Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states
Ferraro, N. M.; Jardin, S. C.
2009-11-01
M3D- C1 is an implicit, high-order finite element code for the solution of the time-dependent nonlinear two-fluid magnetohydrodynamic equations [S.C. Jardin, J. Breslau, N. Ferraro, A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions, J. Comp. Phys. 226 (2) (2007) 2146-2174]. This code has now been extended to allow computations in toroidal geometry. Improvements to the spatial integration and time-stepping algorithms are discussed. Steady-states of a resistive two-fluid model, self-consistently including flows, anisotropic viscosity (including gyroviscosity) and heat flux, are calculated for diverted plasmas in geometries typical of the National Spherical Torus Experiment (NSTX) [M. Ono et al., Exploration of spherical torus physics in the NSTX device, Nucl. Fusion 40 (3Y) (2000) 557-561]. These states are found by time-integrating the dynamical equations until the steady-state is reached, and are therefore stationary or statistically steady on both magnetohydrodynamic and transport time-scales. Resistively driven cross-surface flows are found to be in close agreement with Pfirsch-Schlüter theory. Poloidally varying toroidal flows are in agreement with comparable calculations [A.Y. Aydemir, Shear flows at the tokamak edge and their interaction with edge-localized modes, Phys. Plasmas 14]. New effects on core toroidal rotation due to gyroviscosity and a local particle source are observed.
Magnetohydrodynamic motion of a two-fluid plasma
Burby, J. W.
2017-08-01
The two-fluid Maxwell system couples frictionless electrons and ion fluids via Maxwell's equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, as well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from the two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-order closure may be obtained in the closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-order bracket gives explicit expressions for a number of the full closure's conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.
Two-fluid model stability, simulation and chaos
Bertodano, Martín López de; Clausse, Alejandro; Ransom, Victor H
2017-01-01
This book addresses the linear and nonlinear two-phase stability of the one-dimensional Two-Fluid Model (TFM) material waves and the numerical methods used to solve it. The TFM fluid dynamic stability is a problem that remains open since its inception more than forty years ago. The difficulty is formidable because it involves the combined challenges of two-phase topological structure and turbulence, both nonlinear phenomena. The one dimensional approach permits the separation of the former from the latter. The authors first analyze the kinematic and Kelvin-Helmholtz instabilities with the simplified one-dimensional Fixed-Flux Model (FFM). They then analyze the density wave instability with the well-known Drift-Flux Model. They demonstrate that the Fixed-Flux and Drift-Flux assumptions are two complementary TFM simplifications that address two-phase local and global linear instabilities separately. Furthermore, they demonstrate with a well-posed FFM and a DFM two cases of nonlinear two-phase behavior that are ...
Two-fluid biasing simulations of the large plasma device
Fisher, Dustin M.; Rogers, Barrett N.
2017-02-01
External biasing of the Large Plasma Device (LAPD) and its impact on plasma flows and turbulence are explored for the first time in 3D simulations using the Global Braginskii Solver code. Without external biasing, the LAPD plasma spontaneously rotates in the ion diamagnetic direction. The application of a positive bias increases the plasma rotation in the simulations, which show the emergence of a coherent Kelvin Helmholtz (KH) mode outside of the cathode edge with poloidal mode number m ≃6 . Negative biasing reduces the rotation in the simulations, which exhibit KH turbulence modestly weaker than but otherwise similar to unbiased simulations. Biasing either way, but especially positively, forces the plasma potential inside the cathode edge to a spatially constant, KH-stable profile, leading to a more quiescent core plasma than the unbiased case. A moderate increase in plasma confinement and an associated steepening of the profiles are seen in the biasing runs. The simulations thus show that the application of external biasing can improve confinement while also driving a Kelvin-Helmholtz instability. Ion-neutral collisions have only a weak effect in the biased or unbiased simulations.
3D two-fluid simulations of turbulence in LAPD
Fisher, Dustin M.
The Large Plasma Device (LAPD) is modeled using a modified version of the 3D Global Braginskii Solver code (GBS) for a nominal Helium plasma. The unbiased low-flow regime is explored in simulations where there is an intrinsic E x B rotation of the plasma. In the simulations this rotation is caused primarily by sheath effects with the Reynolds stress and J x B torque due to a cross-field Pederson conductivity having little effect. Explicit biasing simulations are also explored for the first time where the intrinsic rotation of the plasma is modified through boundary conditions that mimic the biasable limiter used in LAPD. Comparisons to experimental measurements in the unbiased case show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the unbiased simulations at previously theorized values reduces the radial particle flux due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport. In the biased runs the ion-neutral collisions have a much smaller effect due to the modification of the potential from sheath terms. In biasing the plasma to increase the intrinsic rotation, simulations show the emergence of a nonlinearly saturated coherent mode of order m = 6. In addition, the plasma inside of the cathode edge becomes quiescent due to the strong influence of the wall bias in setting up the equilibrium plasma potential. Biasing in the direction opposite to the intrinsic flow reduces the
Two-fluid sub-grid-scale viscosity in nonlinear simulation of ballooning modes in a heliotron device
Miura, H.; Hamba, F.; Ito, A.
2017-07-01
A large eddy simulation (LES) approach is introduced to enable the study of the nonlinear growth of ballooning modes in a heliotron-type device, by solving fully 3D two-fluid magnetohydrodynamic (MHD) equations numerically over a wide range of parameter space, keeping computational costs as low as possible. A model to substitute the influence of scales smaller than the grid size, at sub-grid scale (SGS), and at the scales larger than it—grid scale (GS)—has been developed for LES. The LESs of two-fluid MHD equations with SGS models have successfully reproduced the growth of the ballooning modes in the GS and nonlinear saturation. The numerical results show the importance of SGS effects on the GS components, or the effects of turbulent fluctuation at small scales in low-wavenumber unstable modes, over the course of the nonlinear saturation process. The results also show the usefulness of the LES approach in studying instability in a heliotron device. It is shown through a parameter survey over many SGS model coefficients that turbulent small-scale components in experiments can contribute to keeping the plasma core pressure from totally collapsing.
Magnetohydrodynamics simulations on graphics processing units
Wong, Hon-Cheng; Feng, Xueshang; Tang, Zesheng
2009-01-01
Magnetohydrodynamics (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the authors' knowledge, the first implementation to accelerate computation of MHD simulations on GPUs. Numerical tests have been performed to validate the correctness of our GPU MHD code. Performance measurements show that our GPU-based implementation achieves speedups of 2 (1D problem with 2048 grids), 106 (2D problem with 1024^2 grids), and 43 (3D problem with 128^3 grids), respec...
Lattice kinetic simulation of nonisothermal magnetohydrodynamics.
Chatterjee, Dipankar; Amiroudine, Sakir
2010-06-01
In this paper, a lattice kinetic algorithm is presented to simulate nonisothermal magnetohydrodynamics in the low-Mach number incompressible limit. The flow and thermal fields are described by two separate distribution functions through respective scalar kinetic equations and the magnetic field is governed by a vector distribution function through a vector kinetic equation. The distribution functions are only coupled via the macroscopic density, momentum, magnetic field, and temperature computed at the lattice points. The novelty of the work is the computation of the thermal field in conjunction with the hydromagnetic fields in the lattice Boltzmann framework. A 9-bit two-dimensional (2D) lattice scheme is used for the numerical computation of the hydrodynamic and thermal fields, whereas the magnetic field is simulated in a 5-bit 2D lattice. Simulation of Hartmann flow in a channel provides excellent agreement with corresponding analytical results.
A PISO-like algorithm to simulate superfluid helium flow with the two-fluid model
Soulaine, Cyprien; Allain, Hervé; Baudouy, Bertrand; Van Weelderen, Rob
2015-01-01
This paper presents a segregated algorithm to solve numerically the superfluid helium (He II) equations using the two-fluid model. In order to validate the resulting code and illustrate its potential, different simulations have been performed. First, the flow through a capillary filled with He II with a heated area on one side is simulated and results are compared to analytical solutions in both Landau and Gorter–Mellink flow regimes. Then, transient heat transfer of a forced flow of He II is investigated. Finally, some two-dimensional simulations in a porous medium model are carried out.
Browning, P K; Evans, M; Lucini, F Arese; Lukin, V S; McClements, K G; Stanier, A
2015-01-01
Twisted magnetic flux ropes are ubiquitous in space and laboratory plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak MAST. Two current-carrying plasma rings, or flux ropes, approach each other through the mutual attraction of their like currents, and merge, through magnetic reconnection, into a single plasma torus, with substantial plasma heating. 2D resistive MHD and Hall MHD simulations of this process are reported, and new results for the temperature distribution of ions and electrons are presented. A model of the based on relaxation theory is also described, which is now extended to tight aspect ratio geometry. This model allows prediction of the final merged state and the heating. The implications of the relaxation model for heating of the solar ...
Simulation of Free Surface Compressible Flows Via a Two Fluid Model
Dias, Frederic; Ghidaglia, Jean-Michel
2008-01-01
The purpose of this communication is to discuss the simulation of a free surface compressible flow between two fluids, typically air and water. We use a two fluid model with the same velocity, pressure and temperature for both phases. In such a numerical model, the free surface becomes a thin three dimensional zone. The present method has at least three advantages: (i) the free-surface treatment is completely implicit; (ii) it can naturally handle wave breaking and other topological changes in the flow; (iii) one can easily vary the Equation of States (EOS) of each fluid (in principle, one can even consider tabulated EOS). Moreover, our model is unconditionally hyperbolic for reasonable EOS.
Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
Zenitani, Seiji; Hesse, Michael; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications
Matsumoto, Yosuke; Kudoh, Yuki; Kawashima, Tomohisa; Matsumoto, Jin; Takahashi, Hiroyuki R; Minoshima, Takashi; Zenitani, Seiji; Miyoshi, Takahiro; Matsumoto, Ryoji
2016-01-01
We present a new magnetohydrodynamic (MHD) simulation code with the aim of providing accurate numerical solutions to astrophysical phenomena where discontinuities, shock waves, and turbulence are inherently important. The code implements the HLLD approximate Riemann solver, the fifth-order-monotonicity-preserving interpolation scheme, and the hyperbolic divergence cleaning method for a magnetic field. This choice of schemes significantly improved numerical accuracy and stability, and saved computational costs in multidimensional problems. Numerical tests of one- and two-dimensional problems showed the advantages of using the high-order scheme by comparing with results from a standard second-order TVD scheme. The present code enabled us to explore long-term evolution of a three-dimensional global accretion disk, in which compressible MHD turbulence saturated at much higher levels via the magneto-rotational instability than that given by the second-order scheme owing to the adoption of the high-resolution, nume...
Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
Zenitani, Seiji; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten--Lan--van Leer (HLL) method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv\\'{e}nic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond--chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet--Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
Computer simulation of a magnetohydrodynamic dynamo. II
Kageyama, Akira; Sato, Tetsuya; Complexity Simulation Group
1995-05-01
A computer simulation of a magnetohydrodynamic dynamo in a rapidly rotating spherical shell is performed. Extensive parameter runs are carried out changing electrical resistivity. When resistivity is sufficiently small, total magnetic energy can grow more than ten times larger than total kinetic energy of convection motion which is driven by an unlimited external energy source. When resistivity is relatively large and magnetic energy is comparable or smaller than kinetic energy, the convection motion maintains its well-organized structure. However, when resistivity is small and magnetic energy becomes larger than kinetic energy, the well-organized convection motion is highly irregular. The magnetic field is organized in two ways. One is the concentration of component parallel to the rotation axis and the other is the concentration of perpendicular component. The parallel component tends to be confined inside anticyclonic columnar convection cells, while the perpendicular component is confined outside convection cells.
Observational Diagnostics for Two-Fluid Turbulence in Molecular Clouds As Suggested by Simulations
Meyer, Chad D; Burkhart, Blakesely; Lazarian, Alex
2013-01-01
We present high resolution simulations of two-fluid (ion-neutral) MHD turbulence with resolutions as large as 512^3. The simulations are supersonic and mildly sub-Alfvenic, in keeping with the conditions present in molecular clouds. Such turbulence is thought to influence star formation processes in molecular clouds because typical cores form on length scales that are comparable to the dissipation scales of this turbulence in the ions. The simulations are motivated by the fact that recent studies of isophotologue lines in molecular clouds have found significant differences in the linewidth-size relationship for neutral and ion species. The goals of this paper are to explain those observations using simulations and analytic theory, present a new set of density-based diagnostics by drawing on similar diagnostics that have been obtained by studying single-fluid turbulence, and show that our two-fluid simulations play a vital role in reconciling alternative models of star formation. The velocity-dependent diagnos...
NIMROD Resistive Magnetohydrodynamic Simulations of Spheromak Physics
Energy Technology Data Exchange (ETDEWEB)
Hooper, E B; Cohen, B I; McLean, H S; Wood, R D; Romero-Talamas, C A; Sovinec, C R
2007-12-11
The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magneto-hydrodynamic simulations with the NIMROD code. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the Sustained Spheromak Physics Experiment (SSPX) (R. D. Wood, et al., Nucl. Fusion 45, 1582 (2005)). The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results address variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.
Simulation of horizontal pipe two-phase slug flows using the two-fluid model
Energy Technology Data Exchange (ETDEWEB)
Ortega Malca, Arturo J. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica. Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Nieckele, Angela O. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica
2005-07-01
Slug flow occurs in many engineering applications, mainly in the transport of hydrocarbon fluids in pipelines. The intermittency of slug flow causes severe unsteady loading on the pipelines carrying the fluids, which gives rise to design problems. Therefore, it is important to be able to predict the onset and development of slug flow as well as slug characteristics. The present work consists in the simulation of two-phase flow in slug pattern through horizontal pipes using the two-fluid model in its transient and one-dimensional form. The advantage of this model is that the flow field is allowed to develop naturally from a given initial conditions as part of the transient calculation; the slug evolves automatically as a product of the computed flow development. Simulations are then carried out for a large number of flow conditions that lead a slug flow. (author)
Scaling laws for gas-solid riser flow through two-fluid model simulation
Institute of Scientific and Technical Information of China (English)
P.R. Naren; Vivek. V. Ranade
2011-01-01
Scale up of gas-solid circulating fluidized bed (CFB) risers poses many challenges to researchers. In this paper, CFD investigation of hydrodynamic scaling laws for gas-solid riser flow was attempted on the basis of two-fluid model simulations, in particular, the recently developed empirical scaling law of Qi, Zhu,and Huang (2008). A 3D computational model with periodic boundaries was used to perform numerical experiments and to study the effect of various system and operating parameters in hydrodynamic scaling of riser flow. The Qi scaling ratio was found to ensure similarity in global parameters like overall crosssectional average solid holdup or pressure drop gradient. However, similarity in local flow profiles was not observed for all the test cases. The present work also highlighted the significance of error bars in reporting experimental values.
Chromospheric magnetic reconnection: Two-fluid simulations of coalescing current loops
Smith, P D
2008-01-01
Aims: To investigate magnetic reconnection rates during the coalescence of two current loops in the solar chromosphere, by altering the neutral-hydrogen to proton density ratio, ioniziation/recombination coefficients, collision frequency and relative helicity of the loops. Methods: 2.5D numerical simulations of the chromosphere were conducted using a newly developed two-fluid (ion-neutral) numerical code. Developed from the Artificial Wind scheme, the numerical code includes the effects of ion-neutral collisions, ionization/recombination, thermal/resistive diffusivity and collisional/resistive heating. Results: It was found that the rates of magnetic reconnection strongly depend on the neutral-hydrogen to proton density ratio; increasing the density ratio by a thousand-fold decreased the rate of magnetic reconnection by twenty-fold. This result implies that magnetic reconnection proceeds significantly faster in the upper chromosphere, where the density of ions (protons) and neutral-hydrogen is comparable, tha...
Magneto-hydrodynamics Simulation in Astrophysics
Pang, Bijia
2011-08-01
Magnetohydrodynamics (MHD) studies the dynamics of an electrically conducting fluid under the influence of a magnetic field. Many astrophysical phenomena are related to MHD, and computer simulations are used to model these dynamics. In this thesis, we conduct MHD simulations of non-radiative black hole accretion as well as fast magnetic reconnection. By performing large scale three dimensional parallel MHD simulations on supercomputers and using a deformed-mesh algorithm, we were able to conduct very high dynamical range simulations of black hole accretion of Sgr A* at the Galactic Center. We find a generic set of solutions, and make specific predictions for currently feasible observations of rotation measure (RM). The magnetized accretion flow is subsonic and lacks outward convection flux, making the accretion rate very small and having a density slope of around -1. There is no tendency for the flows to become rotationally supported, and the slow time variability of th! e RM is a key quantitative signature of this accretion flow. We also provide a constructive numerical example of fast magnetic reconnection in a three-dimensional periodic box. Reconnection is initiated by a strong, localized perturbation to the field lines and the solution is intrinsically three-dimensional. Approximately 30% of the magnetic energy is released in an event which lasts about one Alfvén time, but only after a delay during which the field lines evolve into a critical configuration. In the co-moving frame of the reconnection regions, reconnection occurs through an X-like point, analogous to the Petschek reconnection. The dynamics appear to be driven by global flows rather than local processes. In addition to issues pertaining to physics, we present results on the acceleration of MHD simulations using heterogeneous computing systems te{shan2006heterogeneous}. We have implemented the MHD code on a variety of heterogeneous and multi-core architectures (multi-core x86, Cell, Nvidia and
Two-fluid electromagnetic simulations of plasma-jet acceleration with detailed equation-of-state
Energy Technology Data Exchange (ETDEWEB)
Thoma, C.; Welch, D. R.; Clark, R. E.; Bruner, N. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); MacFarlane, J. J.; Golovkin, I. E. [Prism Computational Sciences, Inc., Madison, Wisconsin 53711 (United States)
2011-10-15
We describe a new particle-based two-fluid fully electromagnetic algorithm suitable for modeling high density (n{sub i} {approx} 10{sup 17} cm{sup -3}) and high Mach number laboratory plasma jets. In this parameter regime, traditional particle-in-cell (PIC) techniques are challenging due to electron timescale and lengthscale constraints. In this new approach, an implicit field solve allows the use of large timesteps while an Eulerian particle remap procedure allows simulations to be run with very few particles per cell. Hall physics and charge separation effects are included self-consistently. A detailed equation of state (EOS) model is used to evolve the ion charge state and introduce non-ideal gas behavior. Electron cooling due to radiation emission is included in the model as well. We demonstrate the use of these new algorithms in 1D and 2D Cartesian simulations of railgun (parallel plate) jet accelerators using He and Ar gases. The inclusion of EOS and radiation physics reduces the electron temperature, resulting in higher calculated jet Mach numbers in the simulations. We also introduce a surface physics model for jet accelerators in which a frictional drag along the walls leads to axial spreading of the emerging jet. The simulations demonstrate that high Mach number jets can be produced by railgun accelerators for a variety of applications, including high energy density physics experiments.
Using high performance Fortran for magnetohydrodynamic simulations
Keppens, R.; Toth, G.
2000-01-01
Two scientific application programs, the Versatile Advection Code (VAC) and the HEating by Resonant Absorption (HERA) code are adapted to parallel computer platforms. Both programs can solve the time-dependent nonlinear partial differential equations of magnetohydrodynamics (MHD) with different nume
Two-fluid simulations of driven reconnection in the mega-ampere spherical tokamak
Energy Technology Data Exchange (ETDEWEB)
Stanier, A.; Browning, P.; Gordovskyy, M. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); McClements, K. G.; Gryaznevich, M. P. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Lukin, V. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)
2013-12-15
In the merging-compression method of plasma start-up, two flux-ropes with parallel toroidal current are formed around in-vessel poloidal field coils, before merging to form a spherical tokamak plasma. This start-up method, used in the Mega-Ampere Spherical Tokamak (MAST), is studied as a high Lundquist number and low plasma-beta magnetic reconnection experiment. In this paper, 2D fluid simulations are presented of this merging process in order to understand the underlying physics, and better interpret the experimental data. These simulations examine the individual and combined effects of tight-aspect ratio geometry and two-fluid physics on the merging. The ideal self-driven flux-rope dynamics are coupled to the diffusion layer physics, resulting in a large range of phenomena. For resistive MHD simulations, the flux-ropes enter the sloshing regime for normalised resistivity η≲10{sup −5}. In Hall-MHD, three regimes are found for the qualitative behaviour of the current sheet, depending on the ratio of the current sheet width to the ion-sound radius. These are a stable collisional regime, an open X-point regime, and an intermediate regime that is highly unstable to tearing-type instabilities. In toroidal axisymmetric geometry, the final state after merging is a MAST-like spherical tokamak with nested flux-surfaces. It is also shown that the evolution of simulated 1D radial density profiles closely resembles the Thomson scattering electron density measurements in MAST. An intuitive explanation for the origin of the measured density structures is proposed, based upon the results of the toroidal Hall-MHD simulations.
Numerical simulation of fluid bed drying based on two-fluid model and experimental validation
Energy Technology Data Exchange (ETDEWEB)
Assari, M.R. [Jundi-shapur University, Dezful (Iran); Basirat Tabrizi, H.; Saffar-Avval, M. [Amirkabir University of Technology, Department of Mechanical Engineering, Tehran (Iran)
2007-02-15
A mathematical model for batch drying based on the Eulerian 'two-fluid models' was developed. The two-dimensional, axis-symmetrical cylindrical equations for both phases were solved numerically. The governing equations were discretized using a finite volume method with local grid refinement near the wall and inlet port. The effects of parameters such as inlet gas velocity and inlet gas temperature on the moisture content, temperature of solid and gas at the outlet are shown. This data from the model was compared with that obtained from experiments with a fluidized bed and found to be in reasonably good agreement. (author)
Lattice kinetic simulations in three-dimensional magnetohydrodynamics.
Breyiannis, G; Valougeorgis, D
2004-06-01
A lattice kinetic algorithm to simulate three-dimensional (3D) incompressible magnetohydrodynamics is presented. The fluid is monitored by a distribution function, which obeys a scalar kinetic equation, subject to an external force due to the imposed magnetic field. Following the work of J. Comput. Phys. 179, 95 (2002)], the magnetic field is represented by a different three-component vector distribution function, which obeys a corresponding vector kinetic equation. Discretization of the 3D phase space is based on a 19-bit scheme for the hydrodynamic part and on a 7-bit scheme for the magnetic part. Numerical results for magnetohydrodynamic (MHD) flow in a rectangular duct with insulating and conducting walls provide excellent agreement with corresponding analytical solutions. The scheme maintains in all cases tested the MHD constraint inverted Delta.B=0 within machine round-off error.
Doyeux, Vincent; Chabannes, Vincent; Prud'Homme, Christophe; Ismail, Mourad
2012-01-01
A new framework for two-fluids flow using a Finite Element/Level Set method is presented and verified through the simulation of the rising of a bubble in a viscous fluid. This model is then enriched to deal with vesicles (which mimic red blood cells mechanical behavior) by introducing a Lagrange multiplier to constrain the inextensibility of the membrane. Moreover, high order polynomial approximation is used to increase the accuracy of the simulations. A validation of this model is finally presented on known behaviors of vesicles under flow such as "tank treading" and tumbling motions.
Numerical Simulations and Diagnostics in Astrophysics:. a Few Magnetohydrodynamics Examples
Peres, Giovanni; Bonito, Rosaria; Orlando, Salvatore; Reale, Fabio
2007-12-01
We discuss some issues related to numerical simulations in Astrophysics and, in particular, to their use both as a theoretical tool and as a diagnostic tool, to gain insight into the physical phenomena at work. We make our point presenting some examples of Magneto-hydro-dynamic (MHD) simulations of astrophysical plasmas and illustrating their use. In particular we show the need for appropriate tools to interpret, visualize and present results in an adequate form, and the importance of spectral synthesis for a direct comparison with observations.
Modelling interplanetary CMEs using magnetohydrodynamic simulations
Directory of Open Access Journals (Sweden)
P. J. Cargill
Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.
Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies
Smoothed Particle Magnetohydrodynamics Simulations of Protostellar Jets and Turbulent Dynamos
Tricco, Terrence S; Federrath, Christoph; Bate, Matthew R
2013-01-01
We presents results from Smoothed Particle Magnetohydrodynamics simulations of collapsing molecular cloud cores, and dynamo amplification of the magnetic field in the presence of Mach 10 magnetised turbulence. Our star formation simulations have produced, for the first time ever, highly collimated magnetised protostellar jets from the first hydrostatic core phase. Up to 40% of the initial core mass may be ejected through this outflow. The primary difficulty in performing these simulations is maintaining the divergence free constraint of the magnetic field, and to address this issue, we have developed a new divergence cleaning method which has allowed us to stably follow the evolution of these protostellar jets for long periods. The simulations performed of supersonic MHD turbulence are able to exponentially amplify magnetic energy by up to 10 orders of magnitude via turbulent dynamo. To reduce numerical dissipation, a new shock detection algorithm is utilised which is able to track magnetic shocks throughout ...
Directory of Open Access Journals (Sweden)
Haixu Liu
2016-01-01
Full Text Available A pure two-fluid model was used for investigating transverse liquid jet to a supersonic crossflow. The well-posedness problem of the droplet phase governing equations was solved by applying an equation of state in the kinetic theory. A k-ε-kp turbulence model was used to simulate the turbulent compressible multiphase flow. Separation of boundary layer in front of the liquid jet was predicted with a separation shock induced. A bow shock was found to interact with the separation shock in the simulation result, and the adjustment of shock structure caused by the interaction described the whipping phenomena. The predicted penetration height showed good agreement with the empirical correlations. In addition, the turbulent kinetic energies of both the gas and droplet phases were presented for comparison, and effects of the jet-to-air momentum flux ratio and droplet diameter on the penetration height were also examined in this work.
T. E. Boukelia; M. S. Mecibah; A. Laouafi
2016-01-01
The Parabolic trough solar collector is considered as one of the most proven, mature and commercial concentrating solar systems implemented in arid and semi-arid regions for energy production. It focuses sunlight onto a solar receiver by using mirrors and is finally converted to a useful thermal energy by means of a heat transfer fluid. The aims of this study are (i) to develop a new methodology for simulation and performance evaluation of parabolic trough solar collector, in addition (i) to ...
Marx, Alain; Lütjens, Hinrich
2017-03-01
A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.
Directory of Open Access Journals (Sweden)
T. E. Boukelia
2016-05-01
Full Text Available The Parabolic trough solar collector is considered as one of the most proven, mature and commercial concentrating solar systems implemented in arid and semi-arid regions for energy production. It focuses sunlight onto a solar receiver by using mirrors and is finally converted to a useful thermal energy by means of a heat transfer fluid. The aims of this study are (i to develop a new methodology for simulation and performance evaluation of parabolic trough solar collector, in addition (i to compare the efficiencies of this system using two different fluids; thermic oil and molten solar salt. The validation of obtained results using this methodology shows a good agreement with those obtained by the experimental tests. Furthermore, this study favors the using of thermic oil as heat transfer fluid in the receiver instead of molten salt due to the high efficiency of the concentrator based on the first fluid in comparison to the second one.
Efficient magnetohydrodynamic simulations on graphics processing units with CUDA
Wong, Hon-Cheng; Wong, Un-Hong; Feng, Xueshang; Tang, Zesheng
2011-10-01
Magnetohydrodynamic (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the best of the author's knowledge, the first implementation of MHD simulations entirely on GPUs with CUDA, named GPU-MHD, to accelerate the simulation process. GPU-MHD supports both single and double precision computations. A series of numerical tests have been performed to validate the correctness of our code. Accuracy evaluation by comparing single and double precision computation results is also given. Performance measurements of both single and double precision are conducted on both the NVIDIA GeForce GTX 295 (GT200 architecture) and GTX 480 (Fermi architecture) graphics cards. These measurements show that our GPU-based implementation achieves between one and two orders of magnitude of improvement depending on the graphics card used, the problem size, and the precision when comparing to the original serial CPU MHD implementation. In addition, we extend GPU-MHD to support the visualization of the simulation results and thus the whole MHD simulation and visualization process can be performed entirely on GPUs.
A new framework for magnetohydrodynamic simulations with anisotropic pressure
Hirabayashi, Kota; Amano, Takanobu
2016-01-01
We describe a new theoretical and numerical framework of the magnetohydrodynamic simulation incorporated with an anisotropic pressure tensor, which can play an important role in a collisionless plasma. A classical approach to handle the anisotropy is based on the double adiabatic approximation assuming that a pressure tensor is well described only by the components parallel and perpendicular to the local magnetic field. This gyrotropic assumption, however, fails around a magnetically neutral region, where the cyclotron period may get comparable to or even longer than a dynamical time in a system, and causes a singularity in the mathematical expression. In this paper, we demonstrate that this singularity can be completely removed away by the combination of direct use of the 2nd-moment of the Vlasov equation and an ingenious gyrotropization model. Numerical tests also verify that the present model properly reduces to the standard MHD or the double adiabatic formulation in an asymptotic manner under an appropria...
COMPARISONS OF COSMOLOGICAL MAGNETOHYDRODYNAMIC GALAXY CLUSTER SIMULATIONS TO RADIO OBSERVATIONS
Energy Technology Data Exchange (ETDEWEB)
Xu Hao; Li Hui; Collins, David C. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Govoni, Federica; Murgia, Matteo [INAF-Osservatorio Astronomico di Cagliari, Poggio dei Pini, Strada 54, I-09012 Capoterra (Italy); Norman, Michael L. [Center for Astrophysics and Space Science, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Cen Renyue [Department of Astrophysical Science, Princeton University, Princeton, NJ 08544 (United States); Feretti, Luigina; Giovannini, Gabriele, E-mail: hao_xu@lanl.gov, E-mail: hli@lanl.gov, E-mail: dccollins@lanl.gov, E-mail: mlnorman@ucsd.edu, E-mail: fgovoni@oa-cagliari.inaf.it, E-mail: matteo@oa-cagliari.inaf.it, E-mail: cen@astro.princeton.edu, E-mail: lferetti@ira.inaf.it, E-mail: ggiovann@ira.inaf.it [INAF-Istituto di Radioastronomia, Via P.Gobetti 101, I-40129 Bologna (Italy)
2012-11-01
Radio observations of galaxy clusters show that there are {mu}G magnetic fields permeating the intracluster medium (ICM), but it is hard to accurately constrain the strength and structure of the magnetic fields without the help of advanced computer simulations. We present qualitative comparisons of synthetic Very Large Array observations of simulated galaxy clusters to radio observations of Faraday rotation measure (RM) and radio halos. The cluster formation is modeled using adaptive mesh refinement magnetohydrodynamic simulations with the assumption that the initial magnetic fields are injected into the ICM by active galactic nuclei (AGNs) at high redshift. In addition to simulated clusters in Xu et al., we present a new simulation with magnetic field injections from multiple AGNs. We find that the cluster with multiple injection sources is magnetized to a similar level as in previous simulations with a single AGN. The RM profiles from simulated clusters, both |RM| and the dispersion of RM ({sigma}{sub RM}), are consistent at a first order with the radial distribution from observations. The correlations between the {sigma}{sub RM} and X-ray surface brightness from simulations are in a broad agreement with the observations, although there is an indication that the simulated clusters could be slightly overdense and less magnetized with respect to those in the observed sample. In addition, the simulated radio halos agree with the observed correlations between the radio power versus the cluster X-ray luminosity and between the radio power versus the radio halo size. These studies show that the cluster-wide magnetic fields that originate from AGNs and are then amplified by the ICM turbulence match observations of magnetic fields in galaxy clusters.
