Sdr) measurement by profilometry and scanning electron microscopy (SEM) characterization. EXP-HF gave the highest IFT (1.85 ± 0.39 MPa·m 1/2 ), followed by EMX-HF and ENA-HF, while CRT-HF gave the lowest (0.15 ± 0.22 MPa·m 1/2 ). PICNs gave significantly better results with HF, and DF showed better results with GR. A 2-way analysis of variance indicated that there were significantly higher IFT and Sdr for PICNs than for DF. A positive correlation ( r² = 0.872) was found between IFT and Sdr. SEM characterization showed the specific microstructure of the surface of etched PICNs, indicating the presence of a retentive polymer-based honeycomb structure. Etching of the typical double-network microstructure of PICNs causes an important increase in the Sdr and IFT, while DF should be gritblasted. DF exhibited significantly lower Sdr and IFT values than PICNs. The present results show the important influence of the material class and surface texture, and consequently the micromechanical bond, on the adhesive interface performance of CAD

  1. Interfacial shear behavior of composite flanged concrete beams

    Directory of Open Access Journals (Sweden)

    Moataz Awry Mahmoud

    2014-08-01

    Full Text Available Composite concrete decks are commonly used in the construction of highway bridges due to their rapid constructability. The interfacial shear transfer between the top slab and the supporting beams is of great significance to the overall deck load carrying capacity and performance. Interfacial shear capacity is directly influenced by the distribution and the percentage of shear connectors. Research and design guidelines suggest the use of two different approaches to quantify the required interfacial shear strength, namely based on the maximum compressive forces in the flange at mid span or the maximum shear flow at the supports. This paper investigates the performance of flanged reinforced concrete composite beams with different shear connector’s distribution and reinforcing ratios. The study incorporated both experimental and analytical programs for beams. Key experimental findings suggest that concentrating the connectors at the vicinity of the supports enhances the ductility of the beam. The paper proposes a simple and straight forward approach to estimate the interfacial shear capacity that was proven to give good correlation with the experimental results and selected code provisions. The paper presents a method to predict the horizontal shear force between precast beams and cast in-situ slabs.

  2. The enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts

    International Nuclear Information System (INIS)

    Zhang Bin; Chen Xudong; Ma Shaohua; Yang Jin; Zhang Mingqiu; Chen Yujie

    2010-01-01

    A modified ZnO quantum dot/polythiophene (ZnO/PTh) inorganic-organic hybrid architecture was fabricated by using ordered mesoporous silica (SBA-15) as the retaining template. First, a two-step strategy was developed to synthesize an ordered organic conducting polymer composite (PTh/SBA-15). Then, ZnO quantum dots were in situ formed on the pore walls of the ordered PTh/SBA-15 composite. Photoresponse of the inorganic-organic hybrid was studied with respect to its incident photon to collected electron conversion efficiency (IPCE) and morphology. The presence of SBA-15 proved to be critical for controlling the interfacial morphology and hence enlarging the interfacial area of the inorganic-organic heterojunction. The proposed approach may act as a key method to open up potential applications in photovoltaic devices.

  3. The enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts.

    Science.gov (United States)

    Zhang, Bin; Chen, Xudong; Ma, Shaohua; Chen, Yujie; Yang, Jin; Zhang, Mingqiu

    2010-02-10

    A modified ZnO quantum dot/polythiophene (ZnO/PTh) inorganic-organic hybrid architecture was fabricated by using ordered mesoporous silica (SBA-15) as the retaining template. First, a two-step strategy was developed to synthesize an ordered organic conducting polymer composite (PTh/SBA-15). Then, ZnO quantum dots were in situ formed on the pore walls of the ordered PTh/SBA-15 composite. Photoresponse of the inorganic-organic hybrid was studied with respect to its incident photon to collected electron conversion efficiency (IPCE) and morphology. The presence of SBA-15 proved to be critical for controlling the interfacial morphology and hence enlarging the interfacial area of the inorganic-organic heterojunction. The proposed approach may act as a key method to open up potential applications in photovoltaic devices.

  4. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    Science.gov (United States)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films

  5. Interfacial forces in aqueous media

    CERN Document Server

    van Oss, Carel J

    2006-01-01

    Thoroughly revised and reorganized, the second edition of Interfacial Forces in Aqueous Media examines the role of polar interfacial and noncovalent interactions among biological and nonbiological macromolecules as well as biopolymers, particles, surfaces, cells, and both polar and apolar polymers. The book encompasses Lifshitz-van der Waals and electrical double layer interactions, as well as Lewis acid-base interactions between colloidal entities in polar liquids such as water. New in this Edition: Four previously unpublished chapters comprising a new section on interfacial propertie

  6. Multidimensional analysis of developing two-phase flows in an ESBWR chimney with and without riser channels

    International Nuclear Information System (INIS)

    Murakawa, H.; Antal, S.P.; Lahey, R T.

    2008-01-01

    The object of this work was to simulate developing multidimensional velocity and void fraction distributions in bubbly and churn turbulent two-phase flows. An advanced Computational Multiphase Fluid Dynamics (CMFD) code, NPHASE, was used to perform three-dimensional, multi-field simulations of the developing phasic velocity and phase distributions in vertical adiabatic conduits. The NPHASE code employed a multi-field two-fluid model, in which, for churn turbulent flow, the vapor phase was divided into small and large, cap bubble fields. In addition, state-of-the-art interfacial area density and field-to-field mass transfer models were used for both the small and large, cap bubbles. In particular, the bubble breakup and coalescence processes were quantified using a two-group interfacial area density transport equation. This allowed the CMFD simulation of developing churn turbulent flows in an ESBWR with and without vertical riser channels in the chimney region above the core. Based on these simulations it was concluded that riser channels have little adverse effect on the induced natural circulation flow through the core and the stability characteristics of an ESBWR. (authors)

  7. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    International Nuclear Information System (INIS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Ma, Lichun; Qi, Meiwei; Yu, Jiali; Huang, Yudong

    2014-01-01

    Highlights: • Carbon fibers are grafted with phenyl amine group via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 73%. • Tensile strength of the carbon fibers does not decrease distinctly. • Using water as the reaction medium can avoid pollution from organic solvents. • Grafting via aryl diazonium reaction in one step can improve modification efficiency. - Abstract: Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction “on water” to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction “on water” could be a facile green platform to functionalize carbon fibers for many interesting applications

  8. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwei [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Meng, Linghui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fan, Liquan [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Ma, Lichun; Qi, Meiwei; Yu, Jiali [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yudong, E-mail: ydhuang.hit1@yahoo.com.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2014-10-15

    Highlights: • Carbon fibers are grafted with phenyl amine group via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 73%. • Tensile strength of the carbon fibers does not decrease distinctly. • Using water as the reaction medium can avoid pollution from organic solvents. • Grafting via aryl diazonium reaction in one step can improve modification efficiency. - Abstract: Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction “on water” to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction “on water” could be a facile green platform to functionalize carbon fibers for many interesting applications.

  9. Investigation of oil recovery improvement by coupling an interfacial tension agent and a mobility control agent in light oil reservoirs. Second annual report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, M.J.

    1995-04-01

    {open_quotes}Investigation of Oil Recovery Improvement by Coupling an Interfacial Tension Agent and a Mobility Control Agent in Light Oil Reservoirs{close_quotes} is studying two major areas concerning co-injecting an interfacial tension reduction agent(s) and a mobility control agent. The first area defines the interactions of alkaline agents, surfactants, and polymers on a fluid-fluid and a fluid-rock basis. The second area concerns the economic improvement of the combined technology. This report continues the fluid-fluid interaction evaluations and begins the fluid-rock studies. Fluid-fluid interfacial tension work determined that replacing sodium ion with either potassium or ammonium ion in solutions with interfacial tension reduction up to 19,600 fold was detrimental and had little or no effect on alkali-surfactant solutions with interfacial tension reduction of 100 to 200 fold. Reservoir brine increases interfacial tension between crude oil and alkaline-surfactant solutions. Na{sub 2}CO{sub 3}-surfactant solutions maintained ultra low and low interfacial tension values better than NaOH-surfactant solutions. The initial phase of the fluid-rock investigations was adsorption studies. Surfactant adsorption is reduced when co-dissolved with alkali. Na{sub 2}CO{sub 3} and Na{sub 3}PO{sub 4} are more efficient at reducing surfactant adsorption than NaOH. When polymer is added to the surfactant solution, surfactant adsorption is reduced as well. When both polymer and alkali are added, polymer is the dominate component, reducing the Na{sub 2}CO{sub 3} and NaOH effect on adsorption. Substituting sodium ion with potassium or ammonium ion increased or decreased surfactant adsorption depending on surfactant structure with alkali having a less significant effect. No consistent change of surfactant adsorption with increasing salinity was observed in the presence or absence of alkali or polymer.

  10. Pursuing Polymer Dielectric Interfacial Effect in Organic Transistors for Photosensing Performance Optimization.

    Science.gov (United States)

    Wu, Xiaohan; Chu, Yingli; Liu, Rui; Katz, Howard E; Huang, Jia

    2017-12-01

    Polymer dielectrics in organic field-effect transistors (OFETs) are essential to provide the devices with overall flexibility, stretchability, and printability and simultaneously introduce charge interaction on the interface with organic semiconductors (OSCs). The interfacial effect between various polymer dielectrics and OSCs significantly and intricately influences device performance. However, understanding of this effect is limited because the interface is buried and the interfacial charge interaction is difficult to stimulate and characterize. Here, this challenge is overcome by utilizing illumination to stimulate the interfacial effect in various OFETs and to characterize the responses of the effect by measuring photoinduced changes of the OFETs performances. This systemic investigation reveals the mechanism of the intricate interfacial effect in detail, and mathematically explains how the photosensitive OFETs characteristics are determined by parameters including polar group of the polymer dielectric and the OSC side chain. By utilizing this mechanism, performance of organic electronics can be precisely controlled and optimized. OFETs with strong interfacial effect can also show a signal additivity caused by repeated light pulses, which is applicable for photostimulated synapse emulator. Therefore, this work enlightens a detailed understanding on the interface effect and provides novel strategies for optimizing OFET photosensory performances.

  11. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single

  12. Two-Phase Flow Simulations In a Natural Rock Fracture using the VOF Method

    International Nuclear Information System (INIS)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.; Bromhal, Grant

    2010-01-01

    Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the

  13. Spin selection at organic spinterface by anchoring group

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhao; Qiu, Shuai; Miao, Yuan-yuan; Ren, Jun-feng; Wang, Chuan-kui [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Hu, Gui-chao, E-mail: hgc@sdnu.edu.cn [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Institute of Theoretical Physics, Technische Universität Dresden, 01062 Dresden (Germany)

    2017-07-01

    Highlights: • The sign of interfacial spin polarization can be selected by using different anchoring groups. • A sp{sup 3}-d or sp-d hybridization may occur and induce spin polarization when the anchoring group changes. • Interfacial spin polarization depends on both the type of the outer orbital of the anchoring atom as well as its energy. - Abstract: Control of organic interfacial spin polarization is crucial in organic spintronics. Based on ab initio theory, here we proposed a spin selection at organic interface via anchoring group by adsorbing an organic molecule onto Ni(111) surface. The results demonstrate that either a positive or negative interfacial spin polarization may be obtained by choosing different anchoring groups. The orbital analysis via the projected density of states shows that the interfacial spin polarization is sensitive to the hybridization of the outer orbital of the anchoring atom as well as its energy relative to the d orbital of the ferromagnetic atom. The work indicates a feasible way to realize spin selection at the organic spinterface by anchoring group.

  14. Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys

    Science.gov (United States)

    Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang

    2018-01-01

    Al3TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al3Zr and Al3Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al3TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al3Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al3(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al3(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al3Zr-core or Al3Zr(Sc1-1)-core encircled with an Sc-rich shell forms. PMID:29677155

  15. Interfacial stress affects rat alveolar type II cell signaling and gene expression.

    Science.gov (United States)

    Hobi, Nina; Ravasio, Andrea; Haller, Thomas

    2012-07-01

    Previous work from our group (Ravasio A, Hobi N, Bertocchi C, Jesacher A, Dietl P, Haller T. Am J Physiol Cell Physiol 300: C1456-C1465, 2011.) showed that contact of alveolar epithelial type II cells with an air-liquid interface (I(AL)) leads to a paradoxical situation. It is a potential threat that can cause cell injury, but also a Ca(2+)-dependent stimulus for surfactant secretion. Both events can be explained by the impact of interfacial tensile forces on cellular structures. Here, the strength of this mechanical stimulus became also apparent in microarray studies by a rapid and significant change on the transcriptional level. Cells challenged with an I(AL) in two different ways showed activation/inactivation of cellular pathways involved in stress response and defense, and a detailed Pubmatrix search identified genes associated with several lung diseases and injuries. Altogether, they suggest a close relationship of interfacial stress sensation with current models in alveolar micromechanics. Further similarities between I(AL) and cell stretch were found with respect to the underlying signaling events. The source of Ca(2+) was extracellular, and the transmembrane Ca(2+) entry pathway suggests the involvement of a mechanosensitive channel. We conclude that alveolar type II cells, due to their location and morphology, are specific sensors of the I(AL), but largely protected from interfacial stress by surfactant release.

  16. Studies on the disbonding initiation of interfacial cracks.

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, Brian J. (Lehigh University, Bethlehem, PA); Pearson, Raymond A. (Lehigh University, Bethlehem, PA)

    2005-08-01

    With the continuing trend of decreasing feature sizes in flip-chip assemblies, the reliability tolerance to interfacial flaws is also decreasing. Small-scale disbonds will become more of a concern, pointing to the need for a better understanding of the initiation stage of interfacial delamination. With most accepted adhesion metric methodologies tailored to predict failure under the prior existence of a disbond, the study of the initiation phenomenon is open to development and standardization of new testing procedures. Traditional fracture mechanics approaches are not suitable, as the mathematics assume failure to originate at a disbond or crack tip. Disbond initiation is believed to first occur at free edges and corners, which act as high stress concentration sites and exhibit singular stresses similar to a crack tip, though less severe in intensity. As such, a 'fracture mechanics-like' approach may be employed which defines a material parameter--a critical stress intensity factor (K{sub c})--that can be used to predict when initiation of a disbond at an interface will occur. The factors affecting the adhesion of underfill/polyimide interfaces relevant to flip-chip assemblies were investigated in this study. The study consisted of two distinct parts: a comparison of the initiation and propagation phenomena and a comparison of the relationship between sub-critical and critical initiation of interfacial failure. The initiation of underfill interfacial failure was studied by characterizing failure at a free-edge with a critical stress intensity factor. In comparison with the interfacial fracture toughness testing, it was shown that a good correlation exists between the initiation and propagation of interfacial failures. Such a correlation justifies the continuing use of fracture mechanics to predict the reliability of flip-chip packages. The second aspect of the research involved fatigue testing of tensile butt joint specimens to determine lifetimes at sub

  17. Effects of oxygen supply condition and specific biofilm interfacial area on phenol removal rate in a three-phase fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, A.; Meutia, A. A.; Osawa, M.; Arai, M.; Tsuneda, S. [Waseda Univ., Dept. of Chemical Engineering, Tokyo (Japan)

    2000-02-01

    A theoretical and experimental evaluation of the effects of superficial gas velocity, oxygen concentration in the gas phase, and specific biofilm interfacial area on the volumetric removal rate of phenol is described. The reaction rate was found to follow first order reaction kinetics with respect to oxygen, and zero-order reaction kinetics with respect to phenol. A semi-theoretical equation was developed which is capable of predicting the volumetric removal rate and is used to explain the overall removal rate of phenol. Biological reaction as the rate-controlling step and oxygen absorption are both explicable by this equation. 14 refs., 5 figs.

  18. Interfacial Instabilities in Evaporating Drops

    Science.gov (United States)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  19. Effect of Atmospheric Ions on Interfacial Water

    Directory of Open Access Journals (Sweden)

    Chien-Chang Kurt Kung

    2014-11-01

    Full Text Available The effect of atmospheric positivity on the electrical properties of interfacial water was explored. Interfacial, or exclusion zone (EZ water was created in the standard way, next to a sheet of Nafion placed horizontally at the bottom of a water-filled chamber. Positive atmospheric ions were created from a high voltage source placed above the chamber. Electrical potential distribution in the interfacial water was measured using microelectrodes. We found that beyond a threshold, the positive ions diminished the magnitude of the negative electrical potential in the interfacial water, sometimes even turning it to positive. Additionally, positive ions produced by an air conditioner were observed to generate similar effects; i.e., the electrical potential shifted in the positive direction but returned to negative when the air conditioner stopped blowing. Sometimes, the effect of the positive ions from the air conditioner was strong enough to destroy the structure of interfacial water by turning the potential decidedly positive. Thus, positive air ions can compromise interfacial water negativity and may explain the known negative impact of positive ions on health.

  20. Interfacial layering and capillary roughness in immiscible liquids.

    Science.gov (United States)

    Geysermans, P; Pontikis, V

    2010-08-21

    The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.

  1. Ordered mesoporous silica prepared by quiescent interfacial growth method - effects of reaction chemistry

    Science.gov (United States)

    2013-01-01

    Acidic interfacial growth can provide a number of industrially important mesoporous silica morphologies including fibers, spheres, and other rich shapes. Studying the reaction chemistry under quiescent (no mixing) conditions is important for understanding and for the production of the desired shapes. The focus of this work is to understand the effect of a number of previously untested conditions: acid type (HCl, HNO3, and H2SO4), acid content, silica precursor type (TBOS and TEOS), and surfactant type (CTAB, Tween 20, and Tween 80) on the shape and structure of products formed under quiescent two-phase interfacial configuration. Results show that the quiescent growth is typically slow due to the absence of mixing. The whole process of product formation and pore structuring becomes limited by the slow interfacial diffusion of silica source. TBOS-CTAB-HCl was the typical combination to produce fibers with high order in the interfacial region. The use of other acids (HNO3 and H2SO4), a less hydrophobic silica source (TEOS), and/or a neutral surfactant (Tweens) facilitate diffusion and homogenous supply of silica source into the bulk phase and give spheres and gyroids with low mesoporous order. The results suggest two distinct regions for silica growth (interfacial region and bulk region) in which the rate of solvent evaporation and local concentration affect the speed and dimension of growth. A combined mechanism for the interfacial bulk growth of mesoporous silica under quiescent conditions is proposed. PMID:24237719

  2. Interfacial stability of soil covers on lined surface impoundments

    International Nuclear Information System (INIS)

    Mitchell, D.H.; Gates, T.E.

    1986-04-01

    The factors affecting the interfacial stability of soil covers on geomembranes were examined to determine the maximum stable slopes for soil cover/geomembrane systems. Several instances of instability of soil covers on geomembranes have occurred at tailings ponds, leaving exposed geomembranes with the potential for physical ddamage and possibly chemical and ultraviolet degradation. From an operator's viewpoint, it is desirable to maximize the slope of lined facilities in order to maximize the volume-to-area ratio; however, the likelihood for instability also increases with increasing slope. Frictional data obtained from direct shear tests are compared with stability data obtained using a nine-square-meter (m 2 ) engineering-scale test stand to verify that direct shear test data are valid in slope design calculations. Interfacial frictional data from direct shear tests using high-density polyethylene and a poorly graded sand cover agree within several degrees with the engineering-scale tests. Additional tests with other soils and geomembranes are planned. The instability of soil covers is not always an interfacial problem; soil erosion and limited drainage capacity are additional factors that must be considered in the design of covered slopes. 7 refs., 5 figs., 2 tabs

  3. Influence of interfacial layer on contact resistance

    NARCIS (Netherlands)

    Roy, D.; In 't Zand, M.A.A.; Delhounge, R.; Klootwijk, J.H.; Wolters, Robertus A.M.

    2008-01-01

    The contact resistance between two materials is dependent on the intrinsic properties of the materials in contact and the presence and properties of an interfacial layer at the contact. This article presents the difference in contact resistance measurements with and without the presence of a process

  4. Interfacial fluid dynamics and transport processes

    CERN Document Server

    Schwabe, Dietrich

    2003-01-01

    The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by the many demands for applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.

  5. Analysis of main parameters affecting substrate/mortar contact area through tridimensional laser scanner.

    Science.gov (United States)

    Stolz, Carina M; Masuero, Angela B

    2015-10-01

    This study assesses the influence of the granulometric composition of sand, application energy and the superficial tension of substrates on the contact area of rendering mortars. Three substrates with distinct wetting behaviors were selected and mortars were prepared with different sand compositions. Characterization tests were performed on fresh and hardened mortars, as well as the rheological characterization. Mortars were applied to substrates with two different energies. The interfacial area was then digitized with 3D scanner. Results show that variables are all of influence on the interfacial contact in the development area. Furthermore, 3D laser scanning proved to be a good method to contact area measurement. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Scaling of interfacial jump conditions; Escalamiento de condiciones de salto interfacial

    Energy Technology Data Exchange (ETDEWEB)

    Quezada G, S.; Vazquez R, A.; Espinosa P, G., E-mail: sequga@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    To model the behavior of a nuclear reactor accurately is needed to have balance models that take into account the different phenomena occurring in the reactor. These balances have to be coupled together through boundary conditions. The boundary conditions have been studied and different treatments have been given to the interface. In this paper is a brief description of some of the interfacial jump conditions that have been proposed in recent years. Also, the scaling of an interfacial jump condition is proposed, for coupling the different materials that are in contact within a nuclear reactor. (Author)

  7. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    Science.gov (United States)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Ma, Lichun; Qi, Meiwei; Yu, Jiali; Huang, Yudong

    2014-10-01

    Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction "on water" to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction "on water" could be a facile green platform to functionalize carbon fibers for many interesting applications.

  8. Interfacial binding of cutinase rather than its catalytic activity determines the steady state interfacial tension during oil drop lipid hydrolysis.

    Science.gov (United States)

    Flipsen, J A; van Schaick, M A; Dijkman, R; van der Hijden, H T; Verheij, H M; Egmond, M R

    1999-02-01

    Hydrolysis of triglycerides by cutinase from Fusarium solani pisi causes in oil drop tensiometer experiments a decrease of the interfacial tension. A series of cutinase variants with amino acid substitutions at its molecular surface yielded different values of the steady state interfacial tension. This tension value poorly correlated with the specific activity as such nor with the total activity (defined as the specific activity multiplied by the amount of enzyme bound) of the cutinase variants. Moreover, it appeared that at activity levels above 15% of that of wild type cutinase the contribution of hydrolysis to the decrease of the tension is saturating. A clear positive correlation was found between the interfacial tension plateau value and the interfacial binding of cutinase, as determined with attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR). These results indicate that the interfacial steady state level is not determined by the rate of hydrolysis, but mainly by the interfacial binding of cutinase.

  9. Liquid-liquid interfacial tension of electrolyte solutions

    NARCIS (Netherlands)

    Bier, Markus; Zwanikken, J.W.; van Roij, R.H.H.G.

    2008-01-01

    It is theoretically shown that the excess liquid-liquid interfacial tension between two electrolyte solutions as a function of the ionic strength I behaves asymptotically as (-) for small I and as (±I) for large I. The former regime is dominated by the electrostatic potential due to an unequal

  10. Influence of the interfacial peptide organization on the catalysis of hydrogen evolution.

    Science.gov (United States)

    Doneux, Th; Dorcák, V; Palecek, E

    2010-01-19

    The hydrogen evolution reaction is catalyzed by peptides and proteins adsorbed on electrode materials with high overpotentials for this reaction, such as mercury. The catalytic response characteristics are known to be very sensitive to the composition and structure of the investigated biomolecule, opening the way to the implementation of a label-free, reagentless electroanalytical method in protein analysis. Herein, it is shown using the model peptide Cys-Ala-Ala-Ala-Ala-Ala that the interfacial organization significantly influences the catalytic behavior. This peptide forms at the electrode two distinct films, depending on the concentration and accumulation time. The low-coverage film, composed of flat-lying molecules (area per molecule of approximately 250-290 A(2)), yields a well-defined catalytic peak at potentials around -1.75 V. The high-coverage film, made of upright-oriented peptides (area per molecule of approximately 43 A(2)), is catalytically more active and the peak is observed at potentials less negative by approximately 0.4 V. The higher activity, evidenced by constant-current chronopotentiometry and cyclic voltammetry, is attributed to an increase in the acid dissociation constant of the amino acid residues as a result of the low permittivity of the interfacial region, as inferred from impedance measurements. An analogy is made to the known differences in acidic-basic behaviors of solvent-exposed and hydrophobic domains of proteins.

  11. Coupling of order parameters, chirality, and interfacial structures in multiferroic materials.

    Science.gov (United States)

    Conti, Sergio; Müller, Stefan; Poliakovsky, Arkady; Salje, Ekhard K H

    2011-04-13

    We study optimal interfacial structures in multiferroic materials with a biquadratic coupling between two order parameters. We discover a new duality relation between the strong coupling and the weak coupling regime for the case of isotropic gradient terms. We analyze the phase diagram depending on the coupling constant and anisotropy of the gradient term, and show that in a certain regime the secondary order parameter becomes activated only in the interfacial region.

  12. Interfacial tensions of binary mixtures of ethanol with octane, decane, dodecane, and tetradecane

    International Nuclear Information System (INIS)

    Mejia, Andres; Cartes, Marcela; Segura, Hugo

    2011-01-01

    Highlights: → Experimental interfacial tensions in binary mixtures with aneotropic behavior. → Experimental interfacial tensions for ethanol + hydrocarbon mixtures. → Aneotropic displacement in ethanol mixtures. - Abstract: This contribution is devoted to the experimental characterization of interfacial tensions of a representative group of binary mixtures pertaining to the (ethanol + linear hydrocarbon) series (i.e. octane, decane, dodecane, and tetradecane). Experimental measurements were isothermically performed using a maximum differential bubble pressure technique, which was applied over the whole mole fraction range and over the temperature range 298.15 K < T/K < 318.15 K. Experimental results show that the interfacial tensions of (ethanol + octane or decane) negatively deviate from the linear behavior and that sharp minimum points on concentration, or aneotropes, are observed for each isotherm. The interfacial tensions of (ethanol + dodecane or tetradecane), in turn, are characterized by combined deviations from the linear behavior, and inflecting behavior observed on concentration for each isotherm. The experimental evidence also shows that these latter mixtures are close to exhibit aneotropy. For the case of (ethanol + octane or decane) mixtures, aneotropy was clearly induced by the similarity of the interfacial tension values of the constituents. The inflecting behavior of the interfacial tensions of (ethanol + dodecane or tetradecane), in turn, was observed in the vicinity of the coordinates of the critical point of these mixtures, thus pointing to the fact that the quasi-aneotropic singularity that affects these mixtures was provoked by the proximity of an immiscibility gap of the liquid phase. Finally, the experimental data of interfacial tensions were smoothed with the Scott-Myers expansion, from which it is possible to conclude that the observed aneotropic concentrations weakly depend on temperature for all the analyzed mixtures.

  13. Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration

    Science.gov (United States)

    Gordiz, Kiarash; Henry, Asegun

    2016-01-01

    We studied the modal contributions to heat conduction at crystalline Si and crystalline Ge interfaces and found that more than 15% of the interface conductance arises from less than 0.1% of the modes in the structure. Using the recently developed interface conductance modal analysis (ICMA) method along with a new complimentary methodology, we mapped the correlations between modes, which revealed that a small group of interfacial modes, which exist between 12–13 THz, exhibit extremely strong correlation with other modes in the system. It is found that these interfacial modes (e.g., modes with large eigen vectors for interfacial atoms) are enabled by the degree of anharmonicity near the interface, which is higher than in the bulk, and therefore allows this small group of modes to couple to all others. The analysis sheds light on the nature of localized vibrations at interfaces and can be enlightening for other investigations of localization. PMID:26979787

  14. Interfacial Studies of Sized Carbon Fiber

    International Nuclear Information System (INIS)

    Shahrul, S. N.; Hartini, M. N.; Hilmi, E. A.; Nizam, A.

    2010-01-01

    This study was performed to investigate the influence of sizing treatment on carbon fiber in respect of interfacial adhesion in composite materials, Epolam registered 2025. Fortafil unsized carbon fiber was used to performed the experiment. The fiber was commercially surface treated and it was a polyacrylonitrile based carbon fiber with 3000 filament per strand. Epicure registered 3370 was used as basic sizing chemical and dissolved in two types of solvent, ethanol and acetone for the comparison purpose. The single pull out test has been used to determine the influence of sizing on carbon fiber. The morphology of carbon fiber was observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The apparent interfacial strength IFSS values determined by pull out test for the Epicure registered 3370/ethanol sized carbon fiber pointed to a good interfacial behaviour compared to the Epicure registered 3370/acetone sized carbon fiber. The Epicure registered 3370/ethanol sizing agent was found to be effective in promoting adhesion because of the chemical reactions between the sizing and Epolam registered 2025 during the curing process. From this work, it showed that sized carbon fiber using Epicure registered 3370 with addition of ethanol give higher mechanical properties of carbon fiber in terms of shear strength and also provided a good adhesion between fiber and matrix compared to the sizing chemical that contain acetone as a solvent.

  15. Interfacial reactions between titanium and borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K. [Sandia National Labs., Albuquerque, NM (United States); Saha, S.K.; Goldstein, J.I. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Materials Science

    1992-12-31

    Interfacial reactions between melts of several borate glasses and titanium have been investigated by analytical scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). A thin titanium boride interfacial layer is detected by XPS after short (30 minutes) thermal treatments. ASEM analyses after longer thermal treatments (8--120 hours) reveal boron-rich interfacial layers and boride precipitates in the Ti side of the interface.

  16. Waste site grouping for 200 Areas soil investigations

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this document is to identify logical waste site groups for characterization based on criteria established in the 200 Areas Soil Remediation Strategy (DOE-RL 1996a). Specific objectives of the document include the following: finalize waste site groups based on the approach and preliminary groupings identified in the 200 Areas Soil Remediation Strategy; prioritize the waste site groups based on criteria developed in the 200 Areas Soil Remediation Strategy; select representative site(s) that best represents typical and worse-case conditions for each waste group; develop conceptual models for each waste group. This document will serve as a technical baseline for implementing the 200 Areas Soil Remediation Strategy. The intent of the document is to provide a framework, based on waste site groups, for organizing soil characterization efforts in the 200 Areas and to present initial conceptual models

  17. Enhanced interfacial radiation-induced reaction for improving the interfacial adhesion of incompatible polymer blend PP/BR

    International Nuclear Information System (INIS)

    Liu Changhai; Yang Huili; Xu Jun

    1995-01-01

    γ-radiation induced interfacial changes of incompatible polymer isotactic polypropylene (PP) and cis1,4-polybutadiene (BR) blends containing polyfunctional monomer (PFM) triallyl isocyanurate (TAIC) were investigated. The results of the study are as following: PP is incompatible with BR; TAIC is hardly dissolved in both PP and BR; when blended with PP/BR, the concentration of TAIC in the interfacial region is higher than that in dispersion phase of BR or matrix of PP. The crosslinking and/or grafting of which TAIC occurred under radiation in the interfacial region anchored the dispersed BR phase to PP matrix. The interaction between adjacent phases is changed from sole van der Waals force to co-action of both chemical bond and molecular forces. Crosslinking between adjacent phases links the dispersed phase with PP matrix, and grafting in the boundary regions increases the thickness of interface. These result in a good interfacial adhesion between dispersed phase and matrix. (author)

  18. Interfacial recombination at /AlGa/As/GaAs heterojunction structures

    Science.gov (United States)

    Ettenberg, M.; Kressel, H.

    1976-01-01

    Experiments were conducted to determine the interfacial recombination velocity at Al0.25Ga0.75As/GaAs and Al0.5Ga0.5As/GaAs heterojunctions. The recombination velocity was derived from a study of the injected minority-carrier lifetime as a function of the junction spacing. It is found that for heterojunction spacings in excess of about 1 micron, the interfacial recombination can be characterized by a surface recombination velocity of 4,000 and 8,000 cm/sec for the two types of heterojunctions, respectively. For double-heterojunction spacings below 1 micron, the constancy of the minority-carrier lifetime suggests that the interfacial recombination velocity decreases effectively. This effect is technologically very important since it makes it possible to construct very low-threshold injection lasers. No such effect is observed in single-heterojunction diodes.

  19. Interfacial fracture of dentin adhesively bonded to quartz-fiber reinforced composite

    International Nuclear Information System (INIS)

    Melo, Renata M.; Rahbar, Nima; Soboyejo, Wole

    2011-01-01

    The paper presents the results of an experimental study of interfacial failure in a multilayered structure consisting of a dentin/resin cement/quartz-fiber reinforced composite (FRC). Slices of dentin close to the pulp chamber were sandwiched by two half-circle discs made of a quartz-fiber reinforced composite, bonded with bonding agent (All-bond 2, BISCO, Schaumburg) and resin cement (Duo-link, BISCO, Schaumburg) to make Brazil-nut sandwich specimens for interfacial toughness testing. Interfacial fracture toughness (strain energy release rate, G) was measured as a function of mode mixity by changing loading angles from 0 deg. to 15 deg. The interfacial fracture surfaces were then examined using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) to determine the failure modes when loading angles changed. A computational model was also developed to calculate the driving forces, stress intensity factors and mode mixities. Interfacial toughness increased from ∼ 1.5 to 3.2 J/m 2 when the loading angle increases from ∼ 0 to 15 deg. The hybridized dentin/cement interface appeared to be tougher than the resin cement/quartz-fiber reinforced epoxy. The Brazil-nut sandwich specimen was a suitable method to investigate the mechanical integrity of dentin/cement/FRC interfaces.

  20. Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles.

    Science.gov (United States)

    Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu

    2015-11-02

    Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.

  1. Preferential orientation of magnetization and interfacial disorder in Co/Au multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Quispe-Marcatoma, J., E-mail: justinianoqm@gmail.com [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil); Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, P.O. Box 14–0149, Lima 14, Perú (Peru); Pandey, B. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil); Alayo, W. [Departamento de Física, Universidade Federal de Pelotas, Campus Universitário, 96010-900 Pelotas, RS (Brazil); Sousa, M.A. de; Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia 74001-970 (Brazil); Saitovitch, E. Baggio [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil)

    2013-10-15

    Two families of Co/Au multilayer films with different interlayer magnetostatic coupling were grown by the DC magnetron sputtering technique. The structure of these films was analyzed by X-ray diffraction (XRD), and the magnetic properties by vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) spectroscopy. All these techniques give complementary information about the structure of the multilayers and the magnetization direction as a function of thickness of the Co layers. The structural analysis shows a decrease of the interfacial disorder for increasing Co layer thickness in both groups of samples. This behavior has been correlated with a transition of the magnetization direction from perpendicular to parallel to the films plane. Thin Co layer samples gave high remnant magnetization with very low saturation field while thick Co layer samples showed low remnant magnetization with high value of saturation field. In the FMR study, the spectra showed two resonance modes, which were associated to the internal and interfacial Co atoms. Volume (K{sub v}) and surface (K{sub s}) anisotropy constants were deduced from the FMR experiments and are in good agreement with the reported values for Co/Au multilayers. - Highlights: • We find a competition between the magnetostatic coupling and magnetic anisotropy. • We find two resonant modes associated to different environments of Co atoms. • The main mode shows perpendicular magnetic anisotropy for samples with t{sub Co}<10 Å. • The secondary mode shows in-plane anisotropy for samples with t{sub Co}<10 Å.