Simulations and Transport Models for Imbalanced Magnetohydrodynamic Turbulence
Ng, Chung-Sang; Dennis, T.
2016-10-01
We present results from a series of three-dimensional simulations of magnetohydrodynamic (MHD) turbulence based on reduced MHD equations. Alfven waves are launched from both ends of a long tube along the background uniform magnetic field so that turbulence develops due to collision between counter propagating Alfven waves in the interior region. Waves are launched randomly with specified correlation time Tc such that the length of the tube, L, is greater than (but of the same order of) VA *Tc such that turbulence can fill most of the tube. While waves at both ends are launched with equal power, turbulence generated is imbalanced in general, with normalized cross-helicity gets close to -1 at one end and 1 at the other end. This simulation setup allows easier comparison of turbulence properties with one-dimensional turbulence transport models, which have been applied rather successfully in modeling solar wind turbulence. However, direct comparison of such models with full simulations of solar wind turbulence is difficult due to much higher level of complexity involved. We will present our latest simulations at different resolutions with decreasing dissipation (resistivity and viscosity) levels and compare with model outputs from turbulence transport models. This work is supported by a NASA Grant NNX15AU61G.
Observations and Simulations of Magnetohydrodynamic Turbulence in the Solar Wind
Goldstein, M. L.
2006-12-01
Alfvénic fluctuations are a ubiquitous component of the solar wind. Evidence from many spacecraft indicates that the fluctuations are convected out of the solar corona with relatively flat power spectra and constitute a source of free energy for a turbulent cascade of magnetic and kinetic energy to high wave numbers. Observations and simulations support the conclusion that the cascade evolves most rapidly in the vicinity of velocity shears and current sheets. Numerical solutions of the magnetohydrodynamic equations have elucidated the role of expansion on the evolution of the turbulence. Such studies are clarifying not only how a turbulent cascade develops, but also the nature of the symmetries of the turbulence. Of particular interest is the origin of the two-component correlation function of magnetic fluctuations that was deduced from ISEE-3 data. A central issue to be resolved is whether the correlation function indicates the existence of a quasi-two- dimensional component of the turbulence, or reflects another origin, such as pressure-balanced structures or small velocity shears. In our efforts to simulate solar wind turbulence we have included a tilted rotating current heliospheric sheet as well as variety of waves (e.g., Alfvénic, quasi-two-dimensional, pressure balance structures) and microstreams. These simulations have replicated many of the observations, but challenges remain.
Three-Dimensional Magnetohydrodynamic Simulations of the Crab Nebula
Porth, Oliver; Keppens, Rony
2013-01-01
In this paper we give a detailed account of the first 3D relativistic magnetohydrodynamic (MHD) simulations of Pulsar Wind Nebulae (PWN), with parameters most suitable for the Crab Nebula. In order to clarify the new features specific to 3D models, reference 2D simulations have been carried out as well. Compared to the previous 2D simulations, we considered pulsar winds with much stronger magnetisation, up to \\sigma=3, and accounted more accurately for the anticipated magnetic dissipation in the striped zone of these winds. While the 3D models preserve the separation of the post termination shock flow into the equatorial and polar components, their relative strength and significance differ. Whereas the highly magnetised 2D models produce highly coherent and well collimated polar jets capable of efficient "drilling" through the supernova shell, in the corresponding 3D models the jets are disrupted by the kink mode current driven instability and "dissolve" into the main body of PWN after propagation of several ...
Time-dependent simulation of oblique MHD cosmic-ray shocks using the two-fluid model
Frank, Adam; Jones, T. W.; Ryu, Dongsu
1995-01-01
Using a new, second-order accurate numerical method we present dynamical simulations of oblique MHD cosmic-ray (CR)-modified plane shock evolution. Most of the calculations are done with a two-fluid model for diffusive shock acceleration, but we provide also comparisons between a typical shock computed that way against calculations carried out using the more complete, momentum-dependent, diffusion-advection equation. We also illustrate a test showing that these simulations evolve to dynamical equilibria consistent with previously published steady state analytic calculations for such shocks. In order to improve understanding of the dynamical role of magnetic fields in shocks modified by CR pressure we have explored for time asymptotic states the parameter space of upstream fast mode Mach number, M(sub f), and plasma beta. We compile the results into maps of dynamical steady state CR acceleration efficiency, epsilon(sub c). We have run simulations using constant, and nonisotropic, obliquity (and hence spatially) dependent forms of the diffusion coefficient kappa. Comparison of the results shows that while the final steady states achieved are the same in each case, the history of CR-MHD shocks can be strongly modified by variations in kappa and, therefore, in the acceleration timescale. Also, the coupling of CR and MHD in low beta, oblique shocks substantially influences the transient density spike that forms in strongly CR-modified shocks. We find that inside the density spike a MHD slow mode wave can be generated that eventually steepens into a shock. A strong layer develops within the density spike, driven by MHD stresses. We conjecture that currents in the shear layer could, in nonplanar flows, results in enhanced particle accretion through drift acceleration.
Flux canceling in three-dimensional radiative magnetohydrodynamic simulations
Thaler, Irina; Spruit, H. C.
2017-05-01
We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.
SOLAR WIND COLLISIONAL AGE FROM A GLOBAL MAGNETOHYDRODYNAMICS SIMULATION
Energy Technology Data Exchange (ETDEWEB)
Chhiber, R; Usmanov, AV; Matthaeus, WH [Department of Physics and Astronomy and Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Goldstein, ML [NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States)
2016-04-10
Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, i.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the approximate formula employed in previous work is compared with the improved simulation-based calculations to examine the validity of the simplified formula. We also develop an analytical expression for the evaluation of the collisional age and we find good agreement between the numerical and analytical results. Finally, we briefly discuss the implications for an improved estimation of collisionality along spacecraft trajectories, including Solar Probe Plus.
General relativistic magnetohydrodynamic simulations of collapsars: Rotating black hole cases
Energy Technology Data Exchange (ETDEWEB)
Mizuno, Y. [Kyoto Univ., Kyoto (Japan). Department of Astronomy; Yamada, S. [Waseda Univ., Tokyo (Japan). Science and Engineering; Koide, S. [Toyama Univ., Toyama (Japan). Department of Engineering; Shibata, K. [Kyoto Univ., Kyoto (Japan). Kwasan and Hida Observatory
2005-06-01
We have performed 2.5-dimensional general relativistic magnetohydrodynamic (MHD) simulations of coIIapsars including a rotating black hole. InitiaIIy, we assume that the care collapse has failed in this star. A rotating black hole of a few solar masses is inserted by hand into the calculation. The simulation results show the formation of a diskIike structure and the generation of a jetIike outflow near the central black hole. The jetIike outflow propagates and accelerated mainly by the magnetic field. The total jet velocity is {approx} 0.3c. When the rotation of the black hole is faster, the magnetic field is twisted strongly owing to the frame-dragging effect. The magnetic energy stored by the twisting magnetic field is directly converted to kinetic energy of the jet rather than propagating as an Alfven wave. Thus, as the rotation of the black hole becomes faster, the poloidal velocity of the jet becomes faster.
Magnetohydrodynamical simulations of a tidal disruption in general relativity
Sadowski, A; Gafton, E; Rosswog, S; Abarca, D
2015-01-01
We perform hydro- and magnetohydrodynamical general relativistic simulations of a tidal disruption of a $0.1\\,M_\\odot$ red dwarf approaching a $10^5\\,M_\\odot$ non-rotating massive black hole on a close (impact parameter $\\beta=10$) elliptical (eccentricity $e=0.97$) orbit. We track the debris self-interaction, circularization, and the accompanying accretion through the black hole horizon. We find that the relativistic precession leads to the formation of a self-crossing shock. The dissipated kinetic energy heats up the incoming debris and efficiently generates a quasi-spherical outflow. The self-interaction is modulated because of the feedback exerted by the flow on itself. The debris quickly forms a thick, almost marginally bound disc that remains turbulent for many orbital periods. Initially, the accretion through the black hole horizon results from the self-interaction, while in the later stages it is dominated by the debris originally ejected in the shocked region, as it gradually falls back towards the h...
Magnetohydrodynamic simulation of the inverse-pinch plasma discharge
Esaulov, A.; Bauer, B. S.; Lindemuth, I. R.; Makhin, V.; Presura, R.; Ryutov, D. D.; Sheehey, P. T.; Siemon, R. E.; Sotnikov, V. I.
2004-04-01
A wall confined plasma in an inverse-pinch configuration holds potential as a plasma target for Magnetized Target Fusion (MTF) as well as a simple geometry to study wall-confined plasma. An experiment is planned to study the inverse-pinch configuration using the Zebra Z pinch [B. S. Bauer et al., AIP Conference Proceedings Vol. 409 (American Institute of Physics, Melville, 1997), p. 153] of the Nevada Terawatt Facility at the University of Nevada, Reno (UNR). The dynamics of the discharge formation have been analyzed using analytic models and numerical methods. Strong heating occurs by thermalization of directed energy when an outward moving current sheet (the inverse pinch effect) collides with the outer wall of the experimental chamber. Two-dimensional magnetohydrodynamic simulations show Rayleigh-Taylor and Richtmyer-Meshkov like modes of instability, as expected because of the shock acceleration during plasma formation phase. The instabilities are not disruptive, but give rise to a mild level of turbulence. The conclusion from this work is that an interesting experiment relevant to wall confinement for MTF could be done using existing equipment at UNR.
Spectral magnetohydrodynamic simulations of the sun and stars
Brun, A. S.
The purpose of this lecture is two fold: first, to describe a powerful numerical technic, namely the spectral method, to solve the compressible (anelastic) magnetohydrodynamic (MHD) equations in spherical geometry and then to discuss some recent numerical applications to study stellar dynamics and magnetism. We thus start by describing the semi-implicit, anelastic spherical harmonic (ASH) code. In this code, the main field variables are projected into spherical harmonics for their horizontal dimensions and into Chebyshev polynomials for their radial direction. We then present, high resolution 3 D MHD simulations of the convective region of A- and G-type stars in spherical shells. We have chosen to model A and G-type stars because they represent good proxies to study and understand stellar dynamics and magnetism given their strikingly different internal “up-side-down” structure and magnetic activity level. In particular, we discuss the nonlinear interactions between turbulent convection, rotation and magnetic fields and the possibility for such flows and fields to lead to dynamo action. We find that both core and envelope turbulent convective zones are efficient at inducing strong mostly non-axisymmetric fields near equipartition but at the expense of damping the differential rotation present in the purely hydrodynamic progenitor solutions.
Coupled neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan C.
2014-10-01
Neoclassical effects (e.g., the bootstrap current and neoclassical toroidal viscosity [NTV]) have a profound impact on many magnetohydrodynamic (MHD) instabilities, including tearing modes, edge-localized modes (ELMs), and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We present the first results of the DK4D code, a dynamic drift-kinetic equation (DKE) solver being developed for this application. In this study, DK4D solves a set of time-dependent, axisymmetric DKEs for the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The plasma is formally assumed to be in the low- to finite-collisionality regimes. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by an appropriate set of extended MHD equations. We will discuss computational methods used and benchmarks to other neoclassical models and codes. Furthermore, DK4D has been coupled to a reduced, transport-timescale MHD code, allowing for self-consistent simulations of the dynamic formation of the ohmic and bootstrap currents. Several applications of this hybrid code will be presented, including an ELM-like pressure collapse. We will also discuss plans for coupling to the spatially three-dimensional, extended MHD code M3D-C1 and generalizing to nonaxisymmetric geometries, with the goal of performing self-consistent hybrid simulations of tokamak instabilities and calculations of NTV torque. This work supported by the U.S. Department of Energy (DOE) under Grant Numbers DE-FC02-08ER54969 and DE-AC02-09CH11466.
Time-dependent magnetohydrodynamic simulations of the inner heliosphere
Merkin, V. G.; Lyon, J. G.; Lario, D.; Arge, C. N.; Henney, C. J.
2016-04-01
This paper presents results from a simulation study exploring heliospheric consequences of time-dependent changes at the Sun. We selected a 2 month period in the beginning of year 2008 that was characterized by very low solar activity. The heliosphere in the equatorial region was dominated by two coronal holes whose changing structure created temporal variations distorting the classical steady state picture of the heliosphere. We used the Air Force Data Assimilate Photospheric Flux Transport (ADAPT) model to obtain daily updated photospheric magnetograms and drive the Wang-Sheeley-Arge (WSA) model of the corona. This leads to a formulation of a time-dependent boundary condition for our three-dimensional (3-D) magnetohydrodynamic (MHD) model, LFM-helio, which is the heliospheric adaptation of the Lyon-Fedder-Mobarry MHD simulation code. The time-dependent coronal conditions were propagated throughout the inner heliosphere, and the simulation results were compared with the spacecraft located near 1 astronomical unit (AU) heliocentric distance: Advanced Composition Explorer (ACE), Solar Terrestrial Relations Observatory (STEREO-A and STEREO-B), and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft that was in cruise phase measuring the heliospheric magnetic field between 0.35 and 0.6 AU. In addition, during the selected interval MESSENGER and ACE aligned radially allowing minimization of the effects of temporal variation at the Sun versus radial evolution of structures. Our simulations show that time-dependent simulationsreproduce the gross-scale structure of the heliosphere with higher fidelity, while on smaller spatial and faster time scales (e.g., 1 day) they provide important insights for interpretation of the data. The simulations suggest that moving boundaries of slow-fast wind transitions at 0.1 AU may result in the formation of inverted magnetic fields near pseudostreamers which is an intrinsically time-dependent process
Two-fluid turbulence including electron inertia
Energy Technology Data Exchange (ETDEWEB)
Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires (Argentina); Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires (Argentina)
2014-12-15
We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length λ{sub i} and the electron inertial length λ{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup −5∕3} law. For intermediate wavenumbers such that λ{sub i}{sup −1}≪k≪λ{sub e}{sup −1}, the spectrum is modified to a k{sup −7∕3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>λ{sub e}{sup −1} arises. The power spectrum for magnetic energy in this region is given by a k{sup −11∕3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.
Akcay, Cihan
A comparative study of 3-D pressureless resistive (single-fluid) magnetohydrodynamic (rMHD) and 3-D pressureless two-fluid magnetohydrodynamic (2fl-MHD) models of the Helicity Injected Torus experiment (HIT-SI) is presented. HIT-SI is a spheromak current-drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The goal of the experiment is to demonstrate that steady inductive helicity injection (SIHI) is a viable method for driving and sustaining a magnetized plasma for the eventual purpose of electricity production with magnetic fusion power. The experiment has achieved sustainment of nearly 100 kA of plasma current for ˜1~ms. Fusion power plants are expected to sustain a burning plasma for many minutes to hours with more than 10~MA of plasma current. The purpose of project is to determine the validity of the single-fluid and two-fluid MHD models of HIT-SI. The comparable size of the collisionless ion skin depth to the diameter of the injectors and resistive skin depth predicates the importance of two-fluid effects. The simulations are run with NIMROD (non-ideal magnetohydrodynamics code with rotation-open discussion), an initial-value, 3-D extended MHD code. A constant and uniform plasma density and temperature are assumed. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification and formation time
Dias, Frédéric; Ghidaglia, Jean-Michel
2008-01-01
In the study of ocean wave impact on structures, one often uses Froude scaling since the dominant force is gravity. However the presence of trapped or entrained air in the water can significantly modify wave impacts. When air is entrained in water in the form of small bubbles, the acoustic properties in the water change dramatically and for example the speed of sound in the mixture is much smaller than in pure water, and even smaller than in pure air. While some work has been done to study small-amplitude disturbances in such mixtures, little work has been done on large disturbances in air-water mixtures. We propose a basic two-fluid model in which both fluids share the same velocities. It is shown that this model can successfully mimic water wave impacts on coastal structures. Even though this is a model without interface, waves can occur. Their dispersion relation is discussed and the formal limit of pure phases (interfacial waves) is considered. The governing equations are discretized by a second-order fin...
Directory of Open Access Journals (Sweden)
L. Cabezas-Gómez
2006-12-01
Full Text Available The gas-solids flow in a CFB riser is simulated applying two-fluid modeling. Two different procedures are used for the calculation of the solids phase pressure and stress tensor: the traditional procedure and an algebraic version of the kinetic theory of granular flows. Three different numerical meshes and two different discretization schemes for the advective terms are used. Results are compared to available experimental data from the literature. The effects of the solids phase modeling procedure, advection discretization scheme, and mesh size are discussed.
Mininni, P; Dmitruk, P; Odier, P; Pinton, J-F; Plihon, N; Verhille, G; Volk, R; Bourgoin, M
2014-05-01
We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von Kármán swirling flow between two counterrotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field and a case with self-sustained magnetic fields. Evidence of long-term memory and 1/f noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von Kármán flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large-scale magnetic field.
Mininni, Pablo; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas; Verhille, Gautier; Volk, Romain; Bourgoin, Mickael
2014-01-01
We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von K\\'arm\\'an swirling flow between two counter-rotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field, and a case with self-sustained magnetic fields. Evidence of long-term memory and $1/f$ noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von K\\'arm\\'an flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large scale magnetic field.
Large-eddy simulations of fluid and magnetohydrodynamic turbulence using renormalized parameters
Indian Academy of Sciences (India)
Mahendra K Verma; Shishir Kumar
2004-09-01
In this paper a procedure for large-eddy simulation (LES) has been devised for fluid and magnetohydrodynamic turbulence in Fourier space using the renormalized parameters; The parameters calculated using field theory have been taken from recent papers by Verma [1, 2]. We have carried out LES on 643 grid. These results match quite well with direct numerical simulations of 1283. We show that proper choice of parameter is necessary in LES.
Solomenko, Z; Fourati, Manel; Larachi, Faical; Boyer, Christophe; Augier, Frédéric
2015-01-01
Liquid spreading in gas-liquid concurrent trickle-bed reactors is simulated using an Eulerian twofluid CFD approach. In order to propose a model that describes exhaustively all interaction forces acting on each fluid phase with an emphasis on dispersion mechanisms, a discussion of closure laws available in the literature is proposed. Liquid dispersion is recognized to result from two main mechanisms: capillary and mechanical (Attou and Ferschneider, 2000; Lappalainen et al., 2009- The proposed model is then implemented in two trickle-bed configurations matching with two experimental set ups: In the first configuration, simulations on a 2D axisymmetric geometry are considered and the model is validated upon a new set of experimental data. Overall pressure drop and liquid distribution obtained from $\\gamma$-ray tomography are provided for different geometrical and operating conditions. In the second configuration, a 3D simulation is considered and the model is compared to experimental liquid flux patterns at th...
Institute of Scientific and Technical Information of China (English)
ZHOU Lixing; ZHANG Xia
2004-01-01
A two-fluid particle-wall collision model with consideration of wall roughness is proposed. It takes into account the effects of the friction, restitution and in particular the wall roughness,and hence the redistribution of Reynolds stress in different directions, the absorption of turbulent energy from the mean motion and the attenuation of particle motion by the wall. The proposed model is used to simulate sudden-expansion and swirling gas-particle flows and is validated by comparing with experimental results. The results show that the proposed model gives better results than those obtained by the presently used zero-gradient condition. Hence, it is suggested that the proposed model should be used as the wall boundary condition for the particle phase in place of the presently used boundary condition.
Magnetohydrodynamic simulation of reconnection in turbulent astrophysical plasmas
Energy Technology Data Exchange (ETDEWEB)
Widmer, Fabien
2016-07-19
Turbulence is ubiquitous at large-Reynolds-number astrophysical plasmas like in the Solar corona. In such environments, the turbulence is thought to enhance the energy conversion rate by magnetic reconnection above the classical model predictions. Since turbulence cannot be simulated together with the large scale behaviour of the plasma, magnetic reconnection is studied through the average properties of turbulence. A Reynolds-averaged turbulence model is explored in which turbulence is self-sustained and -generated by the large scales (mean-) field inhomogeneities. Employing that model, the influence of turbulence is investigated by large-scale MHD numerical simulations solving evolution equations of the energy and cross-helicity of the turbulence together with the MHD equations. Magnetic reconnection is found to be either rapidly enhanced or suppressed by turbulence depending on the turbulence timescale. If the turbulence timescale is self-consistently calculated, reconnection is always strongly enhanced. Since the solar corona bears strong guide magnetic fields perpendicular to the reconnecting magnetic fields, the influences of a strong guide field on turbulent reconnection is separately investigated. A slow down of reconnection, obtained in the presence of a finite guide field, can be understood by a finite residual helicity working against the enhancement of reconnection by the turbulence. The influence of turbulence on magnetic reconnection is further studied by means of high resolution simulations of plasmoid-unstable current sheets. These simulations revealed the importance of turbulence for reaching fast reconnection.
Observations of "wisps" in magnetohydrodynamic simulations of the Crab Nebula
Camus, N F; Buccantini, N; Hughes, P A
2009-01-01
In this letter, we describe results of new high-resolution axisymmetric relativistic MHD simulations of Pulsar Wind Nebulae. The simulations reveal strong breakdown of the equatorial symmetry and highly variable structure of the pulsar wind termination shock. The synthetic synchrotron maps, constructed using a new more accurate approach, show striking similarity with the well known images of the Crab Nebula obtained by Chandra, and the Hubble Space Telescope. In addition to the \\textit{jet-torus} structure, these maps reproduce the Crab's famous moving wisps whose speed and rateof production agree with the observations. The variability is then analyzed using various statistical methods, including the method of structure function and wavelet transform. The results point towards the quasi-periodic behaviour with the periods of 1.5-3yr and MHD turbulence on scales below 1yr. The full account of this study will be presented in a follow up paper.
Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems
Energy Technology Data Exchange (ETDEWEB)
Christensen, J S; Hrousis, C A
2010-03-09
Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.
Fragile, P Chris
2008-01-01
(Abridged) We present one of the first physically-motivated two-dimensional general relativistic magnetohydrodynamic (GRMHD) numerical simulations of a radiatively-cooled black-hole accretion disk. The fiducial simulation combines a total-energy-conserving formulation with a radiative cooling function, which includes bremsstrahlung, synchrotron, and Compton effects. By comparison with other simulations we show that in optically thin advection-dominated accretion flows, radiative cooling can significantly affect the structure, without necessarily leading to an optically thick, geometrically thin accretion disk. We further compare the results of our radiatively-cooled simulation to the predictions of a previously developed analytic model for such flows. For the very low stress parameter and accretion rate found in our simulated disk, we closely match a state called the "transition" solution between an outer advection-dominated accretion flow and what would be a magnetically-dominated accretion flow (MDAF) in th...
Amano, Takanobu
2016-01-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell's equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell's equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small sca...
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Two dimensional Magnetohydrodynamic (MHD) equations with and without the momentum addi-tion respectively have been used to simulate the solar wind structure on the meridian plane. The results show that far away from the sun it isn't solar magnetic field that induces the concave solar wind speed. Instead, there may be the fast speed streamer driven by the momentum addition and an interface between high and low speed streamers. The interaction between high and low speed streamers causes the sharp division.
Simulated annealing applied to two-dimensional low-beta reduced magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Chikasue, Y., E-mail: chikasue@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561 (Japan); Furukawa, M., E-mail: furukawa@damp.tottori-u.ac.jp [Graduate School of Engineering, Tottori University, Minami 4-101, Koyama-cho, Tottori-shi, Tottori 680-8552 (Japan)
2015-02-15
The simulated annealing (SA) method is applied to two-dimensional (2D) low-beta reduced magnetohydrodynamics (R-MHD). We have successfully obtained stationary states of the system numerically by the SA method with Casimir invariants preserved. Since the 2D low-beta R-MHD has two fields, the relaxation process becomes complex compared to a single field system such as 2D Euler flow. The obtained stationary state can have fine structure. We have found that the fine structure appears because the relaxation processes are different between kinetic energy and magnetic energy.
Nonlinear electron-magnetohydrodynamic simulations of three dimensional current shear instability
Energy Technology Data Exchange (ETDEWEB)
Jain, Neeraj [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, 37191 Katlenburg-Lindau (Germany); Das, Amita; Sengupta, Sudip; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2012-09-15
This paper deals with detailed nonlinear electron-magnetohydrodynamic simulations of a three dimensional current shear driven instability in slab geometry. The simulations show the development of the instability in the current shear layer in the linear regime leading to the generation of electromagnetic turbulence in the nonlinear regime. The electromagnetic turbulence is first generated in the unstable shear layer and then spreads into the stable regions. The turbulence spectrum shows a new kind of anisotropy in which power transfer towards shorter scales occurs preferentially in the direction perpendicular to the electron flow. Results of the present three dimensional simulations of the current shear instability are compared with those of our earlier two dimensional simulations of sausage instability. It is found that the flattening of the mean velocity profile and thus reduction in the electron current due to generation of electromagnetic turbulence in the three dimensional case is more effective as compared to that in the two dimensional case.
Lattice Bhatnagar-Gross-Krook Simulations in 2-D Incompressible Magnetohydrodynamics
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Lattice Boltzmann Method is recently developed within numerical schemes for simulating a variety of physical systems. In this paper a new lattice Bhatnagar-Gross-Krook (LBGK) model for two-dimensional incompressible magnetohydrodynamics (IMHD) is presented. The model is an extension of a hydrodynamics lattice BGK model with 9 velocities on a square lattice, resulting in a model with 17 velocities. Most of the existing LBGK models for MHD can be viewed as compressible schemes to simulate incompressible flows. The compressible effect might lead to some undesirable errors in numerical simulations. In our model the compressible effect has been overcome successfully. The model is then applied to the Hartmann flow, giving reasonable results.
Rayleigh-Taylor instability in Magnetohydrodynamic Simulations of the Crab Nebula
Porth, Oliver; Keppens, Rony
2014-01-01
In this paper we discuss the development of Rayleigh-Taylor filaments in axisymmetric simulations of Pulsar wind nebulae (PWN). High-resolution adaptive mesh refinement magnetohydrodynamic (MHD) simulations are used to resolve the non-linear evolution of the instability. The typical separation of filaments is mediated by the turbulent flow in the nebula and hierarchical growth of the filaments. The strong magnetic dissipation and field-randomization found in recent global three-dimensional simulations of PWN suggests that magnetic tension is not strong enough to suppress the growth of RT filaments, in agreement with the observations of prominent filaments in the Crab nebula. The long-term axisymmetric results presented here confirm this finding.
Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Ng, C. S.; Bhattacharjee, A.
2006-10-01
A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate the problem of island coalescence instability (ICI) in 2D. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described in [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys., 215, 59-80 (2006)], allowing both statically refined and dynamically refined grids. ICI is a MHD process that can produce strong current sheets and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [cf., Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Thus, it is desirable to use adaptive refinement grids to increase resolution, and to maintain accuracy at the same time. Results are compared with simulations using finite difference method with the same refinement grid, as well as pesudo-spectral simulations using uniform grid.
Liu, Wei
2010-01-01
We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor) and NSTX (National Spherical Torus Experiment). Unmagnetized jet injection is similar to compact toroid injection but with higher possible injection density and total mass, as well as a potentially smaller footprint for the injector hardware. Our simulation results show that the unmagnetized dense jet is quickly magnetized upon injection. The penetration depth of the jet into the tokamak plasma is mostly dependent on the jet's initial kinetic energy while the jet's magnetic field determines its interior evolution. A key requirement for spatially precise fueling is for the jet's slowing-down time to be less than the time for the perturbed tokamak magnetic flux to relax due to magnetic reconnection. Thus ...
Reconnection-Driven Magnetohydrodynamic Turbulence in a Simulated Coronal-Hole Jet
Uritsky, Vadim M; DeVore, C Richard; Karpen, Judith T
2016-01-01
Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfv\\'{e}n waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated with an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnectiondriven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the M\\"{u}ller - Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the sp...
Proga, Daniel
2007-05-15
I present results from magnetohydrodynamic (MHD) simulations of a gaseous envelope collapsing onto a black hole (BH). These results support the notion that the collapsar model is one of the most promising scenarios to explain the huge release of energy in a matter of seconds associated with gamma-ray bursts (GRBs). Additionally, the MHD simulations show that at late times, when the mass supply rate is expected to decrease, the region in the vicinity of the BH can play an important role in determining the rate of accretion, its time behaviour and ultimately the energy output. In particular, the magnetic flux accumulated around the BH can repeatedly stop and then restart the energy release. As proposed by Proga & Zhang, the episode or episodes of reoccurrence of accretion processes can correspond to X-ray flares discovered recently in a number of GRBs.
Zaliznyak, Yu A; Goedbloed, J P; Zaliznyak, Yu.
2003-01-01
We present a numerical study of an idealized magnetohydrodynamic (MHD) configuration consisting of a planar wake flow embedded into a three-dimensional (3D) sheared magnetic field. Our simulations investigate the possibility for in-situ development of large-scale compressive disturbances at cospatial current sheet -- velocity shear regions in the heliosphere. Using a linear MHD solver, we first systematically chart the destabilized wavenumbers, corresponding growth rates, and physical parameter ranges for dominant 3D sinuous-type instabilities in an equilibrium wake--current sheet system. Wakes bounded by sufficiently supersonic (Mach number $M_s > 2.6$) flow streams are found to support dominant fully 3D sinuous instabilities when the plasma beta is of order unity. Fully nonlinear, compressible 2.5D and 3D MHD simulations show the self-consistent formation of shock fronts of fast magnetosonic type. They carry density perturbations far away from the wake's center. Shock formation conditions are identified in ...
Onofri, M; Malara, F; Veltri, P
2010-11-19
A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity.
Depletion of nonlinearity in magnetohydrodynamic turbulence: Insights from analysis and simulations.
Gibbon, J D; Gupta, A; Krstulovic, G; Pandit, R; Politano, H; Ponty, Y; Pouquet, A; Sahoo, G; Stawarz, J
2016-04-01
It is shown how suitably scaled, order-m moments, D_{m}^{±}, of the Elsässer vorticity fields in three-dimensional magnetohydrodynamics (MHD) can be used to identify three possible regimes for solutions of the MHD equations with magnetic Prandtl number P_{M}=1. These vorticity fields are defined by ω^{±}=curlz^{±}=ω±j, where z^{±} are Elsässer variables, and where ω and j are, respectively, the fluid vorticity and current density. This study follows recent developments in the study of three-dimensional Navier-Stokes fluid turbulence [Gibbon et al., Nonlinearity 27, 2605 (2014)NONLE50951-771510.1088/0951-7715/27/10/2605]. Our mathematical results are then compared with those from a variety of direct numerical simulations, which demonstrate that all solutions that have been investigated remain in only one of these regimes which has depleted nonlinearity. The exponents q^{±} that characterize the inertial range power-law dependencies of the z^{±} energy spectra, E^{±}(k), are then examined, and bounds are obtained. Comments are also made on (a) the generalization of our results to the case P_{M}≠1 and (b) the relation between D_{m}^{±} and the order-m moments of gradients of magnetohydrodynamic fields, which are used to characterize intermittency in turbulent flows.
Effect of a seed magnetic field on two-fluid plasma Richtmyer-Meshkov instability
Bond, Daryl; Wheatley, Vincent; Samtaney, Ravi; Pullin, Dale
2016-11-01
We investigate the effect of a uniform seed magnetic field on the plasma Richtmyer-Meshkov instability (RMI) using two-fluid simulations. These couple sets of conservation equations for the ions and electrons to the full Maxwell's equations. We consider cases where the seed magnetic field is normal to the interface and where the reference Debye length and Larmor radius range from a tenth to a thousandth of the interface perturbation wavelength. In ideal magnetohydrodynamics (MHD), it has been shown that in the presence of such a seed magnetic field, the growth of the RMI is suppressed by the transport of vorticity from the interface by MHD shocks. Our two-fluid plasma simulations reveal that while the RMI is suppressed in the presence of the seed field, the suppression mechanism varies depending on the plasma length-scales. Two-fluid plasma RMI simulations also reveal a secondary, high-wavenumber, electron-driven interface instability. This is not suppressed by the presence of the seed field. This work was partially supported by the KAUST Office of Sponsored Research under Award URF/1/2162-01.
A General Relativistic Magnetohydrodynamics Simulation of Jet Formation with a State Transition
Nishikawa, K. I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fushman, G. J.
2004-01-01
We have performed the first fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity sim 0.3c) is created as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The 3-D simulation ran over one hundred light-crossing time units which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted due in part to magnetic pressure from the twisting the initially uniform magnetic field and from gas pressure associated with shock formation. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outwards with a wider angle than the initial jet. The widening of the jet is consistent with the outward moving shock wave. This evolution of jet-disk coupling suggests that the low/hard state of the jet system may switch to the high/soft state with a wind, as the accretion rate diminishes.
Energy Technology Data Exchange (ETDEWEB)
Sovinec, C.R.
1995-12-31
Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S{sup -0.18} for the root-mean-square magnetic fluctuation level for 2.5x10{sup 3}{le}S{le}4x10{sup 4}. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a {open_quotes}sawtooth{close_quotes} shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate means of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.
Energy Technology Data Exchange (ETDEWEB)
Sovinec, Carl R. [Univ. of Wisconsin, Madison, WI (United States)
1995-11-01
Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S^{-0.18} for the root-mean-square magnetic fluctuation level for 2.5x10^{3}≤S≤4x10^{4}. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a "sawtooth" shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate means of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.
Energy Technology Data Exchange (ETDEWEB)
Liu, Wei [Los Alamos National Laboratory; Hsu, Scott [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory
2009-01-01
We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.
Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.
Hotta, H; Rempel, M; Yokoyama, T
2016-03-25
The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers.
Two-Fluid Physics and Field Reversed Configurations
Hakim, Ammar
2006-10-01
Fluid models of plasmas are a common tool to study fusion devices. In this talk algorithms for the solution of Two-Fluid plasma equations are presented and applied to the study of Field Reversed Configurations (FRCs). The Two-Fluid model is more general than the often used magnetohydrodynamic (MHD) model. The model takes into account electron inertia, charge separation and the full electromagnetic field equations and allows for separate electron and ion motion. Finite Lamor Radii effects are taken into account by self consistently evolving the anisotropic pressure tensor. The algorithm presented is the high resolution wave propagation scheme. The wave propagation method is based on solutions to the Riemann problem at cell interfaces. Operator splitting is used to incorporate the Lorentz and electromagnetic source terms. To preserve the divergence constraints on the electric and magnetic fields the so called perfectly-hyperbolic form of Maxwell equations are used which explicitly incorporate the divergence equations into the time stepping scheme. A detailed study of Field-Reversed Configuration stability and formation is performed. The study is divided into two parts. In the first, FRC stability is studied. The simulation is initialized with various FRC equilibria and perturbed. The growth rates are calculated and compared with MHD results. It is shown that the FRCs are indeed more stable within the Two-Fluid model than the MHD model. In the second part formation of FRCs is studied. In this set of simulations a cylindrical column of plasma is initialized with a uniform axial magnetic field. The field is reversed at the walls. Via the process of magnetic reconnection FRC formation is observed. The effects of Rotating Magnetic Field (RMF) drive on the formation of FRC are also presented. Here, a set of current carrying coils apply a RMF at the plasma boundary, causing a electron flow in the R-Z plane leading to field reversal. The strong azimuthal electron flow causes
Penna, Robert F; Sadowski, Aleksander
2013-01-01
Recently it has been observed that the scaling of jet power with black hole spin in galactic X-ray binaries is consistent with the predictions of the Blandford-Znajek (BZ) jet model. These observations motivate us to revisit the BZ model using general relativistic magnetohydrodynamic simulations of magnetized jets from accreting (h/r ~ 0.3), spinning (0 < a_* < 0.98) black holes. We have three main results. First, we quantify the discrepancies between the BZ jet power and our simulations: assuming maximum efficiency and uniform fields on the horizon leads to a ~10% overestimate of jet power, while ignoring the accretion disk leads to a further ~50% overestimate. Simply reducing the standard BZ jet power prediction by 60% gives a good fit to our simulation data. Our second result is to show that the membrane formulation of the BZ model correctly describes the physics underlying simulated jets: torques, dissipation, and electromagnetic fields on the horizon. This provides intuitive yet rigorous pictures f...
Two-fluid plasma Richtmyer-Meshkov instability
Wheatley, Vincent; Bond, Daryl; Pullin, Dale; Samtaney, Ravi
2016-11-01
The Richtmyer-Meshkov instability of a shock accelerated perturbed density interface is computationally investigated in the context of ideal two-fluid plasmas. This is accomplished by numerically solving separate sets of conservation equations for the ions and electrons, coupled to the full Maxwell's equations. We focus on cases without an imposed magnetic field and with Debye lengths ranging from a thousandth to a tenth of the interface perturbation wavelength. For all cases investigated, the behavior of the flow is substantially different from that predicted by the Euler or ideal magnetohydrodynamics equations. Electric fields generated by charge separation cause interface oscillations, particularly in the electrons, that drive a secondary high-wavenumber instability. Consequently, the density interface is substantially more unstable than predicted by the Euler equations for all cases investigated. Self-generated magnetic fields are predicted within our simulations, but their orientation is such that they do not dampen the Richtmyer-Meshkov instability. This work was partially supported by the KAUST Office of Sponsored Research under Award URF/1/2162-01.
Resistive magnetohydrodynamic simulations of X-line retreat during magnetic reconnection
Murphy, N A
2010-01-01
To investigate the impact of current sheet motion on the reconnection process, we perform resistive magnetohydrodynamic (MHD) simulations of two closely located reconnection sites which move apart from each other as reconnection develops. This simulation develops less quickly than an otherwise equivalent single perturbation simulation but eventually exhibits a higher reconnection rate. The unobstructed outflow jets are faster and longer than the outflow jets directed towards the magnetic island that forms between the two current sheets. The X-line and flow stagnation point are located near the trailing end of each current sheet very close to the obstructed exit. The speed of X-line retreat ranges from ~0.02-0.06 while the speed of stagnation point retreat ranges from ~0.03-0.07, in units of the initial upstream Alfven velocity. Early in time, the flow stagnation point is located closer to the center of the current sheet than the X-line, but later on the relative positions of these two points switch. Consequen...
Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics
Bakhsh, Abeer
2016-03-09
Numerical simulations and analysis indicate that the Richtmyer-Meshkov instability(RMI) is suppressed in ideal magnetohydrodynamics(MHD) in Cartesian slab geometry. Motivated by the presence of hydrodynamic instabilities in inertial confinement fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial or azimuthal (2D) perturbations. The linear stability is examined in the context of an initial value problem (with a time-varying base state) wherein the linearized ideal MHD equations are solved with an upwind numerical method. Linear simulations in the absence of a magnetic field indicate that RMI growth rate during the early time period is similar to that observed in Cartesian geometry. However, this RMI phase is short-lived and followed by a Rayleigh-Taylor instability phase with an accompanied exponential increase in the perturbation amplitude. We examine several strengths of the magnetic field (characterized by β=2p/B^2_r) and observe a significant suppression of the instability for β ≤ 4. The suppression of the instability is attributed to the transport of vorticity away from the interface by Alfvén fronts.
Yuan, Xingqiu; Trichtchenko, Larisa; Boteler, David
Propagation of coronal mass ejections from solar surface to the Earth magnetosphere is strongly influenced by the conditions in solar corona and ambient solar wind. Thus, reliable simulation of the background solar wind is the primary task toward the development of numerical model for the transient events. In this paper we introduce a new numerical model which has been specifically designed for numerical study of the solar corona and ambient solar wind. This model is based on our recently developed three-dimensional Spherical Coordinate Adaptive Magneto-Hydro-Dynamic (MHD) code (SCA-MHD-3D) [Yuan et al., 2009]. Modifications has been done to include the observed magnetic field at the photosphere as inner boundary conditions. The energy source term together with reduced plasma gamma are used in the nonlinear MHD equations in order to simulate the solar wind acceleration from subsonic speed at solar surface to supersonic speed at the inter-heliosphere region, and the absorbing boundary conditions are used at the solar surface. This model has been applied to simulate the background solar wind condition for several different solar rotations, and comparison between the observation and model output have shown that it reproduces many features of solar wind, including open and closed magnetic fields, fast and slow solar wind speed, sector boundaries, etc.
Liu, Wei; Li, Hui; Li, Shengtai; Lynn, Alan G
2008-01-01
Nonlinear ideal magnetohydrodynamic (MHD) simulations of the propagation and expansion of a magnetic "bubble" plasma into a lower density, weakly-magnetized background plasma are presented. These simulations mimic the geometry and parameters of the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Amer. Phys. Soc. {\\bf 52}, 53 (2007)], which is studying magnetic bubble expansion as a model for extra-galactic radio lobes. The simulations predict several key features of the bubble evolution. First, the direction of bubble expansion depends on the ratio of the bubble toroidal to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, an MHD shock and a trailing slow-mode compressible MHD wavefront are formed ahead of the bubble as it propagates into the background plasma. Third, the bub...
Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics
Miesch, Mark; Matthaeus, William; Brandenburg, Axel; Petrosyan, Arakel; Pouquet, Annick; Cambon, Claude; Jenko, Frank; Uzdensky, Dmitri; Stone, James; Tobias, Steve; Toomre, Juri; Velli, Marco
2015-11-01
We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) flows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several specific applications in heliophysics and astrophysics, assessing triumphs, challenges, and future directions.
Energy Technology Data Exchange (ETDEWEB)
Wang, Peng; Abel, Tom; /KIPAC, Menlo Park /Santa Barbara, KITP
2007-12-18
Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a 10{sup 10} M{sub {circle_dot}} halo with initial NFW dark matter and gas profiles, we impose a uniform 10{sup -9} G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting {approx} 500 Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase and do not change appreciably with time. Most of the cold phase shows a dispersion of order ten in the magnetic field strength. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. By comparing the estimated star formation rate (SFR) in hydrodynamic and MHD simulations, we find that after the magnetic field strength saturates, magnetic forces provide further support in the cold gas and lead to a decline of the SFR.
Energy Technology Data Exchange (ETDEWEB)
Wang, Peng; Abel, Tom; /KIPAC, Menlo Park /Santa Barbara, KITP
2007-12-18
Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a 10{sup 10} M{sub {circle_dot}} halo with initial NFW dark matter and gas profiles, we impose a uniform 10{sup -9} G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting {approx} 500 Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase and do not change appreciably with time. Most of the cold phase shows a dispersion of order ten in the magnetic field strength. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. By comparing the estimated star formation rate (SFR) in hydrodynamic and MHD simulations, we find that after the magnetic field strength saturates, magnetic forces provide further support in the cold gas and lead to a decline of the SFR.
Energy Technology Data Exchange (ETDEWEB)
Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.
1997-11-01
This report covers application of Argonne National Laboratory`s (ANL`s) computer codes to simulation and analysis of components of the magnetohydrodynamic (MHD) power train system at the Component Development and Integration Facility (CDIF). Major components of the system include a 50-MWt coal-fired, two-stage combustor and an MHD channel. The combustor, designed and built by TRW, includes a deswirl section between the first and the second-stage combustor and a converging nozzle following the second-stage combustor, which connects to the MHD channel. ANL used computer codes to simulate and analyze flow characteristics in various components of the MHD system. The first-stage swirl combustor was deemed a mature technology and, therefore, was not included in the computer simulation. Several versions of the ICOMFLO computer code were used for the deswirl section and second-stage combustor. The MGMHD code, upgraded with a slag current leakage submodel, was used for the MHD channel. Whenever possible data from the test facilities were used to aid in calibrating parameters in the computer code, to validate the computer code, or to set base-case operating conditions for computations with the computer code. Extensive sensitivity and parametric studies were done on cold-flow mixing in the second-stage combustor, reacting flow in the second-stage combustor and converging nozzle, and particle-laden flow in the deswirl zone of the first-stage combustor, the second-stage combustor, and the converging nozzle. These simulations with subsequent analysis were able to show clearly in flow patterns and various computable measures of performance a number of sensitive and problematical areas in the design of the power train. The simulations of upstream components also provided inlet parameter profiles for simulation of the MHD power generating channel. 86 figs., 18 tabs.
Xiong, Ming; Wang, Yuming; Wang, Shui; 10.1029/2005JA011593
2009-01-01
Numerical studies have been performed to interpret the observed "shock overtaking magnetic cloud (MC)" event by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Results of an individual MC simulation show that the MC travels with a constant bulk flow speed. The MC is injected with very strong inherent magnetic field over that in the ambient flow and expands rapidly in size initially. Consequently, the diameter of MC increases in an asymptotic speed while its angular width contracts gradually. Meanwhile, simulations of MC-shock interaction are also presented, in which both a typical MC and a strong fast shock emerge from the inner boundary and propagate along heliospheric equator, separated by an appropriate interval. The results show that the shock firstly catches up with the preceding MC, then penetrates through the MC, and finally merges with the MC-driven shock into a stronger compound shock. The morphologies of shock front in interplanetary space and MC body behave as a ...
Endrizzi, A.; Ciolfi, R.; Giacomazzo, B.; Kastaun, W.; Kawamura, T.
2016-08-01
We present new results of fully general relativistic magnetohydrodynamic simulations of binary neutron star (BNS) mergers performed with the Whisky code. All the models use a piecewise polytropic approximation of the APR4 equation of state for cold matter, together with a ‘hybrid’ part to incorporate thermal effects during the evolution. We consider both equal and unequal-mass models, with total masses such that either a supramassive NS or a black hole is formed after merger. Each model is evolved with and without a magnetic field initially confined to the stellar interior. We present the different gravitational wave (GW) signals as well as a detailed description of the matter dynamics (magnetic field evolution, ejected mass, post-merger remnant/disk properties). Our simulations provide new insights into BNS mergers, the associated GW emission and the possible connection with the engine of short gamma-ray bursts (both in the ‘standard’ and in the ‘time-reversal’ scenarios) and other electromagnetic counterparts.
Endrizzi, Andrea; Giacomazzo, Bruno; Kastaun, Wolfgang; Kawamura, Takumu
2016-01-01
We present new results of fully general relativistic magnetohydrodynamic (GRMHD) simulations of binary neutron star (BNS) mergers performed with the Whisky code. All the models use a piecewise polytropic approximation of the APR4 equation of state (EOS) for cold matter, together with a "hybrid" part to incorporate thermal effects during the evolution. We consider both equal and unequal-mass models, with total masses such that either a supramassive NS or a black hole (BH) is formed after merger. Each model is evolved with and without a magnetic field initially confined to the stellar interior. We present the different gravitational wave (GW) signals as well as a detailed description of the matter dynamics (magnetic field evolution, ejected mass, post-merger remnant/disk properties). Our simulations provide new insights into BNS mergers, the associated GW emission and the possible connection with the engine of short gamma-ray bursts (both in the "standard" and in the "time-reversal" scenarios) and other electro...
Wang, Peng
2007-01-01
Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a $10^{10}$ \\msun halo with initial NFW dark matter and gas profiles, we impose a uniform $10^{-9}$ G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting $\\sim500$ Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase ...
Makwana, K D; Li, H; Daughton, W; Cattaneo, F
2014-01-01
Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfv\\'{e}n waves, which interfere and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of $k_{\\perp}^{-1.3}$. The kinetic code shows a spectral slope of $k_{\\perp}^{-1.5}$ for smaller simulation domain, and $k_{\\perp}^{-1.3}$ for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. T...
Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Mercury's Magnetosphere
Chen, Y.; Toth, G.; Jia, X.; Gombosi, T. I.; Markidis, S.
2015-12-01
Mercury's magnetosphere is much more dynamic than other planetary magnetospheres because of Mercury's weak intrinsic magnetic field and its proximity to the Sun. Magnetic reconnection and Kelvin-Helmholtz phenomena occur in Mercury's magnetopause and magnetotail at higher frequencies than in other planetary magnetosphere. For instance, chains of flux transfer events (FTEs) on the magnetopause, have been frequentlyobserved by the the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft (Slavin et al., 2012). Because ion Larmor radius is comparable to typical spatial scales in Mercury's magnetosphere, finite Larmor radius effects need to be accounted for. In addition, it is important to take in account non-ideal dissipation mechanisms to accurately describe magnetic reconnection. A kinetic approach allows us to model these phenomena accurately. However, kinetic global simulations, even for small-size magnetospheres like Mercury's, are currently unfeasible because of the high computational cost. In this work, we carry out global simulations of Mercury's magnetosphere with the recently developed MHD-EPIC model, which is a two-way coupling of the extended magnetohydrodynamic (XMHD) code BATS-R-US with the implicit Particle-in-Cell (PIC) model iPIC3D. The PIC model can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. We will present our preliminary results and comparison with MESSENGER observations.
Directory of Open Access Journals (Sweden)
Andrew N. Guarendi
2013-01-01
Full Text Available Numerical simulations of magnetohydrodynamic (MHD hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1 calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.
Chatterjee, Dipankar; Amiroudine, Sakir
2011-02-01
A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative.
Numerical Simulation of 2D Supersonic Magnetohydrodynamic Channel and Study on Hall Effect
Institute of Scientific and Technical Information of China (English)
ZHENG Xiaomei; LU Haoyu; XU Dajun; CAI Guobiao
2011-01-01
In this research effort, numerical simulation of two-dimensional magnetohydrodynamic (MHD) channel is performed and Hall effect is studied.The computational model consists of the Navier-Stokes (N-S) equations coupled with electrical-magnetic source terms, Maxwell equations and the generalized Ohm's law.Boundary conditions for the electrical potential equation considering Hall effect are derived.To start with, the MHD channel with single-pair electrodes is studied and flow of the electric current is in accordance with physical principle.Then the MHD channel with five-pair electrodes is numerically simulated.The results show that the electrical current concentrates on the downstream of the anode and the upstream of the cathode due to Hall effect, and the flow field becomes asymmetrical.At the current value of the magnetic interaction parameter, the electrical-magnetic force affects the flow remarkably, decreasing the outlet Mach number and increasing the outlet pressure; what's more, the flow structure in the channel becomes extremely complex.Performances of MHD channels with continual electrodes and segmented electrodes are compared.The results show that performance of the MHD channel with segmented electrodes is better than that with continual electrodes with the increase of Hall parameter.
Zhang, Haocheng; Li, Hui; Guo, Fan; Taylor, Greg
2017-02-01
Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.
Guarendi, Andrew N; Chandy, Abhilash J
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.
Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.
2014-12-01
We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ~220 L Edd/c 2 and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ~20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ~10 L Edd. This yields a radiative efficiency ~4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yan-Fei [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics. Toronto, ON M5S3H4 (Canada)
2014-12-01
We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L {sub Edd}. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.
Depletion of Nonlinearity in Magnetohydrodynamic Turbulence: Insights from Analysis and Simulations
Gibbon, J; Krstulovic, G; Pandit, R; Politano, H; Ponty, Y; Pouquet, A; Sahoo, G; Stawarz, J
2015-01-01
We build on recent developments in the study of fluid turbulence [Gibbon \\textit{et al.} Nonlinearity 27, 2605 (2014)] to define suitably scaled, order-$m$ moments, $D_m^{\\pm}$, of $\\omega^\\pm= \\omega \\pm j$, where $\\omega$ and $j$ are, respectively, the vorticity and current density in three-dimensional magnetohydrodynamics (MHD). We show by mathematical analysis, for unit magnetic Prandtl number $P_M$, how these moments can be used to identify three possible regimes for solutions of the MHD equations; these regimes are specified by inequalities for $D_m^{\\pm}$ and $D_1^{\\pm}$. We then compare our mathematical results with those from our direct numerical simulations (DNSs) and thus demonstrate that 3D MHD turbulence is like its fluid-turbulence counterpart insofar as all solutions, which we have investigated, remain in \\textit{only one of these regimes}; this regime has depleted nonlinearity. We examine the implications of our results for the exponents $q^{\\pm}$ that characterize the power-law dependences of...
Energy Technology Data Exchange (ETDEWEB)
Shiokawa, Hotaka; Dolence, Joshua C.; Gammie, Charles F. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Noble, Scott C. [Center for Computational Relativity and Gravitation, School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623 (United States)
2012-01-10
Global, general relativistic magnetohydrodynamic (GRMHD) simulations of non-radiative, magnetized disks are widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed with HARM3D. The models span a factor of four in linear resolution, from 96 Multiplication-Sign 96 Multiplication-Sign 64 to 384 Multiplication-Sign 384 Multiplication-Sign 256. We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma {beta}; (2) the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution run, nearly independent of resolution; shell-averaged plasma {beta} decreases steadily with resolution but shows signs of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should be achieved with another factor of two in resolution. Synthetic spectra are, except for the lowest resolution run, nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution local model ({sup s}hearing box{sup )} calculations and with the recent non-relativistic global convergence studies of Hawley et al.
Energy Technology Data Exchange (ETDEWEB)
Le Chat, G.; Cohen, O. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Kasper, J. C. [Atmospheric, Oceanic and Space Sciences Department, University of Michigan, Ann Arbor, MI (United States); Spangler, S. R., E-mail: gaetan.lechat@obspm.fr [Department of Physics and Astronomy, University of Iowa, Iowa City, IA (United States)
2014-07-10
Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.
Multi-ion, multi-fluid 3-D magnetohydrodynamic simulation of the outer heliosphere
Prested, Christina; Toth, Gabor
2012-01-01
Data from the Voyager probes and the Interstellar Boundary Explorer have revealed the importance of pick-up ions (PUIs) in understanding the character and behavior of the outer heliosphere, the region of interaction between the solar wind and the interstellar medium. In the outer heliosphere PUIs carry a large fraction of the thermal pressure, which effects the nature of the termination shock, and they are a dominate component of pressure in the heliosheath. This paper describes the development of a new multi-ion, multi-fluid 3-D magnetohydrodynamic model of the outer heliosphere. This model has the added capability of tracking the individual fluid properties of multiple ion populations. For this initial study two ion populations are modeled: the thermal solar wind ions and PUIs produced in the supersonic solar wind. The model also includes 4 neutral fluids that interact through charge-exchange with the ion fluids. The new multi-ion simulation reproduces the significant heating of PUIs at the termination shoc...
Resistivity profile effects in numerical magnetohydrodynamic simulations of the reversed-field pinch
Sätherblom, H.-E.; Mazur, S.; Nordlund, P.
1996-12-01
The influence of the resistivity profile on reversed-field pinch (RFP) dynamics is investigated numerically using a three-dimensional resistive magnetohydrodynamic code. This investigation is motivated by experimental observations on the EXTRAP-T1 RFP (Nordlund P et al 1994 Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research IAEA-CN-60/A6/C-P-6). Two cases with profiles mainly differing in the edge region, i.e. in the region outside the reversal surface, are simulated. It is found that increasing the resistivity in this region results in a factor of two increase in magnetic fluctuation energy and an equal amount in the fluctuation-induced electric field. In spite of this, the parallel current decreases in the edge region, resulting in a factor two reduction of the field reversal ratio. The dynamics become more irregular and the characteristic timescale is reduced. The final state is characterized by a higher loop voltage, slightly lower values of the total (fluctuating plus mean part) magnetic energy and the magnetic helicity, but almost unchanged Taylor relaxation ratio. The results indicate that the edge region can be important for RFP confinement since cooling of the plasma in this region can lead to an increased fluctuation level and degraded performance.
Comparison of magnetic island stabilization strategies from magneto-hydrodynamic simulations
Février, O.; Maget, P.; Lütjens, H.; Beyer, P.
2017-04-01
The degradation of plasma confinement in tokamaks caused by magnetic islands motivates to better understand their possible suppression using electron cyclotron current drive (ECCD) and to investigate the various strategies relevant for this purpose. In this work, we evaluate the efficiency of several control methods through nonlinear simulations of this process with the toroidal magneto-hydro-dynamic (MHD) code XTOR-2F (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130–43), which has been extended to incorporate in Ohm’s law a source term modeling the driven current resulting from the interaction of the EC waves with the plasma. A basic control system has been implemented in the code, allowing testing of advanced strategies that require feedback on island position or phase. We focus in particular on the robustness of the control strategies towards uncertainties that apply to the control and ECCD systems, such as the risk of misalignment of the current deposition or the possible inability to generate narrow current deposition.
Multispectral Emission of the Sun during the First Whole Sun Month: Magnetohydrodynamic Simulations
Lionello, Roberto; Linker, Jon A.; Mikic, Zoran
2008-01-01
We demonstrate that a three-dimensional magnetohydrodynamic (MHD) simulation of the corona can model its global plasma density and temperature structure with sufficient accuracy to reproduce many of the multispectral properties of the corona observed in extreme ultraviolet (EW) and X-ray emission. The key ingredient to this new type of global MHD model is the inclusion of energy transport processes (coronal heating, anisotropic thermal conduction, and radiative losses) in the energy equation. The calculation of these processes has previously been confined to one-dimensional loop models, idealized two-dimensional computations, and three-dimensional active region models. We refer to this as the thermodynamic MHD model, and we apply it to the time period of Carrington rotation 1913 (1996 August 22 to September 18). The form of the coronal heating term strongly affects the plasma density and temperature of the solutions. We perform our calculation for three different empirical heating models: (1) a heating function exponentially decreasing in radius; (2) the model of Schrijver et al.; and (3) a model reproducing the heating properties of the quiet Sun and active regions. We produce synthetic emission images from the density and temperature calculated with these three heating functions and quantitatively compare them with observations from E W Imaging Telescope on the Solar and Heliospheric Observatory and the soft X-ray telescope on Yohkoh. Although none of the heating models provide a perfect match, heating models 2 and 3 provide a reasonable match to the observations.
Magnetohydrodynamic Simulations of A Rotating Massive Star Collapsing to A Black Hole
Fujimoto, S; Kotake, K; Sato, K; Yamada, S; Fujimoto, Shin-ichiro; Hashimoto, Masa-aki; Kotake, Kei; Sato, Katsuhiko; Yamada, Shoichi
2006-01-01
We perform two-dimensional, axisymmetric, magnetohydrodynamic simulations of the collapse of a rotating star of 40 Msun and in the light of the collapsar model of gamma-ray burst. Considering two distributions of angular momentum, up to \\sim 10^{17} cm^2/s, and the uniform vertical magnetic field, we investigate the formation of an accretion disk around a black hole and the jet production near the hole. After material reaches to the black hole with the high angular momentum, the disk is formed inside a surface of weak shock. The disk becomes in a quasi-steady state for stars whose magnetic field is less than 10^{10} G before the collapse. We find that the jet can be driven by the magnetic fields even if the central core does not rotate as rapidly as previously assumed and outer layers of the star has sufficiently high angular momentum. The magnetic fields are chiefly amplified inside the disk due to the compression and the wrapping of the field. The fields inside the disk propagate to the polar region along t...
Borissov, A.; Kontar, E. P.; Threlfall, J.; Neukirch, T.