  2. The Role of Water in Mediating Interfacial Adhesion and Shear Strength in Graphene Oxide.

    Science.gov (United States)

    Soler-Crespo, Rafael A; Gao, Wei; Mao, Lily; Nguyen, Hoang T; Roenbeck, Michael R; Paci, Jeffrey T; Huang, Jiaxing; Nguyen, SonBinh T; Espinosa, Horacio D

    2018-06-05

    Graphene oxide (GO), whose highly tunable surface chemistry enables the formation of strong interfacial hydrogen bond networks, has garnered increasing interest in the design of devices that operate in the presence of water. For instance, previous studies have suggested that controlling GO's surface chemistry leads to enhancements in interfacial shear strength, allowing engineers to manage deformation pathways and control failure mechanisms. However, these previous reports have not explored the role of ambient humidity, and only offer extensive chemical modifications to GO's surface as the main pathway to control GO's interfacial properties. Herein, through atomic force microscopy experiments on GO-GO interfaces, the adhesion energy and interfacial shear strength of GO were measured as a function of ambient humidity. Experimental evidence shows that adhesion energy and interfacial shear strength can be improved by a factor of two to three when GO is exposed to moderate (~30% water wt.) water content. Furthermore, complementary molecular dynamics simulations uncovered the mechanisms by which these nanomaterial interfaces achieve their properties. They reveal that the strengthening mechanism arises from the formation of strongly interacting hydrogen bond networks, driven by the chemistry of the GO basal plane and intercalated water molecules between two GO surfaces. In summary, the methodology and findings here reported provide pathways to simultaneously optimize GO's interfacial and in-plane mechanical properties, by tailoring the chemistry of GO and accounting for water content, in engineering applications such as sensors, filtration membranes, wearable electronics, and structural materials.

  3. Comparison of crude oil interfacial behavior

    Energy Technology Data Exchange (ETDEWEB)

    Beetge, J.H.; Panchev, N. [Champion Technologies Inc., Fresno, TX (United States)

    2008-07-01

    The bulk properties of crude oil are used to predict its behaviour with regards to treatment, transport and processing. Surface active components, such as asphaltenes, are often used to study or explain critical interfacial behaviour of crude oil. This study investigated the differences and similarities in the interfacial behaviour of the collective surface active component in various crude oils from different sources. The properties of interfaces between crude oil and water were compared using a Teclis drop shape tensiometer. A portion of a crude oil sample was diluted in toluene and contacted with water in a rising drop configuration. Dynamic surface tension and interfacial rheology was examined as a function of time from the early stages of interface formation. Sinusoidal oscillation of the drop volume allowed for the evaluation of visco-elastic behaviour of the crude oil/water interface as it developed with time. The Gibbs elastic modulus, as well as its elastic and viscose components were calculated from the drop shape. The interfacial behaviour was expressed in terms of concentration, oscillation frequency and interface age. It was concluded that knowledge of crude oil interfacial character could be of value in the treatment, transport and processing of crude oils because the its behaviour may play a significant role in crude oil production and processing.

  4. Local interfacial structure of subcooled boiling flow in a heated annulus

    International Nuclear Information System (INIS)

    Lee, Tae-Ho; Kim, Seong-O; Yun, Byong-Jo; Park, Goon-Cherl; Hibiki, Takashi

    2008-01-01

    Local measurements of flow parameters were performed for vertical upward subcooled boiling flows in an internally heated annulus. The annulus channel consisted of an inner heater rod with a diameter of 19.0 mm and an outer round tube with an inner diameter of 37.5 mm, and the hydraulic equivalent diameter was 18.5 mm. The double-sensor conductivity probe method was used for measuring the local void fraction, interfacial area concentration, bubble Sauter mean diameter and gas velocity, whereas the miniature Pitot tube was used for measuring the local liquid velocity. A total of 32 data sets were acquired consisting of various combinations of heat flux, 88.1-350.9 kW/m 2 , mass flux, 469.7-1061.4kg(m 2 s) and inlet liquid temperature, 83.8-100.5degC. Six existing drift-flux models, six exiting correlations of the interfacial area concentration and bubble layer thickness model were evaluated using the data obtained in the experiment. (author)

  5. Calculation of Interfacial Tensions of Hydrocarbon-water Systems under Reservoir Conditions

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1998-01-01

    Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon......-brine systems. The new model was tested on a number of hydrocarbon-water/brine mixtures and two crude oil-water systems under reservoir conditions. The results show good agreement between the predicted and the experimental interfacial tension data.......Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon-water...... mixtures on the basis of the SRK equation of state. With this model, it is unnecessary to solve the time-consuming density-profile equations of the gradient-theory model. In addition, a correlation was developed for representing the effect of electrolytes on the interfacial tension of hydrocarbon...

  6. Interfacial effects in a multistage mixer-settler operation

    International Nuclear Information System (INIS)

    Jiinshiung Horng; Daluh Lu; Yingchu Hoh

    1988-01-01

    A pilot-scale mixer-settler with twenty-one stages was used to investigate the interfacial tension change during extraction cycle for the complicated system: NdCl 3 -SmCl 3 -EuCl 3 -GdCl 3 -TbCl 3 -DyCl 3 -HCl- 1 M D2EHPA-kerosene. Interfacial tension, total rare earth (TRE) concentrations in both phases, aqueous acidities, and organic entrainment in the raffinate, etc., were measured for each stage. Murphree stage efficiencies based on organic phase were calculated and related to the interfacial tension profiles. In general, the lower the interfacial tension, the higher the stage efficiency observed. For the extraction section, the stage efficiency ranged from 80% - 100%, but for stripping (including scrubbing) section, it varied from 100% - 15%. For high acidic stripping agent, 5 M HCl, the relatively lower stage efficiency might be due to the protonation of the acidic extractant, therefore the interfacial resistance increased significantly. From the information of stage efficiency, mass transfer direction, and interfacial tension versus solute concentration etc., the Marangoni effect could be used to explain the interfacial phenomena of this complicated extraction system. The results of real stream tests in this investigation will be useful in future plant design. (author)

  7. Effect of interfacial stresses in an elastic body with a nanoinclusion

    Science.gov (United States)

    Vakaeva, Aleksandra B.; Grekov, Mikhail A.

    2018-05-01

    The 2-D problem of an infinite elastic solid with a nanoinclusion of a different from circular shape is solved. The interfacial stresses are acting at the interface. Contact of the inclusion with the matrix satisfies the ideal conditions of cohesion. The generalized Laplace - Young law defines conditions at the interface. To solve the problem, Gurtin - Murdoch surface elasticity model, Goursat - Kolosov complex potentials and the boundary perturbation method are used. The problem is reduced to the solution of two independent Riemann - Hilbert's boundary problems. For the circular inclusion, hypersingular integral equation in an unknown interfacial stress is derived. The algorithm of solving this equation is constructed. The influence of the interfacial stress and the dimension of the circular inclusion on the stress distribution and stress concentration at the interface are analyzed.

  8. A coated rigid elliptical inclusion loaded by a couple in the presence of uniform interfacial and hoop stresses

    Science.gov (United States)

    Wang, Xu; Schiavone, Peter

    2018-06-01

    We consider a confocally coated rigid elliptical inclusion, loaded by a couple and introduced into a remote uniform stress field. We show that uniform interfacial and hoop stresses along the inclusion-coating interface can be achieved when the two remote normal stresses and the remote shear stress each satisfy certain conditions. Our analysis indicates that: (i) the uniform interfacial tangential stress depends only on the area of the inclusion and the moment of the couple; (ii) the rigid-body rotation of the rigid inclusion depends only on the area of the inclusion, the coating thickness, the shear moduli of the composite and the moment of the couple; (iii) for given remote normal stresses and material parameters, the coating thickness and the aspect ratio of the inclusion are required to satisfy a particular relationship; (iv) for prescribed remote shear stress, moment and given material parameters, the coating thickness, the size and aspect ratio of the inclusion are also related. Finally, a harmonic rigid inclusion emerges as a special case if the coating and the matrix have identical elastic properties.

  9. Interfacial transport processes and rheology

    CERN Document Server

    Brenner, Howard

    1991-01-01

    This textbook is designed to provide the theory, methods of measurement, and principal applications of the expanding field of interfacial hydrodynamics. It is intended to serve the research needs of both academic and industrial scientists, including chemical or mechanical engineers, material and surface scientists, physical chemists, chemical and biophysicists, rheologists, physiochemical hydrodynamicists, and applied mathematicians (especially those with interests in viscous fluid mechanics and continuum mechanics).As a textbook it provides materials for a one- or two-semester graduate-level

  10. Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yijie [ORNL; Lim, Hyun-Kyung [ORNL; de Almeida, Valmor F [ORNL; Navamita, Ray [State University of New York, Stony Brook; Wang, Shuqiang [State University of New York, Stony Brook; Glimm, James G [ORNL; Li, Xiao-lin [State University of New York, Stony Brook; Jiao, Xiangmin [ORNL

    2012-06-01

    This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical development and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.

  11. Bending Response of Cross-Ply Laminated Composite Plates with Diagonally Perturbed Localized Interfacial Degeneration

    Directory of Open Access Journals (Sweden)

    Chee Zhou Kam

    2013-01-01

    Full Text Available A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.

  12. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  13. Effect of Concentration on the Interfacial and Bulk Structure of Ionic Liquids in Aqueous Solution.

    Science.gov (United States)

    Cheng, H-W; Weiss, H; Stock, P; Chen, Y-J; Reinecke, C R; Dienemann, J-N; Mezger, M; Valtiner, M

    2018-02-27

    Bio and aqueous applications of ionic liquids (IL) such as catalysis in micelles formed in aqueous IL solutions or extraction of chemicals from biologic materials rely on surface-active and self-assembly properties of ILs. Here, we discuss qualitative relations of the interfacial and bulk structuring of a water-soluble surface-active IL ([C 8 MIm][Cl]) on chemically controlled surfaces over a wide range of water concentrations using both force probe and X-ray scattering experiments. Our data indicate that IL structuring evolves from surfactant-like surface adsorption at low IL concentrations, to micellar bulk structure adsorption above the critical micelle concentration, to planar bilayer formation in ILs with Interfacial structuring is controlled by mesoscopic bulk structuring at high water concentrations. Surface chemistry and surface charges decisively steer interfacial ordering of ions if the water concentration is low and/or the surface charge is high. We also demonstrate that controlling the interfacial forces by using self-assembled monolayer chemistry allows tuning of interfacial structures. Both the ratio of the head group size to the hydrophobic tail volume as well as the surface charging trigger the bulk structure and offer a tool for predicting interfacial structures. Based on the applied techniques and analyses, a qualitative prediction of molecular layering of ILs in aqueous systems is possible.

  14. Effect of chemisorption structure on the interfacial bonding characteristics of graphene-polymer composites

    International Nuclear Information System (INIS)

    Lv Cheng; Xue Qingzhong; Xia Dan; Ma Ming

    2012-01-01

    The influence of the chemical functionalization of graphene on the interfacial bonding characteristics between graphene and polymer was investigated using molecular mechanics and molecular dynamics simulations. In this study, three chemical functionalization, (a) phenyl groups, (b) -C 6 H 13 and(c) -C 2 H 4 (C 2 H 5 ) 2 , which have the same number of carbon atoms, were chosen to investigate the influence of the structure of functionalized groups on the bonding energy and shear stress in the graphene-polyethylene (PE) composites. Our simulations indicated that, the interfacial bonding energy between the graphene modified by -C 6 H 13 groups and PE matrix has the strongest enhancement, but the shear force between the graphene modified by -C 2 H 4 (C 2 H 5 ) 2 groups and PE matrix is the strongest in the graphene-polymer composites. Therefore, the suitable structure of chemical groups to the graphene surface may be an effective way to significantly improve the load transfer between the graphene and polymer when graphene is used to produce nanocomposites.

  15. On the interfacial energy of coherent interfaces

    International Nuclear Information System (INIS)

    Kaptay, G.

    2012-01-01

    A thermodynamic model has been developed for interfacial energies of coherent interfaces using only the molar Gibbs energy and the molar volume of the two phases surrounding the interface as the initial data. The analysis is started from the simplest case of the interface formed by two solutions on the two sides of a miscibility gap, when both phases are described by the same Gibbs energy and molar volume functions. This method is applied to the fcc Au–Ni, liquid Ga–Pb and liquid Al–Bi systems. Reasonable agreement was found with the measured values in liquid Ga–Pb and Al–Bi systems. It was shown that the calculated results are sensitive to the choice of the Calphad-estimated thermodynamic data. The method is extended to the case where the two phases are described by different Gibbs energy and molar volume functions. The extended model is applied to the interface present in an Ni-based superalloy between the AlNi 3 face-centered cubic (fcc) compound and the Ni–Al fcc disordered solid solution. The calculated results are found to be similar to other values recently obtained from the combination of kinetic and thermodynamic data. The method is extended to ternary and higher order systems. It is predicted that the interfacial energy will gradually decrease with the increase in number of components in the system.

  16. Contribution to the study of the interfacial diffusion

    International Nuclear Information System (INIS)

    Perinet, Francois.

    1975-07-01

    The diffusion behaviour of matrix-precipitate boundaries is the same as that of interphase boundaries prepared by welding. Therefore the latter can be used to measure diffusivity along interphase boundaries. Diffusion rates of silver along copper-silver interfaces prepared by welding single crystals have been measured. The interfacial diffusion coefficients deduced through different analytical solutions of the diffusion equations, yield for the activation energy and the frequency factor values close to: Q(i)=65kcal/mole Dsub(i)sup(o) delta=100cm 3 .s -1 . These results seem to indicate that, in agreement with Bondy's and Job's previous results, the activation energies for interfacial diffusion are high. Furthermore it is shown that the misorientation between the two phases building the interface has an influence on the measured diffusion coefficients [fr

  17. Classification of the maxillary sinus according to area of the medial antral wall: a comparison of two ethnic groups.

    Science.gov (United States)

    Lee, Fernandes Carmen; Fernandes, C M C; Murrell, H C

    2009-06-01

    This study is an anatomical study designed to benefit surgeons working in the region of the maxillary sinus. This paper investigates ethnic and gender variations in the shape of the maxillary sinus in dried crania from the Raymond Dart collection of human skeletons. The paper claims that an estimate of the area of the medial antral wall of the maxillary sinus is one of the best ethnic/gender group predictors. Helical, multislice computed tomography was performed using 1mm coronal slices length, depth, width and volume measurements for each sinus were taken. Classification by shape and estimated area of medial wall was attempted. Shape classification was found to be unsuccessful whilst medial wall classification into ethnic/gender groupings gave encouraging results. The area of the medial wall is related to ethnic/gender groups.

  18. Atomistic simulations of bulk, surface and interfacial polymer properties

    Science.gov (United States)

    Natarajan, Upendra

    In chapter I, quasi-static molecular mechanics based simulations are used to estimate the activation energy of phenoxy rings flips in the amorphous region of a semicrystalline polyimide. Intra and intermolecular contributions to the flip activation energy, the torsional cooperativity accompanying the flip, and the effect of the flip on the motion in the glassy bulk state, are looked at. Also, comparison of the weighted mean activation energy is made with experimental data from solid state NMR measurements; the simulated value being 17.5 kcal/mol., while the experimental value was observed to be 10.5 kcal/mol. Chapter II deals with construction of random copolymer thin films of styrene-butadiene (SB) and styrene-butadiene-acrylonitrile (SBA). The structure and properties of the free surfaces presented by these thin films are analysed by, the atom mass density profiles, backbone bond orientation function, and the spatial distribution of acrylonitrile groups and styrene rings. The surface energies of SB and SBA are calculated using an atomistic equation and are compared with experimental data in the literature. In chapter III, simulations of polymer-polymer interfaces between like and unlike polymers, specifically cis-polybutadiene (PBD) and atatic polypropylene (PP), are presented. The structure of an incompatible polymer-polymer interface, and the estimation of the thermodynamic work of adhesion and interfacial energy between different incompatible polymers, form the focus here. The work of adhesion is calculated using an atomistic equation and is further used in a macroscopic equation to estimate the interfacial energy. The interfacial energy is compared with typical values for other immiscible systems in the literature. The interfacial energy compared very well with interfacial energy values for a few other immiscible hydrocarbon pairs. In chapter IV, the study proceeds to look at the interactions between nonpolar and polar small molecules with SB and SBA thin

  19. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwei [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Meng, Linghui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fan, Liquan [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wu, Guangshun; Ma, Lichun; Zhao, Min [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yudong, E-mail: ydhuang.hit1@yahoo.com.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2016-01-30

    Graphical abstract: - Highlights: • Carbon fibers are functionalized with benzoic acid groups via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 66%. • Tensile strength of the carbon fibers is preserved after grafting reaction. • The treatment in molten urea can improve modification efficiency greatly. • Using molten urea as the reaction medium can avoid pollution from organic solvents. - Abstract: Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17–10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  20. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    International Nuclear Information System (INIS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Graphical abstract: - Highlights: • Carbon fibers are functionalized with benzoic acid groups via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 66%. • Tensile strength of the carbon fibers is preserved after grafting reaction. • The treatment in molten urea can improve modification efficiency greatly. • Using molten urea as the reaction medium can avoid pollution from organic solvents. - Abstract: Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17–10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  1. Mean free path dependent phonon contributions to interfacial thermal conductance

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yi; Liu, Chenhan; Chen, Weiyu; Cai, Shuang; Chen, Chen; Wei, Zhiyong; Bi, Kedong; Yang, Juekuan; Chen, Yunfei, E-mail: yunfeichen@seu.edu.cn

    2017-06-15

    Interfacial thermal conductance as an accumulation function of the phonon mean free path is rigorously derived from the thermal conductivity accumulation function. Based on our theoretical model, the interfacial thermal conductance accumulation function between Si/Ge is calculated. The results show that the range of mean free paths (MFPs) for phonons contributing to the interfacial thermal conductance is far narrower than that for phonons contributing to the thermal conductivity. The interfacial thermal conductance is mainly contributed by phonons with shorter MFPs, and the size effects can be observed only for an interface constructed by nanostructures with film thicknesses smaller than the MFPs of those phonons mainly contributing to the interfacial thermal conductance. This is why most experimental measurements cannot detect size effects on interfacial thermal conductance. A molecular dynamics simulation is employed to verify our proposed model. - Highlights: • A model to account for the interfacial thermal conductance as an accumulation function of phonon mean free path is proposed; • The model predicts that the range of mean free paths (MFPs) for phonons contributing to the interfacial thermal conductance is far narrower than that contributing to the thermal conductivity; • This model can be conveniently implemented to estimate the size effects on the interfacial thermal conductance for the interfaces formed by a nanostructure contacting a substrate.

  2. Dividing phases in two-phase flow and modeling of interfacial drag

    Energy Technology Data Exchange (ETDEWEB)

    Narumo, T.; Rajamaeki, M. [VTT Energy (Finland)

    1997-07-01

    Different models intended to describe one-dimensional two-phase flow are considered in this paper. The following models are introduced: conventional six-equation model, conventional model equipped with terms taking into account nonuniform transverse velocity distribution of the phases, several virtual mass models and a model in which the momentum equations have been derived by using the principles of Separation of the Flow According to Velocity (SFAV). The dynamics of the models have been tested by comparing their characteristic velocities to each other and against experimental data. The results show that the SFAV-model makes a hyperbolic system and predicts the propagation velocities of disturbances with the same order of accuracy as the best tested virtual mass models. Furthermore, the momentum interaction terms for the SFAV-model are considered. These consist of the wall friction terms and the interfacial friction term. The authors model wall friction with two independent terms describing the effect of each fluid on the wall separately. In the steady state, a relationship between the slip velocity and friction coefficients can be derived. Hence, the friction coefficients for the SFAV-model can be calculated from existing correlations, viz. from a drift-flux correlation and a wall friction correlation. The friction model was tested by searching steady-state distributions in a partial BWR fuel channel and comparing the relaxed values with the drift-flux correlation, which agreed very well with each other. In addition, response of the flow to a sine-wave disturbance in the water inlet flux was calculated as function of frequency. The results of the models differed from each other already with frequency of order 5 Hz, while the time constant for the relaxation, obtained from steady-state distribution calculation, would have implied significant differences appear not until with frequency of order 50 Hz.

  3. Dividing phases in two-phase flow and modeling of interfacial drag

    International Nuclear Information System (INIS)

    Narumo, T.; Rajamaeki, M.

    1997-01-01

    Different models intended to describe one-dimensional two-phase flow are considered in this paper. The following models are introduced: conventional six-equation model, conventional model equipped with terms taking into account nonuniform transverse velocity distribution of the phases, several virtual mass models and a model in which the momentum equations have been derived by using the principles of Separation of the Flow According to Velocity (SFAV). The dynamics of the models have been tested by comparing their characteristic velocities to each other and against experimental data. The results show that the SFAV-model makes a hyperbolic system and predicts the propagation velocities of disturbances with the same order of accuracy as the best tested virtual mass models. Furthermore, the momentum interaction terms for the SFAV-model are considered. These consist of the wall friction terms and the interfacial friction term. The authors model wall friction with two independent terms describing the effect of each fluid on the wall separately. In the steady state, a relationship between the slip velocity and friction coefficients can be derived. Hence, the friction coefficients for the SFAV-model can be calculated from existing correlations, viz. from a drift-flux correlation and a wall friction correlation. The friction model was tested by searching steady-state distributions in a partial BWR fuel channel and comparing the relaxed values with the drift-flux correlation, which agreed very well with each other. In addition, response of the flow to a sine-wave disturbance in the water inlet flux was calculated as function of frequency. The results of the models differed from each other already with frequency of order 5 Hz, while the time constant for the relaxation, obtained from steady-state distribution calculation, would have implied significant differences appear not until with frequency of order 50 Hz

  4. Comparison of the interfacial properties of Eugenia uniflora and Triticum vulgaris lectins.

    Science.gov (United States)

    Andrade, Cesar A S; Oliveira, Maria D L; Santos-Magalhães, Nereide S; Correia, Maria T S; de Melo, Celso P

    2009-01-01

    We have investigated the interfacial and dielectric properties of EuniSL, a recently purified lectin obtained from seeds of Eugenia uniflora (EuniSL), through surface pressure (Pi) and surface potential (DeltaV) measurements of its floating monolayers at the 2.0area reveals that while the interfacial properties of both lectins are strongly dependent upon the pH of bulk phase, in general terms EuniSL monolayers seem to be more structured than those of WGA. At the pH range investigated, the interfacial electric double layer values (Psi(0)) calculated from the surface potential are negative, both for EuniSL and WGA. While for EuniSL definite breakpoints in an otherwise linear dependence of Psi(0) and zeta-potential as a function of pH were detected at pH 6.5, similar changes were observed for WGA at pH 8.5, a value close to the isoelectric point (pI) of this lectin. We have then used electrical impedance spectroscopy to investigate the dielectric characteristics of aqueous solutions of the two lectins, assuming a simple Debye relaxation model, and determined the pI of EuniSL as 6.5. While it is well known that the pI of a protein dispersed as a Langmuir film can be determined by surface potential measurements, our results confirm the use of impedance spectroscopy as a valuable and convenient technique that allows the identification of the pI of proteins directly dispersed in aqueous solutions.

  5. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Física Aplicada, Universidad de Huelva, 21007 Huelva (Spain); Moreno-Ventas Bravo, A. I. [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Geología, Universidad de Huelva, 21007 Huelva (Spain)

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ{sub 11} = σ{sub 22}, with the same dispersive energy between like species, ϵ{sub 11} = ϵ{sub 22}, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r{sub c} and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r{sub c} is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related

  6. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    International Nuclear Information System (INIS)

    Martínez-Ruiz, F. J.; Blas, F. J.; Moreno-Ventas Bravo, A. I.

    2015-01-01

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ 11 = σ 22 , with the same dispersive energy between like species, ϵ 11 = ϵ 22 , but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r c and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r c is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the

  7. Interfacial Adsorption and Redox Coupling of Li4Ti5O12 with Nanographene for High-Rate Lithium Storage.

    Science.gov (United States)

    Bae, Seongjun; Nam, Inho; Park, Soomin; Yoo, Young Geun; Yu, Sungju; Lee, Jong Min; Han, Jeong Woo; Yi, Jongheop

    2015-08-05

    Despite the many efforts to solve the problem associated with lithium storage at high rates, it is rarely achieved up until now. The design with experimental proof is reported here for the high rate of lithium storage via a core-shell structure composite comprised of a Li4Ti5O12 (LTO) core and a nanographene (NG) shell. The LTO-NG core-shell was synthesized via a first-principles understanding of the adsorption properties between LTO and NG. Interfacial reactions are considered between the two materials by a redox coupling effect. The large interfacial area between the LTO core and the NG shell resulted in a high electron-conducting path. It allowed rapid kinetics to be achieved for lithium storage and also resulted in a stable contact between LTO and NG, affording cyclic performance stability.

  8. Interfacial reactions in the Sb–Sn/(Cu, Ni) systems: Wetting experiments

    International Nuclear Information System (INIS)

    Novakovic, R.; Lanata, T.; Delsante, S.; Borzone, G.

    2012-01-01

    Interfacial reactions in the Sb–Sn/Cu and Sb–Sn/Ni systems have been investigated by means of wetting experiments. The wetting behaviour of two lead-free alloys, namely, Sb 2.5 Sn 97.5 and Sb 14.5 Sn 85.5 (at.%), in contact with Cu and Ni-substrates has been studied in view of possible applications as high-temperature solders in the electronics industry. The contact angle measurements on Cu and Ni plates were performed by using a sessile drop apparatus. The solder/substrate interface was characterised by the SEM-EDS analyses. -- Highlights: ► Sb–Sn alloys are used as high temperature lead-free solders. ► Sb–Sn alloys have good wetting properties on Cu and Ni substrates. ► Interfacial reactions and products are important for joint properties. ► Interfacial reactions/products data can be used to study the phase diagrams.

  9. Experimental study on characteristics of interfacial parameter distribution for upward bubbly flow in inclined tube

    International Nuclear Information System (INIS)

    Xing Dianchuan; Yan Changqi; Sun Licheng; Liu Jingyu

    2013-01-01

    Experimental study on characteristics of interfacial parameter distribution for air-water bubbly flow in an inclined circular tube was performed by using the double sensor probe method. Parameters including radial distributions of local void fraction, bubble passing frequency, interfacial area concentration and bubble equivalent diameter were measured using the probe. The inner diameter of test section is 50 mm, and the liquid superficial velocity is 0.144 m/s, with the gas superficial velocity ranging from 0 to 0.054 m/is. The results show that bubbles obviously move toward the upper wall and congregate. The local interfacial area concentration, bubble passing frequency and void fraction have similar radial distribution profiles. Different from the vertical condition, for a cross-sectional area of the test section, the peak value near the upper side increases, while decreases or even disappears near the underside. The local parameter increases as the radial positions change from lower to upper location, and the increased slope becomes larger as the inclination angles increase. The equivalent bubble diameter doesn't vary with radial position, superficial gas velocity and inclination angle, and bubble aggregation and breaking up nearly doesn't occur. The mechanism of effects of inclination on local parameter distribution for bubbly flow is explained by analyzing the transverse force governing the bubble motion. (authors)

  10. Numerical and experimental analysis of thermosonic bond strength considering interfacial contact phenomena

    International Nuclear Information System (INIS)

    He Jun; Guo Yongjin; Lin Zhongqin

    2008-01-01

    The theoretical equation of thermosonic bond strength involving interfacial deformation and microcontact phenomena is presented in this study. The constitutive equation of gold considering the ultrasonic softening mechanism was developed based on the thermosonic bonding experiments and coded into the FE software. The numerical model of bonding was established to estimate the surface exposure and the effective normal pressure. The real contact area was calculated by a microcontact model. Accordingly, the nominal bond strength can be obtained and verified by the experimental data. It is found that a better conjunction exists at the edge of the contact area because large surface exposure is produced there, which is also proved by the SEM image of a sheared ball bond. Increasing the bonding force or the ultrasonic power will increase the interfacial plastic deformation, the nominal and real contact areas, but decreases the effective normal pressure. The contact ratio increases to a maximum with the increase in the bonding force, and then decreases while it continues to decrease with the increase in the ultrasonic power. In addition, both the stress analysis and experimental result show that cratering and damage to the pad structure are easily produced below the edge region of the contact area under an excessive bonding force or ultrasonic power

  11. Thermosonic wire bonding of gold wire onto copper pad using the saturated interfacial phenomena

    Science.gov (United States)

    Jeng, Yeau-Ren; Aoh, Jong-Hing; Wang, Chang-Ming

    2001-12-01

    Copper has been used to replace conventional aluminium interconnection to improve the performance of deep submicron integrated circuits. This study used the saturated interfacial phenomena found in thermosonic ball bonding of gold wire onto aluminium pad to investigate thermosonic ball bonding of gold wire onto copper pad. The effects of preheat temperatures and ultrasonic powers on the bonding force were investigated by using a thermosonic bonding machine and a shear tester. This work shows that under proper preheat temperatures, the bonding force of thermosonic wire bonding can be explained based on interfacial microcontact phenomena such as energy intensity, interfacial temperature and real contact area. It is clearly shown that as the energy intensity is increased, the shear force increases, reaches a maximum, and then decreases. After saturation, i.e. the establishment of maximum atomic bonding, any type of additional energy input will damage the bonding, decreasing the shear force. If the preheat temperature is not within the proper range, the interfacial saturation phenomenon does not exist. For a preload of 0.5 N and a welding time of 15 ms in thermosonic wire bonding of gold wire onto copper pads, a maximum shear force of about 0.33 N is found where the interfacial energy intensity equals 1.8×106 J m-2 for preheat temperatures of 150°C and 170°C. Moreover, the corresponding optimal ultrasonic power is about 110 units.

  12. Void fraction and interfacial velocity in gas-liquid upward two-phase flow across tube bundles

    International Nuclear Information System (INIS)

    Ueno, T.; Tomomatsu, K.; Takamatsu, H.; Nishikawa, H.

    1997-01-01

    Tube failures due to flow-induced vibration are a major problem in heat exchangers and many studies on the problem of such vibration have been carried out so far. Most studies however, have not focused on two-phase flow behavior in tube bundles, but have concentrated mainly on tube vibration behavior like fluid damping, fluid elastic instability and so on. Such studies are not satisfactory for understanding the design of heat exchangers. Tube vibration behavior is very complicated, especially in the case of gas-liquid two-phase flow, so it is necessary to investigate two-phase flow behavior as well as vibration behavior before designing heat exchangers. This paper outlines the main parameters that characterize two-phase behavior, such as void fraction and interfacial velocity. The two-phase flow analyzed here is gas-liquid upward flow across a horizontal tube bundle. The fluids tested were HCFC-123 and steam-water. HCFC-123 stands for Hydrochlorofluorocarbon. Its chemical formula is CHCl 2 CF 3 , which has liquid and gas densities of 1335 and 23.9 kg/m 3 at a pressure of 0.40 MPa and 1252 and 45.7 kg/m 3 at a pressure of 0.76 MPa. The same model tube bundle was used in the two tests covered in this paper, to examine the similarity law of two-phase flow behavior in tube bundles using HCFC-123 and steam-water two-phase flow. We also show numerical simulation results for the two fluid models in this paper. We do not deal with vibration behavior and the relationship between vibration behavior and two-phase flow behavior. (author)

  13. Role of interfacial rheological properties in oil field chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos-Szabo, J.; Lakatos, I.; Kosztin, B.

    1996-12-31

    Interfacial rheological properties of different Hungarian crude oil/water systems were determined in wide temperature and shear rate range and in presence of inorganic electrolytes, tensides, alkaline materials and polymers. The detailed laboratory study definitely proved that the interfacial rheological properties are extremely sensitive parameters towards the chemical composition of inmiscible formation liquids. Comparison and interpretation of the interfacial rheological properties may contribute significantly to extension of the weaponry of the reservoir characterization, better understanding of the displacement mechanism, development of the more profitable EOR/IOR methods, intensification of the surface technologies, optimization of the pipeline transportation and improvement of the refinery operations. It was evidenced that the interfacial rheology is an efficient and powerful detection technique, which may enhance the knowledge on formation, structure, properties and behaviour of interfacial layers. 17 refs., 18 figs., 2 tabs.

  14. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.

  15. pH-Induced interfacial properties of Chaplin E from Streptomyces coelicolor.

    Science.gov (United States)

    Dokouhaki, Mina; Hung, Andrew; Prime, Emma L; Qiao, Greg G; Day, Li; Gras, Sally L

    2017-12-01

    Chaplin E, or Chp E, is a surface active peptide secreted by Streptomyces coelicolor that adopts different structures depending on solution pH but the effect of these structures on the interfacial properties of Chp E is not known. In experiments paired with simulations, Chp E was found to display pH-dependent interfacial assembly and surface activity. At pH 3.0, Chp E formed an ordered non-amyloidal interfacial film with high surface activity; while at pH 10.0, Chp E self-assembled into a heterogeneous film containing randomly arranged fibrils at the interface that was less surface active compared to the film formed at pH 3.0. In simulations at pH 10.0, Chp E molecules showed a higher propensity for dimerization within the solution phase, lower rate of adsorption to the interface and tighter inter-molecular associations at the interface, consistent with the lower surface activity and smaller interfacial area coverage per molecule measured at this pH compared to at pH 3.0. A model is presented for the role of Chp E in the developmental differentiation of Streptomyces coelicolor, where Chp E contributes to changes in surface tension at low pH and the formation of fibrils on the surface of aerial hyphae at high pH. Our data also suggest Chp E could be a promising surface active agent with functional activity that can be controlled by pH. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Interfacial Energy and Fine Defect Structures for Incoherent Films

    OpenAIRE

    Cermelli, Paolo; Gurtin, Morton E.; Leoni, Giovanni

    1999-01-01

    This note summarizes recent results in which modern techniques of the calculus of variations are used to obtain qualitative features of film-substrate interfaces for a broad class of interfacial energies. In particular, we show that the existence of a critical thickness for incoherency and the formation of interfacial dislocations depend strongly on the convexity and smoothness of the interfacial energy function.

  17. Hyperbolic tangent variational approximation for interfacial profiles of binary polymer blends

    International Nuclear Information System (INIS)

    Lifschitz, M.; Freed, K.F.; Tang, H.

    1995-01-01

    Contemporary theories of binary polymer blend interfaces incorporate such features of real polymer blends as compressibility, local correlations, monomer structure, etc. However, these theories require complicated numerical schemes, and their solutions often cannot be interpreted in a physically clear fashion. We develop a variational formalism for computing interfacial properties of binary polymer blends based on a hyperbolic tangent representation for the interfaces. While such an analysis is straightforward in the incompressible limit, the extension to compressible binary blends requires two distinct width parameters and nontrivial analysis. When the profile width parameters are chosen to minimize the excess free energy of a phase separated binary blend, then the interfacial properties computed from our simplified interfacial theory closely match those computed with the much more sophisticated (and computationally intensive) treatments. Significant attention is devoted to describing the interfacial properties of blends in the regime intermediate between the strong and the weak segregation limits as well as to extrapolating between these limits. The extension of the square gradient theory to the Tang--Freed quartic approximation provides a more precise definition of the weak segregation limit, but the treatment is found to overestimate both the interfacial tension and width in the strong segregation limit. The width parameters for the different components of a strongly asymmetric compressible blend vary to a lesser extent than an asymptotic analysis in the bulk suggests. This finding indicates that the central portion of the profile contributes the most in the minimization of the excess free energy with respect to the variational width parameters. copyright 1995 American Institute of Physics

  18. Probing the role of interfacial waters in protein-DNA recognition using a hybrid implicit/explicit solvation model

    Science.gov (United States)

    Li, Shen; Bradley, Philip

    2013-01-01

    When proteins bind to their DNA target sites, ordered water molecules are often present at the protein-DNA interface bridging protein and DNA through hydrogen bonds. What is the role of these ordered interfacial waters? Are they important determinants of the specificity of DNA sequence recognition, or do they act in binding in a primarily non-specific manner, by improving packing of the interface, shielding unfavorable electrostatic interactions, and solvating unsatisfied polar groups that are inaccessible to bulk solvent? When modeling details of structure and binding preferences, can fully implicit solvent models be fruitfully applied to protein-DNA interfaces, or must the individualistic properties of these interfacial waters be accounted for? To address these questions, we have developed a hybrid implicit/explicit solvation model that specifically accounts for the locations and orientations of small numbers of DNA-bound water molecules while treating the majority of the solvent implicitly. Comparing the performance of this model to its fully implicit counterpart, we find that explicit treatment of interfacial waters results in a modest but significant improvement in protein sidechain placement and DNA sequence recovery. Base-by-base comparison of the performance of the two models highlights DNA sequence positions whose recognition may be dependent on interfacial water. Our study offers large-scale statistical evidence for the role of ordered water for protein DNA recognition, together with detailed examination of several well-characterized systems. In addition, our approach provides a template for modeling explicit water molecules at interfaces that should be extensible to other systems. PMID:23444044

  19. Interfacial layers in tape cast anode-supported doped lanthanum gallate SOFC elements

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, N.; De Silveira, G. [Materials Technology Laboratory, Natural Resources Canada, CANMET, 405 Rochester Street, Ottawa, Ontario (Canada) K1A OG3

    2003-04-01

    Lanthanum gallate doped with strontium and magnesium (LSGM) is a promising electrolyte system for intermediate temperature solid oxide fuel cells (SOFCs). The reported formation of interfacial layers in monolithic type SOFCs based on lanthanum gallate is of concern because of its impact on the performance of the fuel cell. Planar anode-supported SOFC elements (without the cathode) were prepared by the tape casting technique in order to determine the nature of the anode/electrolyte interface after sintering. Two anode systems were studied, one a NiO-CeO{sub 2} cermet, and the other, a modified lanthanum gallate anode containing manganese. Sintering studies were conducted at 1250, 1300, 1350, 1400 and 1450 C to determine the effect of temperature on the interfacial characteristics. Scanning electron microscopy (SEM) revealed a significant diffusion of Ni from the NiO-CeO{sub 2} anode resulting in the formation of an interfacial layer regardless of sintering temperature. Significant La diffusion from the electrolyte into the anode was also observed. In the case of the modified lanthanum gallate anode containing manganese, there was no interfacial layer formation, but a significant diffusion of Mn into the electrolyte was observed.