2017-09-01
The conversion of magnetic energy into other forms (such as plasma heating, bulk plasma flows, and non-thermal particles) during solar flares is one of the outstanding open problems in solar physics. It is generally accepted that magnetic reconnection plays a crucial role in these conversion processes. In order to achieve the rapid energy release required in solar flares, an anomalous resistivity, which is orders of magnitude higher than the Spitzer resistivity, is often used in magnetohydrodynamic (MHD) simulations of reconnection in the corona. The origin of Spitzer resistivity is based on Coulomb scattering, which becomes negligible at the high energies achieved by accelerated particles. As a result, simulations of particle acceleration in reconnection events are often performed in the absence of any interaction between accelerated particles and any background plasma. This need not be the case for scattering associated with anomalous resistivity caused by turbulence within solar flares, as the higher resistivity implies an elevated scattering rate. We present results of test particle calculations, with and without pitch angle scattering, subject to fields derived from MHD simulations of two-dimensional (2D) X-point reconnection. Scattering rates proportional to the ratio of the anomalous resistivity to the local Spitzer resistivity, as well as at fixed values, are considered. Pitch angle scattering, which is independent of the anomalous resistivity, causes higher maximum energies in comparison to those obtained without scattering. Scattering rates which are dependent on the local anomalous resistivity tend to produce fewer highly energised particles due to weaker scattering in the separatrices, even though scattering in the current sheet may be stronger when compared to resistivity-independent scattering. Strong scattering also causes an increase in the number of particles exiting the computational box in the reconnection outflow region, as opposed to along the
Magnetohydrodynamic simulation of solid-deuterium-initiated Z-pinch experiments
Energy Technology Data Exchange (ETDEWEB)
Sheehey, Peter Trogdon [Univ. of California, Los Angeles, CA (United States)
1994-02-01
Solid-deuterium-initiated Z-pinch experiments are numerically simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as ``cold-start`` initial conditions, thermal conduction, radiative energy loss, actual discharge current vs. time, and grids of sufficient size and resolution to allow realistic development of the plasma. The alternating-direction-implicit numerical technique used meets the substantial demands presented by such a computational task. Simulations of fiber-initiated experiments show that when the fiber becomes fully ionized rapidly developing m=0 instabilities, which originated in the coronal plasma generated from the ablating fiber, drive intense non-uniform heating and rapid expansion of the plasma column. The possibility that inclusion of additional physical effects would improve stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pressure terms in the magnetic field evolution equation, corresponding energy equation terms, and separate ion and electron energy equations are included; these do not change the basic results. Model diagnostics, such as shadowgrams and interferograms, generated from simulation results, are in good agreement with experiment. Two alternative experimental approaches are explored: high-current magnetic implosion of hollow cylindrical deuterium shells, and ``plasma-on-wire`` (POW) implosion of low-density plasma onto a central deuterium fiber. By minimizing instability problems, these techniques may allow attainment of higher temperatures and densities than possible with bare fiber-initiated Z-pinches. Conditions for significant D-D or D-T fusion neutron production may be realizable with these implosion-based approaches.
Tsai, T. C.; Yu, H.-S.; Hsieh, M.-S.; Lai, S. H.; Yang, Y.-H.
2015-11-01
Nowadays most of supercomputers are based on the frame of PC cluster; therefore, the efficiency of parallel computing is of importance especially with the increasing computing scale. This paper proposes a high-order implicit predictor-corrector central finite difference (iPCCFD) scheme and demonstrates its high efficiency in parallel computing. Of special interests are the large scale numerical studies such as the magnetohydrodynamic (MHD) simulations in the planetary magnetosphere. An iPCCFD scheme is developed based on fifth-order central finite difference method and fourth-order implicit predictor-corrector method in combination with elimination-of-the-round-off-errors (ERE) technique. We examine several numerical studies such as one-dimensional Brio-Wu shock tube problem, two-dimensional Orszag-Tang vortex system, vortex type K-H instability, kink type K-H instability, field loop advection, and blast wave. All the simulation results are consistent with many literatures. iPCCFD can minimize the numerical instabilities and noises along with the additional diffusion terms. All of our studies present relatively small numerical errors without employing any divergence-free reconstruction. In particular, we obtain fairly stable results in the two-dimensional Brio-Wu shock tube problem which well conserves ∇ ṡ B = 0 throughout the simulation. The ERE technique removes the accumulation of roundoff errors in the uniform or non-disturbed system. We have also shown that iPCCFD is characterized by the high order of accuracy and the low numerical dissipation in the circularly polarized Alfvén wave tests. The proposed iPCCFD scheme is a parallel-efficient and high precision numerical scheme for solving the MHD equations in hyperbolic conservation systems.
Subramaniam, Vivek; Raja, Laxminarayan L.
2017-06-01
Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.
VizieR Online Data Catalog: Solar wind 3D magnetohydrodynamic simulation (Chhiber+, 2017)
Chhiber, R.; Subedi, P.; Usmanov, A. V.; Matthaeus, W. H.; Ruffolo, D.; Goldstein, M. L.; Parashar, T. N.
2017-08-01
We use a three-dimensional magnetohydrodynamic simulation of the solar wind to calculate cosmic-ray diffusion coefficients throughout the inner heliosphere (2Rȯ-3au). The simulation resolves large-scale solar wind flow, which is coupled to small-scale fluctuations through a turbulence model. Simulation results specify background solar wind fields and turbulence parameters, which are used to compute diffusion coefficients and study their behavior in the inner heliosphere. The parallel mean free path (mfp) is evaluated using quasi-linear theory, while the perpendicular mfp is determined from nonlinear guiding center theory with the random ballistic interpretation. Several runs examine varying turbulent energy and different solar source dipole tilts. We find that for most of the inner heliosphere, the radial mfp is dominated by diffusion parallel to the mean magnetic field; the parallel mfp remains at least an order of magnitude larger than the perpendicular mfp, except in the heliospheric current sheet, where the perpendicular mfp may be a few times larger than the parallel mfp. In the ecliptic region, the perpendicular mfp may influence the radial mfp at heliocentric distances larger than 1.5au; our estimations of the parallel mfp in the ecliptic region at 1 au agree well with the Palmer "consensus" range of 0.08-0.3au. Solar activity increases perpendicular diffusion and reduces parallel diffusion. The parallel mfp mostly varies with rigidity (P) as P.33, and the perpendicular mfp is weakly dependent on P. The mfps are weakly influenced by the choice of long-wavelength power spectra. (2 data files).
Magnetohydrodynamic simulations of mechanical stellar feedback in a sheet-like molecular cloud
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.
2017-03-01
We have used the adaptive-mesh-refinement hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the mechanical energy input from a 15 star and a 40 M⊙ star into a 100 pc-diameter 17 000 M⊙ cloud with a corrugated sheet morphology that in projection appears filamentary. The stellar winds are introduced using appropriate Geneva stellar evolution models. In the 15 M⊙ star case, the wind forms a narrow bipolar cavity with minimal effect on the parent cloud. In the 40 M⊙ star case, the more powerful stellar wind creates a large cylindrical cavity through the centre of the cloud. After 12.5 and 4.97 Myr, respectively, the massive stars explode as supernovae (SNe). In the 15 M⊙ star case, the SN material and energy is primarily deposited into the molecular cloud surroundings over ∼105 yr before the SN remnant escapes the cloud. In the 40 M⊙ star case, a significant fraction of the SN material and energy rapidly escapes the molecular cloud along the wind cavity in a few tens of kiloyears. Both SN events compress the molecular cloud material around them to higher densities (so may trigger further star formation), and strengthen the magnetic field, typically by factors of 2-3 but up to a factor of 10. Our simulations are relevant to observations of bubbles in flattened ring-like molecular clouds and bipolar H II regions.
Energy Technology Data Exchange (ETDEWEB)
Boelle, A.
1997-02-17
A two-fluid model applied to the simulation of gas-solid dense fluidized beds is validated on micro scale and on macro scale. Phase coupling is carried out in the momentum and energy transport equation of both phases. The modeling is built on the kinetic theory of granular media in which the gas action has been taken into account in order to get correct expressions of transport coefficients. A description of hydrodynamic interactions between particles in high Stokes number flow is also incorporated in the model. The micro scale validation uses Lagrangian numerical simulations viewed as numerical experiments. The first validation case refers to a gas particle simple shear flow. It allows to validate the competition between two dissipation mechanisms: drag and particle collisions. The second validation case is concerted with sedimenting particles in high Stokes number flow. It allows to validate our approach of hydrodynamic interactions. This last case had led us to develop an original Lagrangian simulation with a two-way coupling between the fluid and the particles. The macro scale validation uses the results of Eulerian simulations of dense fluidized bed. Bed height, particles circulation and spontaneous created bubbles characteristics are studied and compared to experimental measurement, both looking at physical and numerical parameters. (author) 159 refs.
Graham, Jonathan Pietarila; Mininni, Pablo D; Pouquet, Annick
2005-10-01
We present direct numerical simulations and Lagrangian averaged (also known as alpha model) simulations of forced and free decaying magnetohydrodynamic turbulence in two dimensions. The statistics of sign cancellations of the current at small scales is studied using both the cancellation exponent and the fractal dimension of the structures. The alpha model is found to have the same scaling behavior between positive and negative contributions as the direct numerical simulations. The alpha model is also able to reproduce the time evolution of these quantities in free decaying turbulence. At large Reynolds numbers, an independence of the cancellation exponent with the Reynolds numbers is observed.
Self-consistent hybrid neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan Carrick
Neoclassical effects (e.g., conductivity reduction and bootstrap currents) have a profound impact on many magnetohydrodynamic (MHD) instabilities in toroidally-confined plasmas, including tearing modes, edge-localized modes, and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We review a hybrid formulation from the recent literatureAB that is appropriate for such studies. In particular, the formulation uses a set of time-dependent drift-kinetic equations (DKEs) to advance the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by a set of MHD equations which are closed by moments of fNM . We then present two DKE solvers based upon this formulation in axisymmetric toroidal geometries. The Neoclassical Ion-Electron Solver (NIES) solves the steady-state DKEs in the low-collisionality limit. Convergence and benchmark studies are discussed, providing a proof-of-principle that this new formulation can accurately reproduce results from the literature in the limit considered. We then present the DK4D code which evolves the finite-collisionality DKEs time-dependently. Computational methods used and successful benchmarks to other neoclassical models and codes are discussed. Furthermore, we couple DK4D to a reduced, transport-timescale MHD code. The resulting hybrid code is used to simulate the evolution of the current density in a large-aspect-ratio plasma in the presence of several different time-dependent pressure profiles. These simulations demonstrate the self-consistent, dynamic formation of the ohmic and bootstrap currents. In the slowly-evolving plasmas considered
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.; Van Loo, S.
2016-06-01
We have used the adaptive mesh refinement hydrodynamic code, MG, to perform idealized 3D magnetohydrodynamical simulations of the formation of clumpy and filamentary structure in a thermally unstable medium without turbulence. A stationary thermally unstable spherical diffuse atomic cloud with uniform density in pressure equilibrium with low density surroundings was seeded with random density variations and allowed to evolve. A range of magnetic field strengths threading the cloud have been explored, from β = 0.1 to 1.0 to the zero magnetic field case (β = ∞), where β is the ratio of thermal pressure to magnetic pressure. Once the density inhomogeneities had developed to the point where gravity started to become important, self-gravity was introduced to the simulation. With no magnetic field, clouds and clumps form within the cloud with aspect ratios of around unity, whereas in the presence of a relatively strong field (β = 0.1) these become filaments, then evolve into interconnected corrugated sheets that are predominantly perpendicular to the magnetic field. With magnetic and thermal pressure equality (β = 1.0), filaments, clouds and clumps are formed. At any particular instant, the projection of the 3D structure on to a plane parallel to the magnetic field, i.e. a line of sight perpendicular to the magnetic field, resembles the appearance of filamentary molecular clouds. The filament densities, widths, velocity dispersions and temperatures resemble those observed in molecular clouds. In contrast, in the strong field case β = 0.1, projection of the 3D structure along a line of sight parallel to the magnetic field reveals a remarkably uniform structure.
Energy Technology Data Exchange (ETDEWEB)
Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309 (United States); Xu, Hao; Li, Hui; Collins, David C. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); O' Shea, Brian W. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Norman, Michael L., E-mail: samuel.skillman@colorado.edu [Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA 92093 (United States)
2013-03-01
Non-thermal radio emission from cosmic-ray electrons in the vicinity of merging galaxy clusters is an important tracer of cluster merger activity, and is the result of complex physical processes that involve magnetic fields, particle acceleration, gas dynamics, and radiation. In particular, objects known as radio relics are thought to be the result of shock-accelerated electrons that, when embedded in a magnetic field, emit synchrotron radiation in the radio wavelengths. In order to properly model this emission, we utilize the adaptive mesh refinement simulation of the magnetohydrodynamic evolution of a galaxy cluster from cosmological initial conditions. We locate shock fronts and apply models of cosmic-ray electron acceleration that are then input into radio emission models. We have determined the thermodynamic properties of this radio-emitting plasma and constructed synthetic radio observations to compare observed galaxy clusters. We find a significant dependence of the observed morphology and radio relic properties on the viewing angle of the cluster, raising concerns regarding the interpretation of observed radio features in clusters. We also find that a given shock should not be characterized by a single Mach number. We find that the bulk of the radio emission comes from gas with T > 5 Multiplication-Sign 10{sup 7} K, {rho} {approx} 10{sup -28}-10{sup -27} g cm{sup -3}, with magnetic field strengths of 0.1-1.0 {mu}G, and shock Mach numbers of M {approx} 3-6. We present an analysis of the radio spectral index which suggests that the spatial variation of the spectral index can mimic synchrotron aging. Finally, we examine the polarization fraction and position angle of the simulated radio features, and compare to observations.
Energy Technology Data Exchange (ETDEWEB)
Guillemaud, V
2007-03-15
This thesis is devoted to the modelling and numerical simulation of liquid-vapor flows. In order to describe these phase transition flows, a two-fluid two-pressure approach is considered. This description of the liquid-vapor mixing is associated to the seven-equation model introduced by Baer and Nunziato. This work investigates the properties of this model in order to simulate the phase transition flows occurring in nuclear engineering. First, a theoretical thermodynamic framework is constructed to describe the liquid-vapor mixing. Provided with this framework, various modelling choices are suggested for the interaction terms between the phases. These closure laws comply with an entropy inequality. The mathematical properties of this model are thereafter examined. The convective part is associated to a nonconservative hyperbolic system. First, we focus on the definition of its weak solutions. Several flow regimes for the two-phase mixing derive from this analysis. Such regimes for the two-phase flows are analogous to the torrential and fluvial regimes for the shallow-water equations. Furthermore, we establish the linear and nonlinear stabilities of the liquid-vapor equilibrium. Finally, the implementation of a turbulence model and the introduction of a reconstruction process for the interfacial area are investigated in order to refine the description of the interfacial transfers. Using a fractional step approach, a Finite Volume method is at last constructed to simulate this model. First, various nonconservative adaptations of standard Riemann solvers are developed to approach the convective part. Unlike the classic nonconservative framework, these schemes converge towards the same solution. Furthermore, a new relaxation scheme is proposed to approach the interfacial transfers. Provided with these schemes, the whole numerical method preserves the liquid-vapor equilibria. Using this numerical method, a careful comparison between the one- and two-pressure two-fluid
Rubin, M.; Jia, X.; Altwegg, K.; Combi, M. R.; Daldorff, L. K. S.; Gombosi, T. I.; Khurana, K. K.; Kivelson, M.; Tenishev, V.; Toth, G.; van der Holst, B.; Wurz, P.
2015-12-01
Jupiter's moon Europa is believed to contain a subsurface water ocean whose finite electrical conductance imposes clear induction signatures on the magnetic field in its surroundings. The evidence rests heavily on measurements performed by the magnetometer on board the Galileo spacecraft during multiple flybys of the moon. Europa's interaction with the Jovian magnetosphere has become a major target of research in planetary science, partly because of the potential of a salty ocean to harbor life outside our own planet. Thus it is of considerable interest to develop numerical simulations of the Europa-Jupiter interaction that can be compared with data in order to refine our knowledge of Europa's subsurface structure. In this presentation we show aspects of Europa's interaction with the Jovian magnetosphere extracted from a multifluid magnetohydrodynamics (MHD) code BATS-R-US recently developed at the University of Michigan. The model dynamically separates magnetospheric and pick-up ions and is capable of capturing some of the physics previously accessible only to kinetic approaches. The model utilizes an adaptive grid to maintain the high spatial resolution on the surface required to resolve the portion of Europa's neutral atmosphere with a scale height of a few tens of kilometers that is in thermal equilibrium. The model also derives the electron temperature, which is crucial to obtain the local electron impact ionization rates and hence the plasma mass loading in Europa's atmosphere. We compare our results with observations made by the plasma particles and fields instruments on the Galileo spacecraft to validate our model. We will show that multifluid MHD is able to reproduce the basic features of the plasma moments and magnetic field observations obtained during the Galileo E4 and E26 flybys at Europa.
Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari
2011-06-01
The nonlinear dynamics of the outflow driven by magnetic explosion on the surface of compact object is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as an initial equilibrium state, a spherical stellar object embedded in the hydrostatic plasma which has a density ρ(r) ~ r-α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of compact star breaks the dynamical equilibrium and triggers two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly in time around the stellar surface, initiating a magnetically driven outflow. Then it excites a strong forward shock, shock driven outflow. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface, and follows a simple scaling relation υmag ~ υA1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that the evolution of the strong forward shock can be described by a self-similar relation Γsh ~ rsh, where Γsh is the Lorentz factor of the plasma measured at the shock surface rsh. It should be stressed that the pure hydrodynamic process is responsible for the acceleration of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, would deepen the understanding of the magnetic active phenomena on various magnetized stellar objects.
Energy Technology Data Exchange (ETDEWEB)
McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.
2012-04-26
Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is
Divergence-free Approximate Riemann Solver for the Quasi-neutral Two-fluid Plasma Model
Amano, Takanobu
2015-01-01
A numerical method for the quasi-neutral two-fluid (QNTF) plasma model is described. The basic equations are ion and electron fluid equations and the Maxwell equations without displacement current. The neglect of displacement current is consistent with the assumption of charge neutrality. It thus reduces to the ideal magnetohydrodynamic (MHD) equations in the long wavelength limit, but the two-fluid effect appearing at ion and electron inertial scales is fully taken into account. It is shown that the basic equations may be rewritten in a form that has formally the same structure as the MHD equations. The total mass, momentum, and energy are all written in the conservative form. A new three-dimensional numerical simulation code has been developed for the QNTF equations. The HLL (Harten-Lax-van Leer) approximate Riemann solver combined with the upwind constrained transport (UCT) scheme is applied. The method was originally developed for MHD (Londrillo & Del Zanna, 2004), but works quite well for the present...
Amano, Takanobu
2016-11-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.
Energy Technology Data Exchange (ETDEWEB)
Masson, S.
2010-10-15
Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that
Mumford, S J; Erdélyi, R
2013-01-01
Aims. Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions small-scale magnetic flux tubes are generated due to the interaction of granulation motion and background magnetic field. This paper aims to study the effects of these motions, in regions of enhanced magnetic field, on magnetohydrodynamic wave excitation, propagation and energy flux from the solar photosphere up towards the solar corona. Methods. Numerical experiments of magnetohydrodynamic wave propagation in a realistic gravitationally stratified solar atmosphere from five different modelled photospheric drivers are performed. Horizontal and vertical drivers to mimic granular buffeting and solar global oscillations, a uniform torsional driver, an Archimedean spiral and a logarithmic spiral to mimic observed torsional motions in the solar photosphere are investigated. The numerical results are analysed using a novel method for extracting the parallel...
Radiation magnetohydrodynamic simulation of plasma formed on a surface by a megagauss field.
Esaulov, A A; Bauer, B S; Makhin, V; Siemon, R E; Lindemuth, I R; Awe, T J; Reinovsky, R E; Struve, K W; Desjarlais, M P; Mehlhorn, T A
2008-03-01
Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the "core-corona" behavior in which a heterogeneous Z-pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16 eV. The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics.
A Two-Fluid, MHD Coronal Model
Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.
1999-01-01
We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].
Action principles for extended magnetohydrodynamic models
Energy Technology Data Exchange (ETDEWEB)
Keramidas Charidakos, I.; Lingam, M.; Morrison, P. J.; White, R. L. [Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Wurm, A. [Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts 01119 (United States)
2014-09-15
The general, non-dissipative, two-fluid model in plasma physics is Hamiltonian, but this property is sometimes lost or obscured in the process of deriving simplified (or reduced) two-fluid or one-fluid models from the two-fluid equations of motion. To ensure that the reduced models are Hamiltonian, we start with the general two-fluid action functional, and make all the approximations, changes of variables, and expansions directly within the action context. The resulting equations are then mapped to the Eulerian fluid variables using a novel nonlocal Lagrange-Euler map. Using this method, we recover Lüst's general two-fluid model, extended magnetohydrodynamic (MHD), Hall MHD, and electron MHD from a unified framework. The variational formulation allows us to use Noether's theorem to derive conserved quantities for each symmetry of the action.
Energy Technology Data Exchange (ETDEWEB)
Nishida, Keisuke; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Nishizuka, Naoto, E-mail: nishida@kwasan.kyoto-u.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)
2013-10-01
We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviors similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.
2-D viscous magnetohydrodynamics simulation of plasma armatures with the CE/SE method
Institute of Scientific and Technical Information of China (English)
LI Xin; WENG ChunSheng
2009-01-01
A possible two-dimensional viscous magnetohydrodynamics (MHD) model is applied to investigating the plasma armature in a railgun. The space-time conservation element and solution element (CE/SE) method for solving the coupled Navier-Stokes equations and Maxwell equations was devised. The dis-tributions of physical parameters of the plasma may thus be evaluated. The results show that extremely high pressure can always be observed ahead of the projectile, and the Lorentz force is the main pro-puIsion. The distribution of temperature is in a good agreement with the results predicted by the law of radiation at the boundaries. Due to convection, the circulation patterns of velocity are evident in both the cases considering inviscid and viscous effect. Furthermore, the velocity and acceleration oscillate over time until a new steady state is achieved. This model efficiently captures the salient features of the physical phenomena, and contributes to further studies of MHD problems in plasma armature.
基于两流体模型的流动沸腾瞬态数值模拟程序%Transient Simulation Code for Flow Boiling Based on Two-Fluid Model
Institute of Scientific and Technical Information of China (English)
任志豪; 匡波; 胡尚武
2012-01-01
基于两流体模型与固壁非稳态导热模型,结合相关关联式组合,建立了流道内流动沸腾传热的瞬态数值模拟程序.通过不同入口瞬态下流道两相流动沸腾过程的算例计算分析,确认了程序进行流动沸腾瞬态模拟的能力.通过对不同固壁加热条件下流动沸腾行为的算例计算,检验了该程序进行流壁耦合行为模拟的功能.程序可进一步向系统分析程序和子通道程序发展.%Based on the coupling of two-fluid and wall dynamics models, and selection of specific correlation combination, a transient simulation code on flow boiling and heat transfer analysis within heated channel is developed. Through benchmark simulation on different flow boiling cases with various inlet parameters transients, capabilities of the code transient simulating flow boiling behaviors is validated. Furthermore, the fluid-wall heat coupling simulation function of the code are tested through case studies on boiling heat transfer under different wall heating conditions. Starting from the present basis, the program is expected to be further developed forwarding to both system analysis and sub-channel analysis codes, which might demonstrate its feature of expansion and prospect of practical applications.
Mikellides, Ioannis G; Yorke, Harold W
2010-01-01
We present results from numerical simulations of the cooling-core cluster A2199 produced by the two-dimensional (2-D) resistive magnetohydrodynamics (MHD) code MACH2. In our simulations we explore the effect of anisotropic thermal conduction on the energy balance of the system. The results from idealized cases in 2-D axisymmetric geometry underscore the importance of the initial plasma density in ICM simulations, especially the near-core values since the radiation cooling rate is proportional to ${n_e}^2$. Heat conduction is found to be non-effective in preventing catastrophic cooling in this cluster. In addition we performed 2-D planar MHD simulations starting from initial conditions deliberately violating both thermal balance and hydrostatic equilibrium in the ICM, to assess contributions of the convective terms in the energy balance of the system against anisotropic thermal conduction. We find that in this case work done by the pressure on the plasma can dominate the early evolution of the internal energy ...
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Two-fluid MHD Regime of Drift Wave Instability
Yang, Shang-Chuan; Zhu, Ping; Xie, Jin-Lin; Liu, Wan-Dong
2015-11-01
Drift wave instabilities contribute to the formation of edge turbulence and zonal flows, and thus are believed to play essential roles in the anomalous transport processes in tokamaks. Whereas drift waves are generally assumed to be local and electrostatic, experiments have often found regimes where the spatial scales and the magnetic components of drift waves approach those of magnetohydrodynamic (MHD) processes. In this work we study such a drift wave regime in a cylindrical magnetized plasma using a full two-fluid MHD model implemented in the NIMROD code. The linear dependency of growth rates on resistivity and the dispersion relation found in the NIMROD calculations qualitatively agree with theoretical analysis. As the azimuthal mode number increases, the drift modes become highly localized radially; however, unlike the conventional local approximation, the radial profile of the drift mode tends to shift toward the edge away from the center of the density gradient slope, suggesting the inhomogeneity of two-fluid effects. Supported by National Natural Science Foundation of China Grant 11275200 and National Magnetic Confinement Fusion Science Program of China Grant 2014GB124002.
Hayashi, Keiji; Liu, Yang; Bobra, Monica G; Sun, Xudong D; Norton, Aimee A
2015-01-01
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of polytropic gas with specific heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on daily basis. The MHD data available in the JSOC database are three-dimen...
Krumholz, Mark R; Klein, Richard I; McKee, Christopher F
2016-01-01
As star-forming clouds collapse, the gas within them fragments to ever-smaller masses, until the cascade of fragmentation is arrested at some mass scale, making smaller objects progressively less likely to form. This scale defines the peak of the initial mass function (IMF). In this paper we analyse radiation-magnetohydrodynamics simulations of star cluster formation in typical Milky Way environments in order to determine what physical process limits fragmentation in them. We examine the regions in the vicinity of stars that form in the simulations to determine the amounts of mass that are prevented from fragmenting by thermal and magnetic pressure. We show that, on small scales, thermal pressure enhanced by stellar radiation heating is the dominant mechanism limiting the ability of the gas to further fragment. In the brown dwarf mass regime, $\\sim 0.01$ $M_\\odot$, the typical object that forms in the simulations is surrounded by gas whose mass is several times its own that is unable to escape or fragment, an...
Baczynski, C; Klessen, R S
2015-01-01
We introduce a radiative transfer code module for the magnetohydrodynamical adaptive mesh refinement code FLASH 4. It is coupled to an efficient chemical network which explicitly tracks the three hydrogen species H, H_2, H+ as well as C+ and CO. The module is geared towards modeling all relevant thermal feedback processes of massive stars, and is able to follow the non-equilibrium time-dependent thermal and chemical state of the present-day interstellar medium as well as that of dense molecular clouds. We describe in detail the implementation of all relevant thermal stellar feedback mechanisms, i.e. photoelectric, photoionization and H_2 dissociation heating as well as pumping of molecular hydrogen by UV photons. All included radiative feedback processes are extensively tested. We also compare our module to dedicated photon-dominated region (PDR) codes and find good agreement in our modeled hydrogen species once our radiative transfer solution reaches equilibrium. In addition, we show that the implemented rad...
Hayashi, K.; Hoeksema, J. T.; Liu, Y.; Bobra, M. G.; Sun, X. D.; Norton, A. A.
2015-05-01
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.
Hayashi, K; Hoeksema, J T; Liu, Y; Bobra, M G; Sun, X D; Norton, A A
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.
Lorenzo, Maibys Sierra; Domingues, Margarete Oliveira; Mecías, Angela León; Menconi, Varlei Everton; Mendes, Odim
2016-12-01
A global magnetohydrodynamic (MHD) model describes the solar-terrestrial system and the physical processes that live in it. Information obtained from satellites provides input to MHD model to compose a more realistic initial state for the equations and, therefore, more accurate simulations. However, the use of high resolution in time data can produce numerical instabilities that quickly interrupt the simulations. Moreover, satellite time series may have gaps which could be a problem in this context. In order to contribute to the overcoming of such challenges, we propose in this work a methodology based on a variant of the continuous wavelet transform to introduce environmental satellite data on the global resistive MHD model originally developed by Prof. Ogino at the University of Nagoya. Our methodology uses a simplified time-scale version of the original data that preserves the most important spectral features of the phenomena of interest. Then, we can do a long-term integration using this MHD model without any computational instability, while preserving the main time-scale features of the original data set and even overcome possible occurrence of gaps on the satellite data. This methodology also contributes to keeping more realistic physical results.
Inoue, S; Magara, T; Choe, G S; Park, Y D
2014-01-01
We performed a magnetohydrodynamic (MHD) simulation using a nonlinear force-free field (NLFFF) in solar active region 11158 to clarify the dynamics of an X2.2-class solar flare. We found that the NLFFF never shows the drastic dynamics seen in observations, i.e., it is in stable state against the perturbations. On the other hand, the MHD simulation shows that when the strongly twisted lines are formed at close to the neutral line, which are produced via tether-cutting reconnection in the twisted lines of the NLFFF, consequently they erupt away from the solar surface via the complicated reconnection. This result supports the argument that the strongly twisted lines formed in NLFFF via tether-cutting reconnection are responsible for breaking the force balance condition of the magnetic fields in the lower solar corona. In addition to this the dynamical evolution of these field lines reveals that at the initial stage the spatial pattern of the footpoints caused by the reconnection of the twisted lines appropriatel...
Yuan, Xuefei
2012-07-01
Numerical simulations of the four-field extended magnetohydrodynamics (MHD) equations with hyper-resistivity terms present a difficult challenge because of demanding spatial resolution requirements. A time-dependent sequence of . r-refinement adaptive grids obtained from solving a single Monge-Ampère (MA) equation addresses the high-resolution requirements near the . x-point for numerical simulation of the magnetic reconnection problem. The MHD equations are transformed from Cartesian coordinates to solution-defined curvilinear coordinates. After the application of an implicit scheme to the time-dependent problem, the parallel Newton-Krylov-Schwarz (NKS) algorithm is used to solve the system at each time step. Convergence and accuracy studies show that the curvilinear solution requires less computational effort than a pure Cartesian treatment. This is due both to the more optimal placement of the grid points and to the improved convergence of the implicit solver, nonlinearly and linearly. The latter effect, which is significant (more than an order of magnitude in number of inner linear iterations for equivalent accuracy), does not yet seem to be widely appreciated. © 2012 Elsevier Inc.
Wareing, C J; Falle, S A E G
2016-01-01
We have used the AMR hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the mechanical energy input from a 15Msun star and a 40Msun star into a 100pc-diameter 17000Msun cloud with a corrugated sheet morphology that in projection appears filamentary. The stellar winds are introduced using appropriate Geneva stellar evolution models. In the 15Msun star case, the wind forms a narrow bipolar cavity with minimal effect on the parent cloud. In the 40Msun star case, the more powerful stellar wind creates a large cylindrical cavity through the centre of the cloud. After 12.5Myrs and 4.97Myrs respectively, the massive stars explode as supernovae (SNe). In the 15Msun star case, the SN material and energy is primarily deposited into the molecular cloud surroundings over 10^5 years before the SN remnant escapes the cloud. In the 40Msun star case, the ...
Magnetohydrodynamic Simulation of the Chordal Wire-Array Plasma Flow Switch
Domonkos, Matthew; Amdahl, David
2015-11-01
The coaxial plasma flow switch (PFS) using a chordal wire array armature was first studied experimentally and computationally in the 1980's. That work revealed significant current interruption (dI/dt ~ 5 MA/ μs) as well as continuum x-ray emission representative of 30-45 keV bremsstrahlung. The work concluded that the voltage spike associated with the current interruption accelerated highly magnetized ions downstream at high velocity, and that energy exchange between the ions and electrons and their subsequent acceleration at the downstream boundary of the apparatus were responsible for the x-ray production. This work revisits the PFS operation up to and just beyond the point of armature lift-off from the coaxial section, where the magnetohydrodynamic model is valid and relevant. The early-time energy deposition in the wires from the pulse discharge is modeled in high-resolution 1-D and is used to set the initial conditions for the full-scale 3-D calculation. The wire array is assumed to have expanded from the initial r =0.01 cm uniformly and only in the axial direction, while the areal mass density retains its intended variation with radius. 3-D calculations are used to examine the armature, including magnetic field diffusion, as it is propelled along the coaxial geometry. These calculations will be used to set the initial conditions for follow-on particle or particle-fluid hybrid calculations of the propagation of ions and electrons to downstream obstacles and to calculate the x-ray production from the interactions of the flowing plasma with the obstacles.
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Energy Technology Data Exchange (ETDEWEB)
Haas, Fernando; Pascoal, Kellen Alves [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Mendonça, José Tito [IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal and Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP (Brazil)
2016-01-15
A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.
Energy Technology Data Exchange (ETDEWEB)
Gorlin, S.M.; Ljubimov, G.A.; Bitjurin, V.A.; Kovbasjuk, V.I.; Maximenko, V.I.; Medin, S.A.; Barshak, A.E.
1979-12-25
A magnetohydrodynamic device having a duct for a conducting gas to flow at an angle with the direction of the magnetic field induction vector is described. The duct is situated in the magnetic system and is provided with a plurality of electrodes adapted to interact electrically with the gas, whereas the cross-sectional shape of the duct working space is bounded by a closed contour formed by a curve inscribed into a rectangle. 1 claim.
Beidler, M. T.; Cassak, P. A.; Jardin, S. C.; Ferraro, N. M.
2017-02-01
We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m,n)=(1,1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibit a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. This study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.
Wong, Un-Hong; Aoki, Takayuki; Wong, Hon-Cheng
2014-07-01
Modern graphics processing units (GPUs) have been widely utilized in magnetohydrodynamic (MHD) simulations in recent years. Due to the limited memory of a single GPU, distributed multi-GPU systems are needed to be explored for large-scale MHD simulations. However, the data transfer between GPUs bottlenecks the efficiency of the simulations on such systems. In this paper we propose a novel GPU Direct-MPI hybrid approach to address this problem for overall performance enhancement. Our approach consists of two strategies: (1) We exploit GPU Direct 2.0 to speedup the data transfers between multiple GPUs in a single node and reduce the total number of message passing interface (MPI) communications; (2) We design Compute Unified Device Architecture (CUDA) kernels instead of using memory copy to speedup the fragmented data exchange in the three-dimensional (3D) decomposition. 3D decomposition is usually not preferable for distributed multi-GPU systems due to its low efficiency of the fragmented data exchange. Our approach has made a breakthrough to make 3D decomposition available on distributed multi-GPU systems. As a result, it can reduce the memory usage and computation time of each partition of the computational domain. Experiment results show twice the FLOPS comparing to common 2D decomposition MPI-only implementation method. The proposed approach has been developed in an efficient implementation for MHD simulations on distributed multi-GPU systems, called MGPU-MHD code. The code realizes the GPU parallelization of a total variation diminishing (TVD) algorithm for solving the multidimensional ideal MHD equations, extending our work from single GPU computation (Wong et al., 2011) to multiple GPUs. Numerical tests and performance measurements are conducted on the TSUBAME 2.0 supercomputer at the Tokyo Institute of Technology. Our code achieves 2 TFLOPS in double precision for the problem with 12003 grid points using 216 GPUs.
Ohsuga, Ken
2011-01-01
We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, rho_0, we can reproduce three distinct modes of accretion flow. In model A with the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of the mild beaming, the apparent (isotropic) photon luminosity is ~22L_E (where L_E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B with a moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ~7R_S (where R_S is the S...
Ohsuga, Ken; Mori, Masao; Kato, Yoshiaki
2009-01-01
Black-hole accretion systems are known to possess several distinct modes (or spectral states), such as low/hard state, high/soft state, and so on. Since the dynamics of the corresponding flows is distinct, theoretical models were separately discussed for each state. We here propose a unified model based on our new, global, two-dimensional radiation-magnetohydrodynamic simulations. By controlling a density normalization we could for the first time reproduce three distinct modes of accretion flow and outflow with one numerical code. When the density is large (model A), a geometrically thick, very luminous disk forms, in which photon trapping takes place. When the density is moderate (model B), the accreting gas can effectively cool by emitting radiation, thus generating a thin disk, i.e., the soft-state disk. When the density is too low for radiative cooling to be important (model C), a disk becomes hot, thick, and faint; i.e., the hard-state disk. The magnetic energy is amplified within the disk up to about tw...
Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari
2011-05-01
The nonlinear dynamics of outflows driven by magnetic explosion on the surface of a compact star is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as the initial equilibrium state, a spherical stellar object embedded in hydrostatic plasma which has a density ρ(r) vprop r -α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of a compact star breaks the equilibrium and triggers a two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly around the stellar surface, initiating a magnetically driven outflow. A strong forward shock driven outflow is then excited. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface and follows a simple scaling relation v mag vprop v A 1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that it evolves according to a self-similar relation Γsh vprop r sh, where Γsh is the Lorentz factor of the plasma measured at the shock surface r sh. A purely hydrodynamic process would be responsible for the acceleration mechanism of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, can provide a better understanding of the magnetic active phenomena on various magnetized compact stars.
Nakamura, T K M; Hasegawa, H; Shinohara, I
2010-04-01
Ion-to-magnetohydrodynamic scale physics of the transverse velocity shear layer and associated Kelvin-Helmholtz instability (KHI) in a homogeneous, collisionless plasma are investigated by means of full particle simulations. The shear layer is broadened to reach a kinetic equilibrium when its initial thickness is close to the gyrodiameter of ions crossing the layer, namely, of ion-kinetic scale. The broadened thickness is larger in B⋅Ω0 case, where Ω is the vorticity at the layer. This is because the convective electric field, which points out of (into) the layer for B⋅Ω0), extends (reduces) the gyrodiameters. Since the kinetic equilibrium is established before the KHI onset, the KHI growth rate depends on the broadened thickness. In the saturation phase of the KHI, the ion vortex flow is strengthened (weakened) for B⋅Ω0), due to ion centrifugal drift along the rotational plasma flow. In ion inertial scale vortices, this drift effect is crucial in altering the ion vortex size. These results indicate that the KHI at Mercury-like ion-scale magnetospheric boundaries could show clear dawn-dusk asymmetries in both its linear and nonlinear growth.
Takahashi, Hiroyuki R; Kawashima, Tomohisa; Sekiguchi, Yuichiro
2016-01-01
Using three-dimensional general relativistic radiation magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk ($\\gtrsim 10^{7}$K) is truncated near the black hole. Hot and less-dense regions, of which the gas temperature is $ \\gtrsim 10^9$K and more than ten times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, and sandwich the cold disk, leading to the effective Compton upscattering. The truncation radius is $\\sim 30 r_{\\rm g}$ for $\\dot{M} \\sim L_{\\rm Edd}/c^2$, where $r_{\\rm g}, \\dot M, L_\\mathrm{Edd}, c$ are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed. Our results are consistent with observations of very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to $\\sim 10 r_{\\rm g}$ with increasing mass accret...
Boquist, Carl W.; Marchant, David D.
1978-01-01
A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.
Energy Technology Data Exchange (ETDEWEB)
Takasao, Shinsuke; Nakamura, Naoki; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Matsumoto, Takuma, E-mail: takasao@kwasan.kyoto-u.ac.jp [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 (Japan)
2015-06-01
Solar flares are an explosive phenomenon where super-sonic flows and shocks are expected in and above the post-flare loops. To understand the dynamics of post-flare loops, a two-dimensional magnetohydrodynamic (2D MHD) simulation of a solar flare has been carried out. We found new shock structures in and above the post-flare loops, which were not resolved in the previous work by Yokoyama and Shibata. To study the dynamics of flows along the reconnected magnetic field, the kinematics and energetics of the plasma are investigated along selected field lines. It is found that shocks are crucial to determine the thermal and flow structures in the post-flare loops. On the basis of the 2D MHD simulation, we developed a new post-flare loop model, which we defined as the pseudo-2D MHD model. The model is based on the one-dimensional (1D) MHD equations, where all variables depend on one space dimension, and all the three components of the magnetic and velocity fields are considered. Our pseudo-2D model includes many features of the multi-dimensional MHD processes related to magnetic reconnection (particularly MHD shocks), which the previous 1D hydrodynamic models are not able to include. We compared the shock formation and energetics of a specific field line in the 2D calculation with those in our pseudo-2D MHD model, and found that they give similar results. This model will allow us to study the evolution of the post-flare loops in a wide parameter space without expensive computational cost or neglecting important physics associated with magnetic reconnection.
Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Astrophysics and Space Physics
Miesch, Mark S; Brandenburg, Axel; Petrosyan, Arakel; Pouquet, Annick; Cambon, Claude; Jenko, Frank; Uzdensky, Dmitri; Stone, James; Tobias, Steve; Toomre, Juri; Velli, Marco
2015-01-01
We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in astrophysics and space physics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, astrophysical and heliophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and...
Three-dimensional Magnetohydrodynamic Simulations of Buoyant Bubbles in Galaxy Clusters
O'Neill, S M; Jones, T W
2009-01-01
We report results of 3D MHD simulations of the dynamics of buoyant bubbles in magnetized galaxy cluster media. The simulations are three dimensional extensions of two dimensional calculations reported by Jones & De Young (2005). Initially spherical bubbles and briefly inflated spherical bubbles all with radii a few times smaller than the intracluster medium (ICM) scale height were followed as they rose through several ICM scale heights. Such bubbles quickly evolve into a toroidal form that, in the absence of magnetic influences, is stable against fragmentation in our simulations. This ring formation results from (commonly used) initial conditions that cause ICM material below the bubbles to drive upwards through the bubble, creating a vortex ring; that is, hydrostatic bubbles develop into "smoke rings", if they are initially not very much smaller or very much larger than the ICM scale height. Even modest ICM magnetic fields with beta = P_gas/P_mag ~ 10^3 can influence the dynamics of the bubbles, provided...
Computation of two-fluid, flowing equilibria
Steinhauer, Loren; Kanki, Takashi; Ishida, Akio
2006-10-01
Equilibria of flowing two-fluid plasmas are computed for realistic compact-toroid and spherical-tokamak parameters. In these examples the two-fluid parameter ɛ (ratio of ion inertial length to overall plasma size) is small, ɛ ˜ 0.03 -- 0.2, but hardly negligible. The algorithm is based on the nearby-fluids model [1] which avoids a singularity that otherwise occurs for small ɛ. These representative equilibria exhibit significant flows, both toroidal and poloidal. Further, the flow patterns display notable flow shear. The importance of two-fluid effects is demonstrated by comparing with analogous equilibria (e.g. fixed toroidal and poloidal current) for a static plasma (Grad-Shafranov solution) and a flowing single-fluid plasma. Differences between the two-fluid, single-fluid, and static equilibria are highlighted: in particular with respect to safety factor profile, flow patterns, and electrical potential. These equilibria are computed using an iterative algorithm: it employs a successive-over-relaxation procedure for updating the magnetic flux function and a Newton-Raphson procedure for updating the density. The algorithm is coded in Visual Basic in an Excel platform on a personal computer. The computational time is essentially instantaneous (seconds). [1] L.C. Steinhauer and A. Ishida, Phys. Plasmas 13, 052513 (2006).
MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION
Energy Technology Data Exchange (ETDEWEB)
Passos, Dário [CENTRA, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Charbonneau, Paul [Départment de Physique, Université de Montréal, C.P. 6128, Centre-ville, Montréal, QC H3C 3J7 (Canada); Miesch, Mark, E-mail: dariopassos@ist.utl.pt [High Altitude Observatory, NCAR, Boulder CO 80301-2252 (United States)
2015-02-10
The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.
A direct-numerical-simulation-based second-moment closure for turbulent magnetohydrodynamic flows
Kenjereš, S.; Hanjalić, K.; Bal, D.
2004-01-01
A magnetic field, imposed on turbulent flow of an electrically conductive fluid, is known to cause preferential damping of the velocity and its fluctuations in the direction of Lorentz force, thus leading to an increase in stress anisotropy. Based on direct numerical simulations (DNS), we have devel
Calculation of two-fluid resonant modes in spheromaks
Howell, E. C.; Sovinec, C. R.
2010-11-01
Numerical computation is applied to investigate two-fluid effects on resonant modes in spheromaks using the NIMROD code [C.R. Sovinec et. at., Phys. Plasmas 10(2003)]. Earlier whole-device simulations of SSPX show that MHD stability has a strong influence on confinement during the sustained decay phase [E.B. Hooper et. al., POP 15, 032502 (2008)]. Recent computations of spheromak equilibria in a cylindrical domain with prescribed peaked pressure profiles show ideal interchange behavior. A moderate reduction of growth rate (10-70%) for intermediate toroidal mode numbers (n=16˜20) is observed when two-fluid effects are included [E.C. Howell and C.R. Sovinec, APS 2009]. Here, we consider more realistic pressure and safety-factor profiles from 3D self-consistent nonlinear MHD simulations. Linear analyses of axisymmetric equilibria reconstructed from the simulations are performed, and growth rates calculated using both ion gyroviscosity and a two fluid Ohm's law are compared with resistive MHD results.
Fragile, P. Christopher Christopher; Etheridge, Sarina Marie; Anninos, Peter; Mishra, Bhupendra
2017-01-01
Many analytic, semi-analytic, and even some numerical treatments of black hole accretion parametrize the stresses within the disk as an effective viscosity, even though the true source of stresses is likely to be turbulence driven by the magneto-rotational instability. Despite some attempts to quantify the differences between these treatments, it remains unclear exactly what the consequences of a viscous treatment are, especially in the context of the temporal and spatial variability of global disk parameters. We use the astrophysics code, Cosmos++, to create two accretion disk simulations using alpha-viscosity, one thin and one thick. These simulations are then compared to similar work done using MHD in order to analyze the extent of the validity of the alpha-model. One expected result, which we, nevertheless, demonstrate is the greater spatial and temporal variability of MHD.
Mizuno, Yosuke; Lyubarsky, Yuri; ishikawa, Ken-Ichi; Hardee, Philip E.
2010-01-01
We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic MHD simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the non-linear regime the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depends moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and the non-linear regime is reached at a later time than for constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the non-linear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the non-linear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the non-linear regime nearly ceases for increasing magnetic pitch.
Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.
2014-12-01
We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.
Energy Technology Data Exchange (ETDEWEB)
Jin Chen
2009-12-07
Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.
Milroy, R. D.; Kim, C. C.; Sovinec, C. R.
2010-06-01
Three-dimensional simulations of field reversed configuration (FRC) formation and sustainment with rotating magnetic field (RMF) current drive have been performed with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. The Hall term is a zeroth order effect with strong coupling between Fourier components, and recent enhancements to the NIMROD preconditioner allow much larger time steps than was previously possible. Boundary conditions to capture the effects of a finite length RMF antenna have been added, and simulations of FRC formation from a uniform background plasma have been performed with parameters relevant to the translation, confinement, and sustainment-upgrade experiment at the University of Washington [H. Y. Guo, A. L. Hoffman, and R. D. Milroy, Phys. Plasmas 14, 112502 (2007)]. The effects of both even-parity and odd-parity antennas have been investigated, and there is no evidence of a disruptive instability for either antenna type. It has been found that RMF effects extend considerably beyond the ends of the antenna, and that a large n =0 Bθ can develop in the open-field line region, producing a back torque opposing the RMF.
Alfven waves in a partially ionized two-fluid plasma
Soler, R; Ballester, J L; Terradas, J
2013-01-01
Alfv\\'en waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfv\\'en waves is affected by the interaction between ionized and neutral species. Here we study Alfv\\'en waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cut-off values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mo...
3D Radiation Nonideal Magnetohydrodynamical Simulations of the Inner Rim in Protoplanetary Disks
Flock, M.; Fromang, S.; Turner, N. J.; Benisty, M.
2017-02-01
Many planets orbit within 1 au of their stars, raising questions about their origins. Particularly puzzling are the planets found near the silicate sublimation front. We investigate conditions near the front in the protostellar disk around a young intermediate-mass star, using the first global 3D radiation nonideal MHD simulations in this context. We treat the starlight heating; the silicate grains’ sublimation and deposition at the local, time-varying temperature and density; temperature-dependent ohmic dissipation; and various initial magnetic fields. The results show magnetorotational turbulence around the sublimation front at 0.5 au. The disk interior to 0.8 au is turbulent, with velocities exceeding 10% of the sound speed. Beyond 0.8 au is the dead zone, cooler than 1000 K and with turbulence orders of magnitude weaker. A local pressure maximum just inside the dead zone concentrates solid particles, favoring their growth. Over many orbits, a vortex develops at the dead zone’s inner edge, increasing the disk’s thickness locally by around 10%. We synthetically observe the results using Monte Carlo transfer calculations, finding that the sublimation front is near-infrared bright. The models with net vertical magnetic fields develop extended, magnetically supported atmospheres that reprocess extra starlight, raising the near-infrared flux 20%. The vortex throws a nonaxisymmetric shadow on the outer disk. At wavelengths > 2 μ {{m}}, the flux varies several percent on monthly timescales. The variations are more regular when the vortex is present. The vortex is directly visible as an arc at ultraviolet through near-infrared wavelengths, given sub-au spatial resolution.
Strings and large scale magnetohydrodynamics
Olesen, P
1995-01-01
From computer simulations of magnetohydrodynamics one knows that a turbulent plasma becomes very intermittent, with the magnetic fields concentrated in thin flux tubes. This situation looks very "string-like", so we investigate whether strings could be solutions of the magnetohydrodynamics equations in the limit of infinite conductivity. We find that the induction equation is satisfied, and we discuss the Navier-Stokes equation (without viscosity) with the Lorentz force included. We argue that the string equations (with non-universal maximum velocity) should describe the large scale motion of narrow magnetic flux tubes, because of a large reparametrization (gauge) invariance of the magnetic and electric string fields.
A Two-Fluid Study of Oblique Tearing Modes in a Force-Free Current Sheet
Akcay, Cihan; Lukin, Vyacheslav S; Liu, Yi-Hsin
2016-01-01
Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underest...
Energy Technology Data Exchange (ETDEWEB)
Jenkins, Thomas G. [Tech–X Corporation, 5621 Arapahoe Avenue, Boulder, CO, 80303; Kruger, Scott E. [Tech–X Corporation, 5621 Arapahoe Avenue, Boulder, CO, 80303
2013-03-25
Work carried out by Tech-X Corporation for the DoE SciDAC Center for Simulation of RF Wave Interactions with Magnetohydrodynamics (SWIM; U.S. DoE Office of Science Award Number DE-FC02-06ER54899) is summarized and is shown to fulfil the project objectives. The Tech-X portion of the SWIM work focused on the development of analytic and computational approaches to study neoclassical tearing modes and their interaction with injected electron cyclotron current drive. Using formalism developed by Hegna, Callen, and Ramos [Phys. Plasmas 16, 112501 (2009); Phys. Plasmas 17, 082502 (2010); Phys. Plasmas 18, 102506 (2011)], analytic approximations for the RF interaction were derived and the numerical methods needed to implement these interactions in the NIMROD extended MHD code were developed. Using the SWIM IPS framework, NIMROD has successfully coupled to GENRAY, an RF ray tracing code; additionally, a numerical control system to trigger the RF injection, adjustment, and shutdown in response to tearing mode activity has been developed. We discuss these accomplishments, as well as prospects for ongoing future research that this work has enabled (which continue in a limited fashion under the SciDAC Center for Extended Magnetohydrodynamic Modeling (CEMM) project and under a baseline theory grant). Associated conference presentations, published articles, and publications in progress are also listed.
Coupled Vlasov and two-fluid codes on GPUs
Rieke, M; Grauer, R
2014-01-01
We present a way to combine Vlasov and two-fluid codes for the simulation of a collisionless plasma in large domains while keeping full information of the velocity distribution in localized areas of interest. This is made possible by solving the full Vlasov equation in one region while the remaining area is treated by a 5-moment two-fluid code. In such a treatment, the main challenge of coupling kinetic and fluid descriptions is the interchange of physically correct boundary conditions between the different plasma models. In contrast to other treatments, we do not rely on any specific form of the distribution function, e.g. a Maxwellian type. Instead, we combine an extrapolation of the distribution function and a correction of the moments based on the fluid data. Thus, throughout the simulation both codes provide the necessary boundary conditions for each other. A speed-up factor of around 20 is achieved by using GPUs for the computationally expensive solution of the Vlasov equation and an overall factor of a...
Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement
Energy Technology Data Exchange (ETDEWEB)
Carl R. Sovinec
2008-02-15
nonlinear simulations, which has been publicized as a success story of SciDAC-fostered collaboration. Furthermore, the SuperLU software does not assume any mathematical symmetry, and its generality provides an important capability for extending the physical model beyond magnetohydrodynamics (MHD). With respect to algorithmic and model development, our most significant accomplishment is the development of a new method for solving plasma models that treat electrons as an independent plasma component. These ‘two-fluid’ models encompass MHD and add temporal and spatial scales that are beyond the response of the ion species. Implementation and testing of a previously published algorithm did not prove successful for NIMROD, and the new algorithm has since been devised, analyzed, and implemented. Two-fluid modeling, an important objective of the original NIMROD project, is now routine in 2D applications. Algorithmic components for 3D modeling are in place and tested; though, further computational work is still needed for efficiency. Other algorithmic work extends the ion-fluid stress tensor to include models for parallel and gyroviscous stresses. In addition, our hot-particle simulation capability received important refinements that permitted completion of a benchmark with the M3D code. A highlight of our applications work is the edge-localized mode (ELM) modeling, which was part of the first-ever computational Performance Target for the DOE Office of Fusion Energy Science, see http://www.science.doe.gov/ofes/performancetargets.shtml. Our efforts allowed MHD simulations to progress late into the nonlinear stage, where energy is conducted to the wall location. They also produced a two-fluid ELM simulation starting from experimental information and demonstrating critical drift effects that are characteristic of two-fluid physics. Another important application is the internal kink mode in a tokamak. Here, the primary purpose of the study has been to benchmark the two main code
Two-Fluid Interface Instability Being Studied
Niederhaus, Charles E.
2003-01-01
The interface between two fluids of different density can experience instability when gravity acts normal to the surface. The relatively well known Rayleigh-Taylor (RT) instability results when the gravity is constant with a heavy fluid over a light fluid. An impulsive acceleration applied to the fluids results in the Richtmyer-Meshkov (RM) instability. The RM instability occurs regardless of the relative orientation of the heavy and light fluids. In many systems, the passing of a shock wave through the interface provides the impulsive acceleration. Both the RT and RM instabilities result in mixing at the interface. These instabilities arise in a diverse array of circumstances, including supernovas, oceans, supersonic combustion, and inertial confinement fusion (ICF). The area with the greatest current interest in RT and RM instabilities is ICF, which is an attempt to produce fusion energy for nuclear reactors from BB-sized pellets of deuterium and tritium. In the ICF experiments conducted so far, RM and RT instabilities have prevented the generation of net-positive energy. The $4 billion National Ignition Facility at Lawrence Livermore National Laboratory is being constructed to study these instabilities and to attempt to achieve net-positive yield in an ICF experiment.
Active Polar Two-Fluid Macroscopic Dynamics
Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.
2014-03-01
We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.
McKinney, Jonathan C; Sadowski, Aleksander; Narayan, Ramesh
2013-01-01
Black hole (BH) accretion flows and jets are dynamic hot relativistic magnetized plasma flows whose radiative opacity can significantly affect flow structure and behavior. We describe a numerical scheme, tests, and an astrophysically relevant application using the M1 radiation closure within a new three-dimensional (3D) general relativistic (GR) radiation (R) magnetohydrodynamics (MHD) massively parallel code called HARMRAD. Our 3D GRRMHD simulation of super-Eddington accretion (about $20$ times Eddington) onto a rapidly rotating BH (dimensionless spin $j=0.9375$) shows sustained non-axisymmemtric disk turbulence, a persistent electromagnetic jet driven by the Blandford-Znajek effect, and a total radiative output consistently near the Eddington rate. The total accretion efficiency is of order $20\\%$, the large-scale electromagnetic jet efficiency is of order $10\\%$, and the total radiative efficiency that reaches large distances remains low at only order $1\\%$. However, the radiation jet and the electromagnet...
Xiong, Ming; Wang, Yuming; Wang, Shui; 10.1029/2006JA011901
2009-01-01
Numerical studies of the interplanetary "shock overtaking magnetic cloud (MC)" event are continued by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Interplanetary direct collision (DC)/oblique collision (OC) between an MC and a shock results from their same/different initial propagation orientations. For radially erupted MC and shock in solar corona, the orientations are only determined respectively by their heliographic locations. OC is investigated in contrast with the results in DC \\citep{Xiong2006}. The shock front behaves as a smooth arc. The cannibalized part of MC is highly compressed by the shock front along its normal. As the shock propagates gradually into the preceding MC body, the most violent interaction is transferred sideways with an accompanying significant narrowing of the MC's angular width. The opposite deflections of MC body and shock aphelion in OC occur simultaneously through the process of the shock penetrating the MC. After the shock's passage, the...
Cunningham, Andrew J.; Frank, Adam; Varnière, Peggy; Mitran, Sorin; Jones, Thomas W.
2009-06-01
A description is given of the algorithms implemented in the AstroBEAR adaptive mesh-refinement code for ideal magnetohydrodynamics. The code provides several high-resolution shock-capturing schemes which are constructed to maintain conserved quantities of the flow in a finite-volume sense. Divergence-free magnetic field topologies are maintained to machine precision by collating the components of the magnetic field on a cell-interface staggered grid and utilizing the constrained transport approach for integrating the induction equations. The maintenance of magnetic field topologies on adaptive grids is achieved using prolongation and restriction operators which preserve the divergence and curl of the magnetic field across collocated grids of different resolutions. The robustness and correctness of the code is demonstrated by comparing the numerical solution of various tests with analytical solutions or previously published numerical solutions obtained by other codes.
Kessar, M.; Balarac, G.; Plunian, F.
2016-10-01
In this work, the accuracy of various models used in large-eddy simulations (LES) of incompressible magnetohydrodynamic (MHD) turbulence is evaluated. Particular attention is devoted to the capabilities of models to reproduce the transfers between resolved grid- and subgrid-scales. The exact global balance of MHD turbulent flows is first evaluated from direct numerical simulation (DNS) database. This balance is controlled by the transfers between scales and between kinetic and magnetic energies. Two cases of forced homogeneous isotropic MHD turbulent flows are considered, with and without injecting large scale helicity. The strong helical case leads to domination of the magnetic energy due to an inverse cascade [A. Brandenburg, Astrophys. J. 550(2), 824 (2001); N. E. Haugen et al., Phys. Rev. E 70(1), 016308 (2004)]. The energy transfers predicted by various models are then compared with the transfer extracted from DNS results. This allows to discriminate models classically used for LES of MHD turbulence. In the non-helical case, the Smagorinsky-like model [M. L. Theobald et al., Phys. Plasmas 1, 3016 (1994)] and a mixed model are able to perform stable LES, but the helical case is a more demanding test and all the models lead to unstable simulations.
Longcope, D W
2010-01-01
In models of fast magnetic reconnection, flux transfer occurs within a small portion of a current sheet triggering stored magnetic energy to be thermalized by shocks. When the initial current sheet separates magnetic fields which are not perfectly anti-parallel, i.e. they are skewed, magnetic energy is first converted to bulk kinetic energy and then thermalized in slow magnetosonic shocks. We show that the latter resemble parallel shocks or hydrodynamic shocks for all skew angles except those very near the anti-parallel limit. As for parallel shocks, the structures of reconnection-driven slow shocks are best studied using two-fluid equations in which ions and electrons have independent temperature. Time-dependent solutions of these equations can be used to predict and understand the shocks from reconnection of skewed magnetic fields. The results differ from those found using a single-fluid model such as magnetohydrodynamics. In the two-fluid model electrons are heated indirectly and thus carry a heat flux alw...
Experiments in Magnetohydrodynamics
Rayner, J. P.
1970-01-01
Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)
Two-Fluid Equilibrium for Transonic Poloidal Flows
Guazzotto, Luca; Betti, Riccardo
2012-03-01
Much analytical and numerical work has been done in the past on ideal MHD equilibrium in the presence of macroscopic flow. In recent years, several authors have worked on equilibrium formulations for a two-fluid system, in which inertial ions and massless electrons are treated as distinct fluids. In this work, we present our approach to the formulation of the two-fluid equilibrium problem. Particular attention is given to the relation between the two-fluid equations and the equilibrium equations for the single-fluid ideal MHD system. Our purpose is to reconsider the results of one-fluid calculation with the more accurate two-fluid model, referring in particular to the so-called transonic discontinuities, which occur when the poloidal velocity spans a range crossing the poloidal sound speed (i.e., the sound speed reduced by a factor Bp/B). It is expected that the one-fluid discontinuity will be resolved into a sharp gradient region by the two-fluid model. Also, contrary to the ideal MHD case, in the two-fluid model the equations governing the equilibrium are elliptic in the whole range of interest for transonic equilibria. The numerical solution of the two-fluid system of equations is going to be based on a code built on the structure of the existing ideal-MHD code FLOW.