  20. The effect of interfacial layers on charge transport in organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mbuyise, Xolani G.; Tonui, Patrick; Mola, Genene Tessema, E-mail: mola@ukzn.ac.za

    2016-09-01

    The effect of interfacial buffer layers in organic photovoltaic cell (OPV) whose active layer is composed of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend was studied. The electrical properties of OPV devices produced with and without interfacial layers are compared and discussed in terms of measured parameters of the cells. The charge transport properties showed significant difference on the mobility and activation factor between the two types of device structures. The life time measurements in the unprotected conditions are also presented and discussed.

  1. Influence of annealing and interfacial roughness on the performance of bilayer donor/acceptor polymer photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hongping; Swaraj, Sufal; Wang, Cheng; Ade, Harald [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Hwang, Inchan; Greenham, Neil C.; McNeill, Christopher R. [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE (United Kingdom); Groves, Chris [School of Engineering and Computing Sciences, Durham University, Durham, DH1 3LE (United Kingdom)

    2010-12-21

    Through controlled annealing of planar heterojunction (bilayer) devices based on the polyfluorene copolymers poly(9,9-dioctylfluorene-co-bis(N,N'-(4,butylphenyl))bis(N,N'-phenyl-1,4-phenylene)diamine) (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) we study the influence of interface roughness on the generation and separation of electron-hole pairs at the donor/acceptor interface. Interface structure is independently characterized by resonant soft X-ray reflectivity with the interfacial width of the PFB/F8BT heterojunction observed to systematically increase with annealing temperature from 1.6 nm for unannealed films to 16 nm with annealing at 200 C for ten minutes. Photoluminescence quenching measurements confirm the increase in interface area by the three-fold increase in the number of excitons dissociated. Under short-circuit conditions, however, unannealed devices with the sharpest interface are found to give the best device performance, despite the increase in interfacial area (and hence the number of excitons dissociated) in annealed devices. The decrease in device efficiency with annealing is attributed to decreased interfacial charge separation efficiency, partly due to a decrease in the bulk mobility of the constituent materials upon annealing but also (and significantly) due to the increased interface roughness. We present results of Monte Carlo simulations that demonstrate that increased interface roughness leads to lower charge separation efficiency, and are able to reproduce the experimental current-voltage curves taking both increased interfacial roughness and decreased carrier mobility into account. Our results show that organic photovoltaic performance can be sensitive to interfacial order, and heterojunction sharpness should be considered a requirement for high performance devices. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Controlling Interfacial Separation in Porous Structures by Void Patterning

    Science.gov (United States)

    Ghareeb, Ahmed; Elbanna, Ahmed

    Manipulating interfacial response for enhanced adhesion or fracture resistance is a problem of great interest to scientists and engineers. In many natural materials and engineering applications, an interface exists between a porous structure and a substrate. A question that arises is how the void distribution in the bulk may affect the interfacial response and whether it is possible to alter the interfacial toughness without changing the surface physical chemistry. In this paper, we address this question by studying the effect of patterning voids on the interfacial-to-the overall response of an elastic plate glued to a rigid substrate by bilinear cohesive material. Different patterning categories are investigated; uniform, graded, and binary voids. Each case is subjected to upward displacement at the upper edge of the plate. We show that the peak force and maximum elongation at failure depend on the voids design and by changing the void size, alignment or gradation we may control these performance measures. We relate these changes in the measured force displacement response to energy release rate as a measure of interfacial toughness. We discuss the implications of our results on design of bulk heterogeneities for enhanced interfacial behavior.

  3. Insights in the Diffusion Controlled Interfacial Flow Synthesis of Au Nanostructures in a Microfluidic System.

    Science.gov (United States)

    Kulkarni, Amol A; Sebastian Cabeza, Victor

    2017-12-19

    Continuous segmented flow interfacial synthesis of Au nanostructures is demonstrated in a microchannel reactor. This study brings new insights into the growth of nanostructures at continuous interfaces. The size as well as the shape of the nanostructures showed significant dependence on the reactant concentrations, reaction time, temperature, and surface tension, which actually controlled the interfacial mass transfer. The microchannel reactor assisted in achieving a high interfacial area, as well as uniformity in mass transfer effects. Hexagonal nanostructures were seen to be formed in synthesis times as short as 10 min. The wettability of the channel showed significant effect on the particle size as well as the actual shape. The hydrophobic channel yielded hexagonal structures of relatively smaller size than the hydrophilic microchannel, which yielded sharp hexagonal bipyramidal particles (diagonal distance of 30 nm). The evolution of particle size and shape for the case of hydrophilic microchannel is also shown as a function of the residence time. The interfacial synthesis approach based on a stable segmented flow promoted an excellent control on the reaction extent, reduction in axial dispersion as well as the particle size distribution.

  4. Interfacial potential approach for Ag/ZnO (0001) interfaces

    International Nuclear Information System (INIS)

    Song Hong-Quan; Shen Jiang; Qian Ping; Chen Nan-Xian

    2014-01-01

    Systematic approaches are presented to extract the interfacial potentials from the ab initio adhesive energy of the interface system by using the Chen—Möbius inversion method. We focus on the interface structure of the metal (111)/ZnO (0001) in this work. The interfacial potentials of Ag—Zn and Ag—O are obtained. These potentials can be used to solve some problems about Ag/ZnO interfacial structure. Three metastable interfacial structures are investigated in order to check these potentials. Using the interfacial potentials we study the procedure of interface fracture in the Ag/ZnO (0001) interface and discuss the change of the energy, stress, and atomic structures in tensile process. The result indicates that the exact misfit dislocation reduces the total energy and softens the fracture process. Meanwhile, the formation and mobility of the vacancy near the interface are observed. (condensed matter: structural, mechanical, and thermal properties)

  5. Adsorption at the biocompatible α-pinene-water interface and emulsifying properties of two eco-friendly surfactants.

    Science.gov (United States)

    Trujillo-Cayado, Luis Alfonso; Ramírez, Pablo; Alfaro, María Carmen; Ruíz, Manuela; Muñoz, José

    2014-10-01

    In this contribution, we provide an accurate characterization at the α-pinene/water interface of two commercial polyoxytheylene glycerol ester surfactants which differ in the number of ethylene oxide (EO) groups, comprising a systematic analysis of interfacial pressure isotherms, dynamic curves, interfacial rheology and emulsifying properties. Polyoxyethylene glycerol esters derived from cocoa oil are non-ionic surfactants obtained from a renewable source which fulfill the environmental and toxicological requirements to be used as eco-friendly emulsifying agents. α-Pinene is a renewable biosolvent completely insoluble in water, which could find numerous applications. Interfacial rheology and equilibrium interfacial pressure data fitted a rigorous reorientation model that assumes that the surfactant molecules, when adsorbed at the interface, can acquire two orientations. The surfactant with the highest number of EO groups (Levenol C201) turned out to be more surface active at the α-pinene/water interface. In addition, the surfactant with the lowest number of EO groups (Levenol H&B) is solubilized into the adjacent oil phase. Slightly concentrated α-pinene emulsions were obtained using both surfactants. Nevertheless, more stable α-pinene emulsions with smaller droplet sizes and lower polidispersity were obtained when Levenol C201 was used as emulsifier instead of Levenol H&B. The systematic characterization presented in this work provides important new findings on the interfacial and emulsifying properties of polyoxytheylene glycerol ester surfactants, which can be applied in the rational development of new biocompatible products. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Discrete lattice plane broken bond interfacial energy calculations and the use of the dividing surface concept

    International Nuclear Information System (INIS)

    Ramanujan, R.V.

    2003-01-01

    The concept of the dividing surface has been extensively used to define the relationships between thermodynamic quantities at the interface between two phases; it is also useful in calculations of interfacial energy (γ). However, in the original formulation, the two phases are continuum phases, the atomistic nature of the interface was not considered. It is, therefore, useful to examine the use of the dividing surface in the context of atomistic interfacial energy calculations. The case of a planar fcc:hcp interface is considered and the dividing surface positions which are useful in atomistic interfacial energy calculations are stated, one position equates γ to the excess internal energy, the other position allows us to use the Gibbs adsorption equation. An example of a calculation using the convenient dividing surface positions is presented

  7. Exchange bias mediated by interfacial nanoparticles (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, A. E., E-mail: aberk@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Center for Magnetic Recording Research, University of California, California 92093 (United States); Sinha, S. K. [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Fullerton, E. E. [Center for Magnetic Recording Research, University of California, California 92093 (United States); Smith, D. J. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

    2015-05-07

    The objective of this study on the iconic exchange-bias bilayer Permalloy/CoO has been to identify those elements of the interfacial microstructure and accompanying magnetic properties that are responsible for the exchange-bias and hysteretic properties of this bilayer. Both epitaxial and polycrystalline samples were examined. X-ray and neutron reflectometry established that there existed an interfacial region, of width ∼1 nm, whose magnetic properties differed from those of Py or CoO. A model was developed for the interfacial microstructure that predicts all the relevant properties of this system; namely; the temperature and Permalloy thickness dependence of the exchange-bias, H{sub EX}, and coercivity, H{sub C}; the much smaller measured values of H{sub EX} from what was nominally expected; the different behavior of H{sub EX} and H{sub C} in epitaxial and polycrystalline bilayers. A surprising result is that the exchange-bias does not involve direct exchange-coupling between Permalloy and CoO, but rather is mediated by CoFe{sub 2}O{sub 4} nanoparticles in the interfacial region.

  8. Implementations of non-drag interfacial forces into the CUPID code

    International Nuclear Information System (INIS)

    Park, I.K.; Cho, H.K.; Kim, J.; Yoon, H.Y.; Jeong, J.J.

    2009-01-01

    A component-scale thermal-hydraulics analysis module, the CUPID code has been being developed for a transient three-dimensional two-phase flow analysis of nuclear reactor components. The CUPID is based on a two-fluid, three-field model, which is solved by using an unstructured finite volume method. In the two-fluid momentum equation, the most important term to be modeled is the interfacial surface force. The simplest way to model this force is to formulate as the linear combination of various known interfacial forces such as the standard drag force, the virtual mass force, the Basset force, the lift force, the wall lift force, and the turbulent dispersion force. The standard drag force and the virtual mass force, which is essential for two-fluid computational models, are already considered in the CUPID code. In this paper, the wall lubrication force, the lift force, and the turbulent dispersion force including turbulence models, which play an important role on a radial distribution of the void in a two-phase flow, were implemented into the CUPID code, and the effect of these forces were verified qualitatively. (author)

  9. Probing Interfacial Water on Nanodiamonds in Colloidal Dispersion.

    Science.gov (United States)

    Petit, Tristan; Yuzawa, Hayato; Nagasaka, Masanari; Yamanoi, Ryoko; Osawa, Eiji; Kosugi, Nobuhiro; Aziz, Emad F

    2015-08-06

    The structure of interfacial water layers around nanoparticles dispersed in an aqueous environment may have a significant impact on their reactivity and on their interaction with biological species. Using transmission soft X-ray absorption spectroscopy in liquid, we demonstrate that the unoccupied electronic states of oxygen atoms from water molecules in aqueous colloidal dispersions of nanodiamonds have a different signature than bulk water. X-ray absorption spectroscopy can thus probe interfacial water molecules in colloidal dispersions. The impacts of nanodiamond surface chemistry and concentration on interfacial water electronic signature are discussed.

  10. Scaling of interfacial jump conditions

    International Nuclear Information System (INIS)

    Quezada G, S.; Vazquez R, A.; Espinosa P, G.

    2015-09-01

    To model the behavior of a nuclear reactor accurately is needed to have balance models that take into account the different phenomena occurring in the reactor. These balances have to be coupled together through boundary conditions. The boundary conditions have been studied and different treatments have been given to the interface. In this paper is a brief description of some of the interfacial jump conditions that have been proposed in recent years. Also, the scaling of an interfacial jump condition is proposed, for coupling the different materials that are in contact within a nuclear reactor. (Author)

  11. Nanoscale interfacial defect shedding in a growing nematic droplet.

    Science.gov (United States)

    Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro

    2017-08-01

    Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.

  12. Interfacial instabilities in vibrated fluids

    Science.gov (United States)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  13. Mathematical modeling of disperse two-phase flows

    CERN Document Server

    Morel, Christophe

    2015-01-01

    This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...

  14. Neutron reflectometry for interfacial materials characterization

    International Nuclear Information System (INIS)

    Lin, Eric K.; Pochan, Darrin J.; Kolb, Rainer; Wu Wenli; Satija, Sushil K.

    1998-01-01

    Neutron reflectometry provides a powerful non-destructive analytic technique to measure physical properties of interfacial materials. The sample reflectivity provides information about composition, thickness, and roughness of films with 0.1 nm resolution. The use of neutrons has the additional advantage of being able to label selected atomic species by using different isotopes. Two examples are presented to demonstrate the use of neutron reflectometry in measuring the thermal expansion of a buried thin polymer film and measuring the change in polymer mobility near a solid substrate

  15. Two-phase flow characteristics of HFC and HCFC fluid

    International Nuclear Information System (INIS)

    Ueno, T.; Matsuda, K.; Kusakabe, T.

    1998-01-01

    Some two-phase flow characteristics of HFC and HCFC fluid have been investigated experimentally. Fluids used in this experiment are HCFC22 (hereinafter called 'R22'), HCFC123 (hereinafter called 'R123') and Mixture of HFC fluid (hereinafter called 'R407C'). The fluid R407C are mixture of HFC32, HFC134a and HFC125, and their concentrations are 23wt%, 52wt% and 25wt%, respectively. This paper presents main flow parameters such as void fraction, interfacial velocities, bubble diameter distribution and pressure drop multiplier, which can characterize flow behavior. The void fractions and interfacial velocities were measured at some local positions in the single pipe using the bi-optical probe(hereinafter called 'BOP'). The procedure to calculate the void fraction from the void signals obtained by BOP were adopted the so-called slice method. The effects of slice levels on the void fraction were discussed taking into account bubble diameter. The new correlation of slice level as the function of void fraction has been proposed. The area-averaged void fractions obtained from BOP's void signals using new correlation were compared with void fractions obtained from pressure drops. The area-averaged interfacial velocities were also compared with the superficial gas velocities. It was concluded that the accuracy of BOP measurements are 5% for void fraction and less than 8.5% for interfacial velocity

  16. Recent advances in interfacial engineering of perovskite solar cells

    Science.gov (United States)

    Ye, Meidan; He, Chunfeng; Iocozzia, James; Liu, Xueqin; Cui, Xun; Meng, Xiangtong; Rager, Matthew; Hong, Xiaodan; Liu, Xiangyang; Lin, Zhiqun

    2017-09-01

    Due to recent developments, organometallic halide perovskite solar cells (PSCs) have attracted even greater interest owing to their impressive photovoltaic properties and simple device manufacturing processes with the potential for commercial applications. The power conversion efficiencies (PCEs) of PSCs have surged from 3.8% for methyl ammonium lead halide-sensitized liquid solar cells, CH3NH3PbX3 (X  =  Cl, Br, I), in 2009, to more than 22% for all-solid-state solar cells in 2016. Over the past few years, significant effort has been dedicated to realizing PSCs with even higher performance. In this review, recent advances in the interfacial engineering of PSCs are addressed. The specific strategies for the interfacial engineering of PSCs fall into two categories: (1) solvent treatment and additives to improve the light-harvesting capabilities of perovskite films, and (2) the incorporation of various functional materials at the interfaces between the active layers (e.g. electron transporting layer, perovskite layer, and hole transporting layer). This review aims to provide a comprehensive overview of strategies for the interfacial engineering of PSCs with potential benefits including enhanced light harvesting, improved charge separation and transport, improved device stability, and elimination of photocurrent hysteresis.

  17. Interfacial friction in low flowrate vertical annular flow

    International Nuclear Information System (INIS)

    Kelly, J.M.; Freitas, R.L.

    1993-01-01

    During boil-off and reflood transients in nuclear reactors, the core liquid inventory and inlet flowrate are largely determined by the interfacial friction in the reactor core. For these transients, annular flow occurs at relatively modest liquid flowrates and at the low heat fluxes typical of decay heat conditions. The resulting low vapor Reynolds numbers, are out of the data range used to develop the generally accepted interfacial friction relations for annular flow. In addition, most existing annular flow data comes from air/liquid adiabatic experiments with fully developed flows. By contrast, in a reactor core, the flow is continuously developing along the heated length as the vapor flowrate increases and the flow regimes evolve from bubbly to annular flow. Indeed, the entire annular flow regime may exist only over tens of L/D's. Despite these limitations, many of the advanced reactor safety analysis codes employ the Wallis model for interfacial friction in annular flow. Our analyses of the conditions existing at the end-of-reflood in the PERICLES tests have indicated that the Wallis model seriously underestimates the interfacial shear for low vapor velocity cocurrent upflow. To extend the annular flow data base to diabatic low flowrate conditions, the DADINE tests were re-analyzed. In these tests, both pressure drop and local cross-section averaged void fractions were measured. Thus, both the wall and interfacial shear can be deduced. Based on the results of this analysis, a new correlation is proposed for interfacial friction in annular flow. (authors). 5 figs., 12 refs

  18. Toughening mechanisms in interfacially modified HDPE/thermoplastic starch blends.

    Science.gov (United States)

    Taguet, Aurélie; Bureau, Martin N; Huneault, Michel A; Favis, Basil D

    2014-12-19

    The mechanical behavior of polymer blends containing 80 wt% of HDPE and 20 wt% of TPS and compatibilized with HDPE-g-MA grafted copolymer was investigated. Unmodified HDPE/TPS blends exhibit high fracture resistance, however, the interfacial modification of those blends by addition of HDPE-g-MA leads to a dramatic drop in fracture resistance. The compatibilization of HDPE/TPS blends increases the surface area of TPS particles by decreasing their size. It was postulated that the addition of HDPE-g-MA induces a reaction between maleic anhydride and hydroxyl groups of the glycerol leading to a decrease of the glycerol content in the TPS phase. This phenomenon increases the stiffness of the modified TPS particles and stiffer TPS particles leading to an important reduction in toughness and plastic deformation, as measured by the EWF method. It is shown that the main toughening mechanism in HDPE/TPS blends is shear-yielding. This article demonstrates that stiff, low diameter TPS particles reduce shear band formation and consequently decrease the resistance to crack propagation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Interfacial crystalline structures in injection over-molded polypropylene and bond strength.

    Science.gov (United States)

    Yan, Bowen; Wu, Hong; Jiang, Genjie; Guo, Shaoyun; Huang, Jian

    2010-11-01

    This paper describes interfacial crystalline structures found in injection overmolded polypropylene components and the relationship of these structures to bond strength between the components. The combined effects of the development of hierarchical gradient structures and the particular thermomechanical environment near the interface on the interfacial crystalline structures were investigated in detail by PLM, SEM, DSC, WAXD, and infrared dichroism spectroscopy. The experimental results showed that during molding there was competitive formation of interfacial crystalline structures consisted of "shish-kebab" layer (SKL) and a transcrystalline layers (TCL). Variation in shear stress (controlled by injection pressure and injection speed) plays an important role in the formation of the SKL. The formation of TCL is influenced by the thermal environment, namely melt temperature and mold temperature. Increasing within certain limits, interfacial temperature and the thermal gradient near the interface promotes β-iPP growth. The relationship between interfacial crystalline structures and interfacial bond strength was established by lap shear measurement. The interfacial bond strength is improved by enhancing the formation of TCL, but reduced if SKL predominates.

  20. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Pei, Y. T.; Ocelik, V.; De Hosson, J. T. M.

    2003-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission

  1. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    De Hosson, JTM; Pei, YT; Ocelik, [No Value; Sudarshan, TS; Stiglich, JJ; Jeandin, M

    2002-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-sitit microstructural observations during straining in an FEG-ESEM

  2. Heat Transfer Characteristics of a Focused Surface Acoustic Wave (F-SAW Device for Interfacial Droplet Jetting

    Directory of Open Access Journals (Sweden)

    Donghwi Lee

    2018-06-01

    Full Text Available In this study, we investigate the interfacial droplet jetting characteristics and thermal stability of a focused surface acoustic wave device (F-SAW. An F-SAW device capable of generating a 20 MHz surface acoustic wave by applying sufficient radio frequency power (2–19 W on a 128°-rotated YX-cut piezoelectric lithium niobate substrate for interfacial droplet jetting is proposed. The interfacial droplet jetting characteristics were visualized by a shadowgraph method using a high-speed camera, and a heat transfer experiment was conducted using K-type thermocouples. The interfacial droplet jetting characteristics (jet angle and height were analyzed for two different cases by applying a single interdigital transducer and two opposite interdigital transducers. Surface temperature variations were analyzed with radio frequency input power increases to evaluate the thermal stability of the F-SAW device in air and water environments. We demonstrate that the maximum temperature increase of the F-SAW device in the water was 1/20 of that in the air, owing to the very high convective heat transfer coefficient of the water, resulting in prevention of the performance degradation of the focused acoustic wave device.

  3. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    Science.gov (United States)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  4. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    Science.gov (United States)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  5. Protein interfacial structure and nanotoxicology

    Energy Technology Data Exchange (ETDEWEB)

    White, John W. [Research School of Chemistry, Australian National University, Canberra (Australia)], E-mail: jww@rsc.anu.edu.au; Perriman, Adam W.; McGillivray, Duncan J.; Lin, J.-M. [Research School of Chemistry, Australian National University, Canberra (Australia)

    2009-02-21

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between {beta}-casein and {kappa}-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a {beta}-casein monolayer is attacked by a {kappa}-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a {beta}-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle 'corona' thought to be important for nanoparticle-cell wall penetration.

  6. Protein interfacial structure and nanotoxicology

    International Nuclear Information System (INIS)

    White, John W.; Perriman, Adam W.; McGillivray, Duncan J.; Lin, J.-M.

    2009-01-01

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between β-casein and κ-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a β-casein monolayer is attacked by a κ-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a β-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle 'corona' thought to be important for nanoparticle-cell wall penetration.

  7. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenggao, E-mail: sgzhou@suda.edu.cn, E-mail: bli@math.ucsd.edu [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Jiangsu, Suzhou 215006 (China); Sun, Hui; Cheng, Li-Tien [Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112 (United States); Dzubiella, Joachim [Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany and Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Li, Bo, E-mail: sgzhou@suda.edu.cn, E-mail: bli@math.ucsd.edu [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Department of Chemistry and Biochemistry, Department of Pharmacology, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093-0365 (United States)

    2016-08-07

    Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. We also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the “normal velocity” that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the

  8. Interfacial transport phenomena and stability in liquid-metal/water systems: scaling considerations

    International Nuclear Information System (INIS)

    Abdulla, S.; Liu, X.; Anderson, M.; Bonazza, R.; Corradini, M.; Cho, D.

    2001-01-01

    One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area give rise to very high heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. In this paper we describe current results from the first year of this research that studies the transport phenomena involved with the injection of water into molten metals (e.g., lead alloys). In particular, this work discusses scaling considerations related to direct contact heat exchange, our experimental plans for investigation and a test plan for the important experimental parameters; i.e., the water and liquid metal mass flow rates, the liquid metal pool temperature and the ambient pressure of the direct contact heat exchanger. Past experimental work and initial scaling results suggest that our experiments can directly represent the proper liquid metal pool temperature and the water subcooling. The experimental variation in water and liquid metal flow rates and system pressure (1-10 bar), although smaller than the current conceptual system designs, is sufficient to verify the expected scale effects to demonstrate the phenomena. (authors)

  9. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    International Nuclear Information System (INIS)

    Lorencez, C.; Kawaji, M.; Murao, Y.

    1995-01-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods

  10. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C.; Kawaji, M. [Univ. of Toronto (Canada); Murao, Y. [Tokushima Univ. (Japan)] [and others

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  11. Transient interfacial tension and dilatational rheology of diffuse polymer-polymer interfaces

    NARCIS (Netherlands)

    Peters, G.W.M.; Zdravkov, A.N.; Meijer, H.E.H.

    2005-01-01

    We demonstrate the influence of molecular weight and molecular weightasymmetry across an interface on the transient behavior of the interfacial tension. The interfacial tension was measured as a function of time for a range of polymer combinations with a broadrange of interfacial properties using a

  12. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Science.gov (United States)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-10-01

    Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  13. Methodology for assessing the interfacial sliding stress of a 2D woven SiC-SiC composite

    Energy Technology Data Exchange (ETDEWEB)

    Morvan, J.-M.; Baste, S. [Bordeaux-1 Univ., 33 - Talence (France)

    1999-03-01

    A micromechanical model is established to assess the value of the interfacial sliding stress as a function of the elastic and inelastic strains, the transverse crack density and the area upon which the sliding takes. The interfacial sliding stress is then measured during all the tensile test whether the damage occurs at the meso or at the microstructure level of a 2D SiC-SiC composite. The ultrasonic characterization through the complete determination of the stiffness tensor along a tensile test detects all the damage mechanisms and allows a strain partition under load which separates the various mechanisms responsible for the non-linear behavior of ceramic matrix composites (CMCs). It results that, according to the scale of the composite, the interfacial sliding stress exhibits a different value due to the nature of the bonding. (orig.) 13 refs.

  14. Tomography based determination of permeability, Dupuit-Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics

    International Nuclear Information System (INIS)

    Petrasch, Joerg; Meier, Fabian; Friess, Hansmartin; Steinfeld, Aldo

    2008-01-01

    A computer tomography based methodology is applied to determine the transport properties of fluid flow across porous media. A 3D digital representation of a 10-ppi reticulate porous ceramic (RPC) sample was generated by X-ray tomographic scans. Structural properties such as the porosity, specific interfacial surface area, pore-size distribution, mean survival time, two-point correlation function s 2 , and local geometry distribution of the RPC sample are directly extracted from the tomographic data. Reference solutions of the fluid flow governing equations are obtained for Re = 0.2-200 by applying finite volume direct pore-level numerical simulation (DPLS) using unstructured, body-fitted, tetrahedral mesh discretization. The permeability and the Dupuit-Forchheimer coefficient are determined from the reference solutions by DPLS, and compared to the values predicted by selected porous media flow models, namely: conduit-flow, hydraulic radius theory, drag models, mean survival time bound, s 2 -bound, fibrous bed correlations, and local porosity theory-based models. DPLS is further employed to determine the interfacial heat transfer coefficient and to derive a corresponding Nu-correlation, which is compared to empirical correlations

  15. An improved interfacial bonding model for material interface modeling

    Science.gov (United States)

    Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei

    2016-01-01

    An improved interfacial bonding model was proposed from potential function point of view to investigate interfacial interactions in polycrystalline materials. It characterizes both attractive and repulsive interfacial interactions and can be applied to model different material interfaces. The path dependence of work-of-separation study indicates that the transformation of separation work is smooth in normal and tangential direction and the proposed model guarantees the consistency of the cohesive constitutive model. The improved interfacial bonding model was verified through a simple compression test in a standard hexagonal structure. The error between analytical solutions and numerical results from the proposed model is reasonable in linear elastic region. Ultimately, we investigated the mechanical behavior of extrafibrillar matrix in bone and the simulation results agreed well with experimental observations of bone fracture. PMID:28584343

  16. Interfacial effects in organic semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Stadler, P.

    2011-01-01

    The field of organic electronics has systematically gained interest in recent years, technologically and scientifically advances have been made leading to practical applications such as organic light emitting diodes, organic field-effect transistors and organic photo-voltaic cells. In this thesis a fundamental study on organic molecules is presented targeting on interfacial effects at organic heterojunctions. Generally in organic electronic devices interfaces are considered as key parameters for achieving high performance applications. Therefore in this work the emphasis is to investigate layer-by-layer heterojunctions of organic molecules. Defined heterojunctions at inorganic III-V semiconductors form superlattices and quantum-wells, which lead to interfacial effects summarized as quantum confinement and two-dimensional electron gases. Although organic molecules differ in many aspects from their inorganic counterparts, similar effects can be theoretically expected at organic heterojunctions as well. Organic molecules form van-der-Waals type crystals and domains which are macroscopically anisotropic and polycrystalline or amorphous. Organic molecules are intrinsic semiconductors and at interfaces dipoles are formed, which control the energy level alignment. In order to characterize such structures and compare them to inorganic superlattices and quantum-wells it is necessary to induce charge carriers. In this work this is established either by interfacial doping using high-performance dielectrics in a field-effect transistor structure or by photo-doping by exciting a donor-acceptor bilayer. In both cases C 60 was chosen as organic semiconductor exhibiting good acceptor properties and an electron mobility in the range of 0.5 cm 2 V -1 s -1 . The fabrication of well-defined few-molecular layers allows probing directly at the interface. Spectroscopic methods and transport measurements are applied for characterization: Photoemission spectroscopy, absorption and photo

  17. Laboratory and numerical investigations of kinetic interface sensitive tracers transport for immiscible two-phase flow porous media systems

    Science.gov (United States)

    Tatomir, Alexandru Bogdan A. C.; Sauter, Martin

    2017-04-01

    A number of theoretical approaches estimating the interfacial area between two fluid phases are available (Schaffer et al.,2013). Kinetic interface sensitive (KIS) tracers are used to describe the evolution of fluid-fluid interfaces advancing in two phase porous media systems (Tatomir et al., 2015). Initially developed to offer answers about the supercritical (sc)CO2 plume movement and the efficiency of trapping in geological carbon storage reservoirs, KIS tracers are tested in dynamic controlled laboratory conditions. N-octane and water, analogue to a scCO2 - brine system, are used. The KIS tracer is dissolved in n-octane, which is injected as the non-wetting phase in a fully water saturated porous media column. The porous system is made up of spherical glass beads with sizes of 100-250 μm. Subsequently, the KIS tracer follows a hydrolysis reaction over the n-octane - water interface resulting in an acid and phenol which are both water soluble. The fluid-fluid interfacial area is described numerically with the help of constitutive-relationships derived from the Brooks-Corey model. The specific interfacial area is determined numerically from pore scale calculations, or from different literature sources making use of pore network model calculations (Joekar-Niasar et al., 2008). This research describes the design of the laboratory setup and compares the break-through curves obtained with the forward model and in the laboratory experiment. Furthermore, first results are shown in the attempt to validate the immiscible two phase flow reactive transport numerical model with dynamic laboratory column experiments. Keywords: Fluid-fluid interfacial area, KIS tracers, model validation, CCS, geological storage of CO2

  18. Organic/inorganic electrochromic nanocomposites with various interfacial interactions: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shanxin, E-mail: xiongsx@xust.edu.cn; Yin, Siyuan; Wang, Yuyun; Kong, Zhenzhen; Lan, Jinpeng; Zhang, Runlan; Gong, Ming; Wu, Bohua; Chu, Jia; Wang, Xiaoqin

    2017-07-15

    Highlights: • We review the effects of interfacial interactions in electrochromic nanocomposites. • Interfacial interactions are useful for film fabrication and property-enhancement. • The strong interaction can enhance the electron conduction and structural strength. • The weak interactions exist widely between organic and inorganic phases. • Multiple weak interactions can provide various performance-adjusting approaches. - Abstract: Electrochromic properties of organic or inorganic materials can be improved through preparing organic/inorganic electrochromic nanocomposites. In electrochromic nanocomposites, the interfacial interactions between the organic and inorganic phases play three important roles in preparation and application of the nanocomposites. Firstly, the interfacial interactions result in stable molecular structures. Secondly, they also improve the electron conduction and ion transport process in the nanocomposites. Thirdly, they enhance the electrochemical and electrochromic properties of the nanocomposites. In this paper, we review the common interfacial interactions including covalent bond, coordination bond, electrostatic interaction, hydrogen bond and π-π stacking interaction between the organic and inorganic phases in the electrochromic nanocomposites. The preparation method, the relationship between the structure and properties, and the mechanism of modulation of electrochromic effect in the nanocomposites with various interfacial interactions are surveyed. The strong interfacial interaction, e.g., covalent bond, is helpful for obtaining electrochromic nanocomposites with high electron conduction and high structural strength. However it is very complicated to construct covalent bond between the organic and inorganic phases. Another strong interfacial interaction, the coordination bond is mainly confined to preparation of electrochromic complex of metal ion and pyridine derivative. While, the weak interfacial interactions, e

  19. Organic/inorganic electrochromic nanocomposites with various interfacial interactions: A review

    International Nuclear Information System (INIS)

    Xiong, Shanxin; Yin, Siyuan; Wang, Yuyun; Kong, Zhenzhen; Lan, Jinpeng; Zhang, Runlan; Gong, Ming; Wu, Bohua; Chu, Jia; Wang, Xiaoqin

    2017-01-01

    Highlights: • We review the effects of interfacial interactions in electrochromic nanocomposites. • Interfacial interactions are useful for film fabrication and property-enhancement. • The strong interaction can enhance the electron conduction and structural strength. • The weak interactions exist widely between organic and inorganic phases. • Multiple weak interactions can provide various performance-adjusting approaches. - Abstract: Electrochromic properties of organic or inorganic materials can be improved through preparing organic/inorganic electrochromic nanocomposites. In electrochromic nanocomposites, the interfacial interactions between the organic and inorganic phases play three important roles in preparation and application of the nanocomposites. Firstly, the interfacial interactions result in stable molecular structures. Secondly, they also improve the electron conduction and ion transport process in the nanocomposites. Thirdly, they enhance the electrochemical and electrochromic properties of the nanocomposites. In this paper, we review the common interfacial interactions including covalent bond, coordination bond, electrostatic interaction, hydrogen bond and π-π stacking interaction between the organic and inorganic phases in the electrochromic nanocomposites. The preparation method, the relationship between the structure and properties, and the mechanism of modulation of electrochromic effect in the nanocomposites with various interfacial interactions are surveyed. The strong interfacial interaction, e.g., covalent bond, is helpful for obtaining electrochromic nanocomposites with high electron conduction and high structural strength. However it is very complicated to construct covalent bond between the organic and inorganic phases. Another strong interfacial interaction, the coordination bond is mainly confined to preparation of electrochromic complex of metal ion and pyridine derivative. While, the weak interfacial interactions, e

  20. Role of Interfacial Properties of 4-hydroxyquinoline and / or Some Crown Ethers in the Mechanism of Extraction Process

    International Nuclear Information System (INIS)

    Daoud, J.A.; El-Dessouky, S.I.

    2000-01-01

    The interfacial properties of 8-hydroxyquinoline (HOX) and /or some crown ethers; Db 18 C6, 18 C6 and 15 C5 at the chloroform/ nitrate interface were investigated by measuring their interfacial tension using Du Nouy ring method. The data indicate that 18 C6 and 15 C5 have variable effects on the chloroform-nitrate interface according to their concentrations while Db 18 C6 and HOX have nearly no effect at the interface in the investigated concentration range. The mixture of HOX and 18 C6 or 15 C5 showed different trends according to their concentrations. The proposed mechanisms were verified by carrying out Co(II) extraction by HOX-Db 18 C6 mixture in chloroform in the low and high concentration ranges at different interfacial area. The use of benzene instead of chloroform indicate that the nature of diluent has a marked effect on the interfacial properties of 18 C6 and 15 C5 while Db 18 C6 was found to be sparingly soluble in benzene in the investigated concentration range

  1. Two-phase pressurized thermal shock investigations using a 3D two-fluid modeling of stratified flow with condensation

    International Nuclear Information System (INIS)

    Yao, W.; Coste, P.; Bestion, D.; Boucker, M.