A two-fluid study of oblique tearing modes in a force-free current sheet
Energy Technology Data Exchange (ETDEWEB)
Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lukin, Vyacheslav S. [National Science Foundation, Arlington, Virginia 22230 (United States); Liu, Yi-Hsin [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)
2016-01-15
Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.
Magnetohydrodynamic fluidic system
Lee, Abraham P.; Bachman, Mark G.
2004-08-24
A magnetohydrodynamic fluidic system includes a reagent source containing a reagent fluid and a sample source containing a sample fluid that includes a constituent. A reactor is operatively connected to the supply reagent source and the sample source. MHD pumps utilize a magnetohydrodynamic drive to move the reagent fluid and the sample fluid in a flow such that the reagent fluid and the sample fluid form an interface causing the constituent to be separated from the sample fluid.
Multifluid magnetohydrodynamic turbulent decay
Downes, Turlough P
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation which occurs within them. Non-ideal magnetohydrodynamic effects are known to influence the nature of this turbulence. We present the results of a suite of 512-cubed resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power-law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingl...
Magnetohydrodynamic mechanism for pedestal formation.
Guazzotto, L; Betti, R
2011-09-16
Time-dependent two-dimensional magnetohydrodynamic simulations are carried out for tokamak plasmas with edge poloidal flow. Differently from conventional equilibrium theory, a density pedestal all around the edge is obtained when the poloidal velocity exceeds the poloidal sound speed. The outboard pedestal is induced by the transonic discontinuity, the inboard one by mass redistribution. The density pedestal follows the formation of a highly sheared flow at the transonic surface. These results may be relevant to the L-H transition and pedestal formation in high performance tokamak plasmas.
Oscillatory Instability in a Two-Fluid Benard Problem.
1984-04-01
1963-A ( MRC Technical Summary Report #2681 OSCILLATORY INSTABILITY IN Ar TWO-FLUID BENARD PROBLEM CV Yuriko Renardy and Daniel D. Joseph 4.o...MATHEMATICS RESEARCH CENTER OSCILLATORY INSTABILITY IN A TWO-FLUID BENARD PROBLEM Yuriko Renardy I and Daniel D. Joseph * ’ 2 Technical Summary Report #2681...C. ° * .* * .* • * . -t . . . . .. . . . " -".- ." . o ,- OSCILLATORY INSTABILITY IN A WO-FLUID BENARD PROBLEM Yuriko RenardyI and Daniel D
Magnetohydrodynamically generated velocities in confined plasma
Morales, Jorge A.; Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.
2015-04-01
We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.
Data assimilation for magnetohydrodynamics systems
Mendoza, O. Barrero; de Moor, B.; Bernstein, D. S.
2006-05-01
Prediction of solar storms has become a very important issue due to the fact that they can affect dramatically the telecommunication and electrical power systems at the earth. As a result, a lot of research is being done in this direction, space weather forecast. Magnetohydrodynamics systems are being studied in order to analyse the space plasma dynamics, and techniques which have been broadly used in the prediction of earth environmental variables like the Kalman filter (KF), the ensemble Kalman filter (EnKF), the extended Kalman filter (EKF), etc., are being studied and adapted to this new framework. The assimilation of a wide range of space environment data into first-principles-based global numerical models will improve our understanding of the physics of the geospace environment and the forecasting of its behaviour. Therefore, the aim of this paper is to study the performance of nonlinear observers in magnetohydrodynamics systems, namely, the EnKF.The EnKF is based on a Monte Carlo simulation approach for propagation of process and measurement errors. In this paper, the EnKF for a nonlinear two-dimensional magnetohydrodynamic (2D-MHD) system is considered. For its implementation, two software packages are merged, namely, the Versatile Advection Code (VAC) written in Fortran and Matlab of Mathworks. The 2D-MHD is simulated with the VAC code while the EnKF is computed in Matlab. In order to study the performance of the EnKF in MHD systems, different number of measurement points as well as ensemble members are set.
Mizuno, Yosuke; Nishikawa, Ken-Ichi; Hardee, Philip E
2010-01-01
We have investigated the relaxation of a hydrostatic hot plasma column containing toroidal magnetic field by the Current-Driven (CD) kink instability as a model of pulsar wind nebulae. In our simulations the CD kink instability is excited by a small initial velocity perturbation and develops turbulent structure inside the hot plasma column. We demonstrate that, as envisioned by Begelman, the hoop stress declines and the initial gas pressure excess near the axis decreases. The magnetization parameter \\sigma, the ratio of the Poynting to the kinetic energy flux, declines from an initial value of 0.3 to about 0.01 when the CD kink instability saturates. Our simulations demonstrate that axisymmetric models strongly overestimate the elongation of the pulsar wind nebulae. Therefore, the previous requirement for an extremely low pulsar wind magnetization can be abandoned. The observed structure of the pulsar wind nebulae do not contradict the natural assumption that the magnetic energy flux still remains a good frac...
Gan, Zhaoming; Li, Hui; Li, Shengtai; Yuan, Feng
2017-04-01
The distinctive morphology of head-tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head-tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather. Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head-tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head-tail radio galaxies.
Energy Technology Data Exchange (ETDEWEB)
Savani, N. P. [University Corporation for Atmospheric Research (UCAR), Boulder, CO 80307 (United States); Shiota, D. [Computational Astrophysics Laboratory, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kusano, K. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Vourlidas, A. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Lugaz, N., E-mail: neel.savani02@imperial.ac.uk [Experimental Space Plasma Group, University of New Hampshire, Durham, NH 03824 (United States)
2012-11-10
We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast coronal mass ejections (CMEs) and their associated shock fronts between 10 Rs and 300 Rs. We investigate the relative change in the shock standoff distance, {Delta}, as a fraction of the CME radial half-width, D {sub OB} (i.e., {Delta}/D {sub OB}). Previous hydrodynamic studies have related the shock standoff distance for Earth's magnetosphere to the density compression ratio (DR; {rho} {sub u}/{rho} {sub d}) measured across the bow shock. The DR coefficient, k {sub dr}, which is the proportionality constant between the relative standoff distance ({Delta}/D {sub OB}) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CME's leading edge. We find that a value of 0.8 {+-} 0.1 is more appropriate for small heliocentric distances (<30 Rs) which corresponds to the spherical geometry of a magnetosphere presented by Seiff. As the CME propagates its cross section becomes more oblate and the k {sub dr} value increases linearly with heliocentric distance, such that k {sub dr} = 1.1 is most appropriate at a heliocentric distance of about 80 Rs. For terrestrial distances (215 Rs) we estimate k {sub dr} = 1.8 {+-} 0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earth's magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.
Solar Flares: Magnetohydrodynamic Processes
Directory of Open Access Journals (Sweden)
Kazunari Shibata
2011-12-01
Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.
El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.
2012-01-01
We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.
Development of hyperbolic solution method for two fluids equation system
Energy Technology Data Exchange (ETDEWEB)
Lee, Sung Jae; Chang, Won Pyo
1997-07-01
Using the concept of surface tension thickness, the mathematical ill-posedness of the two fluids equation system can now be removed by splitting the pressure discontinuity of the two fluids interface. The bulk modulus L1 and L2 derived from the concept of surface tension thickness makes two fluids equation system hyperbolic type. The hyperbolic equation system has five complete sets of eigenvectors, each of which having real eigenvalues. Three sets of them represents the propagation speeds of the physical properties for individual flow regimes such as the dispersed, the slug, and the separated flows. The propagation characteristics of these eigenvalues have good agreements with both the experimental data and other theoretical results in two-phase mixture. The feature of the hyperbolic model allows to apply advanced numerical upwind technique such as Flux vector splitting (FVS) method. The numerical test show that the characteristics of equation system clearly classify all flow regimes. (author). 25 refs., 3 tabs., 20 figs.
Simulations of MHD flows with moving interfaces
Gerbeau, J F; Le Bris, C
2003-01-01
We report on the numerical simulation of a two-fluid magnetohydrodynamics problem arising in the industrial production of aluminium. The motion of the two non-miscible fluids is modeled through the incompressible Navier-Stokes equations coupled with the Maxwell equations. Stabilized finite elements techniques and an arbitrary Lagrangian-Eulerian formulation (for the motion of the interface separating the two fluids) are used in the numerical simulation. With a view to justifying our strategy, details on the numerical analysis of the problem, with a special emphasis on conservation and stability properties and on the surface tension discretization, as well as results on tests cases are provided. Examples of numerical simulations of the industrial case are eventually presented.
Huarte-Espinosa, Martin; Alexander, Paul
2011-01-01
Radio observations of Fanaroff-Riley class II sources often show correlations between the synchrotron emission and the linear-polarimetric distributions. Magnetic position vectors seem to align with the projected emission of both the radio jets and the sources' edges. Using statistics we study such relation as well as its unknown time evolution via synthetic polarisation maps of model FR II sources formed in 3D-MHD numerical simulations of bipolar, hypersonic and weakly magnetised jets. The magnetic field is initially random with a Kolmogorov power spectrum, everywhere. We investigate the structure and evolution of magnetic fields in the sources as a function of the power of jets and the observational viewing angle. Our synthetic polarisation maps agree with observations, showing B-field vectors which are predominantly aligned with the jet axis, and show that magnetic fields inside sources are shaped by the jets' backflow. Polarimetry is found to correlate with time, the viewing angle and the jet-to-ambient d...
Two-fluid theory of the drift kink instability
Energy Technology Data Exchange (ETDEWEB)
Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)
1999-12-01
A simple two-fluid theory of the drift kink instability is developed. The validity of the theory is restricted to the regime where the ion gyroradius is small in comparison with the sheet thickness {rho}{sub i}<
Two dimensional, two fluid model for sodium boiling in LMFBR fuel assemblies
Energy Technology Data Exchange (ETDEWEB)
Granziera, M.R.; Kazimi, M.S.
1980-05-01
A two dimensional numerical model for the simulation of sodium boiling transient was developed using the two fluid set of conservation equations. A semiimplicit numerical differencing scheme capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid problems was used, which took advantage of the dumping effect of the exchange terms. Of particular interest in the development of the model was the identification of the numerical problems caused by the strong disparity between the axial and radial dimensions of fuel assemblies. A solution to this problem was found which uses the particular geometry of fuel assemblies to accelerate the convergence of the iterative technique used in the model. Three sodium boiling experiments were simulated with the model, with good agreement between the experimental results and the model predictions.
Two-fluid oscillatory flow in a channel
Institute of Scientific and Technical Information of China (English)
C.Y.Wang
2011-01-01
The validity of Navier's partial slip condition is investigated by studying the oscillatory flow in a coated channel.The two-fluid model is used to solve the unsteady viscous equations exactly.Partial slip is experienced by the core fluid.It is found that Naviers condition does not hold for an unsteady core fluid.
Constant-Differential-Pressure Two-Fluid Accumulator
Piecuch, Benjamin; Dalton, Luke T.
2010-01-01
A two-fluid accumulator has been designed, built, and demonstrated to provide an acceptably close approximation to constant differential static pressure between two fluids over the full ranges of (1) accumulator stroke, (2) rates of flow of the fluids, and (3) common static pressure applied to the fluids. Prior differential- pressure two-fluid accumulators are generally not capable of maintaining acceptably close approximations to constant differential pressures. The inadequacies of a typical prior differential-pressure two-fluid accumulator can be summarized as follows: The static differential pressure is governed by the intrinsic spring rate (essentially, the stiffness) of an accumulator tank. The spring rate can be tailored through selection of the tank-wall thickness, selection of the number and/or shape of accumulator convolutions, and/or selection of accumulator material(s). Reliance on the intrinsic spring rate of the tank results in three severe limitations: (1) The spring rate and the expulsion efficiency tend to be inversely proportional to each other: that is to say, as the stiffness (and thus the differential pressure) is increased, the range of motion of the accumulator is reduced. (2) As the applied common static pressure increases, the differential pressure tends to decrease. An additional disadvantage, which may or may not be considered limiting, depending on the specific application, is that an increase in stiffness entails an increase in weight. (3) The additional weight required by a low expulsion efficiency accumulator eliminates the advantage given to such gas storage systems. The high expulsion efficiency provided by this two-fluid accumulator allows for a lightweight, tightly packaged system, which can be used in conjunction with a fuel cell-based system.
Magnetohydrodynamics on Heterogeneous architectures: a performance comparison
Pang, Bijia; Perrone, Michael
2010-01-01
We present magneto-hydrodynamic simulation results for heterogeneous systems. Heterogeneous architectures combine high floating point performance many-core units hosted in conventional server nodes. Examples include Graphics Processing Units (GPU's) and Cell. They have potentially large gains in performance, at modest power and monetary cost. We implemented a magneto-hydrodynamic (MHD) simulation code on a variety of heterogeneous and multi-core architectures --- multi-core x86, Cell, Nvidia and ATI GPU --- in different languages, FORTRAN, C, Cell, CUDA and OpenCL. We present initial performance results for these systems. To our knowledge, this is the widest comparison of heterogeneous systems for MHD simulations. We review the different challenges faced in each architecture, and potential bottlenecks. We conclude that substantial gains in performance over traditional systems are possible, and in particular that is possible to extract a greater percentage of peak theoretical performance from some systems when...
A fast pressure-correction method for incompressible two-fluid flows
Dodd, Michael S.; Ferrante, Antonino
2014-09-01
We have developed a new pressure-correction method for simulating incompressible two-fluid flows with large density and viscosity ratios. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation, which can be solved with an FFT-based, fast Poisson solver. This reduction is achieved by splitting the variable density pressure gradient term in the governing equations. The validity of this splitting is demonstrated from our numerical tests, and it is explained from a physical viewpoint. In this paper, the new pressure-correction method is coupled with a mass-conserving volume-of-fluid method to capture the motion of the interface between the two fluids but, in general, it could be coupled with other interface advection methods such as level-set, phase-field, or front-tracking. First, we verified the new pressure-correction method using the capillary wave test-case up to density and viscosity ratios of 10,000. Then, we validated the method by simulating the motion of a falling water droplet in air and comparing the droplet terminal velocity with an experimental value. Next, the method is shown to be second-order accurate in space and time independent of the VoF method, and it conserves mass, momentum, and kinetic energy in the inviscid limit. Also, we show that for solving the two-fluid Navier-Stokes equations, the method is 10-40 times faster than the standard pressure-correction method, which uses multigrid to solve the variable coefficient Poisson equation. Finally, we show that the method is capable of performing fully-resolved direct numerical simulation (DNS) of droplet-laden isotropic turbulence with thousands of droplets using a computational mesh of 10243 points.
Magnetohydrodynamics of the sun
Priest, Eric
2014-01-01
Magnetohydrodynamics of the Sun is a completely new up-to-date rewrite from scratch of the 1982 book Solar Magnetohydrodynamics, taking account of enormous advances in understanding since that date. It describes the subtle and complex interaction between the Sun's plasma atmosphere and its magnetic field, which is responsible for many fascinating dynamic phenomena. Chapters cover the generation of the Sun's magnetic field by dynamo action, magnetoconvection and the nature of photospheric flux tubes such as sunspots, the heating of the outer atmosphere by waves or reconnection, the structure of prominences, the nature of eruptive instability and magnetic reconnection in solar flares and coronal mass ejections, and the acceleration of the solar wind by reconnection or wave-turbulence. It is essential reading for graduate students and researchers in solar physics and related fields of astronomy, plasma physics and fluid dynamics. Problem sets and other resources are available at www.cambridge.org/9780521854719.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1986-01-01
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Lectures on magnetohydrodynamical drives
Loigom, Villem
The paper deals with nonconventional types of electrical machines and drives - magnetohydrodynamical (MHD) machines and drives. In cardinal it is based on the research conducted with participation of the author in Tallinn Technical University at the Institute of Electrical Drives and Power Electronics, where the use of magnetohydrodynamical motors and drives in the metallurgical and casting industries have been studied for a long time. Major research interests include the qualities and applications of the induction MHD-drives for set in the motion (pumping, turning, dosing, mixing, etc.) non-ferrous molten metals like Al, Mg, Sn, Pb, Na, K, and their alloys. The first part of the paper describes induction MHD motors and their electrohydraulical qualities. In the second part energy conversion problems are described. Also, on the basis of the analogy between electromechanical and electrohydraulical phenomenas, static and dynamic qualities of MHD drives with induction MHD machines are discussed.
Adventures in magnetohydrodynamics
Johnson, John L.
1988-03-01
The material in the report was presented in a series of three lectures presented on two days, October 29 and 30, 1987, at Nagoya University. A survey of magnetohydrodynamic theory was given as it applies to toroidal confinement. The material was broken down into four sections: (1) the derivation and justification of the MHD equations; (2) the equilibrium problem; (3) linearized stability; and (4) comments on nonlinear evolution, magnetic islands and transport theory.
Magnetohydrodynamic Turbulence and the Geodynamo
Shebalin, John V.
2016-01-01
Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.
Vortex disruption by magnetohydrodynamic feedback
Mak, Julian; Hughes, D W
2016-01-01
In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses --- and thus the degree of disruption --- that depends on the strength of the background magnetic field (measured by the parameter $M$, a ratio between the Alfv\\'en speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number $\\mbox{Rm}$). The resulting estimate suggests that significant disruption occurs when $M^{2}\\mbox{Rm} = O(1)$. To test our prediction, we analyse direct numerical simulations of vortices generated by the breakup of unstable shear flo...
Scale locality of magnetohydrodynamic turbulence.
Aluie, Hussein; Eyink, Gregory L
2010-02-26
We investigate the scale locality of cascades of conserved invariants at high kinetic and magnetic Reynold's numbers in the "inertial-inductive range" of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross helicity-or, equivalently, fluxes of Elsässer energies-are dominated by the contributions of local triads. Flux of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term may also be dominated by nonlocal triads, but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion nonlocally between disparate scales. We present supporting data from a 1024{3} simulation of forced MHD turbulence.
Spectrum of weak magnetohydrodynamic turbulence.
Boldyrev, Stanislav; Perez, Jean Carlos
2009-11-27
Turbulence of magnetohydrodynamic waves in nature and in the laboratory is generally cross-helical or nonbalanced, in that the energies of Alfvén waves moving in opposite directions along the guide magnetic field are unequal. Based on high-resolution numerical simulations it is proposed that such turbulence spontaneously generates a condensate of the residual energy E(v) - E(b) at small field-parallel wave numbers. As a result, the energy spectra of Alfvén waves are generally not scale invariant in an inertial interval of limited extent. In the limit of an infinite Reynolds number, the universality is asymptotically restored at large wave numbers, and both spectra attain the scaling E(k) proportional to k(perpendicular)(-2). The generation of a condensate is apparently related to the breakdown of mirror symmetry in nonbalanced turbulence.
Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems
Xiao, Jianyuan; Morrison, Philip J; Liu, Jian; Yu, Zhi; Zhang, Ruili; He, Yang
2016-01-01
An explicit high-order noncanonical symplectic algorithm for ideal two-fluid systems is developed. The fluid is discretized as particles in the Lagrangian description, while the electromagnetic fields and internal energy are treated as discrete differential form fields on a fixed mesh. With the assistance of Whitney interpolating forms, this scheme preserves the gauge symmetry of the electromagnetic field, and the pressure field is naturally derived from the discrete internal energy. The whole system is solved using the Hamiltonian splitting method discovered by He et al., which was been successfully adopted in constructing symplectic particle-in-cell schemes. Because of its structure preserving and explicit nature, this algorithm is especially suitable for large-scale simulations for physics problems that are multi-scale and require long-term fidelity and accuracy. The algorithm is verified via two tests: studies of the dispersion relation of waves in a two-fluid plasma system and the oscillating two-stream ...
Exact scaling laws for helical three-dimensional two-fluid turbulent plasmas
Andrés, Nahuel; Sahraoui, Fouad
2016-01-01
We derive exact scaling laws for a three-dimensional incompressible helical two-fluid plasma, without the assumption of isotropy. For each ideal invariant of the two-fluid model, i.e. the total energy, the electron helicity and the proton helicity, we derive simple scaling laws in terms of two-point increments correlation functions expressed in terms of the velocity field of each species and the magnetic field. These variables are appropriate for comparison with \\textit{in-situ} measurements in the solar wind at different spatial ranges and data from numerical simulations. Finally, with the exact scaling laws and dimensional analysis we predict the magnetic energy and electron helicity spectra for different ranges of scales.
Future of Magnetohydrodynamic Ship Propulsion,
1983-08-16
83 FOREIGN TECHNOLOGY DIVISION FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION by A.P. Baranov DTIQ ~E tJ Approved for public release; 0.. distribution...MAGNETOHYDRODYNAMIC SHIP PROPULSION By: A.P. Baranov -,English pages: 10 Source: Sudostroyeniye, Nr. 12, December 1966, pp. 3-6 . Country of origin: USSR X...equations, etc. merged into this translation were extracted from the best quality copy available. FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION A. P
Algorithm Development for the Two-Fluid Plasma Model
2009-02-17
of m=0 sausage instabilities in an axisymmetric Z-pinch", Physics of Plasmas 13, 082310 (2006). • A. Hakim and U. Shumlak, "Two-fluid physics and...accurate as the solution variables. The high-order representation of the solution variables satisfies the accuracy requirement to preserve the...here. [2] It also illustrates the dispersive nature of the waves which makes capturing the effect difficult in MHD algorithms. The electromagnetic
三维磁流体强化超燃冲压发动机数值模拟%Simulation of three-dimensional magnetohydrodynamic enhanced scramjet
Institute of Scientific and Technical Information of China (English)
郑小梅; 杨兴宇
2012-01-01
Simulation model of the three-dimensional magnetohydrodynamic(MHD) enhanced scramjet viscous inner flow field was established.Geometry of a scramjet applied both MHD controlled inlet and MHD energy bypass was designed at Ma=6.Numerical simulation was performed,and three-dimensional flow field structure,distribution pattern of the electric parameters,and characteristics of energy transformation were analyzed.The results show when flight Ma=8,MHD controlled inlet can be used to draw the compressive shock waves back to the cowl lip,the separation zone disappears,and the flow field of the inner inlet recovers to the design condition.The MHD energy bypass can decrease Ma of the flow before combustor efficiently,so as to improve engine performance.In the MHD generator,distributions of flow and electric parameters are comparatively ideal to make efficient effect,while the MHD accelerator needs large amount of energy input to make a significant acceleration.In the MHD accelerator,Joule heating dissipation is severe near the electrodes,which results in local high temperature,flow field complication and performance deterioration of the MHD accelerator.%建立了三维磁流体强化超燃冲压发动机内部黏性流场的求解模型.针对马赫数为6设计了联合应用磁控进气道和磁流体能量旁路的磁流体强化超燃冲压发动机模型.针对该模型进行了数值模拟研究，分析其中的三维流场结构、电参数分布规律以及能量转换特性.结果表明：当飞行马赫数为8时，磁控进气道的应用能够使头部压缩激波回到唇口，使分离区消失，内进气道中的流动恢复到设计状态.磁流体能量旁路可有效降低燃烧室入口处的马赫数，从而改善发动机性能.其中发生器中的流动参数和电参数的分布比较理想，效果显著；而加速器要取得显著的加速效果则需要人量的能量输入.在加速器中，电极附近焦耳耗散严重，导致局部高温
Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations
Kumar, Harish
2011-01-01
Two-fluid ideal plasma equations are a generalized form of the ideal MHD equations in which electrons and ions are considered as separate species. The design of efficient numerical schemes for the these equations is complicated on account of their non-linear nature and the presence of stiff source terms, especially for high charge to mass ratios and for low Larmor radii. In this article, we design entropy stable finite difference schemes for the two-fluid equations by combining entropy conservative fluxes and suitable numerical diffusion operators. Furthermore, to overcome the time step restrictions imposed by the stiff source terms, we devise time-stepping routines based on implicit-explicit (IMEX)-Runge Kutta (RK) schemes. The special structure of the two-fluid plasma equations is exploited by us to design IMEX schemes in which only local (in each cell) linear equations need to be solved at each time step. Benchmark numerical experiments are presented to illustrate the robustness and accuracy of these schem...
Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves
Lehmann, Andrew; Wardle, Mark
2015-08-01
The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6→5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.
Numerical study of cryogenic micro-slush particle production using a two-fluid nozzle
Ishimoto, Jun
2009-01-01
The fundamental characteristics of the atomization behavior of micro-slush nitrogen ( SN) jet flow through a two-fluid nozzle was numerically investigated and visualized by a new type of integrated simulation technique. Computational fluid dynamics (CFD) analysis is focused on the production mechanism of micro-slush nitrogen particles in a two-fluid nozzle and on the consecutive atomizing spray flow characteristics of the micro-slush jet. Based on the numerically predicted nozzle atomization performance, a new type of superadiabatic two-fluid ejector nozzle is developed. This nozzle is capable of generating and atomizing micro-slush nitrogen by means of liquid-gas impingement of a pressurized subcooled liquid nitrogen ( LN) flow and a low-temperature, high-speed gaseous helium (GHe) flow. The application of micro-slush as a refrigerant for long-distance high-temperature superconducting cables (HTS) is anticipated, and its production technology is expected to result in an extensive improvement in the effective cooling performance of superconducting systems. Computation indicates that the cryogenic micro-slush atomization rate and the multiphase spraying flow characteristics are affected by rapid LN-GHe mixing and turbulence perturbation upstream of the two-fluid nozzle, hydrodynamic instabilities at the gas-liquid interface, and shear stress between the liquid core and periphery of the LN jet. Calculation of the effect of micro-slush atomization on the jet thermal field revealed that high-speed mixing of LN-GHe swirling flow extensively enhances the heat transfer between the LN 2-phase and the GHe-phase. Furthermore, the performance of the micro-slush production nozzle was experimentally investigated by particle image velocimetry (PIV), which confirmed that the measurement results were in reasonable agreement with the numerical results.
The Modified Magnetohydrodynamical Equations
Institute of Scientific and Technical Information of China (English)
Evangelos Chaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similarfashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is doneby replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vectorpotential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vectoranalysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHDequations.
The Modified Magnetohydrodynamical Equations
Institute of Scientific and Technical Information of China (English)
EvangelosChaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similar fashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is done by replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vector potential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vector analysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHD equations.
Solitary vortexes in magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Vainshtein, S.I.
1985-12-01
Stationary configurations in magnetohydrodynamics are investigated for the following two particular cases: (1) there is no motion, which corresponds to a state of magnetostatic equilibrium; and (2) the magnetic field intensity becomes zero, i.e., hydrodynamic vortexes are involved. It is shown that in certain cases the line-of-force topology must be sufficiently simple in order before a stationary or equilibrium state can be achieved. It is also shown that in the two-dimensional case, the magnetic surfaces of an equilibrium configuration represent coaxial cylindrical surfaces. 12 references.
Elements of magnetohydrodynamic stability theory
Energy Technology Data Exchange (ETDEWEB)
Spies, G O
1976-11-01
The nonlinear equations of ideal magnetohydrodynamics are discussed along with the following topics: (1) static equilibrium, (2) strict linear theory, (3) stability of a system with one degree of freedom, (4) spectrum and variational principles in magnetohydrodynamics, (5) elementary proof of the modified energy principle, (6) sufficient stability criteria, (7) local stability, and (8) normal modes. (MOW)
Conservation of Circulation in Magnetohydrodynamics
Bekenstein, J D; Bekenstein, Jacob D.; Oron, Asaf
2000-01-01
We demonstrate, both at the Newtonian and (general) relativistic levels, theexistence of a generalization of Kelvin's circulation theorem (for pure fluids)which is applicable to perfect magnetohydrodynamics. The argument is based onthe least action principle for magnetohydrodynamic flow. Examples of the newconservation law are furnished. The new theorem should be helpful inidentifying new kinds of vortex phenomena distinct from magnetic ropes or fluidvortices.
Balsara, Dinshaw S; Garain, Sudip; Kim, Jinho
2016-01-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. Three important innovations are reported here. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our seco...
Magnetohydrodynamic process in solar activity
Directory of Open Access Journals (Sweden)
Jingxiu Wang
2014-01-01
Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.
Protostellar outflows with Smoothed Particle Magnetohydrodynamics (SPMHD)
Bürzle, Florian; Stasyszyn, Federico; Dolag, Klaus; Klessen, Ralf S
2011-01-01
The protostellar collapse of a molecular cloud core is usually accompanied by outflow phenomena. The latter are thought to be driven by magnetorotational processes from the central parts of the protostellar disc. While several 3D AMR/nested grid studies of outflow phenomena in collapsing magnetically supercritical dense cores have been reported in the literature, so far no such simulation has been performed using the Smoothed Particle Hydrodynamics (SPH) method. This is mainly due to intrinsic numerical difficulties in handling magnetohydrodynamics within SPH, which only recently were partly resolved. In this work, we use an approach where we evolve the magnetic field via the induction equation, augmented with stability correction and divergence cleaning schemes. We consider the collapse of a rotating core of one solar mass, threaded by a weak magnetic field initially parallel to the rotation axis so that the core is magnetically supercritical. We show, that Smoothed Particle Magnetohydrodynamics (SPMHD) is a...
Magnetohydrodynamics of blood flow.
Keltner, J R; Roos, M S; Brakeman, P R; Budinger, T F
1990-10-01
The changes in hydrostatic pressure and electrical potentials across vessels in the human vasculature in the presence of a large static magnetic field are estimated to determine the feasibility of in vivo NMR spectroscopy at fields as high as 10 T.A 10-T magnetic field changes the vascular pressure in a model of the human vasculature by less than 0.2%. An exact solution to the magnetohydrodynamic equations describing a conducting fluid flowing transverse to a static magnetic field in a nonconducting, straight, circular tube is used. This solution is compared to an approximate solution that assumes that no magnetic fields are induced in the fluid and that has led previous investigators to predict significant biological effects from static magnetic fields. Experimental results show that the exact solution accurately predicts the magnetohydrodynamic slowing of 15% NaCl flowing transverse to 2.3- and 4.7-T magnetic fields for fluxes below 0.5 liter/min while the approximate solution predicts a much more retarded flow.
Computational Methods for Ideal Magnetohydrodynamics
Kercher, Andrew D.
Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for modeling space weather and astrophysical flows. They are designed to resolve the different waves that propagate through a magnetohydro fluid, namely, the fast, Alfven, slow, and entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-regular waves no longer exist only after heavy grid refinement. A method is described for obtaining solutions for coplanar and near coplanar cases that consist of only regular waves, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two- and three-dimensions because it does not require explicitly tracking an Alfven wave. For a near coplanar case, and for grids with 213 points or less, we find root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FV schemes, the RMSE is as much as 25 times smaller. A multidimensional ideal MHD code has been implemented for simulations on graphics processing units (GPUs). Performance measurements were conducted for both the NVIDIA GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to two orders of magnitude greater than the CPU when using a single core, and two to three times greater than when run in parallel with OpenMP. Performance comparisons are made for two methods of storing data on the GPU. The first approach stores data as an Array of Structures (AoS), e.g., a point coordinate array of size 3 x n is iterated over. The second approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory efficiency
Introduction to magnetohydrodynamics
Thompson, Ian
2016-01-01
Magnetohydrodynamics (MHD) plays a crucial role in astrophysics, planetary magnetism, engineering and controlled nuclear fusion. This comprehensive textbook emphasizes physical ideas, rather than mathematical detail, making it accessible to a broad audience. Starting from elementary chapters on fluid mechanics and electromagnetism, it takes the reader all the way through to the latest ideas in more advanced topics, including planetary dynamos, stellar magnetism, fusion plasmas and engineering applications. With the new edition, readers will benefit from additional material on MHD instabilities, planetary dynamos and applications in astrophysics, as well as a whole new chapter on fusion plasma MHD. The development of the material from first principles and its pedagogical style makes this an ideal companion for both undergraduate students and postgraduate students in physics, applied mathematics and engineering. Elementary knowledge of vector calculus is the only prerequisite.
Magnetohydrodynamic inertial reference system
Eckelkamp-Baker, Dan; Sebesta, Henry R.; Burkhard, Kevin
2000-07-01
Optical platforms increasingly require attitude knowledge and optical instrument pointing at sub-microradian accuracy. No low-cost commercial system exists to provide this level of accuracy for guidance, navigation, and control. The need for small, inexpensive inertial sensors, which may be employed in pointing control systems that are required to satisfy angular line-of-sight stabilization jitter error budgets to levels of 1-3 microradian rms and less, has existed for at least two decades. Innovations and evolutions in small, low-noise inertial angular motion sensor technology and advances in the applications of the global positioning system have converged to allow improvement in acquisition, tracking and pointing solutions for a wide variety of payloads. We are developing a small, inexpensive, and high-performance inertial attitude reference system that uses our innovative magnetohydrodynamic angular rate sensor technology.
Magnetohydrodynamic Shearing Waves
Johnson, B M
2006-01-01
I consider the nonaxisymmetric linear theory of an isothermal magnetohydrodynamic (MHD) shear flow. The analysis is performed in the shearing box, a local model appropriate for a thin disk geometry. Linear perturbations in this model can be decomposed in terms of shearing waves (shwaves), which appear spatially as plane waves in a frame comoving with the shear. The time dependence of these waves cannot in general be expressed in terms of a frequency eigenvalue as in a normal mode decomposition, and numerical integration of a set of first-order amplitude equations is required for a complete characterization of their behavior. Their generic time dependence, however, is oscillatory with slowly-varying frequency and amplitude, and one can construct accurate analytic solutions by applying the Wentzel-Kramers-Brillouin method to the full set of amplitude equations. For the bulk of wavenumber space, therefore, the shwaves are well-approximated as modes with time-dependent frequencies and amplitudes. The incompressiv...
Astrophysical Weighted Particle Magnetohydrodynamics
Gaburov, Evghenii
2010-01-01
This paper presents applications of weighted meshless scheme for conservation laws to the Euler equations and the equations of ideal magnetohydrodynamics. The divergence constraint of the latter is maintained to the truncation error by a new meshless divergence cleaning procedure. The physics of the interaction between the particles is described by an one-dimensional Riemann problem in a moving frame. As a result, necessary diffusion which is required to treat dissipative processes is added automatically. As a result, our scheme has no free parameters that controls the physics of inter-particle interaction, with the exception of the number of the interacting neighbours which control the resolution and accuracy. The resulting equations have the form similar to SPH equations, and therefore existing SPH codes can be used to implement the weighed particle scheme. The scheme is validated in several hydrodynamic and MHD test cases. In particular, we demonstrate for the first time the ability of a meshless MHD schem...
Introduction to modern magnetohydrodynamics
Galtier, Sébastien
2016-01-01
Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.
An Interacting Two-Fluid Scenario for Quintom Dark Energy
Institute of Scientific and Technical Information of China (English)
ZHANG Xin
2005-01-01
The Quintom dark energy is a proposal that explains the recent observations that mildly favor the equation of state of dark energy w crossing -1 near the past. The Quintom model is often constructed by two scalar fields, where one is the quintessence field and another is the phantom field. The cosmological implication of the coupling of the two fields of the dark energy is out of question worth investigating. However, the consideration of the coupling in the field scenario is somewhat complex thus we propose an interacting two-fluid Quintom scenario for simplicity. The interaction between the two components is parametrized by a constant η in this scenario. The cosmological implications of this parametrization are investigated in detail in this paper. Also, a diagnostic for this model is performed by using the statefinder pairs {s, r} and {q, r}.
Two-fluid models of superfluid neutron star cores
Chamel, N
2008-01-01
Both relativistic and non-relativistic two-fluid models of neutron star cores are constructed, using the constrained variational formalism developed by Brandon Carter and co-workers. We consider a mixture of superfluid neutrons and superconducting protons at zero temperature, taking into account mutual entrainment effects. Leptons, which affect the interior composition of the neutron star and contribute to the pressure, are also included. We provide the analytic expression of the Lagrangian density of the system, the so-called master function, from which the dynamical equations can be obtained. All the microscopic parameters of the models are calculated consistently using the non-relativistic nuclear energy density functional theory. For comparison, we have also considered relativistic mean field models. The correspondence between relativistic and non-relativistic hydrodynamical models is discussed in the framework of the recently developed 4D covariant formalism of Newtonian multi-fluid hydrodynamics. We hav...
A two-fluid model for avalanche and debris flows.
Pitman, E Bruce; Le, Long
2005-07-15
Geophysical mass flows--debris flows, avalanches, landslides--can contain O(10(6)-10(10)) m(3) or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged 'thin layer' model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a 'two-phase' or 'two-fluid' system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived.
Two-fluid Dynamics in Clusters of Galaxies
Institute of Scientific and Technical Information of China (English)
Yu-Qing Lou
2005-01-01
We develop a theoretical formulation for the large-scale dynamics of galaxy clusters involving two spherical ‘isothermal fluids’ coupled by their mutual gravity and derive asymptotic similarity solutions analytically. One of the fluids roughly approximates the massive dark matter halo, while the other describes the hot gas, the relatively small mass contribution from the galaxies being subsumed in the gas. By properly choosing the self-similar variables, it is possible to consistently transform the set of time-dependent two-fluid equations of spherical symmetry with self-gravity into a set of coupled nonlinear ordinary differential equations (ODEs). We focus on the analytical analysis and discuss applications of the solutions to galaxy clusters.
Magnetoacoustic waves in a partially ionized two-fluid plasma
Soler, Roberto; Ballester, Jose Luis
2013-01-01
Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by the ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma $\\beta$, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional da...
Device modeling of superconductor transition edge sensors based on the two-fluid theory
Wang, Tian-Shun; Zhu, Qing-Feng; Wang, Jun-Xian; Li, Tie-Fu; Liu, Jian-She; Chen, Wei; Zhou, Xingxiang
2012-01-01
In order to support the design and study of sophisticated large scale transition edge sensor (TES) circuits, we use basic SPICE elements to develop device models for TESs based on the superfluid-normal fluid theory. In contrast to previous studies, our device model is not limited to small signal simulation, and it relies only on device parameters that have clear physical meaning and can be easily measured. We integrate the device models in design kits based on powerful EDA tools such as CADENCE and OrCAD, and use them for versatile simulations of TES circuits. Comparing our simulation results with published experimental data, we find good agreement which suggests that device models based on the two-fluid theory can be used to predict the behavior of TES circuits reliably and hence they are valuable for assisting the design of sophisticated TES circuits.
Review of magnetohydrodynamic pump applications
National Research Council Canada - National Science Library
Al-Habahbeh, O.M; Al-Saqqa, M; Safi, M; Abo Khater, T
2016-01-01
Magneto-hydrodynamic (MHD) principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps...
Conservation of Circulation in Magnetohydrodynamics
Bekenstein, Jacob D.; Oron, Asaf
2000-01-01
We demonstrate, both at the Newtonian and (general) relativistic levels, the existence of a generalization of Kelvin's circulation theorem (for pure fluids) which is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices.
Conservation of circulation in magnetohydrodynamics
Bekenstein; Oron
2000-10-01
We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices.
A new lattice Boltzmann model for incompressible magnetohydrodynamics
Institute of Scientific and Technical Information of China (English)
Chen Xing-Wang; Shi Bao-Chang
2005-01-01
Most of the existing lattice Boltzmann magnetohydrodynamics (MHD) models can be viewed as compressible schemes to simulate incompressible MHD flows. The compressible effect might lead to some undesired errors in numerical simulations. In this paper a new incompressible lattice Boltzmann MHD model without compressible effect is presented for simulating incompressible MHD flows. Numerical simulations of the Hartmann flow are performed. We do numerous tests and make comparison with Dellar's model in detail. The numerical results are in good agreement with the analytical error.
BOOK REVIEW: Nonlinear Magnetohydrodynamics
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium
Magnetohydrodynamic Augmented Propulsion Experiment
Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)
2002-01-01
A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate
Intrinsic rotation of toroidally confined magnetohydrodynamics.
Morales, Jorge A; Bos, Wouter J T; Schneider, Kai; Montgomery, David C
2012-10-26
The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation of a nonzero toroidal angular momentum.
MHD数值模拟中清除伪磁场散度方法%Spurious Magnetic Field Divergence Cleaning in Magnetohydrodynamic Simulation
Institute of Scientific and Technical Information of China (English)
田正雨; 张康平; 丁国昊; 李桦
2009-01-01
针对全MHD(Magnetohydrodynamics)数值模拟中存在伪磁场散度的问题,发展了如下计算方法:基本格式基于八波对称形式方程组,补充相关源项以保持方程组守恒性,并采用投影方法辅助清除伪散度.投影方法中,基于有限体积方法求解三维Poisson方程.算例显示,对于光滑解析磁场,伪磁场散度得到有效清除;对于带激波高超声速MHD流动,全局投影下自由来流区域误差增大.提出一种局部投影方法,在高磁场散度区域进行投影.结果表明,最终流场收敛稳定,高磁场散度得到有效清除,而低散度区域散度不受影响.
A two-fluid model for violent aerated flows
Dias, Frédéric; Ghidaglia, Jean-Michel
2008-01-01
In the study of ocean wave impact on structures, one often uses Froude scaling since the dominant force is gravity. However the presence of trapped or entrained air in the water can significantly modify wave impacts. When air is entrained in water in the form of small bubbles, the acoustic properties in the water change dramatically. While some work has been done to study small-amplitude disturbances in such mixtures, little work has been done on large disturbances in air-water mixtures. We propose a basic two-fluid model in which both fluids share the same velocities and analyze some of its properties. It is shown that this model can successfully mimic water wave impacts on coastal structures. The governing equations are discretized by a second-order finite volume method. Numerical results are presented for two examples: the dam break problem and the drop test problem. It is shown that this basic model can be used to study violent aerated flows, especially by providing fast qualitative estimates.
Generalized reduced magnetohydrodynamic equations
Energy Technology Data Exchange (ETDEWEB)
Kruger, S.E.
1999-02-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics.
Transient forcing effects on mixing of two fluids for a stable stratification
Pool, María.; Dentz, Marco; Post, Vincent E. A.
2016-09-01
Mixing and dispersion in coastal aquifers are strongly influenced by periodic temporal flow fluctuations on multiple time scales ranging from days (tides), seasons (pumping and recharge) to glacial cycles (regression and transgressions). Transient forcing effects lead to a complex space and time-dependent flow response which induces enhanced spreading and mixing of dissolved substances. We study effective mixing and solute transport in temporally fluctuating one-dimensional flow for a stable stratification of two fluids of different density using detailed numerical simulation as well as accurate column experiments. We quantify the observed transport behaviors and interface evolution by a time-averaged model that is obtained from a two-scale expansion of the full transport problem, and derive explicit expressions for the center of mass and width of the mixing zone between the two fluids. We find that the magnitude of transient-driven mixing is mainly controlled by the hydraulic diffusivity, the period, and the initial interface location. At an initial time regime, mixing can be characterized by an effective dispersion coefficient and both the interface position and width evolve linearly in time. At larger times, the spatial variability of the flow velocity leads to a deceleration of the interface and a compression of its width, which is manifested by a subdiffusive evolution of its width as t1/2.
Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems
Xiao, Jianyuan; Qin, Hong; Morrison, Philip J.; Liu, Jian; Yu, Zhi; Zhang, Ruili; He, Yang
2016-11-01
An explicit high-order noncanonical symplectic algorithm for ideal two-fluid systems is developed. The fluid is discretized as particles in the Lagrangian description, while the electromagnetic fields and internal energy are treated as discrete differential form fields on a fixed mesh. With the assistance of Whitney interpolating forms [H. Whitney, Geometric Integration Theory (Princeton University Press, 1957); M. Desbrun et al., Discrete Differential Geometry (Springer, 2008); J. Xiao et al., Phys. Plasmas 22, 112504 (2015)], this scheme preserves the gauge symmetry of the electromagnetic field, and the pressure field is naturally derived from the discrete internal energy. The whole system is solved using the Hamiltonian splitting method discovered by He et al. [Phys. Plasmas 22, 124503 (2015)], which was been successfully adopted in constructing symplectic particle-in-cell schemes [J. Xiao et al., Phys. Plasmas 22, 112504 (2015)]. Because of its structure preserving and explicit nature, this algorithm is especially suitable for large-scale simulations for physics problems that are multi-scale and require long-term fidelity and accuracy. The algorithm is verified via two tests: studies of the dispersion relation of waves in a two-fluid plasma system and the oscillating two-stream instability.
Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow
Armstrong, Ryan T.; McClure, James E.; Berrill, Mark A.; Rücker, Maja; Schlüter, Steffen; Berg, Steffen
2016-10-01
In multiphase flow in porous media the consistent pore to Darcy scale description of two-fluid flow processes has been a long-standing challenge. Immiscible displacement processes occur at the scale of individual pores. However, the larger scale behavior is described by phenomenological relationships such as relative permeability, which typically uses only fluid saturation as a state variable. As a consequence pore scale properties such as contact angle cannot be directly related to Darcy scale flow parameters. Advanced imaging and computational technologies are closing the gap between the pore and Darcy scale, supporting the development of new theory. We utilize fast x-ray microtomography to observe pore-scale two-fluid configurations during immiscible flow and initialize lattice Boltzmann simulations that demonstrate that the mobilization of disconnected nonwetting phase clusters can account for a significant fraction of the total flux. We show that fluid topology can undergo substantial changes during flow at constant saturation, which is one of the underlying causes of hysteretic behavior. Traditional assumptions about fluid configurations are therefore an oversimplification. Our results suggest that the role of fluid connectivity cannot be ignored for multiphase flow. On the Darcy scale, fluid topology and phase connectivity are accounted for by interfacial area and Euler characteristic as parameters that are missing from our current models.
Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow.
Armstrong, Ryan T; McClure, James E; Berrill, Mark A; Rücker, Maja; Schlüter, Steffen; Berg, Steffen
2016-10-01
In multiphase flow in porous media the consistent pore to Darcy scale description of two-fluid flow processes has been a long-standing challenge. Immiscible displacement processes occur at the scale of individual pores. However, the larger scale behavior is described by phenomenological relationships such as relative permeability, which typically uses only fluid saturation as a state variable. As a consequence pore scale properties such as contact angle cannot be directly related to Darcy scale flow parameters. Advanced imaging and computational technologies are closing the gap between the pore and Darcy scale, supporting the development of new theory. We utilize fast x-ray microtomography to observe pore-scale two-fluid configurations during immiscible flow and initialize lattice Boltzmann simulations that demonstrate that the mobilization of disconnected nonwetting phase clusters can account for a significant fraction of the total flux. We show that fluid topology can undergo substantial changes during flow at constant saturation, which is one of the underlying causes of hysteretic behavior. Traditional assumptions about fluid configurations are therefore an oversimplification. Our results suggest that the role of fluid connectivity cannot be ignored for multiphase flow. On the Darcy scale, fluid topology and phase connectivity are accounted for by interfacial area and Euler characteristic as parameters that are missing from our current models.
Capturing nonlinear dynamics of two-fluid Couette flows with asymptotic models
Papageorgiou, Demetrios; Cimpeanu, Radu; Kalogirou, Anna; Keaveny, Eric
2016-11-01
The nonlinear stability of two-fluid Couette flows is studied using a novel evolution equation whose dynamics are validated by direct numerical simulations (DNS). The evolution equation incorporates inertial effects at arbitrary Reynolds numbers through a nonlocal term arising from the coupling between the two fluid regions, and is valid when one of the layers is thin. The equation predicts asymmetric solutions and exhibits bistability as seen in experiments. Related low-inertia models have been used in qualitative predictions using ad hoc modifications rather than the direct comparisons carried out here. Comparisons between model solutions and DNS show excellent agreement at Reynolds numbers of O (103) found in experiments. Direct comparisons are also made with the available experimental results of Barthelet et al. (1995) when the thin layer occupies 1 / 5 of the channel height. Pointwise comparisons of the travelling wave shapes are carried out and once again the agreement is very good. EPSRC Grant Numbers EP/K041134 and EP/L020564.
Magnetohydrodynamic Modeling of the Jovian Magnetosphere
Walker, Raymond
2005-01-01
Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.
MAGNETOHYDRODYNAMIC EQUATIONS (MHD GENERATION CODE
Directory of Open Access Journals (Sweden)
Francisco Frutos Alfaro
2017-04-01
Full Text Available A program to generate codes in Fortran and C of the full magnetohydrodynamic equations is shown. The program uses the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the magnetohydrodynamic equations to obtain a code that can be used as a seed for a magnetohydrodynamic code for numerical applications. As an example, we present part of the output of our programs for Cartesian coordinates and how to do the discretization.
Transport between two fluids across their mutual flow interface: the streakline approach
Balasuriya, Sanjeeva
2016-01-01
Mixing between two different miscible fluids with a mutual interface must be initiated by fluid transporting across this fluid interface, caused for example by applying an unsteady velocity agitation. In general, there is no necessity for this physical flow barrier between the fluids to be associated with extremal or exponential attraction as might be revealed by applying Lagrangian coherent structures, finite-time Lyapunov exponents or other methods on the fluid velocity. It is shown that streaklines are key to understanding the breaking of the interface under velocity agitations, and a theory for locating the relevant streaklines is presented. Simulations of streaklines in a cross-channel mixer and a perturbed Kirchhoff's elliptic vortex are quantitatively compared to the theoretical results. A methodology for quantifying the unsteady advective transport between the two fluids using streaklines is presented.
Basic Pilot Code Development for Two-Fluid, Three-Field Model
Energy Technology Data Exchange (ETDEWEB)
Jeong, Jae Jun; Bae, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.; Ha, K. S.; Kang, D. H
2006-03-15
A basic pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. Using 9 conceptual problems, the basic pilot code has been verified. The results of the verification are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, bubbly flow, slug/churn turbulent flow, annular-mist flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The pilot code was programmed so that the source terms of the governing equations and numerical solution schemes can be easily tested. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. - During the simulation of a two-phase flow, the calculation reaches a quasisteady state with small-amplitude oscillations. The oscillations seem to be induced by some numerical causes. The research items for the improvement of the basic pilot code are listed in the last section of this report.
Perturbation of a Multiple Eigenvalue in the Benard Problem for Two Fluid Layers.
1984-12-01
EIGENVAWUE IN THlE BENARtD PROBLEM FOR TWO FLUID LAYERS Ca O~ Yuriko Renardy and Michael Renardy MUathematics Research Center University of Wisconsin...OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER PERTUBBATION OF A MULTIPLE EIGENVALUE IN THE BENARD PROBLEM FOR TWO FLUID LAYERS Yuriko Renardy and...PROBLEM FOR TWO FLUID LAYERS Yuriko Renardy and Michael Renardy 1. INTRODUCTION In the B6nard problem for one fluid, "exchange of stabilities" holds
Spectral analysis in magnetohydrodynamic equilibria
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel; Galindo, Felix [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
1998-12-11
It has been universally assumed that the spectrum of the magnetohydrodynamics equations, linearized around an equilibrium state, provides enough information on the short-term evolution of the plasma to study certain stability properties. We show that this is true if one takes into account viscous and resistive effects and the equilibrium satisfies certain regularity conditions. (author)
MAGNETOHYDRODYNAMIC MODELING FOR FUSION PLASMAS
Keppens, R.; Goedbloed, J. P.; Blokland, J. W. S.
2010-01-01
The magnetohydrodynamic model for fusion plasma dynamics governs the large-scale equilibrium properties, and sets the most stringent constraints on the parameter space accessible without violent disruptions. In conjunction with linear stability analysis in the complex tokamak geometry, the MHD parad
Two-Fluid Mathematical Models for Blood Flow in Stenosed Arteries: A Comparative Study
Directory of Open Access Journals (Sweden)
Sankar DS
2009-01-01
Full Text Available The pulsatile flow of blood through stenosed arteries is analyzed by assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a non-Newtonian fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in the core region of the artery is assumed as a (i Herschel-Bulkley fluid and (ii Casson fluid. Perturbation method is used to solve the resulting system of non-linear partial differential equations. Expressions for various flow quantities are obtained for the two-fluid Casson model. Expressions of the flow quantities obtained by Sankar and Lee (2006 for the two-fluid Herschel-Bulkley model are used to get the data for comparison. It is found that the plug flow velocity and velocity distribution of the two-fluid Casson model are considerably higher than those of the two-fluid Herschel-Bulkley model. It is also observed that the pressure drop, plug core radius, wall shear stress and the resistance to flow are significantly very low for the two-fluid Casson model than those of the two-fluid Herschel-Bulkley model. Hence, the two-fluid Casson model would be more useful than the two-fluid Herschel-Bulkley model to analyze the blood flow through stenosed arteries.
Magnetohydrodynamic Origin of Jets from Accretion Disks
Lovelace, R V E; Koldoba, A V
1999-01-01
A review is made of recent magnetohydrodynamic (MHD) theory and simulations of origin of jets from accretion disks. Many compact astrophysical objects emit powerful, highly-collimated, oppositely directed jets. Included are the extra galactic radio jets of active galaxies and quasars, and old compact stars in binaries, and emission line jets in young stellar objects. It is widely thought that these different jets arise from rotating, conducting accretion disks threaded by an ordered magnetic field. The twisting of the magnetic field by the rotation of the disk drives the jets by magnetically extracting matter, angular momentum, and energy from the accretion disk. Two main regimes have been discussed theoretically, hydromagnetic winds which have a significant mass flux, and Poynting flux jets where the mass flux is negligible. Over the past several years, exciting new developments on models of jets have come from progress in MHD simulations which now allow the study of the origin - the acceleration and collima...
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Energy Technology Data Exchange (ETDEWEB)
Banas, A.O.; Carver, M.B. [Chalk River Laboratories (Canada); Unrau, D. [Univ. of Toronto (Canada)
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Institute of Scientific and Technical Information of China (English)
WANG Xiang; SU WanHua
2009-01-01
Cavitating flows inside a diesel injection nozzle hole were simulated using a two-fluid model. Attention was focused on the complex cavitation processes and flow characteristics under constant inlet pres-sure and fluctuant inlet pressure modes. To validate the two-fluid model, model predictions were compared with the experimental data available in the literatures, and good agreement was achieved. The numerical results show that the appearance of supercavitation in the diesel nozzle hole induces obvious changes of flow field structures and exit flow conditions, The distributions of liquid phase turbulent kinetic energy and exit velocity profiles corresponding to the supercavitation regime indicate the potential for promoting the primary breakup of a diesel jet. Furthermore, the upstream pressure fluctuations significantly influence the cavitation processes. Both partial cavitation and supercavitation show unsteady behaviors as the rapid rise or fall of upstream pressure.
Martínez-Sykora, Juan; De Pontieu, Bart; Carlsson, Mats; Hansteen, Viggo H.; Nóbrega-Siverio, Daniel; Gudiksen, Boris V.
2017-09-01
We investigate the effects of interactions between ions and neutrals on the chromosphere and overlying corona using 2.5D radiative MHD simulations with the Bifrost code. We have extended the code capabilities implementing ion–neutral interaction effects using the generalized Ohm’s law, i.e., we include the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. Our models span from the upper convection zone to the corona, with the photosphere, chromosphere, and transition region partially ionized. Our simulations reveal that the interactions between ionized particles and neutral particles have important consequences for the magnetothermodynamics of these modeled layers: (1) ambipolar diffusion increases the temperature in the chromosphere; (2) sporadically the horizontal magnetic field in the photosphere is diffused into the chromosphere, due to the large ambipolar diffusion; (3) ambipolar diffusion concentrates electrical currents, leading to more violent jets and reconnection processes, resulting in (3a) the formation of longer and faster spicules, (3b) heating of plasma during the spicule evolution, and (3c) decoupling of the plasma and magnetic field in spicules. Our results indicate that ambipolar diffusion is a critical ingredient for understanding the magnetothermodynamic properties in the chromosphere and transition region. The numerical simulations have been made publicly available, similar to previous Bifrost simulations. This will allow the community to study realistic numerical simulations with a wider range of magnetic field configurations and physics modules than previously possible.
Electrohydrodynamic aspects of two-fluid microfluidic systems
DEFF Research Database (Denmark)
Goranovic, Goran
device and the cascade EO-pump, discovery of how to pump non-polar liquids by electroosmosis, theory of clogging pressures of large bubbles in microchannel contractions, and a theoretical analysis of the stability conditions for the interface between two different dielectric liquids under influence...... of external electric fields. A significant effort has been devoted to the creation of a new group at MIC, the Microfluidcs Theory and Simulation Group (MIFTS). During the first year of this PhD-study, simulation of lab-on-a-chip systems was the main topic. Later, as students were attracted to the group...... the activities expanded to include the theoretical studies. At present MIFTS consists of two postdocs, four PhD students and a number of undergraduate students, under the leadership of prof. Henrik Bruus....
Electrohydrodynamic aspects of two-fluid microfluidic systems
DEFF Research Database (Denmark)
Goranovic, Goran
The goal of this thesis has been to explore fundamental theoretical principles behind micro Total Analysis Systems (µTAS), also known as lab-on-chip systems, as well as to make use of computer simulations as an evaluation technique in the process of developing and optimizing µTAS devises. This in......The goal of this thesis has been to explore fundamental theoretical principles behind micro Total Analysis Systems (µTAS), also known as lab-on-chip systems, as well as to make use of computer simulations as an evaluation technique in the process of developing and optimizing µTAS devises...... device and the cascade EO-pump, discovery of how to pump non-polar liquids by electroosmosis, theory of clogging pressures of large bubbles in microchannel contractions, and a theoretical analysis of the stability conditions for the interface between two different dielectric liquids under influence...
Electrohydrodynamic aspects of two-fluid microfluidic systems
DEFF Research Database (Denmark)
Goranovic, Goran
The goal of this thesis has been to explore fundamental theoretical principles behind micro Total Analysis Systems (µTAS), also known as lab-on-chip systems, as well as to make use of computer simulations as an evaluation technique in the process of developing and optimizing µTAS devises. This in......The goal of this thesis has been to explore fundamental theoretical principles behind micro Total Analysis Systems (µTAS), also known as lab-on-chip systems, as well as to make use of computer simulations as an evaluation technique in the process of developing and optimizing µTAS devises...... device and the cascade EO-pump, discovery of how to pump non-polar liquids by electroosmosis, theory of clogging pressures of large bubbles in microchannel contractions, and a theoretical analysis of the stability conditions for the interface between two different dielectric liquids under influence...
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.
2016-08-01
The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio m e / m i . For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.
Space-time discontinuous Galerkin finite element method for two-fluid flows
Sollie, Warnerius Egbert Hendrikus
2010-01-01
The aim of this research project was to develop a discontinuous Galerkin method for two-fluid flows, which is accurate, versatile and can alleviate some of the problems commonly encountered with existing methods. A novel numerical method for two-fluid flow computations is presented, which combines t
A physical five-equation model for compressible two-fluid flow, and its numerical treatment
Kreeft, J.J.; Koren, B.
2009-01-01
A novel five-equation model for inviscid, non-heat-conducting, compressible two-fluid flow is derived, together with an appropriate numerical method. The model uses flow equations based on conservation laws and exchange laws only. The two fluids exchange momentum and energy, for which source terms a
Variational Integrators for Reduced Magnetohydrodynamics
Kraus, Michael; Grasso, Daniela
2015-01-01
Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws are described both at the continuous and discrete level. We verify...
Dynamic multiscaling in magnetohydrodynamic turbulence
Ray, Samriddhi Sankar; Pandit, Rahul
2016-01-01
We present the first study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.
Dynamic multiscaling in magnetohydrodynamic turbulence.
Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul
2016-11-01
We present a study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.
Test particle acceleration in explosive magnetohydrodynamic reconnection
Ripperda, Bart; Xia, Chun; Keppens, Rony
2016-01-01
Magnetic reconnection is the mechanism behind many violent phenomena in the universe. We demonstrate that energy released during reconnection can lead to non-thermal particle distribution functions. We use a method in which we combine resistive magnetohydrodynamics (MHD) with relativistic test particle dynamics. Using our open-source grid-adaptive MPI-AMRVAC software, we simulate global MHD evolution combined with test particle treatments in MHD snapshots. This approach is used to evaluate particle acceleration in explosive reconnection. The reconnection is triggered by an ideal tilt instability in two-and-a-half dimensional (2.5D) scenarios and by a combination of ideal tilt and kink instabilities in three-dimensional (3D) scenarios. These instabilities occur in a system with two parallel, adjacent, repelling current channels in an initially force-free equilibrium, as a simplified representation of flux ropes in a stellar magnetosphere. The current channels undergo a rotation and a separation on Alfv\\'enic t...