    2003-01-01

    In this paper, a local 3D two-fluid model for a turbulent stratified flow with/without condensation, which can be used to predict two-phase pressurized thermal shock, is presented. A modified turbulent K- model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on a interfacial sublayer concept and three interfacial heat transfer models, namely, a model based on the small eddies controlled surface renewal concept (HDM, Hughes and Duffey, 1991), a model based on the asymptotic behavior of the Eddy Viscosity (EVM), and a model based on the Interfacial Sublayer concept (ISM) are implemented into a preliminary version of the NEPTUNE code based on the 3D module of the CATHARE code. As a first step to apply the above models to predict the two-phase thermal shock, the models are evaluated by comparison of calculated profiles with several experiments: a turbulent air-water stratified flow without interfacial heat transfer; a turbulent steam-water stratified flow with condensation; turbulence induced by the impact of a water jet in a water pool. The prediction results agree well with the experimental data. In addition, the comparison of three interfacial heat transfer models shows that EVM and ISM gave better prediction results while HDM highly overestimated the interfacial heat transfers compared to the experimental data of a steam water stratified flow

  2. Interfacial aspects in the production of advanced viscoelastic composites

    International Nuclear Information System (INIS)

    Khan, M.B.

    1997-01-01

    The integrity and morphology of the interfacial junction often dictate the mechanical and thermal response of multiphase engineering materials. The production of materials with synergistic properties requires the effective generation and consolidation of material interfaces. The paper examines this theme in viscoelastic systems, comprising polymer alloys, reactive composites, electrical insulation and reinforced commodity polymers. Processing protocol is identified through TEM/SEM for the nylon/ABS composite material that alloys optimum utilization of reactive comptabilizers. Comparative results show that both reactive and miscibility are crucial for a compatibilizer to provide sufficient dispersion and adequate interfacial adhesion between the two phases. In discrete system, interfacial coupling is normally accomplished by bonding agents which form chemical bridges across the particle-matrix interface. A recent technique, however, utilizer a lateral modulus gradient across the material interface to increase fracture energy (Mechanical approach), Micro morphology of a convectional composite sans bonding agent is compared with the latter modified via the mechanical approach, Cryo-fracture surfaces of these composites reveal good particle-matrix adhesion in the modified composite, as opposed to visible particle pull-out observed in the other composite. A third approach toward interfacial coupling relies on the suitable modification of the particle surface to promote interaction between the particle and the polymer chains. This strategy is examined with particular reference to electoral cable sheathing and synthetic window profile, by using composite particles produced in the author's processing facility. ESCA spectrum of these particles is discussed, along with impact and TGA/DTA data for the modified PVC/EPDM composites. The impact strength of rigid PVC improved over a range of temperature, including the important region of zero degree centigrade and below. TGGA

  3. Characteristics of two-phase flows in large diameter channels

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, J.P., E-mail: schlegelj@mst.edu [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, 301 W 14th St., Rolla, MO 65401 (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907 (United States)

    2016-12-15

    Two-phase flows in large diameter channels have a great deal of importance in a wide variety of industrial applications. Nuclear systems, petroleum refineries, and chemical processes make extensive use of larger systems. Flows in such channels have very different properties from flows in smaller channels which are typically used in experimental research. In this paper, the various differences between flows in large and small channels are highlighted using the results of previous experimental and analytical research. This review is followed by a review of recent experiments in and model development for flows in large diameter channels performed by the authors. The topics of these research efforts range from void fraction and interfacial area concentration measurement to flow regime identification and modeling, drift-flux modeling for high void fraction conditions, and evaluation of interfacial area transport models for large diameter channels.

  4. Improvement of surface wettability and interfacial adhesion of poly-(p-phenylene terephthalamide) by incorporation of the polyamide benzimidazole segment

    International Nuclear Information System (INIS)

    Cai Renqin; Peng Tao; Wang Fengde; Ye Guangdou; Xu Jianjun

    2011-01-01

    In order to investigate the effect of the polyamide benzimidazole group on the surface wettability and interfacial adhesion of fiber/matrix composites, surface features of two kinds of aramid fibers, poly (p-phenylene terephthalamide) fiber (Kevlar-49) and poly-(polyamide benzimidazole-co-p-phenylene terephthalamide) (DAFIII), have been analyzed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis (CAA) system, respectively. The results show that with the incorporation of the polyamide benzimidazole segment, more polar functional groups exist on DAFIII surface. The contact angles of water and diiodomethane on DAFIII surface get smaller. The surface free energy of DAFIII increases to 36.5 mJ/m 2 , which is 2.3% higher than that of Kevlar-49. In addition, DAFIII has a larger rough surface compared with that of Kevlar-49 due to different spinning processes. The interfacial shear strength (IFSS) of DAFIII/matrix composite is 25.7% higher than that of Kevlar-49/matrix composite, in agreement with the observed results from surface feature tests. SEM micrographs of failed micro-droplet specimens reveal a strong correlation between the fracture features and the observed test data.

  5. Film drainage and interfacial instabilities in polymeric systems with diffuse interfaces

    NARCIS (Netherlands)

    Zdravkov, A.N.; Peters, G.W.M.; Meijer, H.E.H.

    2006-01-01

    We report an experimental investigation on the effect of mutual diffusion in polymeric systems on film drainage between two captive drops. The main objective is to study the influence of diffuse interfaces on film drainage. This is done by using material combinations with different interfacial

  6. Water/ionic liquid/organic three-phase interfacial synthesis of coral-like polypyrrole toward enhanced electrochemical capacitance

    International Nuclear Information System (INIS)

    Hou Linrui; Yuan Changzhou; Li Diankai; Yang Long; Shen Laifa; Zhang Fang; Zhang Xiaogang

    2011-01-01

    Highlights: → Interfacial synthesis strategies are proposed to synthesize PPy samples. → Water/ionic liquid /organic three-phase interface for preparing coral-like PPy. → Coral-like PPy with more ordered structure and better electronic conductivity. → Coral-like PPy owns higher rate performance and better electrochemical stability. - Abstract: Two interfacial synthesis strategies are proposed to synthesize polypyrrole samples for electrochemical capacitors (ECs). In contrast to water/organic two-phase route, unique water/ionic liquid (IL)/organic three-phase interface strategy is first performed to prepare coral-like polypyrrole with even better electrochemical capacitance, where 1-Ethyl-3-methylimidazolium tetrafluoroborate IL, as a 'buffering zone', is set between the water and organic phases to control the morphology and micro-structure of the polypyrrole phase during polymerization. The polypyrrole synthesized by three-phase interfacial route owns more ordered structure, less charge transfer resistance and better electronic conductivity, compared with two-phase method, and delivers larger specific capacitance, higher rate performance and better electrochemical stability at large current densities in 3 M KCl aqueous electrolyte.

  7. Nanoparticle packing within block copolymer micelles prepared by the interfacial instability method.

    Science.gov (United States)

    Nabar, Gauri M; Winter, Jessica O; Wyslouzil, Barbara E

    2018-05-02

    The interfacial instability method has emerged as a viable approach for encapsulating high concentrations of nanoparticles (NPs) within morphologically diverse micelles. In this method, transient interfacial instabilities at the surface of an emulsion droplet guide self-assembly of block co-polymers and NP encapsulants. Although used by many groups, there are no systematic investigations exploring the relationship between NP properties and micelle morphology. Here, the effect of quantum dot (QD) and superparamagnetic iron oxide NP (SPION) concentration on the shape, size, and surface deformation of initially spherical poly(styrene-b-ethylene oxide) (PS-b-PEO) micelles was examined. Multi-NP encapsulation and uniform dispersion within micelles was obtained even at low NP concentrations. Increasing NP concentration initially resulted in larger numbers of elongated micelles and cylinders with tightly-controlled diameters smaller than those of spherical micelles. Beyond a critical NP concentration, micelle formation was suppressed; the dominant morphology became densely-loaded NP structures that were coated with polymer and exhibited increased polydispersity. Transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) revealed that NPs in densely-loaded structures can be well-ordered, with packing volume fractions of up to 24%. These effects were enhanced in magnetic composites, possibly by dipole interactions. Mechanisms governing phase transitions triggered by NP loading in the interfacial instability process were proposed. The current study helps establish and elucidate the active role played by NPs in directing block copolymer assembly in the interfacial instability process, and provides important guiding principles for the use of this approach in generating NP-loaded block copolymer composites.

  8. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    International Nuclear Information System (INIS)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen

    2014-01-01

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu 2+ was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu 2+ were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu 2+ ). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied

  9. Liquid film thickness and interfacial wave propagate in venturi scrubber for filtered venting

    International Nuclear Information System (INIS)

    Nakao, Yasuhiro; Horiguchi, Naoki; Kanagawa, Tetsuya; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2016-01-01

    As one of filtered venting systems which should be installed in light water reactors from the viewpoint of protecting a containment vessel and suppressing the diffusion of radioactive materials, there is a system composed of venturi scrubbers. The radioactive materials in the contaminated gas are collected into liquid. By forming dispersed flow in the venturi scrubber, interfacial area between liquid and gas is enhanced, finally, large decontamination factor is realized. In evaluation for the decontamination performance of the venturi scrubber, interface characteristics of droplets and liquid film are important. In this study, as a part of evaluation method of the interfacial area, the liquid film thickness in the venturi scrubber was measured. And evaluate the results of investigation experimentally for each ruffling average thickness and liquid film in a fluidized condition. The cross section area of a venturi scrubber is a rectangular one manufactured a transparent acrylic for visualization. In the venturi scrubber, a pressure drop occurs in the throat part by the inflow of air from the compressor. Water flows from the tank by a pressure difference between a suctioned hole with head pressure and a throat part. An annular spray flow is then formed in the venturi scrubber. (author)

  10. Surface and buried interfacial structures of epoxy resins used as underfills studied by sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Vázquez, Anne V; Holden, Brad; Kristalyn, Cornelius; Fuller, Mike; Wilkerson, Brett; Chen, Zhan

    2011-05-01

    Flip chip technology has greatly improved the performance of semiconductor devices, but relies heavily on the performance of epoxy underfill adhesives. Because epoxy underfills are cured in situ in flip chip semiconductor devices, understanding their surface and interfacial structures is critical for understanding their adhesion to various substrates. Here, sum frequency generation (SFG) vibrational spectroscopy was used to study surface and buried interfacial structures of two model epoxy resins used as underfills in flip chip devices, bisphenol A digylcidyl ether (BADGE) and 1,4-butanediol diglycidyl ether (BDDGE). The surface structures of these epoxies were compared before and after cure, and the orientations of their surface functional groups were deduced to understand how surface structural changes during cure may affect adhesion properties. Further, the effect of moisture exposure, a known cause of adhesion failure, on surface structures was studied. It was found that the BADGE surface significantly restructured upon moisture exposure while the BDDGE surface did not, showing that BADGE adhesives may be more prone to moisture-induced delamination. Lastly, although surface structure can give some insight into adhesion, buried interfacial structures more directly correspond to adhesion properties of polymers. SFG was used to study buried interfaces between deuterated polystyrene (d-PS) and the epoxies before and after moisture exposure. It was shown that moisture exposure acted to disorder the buried interfaces, most likely due to swelling. These results correlated with lap shear adhesion testing showing a decrease in adhesion strength after moisture exposure. The presented work showed that surface and interfacial structures can be correlated to adhesive strength and may be helpful in understanding and designing optimized epoxy underfill adhesives.

  11. Interfacial thermal conductance in multilayer graphene/phosphorene heterostructure

    International Nuclear Information System (INIS)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Mai, Yiu-Wing; Lai, Siu-Kai

    2016-01-01

    Vertical integration of 2D materials has recently appeared as an effective method for the design of novel nano-scale devices. Using non-equilibrium molecular dynamics simulations, we study the interfacial thermal transport property of graphene/phosphorene heterostructures where phosphorene is sandwiched in between graphene. Various modulation techniques are thoroughly explored. We found that the interfacial thermal conductance at the interface of graphene and phosphorene can be enhanced significantly by using vacancy defects, hydrogenation and cross-plane compressive strain. By contrast, the reduction in the interfacial thermal conductance can be achieved by using cross-plane tensile strain. Our results provide important guidelines for manipulating the thermal transport in graphene/phosphorene based-nano-devices. (paper)

  12. Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation

    International Nuclear Information System (INIS)

    Tas, G.; Loomis, J.J.; Maris, H.J.; Bailes, A.A. III; Seiberling, L.E.

    1998-01-01

    We report on experiments in which picosecond ultrasonic techniques are used to investigate the modification of interfacial bonding that results from ion implantation. The bonding is studied through measurements of the acoustic reflection coefficient at the interface. This method is nondestructive and can be used to create a map of the variation of the bonding over the area of the interface. copyright 1998 American Institute of Physics

  13. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters

    International Nuclear Information System (INIS)

    Manera, A.; Ozar, B.; Paranjape, S.; Ishii, M.; Prasser, H.-M.

    2009-01-01

    Measurements of two-phase flow parameters such as void-fraction, bubble velocities, and interfacial area density have been performed in an upwards air-water flow at atmospheric pressure by means of a four-tip needle-probe and a wire-mesh sensor. For the first time, a direct comparison between the two measuring techniques has been carried out. Both techniques are based on the measurement of the fluid conductivity. For void-fraction and velocity measurements, similarity exists between the two methodologies for signal analysis. A significantly different approach is followed, instead, for the estimation of the interfacial area concentration: while the evaluation based on the needle-probe signal is carried out by using projections of the gas-liquid interface velocity, the evaluation based on the wire-mesh signals consist in a full reconstruction of the bubbles interfaces. The comparison between the two techniques shows a good agreement.

  14. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters

    Energy Technology Data Exchange (ETDEWEB)

    Manera, A. [Paul Scherrer Institute, 5232 Villigen (Switzerland); Research Center Dresden Rossendorf, Dresden (Germany)], E-mail: annalisa.manera@psi.ch; Ozar, B.; Paranjape, S.; Ishii, M. [Purdue University, West Lafayette (United States); Prasser, H.-M. [Research Center Dresden Rossendorf, Dresden (Germany); ETH Zuerich, Sonneggstrasse 3, 8092 Zuerich (Switzerland)

    2009-09-15

    Measurements of two-phase flow parameters such as void-fraction, bubble velocities, and interfacial area density have been performed in an upwards air-water flow at atmospheric pressure by means of a four-tip needle-probe and a wire-mesh sensor. For the first time, a direct comparison between the two measuring techniques has been carried out. Both techniques are based on the measurement of the fluid conductivity. For void-fraction and velocity measurements, similarity exists between the two methodologies for signal analysis. A significantly different approach is followed, instead, for the estimation of the interfacial area concentration: while the evaluation based on the needle-probe signal is carried out by using projections of the gas-liquid interface velocity, the evaluation based on the wire-mesh signals consist in a full reconstruction of the bubbles interfaces. The comparison between the two techniques shows a good agreement.

  15. Effects of atmospheric air plasma treatment on interfacial properties of PBO fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chengshuang, E-mail: cszhang83@163.com; Li, Cuiyun; Wang, Baiya; Wang, Bin; Cui, Hong

    2013-07-01

    Poly(p-phenylene benzobisoxazole) (PBO) fiber was modified by atmospheric air plasma treatment. The effects of plasma treatment power and speed on both surface properties of PBO fibers and interfacial properties of PBO/epoxy composites were investigated. Surface chemical composition of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS). Surface morphologies of the fibers and interface structures of the composites were examined using scanning electron microscopy (SEM). Interfacial adhesion property of the composites was evaluated by interlaminar shear strength (ILSS). Mechanical properties of PBO multifilament were measured by universal testing machine. The results indicate that atmospheric air plasma treatment introduced some polar or oxygen-containing groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The plasma treatment also improved interfacial adhesion of PBO/epoxy composites but has little effect on tensile properties of PBO multifilament. The ILSS of PBO/epoxy composites increased to 40.0 MPa after atmospheric air plasma treatment with plasma treatment power of 300 W and treatment speed of 6 m/min.

  16. Equations governing the liquid-film flow over a plane with heat flux and interfacial phase change

    International Nuclear Information System (INIS)

    Spindler, B.

    1983-01-01

    The purpose of the study is to find a system of equations which can be used to study the linear stability of a liquid film flow over a plane exhibiting wall heat flux and interfacial phase change. The flow of such a film is governed by four groups of equations: the equations for mass balance, momentum and energy in the liquid; equations for the balance in the steam; equations for the balance at the liquid-steam interface; and the boundary conditions. Two flow patterns are considered - flow with upstream film and film condensation. Stability is studied by perturbation methods

  17. Equations governing the liquid-film flow over a plane with heat flux and interfacial phase change

    Science.gov (United States)

    Spindler, B.

    1983-08-01

    The purpose of the study is to find a system of equations which can be used to study the linear stability of a liquid film flow over a plane exhibiting wall heat flux and interfacial phase change. The flow of such a film is governed by four groups of equations: the equations for mass balance, momentum and energy in the liquid; equations for the balance in the steam; equations for the balance at the liquid-steam interface; and the boundary conditions. Two flow patterns are considered - flow with upstream film and film condensation. Stability is studied by perturbation methods.

  18. Hofmeister effect on the interfacial free energy of aliphatic and aromatic surfaces studied by chemical force microscopy.

    Science.gov (United States)

    Patete, Jonathan; Petrofsky, John M; Stepan, Jeffery; Waheed, Abdul; Serafin, Joseph M

    2009-01-15

    This work describes chemical force microscopy (CFM) studies of specific-ion effects on the aqueous interfacial free energy of hydrophobic monolayers. CFM measurements allow for the characterization of interfacial properties on length scales below 100 nm. The ions chosen span the range of the Hofmeister series, from the kosmotropic Na(2)SO(4) to the chaotropic NaSCN. The salt concentrations used are typical of many laboratory processes such as protein crystallization, 2-3 M. Both aliphatic (terminal methyl) and aromatic (terminal phenyl) monolayers were examined, and rather pronounced differences were observed between the two cases. The specific-ion dependence of the aliphatic monolayer closely follows the Hofmeister series, namely the chaotropic ions lowered the interfacial free energy and the kosmotropic ions increased the interfacial free energy. However, the aromatic monolayer had significant deviations from the Hofmeister series. Possible origins for this difference are discussed.

  19. Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions

    Science.gov (United States)

    Thijssen, J. H. J.; Vermant, J.

    2018-01-01

    Interface-dominated materials are commonly encountered in both science and technology, and typical examples include foams and emulsions. Conventionally stabilised by surfactants, emulsions can also be stabilised by micron-sized particles. These so-called Pickering-Ramsden (PR) emulsions have received substantial interest, as they are model arrested systems, rather ubiquitous in industry and promising templates for advanced materials. The mechanical properties of the particle-laden liquid-liquid interface, probed via interfacial rheology, have been shown to play an important role in the formation and stability of PR emulsions. However, the morphological processes which control the formation of emulsions and foams in mixing devices, such as deformation, break-up, and coalescence, are complex and diverse, making it difficult to identify the precise role of the interfacial rheological properties. Interestingly, the role of interfacial rheology in the stability of bicontinuous PR emulsions (bijels) has been virtually unexplored, even though the phase separation process which leads to the formation of these systems is relatively simple and the interfacial deformation processes can be better conceptualised. Hence, the aims of this topical review are twofold. First, we review the existing literature on the interfacial rheology of particle-laden liquid interfaces in rheometrical flows, focussing mainly on model latex suspensions consisting of polystyrene particles carrying sulfate groups, which have been most extensively studied to date. The goal of this part of the review is to identify the generic features of the rheology of such systems. Secondly, we will discuss the relevance of these results to the formation and stability of PR emulsions and bijels.

  20. Capillary condensation between disks in two dimensions

    OpenAIRE

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characteri...

  1. Activity of CERN and LNF groups on large area GEM detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, M. [CERN, Geneva (Switzerland); Bencivenni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Brock, I. [Physikalisches Institute der Universitat Bonn, Bonn (Germany); Cerioni, S. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Croci, G.; David, E. [CERN, Geneva (Switzerland); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Oliveira, R. [CERN, Geneva (Switzerland); De Robertis, G. [Sezione INFN di Bari, Bari (Italy); Domenici, D., E-mail: Danilo.Domenici@lnf.infn.i [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Duarte Pinto, S. [CERN, Geneva (Switzerland); Felici, G.; Gatta, M.; Jacewicz, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Loddo, F. [Sezione INFN di Bari, Bari (Italy); Morello, G. [Dipeartimento di Fisica Universita della Calabria e INFN, Cosenza (Italy); Pistilli, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Ranieri, A. [Sezione INFN di Bari, Bari (Italy); Ropelewski, L. [CERN, Geneva (Switzerland); Sauli, F. [TERA Foundation, Novara (Italy)

    2010-05-21

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450x450mm{sup 2}. Now a single-mask technology is used allowing foils to be made as large as 450x2000mm{sup 2}. The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10x10cm{sup 2} GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne {Phi}-factory in Frascati.

  2. Activity of CERN and LNF groups on large area GEM detectors

    International Nuclear Information System (INIS)

    Alfonsi, M.; Bencivenni, G.; Brock, I.; Cerioni, S.; Croci, G.; David, E.; De Lucia, E.; De Oliveira, R.; De Robertis, G.; Domenici, D.; Duarte Pinto, S.; Felici, G.; Gatta, M.; Jacewicz, M.; Loddo, F.; Morello, G.; Pistilli, M.; Ranieri, A.; Ropelewski, L.; Sauli, F.

    2010-01-01

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450x450mm 2 . Now a single-mask technology is used allowing foils to be made as large as 450x2000mm 2 . The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10x10cm 2 GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne Φ-factory in Frascati.

  3. Curvature dependence of the electrolytic liquid-liquid interfacial tension

    NARCIS (Netherlands)

    Bier, Markus; de Graaf, J.; Zwanikken, J.W.; van Roij, R.H.H.G.

    2009-01-01

    The interfacial tension of a liquid droplet surrounded by another liquid in the presence of microscopic ions is studied as a function of the droplet radius. An analytical expression for the interfacial tension is obtained within a linear Poisson–Boltzmann theory and compared with numerical results

  4. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)

    The results of parametric study are compared with those of Smith and Teng. They confirm the accuracy of the proposed approach in predicting both interfacial shear and normal stresses. Keywords. Strengthened beam; interfacial stresses; cohesive zone; shear deformation. 1. Introduction. The FRP plates can be either ...

  5. On the interfacial thermodynamics of nanoscale droplets and bubbles

    Science.gov (United States)

    Corti, David S.; Kerr, Karl J.; Torabi, Korosh

    2011-07-01

    We present a new self-consistent thermodynamic formalism for the interfacial properties of nanoscale embryos whose interiors do not exhibit bulklike behavior and are in complete equilibrium with the surrounding mother phase. In contrast to the standard Gibbsian analysis, whereby a bulk reference pressure based on the same temperature and chemical potentials of the mother phase is introduced, our approach naturally incorporates the normal pressure at the center of the embryo as an appropriate reference pressure. While the interfacial properties of small embryos that follow from the use of these two reference pressures are different, both methods yield by construction the same reversible work of embryo formation as well as consistency between their respective thermodynamic and mechanical routes to the surface tension. Hence, there is no a priori reason to select one method over another. Nevertheless, we argue, and demonstrate via a density-functional theory (with the local density approximation) analysis of embryo formation in the pure component Lennard-Jones fluid, that our new method generates more physically appealing trends. For example, within the new approach the surface tension at all locations of the dividing surface vanishes at the spinodal where the density profile spanning the embryo and mother phase becomes completely uniform (only the surface tension at the Gibbs surface of tension vanishes in the Gibbsian method at this same limit). Also, for bubbles, the location of the surface of tension now diverges at the spinodal, similar to the divergent behavior exhibited by the equimolar dividing surface (in the Gibbsian method, the location of the surface of tension vanishes instead). For droplets, the new method allows for the appearance of negative surface tensions (the Gibbsian method always yields positive tensions) when the normal pressures within the interior of the embryo become less than the bulk pressure of the surrounding vapor phase. Such a

  6. Cold welding of organic light emitting diode: Interfacial and contact models

    Directory of Open Access Journals (Sweden)

    J. Asare

    2016-06-01

    Full Text Available This paper presents the results of an analytical and computational study of the contacts and interfacial fracture associated with the cold welding of Organic Light Emitting diodes (OLEDs. The effects of impurities (within the possible interfaces are explored for contacts and interfacial fracture between layers that are relevant to model OLEDs. The models are used to study the effects of adhesion, pressure, thin film layer thickness and dust particle modulus (between the contacting surfaces on contact profiles around impurities between cold-welded thin films. The lift-off stage of thin films (during cold welding is then modeled as an interfacial fracture process. A combination of adhesion and interfacial fracture theories is used to provide new insights for the design of improved contact and interfacial separation during cold welding. The implications of the results are discussed for the design and fabrication of cold welded OLED structures.

  7. Interfacial compatibility of polymer-based structures in electronics

    OpenAIRE

    Turunen, Markus P. K.

    2004-01-01

    Interfacial compatibility of dissimilar materials was investigated to achieve a better understanding of interfacial adhesion in metal/polymer/metal systems. Surface modifications of polymers were applied to improve the adhesion. The modified surfaces were characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements accompanied by surface free energy evaluations. The pull-off test was employed to asses...

  8. Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites.

    Science.gov (United States)

    Zhao, Jiangqi; Li, Qingye; Zhang, Xiaofang; Xiao, Meijie; Zhang, Wei; Lu, Canhui

    2017-02-10

    Cellulose nanofibers (CNFs) were surface-modified with polyethyleneimine (PEI), which brought plentiful amine groups on the surface of CNFs, leading to a reduced hydrogen bond density between CNFs and consequently less CNFs agglomerates. The amine groups could also react with the epoxy as an effective curing agent that could increase the interfacial crosslinking density and strengthen interfacial adhesion. The tensile strength and Young's modulus of CNFs-PEI/Epoxy nanocomposites were 88.1% and 237.6% higher than those of neat epoxy, respectively. The tensile storage modulus of the nanocomposites also increased significantly at the temperature either below or above the Tg. The coefficient of thermal expansion for the CNFs-PEI/Epoxy nanocomposites was 22.2ppmK -1 , much lower than that of the neat epoxy (88.6ppmK -1 ). In addition, the thermal conductivity of the nanocomposites was observed to increase as well. The exceptional and balanced properties may provide the nanocomposites promising applications in automotive, construction and electronic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Synthesis and Properties of Reactive Interfacial Agents for Polycaprolactone-Starch Blends

    NARCIS (Netherlands)

    Sugih, Asaf K.; Drijfhout, Jan. P.; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    2009-01-01

    The synthesis of two reactive interfacial agents for starch-polycaprolactone (PCL) blends, PCL-g-glycidyl methacrylate (PCL-g-GMA) and PCL-g-diethyl maleate (PCL-g-DEM) is described. The compounds were prepared by reacting a low molecular weight PCL. (M(w) 3000) with GMA or DEM in the presence of

  10. Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models

    Science.gov (United States)

    Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei

    2014-01-01

    Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189

  11. Temperature and compositional dependence of solid-liquid interfacial energy: application of the Cahn-Hilliard theory

    International Nuclear Information System (INIS)

    Shimizu, I.; Takei, Y.

    2005-01-01

    A simple thermodynamic method to estimate the solid-liquid interfacial energy (or interfacial tension) is proposed, based on the Cahn-Hilliard theory. In the model, the liquid is treated as a regular solution, and the interfacial layers are assumed to have liquid-like thermodynamic properties. In eutectic systems, interfacial adsorption occurs within a few atomic layers, and interfacial energy monotonously increases with decreasing concentration of the solid species in the liquid phase. If non-ideal atomic interaction is strong and the liquid immiscibility region appears in the phase diagrams (this is the case of monotectic systems), the interfacial thickness drastically increases and the interfacial energy is reduced around the immiscibility gap

  12. Molecular dynamics study on interfacial thermal conductance of unirradiated and irradiated SiC/C

    International Nuclear Information System (INIS)

    Wang, Qingyu; Wang, Chenglong; Zhang, Yue; Li, Taosheng

    2014-01-01

    SiC f /SiC composite materials have been considered as candidate structural materials for several types of advanced nuclear reactors. Both experimental and computer simulations studies have revealed the degradation of thermal conductivity for this material after irradiation. The objective of this study is to investigate the effect of SiC/graphite interface structure and irradiation on the interfacial thermal conductance by using molecular dynamics simulation. Five SiC/graphite composite models were created with different interface structures, and irradiation was introduced near the interfaces. Thermal conductance was calculated by means of reverse-NEMD method. Results show that there is a positive correlation between the interfacial energy and interfacial C–Si bond quantity, and irradiated models showed higher interfacial energy compared with their unirradiated counterparts. Except the model with graphite atom plane parallel to the interface, the interfacial thermal conductance of unirradiated and irradiated (1000 eV) models, increases as the increase of interfacial energy, respectively. For all irradiated models, lattice defects are of importance in impacting the interfacial thermal conductance depending on the interface structure. For the model with graphite layer parallel to the interface, the interfacial thermal conductance increased after irradiation, for the other models the interfacial thermal conductance decreased. The vibrational density of states of atoms in the interfacial region was calculated to analyze the phonon mismatch at the interface

  13. Effect of interfacial layer on water flow in nanochannels: Lattice Boltzmann simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yakang [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580 (China); College of Science, China University of Petroleum, Qingdao 266580, Shandong (China); Liu, Xuefeng, E-mail: liuxf@upc.edu.cn [College of Science, China University of Petroleum, Qingdao 266580, Shandong (China); Liu, Zilong [College of Science, China University of Petroleum, Qingdao 266580, Shandong (China); Lu, Shuangfang [Institute of Unconventional Oil & Gas and New Energy, China University of Petroleum, Qingdao 266580, Shandong (China); Xue, Qingzhong, E-mail: xueqingzhong@tsinghua.org.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580 (China); College of Science, China University of Petroleum, Qingdao 266580, Shandong (China); National Production Equipment Research Center, Dongying 257064, Shandong (China)

    2016-04-15

    A novel interfacial model was proposed to understand water flow mechanism in nanochannels. Based on our pore-throat nanochannel model, the effect of interfacial layer on water flow in nanochannels was quantitatively studied using Lattice Boltzmann method (LBM). It is found that both the permeability of nanochannel and water velocity in the nanochannel dramatically decrease with increasing the thickness of interfacial layer. The permeability of nanochannel with pore radius of 10 nm decreases by about three orders of magnitude when the thickness of interfacial layer is changed from 0 nm to 3 nm gradually. Furthermore, it has been demonstrated that the cross-section shape has a great effect on the water flow inside nanochannel and the effect of interfacial layer on the permeability of nanochannel has a close relationship with cross-section shape when the pore size is smaller than 12 nm. Besides, both pore-throat ratio and throat length can greatly affect water flow in nanochannels, and the influence of interfacial layer on water flow in nanochannels becomes more evident with increasing pore-throat ratio and throat length. Our theoretical results provide a simple and effective method to study the flow phenomena in nano-porous media, particularly to quantitatively study the interfacial layer effect in nano-porous media.

  14. Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Hao Zeng

    2015-02-01

    Full Text Available Improving power conversion efficiency and device performance stability is the most critical challenge in polymer solar cells for fulfilling their applications in industry at large scale. Various methodologies have been developed for realizing this goal, among them interfacial layer engineering has shown great success, which can optimize the electrical contacts between active layers and electrodes and lead to enhanced charge transport and collection. Interfacial layers also show profound impacts on light absorption and optical distribution of solar irradiation in the active layer and film morphology of the subsequently deposited active layer due to the accompanied surface energy change. Interfacial layer engineering enables the use of high work function metal electrodes without sacrificing device performance, which in combination with the favored kinetic barriers against water and oxygen penetration leads to polymer solar cells with enhanced performance stability. This review provides an overview of the recent progress of different types of interfacial layer materials, including polymers, small molecules, graphene oxides, fullerene derivatives, and metal oxides. Device performance enhancement of the resulting solar cells will be elucidated and the function and operation mechanism of the interfacial layers will be discussed.

  15. Do uniform tangential interfacial stresses enhance adhesion?

    Science.gov (United States)

    Menga, Nicola; Carbone, Giuseppe; Dini, Daniele

    2018-03-01

    We present theoretical arguments, based on linear elasticity and thermodynamics, to show that interfacial tangential stresses in sliding adhesive soft contacts may lead to a significant increase of the effective energy of adhesion. A sizable expansion of the contact area is predicted in conditions corresponding to such scenario. These results are easily explained and are valid under the assumptions that: (i) sliding at the interface does not lead to any loss of adhesive interaction and (ii) spatial fluctuations of frictional stresses can be considered negligible. Our results are seemingly supported by existing experiments, and show that frictional stresses may lead to an increase of the effective energy of adhesion depending on which conditions are established at the interface of contacting bodies in the presence of adhesive forces.

  16. Interfacial behavior of alkaline protease at the air-water and oil-water interfaces

    Science.gov (United States)

    Zhang, Jian; Li, Yanyan; Wang, Jing; Zhang, Yue

    2018-03-01

    The interfacial behavior of alkaline protease at the air-water and n-hexane-water interfaces was investigated using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models which are Langmuir, Frumkin, Reorientation-A and Reorientation-R were used to fitting the data of equilibrium interfacial tension for further understanding the interfacial behavior of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved by IsoFit software. The results show that the molecules arrangement of the alkaline protease at the n-hexane-water interface is more tightly than at the air-water interface. The data were further analyzed to indicate that the hydrophobic chains of alkaline protease penetrate into oil phase deeper than the air phase. Also data indicate that the electrostatic interactions and hydrophobic interactions at the n-hexane-water interface are stronger than at the air-water interface within molecules of the alkaline protease. Based on comprehensive analysis of the adsorption kinetics and interfacial rheological properties, interfacial structures mechanism of alkaline protease at n-hexane-water and air-water interfaces was proposed.

  17. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen, E-mail: zhangch@mail.buct.edu.cn

    2014-07-15

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu{sup 2+} was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu{sup 2+} were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu{sup 2+}). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied.

  18. Aerosol Particle Interfacial Thermodynamics and Phase Partitioning Measurements Using Biphasic Microfluidics

    Science.gov (United States)

    Dutcher, Cari; Metcalf, Andrew

    2015-03-01

    Secondary organic aerosol particles are nearly ubiquitous in the atmosphere and yet there remain large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. Interfacial properties affect the ambient aerosol morphology, or internal structure of the particle, which in turn can affect the way a particle interacts with an environment of condensable clusters and organic vapors. To improve our ability to accurately predict ambient aerosol morphology, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Unfortunately, many techniques employed to measure interfacial properties do so in bulk solutions or in the presence of a ternary (e.g. solid) phase. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface or interfacial tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred.

  19. Intricate Estimation and Assessment of Surface Conditioning of Posts to improve Interfacial Adhesion in Post-core Restorations: An in vitro Study.

    Science.gov (United States)

    Gupta, Priyanka; Sharma, Amil; Pathak, Vivek K; Mankeliya, Saurabh; Bhardwaj, Shivanshu; Dhanare, Poorvasha

    2017-12-01

    Post and core restorations are routinely used for restoring grossly decayed tooth structures. Various chemical agents are known to affect the interfacial adhesions between the post and the core. Hence, we planned the present study to evaluate the effect of various post-surface treatments on the interfacial strength between the posts and composite materials that are used for building up the core portion. The present study included assessment of the effect of surface conditioning of posts on the interfacial adhesion in post-core restorations. A total of 80 clear post-tapers were included and were divided broadly into four study groups based on the type of chemical testing protocols used. Various chemical treatments included alkaline potassium permanganate, hydrogen peroxide, and phosphoric acid. The fourth group was the control group. The composite core material was used for building up the core. Testing of the tensile load was done on a universal testing machine. All the results were analyzed by the Statistical Package for the Social Sciences (SPSS) software. The highest bond strength was observed in the study group treated with alkaline potassium permanganate, while the lowest was observed in the control group followed by the hydrogen peroxide group. While comparing the mean bond strength in between various study groups, significant results were obtained. Chemical treatment protocol significantly alters the mean bond strength of the post and core restoration. Potassium permanganate significantly increases the bond strength between the fiber post and core restoration.

  20. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis.

    Science.gov (United States)

    Nazir, Safdar; Behtash, Maziar; Cheng, Jianli; Luo, Jian; Yang, Kesong

    2016-01-28

    The two-dimensional electron gas (2DEG) formed at the n-type (LaO)(+1)/(TiO2)(0) interface in the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) has emerged as a prominent research area because of its great potential for nanoelectronic applications. Due to its practical implementation in devices, desired physical properties such as high charge carrier density and mobility are vital. In this respect, 4d and 5d transition metal doping near the interfacial region is expected to tailor electronic properties of the LAO/STO HS system effectively. Herein, we studied Nb and Ta-doping effects on the energetics, electronic structure, interfacial charge carrier density, magnetic moment, and the charge confinements of the 2DEG at the n-type (LaO)(+1)/(TiO2)(0) interface of LAO/STO HS using first-principles density functional theory calculations. We found that the substitutional doping of Nb(Ta) at Ti [Nb(Ta)@Ti] and Al [Nb(Ta)@Al] sites is energetically more favorable than that at La [Nb(Ta)@La] and Sr [Nb(Ta)@Sr] sites, and under appropriate thermodynamic conditions, the changes in the interfacial energy of HS systems upon Nb(Ta)@Ti and Nb(Ta)@Al doping are negative, implying that the formation of these structures is energetically favored. Our calculations also showed that Nb(Ta)@Ti and Nb(Ta)@Al doping significantly improve the interfacial charge carrier density with respect to that of the undoped system, which is because the Nb(Ta) dopant introduces excess free electrons into the system, and these free electrons reside mainly on the Nb(Ta) ions and interfacial Ti ions. Hence, along with the Ti 3d orbitals, the Nb 4d and Ta 5d orbitals also contribute to the interfacial metallic states; accordingly, the magnetic moments on the interfacial Ti ions increase significantly. As expected, the Nb@Al and Ta@Al doped LAO/STO HS systems show higher interfacial charge carrier density than the undoped and other doped systems. In contrast, Nb@Ti and Ta@Ti doped systems may

  1. Interfacial stabilities of high-temperature composite materials

    International Nuclear Information System (INIS)

    Chang, Y.A.; DeKock, J.; Zhang, M.X.; Kieschke, R.

    1993-01-01

    The thermodynamic and kinetic principles necessary to control interfacial reactions between the matrix and reinforcement in composite materials are presented. The concept of interfacial control has been applied to Ti-based/Al 2 O 3 composite. Results are presented which include estimated diffusivities for the reaction in β-Ti/Al 2 O 3 composites, estimated phase relationships for the systems Ti-Al-O, Ti-Y-O, Nb-Y-O and Nb-Al-O at 1100 C, and a coating scheme for αAl 2 O 3 fibers. 71 refs

  2. CO2 interfacial properties: application to multiphase flow at reservoir conditions

    International Nuclear Information System (INIS)

    Chalbaud, C.

    2007-07-01

    In this work we deal with the interfacial properties of CO 2 at reservoir conditions with a special interest on deep saline aquifers. Each chapter of this dissertation represents a different physical scale studied with different experimental devices and simulation tools. The results obtained in the first part of this study represent a complete data set of brine-CO 2 interfacial tension at reservoir conditions. A semi-analytical equation is proposed in order to facilitate the work of reservoir engineers. The second deals with the interfacial properties at the pore scale using glass micro-models at different wettability conditions. This part shows the wetting behavior of CO 2 on hydrophobic or oil-wet solid surfaces. A pore network model was used for the interpretation and exploitation of these results. The third part corresponds to two different experimental approaches at the core scale at different wettability conditions associated to a modelling at flue Darcy scale. This part is a significant contribution to the validation of COORES compositional reservoir simulator developed by IFP. It has also allow us to estimate multiphase properties, Pc and kr, for brine-CO 2 systems at reservoir conditions. This study presents the necessary scales to model CO 2 storage in deep saline aquifers. (author)

  3. Interfacial trap states in junctions of molecular semiconductors

    International Nuclear Information System (INIS)

    Schlettwein, D.; Oekermann, T.; Jaeger, N.; Armstrong, N.R.; Woehrle, D.

    2002-01-01

    Interfacial states that were established in contacts of molecular semiconductors with aqueous electrolytes or in contacts with another organic semiconductor as a solid film were analyzed by photoelectrochemical experiments and by photoelectron spectroscopy. A crucial role of such states was indicated in the interfacial charge transfer and recombination kinetics of light-induced charge carriers and also in the energetic alignment in the solid contacts. Unsubstituted zinc-phthalocyanine (PcZn) served as model compound. The role of chemical interactions in the establishment of these interfacial states was investigated by use of different reaction partners, i.e., different redox couples in the electrolyte contacts and molecular semiconductors of different ionization potential in the solid contacts. Implications of these results for the use of organic semiconductor thin films in devices of molecular electronics and of dye molecules in dye-sensitized solar cells were also discussed

  4. On the stabilization of viscoelastic laminated beams with interfacial slip

    Science.gov (United States)

    Mustafa, Muhammad I.

    2018-04-01

    In this paper, we consider a viscoelastic laminated beam model. This structure is given by two identical uniform layers on top of each other, taking into account that an adhesive of small thickness is bonding the two surfaces and produces an interfacial slip. We use viscoelastic damping with general assumptions on the relaxation function and establish explicit energy decay result from which we can recover the optimal exponential and polynomial rates. Our result generalizes the earlier related results in the literature.

  5. Local measurements in two-phase flow using a double-sensor conductivity probes and laser doppler anemometry in a vertical pipe

    International Nuclear Information System (INIS)

    Chiva, S.; Julia, E.; Hernandez, L.; Mendez, S.; Munoz-Cobo, J.L.

    2007-01-01

    An upward isothermal co-current air-water flow in a vertical pipe (50.2 mm inner diameter) has been experimental investigated. Local measurements of void fraction, interfacial area concentration (IAC), and interfacial velocity and Sauter mean diameter were measured using a double sensor conductivity probe. Liquid velocity and turbulence intensity were measured using laser Doppler anemometry. Different air-water flow configurations was investigated for a liquid flow rate ranged from 0.29 m/s to 2 m/s and a void fraction up to 15%. For each two-phase flow configuration 15 radial position and three axial positions was measured by the conductivity probe methodology, and several radial profiles was measured with LDA at different axial positions. Two theoretical calibration factors have been defined to relate the mean measurable parameter to the interfacial area concentrations obtained and the measured bubbles, including the missed bubbles. Those factors include the effects of bubble motions, and probe spacing. These calibration factors were obtained through new analytical and numerical method, using a Monte Carlo approach. (author)

  6. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    Science.gov (United States)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  7. Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube-Mixed Matrix Membranes.

    Science.gov (United States)

    Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad

    2017-10-25

    Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.

  8. Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes.

    Science.gov (United States)

    Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto

    2017-02-08

    Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.

  9. Solid/liquid interfacial free energies in binary systems

    Science.gov (United States)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  10. Interfacial characteristics of hybrid nanocomposite under thermomechanical loading

    Science.gov (United States)

    Choyal, Vijay; Kundalwal, Shailesh I.

    2017-12-01

    In this work, an improved shear lag model was developed to investigate the interfacial characteristics of three-phase hybrid nanocomposite which is reinforced with microscale fibers augmented with carbon nanotubes on their circumferential surfaces. The shear lag model accounts for (i) radial and axial deformations of different transversely isotropic constituents, (ii) thermomechanical loads on the representative volume element (RVE), and (iii) staggering effect of adjacent RVEs. The results from the current newly developed shear lag model are validated with the finite element simulations and found to be in good agreement. This study reveals that the reduction in the maximum value of the axial stress in the fiber and the interfacial shear stress along its length become more pronounced in the presence of applied thermomechanical loads on the staggered RVEs. The existence of shear tractions along the RVE length plays a significant role in the interfacial characteristics and cannot be ignored.

  11. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-10-30

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  12. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    International Nuclear Information System (INIS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-01-01

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES

  13. Wavelength dependence of liquid-vapor interfacial tension of Ga

    International Nuclear Information System (INIS)

    Li Dongxu; Yang Bin; Rice, Stuart A.; Lin Binhua; Meron, Mati; Gebhardt, Jeff; Graber, Tim

    2004-01-01

    The wave-vector dependence of the liquid-vapor interfacial tension of Ga, γ(q), has been determined from diffuse x-ray scattering measurements. The ratio γ(q)/γ(0)=1 for q -1 decreases to 0.5 near q=0.22 Angstrom -1 , and increases strongly for larger q. The observed form for γ(q)/γ(0) is consistent with the prediction from the Mecke-Dietrich theory when the known stratified liquid-vapor interfacial density profile of Ga and a pseudopotential based pair interaction with appropriate asymptotic (r→∞) behavior are used. The detailed behavior of γ(q)/γ(0) depends on the particular forms of both the interfacial density profile and the asymptotic falloff of the atomic pair interaction

  14. An Inverse Michaelis–Menten Approach for Interfacial Enzyme Kinetics

    DEFF Research Database (Denmark)

    Kari, Jeppe; Andersen, Morten; Borch, Kim

    2017-01-01

    Interfacial enzyme reactions are ubiquitous both in vivo and in technical applications, but analysis of their kinetics remains controversial. In particular, it is unclear whether conventional Michaelis–Menten theory, which requires a large excess of substrate, can be applied. Here, an extensive...... experimental study of the enzymatic hydrolysis of insoluble cellulose indeed showed that the conventional approach had a limited applicability. Instead we argue that, unlike bulk reactions, interfacial enzyme catalysis may reach a steady-state condition in the opposite experimental limit, where...... for kinetic analyses of interfacial enzyme reactions and that its analogy to established theory provides a bridge to the accumulated understanding of steady-state enzyme kinetics. Finally, we show that the ratio of parameters from conventional and inverted Michaelis–Menten analysis reveals the density...

  15. Morphological Instability in InAs/GaSb Superlattices due to Interfacial Bonds

    International Nuclear Information System (INIS)

    Li, J.H.; Moss, S.C.; Stokes, D.W.; Caha, O.; Bassler, K.E.; Ammu, S.L.; Bai, J.

    2005-01-01

    Synchrotron x-ray diffraction is used to compare the misfit strain and composition in a self-organized nanowire array in an InAs/GaSb superlattice with InSb interfacial bonds to a planar InAs/GaSb superlattice with GaAs interfacial bonds. It is found that the morphological instability that occurs in the nanowire array results from the large misfit strain that the InSb interfacial bonds have in the nanowire array. Based on this result, we propose that tailoring the type of interfacial bonds during the epitaxial growth of III-V semiconductor films provides a novel approach for producing the technologically important morphological instability in anomalously thin layers

  16. Capillary condensation between disks in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial...... capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characterized by the analysis of the coverage of the condensed phase, its stability, and asymptotic behaviors...

  17. A new method for ultrasound detection of interfacial position in gas-liquid two-phase flow.

    Science.gov (United States)

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Neves, Flávio; Morales, Rigoberto E M

    2014-05-22

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.

  18. Interfacial trapping mechanism of He in Cu–Nb multilayer materials

    Energy Technology Data Exchange (ETDEWEB)

    McPhie, M.G., E-mail: mathieu.mcphie@georgiatech-metz.fr [UMI 2958, Georgia Tech-CNRS, 2-3 rue Marconi, 57070 Metz (France); Capolungo, L. [UMI 2958, Georgia Tech-CNRS, 2-3 rue Marconi, 57070 Metz (France); G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States); Dunn, A.Y. [UMI 2958, Georgia Tech-CNRS, 2-3 rue Marconi, 57070 Metz (France); Cherkaoui, M. [UMI 2958, Georgia Tech-CNRS, 2-3 rue Marconi, 57070 Metz (France); G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2013-06-15

    He atom trapping in hetero-interphase materials is studied by atomistic simulations, focusing on the KS1 and KSmin interfaces in Cu–Nb. If the bulk crystalline materials are defect free, single He atoms eventually become absorbed into the interfacial region via one of two different processes. In the first process, all He atoms arriving at the interface from the Cu side of the interface and some He atoms arriving from the Nb side, are trapped via the formation of a helium-vacancy (HeV) cluster in the second or third interfacial planes of the copper crystal. The immobile HeV cluster is found to be stable against dissociation and recombination. In the second case the He atoms are absorbed as interstitial atoms in one of the terminal planes. This process is dependent on the interstitial content of the interface and is found to be weak in the case of the KS1 interface.

  19. Impact of Interfacial Layers in Perovskite Solar Cells.

    Science.gov (United States)

    Cho, An-Na; Park, Nam-Gyu

    2017-10-09

    Perovskite solar cells (PCSs) are composed of organic-inorganic lead halide perovskite as the light harvester. Since the first report on a long-term-durable, 9.7 % efficient, solid-state perovskite solar cell, organic-inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine-doped tin oxide (FTO)/electron-transport layer (ETL), ETL/perovskite, perovskite/hole-transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain-boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaomin [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Zhu, Bo, E-mail: zhubo@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Cai, Xun, E-mail: caixunzh@sdu.edu.cn [School of Computer Science and Technology, Shandong University, Jinan 250101 (China); Liu, Jianjun [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Qiao, Kun [Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Yu, Junwei [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2017-04-15

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  1. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    International Nuclear Information System (INIS)

    Yuan, Xiaomin; Zhu, Bo; Cai, Xun; Liu, Jianjun; Qiao, Kun; Yu, Junwei

    2017-01-01

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  2. The influence of interfacial barrier engineering on the resistance switching of In2O3:SnO2/TiO2/In2O3:SnO2 device

    International Nuclear Information System (INIS)

    Liu Zi-Yu; Zhang Pei-Jian; Meng Yang; Li Dong; Meng Qing-Yu; Li Jian-Qi; Zhao Hong-Wu

    2012-01-01

    The I—V characteristics of In 2 O 3 :SnO 2 /TiO 2 /In 2 O 3 :SnO 2 junctions with different interfacial barriers are investigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interfacial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interfacial barrier engineering, could be exploited for novel applications in nonvolatile memory devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Liquid metal actuation by electrical control of interfacial tension

    Energy Technology Data Exchange (ETDEWEB)

    Eaker, Collin B.; Dickey, Michael D., E-mail: michael-dickey@ncsu.edu [Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695 (United States)

    2016-09-15

    By combining metallic electrical conductivity with low viscosity, liquid metals and liquid metal alloys offer new and exciting opportunities to serve as reconfigurable components of electronic, microfluidic, and electromagnetic devices. Here, we review the physics and applications of techniques that utilize voltage to manipulate the interfacial tension of liquid metals; such techniques include electrocapillarity, continuous electrowetting, electrowetting-on-dielectric, and electrochemistry. These techniques lower the interfacial tension between liquid metals and a surrounding electrolyte by driving charged species (or in the case of electrochemistry, chemical species) to the interface. The techniques are useful for manipulating and actuating liquid metals at sub-mm length scales where interfacial forces dominate. We focus on metals and alloys that are liquid near or below room temperature (mercury, gallium, and gallium-based alloys). The review includes discussion of mercury—despite its toxicity—because it has been utilized in numerous applications and it offers a way of introducing several phenomena without the complications associated with the oxide layer that forms on gallium and its alloys. The review focuses on the advantages, applications, opportunities, challenges, and limitations of utilizing voltage to control interfacial tension as a method to manipulate liquid metals.

  4. First-Order Interfacial Transformations with a Critical Point: Breaking the Symmetry at a Symmetric Tilt Grain Boundary

    Science.gov (United States)

    Yang, Shengfeng; Zhou, Naixie; Zheng, Hui; Ong, Shyue Ping; Luo, Jian

    2018-02-01

    First-order interfacial phaselike transformations that break the mirror symmetry of the symmetric ∑5 (210 ) tilt grain boundary (GB) are discovered by combining a modified genetic algorithm with hybrid Monte Carlo and molecular dynamics simulations. Density functional theory calculations confirm this prediction. This first-order coupled structural and adsorption transformation, which produces two variants of asymmetric bilayers, vanishes at an interfacial critical point. A GB complexion (phase) diagram is constructed via semigrand canonical ensemble atomistic simulations for the first time.

  5. Ultrasonic Guided Waves in Piezoelectric Layered Composite with Different Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2011-01-01

    Full Text Available Combining the propagation model of guided waves in a multilayered piezoelectric composite with the interfacial model of rigid, slip, and weak interfaces, the generalized dispersion characteristic equations of guided waves propagating in a piezoelectric layered composite with different interfacial properties are derived. The effects of the slip, weak, and delamination interfaces in different depths on the dispersion properties of the lowest-order mode ultrasonic guided wave are analyzed. The theory would be used to characterize the interfacial properties of piezoelectric layered composite nondestructively.

  6. Direct observation of interfacial Au atoms on TiO₂ in three dimensions.

    Science.gov (United States)

    Gao, Wenpei; Sivaramakrishnan, Shankar; Wen, Jianguo; Zuo, Jian-Min

    2015-04-08

    Interfacial atoms, which result from interactions between the metal nanoparticles and support, have a large impact on the physical and chemical properties of nanoparticles. However, they are difficult to observe; the lack of knowledge has been a major obstacle toward unraveling their role in chemical transformations. Here we report conclusive evidence of interfacial Au atoms formed on the rutile (TiO2) (110) surfaces by activation using high-temperature (∼500 °C) annealing in air. Three-dimensional imaging was performed using depth-sectioning enabled by aberration-corrected scanning transmission electron microscopy. Results show that the interface between Au nanocrystals and TiO2 (110) surfaces consists of a single atomic layer with Au atoms embedded inside Ti-O. The number of interfacial Au atoms is estimated from ∼1-8 in an interfacial atomic column. Direct impact of interfacial Au atoms is observed on an enhanced Au-TiO2 interaction and the reduction of surface TiO2; both are critical to Au catalysis.

  7. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qiming; Yan Xiaoqing [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Ding Shurong, E-mail: dsr1971@163.co [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2010-04-01

    The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.

  8. Chemistry of the metal-polymer interfacial region.

    Science.gov (United States)

    Leidheiser, H; Deck, P D

    1988-09-02

    In many polymer-metal systems, chemical bonds are formed that involve metal-oxygen-carbon complexes. Infrared and Mössbauer spectroscopic studies indicate that carboxylate groups play an important role in some systems. The oxygen sources may be the polymer, the oxygen present in the oxide on the metal surface, or atmospheric oxygen. Diffusion of metal ions from the substrate into the polymer interphase may occur in some systems that are cured at elevated temperatures. It is unclear whether a similar, less extensive diffusion occurs over long time periods in systems maintained at room temperature. The interfacial region is dynamic, and chemical changes occur with aging at room temperature. Positron annihilation spectroscopy may have application to characterizing the voids at the metal-polymer interface.

  9. Dynamics of water clusters confined in proteins: a molecular dynamics simulation study of interfacial waters in a dimeric hemoglobin.

    Science.gov (United States)

    Gnanasekaran, Ramachandran; Xu, Yao; Leitner, David M

    2010-12-23

    Water confined in proteins exhibits dynamics distinct from the dynamics of water in the bulk or near the surface of a biomolecule. We examine the water dynamics at the interface of the two globules of the homodimeric hemoglobin from Scapharca inaequivalvis (HbI) by molecular dynamics (MD) simulations, with focus on water-protein hydrogen bond lifetimes and rotational anisotropy of the interfacial waters. We find that relaxation of the waters at the interface of both deoxy- and oxy-HbI, which contain a cluster of 17 and 11 interfacial waters, respectively, is well described by stretched exponentials with exponents from 0.1 to 0.6 and relaxation times of tens to thousands of picoseconds. The interfacial water molecules of oxy-HbI exhibit slower rotational relaxation and hydrogen bond rearrangement than those of deoxy-HbI, consistent with an allosteric transition from unliganded to liganded conformers involving the expulsion of several water molecules from the interface. Though the interfacial waters are translationally and rotationally static on the picosecond time scale, they contribute to fast communication between the globules via vibrations. We find that the interfacial waters enhance vibrational energy transport across the interface by ≈10%.

  10. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    International Nuclear Information System (INIS)

    Sujan, G.K.; Haseeb, A.S.M.A.; Afifi, A.B.M.

    2014-01-01

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu 6 Sn 5 from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping of flux

  11. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  12. Interfacial Healing and Transport Phenomena Modeling ff Biopolymers

    Science.gov (United States)

    Lebron, Karla

    This research focuses on the characterization of bioplastics joined using ultrasonic welding and modeling of temperature distributions and interfacial healing. Polylactic acid (PLA), which is typically derived from starch-rich crops such as corn, was studied. While the measurement of activation energy for interfacial healing at weld interfaces of PLA films has been reported, here, this information is used to predict the weld strength of rigid PLA samples welded by ultrasonics. A characterization of the mechanical properties was completed with a tensile test to determine the effects of amplitude, melt velocity and collapse distance on weld strength. From previous interfacial healing activation energy measurements based on an impulse welding method, it was also possible to predict weld strength. It was found that the most influential parameters were weld time, collapse distance and weld velocity. In general, the model predicted weld strength reasonably well with r2 values between 0.77 and 0.78.

  13. Interfacial characterization of soil-embedded optical fiber for ground deformation measurement

    International Nuclear Information System (INIS)

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin; She, Jun-Kuan

    2014-01-01

    Recently fiber-optic sensing technologies have been applied for performance monitoring of geotechnical structures such as slopes, foundations, and retaining walls. However, the validity of measured data from soil-embedded optical fibers is strongly influenced by the properties of the interface between the sensing fiber and the soil mass. This paper presents a study of the interfacial properties of an optical fiber embedded in soil with an emphasis on the effect of overburden pressure. Laboratory pullout tests were conducted to investigate the load-deformation characteristics of a 0.9 mm tight-buffered optical fiber embedded in soil. Based on a tri-linear interfacial shear stress-displacement relationship, an analytical model was derived to describe the progressive pullout behavior of an optical fiber from soil matrix. A comparison between the experimental and predicted results verified the effectiveness of the proposed pullout model. The test results are further interpreted and discussed. It is found that the interfacial bond between an optical fiber and soil is prominently enhanced under high overburden pressures. The apparent coefficients of friction of the optical fiber/soil interface decrease as the overburden pressure increases, due to the restrained soil dilation around the optical fiber. Furthermore, to facilitate the analysis of strain measurement, three working states of a soil-embedded sensing fiber were defined in terms of two characteristic displacements. (paper)

  14. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    Science.gov (United States)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  15. Interfacial transport characteristics in a gas-liquid or an immiscible liquid-liquid stratified flow

    International Nuclear Information System (INIS)

    Inoue, A.; Aoki, S.; Aritomi, M.; Kozawa, Y.

    1982-01-01

    This paper is a review for an interfacial transport characteristics of mass, momentum and energy in a gas-liquid or a immiscible liquid-liquid stratified flow with wavy interface which have been studied in our division. In the experiment, a characteristic of wave motion and its effect to the turbulence near the interface as well as overall flow characteristics like pressure drop, position of the interface were investigated in an air-water, an air-mercury and a water-liquid metal stratified flow. On the other hand, several models based on the mixing length model and a two-equation model of turbulence, with special interfacial boundary conditions in which the wavy surface was regarded as a rough surface correspond to the wavy height, a source of turbulent energy equal to the wave energy and a damped-turbulence due to the surface tension, were proposed to predict the flow characteristics and the interfacial heat transfer in a fully developed and an undeveloped stratified flow and examined by the experimental data. (author)

  16. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: a two-dimensional flow cell study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng

    2016-02-01

    During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.

  17. A thin two-phase foils deformed by an interfacial dislocation in anisotropic elasticity

    Directory of Open Access Journals (Sweden)

    Madani, Salah

    2005-04-01

    Full Text Available The purpose of this work is the numerical resolution, in the case of anisotropic elasticity, of the problem of a dislocation parallel and near to the two free surfaces of a thin bicrystal. This case is obtained while making the period of a network of misfit dislocations much greater than the thickness of the two foils. As a result, in the vicinity of the dislocation, the limiting bondary conditions will be close to that of Volterra translation dislocation. The elastic fields of displacement and stress are calculated for various orientations of the burgers vector. Before this calculation, we tested the precision of the results of the program by comparing the interfacial relative displacement obtained from this one to the results of the analytical expression describing this same displacement. The thin bicristal Al/Al2Cu, that made the object of several investigations, is treated like example. The results obtained are compared to those obtained in isotropic elasticity.

    Este trabajo aborda la resolución numérica en anisotropía elástica, del problema de una dislocación paralela cercana a las superficies libres de un bi-cristal delgado. Este problema se genera cuando el periodo de la red de dislocaciones desplazadas es mucho mayor que el espesor de la bi-lámina. Como resultados, en la vecindad de la dislocación, las condiciones de contorno estarán cercanas a la dislocación de traslación de Volterra. Los campos elásticos de desplazamiento y las tensiones se calcularon para distintas orientaciones del vector de burgers. Como paso previo a los cálculos, se comprobó la precisión de los resultados del programa comparando le desplazamiento relativo interracial obtenido con los resultados de la expresión analítica que describen dicho desplazamiento. Se emplearon como ejemplo bi-cristales de Al/Al2Cu, debido a su empleo en varias investigaciones. Los resultados fueron comparados con los obtenidos en elasticidad isótropa.

  18. Study of Co-Current and Counter-Current Gas-Liquid Two-Phase Flow Through Packed Bed in Microgravity

    Science.gov (United States)

    Revankar, Shripad T.

    2002-11-01

    The main goal of the project is to obtain new experimental data and development of models on the co-current and counter-current gas-liquid two-phase flow through a packed bed in microgravity and characterize the flow regime transition, pressure drop, void and interfacial area distribution, and liquid hold up. Experimental data will be obtained for earth gravity and microgravity conditions. Models will be developed for the prediction of flow regime transition, void fraction distribution and interfacial area concentration, which are key parameters to characterize the packed bed performance. Thus the specific objectives of the proposed research are to: (1) Develop experiments for the study of the gas liquid two-phase flow through the packed bed with three different flow combinations: co-current down flow, co-current upflow and counter current flow. (2) Develop pore scale and bed scale two-phase instrumentation for measurement of flow regime transition, void distribution and gas-liquid interfacial area concentration in the packed bed. (3) Obtain database on flow regime transition, pressure drop, void distribution, interfacial area concentration and liquid hold up as a function of bed characteristics such as bed particle size, porosity, and liquid properties such as viscosity and surface tension. (4) Develop mathematical model for flow regime transition, void fraction distribution and interfacial area concentration for co-current gas-liquid flow through the porous bed in gravity and micro gravity conditions.(4) Develop mathematical model for the flooding phenomena in counter-current gas-liquid flow through the porous bed in gravity and micro gravity conditions. The present proposal addresses the most important topic of HEDS-specific microgravity fluid physics research identified by NASA 's one of the strategic enterprises, OBPR Enterprise. The proposed project is well defined and makes efficient use of the ground-based parabolic flight research aircraft facility. The

  19. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  20. Analysis of Particle-Dispersed Composites Accounting Stochastically for Interfacial Damage

    International Nuclear Information System (INIS)

    Huajian Chang; Michihiko Nakagaki

    2002-01-01

    More and more composite materials have been being utilized in nuclear facilities. While the external loading applied, the stress in composite is concentrated, which is harmful and may cause interfacial damage. The de-bonding and sliding at the interface between matrix and particles are the most common phenomena. In this paper, a statistically elastoplastic constitutive model for particle-dispersed composites is developed by accounting stochastically for both interfacial damage and localized plasticity. The effects of damaged interface on the strain field in composite are considered in two ways. First, the damaged interface between the matrix and the particles makes the strain field inside inclusions is different from that of the particles with perfectly bonded interface. Second, it contributes an additional strain, which is due to the displacement jump at the matrix-inclusion interface. This additional is defined as an integration of displacement jumps between the matrix and the particles over their interface. In present paper, the first part is considered by using a modified Eshelby's S-tensor. After deriving the local relative displacement distributions between matrix and inclusion at the interface, the second contribution of damaged interface to the average strain can be expressed in terms of the corresponding Eigen-strain or the uniform external loading, by introducing the damage-relevant tensors, which are transformation tensors and tends to zero if interfacial damage does not take place. Both the tangential and normal discontinuities at the interface are independently modeled. The model uses statistic scheme with distribution functions in the stress/strain space, so that the meso-local effects of plastic deformation, interfacial damage and their interactions are accounted for. In order to verify the feasibility and performance of the proposed constitutive model, numerical calculations are carried out. It is found that the damaged interface conditions of de

  1. Distributed Group-Based Mobility Management Scheme in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Moneeb Gohar

    2017-01-01

    Full Text Available For group-based mobility management in 6LoWPAN-based wireless body area networks (WBAN, some schemes using the Proxy Mobile IPv6 (PMIP have been proposed. However, the existing PMIP-based mobility schemes tend to induce large registration delay and handover delay. To overcome such limitations, we propose a new distributed group-based mobility management scheme, in which the Local Mobility Anchor (LMA function is implemented by each Mobile Access Gateway (MAG and the handover operation is performed between two neighboring MAGs without the help of LMA. Besides, each MAG maintains the information of the group of mobile sensors and aggregates the Authentication-Authorization-Accounting (AAA query messages for a group of mobile sensors as a “single” message to decrease the control overhead. By numerical analysis, it is shown that the proposed scheme can reduce the registration and handover delays, compared to the existing PMIP-based mobility schemes.

  2. Carbon fiber reinforced thermoplastic composites from acrylic polymer matrices: Interfacial adhesion and physical properties

    Directory of Open Access Journals (Sweden)

    H. Kishi

    2017-04-01

    Full Text Available Acrylic polymers have high potential as matrix polymers for carbon fiber reinforced thermoplastic polymers (CFRTP due to their superior mechanical properties and the fact that they can be fabricated at relatively low temperatures. We focused on improving the interfacial adhesion between carbon fibers (CFs and acrylic polymers using several functional monomers for co-polymerization with methyl methacrylate (MMA. The copolymerized acrylic matrices showed good adhesion to the CF surfaces. In particular, an acrylic copolymer with acrylamide (AAm showed high interfacial adhesive strength with CFs compared to pure PMMA, and a hydroxyethyl acrylamide (HEAA copolymer containing both amide and hydroxyl groups showed high flexural strength of the CFRTP. A 3 mol% HEAA-copolymerized CFRTP achieved a flexural strength almost twice that of pure PMMA matrix CFRTP, and equivalent to that of an epoxy matrix CFRP.

  3. Effect of modified polypropylene on the interfacial bonding of polymer–aluminum laminated films

    International Nuclear Information System (INIS)

    Liang, Chang-Sheng; Lv, Zhong-Fei; Bo, Yang; Cui, Jia-Yang; Xu, Shi-Ai

    2015-01-01

    Highlights: • Aluminium-polymer composite packing material with high T-peel strength was prepared. • Polypropylene was grafted by acrylic acid, glycidyl methacrylate, maleic anhydride. • Grafted polypropylene greatly improved the T-peel strength. • Chemical bonding plays an important role in improving the adhesion strength. - Abstract: The interfacial bonding between functionalized polymers and chromate–phosphate treated aluminum (Al) foil were investigated in this study. Glycidyl methacrylate (GMA), acrylic acid (AA) and maleic anhydride (MAH) were grafted onto polypropylene (PP) to improve its adhesion strength with the treated Al foil. The interfacial peel strength was evaluated by the T-peel test, and the results showed that modification of PP resulted in a significant improvement in the interfacial peel strength from 1 N/15 mm for pure PP to 10–14 N/15 mm for the modified PP. The surface chemistry, topography and surface energy of the modified PP and Al foil after peeling were characterized by time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle measurement. The treated Al foil could react with the functional groups of PP, resulting in the formation of new carboxylates. The new chemical bonding rather than the mechanical interlocking contributed to the improvement of adhesion strength

  4. Brazilian pediatric research groups, lines of research, and main areas of activity

    Directory of Open Access Journals (Sweden)

    Priscila H.A. Oliveira

    2015-06-01

    Full Text Available OBJECTIVES: The Brazilian scientific production in the pediatrics field has been increasing significantly. It is important to identify the distribution and activity of these groups in the country and the main study areas, contributing with data for better resource allocation by institutions. METHODS: An active research was conducted in the National Council of Technological and Scientific Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq] website, using as filters the macro area of the research group (Health Sciences, the area (Medicine, and descriptors related to pediatrics. Research lines and main area of pediatric research groups were classified according to the subject predominantly studied by each group. The scientific production of the leader of the pediatric research group between 2011 and 2014 was also analyzed. RESULTS: Most pediatric research groups in Brazil have more than five years of activity and are concentrated in the Southeast and South regions of the country; São Paulo, Rio Grande do Sul, and Minas Gerais are the states with most groups. Of the 132 specific pediatric research groups analyzed, 14.4% have lines of research in multiple areas and 11.4% in child and adolescent health. Among the 585 lines of research of these groups, the most prevalent areas were: oncology, infectious diseases, epidemiology, and gastroenterology. CONCLUSIONS: The pediatric research groups in Brazil have relevant scientific production, including works published in international publications, and are concentrated in regions with higher socioeconomic index. Most groups registered in CNPq started their activity in the last five years (46%, reflecting the recent growth of scientific production in this area.

  5. Dynamic interfacial tension behavior of alkyl amino sulfonate in crude oil-brine system

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhao Hua; Luo, Yue [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering

    2013-09-15

    The compatibility of surfactants, a series of alkyl amino sulfonate containing various the length of alkyl chain (dodecyl, tetradecyl, hexadecyl and octadecyl, developed in our laboratory), with formation water matching the Xinjiang Oil Field reservoir water and the dynamic interfacial tensions (DIT) behaviors between the crude oil and the formation water for a number of alkaline flooding systems were measured. These surfactants are found to be well compatible with formation water up to 0.10g L{sup -1} surfactant concentration, especially Dodec-AS and Tetradec-AS show a good compatibility with formation water over the full range of surfactant concentration investigated (0.01-0.20g L{sup -1}). All surfactants exhibit the dynamic interfacial tension behavior, and can reach and maintain low interfacial tension at very low concentration. The time for reaching the equilibrium DIT (DIT{sub eq}) is longer for surfactant with stronger lipophilicity, e.g. octadecyl-AS. It is interestingly found that the ratio value between DIT{sub eq} and the tension at crude oil/reservoir water interface in the absence of surfactant is in the range of 10{sup -4}-10{sup -3} mN m{sup -1}, accordingly based on which and the previous results, four surfactants individually or with other additives together may become potent candidates for enhanced oil recovery. Fortunately, the alkyl amino sulfonate combinational systems without alkali designed by our group can reduce the interfacial tension even to 10{sup -4} mN m{sup -1} at very low surfactant concentration. These surfactants or their systems have characteristic of 'Green', in addition to the excellent salt-tolerance and the less expensive cost for enhanced oil recovery, and therefore they are good oil-displacing reagents for enhanced oil recovery. (orig.)

  6. Interfacial waves generated by electrowetting-driven contact line motion

    Science.gov (United States)

    Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Shin, Bongsu; Bae, Jungmok; Kim, Ho-Young

    2016-10-01

    The contact angle of a liquid-fluid interface can be effectively modulated by the electrowetting-on-dielectric (EWOD) technology. Rapid movement of the contact line can be achieved by swift changes of voltage at the electrodes, which can give rise to interfacial waves under the strong influence of surface tension. Here we experimentally demonstrate EWOD-driven interfacial waves of overlapping liquids and compare their wavelength and decay length with the theoretical results obtained by a perturbation analysis. Our theory also allows us to predict the temporal evolution of the interfacial profiles in either rectangular or cylindrical containers, as driven by slipping contact lines. This work builds a theoretical framework to understand and predict the dynamics of capillary waves of a liquid-liquid interface driven by EWOD, which has practical implications on optofluidic devices used to guide light.

  7. Interfacial behaviour of sodium stearoyllactylate (SSL) as an oil-in-water pickering emulsion stabiliser.

    Science.gov (United States)

    Kurukji, D; Pichot, R; Spyropoulos, F; Norton, I T

    2013-11-01

    The ability of a food ingredient, sodium stearoyllactylate (SSL), to stabilise oil-in-water (O/W) emulsions against coalescence was investigated, and closely linked to its capacity to act as a Pickering stabiliser. Results showed that emulsion stability could be achieved with a relatively low SSL concentration (≥0.1 wt%), and cryogenic-scanning electron microscopy (cryo-SEM) visualisation of emulsion structure revealed the presence of colloidal SSL aggregates adsorbed at the oil-water interface. Surface properties of SSL could be modified by altering the size of these aggregates in water; a faster decrease in surface tension was observed when SSL dispersions were subjected to high pressure homogenisation (HPH). The rate of SSL adsorption at the sunflower oil-water interface also increased after HPH, and a higher interfacial tension (IFT) was observed with increasing SSL concentration. Differential scanning calorimetry (DSC) enabled a comparison of the thermal behaviour of SSL in aqueous dispersions with SSL-stabilised O/W emulsions. SSL melting enthalpy depended on emulsion interfacial area and the corresponding DSC data was used to determine the amount of SSL adsorbed at the oil-water interface. An idealised theoretical interfacial coverage calculation based on Pickering emulsion theory was in general agreement with the mass of SSL adsorbed as predicted by DSC. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Interfacial behavior of polar, weakly polar, and nonpolar compounds bound to activated carbons.

    Science.gov (United States)

    Gun'ko, V M; Turov, V V; Zarko, V I; Goncharuk, O V; Nychiporuk, Yu M; Kozynchenko, O P; Skubiszewska-Zięba, J; Leboda, R; Charmas, B; Balakin, D Yu; Ptushinskii, Yu G

    2013-08-15

    Detailed analysis of the interfacial behavior of water and weakly polar or nonpolar organics adsorbed alone or co-adsorbed onto activated carbons (AC) at different temperatures is a complex problem important for practical applications of adsorbents. Interaction of water, 1-decanol, and n-decane with AC possessing highly developed porosity (pore volume Vp≈1.4-2.3 cm(3)/g, specific surface area S(BET)≈1500-3500 m(2)/g) was studied over a broad temperature range using differential scanning calorimetry (DSC), thermoporometry, (1)H NMR spectroscopy, cryoporometry, and temperature-programmed desorption with mass-spectrometry control methods. Comparison of the pore size distributions (PSD) calculated using the DSC thermoporometry, NMR cryoporometry, and nitrogen adsorption isotherms allows us to determine localization of adsorbates in different pores, as well as changes in the PSD of AC due to freezing of adsorbates in pores. Theoretical calculations (using ab initio HF/6-31G(d,p), DFT B3LYP/6-31G(d,p), and PM7 methods) explain certain aspects of the interfacial behavior of water, decane, and decanol adsorbed onto AC that appear in the experimental data. Obtained results show strong temperature dependence (above and below the freezing point, Tf, of bulk liquids) of the interfacial behavior of adsorbates on the textural characteristics and hydrophilic/hydrophobic properties of AC and the adsorbate amounts that affect the distributions of adsorbates unfrozen at T

  9. Effect of functional groups on thermal conductivity of graphene/paraffin nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, Zabiholah; Araghi, Houshang, E-mail: araghi@aut.ac.ir

    2016-11-25

    In this paper, thermal conductivity of graphene/paraffin nanocomposite using micromechanical model has been studied. The behavior of thermal conductivity of nanocomposite as a function of volume fraction of graphene is studied. Then is shown that as the interfacial thermal resistance at the graphene–paraffin interface decreases, the thermal conductivity of nanocomposite increases. In order to reduce the interfacial thermal resistance, functional groups in the interface between graphene and paraffin are used. It can be observed that using functional groups of hydrogen, methyl and phenyl in the interface of nanocomposite, contributes to the improvement of the thermal conductivity. Moreover, as the rate of coverage of the surface of graphene with functional groups of H, CH{sub 3} and C{sub 6}H{sub 5} increases, the thermal conductivity of nanocomposite improves. - Highlights: • Thermal conductivity nanocomposite exhibit nonlinear behavior with volume faction. • Phenyl is better to form the thermal conductivity network in paraffin. • The thickness of interfacial layer can be obtained 12.75 nm.

  10. Interfacial tension in systems involving TBP in dodecane, nitric acid, uranyl nitrate and water

    International Nuclear Information System (INIS)

    Kolarik, Z.; Pipkin, N.

    1982-08-01

    The interfacial tension was measured at 25 0 C in the systems TBP - n-dodecane/nitric acid - water and TBP - n-dodecane/nitric acid - uranyl nitrate - water. Empirical equations describing the interfacial tension as a function of the concentration of TBP in the starting organic phase and of uranium-(VI) and nitric acid in the equilibrium aqueous phase were suggested. In the absence of uranium (VI), the interfacial tension can also be correlated with the concentration of water in the equilibrium organic phase. Free TBP, hydrated or nonhydrated, and hydrated TBP solvates of nitric acid are interfacially active. Anhydrous TBP solvates of nitric acid and the TBP solvate of uranyl nitrate, which neither is hydrated, do not exhibit any visible interfacial activity. (orig.) [de

  11. Group distribution characteristics of lachrymal duct obstruction diseases in major Li Miao minority areas of Hainan province

    Directory of Open Access Journals (Sweden)

    Hua-Li Zhou

    2014-07-01

    Full Text Available AIM: To determine the group distribution characteristics of lachrymal duct obstruction diseases in major Li Miao minority areas of Hainan province. METHODS: Totally 5 353 residents were selected and researched by randomized cluster sampling in the major Li Miao minority areas of Hainan province. Ocular examination and lachrymal duct flushing were carried out, and questionnaire survey on lachrymal duct obstruction was conducted. The ratio of lachrymal duct obstruction diseases and group distribution characteristics were analyzed based on above research. RESULTS: The prevalence ratios of lachrymal duct obstruction was 4.47% in major Li Miao minority areas of Hainan province, with 2.62% in urban area, and 5.93% in rural area respectively. Prevalence ratios of men and women group were 1.69% and 6.39% correspondingly. Difference between the two groups was statistically significant(χ2=67.2821, P=0.0000. The highest prevalence ratio was 40-69 year-old group, second one was 70-79 year-old group, especially for women in these groups. The prevalence ratios of Ledong, Lingshui, Baisha and Changjiang county were higher than those of Baoting, Qiongzhong county and Wuzhishan city. No significant difference was found between both eyes. CONCLUSION: In major Li Miao minority areas of Hainan province, lachrymal duct obstruction mainly occurs in 40-79 year-old patients, with specially higher ratio of women. Statistically, significant difference of the prevalence ratio between urban and rural areas exists. The higher prevalence ratio is attributed to age, gender, geographical location, climate condition, health environment and so on. The prevalence ratio is higher in the dry and windy areas than in the humid and less windy areas.

  12. Magneto-Ionic Control of Interfacial Magnetic Anisotorpy

    Science.gov (United States)

    Bauer, Uwe; Emori, Satoru; Beach, Geoffrey

    2014-03-01

    Voltage control of magnetism could bring about revolutionary new spintronic memory and logic devices. Here, we examine domain wall (DW) dynamics in ultrathin Co films and nanowires under the influence of a voltage applied across a gadolinium oxide gate dielectric that simultaneously acts as an oxygen ion conductor. We investigate two electrode configurations, one with a continuous gate dielectric and the other with a patterned gate dielectric which exhibits an open oxide edge right underneath the electrode perimeter. We demonstrate that the open oxide edge acts as a fast diffusion path for oxygen ions and allows voltage-induced switching of magnetic anisotropy at the nanoscale by modulating interfacial chemistry rather than charge density. At room temperature this effect is limited to the vicinity of the open oxide edge, but at a temperature of 100°C it allows complete control over magnetic anisotropy across the whole electrode area, due to higher oxygen ion mobility at elevated temperature. We then harness this novel ``magneto-ionic'' effect to create unprecedentedly strong voltage-induced anisotropy modifications of 3000 fJ/Vm and create electrically programmable DW traps with pinning strengths of 650 Oe, enough to bring to a standstill DWs travelling at speeds of at least 20 m/s. This work is supported by the National Science Foundation through grant ECCS-1128439.

  13. Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei

    2017-08-15

    Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.

  14. Interfacial tension measurement between CO2 and brines under high temperature and elevated pressure conditions

    Science.gov (United States)

    Li, X.; Boek, E. S.; Maitland, G. C.; Trusler, J. P. M.

    2012-04-01

    We have investigated the dependence of interfacial tension of (CO2 + brine) on temperature, pressure and salinity (including both salt type and molality) over the range of conditions applicable to CO2 storage in saline aquifers. The study covered a wide range of measurements of the interfacial tensions between carbon dioxide and (NaCl + KCl)(aq), CaCl2(aq), MgCl2(aq), Na2SO4(aq), KHCO3(aq), NaHCO3(aq) and two laboratory constructed brines with molality ranging from (0.3 to 5.0) mol·kg-1. The measurements were made at temperatures between (298 and 448) K at various pressures up to 50 MPa, using the pendant drop method in a high-pressure view cell filled with water-saturated CO2. The drop to be imaged was created by injecting brine from a high-pressure syringe pump into a capillary sealed through the top of the cell. The expanded uncertainties of the experimental state variables at 95 % confidence are +0.05 K in temperature and +70 kPa in pressure. For the interfacial tension, the overall expanded relative uncertainty at 95 % confidence was +1.6%. The experimental results show that interfacial tension for all the systems increases linearly with molality, indicating that relatively few measurements and simple interpolation procedures are adequate for describing this property accurately over wide ranges of conditions.

  15. Interfacial Engineered Polyaniline/Sulfur-doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-State Supercapacitors.

    Science.gov (United States)

    Li, Chun; Wang, Zhuanpei; Li, Shengwen; Cheng, Jianli; Zhang, Yanning; Zhou, Jingwen; Yang, Dan; Tong, Dong-Ge; Wang, Bin

    2018-05-04

    Fiber-shaped supercapacitors (FSCs) have great potential in wearable electronics applications. However, the limited specific surface area and inadequate structural stability caused by the weak interfacial interactions of the electrodes result in relatively low specific capacitance and unsatisfactory cycle lifetime. Herein, solid-state FSCs with high energy density and ultralong cycle lifetime based on polyaniline (PANI)/sulfur-doped TiO2 nanotubes array (PANI/S-TiO2) are fabricated by interfacial engineering. The experimental results and ab initio calculations reveal that S doping can effectively promote the conductivity of titania nanotubes and increase the binding energy of PANI anchored on the electrode surface, leading to much stronger binding of PANI on the surface of the electrode and excellent electrode structure stability. As a result, the FSCs using the PANI/S-TiO2 electrodes deliver a high specific capacitance of 91.9 mF cm-2, a capacitance retention of 93.78% after 12,000 charge/discharge cycles, and an areal energy density of 3.2 µWh cm-2, respectively. Meanwhile, the all-solid-state FSC device retains its excellent flexibility and stable electrochemical capacitance even after bending 150 cycles. The enhanced performances of FSCs could be attributed to the large surface area, short ion diffusion path, high electrical conductivity and engineered interfacial interaction of the rationally designed electrodes.

  16. Frontiers of interfacial water research :workshop report.

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, Randall Timothy; Greathouse, Jeffery A.

    2005-10-01

    Water is the critical natural resource of the new century. Significant improvements in traditional water treatment processes require novel approaches based on a fundamental understanding of nanoscale and atomic interactions at interfaces between aqueous solution and materials. To better understand these critical issues and to promote an open dialog among leading international experts in water-related specialties, Sandia National Laboratories sponsored a workshop on April 24-26, 2005 in Santa Fe, New Mexico. The ''Frontiers of Interfacial Water Research Workshop'' provided attendees with a critical review of water technologies and emphasized the new advances in surface and interfacial microscopy, spectroscopy, diffraction, and computer simulation needed for the development of new materials for water treatment.

  17. Experimental evidence of a liquid-liquid transition in interfacial water

    Science.gov (United States)

    Zanotti, J.-M.; Bellissent-Funel, M.-C.; Chen, S.-H.

    2005-07-01

    At ambient pressure, bulk liquid water shows an anomalous increase of thermodynamic quantities and apparent divergences of dynamic properties on approaching a temperature Ts of 228 K. At normal pressure, supercooled water spontaneously freezes below the homogeneous nucleation temperature, TH = 235 K. Upon heating, the two forms of Amorphous Solid Water (ASW), LDA (Low Density Amorphous Ice) and HDA (High Density Amorphous Ice), crystallise above TX = 150 K. As a consequence, up to now no experiment has been able to explore the properties of liquid water in this very interesting temperature range between 150 and 235 K. We present nanosecond-time-scale measurements of local rotational and translational dynamics of interfacial, non-crystalline, water from 77 to 280 K. These experimental dynamic results are combined with calorimetric and diffraction data to show that after exhibiting a glass transition at 165 K, interfacial water experiences a first-order liquid-liquid transition at 240 K from a low-density to a high-density liquid. This is the first direct evidence of the existence of a liquid-liquid transition involving water.

  18. Iridium Interfacial Stack (IRIS)

    Science.gov (United States)

    Spry, David James (Inventor)

    2015-01-01

    An iridium interfacial stack ("IrIS") and a method for producing the same are provided. The IrIS may include ordered layers of TaSi.sub.2, platinum, iridium, and platinum, and may be placed on top of a titanium layer and a silicon carbide layer. The IrIS may prevent, reduce, or mitigate against diffusion of elements such as oxygen, platinum, and gold through at least some of its layers.

  19. Interfacial pattern changes of imprinted multilayered material in milli- and microscales

    Science.gov (United States)

    Yonekura, Kazuhiro; Tokumaru, Kazuki; Tsumori, Fujio

    2018-06-01

    Nanoimprint lithography (NIL) is a technique that transfers a mold pattern of nanometer order to the surface of a resist material by heating and pressing. NIL is an excellent technology in terms of high productivity, accuracy, and resolution. Recently, NIL has been applied to the processing of different multilayered materials, in which it is possible to process multiple materials simultaneously. In this processing of multilayered materials, it is possible to form an interfacial pattern between the upper layer and the lower layer simultaneously with patterning on the mold surface. This interface pattern can be controlled by the deformation characteristics, initial thickness, and so forth. In this research, we compared the interfacial pattern changes of imprinted multilayered materials in milli- and microscales. For multilayered imprint using multiple materials, it is important to know the flow of the resist and its dependence on the scale. If there is similarity in the relationship produced by the scale on the imprinted samples, a process design with a number of feedbacks could be realized. It also becomes easier to treat structures in the millimeter scale for the experiment. In this study, we employed micropowder imprint (µPI) for multilayered material imprint. A compound sheet of alumina powder and polymer binder was used for imprint. Two similar experiments in different scales, micro- and millimeter scales, were carried out. Results indicate that the interfacial patterns of micro- and millimeter-scale-imprinted samples are similar.

  20. A demonstration of enhancements in interfacial rheological characterisations

    DEFF Research Database (Denmark)

    Hodder, Peter; Baldursdottir, Stefania G.

    It has been a number of years since the rotational rheometer have really become sensitive enough to provide a suitable platform to help characterise an interface, whether liquid / air or liquid /liquid. It has been a path to discovery all and many iterations of designs of the actual measuring...... we have compared the performance of two models of the new Discovery Hybrid Rheometer and the AR G2 rheometer when studying the interfacial adsorption of lysozyme (from hen egg white, Sigma-Aldrich, Denmark) using the double wall ring geometry. The results show great improvement in the detection limit...

  1. Interfacial phenomena as related to oil recovery mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Melrose, J C

    1970-12-01

    Thermodynamic and hydrostatic principles are applied to commingled immiscible fluid phases occupying the interstices fo a porous solid. Particular attention is given to the conditions of hydrostatic equilibrium for systems which include both fluid-fluid interfacial and 3-phase contact line regions. The configurational stability of fluid interfaces also is examined. Some model pore systems are considered, and estimates obtained for the magnitude of the hysteresis in capillary pressure in such cases. These considerations define the role of interfacial phenomena in determining the extent to which a nonwetting fluid can be displaced from a porous solid. (31 refs.)

  2. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation.

    Science.gov (United States)

    Lin, Rijia; Ge, Lei; Diao, Hui; Rudolph, Victor; Zhu, Zhonghua

    2016-11-23

    Obtaining strong interfacial affinity between filler and polymer is critical to the preparation of mixed matrix membranes (MMMs) with high separation efficiency. However, it is still a challenge for micron-sized metal organic frameworks (MOFs) to achieve excellent compatibility and defect-free interface with polymer matrix. Thin layer of ionic liquid (IL) was immobilized on micron-sized HKUST-1 to eliminate the interfacial nonselective voids in MMMs with minimized free ionic liquid (IL) in polymer matrix, and then the obtained IL decorated HKUST-1 was incorporated into 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine (6FDA-Durene) to fabricate MMMs. Acting as a filler/polymer interfacial binder, the favorable MOF/IL and IL/polymer interaction can facilitate the enhancement of MOF/polymer affinity. Compared to MMM with only HKUST-1 incorporation, MMM with IL decorated HKUST-1 succeeded in restricting the formation of nonselective interfacial voids, leading to an increment in CO 2 selectivity. The IL decoration method can be an effective approach to eliminate interfacial voids in MMMs, extending the filler selection to a wide range of large-sized fillers.

  3. Interfacial free energy and stiffness of aluminum during rapid solidification

    International Nuclear Information System (INIS)

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    2017-01-01

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculation of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.

  4. Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals.

    Science.gov (United States)

    Ye, Shuji; Li, Hongchun; Yang, Weilai; Luo, Yi

    2014-01-29

    Accurate determination of protein structures at the interface is essential to understand the nature of interfacial protein interactions, but it can only be done with a few, very limited experimental methods. Here, we demonstrate for the first time that sum frequency generation vibrational spectroscopy can unambiguously differentiate the interfacial protein secondary structures by combining surface-sensitive amide I and amide III spectral signals. This combination offers a powerful tool to directly distinguish random-coil (disordered) and α-helical structures in proteins. From a systematic study on the interactions between several antimicrobial peptides (including LKα14, mastoparan X, cecropin P1, melittin, and pardaxin) and lipid bilayers, it is found that the spectral profiles of the random-coil and α-helical structures are well separated in the amide III spectra, appearing below and above 1260 cm(-1), respectively. For the peptides with a straight backbone chain, the strength ratio for the peaks of the random-coil and α-helical structures shows a distinct linear relationship with the fraction of the disordered structure deduced from independent NMR experiments reported in the literature. It is revealed that increasing the fraction of negatively charged lipids can induce a conformational change of pardaxin from random-coil to α-helical structures. This experimental protocol can be employed for determining the interfacial protein secondary structures and dynamics in situ and in real time without extraneous labels.

  5. Pressure dependence of the interfacial structure of potassium chloride films on iron

    International Nuclear Information System (INIS)

    Olson, Dustin; Gao, Hongyu; Tang, Chun; Tysoe, Wilfred T.; Martini, Ashlie

    2015-01-01

    Potassium chloride films on a clean iron surface are used as a model system to explore the interfacial structure of the films and the dependence of that structure on film thickness and pressure. The interfacial structure of one-, two-, three- and four-layer films is measured experimentally using low-energy electron diffraction. Those findings are then complemented by molecular dynamics simulations in which the atomic interaction between the film and substrate is tuned to match film thickness-dependent sublimation activation energy obtained from temperature-programmed desorption measurements. The resultant simulation reliably predicts the structure of thicker films and is then used to study the effect of pressure on the distribution of the lattice constant within and between each layer of the potassium chloride films. Findings indicate that both film thickness and pressure affect the structure within the films as well as the degree of registry between the film and adjacent substrate. - Highlights: • KCl films on an Fe surface are used as a model system to explore interfacial structure • Thin film structure is measured using low-energy electron diffraction • An empirical potential is tuned to match sublimation activation energy • Simulations reveal the effect of pressure on the lattice constant within the KCl films • Pressure affects the film structure and registry between film and substrate

  6. Pressure dependence of the interfacial structure of potassium chloride films on iron

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Dustin [Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin—Milwaukee, Milwaukee, WI 53211 (United States); Gao, Hongyu; Tang, Chun [School of Engineering, University of California Merced, Merced CA 95343 (United States); Tysoe, Wilfred T. [Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin—Milwaukee, Milwaukee, WI 53211 (United States); Martini, Ashlie [School of Engineering, University of California Merced, Merced CA 95343 (United States)

    2015-10-30

    Potassium chloride films on a clean iron surface are used as a model system to explore the interfacial structure of the films and the dependence of that structure on film thickness and pressure. The interfacial structure of one-, two-, three- and four-layer films is measured experimentally using low-energy electron diffraction. Those findings are then complemented by molecular dynamics simulations in which the atomic interaction between the film and substrate is tuned to match film thickness-dependent sublimation activation energy obtained from temperature-programmed desorption measurements. The resultant simulation reliably predicts the structure of thicker films and is then used to study the effect of pressure on the distribution of the lattice constant within and between each layer of the potassium chloride films. Findings indicate that both film thickness and pressure affect the structure within the films as well as the degree of registry between the film and adjacent substrate. - Highlights: • KCl films on an Fe surface are used as a model system to explore interfacial structure • Thin film structure is measured using low-energy electron diffraction • An empirical potential is tuned to match sublimation activation energy • Simulations reveal the effect of pressure on the lattice constant within the KCl films • Pressure affects the film structure and registry between film and substrate.

  7. USING MOLECULAR PROBES TO STUDY INTERFACIAL REDOX REACTION AT FE-BEARING SMECTITES

    Science.gov (United States)

    The interfacial electron transfer of clay-water systems has a wide range of significance in geochemical and biogeochernical environments. However the mechanism of interfacial electron transport is poorly understood. The electron transfer mechanism at the solid-water interfaces of...

  8. A Finite Abelian Group of Two-Letter Inversions

    Directory of Open Access Journals (Sweden)

    Sherwin E. Balbuena

    2015-11-01

    Full Text Available In abstract algebra, the study of concrete groups is fundamentally important to beginners. Most commonly used groups as examples are integer addition modulo n, real number addition and multiplication, permutation groups, and groups of symmetry. The last two examples are finite non-abelian groups and can be investigated with the aid of concrete representations. This study presents a finite abelian group of inversions of two letter symbols with vertical and horizontal axes of symmetry and whose binary operation is established through motions like alternation, rotation, reflection, and a combination of two or all motions.

  9. Relation between the interfacial tension in an organic solvent-water system and the parameters of the solvating capacity of the solvent

    International Nuclear Information System (INIS)

    Nikitin, S.D.; Shmidt, V.S.

    1987-01-01

    It was shown that there is a linear relation between the empirical DE (diluent effect) and E/sub T/ parameters, which characterize the solvating capacity of the solvent, and the interfacial tension in an organic solvent-water two-phase system. Analysis of the sample correlation coefficients shows that the relation between the interfacial tension and the DE parameters of the solvents is closer to linear than the corresponding relation for the E/sub T/ parameters. During analysis of the data for 31 solvents it was established that the largest inverse correlation coefficient r = -0.98 is obtained with an equation of the DE = a + bσ/rho 1/3, type, were a and b are constants, and rho is the density of the solvent. The regression equation has the following form: DE = 7.586 - 0.147 σ/rho 1/3. Since the interfacial activity of hydrophobic surfactants decreases linearly with increase in the DE values, it follows from the obtained equation that decrease of the interfacial tension at the water-organic solvent interface must lead to a decrease in the interfacial activity of hydrophobic surfactants present in the system

  10. Liquid-liquid interfacial nanoparticle assemblies

    Science.gov (United States)

    Emrick, Todd S [South Deerfield, MA; Russell, Thomas P [Amherst, MA; Dinsmore, Anthony [Amherst, MA; Skaff, Habib [Amherst, MA; Lin, Yao [Amherst, MA

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  11. Grouping of body areas affected in traffic accidents. A cohort study.

    Science.gov (United States)

    León, Alba Luz; Ascuntar-Tello, Johana; Valderrama-Molina, Carlos Oliver; Giraldo, Nelson Darío; Constaín, Alfredo; Puerta, Andrés; Restrepo, Camilo; Jaimes, Fabián

    2018-03-01

    Traffic accidents are considered a public health problem and, according to the World Health Organization, currently is the eighth cause of death in the world. Specifically, pedestrians, cyclists and motorcyclists contribute half of the fatalities. Adequate clinical management in accordance with aggregation patterns of the body areas involved, as well as the characteristics of the accident, will help to reduce mortality and disability in this population. Secondary data analysis of a cohort of patients involved in traffic accidents and admitted to the emergency room (ER) of a high complexity hospital in Medellín, Colombia. They were over 15 years of age, had two or more injuries in different areas of the body and had a hospital stay of more than 24 h after admission. A cluster analysis was performed, using Ward's method and the linfinity similarity measure, to obtain clusters of body areas most commonly affected depending on the type of vehicle and the type of victim. Among 2445 patients with traffic accidents, 34% (n = 836) were admitted into the Intensive Care Unit (ICU) and the overall hospital mortality rate was 8% (n = 201). More than 50% of the patients were motorcycle riders but mortality was higher in pedestrian-car accidents (16%, n = 34). The clusters show efficient performance to separate the population depending on the severity of their injuries. Pedestrians had the highest mortality after having accidents with cars and they also had the highest number of body parts clustered, mainly on head and abdomen areas. Exploring the cluster patterns of injuries and body areas affected in traffic accidents allow to establish anatomical groups defined by the type of accident and the type of vehicle. This classification system will accelerate and prioritize ER-care for these population groups, helping to provide better health care services and to rationalize available resources.

  12. Assessment of some interfacial shear correlations in a model of ECC bypass flow in PWR reactor downcomer

    International Nuclear Information System (INIS)

    Popov, N.K.; Rohatgi, U.S.

    1987-01-01

    The bypass/refill process in the PWR reactor downcomer, following a large rupture of a cold leg coolant supply pipe, is a complicated thermo-hydraulic two-phase flow phenomenon. Mathematical modeling of such phenomena is always accompanied with a difficult task of selection of suitable constitutive correlations. In a typically hydrodynamic phenomenon, like ECC refill process of the reactor lower plenum is considered, the phasic interfacial friction is the most influential constitutive correlation. Therefore, assessment of the well-known widely-used interfacial friction constitutive correlations in the model of ECC bypass/refill process, is the subject of this paper

  13. Generalized t-statistic for two-group classification.

    Science.gov (United States)

    Komori, Osamu; Eguchi, Shinto; Copas, John B

    2015-06-01

    In the classic discriminant model of two multivariate normal distributions with equal variance matrices, the linear discriminant function is optimal both in terms of the log likelihood ratio and in terms of maximizing the standardized difference (the t-statistic) between the means of the two distributions. In a typical case-control study, normality may be sensible for the control sample but heterogeneity and uncertainty in diagnosis may suggest that a more flexible model is needed for the cases. We generalize the t-statistic approach by finding the linear function which maximizes a standardized difference but with data from one of the groups (the cases) filtered by a possibly nonlinear function U. We study conditions for consistency of the method and find the function U which is optimal in the sense of asymptotic efficiency. Optimality may also extend to other measures of discriminatory efficiency such as the area under the receiver operating characteristic curve. The optimal function U depends on a scalar probability density function which can be estimated non-parametrically using a standard numerical algorithm. A lasso-like version for variable selection is implemented by adding L1-regularization to the generalized t-statistic. Two microarray data sets in the study of asthma and various cancers are used as motivating examples. © 2014, The International Biometric Society.

  14. Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy

    Directory of Open Access Journals (Sweden)

    Weisheng Zhao

    2016-01-01

    Full Text Available Magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy (PMA-MTJ becomes a promising candidate to build up spin transfer torque magnetic random access memory (STT-MRAM for the next generation of non-volatile memory as it features low spin transfer switching current, fast speed, high scalability, and easy integration into conventional complementary metal oxide semiconductor (CMOS circuits. However, this device suffers from a number of failure issues, such as large process variation and tunneling barrier breakdown. The large process variation is an intrinsic issue for PMA-MTJ as it is based on the interfacial effects between ultra-thin films with few layers of atoms; the tunneling barrier breakdown is due to the requirement of an ultra-thin tunneling barrier (e.g., <1 nm to reduce the resistance area for the spin transfer torque switching in the nanopillar. These failure issues limit the research and development of STT-MRAM to widely achieve commercial products. In this paper, we give a full analysis of failure mechanisms for PMA-MTJ and present some eventual solutions from device fabrication to system level integration to optimize the failure issues.

  15. The Interfacial Thermal Conductance of Epitaxial Metal-Semiconductor Interfaces

    Science.gov (United States)

    Ye, Ning

    -silicon), interfaces with varying levels of disorder (epitaxial and non-epitaxial). The ITC values of silicides-silicon interfaces observed in this study are higher than those of other metallic interfaces to Si found in literature. Most surprisingly, it is experimentally found that ITC values are independent of interfacial quality and substrate orientation. Computationally, it is found that the non-equilibrium atomistic Green's Function technique (NEGF), which is specically designed to simulate coherent elastic phonon transport across interfaces, significantly underpredicts ITC values for CoSi2-Si interfaces, suggesting that energy transport does not occur purely by coherent transmission of phonons, even for epitaxial interfaces. In contrast, the Diffuse Mismatch Model closely mimics the experimentally observed ITC values for CoSi 2-Si, NiSi-Si and TiSi2-Si interfaces, and only slightly overestimating the same for PtSi-Si interfaces. Furthermore, the results also show that ITC is independent of degenerate doping up to doping levels of ≈1 x 1019 cm-3, indicating there is no significant direct electronic transport or transport effects which depend on long-range metal-semiconductor band alignment. Then, I study the effect of phonon band structure on ITC through measurements of epitaxial NiAl1-xGax-GaAs interfaces for varying levels of alloy composition, which independently tunes the mass of the metal's heavy atom without much affect on the lattice structure or interatomic force constants. The ITC values are found to linearly increase with increasing Ga content, consistent with the disappearance of a phonon band gap in NiAl 1-xGax films with increasing Ga content, which enhances the phonon transmission coefficients due to a better density of states overlap between the two (NiAl1-xGax, GaAs) materials. Finally, I study a unique subset of epitaxial rocksalt interfaces between the Group IV metal nitrides (TiN, ZrN, and HfN) to MgO substrates as well as ScN layers. Prior to the currrent

  16. Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells.

    Science.gov (United States)

    Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong

    2017-10-18

    A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.

  17. Thermodynamic analysis of effects of contact angle on interfacial interactions and its implications for membrane fouling control.

    Science.gov (United States)

    Chen, Jianrong; Shen, Liguo; Zhang, Meijia; Hong, Huachang; He, Yiming; Liao, Bao-Qiang; Lin, Hongjun

    2016-02-01

    Concept of hydrophobicity always fails to accurately assess the interfacial interaction and membrane fouling, which calls for reliable parameters for this purpose. In this study, effects of contact angle on interfacial interactions related to membrane fouling were investigated based on thermodynamic analysis. It was found that, total interaction energy between sludge foulants and membrane monotonically decreases and increases with water and glycerol contact angle, respectively, indicating that these two parameters can be reliable indicators predicting total interaction energy and membrane fouling. Membrane roughness decreases interaction strength for over 20 times, and effects of membrane roughness on membrane fouling should consider water and glycerol contact angle on membrane. It was revealed existence of a critical water and glycerol contact angle for a given membrane bioreactor. Meanwhile, diiodomethane contact angle has minor effect on the total interaction, and cannot be regarded as an effective indicator assessing interfacial interactions and membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Quantifying the Pathway and Predicting Spontaneous Emulsification during Material Exchange in a Two Phase Liquid System.

    Science.gov (United States)

    Spooner, Stephen; Rahnama, Alireza; Warnett, Jason M; Williams, Mark A; Li, Zushu; Sridhar, Seetharaman

    2017-10-30

    Kinetic restriction of a thermodynamically favourable equilibrium is a common theme in materials processing. The interfacial instability in systems where rate of material exchange is far greater than the mass transfer through respective bulk phases is of specific interest when tracking the transient interfacial area, a parameter integral to short processing times for productivity streamlining in all manufacturing where interfacial reaction occurs. This is even more pertinent in high-temperature systems for energy and cost savings. Here the quantified physical pathway of interfacial area change due to material exchange in liquid metal-molten oxide systems is presented. In addition the predicted growth regime and emulsification behaviour in relation to interfacial tension as modelled using phase-field methodology is shown. The observed in-situ emulsification behaviour links quantitatively the geometry of perturbations as a validation method for the development of simulating the phenomena. Thus a method is presented to both predict and engineer the formation of micro emulsions to a desired specification.

  19. Organic photovoltaic device with interfacial layer and method of fabricating same

    Science.gov (United States)

    Marks, Tobin J.; Hains, Alexander W.

    2013-03-19

    An organic photovoltaic device and method of forming same. In one embodiment, the organic photovoltaic device has an anode, a cathode, an active layer disposed between the anode and the cathode; and an interfacial layer disposed between the anode and the active layer, the interfacial layer comprising 5,5'-bis[(p-trichlorosilylpropylphenyl)phenylamino]-2,2'-bithiophene (PABTSi.sub.2).

  20. N-1: Safeguards Science and Technology Group, Tour Areas

    International Nuclear Information System (INIS)

    Geist, William H.

    2012-01-01

    Group N-1 develops and provides training on nondestructive assay (NDA) technologies intended for nuclear material accounting and control to fulfill both international and domestic obligations. The N-1 group is located at Technical Area (TA)-35 in Buildings 2 and 27. Visitors to the area can observe developed and fielded NDA technologies, as well as the latest research efforts to develop the next generation of NDA technologies. Several areas are used for NDA training. The N-1 School House area typically is used for basic training on neutron- and gamma-ray-based NDA techniques. This area contains an assortment of gamma-ray detector systems, including sodium iodide and high-purity germanium and the associated measurement components. Many types of neutron assay systems are located here, including both standard coincidence and multiplicity counters. The N-1 School House area is also used for holdup training; located here are the mock holdup assemblies and associated holdup measurement tools. Other laboratory areas in the N-1 space are used for specialized training, such as waste NDA, calorimetry, and advanced gamma-ray NDA. Also, many research laboratories in the N-1 space are used to develop new NDA technologies. The calorimetry laboratory is used to develop and evaluate new technologies and techniques that measure the heat signature from nuclear material to determine mass. The micro calorimetry laboratory is being used to develop advanced technologies that can measure gamma rays with extremely high resolution. This technique has been proven in the laboratory setting, and the team is now working to cultivate a field-capable system. The N-1 group also develops remote and unattended systems for the tracking and control of nuclear material. A demonstration of this technology is located within one of the laboratory spaces. The source tracker software was developed by N-1 to monitor the locations and quantities of nuclear materials. This software is currently used to track

  1. Ferroelectric Polarization-Modulated Interfacial Fine Structures Involving Two-Dimensional Electron Gases in Pb(Zr,Ti)O3/LaAlO3/SrTiO3 Heterostructures.

    Science.gov (United States)

    Wang, Shuangbao; Bai, Yuhang; Xie, Lin; Li, Chen; Key, Julian D; Wu, Di; Wang, Peng; Pan, Xiaoqing

    2018-01-10

    Interfacial fine structures of bare LaAlO 3 /SrTiO 3 (LAO/STO) heterostructures are compared with those of LAO/STO heterostructures capped with upward-polarized Pb(Zr 0.1 ,Ti 0.9 )O 3 (PZT up ) or downward-polarized Pb(Zr 0.5 ,Ti 0.5 )O 3 (PZT down ) overlayers by aberration-corrected scanning transmission electron microscopy experiments. By combining the acquired electron energy-loss spectroscopy mapping, we are able to directly observe electron transfer from Ti 4+ to Ti 3+ and ionic displacements at the interface of bare LAO/STO and PZT down /LAO/STO heterostructure unit cell by unit cell. No evidence of Ti 3+ is observed at the interface of the PZT up /LAO/STO samples. Furthermore, the confinement of the two-dimensional electron gas (2DEG) at the interface is determined by atomic-column spatial resolution. Compared with the bare LAO/STO interface, the 2DEG density at the LAO/STO interface is enhanced or depressed by the PZT down or PZT up overlayer, respectively. Our microscopy studies shed light on the mechanism of ferroelectric modulation of interfacial transport at polar/nonpolar oxide heterointerfaces, which may facilitate applications of these materials as nonvolatile memory.

  2. Models and Correlations of Interfacial and Wall Frictions for the SPACE code

    International Nuclear Information System (INIS)

    Kim, Soo Hyung; Hwang, Moon Kyu; Chung, Bub Dong

    2010-04-01

    This report describes models and correlations for the interfacial and wall frictions implemented in the SPACE code which has the capability to predict thermal-hydraulic behavior of nuclear power plants. The interfacial and wall frictions are essential to solve the momentum conservation equations of gas, continuous liquid and droplet. The interfacial and wall frictions are dealt in the Chapter 2 and 3, respectively. In Chapter 4, selection criteria for models and correlations are explained. In Chapter 5, the origins of the selected models and correlations used in this code are examined to check whether they are in confliction with intellectual proprietary rights

  3. Interfacial push-out measurements of fully-bonded SiC/SiC composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Steiner, D.; Zinkle, S.J.

    1990-01-01

    The direct measurement of interfacial bond strength and frictional resistance to sliding in a fully-bonded SiC/SiC composite is measured. It is shown that a fiber push-out technique can be utilized for small diameter fibers and very thin composite sections. Results are presented for a 22 micron thick section for which 37 out of 44 Nicalon fibers tested were pushed-out within the maximum nanoindentor load of 120 mN. Fiber interfacial yielding, push-out and sliding resistance were measured for each fiber. The distribution of interfacial strengths is treated as being Weibull in form. 14 refs., 5 figs

  4. Fabrication of large-scale one-dimensional Au nanochain and nanowire networks by interfacial self-assembly

    International Nuclear Information System (INIS)

    Wang Minhua; Li Yongjun; Xie Zhaoxiong; Liu Cai; Yeung, Edward S.

    2010-01-01

    By utilizing the strong capillary attraction between interfacial nanoparticles, large-scale one-dimensional Au nanochain networks were fabricated at the n-butanol/water interface, and could be conveniently transferred onto hydrophilic substrates. Furthermore, the length of the nanochains could be adjusted simply by controlling the density of Au nanoparticles (AuNPs) at the n-butanol/water interface. Surprisingly, the resultant Au nanochains could further transform into smooth nanowires by increasing the aging time, forming a nanowire network. Combined characterization by HRTEM and UV-vis spectroscopy indicates that the formation of Au nanochains stemmed from a stochastic assembly of interfacial AuNPs due to strong capillary attraction, and the evolution of nanochains to nanowires follows an Ostwald ripening mechanism rather than an oriented attachment. This method could be utilized to fabricate large-area nanochain or nanowire networks more uniformly on solid substrates than that of evaporating a solution of nanochain colloid, since it eliminates the three-dimensional aggregation behavior.

  5. Liquid flow along a solid surface reversibly alters interfacial chemistry.

    Science.gov (United States)

    Lis, Dan; Backus, Ellen H G; Hunger, Johannes; Parekh, Sapun H; Bonn, Mischa

    2014-06-06

    In nature, aqueous solutions often move collectively along solid surfaces (for example, raindrops falling on the ground and rivers flowing through riverbeds). However, the influence of such motion on water-surface interfacial chemistry is unclear. In this work, we combine surface-specific sum frequency generation spectroscopy and microfluidics to show that at immersed calcium fluoride and fused silica surfaces, flow leads to a reversible modification of the surface charge and subsequent realignment of the interfacial water molecules. Obtaining equivalent effects under static conditions requires a substantial change in bulk solution pH (up to 2 pH units), demonstrating the coupling between flow and chemistry. These marked flow-induced variations in interfacial chemistry should substantially affect our understanding and modeling of chemical processes at immersed surfaces. Copyright © 2014, American Association for the Advancement of Science.

  6. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites.

    Science.gov (United States)

    Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen

    2017-08-11

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.

  7. Activity coefficients, interfacial tensions and retention in reversed-phase liquid chormatography on LiChrosorb RP-18 with methanol-water mixtures

    NARCIS (Netherlands)

    Hammers, W.E.; Meurs, G.J.; Ligny, C.L. de

    1982-01-01

    Literature data on activity coefficients of various solutes in water, of some tetraalkyl compounds in methanol-water mixture and of water in organic solvents have been correlated with the product of the molecular surface area of the solute and the solute-solvent interfacial tension at ambient

  8. Modelling and numerical simulation of two-phase flows using the two-fluid two-pressure approach; Modelisation et simulation numerique des ecoulements diphasiques par une approche bifluide a deux pressions

    Energy Technology Data Exchange (ETDEWEB)

    Guillemaud, V

    2007-03-15

    This thesis is devoted to the modelling and numerical simulation of liquid-vapor flows. In order to describe these phase transition flows, a two-fluid two-pressure approach is considered. This description of the liquid-vapor mixing is associated to the seven-equation model introduced by Baer and Nunziato. This work investigates the properties of this model in order to simulate the phase transition flows occurring in nuclear engineering. First, a theoretical thermodynamic framework is constructed to describe the liquid-vapor mixing. Provided with this framework, various modelling choices are suggested for the interaction terms between the phases. These closure laws comply with an entropy inequality. The mathematical properties of this model are thereafter examined. The convective part is associated to a nonconservative hyperbolic system. First, we focus on the definition of its weak solutions. Several flow regimes for the two-phase mixing derive from this analysis. Such regimes for the two-phase flows are analogous to the torrential and fluvial regimes for the shallow-water equations. Furthermore, we establish the linear and nonlinear stabilities of the liquid-vapor equilibrium. Finally, the implementation of a turbulence model and the introduction of a reconstruction process for the interfacial area are investigated in order to refine the description of the interfacial transfers. Using a fractional step approach, a Finite Volume method is at last constructed to simulate this model. First, various nonconservative adaptations of standard Riemann solvers are developed to approach the convective part. Unlike the classic nonconservative framework, these schemes converge towards the same solution. Furthermore, a new relaxation scheme is proposed to approach the interfacial transfers. Provided with these schemes, the whole numerical method preserves the liquid-vapor equilibria. Using this numerical method, a careful comparison between the one- and two-pressure two

  9. Interfacial stress affects rat alveolar type II cell signaling and gene expression

    OpenAIRE

    Hobi, Nina; Ravasio, Andrea; Haller, Thomas

    2012-01-01

    Previous work from our group (Ravasio A, Hobi N, Bertocchi C, Jesacher A, Dietl P, Haller T. Am J Physiol Cell Physiol 300: C1456–C1465, 2011.) showed that contact of alveolar epithelial type II cells with an air-liquid interface (IAL) leads to a paradoxical situation. It is a potential threat that can cause cell injury, but also a Ca2+-dependent stimulus for surfactant secretion. Both events can be explained by the impact of interfacial tensile forces on cellular structures. Here, the streng...

  10. Brucellosis Outbreak in Children and Adults in Two Areas in Israel

    Science.gov (United States)

    Megged, Orli; Chazan, Bibiana; Ganem, Atef; Ayoub, Abeer; Yanovskay, Anna; Sakran, Waheeb; Miron, Dan; Dror-Cohen, Ahuva; Kennes, Yoram; Berdenstein, Svetlana; Glikman, Daniel

    2016-01-01

    Two parallel outbreaks of Brucella melitensis infection occurred in 2014 in two geographical areas in Israel. In two medical centers in northern Israel and one medical center in Jerusalem, 102 patients (58 children, 47 adults) were diagnosed with brucellosis. Most patients (N = 76, 72%) were Muslim Arabs, 28 (27%) were Druze, and one was Jewish. The source of infection was often traced to cheese from the Palestinian Authority. Biovar-1 was evident in 98% in northern Israel but only in 42% in Jerusalem. Most common manifestations were fever (82%) and osteoarticular symptoms (49%). The major differences between the geographic areas were ethnicity and duration until diagnosis. Compared with adults, children had higher rates of hospitalization (93% versus 64%, P = 0.001), osteoarticular symptoms (60% versus 36%, P = 0.05), elevated alanine aminotransferase (12% versus 0%, P = 0.01), and lower C-reactive protein (2.28 ± 2.08 versus 5.57 ± 6.3l mg/dL, P = 0.001). Two unrelated brucellosis outbreaks occurred in 2014 in two different geographic areas of Israel and were limited to sections of the Arab and Druze populations. Most of the demographic and clinical aspects of patients were not affected by geographic variability. Clinical and laboratory differences were found between children and adults emphasizing the nonuniformity of the disease in different age groups. Effective control of unpasteurized dairy foods, health education programs, and improved regional cooperation are required to control brucellosis in Israel. PMID:27114301

  11. Interfacial Mechanics Analysis of a Brittle Coating–Ductile Substrate System Involved in Thermoelastic Contact

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-02-01

    Full Text Available In this paper, interfacial stress analysis for a brittle coating/ductile substrate system, which is involved in a sliding contact with a rigid ball, is presented. By combining interface mechanics theory and the image point method, stress and displacement responses within a coated material for normal load, tangential load, and thermal load are obtained; further, the Green’s functions are established. The effects of coating thickness, friction coefficient, and a coating’s thermoelastic properties on the interfacial shear stress, τxz, and transverse stress, σxx, distributions are discussed in detail. A phenomenon, where interfacial shear stress tends to be relieved by frictional heating, is found in the case of a coating material’s thermal expansion coefficient being less than a substrate material’s thermal expansion coefficient. Additionally, numerical results show that distribution of interfacial stress can be altered and, therefore, interfacial damage can be modified by adjusting a coating’s structural parameters and thermoelastic properties.

  12. Experimental study of interfacial shear stress for an analogy model of evaporative heat transfer

    International Nuclear Information System (INIS)

    Kwon, Hyuk; Park, GoonCherl; Min, ByungJoo

    2008-01-01

    In this study, we conducted measurements of an evaporative interfacial shear stress in a passive containment cooling system (PCCS). An interfacial shear stress for a counter-current flow was measured from a momentum balance equation and the interfacial friction factor for evaporation was evaluated by using experimental data. A model for the evaporative heat transfer coefficient of a vertical evaporative flat surface was developed based on an analogy between heat and momentum transfer. It was found that the interfacial shear stress increases with the Jacob number, which incorporates the evaporation rate, and the air and water Reynolds numbers. The relationship between the evaporative heat transfer and the interfacial shear stress was evaluated by using the experimental results. This relationship was used to develop a model for an evaporative heat transfer coefficient by using an analogy between heat and mass transfer. The prediction of this model were found to be in good agreement with the experimental data obtained for evaporative heat transfer by Kang and Park. (author)

  13. Performance of a new one-step multi-mode adhesive on etched vs non-etched enamel on bond strength and interfacial morphology.

    Science.gov (United States)

    de Goes, Mario Fernando; Shinohara, Mirela Sanae; Freitas, Marcela Santiago

    2014-06-01

    To compare microtensile bond strength (μTBS) and interfacial morphology of a new one-step multimode adhesive with a two-step self-etching adhesive and two etch-and-rinse adhesives systems on enamel. Thirty human third molars were sectioned to obtain two enamel fragments. For μTBS, 48 enamel surfaces were ground using 600-grit SiC paper and randomly assigned into 6 groups (n = 8): nonetched Scotchbond Universal [SBU]; etched SBU [SBU-et]; non-etched Clearfil SE Bond [CSE]; etched CSE [CSE-et]; Scotchbond Multi-PURPOSE [SBMP]; Excite [EX]. The etched specimens were conditioned with 37% phosphoric acid for 30 s, each adhesive system was applied according to manufacturers' instructions, and composite resin blocks (Filtek Supreme Plus, 3M ESPE) were incrementally built up. Specimens were sectioned into beams with a cross-sectional area of 0.8-mm2 and tested under tension (1 mm/min). The data were analyzed with oneway ANOVA and Fisher's PLSD (α = 0.05). For interface analysis, two samples from each group were embedded in epoxy resin, polished, and then observed using scanning electron microscopy (SEM). The μTBS values (in MPa) and the standard deviations were: SBU = 27.4 (8.5); SBU-et = 33.6 (9.3); CSE = 28.5 (8.3); CSE-et = 34.2 (9.0); SBMP = 30.4 (11.0); EX = 23.3 (8.2). CSE-et and SBU-et presented the highest bond strength values, followed by SBMP, CSE, and SBU which did not differ significantly from each other. EX showed the statistically significantly lowest bond strength values. SEM images of interfaces from etched samples showed long adhesive-resin tags penetrating into demineralized enamel. Preliminary etching of enamel significantly increased bond strength for the new one-step multimode adhesive SBU and two-step self-etching adhesive CSE.

  14. Droplet size and velocity at the exit of a nozzle with two-component near critical and critical flow

    International Nuclear Information System (INIS)

    Lemonnier, H.; Camelo-Cavalcanti, E.S.

    1993-01-01

    Two-component critical flow modelling is an important issue for safety studies of various hazardous industrial activities. When the flow quality is high, the critical flow rate prediction is sensitive to the modelling of gas droplet mixture interfacial area. In order to improve the description of these flows, experiments were conducted with air-water flows in converging nozzles. The pressure was 2 and 4 bar and the gas mass quality ranged between 100% and 20%. The droplets size and velocity have been measured close to the outlet section of a nozzle with a 10 mm diameter throat. Subcritical and critical conditions were observed. These data are compared with the predictions of a critical flow model which includes an interfacial area model based on the classical ideas of Hinze and Kolmogorov. (authors). 9 figs., 12 refs

  15. Interfacial reactions between sapphire and Ag–Cu–Ti-based active braze alloys

    International Nuclear Information System (INIS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2016-01-01

    The interfacial reactions between two commercially available Ag–Cu–Ti-based active braze alloys and sapphire have been studied. In separate experiments, Ag–35.3Cu–1.8Ti wt.% and Ag–26.7Cu–4.5Ti wt.% alloys have been sandwiched between pieces of R-plane orientated sapphire and heated in argon to temperatures between 750 and 900 °C for 1 min. The phases at the Ag–Cu–Ti/sapphire interfaces have been studied using selected area electron diffraction, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy. Gradual and subtle changes at the Ag–Cu–Ti/sapphire interfaces were observed as a function of temperature, along with the formation of a transient phase that permitted wetting of the sapphire. Unequivocal evidence is shown that when the active braze alloys melt, titanium first migrates to the sapphire and reacts to dissolve up to ∼33 at.% oxygen, forming a nanometre-size polycrystalline layer with a chemical composition of Ti 2 O 1–x (x ≪ 1). Ti 3 Cu 3 O particles subsequently nucleate behind the Ti 2 O 1–x layer and grow to become a continuous micrometre-size layer, replacing the Ti 2 O 1–x layer. Finally at 845 °C, a nanometre-size γ-TiO layer forms on the sapphire to leave a typical interfacial structure of Ag–Cu/Ti 3 Cu 3 O/γ-TiO/sapphire consistent with that seen in samples of polycrystalline alumina joined to itself with these active braze alloys. These experimental observations have been used to establish a definitive bonding mechanism for the joining of sapphire with Ag–Cu alloys activated by small amounts of titanium.

  16. On the interfacial fracture of porcelain/zirconia and graded zirconia dental structures.

    Science.gov (United States)

    Chai, Herzl; Lee, James J-W; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu

    2014-08-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their susceptibility to fracture remains a practical problem. The failure of PFZ prostheses often involves crack initiation and growth in the porcelain, which may be followed by fracture along the porcelain/zirconia (P/Z) interface. In this work, we characterized the process of fracture in two PFZ systems, as well as a newly developed graded glass-zirconia structure with emphases placed on resistance to interfacial cracking. Thin porcelain layers were fused onto Y-TZP plates with or without the presence of a glass binder. The specimens were loaded in a four-point-bending fixture with the thin porcelain veneer in tension, simulating the lower portion of the connectors and marginal areas of a fixed dental prosthesis (FDP) during occlusal loading. The evolution of damage was observed by a video camera. The fracture was characterized by unstable growth of cracks perpendicular to the P/Z interface (channel cracks) in the porcelain layer, which was followed by stable cracking along the P/Z interface. The interfacial fracture energy GC was determined by a finite-element analysis taking into account stress-shielding effects due to the presence of adjacent channel cracks. The resulting GC was considerably less than commonly reported values for similar systems. Fracture in the graded Y-TZP samples occurred via a single channel crack at a much greater stress than for PFZ. No delamination between the residual glass layer and graded zirconia occurred in any of the tests. Combined with its enhanced resistance to edge chipping and good esthetic quality, graded Y-TZP emerges as a viable material concept for dental restorations. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  17. Surface and interfacial chemistry of high-k dielectric and interconnect materials on silicon

    Science.gov (United States)

    Kirsch, Paul Daniel

    Surfaces and interfaces play a critical role in the manufacture and function of silicon based integrated circuits. It is therefore reasonable to study the chemistries at these surfaces and interfaces to improve existing processes and to develop new ones. Model barium strontium titanate high-k dielectric systems have been deposited on ultrathin silicon oxynitride in ultrahigh vacuum. The resulting nanostructures are characterized with secondary ion mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS). An interfacial reaction between Ba and Sr atoms and SiOxNy was found to create silicates, BaSixOy or SrSi xOy. Inclusion of N in the interfacial oxide decreased silicate formation in both Ba and Sr systems. Furthermore, inclusion of N in the interfacial oxide decreased the penetration of Ba and Sr containing species, such as silicides and silicates. Sputter deposited HfO2 was studied on nitrided and unnitrided Si(100) surfaces. XPS and SIMS were used to verify the presence of interfacial HfSixOy and estimate its relative amount on both nitrided and unnitrided samples. More HfSixOy formed without the SiNx interfacial layer. These interfacial chemistry results are then used to explain the electrical measurements obtained from metal oxide semiconductor (MOS) capacitors. MOS capacitors with interfacial SiNx exhibit reduced leakage current and increased capacitance. Lastly, surface science techniques were used to develop a processing technique for reducing thin films of copper (II) and copper (I) oxide to copper. Deuterium atoms (D*) and methyl radicals (CH3*) were shown to reduce Cu 2+ and/or Cu1+ to Cu0 within 30 min at a surface temperature of 400 K under a flux of 1 x 1015 atoms/cm2s. Temperature programmed desorption experiments suggest that oxygen leaves the surface as D2O and CO2 for the D* and CH3* treated surfaces, respectively.

  18. Paracantor: A two group, two region reactor code

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Stuart

    1956-07-01

    Paracantor I a two energy group, two region, time independent reactor code, which obtains a closed solution for a critical reactor assembly. The code deals with cylindrical reactors of finite length and with a radial reflector of finite thickness. It is programmed for the 1.B.M: Magnetic Drum Data-Processing Machine, Type 650. The limited memory space available does not permit a flux solution to be included in the basic Paracantor code. A supplementary code, Paracantor 11, has been programmed which computes fluxes, .including adjoint fluxes, from the .output of Paracamtor I.

  19. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes

    KAUST Repository

    Pendergast, MaryTheresa M.; Ghosh, Asim K.; Hoek, E.M.V.

    2013-01-01

    Four different types of nanocomposite reverse osmosis (RO) membranes were formed by interfacial polymerization of either polyamide (PA) or zeolite A-polyamide nanocomposite (ZA-PA) thin films over either pure polysulfone (PSf) or zeolite A-polysulfone nanocomposite (ZA-PSf) support membranes cast by wet phase inversion. All three nanocomposite membranes exhibited superior separation performance and interfacial properties relative to hand-cast TFC analogs including: (1) smoother, more hydrophilic surfaces (2) higher water permeability and salt rejection, and (3) improved resistance to physical compaction. Less compaction occurred for membranes with nanoparticles embedded in interfacially polymerized coating films, which adds further proof that flux decline associated with physical compaction is influenced by coating film properties in addition to support membrane properties. The new classes of nanocomposite membrane materials continue to offer promise of further improved RO membranes for use in desalination and advanced water purification. © 2011 Elsevier B.V.

  20. Tunable anomalous hall effect induced by interfacial catalyst in perpendicular multilayers

    Science.gov (United States)

    Zhang, J. Y.; Peng, W. L.; Sun, Q. Y.; Liu, Y. W.; Dong, B. W.; Zheng, X. Q.; Yu, G. H.; Wang, C.; Zhao, Y. C.; Wang, S. G.

    2018-04-01

    The interfacial structures, playing a critical role on the transport properties and the perpendicular magnetic anisotropy in thin films and multilayers, can be modified by inserting an ultrathin functional layer at the various interfaces. The anomalous Hall effect (AHE) in the multilayers with core structure of Ta/CoFeB/X/MgO/Ta (X: Hf or Pt) is tuned by interfacial catalytic engineering. The saturation anomalous Hall resistance (RAH) is increased by 16.5% with 0.1 nm Hf insertion compared with the reference sample without insertion. However, the RAH value is decreased by 9.0% with 0.1 nm Pt insertion. The interfacial states were characterized by the X-ray photoelectron spectroscopy (XPS). The XPS results indicate that a strong bonding between Hf and O for Hf insertion, but no bonding between Pt and O for Pt insertion. The bonding between metal and oxygen leads to various oxygen migration behavior at the interfaces. Therefore, the opposite behavior about the RAH originates from the different oxygen behavior due to various interfacial insertion. This work provides a new approach to manipulate spin transport property for the potential applications.

  1. Diffuse x-ray scattering study of interfacial structure of self-assembled conjugated polymers

    International Nuclear Information System (INIS)

    Wang Jun; Park, Y.J.; Lee, K.-B.; Hong, H.; Davidov, D.

    2002-01-01

    The interfacial structures of self-assembled heterostructures through alternate deposition of conjugated and nonconjugated polymers were studied by x-ray reflectivity and nonspecular scattering. We found that the interfacial width including the effects of both interdiffusion and interfacial roughness (correlated) was mainly contributed by the latter one. The self-assembled deposition induced very small interdiffusion between layers. The lateral correlation length ξ parallel grew as a function of deposition time (or film thickness) described by a power law ξ parallel ∝t β/H and was also observed from the off-specular scattering

  2. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, Serge, E-mail: serge.zhuiykov@ugent.be [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of); Kawaguchi, Toshikazu [Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Graduate School of Environmental Science, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M. [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of)

    2017-01-15

    Highlights: • Advantages of atomic layer deposition technology (ALD) for two-dimensional nano-crystals. • Conformation of ALD technique and chemistry of precursors. • ALD of semiconductor oxide thin films. • Ultra-thin (∼1.47 nm thick) ALD-developed tungsten oxide nano-crystals on large area. - Abstract: Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique’s capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO{sub 3}) over the large area of standard 4” Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  3. Electrochemically modulated liquid chromatography: Theoretical investigations and applications from the perspectives of chromatography and interfacial electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Keller, David W. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Electrochemically modulated liquid chromatography (EMLC) employs a conductive material as both a stationary phase for chromatographic separations and as a working electrode for performing electrochemistry experiments. This dual functionality gives EMLC the capacity to manipulate chromatographic separations by changing the potential applied (Eapp) to the stationary phase with respect to an external reference. The ability to monitor retention as a function of Eapp provides a means to chromatographically monitor electrosorption processes at solid-liquid interfaces. In this dissertation, the retention mechanism for EMLC is examined from the perspective of electrical double layer theory and interfacial thermodynamics. From the chromatographic data, it is possible to determine the interfacial excess (Λ) of a solute and changes in interfacial tension (dγ) as a function of both Eapp and the supporting electrolyte concentration. Taken together, these two experimentally manipulated parameters can be examined within the context of the Gibbs adsorption equation to delineate the contribution of a variety of interfacial properties, including the charge of solute on the stationary phase and the potential of zero charge (PZC), to the mechanism behind EMLC-based retention. The chromatographic probing of interfacial phenomena is complemented by electroanalytical experiments that exploit the ability to monitor the electronic current flowing through an EMLC column. Cyclic voltammetry and chronoamperometry of an EMLC column are used to determine the electronic performance characteristics of an EMLC column. An electrochemical flow injection analysis of a column is provided in which the current required to maintain a constant Eapp is monitored and provides a way to examine the influence that acetonitrile and supporting electrolyte composition, flow rate, column backpressure, and ionic strength have on the structure of electrified interfaces.

  4. Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow.

    Science.gov (United States)

    Jeong, Sohdam; Kim, Jun Mo; Cho, Soowon; Baig, Chunggi

    2017-11-22

    We present a detailed analysis on the effect of short-chain branches on the structure and dynamics of interfacial chains using atomistic nonequilibrium molecular dynamics simulations of confined polyethylene melts in a wide range of shear rates. The intrinsically fast random motions of the short branches constantly disturb the overall chain conformation, leading to a more compact and less deformed chain structure of the short-chain branched (SCB) polymer against the imposed flow field in comparison with the corresponding linear polymer. Moreover, such highly mobile short branches along the backbone of the SCB polymer lead to relatively weaker out-of-plane wagging dynamics of interfacial chains, with highly curvy backbone structures in the intermediate flow regime. In conjunction with the contribution of short branches (as opposed to that of the backbone) to the total interfacial friction between the chains and the wall, the SCB polymer shows a nearly constant behavior in the degree of slip (d s ) with respect to shear rate in the weak-to-intermediate flow regimes. On the contrary, in the strong flow regime where irregular chain rotation and tumbling dynamics occur via intensive dynamical collisions between interfacial chains and the wall, an enhancement effect on the chain detachment from the wall, caused by short branches, leads to a steeper increase in d s for the SCB polymer than for the linear polymer. Remarkably, the SCB chains at the interface exhibit two distinct types of rolling mechanisms along the backbone, with a half-dumbbell mesoscopic structure at strong flow fields, in addition to the typical hairpin-like tumbling behavior displayed by the linear chains.

  5. Liquid interfacial water and brines in the upper surface of Mars

    Science.gov (United States)

    Moehlmann, Diedrich

    2013-04-01

    Liquid interfacial water and brines in the upper surface of Mars Diedrich T.F. Möhlmann DLR Institut für Planetenforschung, Rutherfordstr. 2, D - 12489 Berlin, Germany dirk.moehlmann@dlr.de Interfacial water films and numerous brines are known to remain liquid at temperatures far below 0° C. The physical processes behind are described in some detail. Deliquescence, i.e. the liquefaction of hygroscopic salts at the threshold of a specific "Deliquescence Relative Humidity", is shown to be that process, which on present Mars supports the formation of stable interfacial water and bulk liquids in form of temporary brines on and in a salty upper surface of present Mars in a diurnally temporary and repetitive process. Temperature and relative humidity are the governing conditions for deliquescence (and the counterpart "efflorescence") to evolve. The current thermo-dynamical conditions on Mars support these processes to evolve on present Mars. The deliquescence-driven presence of liquid brines in the soil of the upper surface of Mars can expected to be followed by physical and chemical processes like "surface cementation", down-slope flows, and physical and chemical weathering processes. A remarkable and possibly also biologically relevant evolution towards internally interfacial water bearing structures of dendritic capillaries is related to their freezing - thawing driven formation. The internal walls of these network-pores or -tubes can be covered by films of interfacial water, providing that way possibly habitable crack-systems in soil and rock. These evolutionary processes of networks, driven by their tip-growth, can expected to be ongoing also at present.

  6. Mineral composition of enamel from two South African population groups

    Energy Technology Data Exchange (ETDEWEB)

    Retief, D H [University of the Witwatersrand, Johannesburg (South Africa). Dental Research Unit; Turkstra, J [University of Fort Hare, Alice (South Africa). Department of Chemistry; Cleaton-Jones, P E; Biddlecombe, F [Atomic Energy Board, Pelindaba, Pretoria (South Africa). Chemistry Div.

    1979-10-01

    The mineral composition of pooled bulk enamel from Black and White South Africans respectively, resident in the Johannesburg area, was determined by neutron activation analysis and high resolution gamma spectromety. The differences between the concentrations of Ca, Cl, Mg, Na, Br and Co in the enamel of the two population groups were apparently not significant. There was a trend for the concentrations of Al, Ag, Au, Fe, Sb, and Zn to be higher in the enamel from the White subjects and for the concentrations of Mn, Se and Sr to be higher in the enamel from the Black subjects.

  7. Performance and consistency of indicator groups in two biodiversity hotspots.

    Directory of Open Access Journals (Sweden)

    Joaquim Trindade-Filho

    Full Text Available In a world limited by data availability and limited funds for conservation, scientists and practitioners must use indicator groups to define spatial conservation priorities. Several studies have evaluated the effectiveness of indicator groups, but still little is known about the consistency in performance of these groups in different regions, which would allow their a priori selection.We systematically examined the effectiveness and the consistency of nine indicator groups in representing mammal species in two top-ranked Biodiversity Hotspots (BH: the Brazilian Cerrado and the Atlantic Forest. To test for group effectiveness we first found the best sets of sites able to maximize the representation of each indicator group in the BH and then calculated the average representation of different target species by the indicator groups in the BH. We considered consistent indicator groups whose representation of target species was not statistically different between BH. We called effective those groups that outperformed the target-species representation achieved by random sets of species. Effective indicator groups required the selection of less than 2% of the BH area for representing target species. Restricted-range species were the most effective indicators for the representation of all mammal diversity as well as target species. It was also the only group with high consistency.We show that several indicator groups could be applied as shortcuts for representing mammal species in the Cerrado and the Atlantic Forest to develop conservation plans, however, only restricted-range species consistently held as the most effective indicator group for such a task. This group is of particular importance in conservation planning as it captures high diversity of endemic and endangered species.

  8. Performance and consistency of indicator groups in two biodiversity hotspots.

    Science.gov (United States)

    Trindade-Filho, Joaquim; Loyola, Rafael Dias

    2011-01-01

    In a world limited by data availability and limited funds for conservation, scientists and practitioners must use indicator groups to define spatial conservation priorities. Several studies have evaluated the effectiveness of indicator groups, but still little is known about the consistency in performance of these groups in different regions, which would allow their a priori selection. We systematically examined the effectiveness and the consistency of nine indicator groups in representing mammal species in two top-ranked Biodiversity Hotspots (BH): the Brazilian Cerrado and the Atlantic Forest. To test for group effectiveness we first found the best sets of sites able to maximize the representation of each indicator group in the BH and then calculated the average representation of different target species by the indicator groups in the BH. We considered consistent indicator groups whose representation of target species was not statistically different between BH. We called effective those groups that outperformed the target-species representation achieved by random sets of species. Effective indicator groups required the selection of less than 2% of the BH area for representing target species. Restricted-range species were the most effective indicators for the representation of all mammal diversity as well as target species. It was also the only group with high consistency. We show that several indicator groups could be applied as shortcuts for representing mammal species in the Cerrado and the Atlantic Forest to develop conservation plans, however, only restricted-range species consistently held as the most effective indicator group for such a task. This group is of particular importance in conservation planning as it captures high diversity of endemic and endangered species.

  9. Effect of Aging Process in Different Solutions on Kenaf Fibre Structure and Its Interfacial Adhesion in Epoxy Composites

    Directory of Open Access Journals (Sweden)

    A. Shalwan

    2018-01-01

    Full Text Available Interfacial adhesion of kenaf fibres in epoxy composites was investigated using single fibre pull-out test. Several aged kenaf fibres were tested in this work. Two types of kenaf fibres were used in the work, those treated with 6% NaOH and those untreated kenaf fibres. Kenaf fibres were aged in engine oil, water, salt water, and diesel. The pull-out tests were performed using microtensile tests. The tests were performed at 1 mm/min loading rate. Scanning electron microscopy was used to observe the damage on the fibres and the effect of the treatment. The general results revealed that aging of the fibres reduced their strength and interfacial adhesion. Salt water showed the least effect on the strength of the fibres. At most cases, the breakage in the fibres is the main failure. In other words, there is no remarkable effect of aging on the interfacial adhesion since the most impact was on the structure of the fibres.

  10. Interfacial properties of chitosan/sodium dodecyl sulfate complexes

    Directory of Open Access Journals (Sweden)

    Milinković Jelena R.

    2017-01-01

    Full Text Available Contemporary formulations of cosmetic and pharmaceutical emulsions may be achieved by using combined polymer/surfactant system, which can form complexes with different structure and physicochemical properties. Such complexation can lead to additional stabilization of the emulsion products. For these reasons, the main goal of this study was to investigate the interfacial properties of chitosan/sodium dodecyl sulfate complexes. In order to understand the stabilization mechanism, the interface of the oil/water systems that contained mixtures of chitosan and sodium dodecyl sulfate, was studied by measuring the interfacial tension. Considering the fact that the properties of the oil phase has influence on the adsorption process, three different types of oil were investigated: medium-chain triglycerides (semi-synthetic oil, paraffin oil (mineral oil and natural oil obtained from the grape seed. The surface tension measurements at the oil/water interface, for chitosan water solutions, indicate a poor surface activity of this biopolymer. Addition of sodium dodecyl sulfate to chitosan solution causes a significant decrease in the interfacial tension for all investigated oils. The results of this study are important for understanding the influence of polymer-surfactant interactions on the properties of the solution and stability of dispersed systems. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III46010

  11. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  12. Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining

    2017-01-01

    Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300

  13. Interfacial reaction effects on erosion of aluminum matrix composites

    International Nuclear Information System (INIS)

    Tu, J.P.; Hiroshima Univ., Higashi-Hiroshima; Matsumura, M.

    1999-01-01

    Alumina borate (A 18 B 4 O 33 ) whisker reinforced aluminum composites have attracted interest because of their high specific strength, high modulus and low cost. An obvious feature of the microstructure in A 18 B 4 O 33 /Al composite is that an interfacial reaction exists between the whisker and the aluminum alloy. In order to discuss the influence of interface interaction between the whisker and matrix on the erosion resistance of composites, two reaction treatments are conducted. From the results of the treated composites, it can be obtained about the erosion characteristics of the composite materials under steady-state conditions

  14. Modelling of AlAs/GaAs interfacial structures using high-angle annular dark field (HAADF) image simulations.

    Science.gov (United States)

    Robb, Paul D; Finnie, Michael; Craven, Alan J

    2012-07-01

    High angle annular dark field (HAADF) image simulations were performed on a series of AlAs/GaAs interfacial models using the frozen-phonon multislice method. Three general types of models were considered-perfect, vicinal/sawtooth and diffusion. These were chosen to demonstrate how HAADF image measurements are influenced by different interfacial structures in the technologically important III-V semiconductor system. For each model, interfacial sharpness was calculated as a function of depth and compared to aberration-corrected HAADF experiments of two types of AlAs/GaAs interfaces. The results show that the sharpness measured from HAADF imaging changes in a complicated manner with thickness for complex interfacial structures. For vicinal structures, it was revealed that the type of material that the probe projects through first of all has a significant effect on the measured sharpness. An increase in the vicinal angle was also shown to generate a wider interface in the random step model. The Moison diffusion model produced an increase in the interface width with depth which closely matched the experimental results of the AlAs-on-GaAs interface. In contrast, the interface width decreased as a function of depth in the linear diffusion model. Only in the case of the perfect model was it possible to ascertain the underlying structure directly from HAADF image analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy

    KAUST Repository

    Domingo, Ester

    2015-04-09

    We show that the Charge Transfer (CT) absorption signal in bulk-heterojunction (BHJ) solar cell blends, measured by photothermal deflection spectroscopy (PDS), is directly proportional to the density of molecular donor/acceptor interfaces. Since the optical transitions from ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer-fullerene interface. The latter is ~100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment (0.3 D) and the electronic coupling between ground state and CT state to be on the order of 30 meV.

  16. Interfacial Fluid Mechanics A Mathematical Modeling Approach

    CERN Document Server

    Ajaev, Vladimir S

    2012-01-01

    Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail.  Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also:  Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...

  17. Effects of fiber/matrix interactions on the interfacial deformation micromechanics of cellulose-fiber/polymer composites

    Science.gov (United States)

    Tze, William Tai-Yin

    interfacial shear stress values of 8.0 to 13.8 MPa, ranking functional groups according to their practical adhesion to polystyrene: alkyl incompatibility (Deltadelta) between the fibers and matrix. Therefore, interfacial chemistry can be employed to enhance and predict cellulose-fiber/polymer adhesion to better engineer composite properties and ultimately better utilize bio-resources.

  18. Interfacial solvation thermodynamics

    International Nuclear Information System (INIS)

    Ben-Amotz, Dor

    2016-01-01

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air–water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute–solvent) and indirect (solvent–solvent) contributions to adsorption thermodynamics, of relevance to solvation at air–water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies. (paper)

  19. The fuel-cladding interfacial friction coefficient in water-cooled reactor fuel rods

    International Nuclear Information System (INIS)

    Smith, E.

    1979-01-01

    A central problem in the development of cladding failure criteria and of effective operational, design or material remedies is to know whether the cladding stress is enhanced significantly near cladding ridges, pellet chips or fuel pellet cracks; the latter may also be coincident with cladding ridges at pellet-pellet interfaces. As regards the fuel pellet crack source of cladding stress concentration, the magnitude of the uranium dioxide-Zircaloy interfacial friction coefficient μ governs the magnitude and distribution of the enhanced cladding stress. Considerable discussion, particularly at a Post-Conference Seminar associated with the SMIRT 4 Conference, has focussed on the value of μ, the author taking the view that it is unlikely to be large (< 0.5). The reasoning behind this view is as follows. A fuel pellet should fracture during a power ramp when the tensile hoop stress within the pellet exceeds the fuel's fracture stress. Since the preferred position for a fuel pellet crack to form is at the fuel-cladding interface midway between existing fuel cracks, where the interfacial shear stress changes sign, the pellet segment size after a power ramp provides a limit to the magnitude of the interfacial shear stresses and consequently to the value of μ. With this argument as a basis, the author's early work used the Gittus fuel rod model, in which there is a symmetric distribution of fuel pellet cracks and symmetric interfacial slippage, to show that μ < 0.5 if it is assumed that the average hoop stress within the cladding attains yield levels. It was therefore suggested that a high interfacial friction coefficient is unlikely to be operative during a power ramp; this result was used to support the view that interfacial friction effects do not play a dominant role in stress corrosion crack formation within the cladding. (orig.)

  20. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  1. Interfacial wave theory of pattern formation in solidification dendrites, fingers, cells and free boundaries

    CERN Document Server

    Xu, Jian-Jun

    2017-01-01

    This comprehensive work explores interfacial instability and pattern formation in dynamic systems away from the equilibrium state in solidification and crystal growth. Further, this significantly expanded 2nd edition introduces and reviews the progress made during the last two decades. In particular, it describes the most prominent pattern formation phenomena commonly observed in material processing and crystal growth in the framework of the previously established interfacial wave theory, including free dendritic growth from undercooled melt, cellular growth and eutectic growth in directional solidification, as well as viscous fingering in Hele-Shaw flow. It elucidates the key problems, systematically derives their mathematical solutions by pursuing a unified, asymptotic approach, and finally carefully examines these results by comparing them with the available experimental results. The asymptotic approach described here will be useful for the investigation of pattern formation phenomena occurring in a much b...

  2. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    Science.gov (United States)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  3. Influence of fiber surface-treatment on interfacial property of poly(L-lactic acid)/ramie fabric biocomposites under UV-irradiation hydrothermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dakai; Li Jing [Institute of Nano- and Bio-polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai 200092 (China); Ren Jie, E-mail: renjie6598@163.com [Institute of Nano- and Bio-polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai 200092 (China) and Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 200092 (China)

    2011-04-15

    Research highlights: {yields} Ramie fiber is used as reinforced material because it's lowest water absorption among sisal, jute, kenaf and ramie fiber. {yields} Fiber surface-treatment can cause an accelerated decline in mechanical properties of PLLA biocomposites after UV-irradiation hydrothermal aging. {yields} The swelling of ramie fibers reduce the interfacial adhesive strength in critical area of PLLA matrix-ramie fabric interface. - Abstract: The present study is devoted to the effect of fiber surface-treatment on the interfacial property of biocomposites based on poly(L-lactic acid) (PLLA) and ramie fabric. Ramie fiber is used as reinforced material because it's lowest water absorption among sisal, jute, kenaf and ramie fiber. Fiber surface-treatment can increase the water absorption of natural fibers. SEM images show that PLLA biocomposites with treated ramie fabric exhibit better interfacial adhesion character. DMA results show that the storage modulus of PLLA biocomposites with treated ramie increase compared to neat PLLA and PLLA biocomposites with untreated ramie. Unexpectedly, fiber surface-treatment can cause an accelerated decline in mechanical properties of PLLA biocomposites after UV-irradiation hydrothermal aging. Finally, GPC results show that there is no obvious decline in the molecular weight of PLLA. The main reason for this decline is the interfacial destructive effect induced by the water absorption of ramie fiber.

  4. The homological functor of a Bieberbach group with a cyclic point group of order two

    Science.gov (United States)

    Hassim, Hazzirah Izzati Mat; Sarmin, Nor Haniza; Ali, Nor Muhainiah Mohd; Masri, Rohaidah; Idrus, Nor'ashiqin Mohd

    2014-07-01

    The generalized presentation of a Bieberbach group with cyclic point group of order two can be obtained from the fact that any Bieberbach group of dimension n is a direct product of the group of the smallest dimension with a free abelian group. In this paper, by using the group presentation, the homological functor of a Bieberbach group a with cyclic point group of order two of dimension n is found.

  5. Mathematical model for self-propelled droplets driven by interfacial tension

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Ken H. [School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292 (Japan); Tachibana, Kunihito; Tobe, Yuta; Kazama, Masaki [Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Kitahata, Hiroyuki [Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522 (Japan); Omata, Seiro [Faculty of Mathematics and Physics, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Nagayama, Masaharu, E-mail: nagayama@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, Hokkaido 060-0812 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0076 (Japan)

    2016-03-21

    We propose a model for the spontaneous motion of a droplet induced by inhomogeneity in interfacial tension. The model is derived from a variation of the Lagrangian of the system and we use a time-discretized Morse flow scheme to perform its numerical simulations. Our model can naturally simulate the dynamics of a single droplet, as well as that of multiple droplets, where the volume of each droplet is conserved. We reproduced the ballistic motion and fission of a droplet, and the collision of two droplets was also examined numerically.

  6. Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer

    NARCIS (Netherlands)

    Kim, N.H.; Han, D.S.; Jung, J.; Cho, J.; Kim, J.S.; Swagten, H.J.M.; You, C.Y.

    2015-01-01

    We report systematic measurements of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) by employing Brillouin light scattering in Pt/Co/AlOx and Ta/Pt/Co/AlOx structures. By introducing a tantalum buffer layer, the saturation magnetization and the interfacial perpendicular magnetic anisotropy

  7. Curvature Dependence of Interfacial Properties for Associating Lennard—Jones Fluids: A Density Functional Study

    International Nuclear Information System (INIS)

    Sun Zong-Li; Kang Yan-Shuang

    2011-01-01

    Classical density functional theory is used to study the associating Lennard—Jones fluids in contact with spherical hard wall of different curvature radii. The interfacial properties including contact density and fluid-solid interfacial tension are investigated. The influences of associating energy, curvature of hard wall and the bulk density of fluids on these properties are analyzed in detail. The results may provide helpful clues to understand the interfacial properties of other complex fluids. (condensed matter: structure, mechanical and thermal properties)

  8. Comparison of Two Group Treatments for Bulimia.

    Science.gov (United States)

    Kirkley, Betty G.; And Others

    1985-01-01

    Examined the relative efficacy of two group treatments for bulimia patients (N=28). The cognitive-behavioral group was instructed to make changes in eating and vomiting behavior, whereas the nondirective group was given no instructions. The cognitive-behavioral treatment tended to have fewer dropouts and yielded significantly greater decreases in…

  9. Assessing emergency situations and their aftermath in urban areas: The EMRAS II Urban Areas Working Group

    DEFF Research Database (Denmark)

    Thiessen, K.M.; Andersson, Kasper Grann; Berkovskyy, V.

    2011-01-01

    The Urban Areas Working Group is part of the International Atomic Energy Agency’s EMRAS II (Environmental Modelling for Radiation Safety) Programme. The goal of this Working Group is to test and improve the capabilities of models used in assessment of radioactive contamination in urban settings...

  10. Interfacial condensation heat transfer for countercurrent steam-water wavy flow in a horizontal circular pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Chun, Moon Hyun [Korea Advanced Institute of Science and Technolgy, Taejon (Korea, Republic of); Chu, In Cheol [KAERI, Taejon (Korea, Republic of)

    2000-10-01

    An experimental study of interfacial condensation heat transfer has been performed for countercurrent steam-water wavy flow in a horizontal circular pipe. A total of 105 local interfacial condensation heat transfer coefficients have been obtained for various combinations of test parameters. Two empirical Nusselt number correlations were developed and parametric effects of steam and water flow rates and the degree of water subcooling on the condensation heat transfer were examined. For the wavy interface condition, the local Nusselt number is more strongly sensitive to the steam Reynolds number than water Reynolds number as opposed to the case of smooth interface condition. Comparisons of the present circular pipe data with existing correlations showed that existing correlations developed for rectangular channels are not directly applicable to a horizontal circular pipe flow.

  11. Uncertainty Principles on Two Step Nilpotent Lie Groups

    Indian Academy of Sciences (India)

    Abstract. We extend an uncertainty principle due to Cowling and Price to two step nilpotent Lie groups, which generalizes a classical theorem of Hardy. We also prove an analogue of Heisenberg inequality on two step nilpotent Lie groups.

  12. Molecular dynamics simulation of thin film interfacial strength dependency on lattice mismatch

    International Nuclear Information System (INIS)

    Yang, Zhou; Lian, Jie; Wang, Junlan

    2013-01-01

    Laser-induced thin film spallation experiments have been previously developed to characterize the intrinsic interfacial strength of thin films. In order to gain insights of atomic level thin film debonding processes and the interfacial strength dependence on film/substrate lattice structures, in this study, molecular dynamics simulations of thin film interfacial failure under laser-induced stress waves were performed. Various loading amplitudes and pulse durations were employed to identify the optimum simulation condition. Stress propagation as a function of time was revealed in conjunction with the interface structures. Parametric studies confirmed that while the interfacial strength between a thin film and a substrate does not depend on the film thickness and the duration of the laser pulse, a thicker film and a shorter duration do provide advantage to effectively load the interface to failure. With the optimized simulation condition, further studies were focused on bulk Au/Au bi-crystals with mismatched orientations, and Ni/Al, Cu/Al, Cu/Ag and Cu/Au bi-crystals with mismatched lattices. The interfacial strength was found to decrease with increasing orientation mismatch and lattice mismatch but more significantly dominated by the bonding elements' atomic structure and valence electron occupancy. - Highlights: • Molecular dynamics simulation was done on stress wave induced thin film spallation. • Atomic structure was found to be a primary strength determining factor. • Lattice mismatch was found to be a secondary strength determining factor

  13. Effect of Oxygen Inhibition Layer of Universal Adhesives on Enamel Bond Fatigue Durability and Interfacial Characteristics With Different Etching Modes.

    Science.gov (United States)

    Ouchi, H; Tsujimoto, A; Nojiri, K; Hirai, K; Takamizawa, T; Barkmeier, W W; Latta, M A; Miyazaki, M

    The purpose of this study was to evaluate the effect of the oxygen inhibition layer of universal adhesive on enamel bond fatigue durability and interfacial characteristics with different etching modes. The three universal adhesives used were Scotchbond Universal Adhesive (3M ESPE, St Paul, MN, USA), Adhese Universal (Ivoclar Vivadent, Schaan, Lichtenstein), and G-Premio Bond (GC, Tokyo, Japan). The initial shear bond strength and shear fatigue strength to enamel was determined in the presence and absence of the oxygen inhibition layer, with and without phosphoric acid pre-etching. The water contact angle was also measured in all groups using the sessile drop method. The enamel bonding specimens with an oxygen inhibition layer showed significantly higher (padhesive type and etching mode. Moreover, the water contact angles on the specimens with an oxygen inhibition layer were significantly lower (puniversal adhesives significantly increases the enamel bond fatigue durability and greatly changes interfacial characteristics, suggesting that the bond fatigue durability and interfacial characteristics of these adhesives strongly rely on its presence.

  14. Molecular dynamics study of interfacial thermal transport between silicene and substrates.

    Science.gov (United States)

    Zhang, Jingchao; Hong, Yang; Tong, Zhen; Xiao, Zhihuai; Bao, Hua; Yue, Yanan

    2015-10-07

    In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid systems. It is reported that the interfacial thermal resistances between silicene and all substrates decrease nearly 40% with temperature from 100 K to 400 K, which is due to the enhanced phonon couplings from the anharmonicity effect. Analysis of phonon power spectra of all systems is performed to interpret simulation results. Contradictory to the traditional thought that amorphous structures tend to have poor thermal transport capabilities due to the disordered atomic configurations, it is calculated that amorphous silicon and silica substrates facilitate the interfacial thermal transport compared with their crystalline structures. Besides, the coupling effect from substrates can improve the interface thermal transport up to 43.5% for coupling strengths χ from 1.0 to 2.0. Our results provide fundamental knowledge and rational guidelines for the design and development of the next-generation silicene-based nanoelectronics and thermal interface materials.

  15. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  16. Effect of reactive compatibilization on the interfacial slip in Nylon-6/EPR blends

    NARCIS (Netherlands)

    Puyvelde, van P.C.J.; Oommen, Z.; Koets, P.P.; Groeninckx, G.; Moldenaers, P.

    2003-01-01

    The viscosity of uncompatibilized polymer blends often shows a negative deviation from a log-additivity rule at shear rates relevant to processing. This deviation has been attributed to interfacial slip, which is related to the loss of entanglements at the interface. In this work interfacial slip

  17. Self-healing sandwich structures incorporating an interfacial layer with vascular network

    International Nuclear Information System (INIS)

    Chen, Chunlin; Peters, Kara; Li, Yulong

    2013-01-01

    A self-healing capability specifically targeted for sandwich composite laminates based on interfacial layers with built-in vascular networks is presented. The self-healing occurs at the facesheet–core interface through an additional interfacial layer to seal facesheet cracks and rebond facesheet–core regions. The efficacy of introducing the self-healing system at the facesheet–core interface is evaluated through four-point bend and edgewise compression testing of representative foam core sandwich composite specimens with impact induced damage. The self-healing interfacial layer partially restored the specific initial stiffness, doubling the residual initial stiffness as compared to the control specimen after the impact event. The restoration of the ultimate specific skin strength was less successful. The results also highlight the critical challenge in self-healing of sandwich composites, which is to rebond facesheets which have separated from the core material. (paper)

  18. Controlled interfacial assembly of 2D curved colloidal crystals and jammed shells

    OpenAIRE

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A.

    2006-01-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional micro-crystalline materials useful in fields as diverse as biomedicine1, materials science2, mineral flotation3 and food processing4. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials employed5-9. The development of methods that exploit the great potential of interfacial assembly f...

  19. The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments.

    Science.gov (United States)

    Manoharan, M P; Sharma, A; Desai, A V; Haque, M A; Bakis, C E; Wang, K W

    2009-07-22

    Carbon nanotubes and nanofibers are extensively researched as reinforcing agents in nanocomposites for their multifunctionality, light weight and high strength. However, it is the interface between the nanofiber and the matrix that dictates the overall properties of the nanocomposite. The current trend is to measure elastic properties of the bulk nanocomposite and then compare them with theoretical models to extract the information on the interfacial strength. The ideal experiment is single fiber pullout from the matrix because it directly measures the interfacial strength. However, the technique is difficult to apply to nanocomposites because of the small size of the fibers and the requirement for high resolution force and displacement sensing. We present an experimental technique for measuring the interfacial strength of nanofiber-reinforced composites using the single fiber pullout technique and demonstrate the technique for a carbon nanofiber-reinforced epoxy composite. The experiment is performed in situ in a scanning electron microscope and the interfacial strength for the epoxy composite was measured to be 170 MPa.

  20. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin.

    Science.gov (United States)

    Yang, Liping; Phua, Si Lei; Teo, Jun Kai Herman; Toh, Cher Ling; Lau, Soo Khim; Ma, Jan; Lu, Xuehong

    2011-08-01

    A facile biomimetic method was developed to enhance the interfacial interaction in polymer-layered silicate nanocomposites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was constructed on clay surface by a controllable coating method. The modified clay (D-clay) was incorporated into an epoxy resin, it is found that the strong interfacial interactions brought by the polydopamine benefits not only the dispersion of the D-clay in the epoxy but also the effective interfacial stress transfer, leading to greatly improved thermomechanical properties at very low inorganic loadings. Rheological and infrared spectroscopic studies show that the interfacial interactions between the D-clay and epoxy are dominated by the hydrogen bonds between the catechol-enriched polydopamine and the epoxy.

  1. An algebraic stress/flux model for two-phase turbulent flow

    International Nuclear Information System (INIS)

    Kumar, R.

    1995-12-01

    An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature

  2. The influence of an interfacial heat release on nonlinear convective regimes under the action of an imposed temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Simanovskii, Ilya B, E-mail: cesima@tx.technion.ac.il [Department of Mathematics, Technion—Israel Institute of Technology, 32000 Haifa (Israel)

    2016-12-15

    The influence of an interfacial heat release on nonlinear convective regimes, developed under the action of an imposed temperature gradient in the 47v2 silicone oil–water system, has been studied. Two types of boundary conditions—periodic boundary conditions and rigid heat-insulated lateral walls—have been considered. Transitions between the flows with different spatial structures have been investigated. It is shown that the presence of an interfacial heat release can change the sequence of bifurcations and can lead to the appearance of new oscillatory regimes. The period-three phase trajectory has been found. (paper)

  3. Evaluating interfacial shear stresses in composite hollo

    Directory of Open Access Journals (Sweden)

    Aiham Adawi

    2016-09-01

    Full Text Available Analytical evaluation of the interfacial shear stresses for composite hollowcore slabs with concrete topping is rare in the literature. Adawi et al. (2014 estimated the interfacial shear stiffness coefficient (ks that governs the behavior of the interface between hollowcore slabs and the concrete topping using push-off tests. This parameter is utilized in this paper to provide closed form solutions for the differential equations governing the behavior of simply supported composite hollowcore slabs. An analytical solution based on the deformation compatibility of the composite section and elastic beam theory, is developed to evaluate the shear stresses along the interface. Linear finite element modeling of the full-scale tests presented in Adawi et al. (2015 is also conducted to validate the developed analytical solution. The proposed analytical solution was found to be adequate in estimating the magnitude of horizontal shear stress in the studied composite hollowcore slabs.

  4. Influence of organic solvents on interfacial water at surfaces of silica gel and partially silylated fumed silica

    International Nuclear Information System (INIS)

    Turov, V.V.; Gun'ko, V.M.; Tsapko, M.D.; Bogatyrev, V.M.; Skubiszewska-Zieba, J.; Leboda, R.; Ryczkowski, J.

    2004-01-01

    The effects of organic solvents (dimethylsulfoxide-d 6 (DMSO-d 6 ), chloroform-d, acetone-d 6 , and acetonitrile-d 3 ) on the properties of interfacial water at surfaces of silica gel Si-40 and partially silylated fumed silica A-380 were studied by means of the 1 H NMR spectroscopy with freezing-out of adsorbed water at 180 1 H NMR investigations were also analysed on the basis of the structural characteristics of silicas and quantum chemical calculations of the chemical shifts δ H and solvent effects. DMSO-d 6 and acetonitrile-d 3 are poorly miscible with water in silica gel pores in contrast to the bulk liquids. DMSO-d 6 and chloroform-d affect the structure of the interfacial water weaker than acetone-d 6 and acetonitrile-d 3 at amounts of liquids greater than the pore volume. Acetone-d 6 and acetonitrile-d 3 can displace water from pores under this condition. The chemical shift of protons in water adsorbed on silica gel is 3.5-6.5 ppm, which corresponds to the formation of two to four hydrogen bonds per molecule. Water adsorbed on partially silylated fumed silica has two 1 H NMR signals at 5 and 1.1-1.7 ppm related to different structures (droplets and small clusters) of the interfacial water

  5. POROUS MICROSTRUCTURE OF THE INTERFACIAL TRANSITION ZONE IN GEOPOLYMER COMPOSITES

    Directory of Open Access Journals (Sweden)

    Steinerová M.

    2013-12-01

    Full Text Available The study deals with a comparison of the differences in the structure, composition and micromechanical properties of a metakaolinite geopolymer composite matrix, inside and outside of the interfacial transition zone (ITZ with quartz grains of added silica sand. The microstructure is investigated by a measurement of the mercury porosimetry, microscopy and by a measurement in SEM and AFM, completed by Raman spectroscopy. Weaker mechanical properties, micropores in the ITZ, a higher concentration of Al atoms and hydroxyl groups than in the ambient matrix were detected. The water transport is probably the reason for the micropore formation, caused by disequilibrium in the course of solid-phase building from geopolymer dispersion.

  6. An Investigation of Interfacial Fatigue in Fiber Reinforced Composites

    Science.gov (United States)

    Yanhua, Chen; Zhifei, Shi

    2005-09-01

    Based on the shear-lag model and the modified degradation formula for coefficient of friction, the interfacial fatigue and debonding for fiber reinforced composites under cyclic loading are studied. The loading condition is chosen as the kind that is the most frequently used in fiber-pull-out experiments. The stress components in the debonded and bonded regions are obtained according to the maximum and minimum applied loading. By the aid of theory of fracture mechanics and Paris formula, the governing equation is solved numerically and the interfacial debonding is simulated. The relationships between the parameters (such as the debond rate, debond length, debond force) and the number of cycles are obtained.

  7. Schottky barrier and band edge engineering via the interfacial structure and strain for the Pt/TiO2 heterostructure.

    Science.gov (United States)

    Ma, Xiangchao; Wu, Xin; Wang, Yucheng; Dai, Ying

    2017-07-19

    Charge transfer across the Pt/TiO 2 interface, which is mainly determined by the interface Schottky barrier height (SBH), is an important process in the (photo)catalytic and electronic applications of the Pt/TiO 2 composite. Therefore, systematic investigation of the factors that affect the interface SBH is indispensable for understanding and optimizing its performance. In this work, a systematic study of the effects of the interfacial structure and strain on the SBH of the Pt/TiO 2 (001) interface has been carried out based on the first-principles calculations. The results of interface adhesion energy show that two different interfacial structures for the Pt/TiO 2 (001) heterointerface may exist experimentally, namely, O-Pt bonding and Ti-Pt bonding. Moreover, the interfacial structures result in not only different values for the SBH, but also different dependences of the SBH on strain. Detailed investigations show that these versatile modulations of the SBH with the structure and strain are mainly attributed to the strong dependence of the band edges of TiO 2 and the interfacial potential alignments on the strain and structure, suggesting that these results are general and may be applicable to other metal/TiO 2 heterostructures.

  8. Interfacial area measurements in two-phase bubbly flows. Pt.1. Comparison between the light attenuation technique and the photographic method

    International Nuclear Information System (INIS)

    Veteau, J.-M.; Charlot, Roland.

    1981-02-01

    In order to measure specific area by a light attenuation technique in bubbly stationnary flows, the main features of an optical design are given. This method, valid for bubble sizes between 0,5 and several millimeters, is compared with a photographic technique. The latter gives values systematically higher (15 to 25%) than the former. The measured specific areas range from 0.5 to 2 cm -1 . The multiple sources of error inherent in the photographic method are discussed [fr

  9. TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells

    Science.gov (United States)

    Marks, Iobin J [Evanston, IL; Hains, Alexander W [Evanston, IL

    2011-02-15

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.

  10. [Two compartment model of body composition and abdominal fat area in postmenopausal women - pilot study].

    Science.gov (United States)

    Milewska, Magdalena; Mioduszewska, Milena; Pańczyk, Mariusz; Kucharska, Alicja; Sińska, Beata; Dąbrowska-Bender, Marta; Michota-Katulska, Ewa; Zegan, Magdalena; Szabla, Anna

    2016-01-01

    Both menopausal period and aging have influence on body composition, increase of total body fat and visceral fat in particular. We should be aware that changes in body composition, mainly fat translocation to abdominal region, can occur without significant changes in body weight. Therefore quantitative abdominal fat assessment should be our aim. Body composition analysis based on two compartment model and abdominal fat area assessment in cross section. Subjects in postmenopausal period (41 women) were recruited for this study and divided into 2 groups: group 1 - women aged 45-56 years and group 2 - women aged 57-79 years. Body composition analysis and abdominal fat area assessment were conducted by using bioelectrical impedance method with BioScan 920 (Maltron int.) accordingly with standardized procedure. Women in early postmenopausal stage (Group 1) had statistically significant lower total body fat percentage in comparison with women in late postmenopausal period (Group 2) (41.09 ± 7.72% vs. 50.7 ± 9.88%, p=0.0021). Also women in group 1 were characterized by significant lower visceral fat area (VAT) as well as subcutaneous fat area (SAT) in comparison with group 2 (respectively VAT 119.25 ± 30.09 cm2 vs. 199.36 ± 87.38 cm2, p=0.0011; SAT 175.19 ±57.67 cm2 vs. 223.4±74.29 cm2, p=0.0336). According to VAT criteria (>120 cm2), 44% of women in group 1 and 80% in group 2 had excess of visceral fat. Both total body fat and intra-abdominal fat increased with age, independently of weight changes.

  11. Rheological and interfacial properties at the equilibrium of almond gum tree exudate (Prunus dulcis) in comparison with gum arabic.

    Science.gov (United States)

    Mahfoudhi, Nesrine; Sessa, Mariarenata; Ferrari, Giovanna; Hamdi, Salem; Donsi, Francesco

    2016-06-01

    Almond gum contains an arabinogalactan-type polysaccharide, which plays an important role in defining its interfacial and rheological properties. In this study, rheological and interfacial properties of almond gum and gum arabic aqueous dispersions were comparatively investigated. The interfacial tension of almond gum and gum arabic aqueous dispersions was measured using the pendant drop method in hexadecane. The asymptotic interfacial tension values for almond gum were significantly lower than the corresponding values measured for gum arabic, especially at high concentration. Rheological properties were characterized by steady and oscillatory tests using a coaxial geometry. Almond gum flow curves exhibited a shear thinning non-Newtonian behavior with a tendency to a Newtonian plateau at low shear rate, while gum arabic flow curves exhibited such behavior only at high shear rate. The influence of temperature (5-50  ℃) on the flow curves was studied at 4% (m/m) gum concentration and the Newtonian viscosities at infinite and at zero shear rate, for gum arabic and almond gum, respectively, were accurately fitted by an Arrhenius-type equation. The dynamic properties of the two gum dispersions were also studied. Both gum dispersions exhibited viscoelastic properties, with the viscous component being predominant in a wider range of concentrations for almond gum, while for gum arabic the elastic component being higher than the elastic one especially at higher concentrations.The rheological and interfacial tension properties of almond gum suggest that it may represent a possible substitute of gum arabic in different food applications. © The Author(s) 2015.

  12. Wigner functions from the two-dimensional wavelet group.

    Science.gov (United States)

    Ali, S T; Krasowska, A E; Murenzi, R

    2000-12-01

    Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.

  13. Interfacial electronic charge transfer and density of states in short period Cu/Cr multilayers; TOPICAL

    International Nuclear Information System (INIS)

    Barbee, T W; Bello, A F; Klepeis, J E; Van Buuren, T

    1999-01-01

    Nanometer period metallic multilayers are ideal structures to investigate electronic phenomena at interfaces between metal films since interfacial atoms comprise a large atomic fraction of the samples. The Cu/Cr binary pair is especially suited to study the interfaces in metals since these elements are mutually insoluble, thus eliminating mixing effects and compound formation and the lattice mismatch is very small. This allows the fabrication of high structural quality Cu/Cr multilayers that have a structure which can be approximated in calculations based on idealized atomic arrangements. The electronic structure of the Cu and the Cr layers in several samples of thin Cu/Cr multilayers were studied using x-ray absorption spectroscopy (XAS). Total electron yield was measured and used to study the white lines at the Cu L(sub 2) and L(sub 3) absorption edges. The white lines at the Cu absorption edges are strongly related to the unoccupied d-orbitals and are used to calculate the amount of charge transfer between the Cr and Cu atoms in interfaces. Analysis of the Cu white lines show a charge transfer of 0.026 electrons/interfacial Cu atom to the interfacial Cr atoms. In the Cu XAS spectra we also observe a van Hove singularity between the L(sub 2) and L(sub 3) absorption edges as expected from the structural analysis. The absorption spectra are compared to partial density of states obtained from a full-potential linear muffin-tin orbital calculation. The calculations support the presence of charge transfer and indicate that it is localized to the first two interfacial layers in both Cu and Cr

  14. Fibrillization kinetics of insulin solution in an interfacial shearing flow

    Science.gov (United States)

    Balaraj, Vignesh; McBride, Samantha; Hirsa, Amir; Lopez, Juan

    2015-11-01

    Although the association of fibril plaques with neurodegenerative diseases like Alzheimer's and Parkinson's is well established, in-depth understanding of the roles played by various physical factors in seeding and growth of fibrils is far from well known. Of the numerous factors affecting this complex phenomenon, the effect of fluid flow and shear at interfaces is paramount as it is ubiquitous and the most varying factor in vivo. Many amyloidogenic proteins have been found to denature upon contact at hydrophobic interfaces due to the self-assembling nature of protein in its monomeric state. Here, fibrillization kinetics of insulin solution is studied in an interfacial shearing flow. The transient surface rheological response of the insulin solution to the flow and its effect on the bulk fibrillization process has been quantified. Minute differences in hydrophobic characteristics between two variants of insulin- Human recombinant and Bovine insulin are found to result in very different responses. Results presented will be in the form of fibrillization assays, images of fibril plaques formed, and changes in surface rheological properties of the insulin solution. The interfacial velocity field, measured from images (via Brewster Angle Microscopy), is compared with computations. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  15. Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation

    Institute of Scientific and Technical Information of China (English)

    George Z. Chen

    2013-01-01

    The recent fast development of supercapacitors, also known scientifically as electrochemical capacitors, has benefited significantly from synthesis, characterisations and electrochemistry of nanoma-terials. Herein, the principle of supercapacitors is explained in terms of performance characteristics and charge storage mechanisms, i.e. double layer (or interfacial) capacitance and pseudo-capacitance. The semiconductor band model is applied to qualitatively account for the pseudo-capacitance in association with rectangular cyclic voltammograms (CVs) and linear galvanostatic charging and discharging plots (GCDs), aiming to differentiate supercapacitors from rechargeable batteries. The invalidity of using peak shaped CVs and non-linear GCDs for capacitance measurement is highlighted. A selective review is given to the nano-hybrid materials between carbon nanotubes and redox active materials such as electronically conducting polymers and transition metal oxides. A new concept,“interfacial conjugation”, is introduced to reflect the capacitance enhancement resulting from π-π stacking interactions at the interface between two materials with highly conjugated chemical bonds. The prospects of carbon nanotubes and graphenes for supercapacitor applications are briefly compared and discussed. Hopefully, this article can help readers to understand supercapacitors and nano-hybrid materials so that further developments in materials design and synthesis, and device engineering can be more efficient and objective.

  16. Molecular Dynamics Simulation and Analysis of Interfacial Water at Selected Sulfide Mineral Surfaces under Anaerobic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2014-04-10

    In this paper, we report on a molecular dynamics simulation (MDS) study of the behavior of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. The study revealed the interfacial water structure and wetting characteristics of the pyrite (100) surface, galena (100) surface, chalcopyrite (012) surface, sphalerite (110) surface, and molybdenite surfaces (i.e., the face, armchair-edge, and zigzag-edge surfaces), including simulated contact angles, relative number density profiles, water dipole orientations, hydrogen-bonding, and residence times. For force fields of the metal and sulfur atoms in selected sulfide minerals used in the MDS, we used the universal force field (UFF) and another set of force fields optimized by quantum chemical calculations for interactions with interfacial water molecules at selected sulfide mineral surfaces. Simulation results for the structural and dynamic properties of interfacial water molecules indicate the natural hydrophobic character for the selected sulfide mineral surfaces under anaerobic conditions as well as the relatively weak hydrophobicity for the sphalerite (110) surface and two molybdenite edge surfaces. Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE, funded work performed by Liem X. Dang. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions.

  17. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    Science.gov (United States)

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  18. Determination of interfacial heat transfer coefficient for TC11 titanium alloy hot forging

    Science.gov (United States)

    Lu, Baoshan; Wang, Leigang; Geng, Zhe; Huang, Yao

    2017-10-01

    In this paper, based on self-developed experimental apparatus, the upsetting test of TC11 titanium alloy on the hot flat die was conducted and Beck's nonlinear inverse estimation method was adopted to calculate the interfacial heat transfer coefficient (IHTC) and the change rules of IHTC following billet deformation rate, average interfacial temperature and holding time were investigated respectively. Experimental results indicate that IHTC increases with the increase of deformation rate as a whole, and the billet deformation heat and interfacial friction heat during forming that remarkably contribute to IHTC and the contributions by heat conduction to IHTC is differ from that by friction; the glass lubricant coated on the billet surface that weakens the heat transfer situation in the early stage of forging, however, this blocking effect of lubricant on IHTC soon vanishes with increasing deformation rate and it enhances the interface heat transfer later; the average interfacial temperature impacts on IHTC in many aspects and a high average interfacial temperature IHTC corresponds to a high IHTC when the deformation rate is certain, but this changing trend is not monotonous; the IHTC decreases with the increase of holding time due to oxidation. After certain holding time, the IHTC is only related to temperature and pressure in the absence of deformation rate, and the influence of pressure on IHTC is larger than that of temperature on it.

  19. Chemical sensitive interfacial free volume studies of nanophase Al-rich alloys

    International Nuclear Information System (INIS)

    Lechner, W.; Puff, W.; Wuerschum, R.; Wilde, G.

    2006-01-01

    Full text: Al-based nanocrystalline alloys have attracted substantial interest due to their outstanding mechanical properties. These alloys can be obtained by crystallization of melt-spun amorphous precursors or by grain refinement upon repeated cold-rolling of elemental layers. For both synthesis routes, the nanocrystallization process is sensitively affected by interfacial chemistry and free volumes. In order to contribute to an atomistic understanding of the interfacial structure and processes during nanocrystallization, the present work deals with studies of interfacial free volumes by means of positron-annihilation-spectroscopy. In addition to positron lifetime spectroscopy which yields information on the size of free volumes, coincident Doppler broadening of the positron-electron annihilation photons is applied as novel technique for studying the chemistry of interfaces in nanophase materials on an atomistic scale. Al-rich alloys of the above mentioned synthesis routes were studied in this work. (author)

  20. Formation of interfacial network structure via photo-crosslinking in carbon fiber/epoxy composites

    Directory of Open Access Journals (Sweden)

    S. H. Deng

    2014-07-01

    Full Text Available A series of diblock copolymers (poly(n-butylacrylate-co-poly(2-hydroxyethyl acrylate-b-poly(glycidyl methacrylate ((PnBA-co-PHEA-b-PGMA, containing a random copolymer block PnBA-co-PHEA, were successfully synthesized by atom transfer radical polymerization (ATRP. After being chemically grafted onto carbon fibers, the photosensitive methacrylic groups were introduced into the random copolymer, giving a series of copolymers (poly(n-butylacrylate-co-poly(2-methacryloyloxyethyl acrylate-b-poly(glycidyl methacrylate((PnBA-co-PMEA-b-PGMA. Dynamic mechanical analysis indicated that the random copolymer block after ultraviolet (UV irradiation was a lightly crosslinked polymer and acted as an elastomer, forming a photo-crosslinked network structure at the interface of carbon fiber/epoxy composites. Microbond test showed that such an interfacial network structure greatly improved the cohesive strength and effectively controlled the deformation ability of the flexible interlayer. Furthermore, three kinds of interfacial network structures, i physical crosslinking by H-bonds, ii chemical crosslinking by photopolymerization, and iii interpenetrating crosslinked network by photopolymerization and epoxy curing reaction were received in carbon fiber/epoxy composite, depending on the various preparation processes.