Classes of hydrodynamic and magnetohydrodynamic turbulent decay
Brandenburg, Axel
2016-01-01
We perform numerical simulations of decaying hydrodynamic and magnetohydrodynamic turbulence. We classify our time-dependent solutions by their evolutionary tracks in parametric plots between instantaneous scaling exponents. We find distinct classes of solutions evolving along specific trajectories toward points on a line of self-similar solutions. These trajectories are determined by the underlying physics governing individual cases, and not by the initial conditions, as is widely assumed. In the helical case, even for a scale-invariant initial spectrum (inversely proportional to wavenumber k), the solution evolves along the same trajectory as for a Batchelor spectrum (proportional to k^4). All of our self-similar solutions have an intrinsic subinertial range close to k^4$.
Acceleration of particles in imbalanced magnetohydrodynamic turbulence.
Teaca, Bogdan; Weidl, Martin S; Jenko, Frank; Schlickeiser, Reinhard
2014-08-01
The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating.
Magnetohydrodynamic stability of broad line region clouds
Krause, Martin; Burkert, Andreas
2012-01-01
Hydrodynamic stability has been a longstanding issue for the cloud model of the broad line region in active galactic nuclei. We argue that the clouds may be gravitationally bound to the supermassive black hole. If true, stabilisation by thermal pressure alone becomes even more difficult. We further argue that if magnetic fields should be present in such clouds at a level that could affect the stability properties, they need to be strong enough to compete with the radiation pressure on the cloud. This would imply magnetic field values of a few Gauss for a sample of Active Galactic Nuclei we draw from the literature. We then investigate the effect of several magnetic configurations on cloud stability in axi-symmetric magnetohydrodynamic simulations. For a purely azimuthal magnetic field which provides the dominant pressure support, the cloud first gets compressed by the opposing radiative and gravitational forces. The pressure inside the cloud then increases, and it expands vertically. Kelvin-Helmholtz and colu...
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics
Mohseni, F; Succi, S; Herrmann, H J
2015-01-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfv\\'en waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to $\\sigma^{-\\frac{1}{2}}$, $\\sigma$ being the conductivity, w...
Energy interactions in homogeneously sheared magnetohydrodynamic flows
Collard, Diane; Praturi, Divya Sri; Girimaji, Sharath
2016-11-01
We investigate the behavior of homogeneously sheared magnetohydrodynamic (MHD) flows subject to perturbations in various directions. We perform rapid distortion theory (RDT) analysis and direct numerical simulations (DNS) to examine the interplay between magnetic, kinetic, and internal energies. For perturbation wavevectors oriented along the spanwise direction, RDT analysis shows that the magnetic and velocity fields are decoupled. In the case of streamwise wavevectors, the magnetic and velocity fields are tightly coupled. The coupling is "harmonic" in nature. DNS is then used to confirm the RDT findings. Computations of spanwise perturbations indeed exhibit behavior that is impervious to the magnetic field. Computed streamwise perturbations exhibit oscillatory evolution of kinetic and magnetic energies for low magnetic field strength. As the strength of magnetic field increases, the oscillatory behavior intensifies even as the energy magnitude decays, indicating strong stabilization.
Inoue, S; Magara, T; Choe, G S; Park, Y D
2015-01-01
We clarify a relationship of the dynamics of a solar flare and a growing Coronal Mass Ejection (CME) by investigating the dynamics of magnetic fields during the X2.2-class flare taking place in the solar active region 11158 on 2011 February 15, based on simulation results obtained from Inoue et al. 2014. We found that the strongly twisted lines formed through the tether-cutting reconnection in the twisted lines of a nonlinear force-free field (NLFFF) can break the force balance within the magnetic field, resulting in their launch from the solar surface. We further discover that a large-scale flux tube is formed during the eruption as a result of the tether-cutting reconnection between the eruptive strongly twisted lines and these ambient weakly twisted lines. Then the newly formed large flux tube exceeds the critical height of the torus instability. The tether-cutting reconnection thus plays an important role in the triggering a CME. Furthermore, we found that the tangential fields at the solar surface illust...
Development and verification of the modified dynamic two-fluid model GOPS
Song, Chengyi; Li, Yuxing; Meng, Lan; Wang, Haiyan
2013-07-01
In the oil and gas industry, many versions of software have been developed to calculate the flow parameters of multiphase flow. However, the existing software is not perfect. To improve the accuracy, a new version of software GOPS has been developed by Daqing Oilfield Construction Design and Research Institute, and China University of Petroleum. GOPS modifies the general extended two-fluid model, and considers the gas bubble phase in liquid and liquid droplet phase in gas. There are four continuity equations, two momentum equations, one mixture energy-conservation equation and one pressure-conservation equation in the controlling equations of GOPS. These controlling equations are combined with flow pattern transition model and closure relationships for every flow pattern. By this way, GOPS can simulate the dynamic variation of multiphase flow. To verify GOPS, relevant experiment has been made in Surface Engineering Pilot Test Center, CNPC. The experimental pressure gradients are compared with the results from GOPS, and the accuracy of GOPS is high.
Modeling of an atomizer for two fluids; Modelacion de un atomizador de dos fluidos
Energy Technology Data Exchange (ETDEWEB)
Tapia Ramirez, Zoili [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1998-09-01
The work reported in this article presents the results of the effort to improve the basic understanding of the flow structure that is formed in a two fluid sprayer before and after the interaction between the sprayed fluid and the spraying fluid. The images in the interior of the mixing chamber of the atomizer are shown, which were taken with a high velocity video camera. Also the results of the numerical simulation of the internal flow obtained by means of a package of commercial modeling are shown. [Espanol] El trabajo reportado en este articulo presenta los resultados del esfuerzo por mejorar el entendimiento basico de la estructura del flujo que se forma en un atomizador de dos fluidos antes y despues de la interaccion entre el fluido atomizado y el fluido atomizante. Se muestran imagenes del flujo en el interior de la camara de mezclado del atomizador, las cuales fueron tomadas con una camara de video de alta velocidad. Tambien se incluyen los resultados de la simulacion numerica del flujo interno obtenidas por medio de un paquete de modelacion comercial.
Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model
Energy Technology Data Exchange (ETDEWEB)
Braz Filho, Francisco A.; Ribeiro, Guilherme B., E-mail: gbribeiro@ieav.cta.br; Caldeira, Alexandre D.
2016-11-15
Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m{sup 2} s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.
Structures in magnetohydrodynamic turbulence: detection and scaling.
Uritsky, V M; Pouquet, A; Rosenberg, D; Mininni, P D; Donovan, E F
2010-11-01
We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 1536³ points and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X -point configuration embedded in three dimensions, the so-called Orszag-Tang vortex, or an Arn'old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters in terms of their velocity-magnetic-field correlation. Self-organized criticality features have been identified in the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the moment with a known self-organized criticality class consistent with magnetohydrodynamics. We suggest that this range can be governed by turbulence dynamics as opposed to criticality and propose an interpretation of intermittency in terms of propagation of local instabilities.
Plasma Relaxation in Hall Magnetohydrodynamics
Shivamoggi, B K
2011-01-01
Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient alpha in the Hall MHD Beltrami condition turns out now to be proportional to the "potential vorticity." The Hall MHD Beltrami condition becomes equivalent to the "potential vorticity" conservation equation in two-dimensional hydrodynamics if the Hall MHD Lagrange multiplier beta is taken to be proportional to the "potential vorticity" as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as "potential vorticity" lines in 2D hydrodynamics.
Fundamental fluid mechanics and magnetohydrodynamics
Hosking, Roger J
2016-01-01
This book is primarily intended to enable postgraduate research students to enhance their understanding and expertise in Fluid Mechanics and Magnetohydrodynamics (MHD), subjects no longer treated in isolation. The exercises throughout the book often serve to provide additional and quite significant knowledge or to develop selected mathematical skills, and may also fill in certain details or enhance readers’ understanding of essential concepts. A previous background or some preliminary reading in either of the two core subjects would be advantageous, and prior knowledge of multivariate calculus and differential equations is expected.
Parametric resonance in ideal magnetohydrodynamics
Zaqarashvili
2000-08-01
We show that an external nonelectromagnetic periodic inhomogeneous force sets up a parametric resonance in an ideal magnetohydrodynamics. Alfven waves with certain wavelengths grow exponentially in amplitude. Nonlinear interaction between the resonant harmonics produces the long-term modulation of amplitudes. The mechanism of the energy transformation from an external nonelectromagnetic force to magnetic oscillations of the system presented here can be used in understanding the physical background of the gravitational action on the magnetized medium. Future application of this theory to several astrophysical problems is briefly discussed.
Anomalous k⊥(-8/3) spectrum in electron magnetohydrodynamic turbulence.
Meyrand, Romain; Galtier, Sébastien
2013-12-27
Electron magnetohydrodynamic turbulence is investigated under the presence of a relatively strong external magnetic field b0e∥ and through three-dimensional direct numerical simulations. Our study reveals the emergence of a k⊥(-8/3) scaling for the magnetic energy spectrum at scales k∥(D)≤k⊥≤k⊥(D), where k∥(D) and k⊥(D) are, respectively, the typical largest dissipative scales along and transverse to the b0 direction. Unlike standard magnetohydrodynamic, this turbulence regime is characterized by filaments of electric currents parallel to b0. The anomalous scaling is in agreement with a heuristic model in which the transfer in the parallel direction is negligible. Implications for solar wind turbulence are discussed.
Intermittency in Hall-magnetohydrodynamics with a strong guide field
Imazio, P Rodriguez; Dmitruk, P; Mininni, P D
2013-01-01
We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data is analyzed computing field increments in several directions perpendicular to the guide field, and building structure functions and probability density functions. In the magnetohydrodynamic limit we recover the usual results with the magnetic field being more intermittent than the velocity field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the level of intermittency, with close to monofractal scaling.
Core-annular miscible two-fluid flow in a slippery pipe: A stability analysis
Chattopadhyay, Geetanjali; Usha, Ranganathan; Sahu, Kirti Chandra
2017-09-01
This study is motivated by the preliminary direct numerical simulations in double-diffusive (DD) core-annular flows with slip at the wall which displayed elliptical shaped instability patterns as in a rigid pipe case; however, slip at the pipe wall delays the onset of instability for a range of parameters and increases the phase speed. This increased our curiosity to have a thorough understanding of the linear stability characteristics of the miscible DD two-fluid flow in a pipe with slip at the pipe wall. The present study, therefore, addresses the linear stability of viscosity-stratified core-annular Poiseuille flow of miscible fluids with matched density in a slippery pipe in the presence of two scalars diffusing at different rates. The physical mechanisms responsible for the occurrence of instabilities in the DD system are explained through an energy budget analysis. The differences and similarities between core-annular flow in a slippery pipe and in a plane channel with velocity slip at the walls are explored. The stability characteristics are significantly affected by the presence of slip. The diffusivity effect is non-monotonic in a DD system. A striking feature of instability is that only a band of wavenumbers is destabilized in the presence of moderate to large inertial effects. Both the longwave and shortwave are stabilized at small Reynolds numbers. Slip exhibits a dual role of stabilizing or destabilizing the flow. The preliminary direct numerical simulations confirm the predictions of the linear stability analysis. The present study reveals that it may be possible to control the instabilities in core-annular pressure driven pipe flows by imposing a velocity slip at the walls.
Institute of Scientific and Technical Information of China (English)
张向洪; 伍贻兆; 王江峰
2012-01-01
采用基于电子束电离的磁流体力学（MHD）控制系统,对高超声速流场附面层,以及非设计状态下的高超声速进气道流场的磁流体控制进行了深入研究.控制方程为低磁雷诺数Navier-Stokes方程,采用等离子体动力学模型与电子束模型模拟空气电离过程.研究结果表明：①电子束电离能有效提高流场的电导率,增强磁场对流场的控制效率;②基于电子束诱导电离的MHD控制系统能有效地控制高超声速流场的附面层,但其控制效率跟电子束能量大小相关;③基于电子束诱导电离的MHD控制系统能有效地改变非设计状态下高超声速飞行器的斜激波结构,使进气道重新满足Shock-on-lip（SOL）条件,但进气道的总压恢复系数以及流量将会降低.%The magnetohydrodynamic （MHD） controlling of hypersonic boundary layer and hypersonic inlets in off-design conditions were studied by magnetohydrodynamie control system based on electron beam ionization. The governing equations were low magnetic Reynolds number Navier-Stokes （N-S） equations, and the plasma kinetics model coupled with electron beam model was developed to simulate air ionization. Results indicate. （1） The electron beam ionization can improve the conductivity of flow and the control efficiency of magnetic field. （2） The MHD system can effectively control the hypersonic boundary lay- er and the control efficiency closely related with the electron beam energy. （3） The MHD system can bring oblique shock in off-design conditions back to the location of shock-on-lip （SOL） condition, and the total pressure recovery coefficient and flow mass of inlets would be reduced.
Variational integrators for reduced magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Kraus, Michael, E-mail: michael.kraus@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, 85748 Garching (Germany); Tassi, Emanuele, E-mail: tassi@cpt.univ-mrs.fr [Aix-Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332, 163 avenue de Luminy, case 907, 13288 cedex 9 Marseille (France); Grasso, Daniela, E-mail: daniela.grasso@infm.polito.it [ISC-CNR and Politecnico di Torino, Dipartimento Energia, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)
2016-09-15
Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws is described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.
Variational integrators for reduced magnetohydrodynamics
Kraus, Michael; Tassi, Emanuele; Grasso, Daniela
2016-09-01
Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws is described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.
MHD (Magnetohydrodynamic) Simulation of a Comet Magnetosphere.
1984-04-12
University Code 2628 (20 copies) New York, New York 10027 DTIC (2 copies) ATTN: R. Taussig R.A. Cross University of Alaska Geophysical Institute...Technology Croup Temerin, Michael Space Science Dept. Space Science Lab. Building 1-1, Room 1170 University of California One Space Park Berkeley...Minneapolis, MN 55455 Schulz, Michael Aerospace Corp. A6/2451, P.O. lox 92957 Los Angeles, California 90009 Shavhan, Stanley Dept. of Physics
Low-frequency 1/f fluctuations in hydrodynamic and magnetohydrodynamic turbulence.
Dmitruk, Pablo; Matthaeus, W H
2007-09-01
We investigate the occurrence of 1/f spectra of low-frequency fluctuations in numerical simulations of three-dimensional hydrodynamic and magnetohydrodynamic turbulence driven by a random forcing with a controlled correlation time. A range of one decade of 1/f spectrum is observed when a strong background magnetic field is present. The frequency spectra of individual Fourier modes is also analyzed and it is observed that the 1/f range is present in the largest available wavelength mode for the magnetohydrodynamic simulations with and without a background magnetic field and it is not observed (or is less clear) for the hydrodynamic case. The presence of 1/f spectra of low-frequency fluctuations is also analyzed for two-dimensional magnetohydrodynamic and hydrodynamic turbulence simulations and it is observed in both cases. The origin of these long period fluctuations is discussed.
A Magnetohydrodynamic Boost for Relativistic Jets
Mizuno, Yosuke; Hardee, Philip; Hartmann, Dieter H.; Nishikawa, Ken-Ichi; Zhang, Bing
2007-01-01
We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V^z j) flowing tangentially to a dense external medium. We find that magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A "poloidal" magnetic field (B^z), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong "toroidal" magnetic field (B^y), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Thus. the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
Dissipation and reconnection in boundary-driven reduced magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Wan, Minping; Rappazzo, Antonio Franco; Matthaeus, William H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Servidio, Sergio [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Oughton, Sean [Department of Mathematics, University of Waikato, Hamilton 3240 (New Zealand)
2014-12-10
We study the statistics of coherent current sheets, the population of X-type critical points, and reconnection rates in a coronal loop geometry, via numerical simulations of reduced magnetohydrodynamic turbulence. Current sheets and sites of reconnection (magnetic X-points) are identified in two-dimensional planes of the three-dimensional simulation domain. The geometry of the identified current sheets—including area, length, and width—and the magnetic dissipation occurring in the current sheets are statistically characterized. We also examine the role of magnetic reconnection, by computing the reconnection rates at the identified X-points and investigating their association with current sheets.
Two-fluid modeling of magnetosonic wave propagation in the partially ionized solar chromosphere
Maneva, Yana; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan
2016-04-01
We perform 2D two-fluid simulations to study the effects of ion-neutral interactions on the propagation of magnetosonic waves in the partially ionized solar chromosphere, where the number density of neutrals significantly exceeds the number density of protons at low heights. Thus modeling the neutral-ion interactions and studying the effect of neutrals on the ambient plasma properties becomes important for better understanding the observed emission lines and the propagation of disturbances from the photosphere to the transition region and the corona. The role of charged particles (electrons and ions) is combined within resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskii's transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations, allowing for propagation of higher frequency waves neglected by the standard MHD approximation. Separate mass, momentum and energy conservation equations are considered for the neutrals and the interaction between the different fluids is determined by the chemical reactions, such as impact ionization, radiative recombination and charge exchange, provided as additional source terms. To initialize the system we consider an ideal gas equation of state with equal initial temperatures for the electrons, ions and the neutrals and different density profiles. The initial temperature and density profiles are height-dependent and follow VAL C atmospheric model for the solar chromosphere. We have searched for a chemical and collisional equilibrium between the ions and the neutrals to minimize any unphysical outflows and artificial heating induced by initial pressure imbalances. Including different magnetic field profiles brings new source of plasma heating through Ohmic dissipation. The excitation and propagation of the magnetosonic waves depends on the type of the external velocity driver. As the waves propagate through the gravitationally stratified media
Kinetic approach to Kaluza's magnetohydrodynamics
Sandoval-Villalbazo, A.; Garcia-Colin, L. S.
2011-11-01
Ten years ago we presented a formalism by means of which the basic tenets of relativistic magnetohydrodynamics were derived using Kaluza's ideas about unifying fields in terms of the corresponding space time curvature for a given metric. In this work we present an attempt to obtain the thermodynamic properties of a charged fluid using using Boltzmann's equation for a dilute system adapted to kaluza's formalism. The main results that we obtain are analytical expressions for the main currents and corresponding forces, within the formalism of linear irreversible thermodynamics. We also indicate how transport coefficients can be calculated. Other relevant results are also mentioned. A. Sandoval-Villalbazo and L.S. Garcia-Colin; Phys. of Plasmas 7, 4823 (2000).
Shell Models of Magnetohydrodynamic Turbulence
Plunian, Franck; Frick, Peter
2012-01-01
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accu...
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, Don H.; Thresh, Henry R.
1982-01-01
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.
Micromachined magnetohydrodynamic actuators and sensors
Lee, Abraham P.; Lemoff, Asuncion V.
2000-01-01
A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.
Magnetohydrodynamic turbulence: Observation and experiment
Energy Technology Data Exchange (ETDEWEB)
Brown, M. R.; Schaffner, D. A.; Weck, P. J. [Department of Physics and Astronomy, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081 (United States)
2015-05-15
We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.
Relativistic magnetohydrodynamics in one dimension.
Lyutikov, Maxim; Hadden, Samuel
2012-02-01
We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.
Introduction to Magneto-Hydrodynamics
Pelletier, Guy
Magneto-Hydrodynamics (hereafter MHD) describes plasmas on large scales and more generally electrically conducting fluids. This description does not discriminate between the various fluids that constitute the medium. In laboratory, it allows to globally describe a plasma machine, for instance a toroidal nuclear fusion reactor like a Tokamak. In astrophysics it plays an essential role in the description of cosmic objects and their environments, as well as the media, such as the interstellar or the intergalactic medium. A set of phenomena are specific to MHD description. Some of them will be presented in this lecture such as the tension effect, confinement, magnetic diffusivity, magnetic field freezing, Alfvén waves, magneto-sonic waves, reconnection. A celebrated phenomenon of MHD will not be introduced in this brief lecture, namely the dynamo effect.
An implicit second order numerical method for two-fluid models
Energy Technology Data Exchange (ETDEWEB)
Toumi, I.
1995-12-31
We present an implicit upwind numerical method for a six equation two-fluid model based on a linearized Riemann solver. The construction of this approximate Riemann solver uses an extension of Roe`s scheme. Extension to second order accurate method is achieved using a piecewise linear approximation of the solution and a slope limiter method. For advancing in time, a linearized implicit integrating accurate non-oscillating solutions for two-phase flow calculations. The scheme was applied both to shock tube problems and to standard tests for two-fluid codes. (author). 10 refs., 6 figs.
Evolution of Accretion Discs around a Kerr Black Hole using Extended Magnetohydrodynamics
Foucart, Francois; Gammie, Charles F; Quataert, Eliot
2015-01-01
Black holes accreting well below the Eddington rate are believed to have geometrically thick, optically thin, rotationally supported accretion discs in which the Coulomb mean free path is large compared to $GM/c^2$. In such an environment, the disc evolution may differ significantly from ideal magnetohydrodynamic predictions. We present non-ideal global axisymmetric simulations of geometrically thick discs around a rotating black hole. The simulations are carried out using a new code ${\\rm\\it grim}$, which evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines, and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. We find that the pressure anisotropy grows to match the ...
COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS
Energy Technology Data Exchange (ETDEWEB)
Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)
2014-06-10
Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.
Structures in magnetohydrodynamic turbulence: detection and scaling
Uritsky, Vadim M; Rosenberg, Duane; Mininni, Pablo D; Donovan, Eric
2010-01-01
We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stems from numerical simulations of decaying three-dimensional (3D) magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 1536^3 points, and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X-point configuration embedded in 3D, the so-called Orszag-Tang vortex, or an Arn'old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8,000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two...
Finite dissipation and intermittency in magnetohydrodynamics.
Mininni, P D; Pouquet, A
2009-08-01
We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 1536(3) points and up to Taylor Reynolds number of approximately 1200 . The initial conditions are such that the initial velocity and magnetic fields are helical and in equipartition, while their correlation is negligible. Analyzing the data at the peak of dissipation, we show that the dissipation in MHD seems to asymptote to a constant as the Reynolds number increases, thereby strengthening the possibility of fast reconnection events in the solar environment for very large Reynolds numbers. Furthermore, intermittency of MHD flows, as determined by the spectrum of anomalous exponents of structure functions of the velocity and the magnetic field, is stronger than that of fluids, confirming earlier results; however, we also find that there is a measurable difference between the exponents of the velocity and those of the magnetic field, reminiscent of recent solar wind observations. Finally, we discuss the spectral scaling laws that arise in this flow.
Concomitant Hamiltonian and topological structures of extended magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Miloshevich, George, E-mail: gmilosh@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Morrison, Philip J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States)
2016-07-15
Highlights: • Common Hamiltonian structure of the extended MHD models presented. • The generalized helicities of extended MHD shown to be topological invariants analogous to fluid/magnetic helicity. • Generalized helicities can be studied through powerful topological and knot-theoretic methods such as the Jones polynomial. • Each extended MHD model shown to possess two Lie-dragged 2-forms, which are interpreted as the generalized vorticity fluxes. - Abstract: The paper describes the unique geometric properties of ideal magnetohydrodynamics (MHD), and demonstrates how such features are inherited by extended MHD, viz. models that incorporate two-fluid effects (the Hall term and electron inertia). The generalized helicities, and other geometric expressions for these models are presented in a topological context, emphasizing their universal facets. Some of the results presented include: the generalized Kelvin circulation theorems; the existence of two Lie-dragged 2-forms; and two concomitant helicities that can be studied via the Jones polynomial, which is widely utilized in Chern–Simons theory. The ensuing commonality is traced to the existence of an underlying Hamiltonian structure for all the extended MHD models, exemplified by the presence of a unique noncanonical Poisson bracket, and its associated energy.
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity
Directory of Open Access Journals (Sweden)
Font José A.
2008-09-01
Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable
Water Balance Simulations of a PEM Fuel Cell Using a Two-Fluid Model
DEFF Research Database (Denmark)
Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen
2010-01-01
A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various humidificat...
Water Balance Simulations of a PEM Fuel Cell Using a Two-Fluid Model
DEFF Research Database (Denmark)
Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen
2010-01-01
A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various humidificat......A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various...... humidification conditions. It was found that the specific surface area of the electrolyte in the catalyst layers close to the membrane is of critical importance for the overall water balance. Applying a high specific electrolyte surface area close to the membrane (a water-uptake layer) always leads to a lower...
A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids
Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-05-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.
NUMERICAL EVALUATION OF TWO-FLUID MIXING IN A SWIRL MICRO-MIXER
Institute of Scientific and Technical Information of China (English)
JIN Si-yu; LIU Ying-zheng; WANG Wei-zhe; CAO Zhao-min; KOYAMA Hide S.
2006-01-01
A collaborative investigation of two-fluid mixing in a swirl micro-mixer was carried out by the Shanghai Jiao Tong University and the Tokyo Denki University. Pure water and a mixture of glycerol and water were separately injected into branch channels and they were subsequently mixed in the central chamber. The two-fluid flow pattern was numerically modeled, in which the dependence of the mixture viscosity and density on the mass fraction of glycerol in the mixing fluid was carefully taken into consideration. The mixing performance of the two fluids was evaluated by varying the Reynolds numbers and the mass fractions of glycerol in water. The mixing process was extensively analyzed using streamline maps and contour plotting distributions of pressure and glycerol concentration. The numerical results show that the acceptable uniformity of mixing at Re = 0.1 is primarily attributed to the time-consuming molecular diffusion, whereas the cost-effective mixing at Re ＞ 500 was obtained because of the generation of the swirling flow. The increasing mass fraction of glycerol in water was found to attenuate the mixing performance. The preliminary microscopic visualization of the two-fluid mixing at Re=1300 demonstrated the consistence with the numerical results.
On the Energy Spectrum of Strong Magnetohydrodynamic Turbulence
Directory of Open Access Journals (Sweden)
Jean Carlos Perez
2012-10-01
Full Text Available The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of magnetohydrodynamics turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^{3} mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state magnetohydrodynamics turbulence to date. We study both the balanced case, where the energies associated with Alfvén modes propagating in opposite directions along the guide field, E^{+}(k_{⊥} and E^{-}(k_{⊥}, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, which is consistent with phenomenological models that include scale-dependent dynamic alignment. For the imbalanced case, with E^{+}>E^{-}, the simulations show that E^{-}∝k_{⊥}^{-3/2} for all Reynolds numbers considered, while E^{+} has a slightly steeper spectrum at small Re. As the Reynolds number increases, E^{+} flattens. Since E^{±} are pinned at the dissipation scale and anchored at the driving scales, we postulate that at sufficiently high Re the spectra will become parallel in the inertial range and scale as E^{+}∝E^{-}∝k_{⊥}^{-3/2}. Questions regarding the universality of the spectrum and the value of the “Kolmogorov constant” are discussed.
Yoon, Young Dae; Bellan, Paul M.
2016-10-01
A full three-dimensional computer code was developed in order to simulate a 3D-localized magnetic reconnection. We assume an incompressible two-fluid regime where the ions are stationary, and electron inertia and Hall effects are present. We solve a single dimensionless differential equation for perturbed magnetic fields with arbitrary background fields. The code has successfully reproduced both experimental and analytic solutions to resonance and Gendrin mode whistler waves in a uniform background field. The code was then modified to model 3D-localized magnetic reconnection as a 3D-localized perturbation on a hyperbolic-tangent background field. Three-dimensional properties that are asymmetric in the out-of-plane direction have been observed. These properties pertained to magnetic field lines, electron currents and their convection. Helicity and energy have also been examined, as well as the addition of a guide field.
The role of magnetohydrodynamics in heliospheric space plasma physics research
Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan
1988-01-01
Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.
Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence.
Servidio, S; Matthaeus, W H; Shay, M A; Cassak, P A; Dmitruk, P
2009-03-20
Systematic analysis of numerical simulations of two-dimensional magnetohydrodynamic turbulence reveals the presence of a large number of X-type neutral points where magnetic reconnection occurs. We examine the statistical properties of this ensemble of reconnection events that are spontaneously generated by turbulence. The associated reconnection rates are distributed over a wide range of values and scales with the geometry of the diffusion region. Locally, these events can be described through a variant of the Sweet-Parker model, in which the parameters are externally controlled by turbulence. This new perspective on reconnection is relevant in space and astrophysical contexts, where plasma is generally in a fully turbulent regime.
Long-range correlations and coherent structures in magnetohydrodynamic equilibria.
Weichman, Peter B
2012-12-01
The equilibrium theory of the 2D magnetohydrodynamic equations is derived, accounting for the full infinite hierarchies of conserved integrals. An exact description in terms of two coupled elastic membranes emerges, producing long-ranged correlations between the magnetic and velocity fields. This is quite different from the results of previous variational treatments, which relied on a local product ansatz for the thermodynamic Gibbs distribution. The equilibria display the same type of coherent structures, such as compact eddies and zonal jets, previously found in pure fluid equilibria. Possible consequences of this for recent simulations of the solar tachocline are discussed.
Magnetohydrodynamic dynamo: global flow generation in plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Yokoi, Nobumitsu; Yoshizawa, Akira [Tokyo Univ. (Japan). Inst. of Industrial Science; Itoh, Kimitaka; Itoh, Sanae-I.
1999-07-01
Generation mechanism of the spontaneous plasma rotation observed in an improved confinement mode in tokamak's is examined from the viewpoint of the turbulent magnetohydrodynamic (MHD) dynamo. A dynamo model, where the concept of cross helicity (velocity/magnetic-field correlation) plays a key role, is applied to the reversed shear (RS) modes. The concave electric-current profile occurred in the RS modes is shown to be a cause of the global plasma rotation through a numerical simulation of the cross-helicity turbulence model. (author)
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
S Sridhar
2011-07-01
Early work on magnetohydrodynamic (MHD) turbulence in the 1960s due, independently, to Iroshnikov and Kraichnan (IK) considered isotropic inertial-range spectra. Whereas laboratory experiments were not in a position to measure the spectral index, they showed that the turbulence was strongly anisotropic. Theoretical horizons correspondingly expanded in the 1980s, to accommodate both the isotropy of the IK theory and the anisotropy suggested by the experiments. Since the discovery of pulsars in 1967, many years of work on interstellar scintillation suggested that small-scale interstellar turbulence must have a hydromagnetic origin; but the IK spectrum was too ﬂat and the ideas on anisotropic spectra too qualitative to explain the observations. In response, new theories of balanced MHD turbulence were proposed in the 1990s, which argued that the IK theory was incorrect, and made quantitative predictions of anisotropic inertial-range spectra; these theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence. This very active area of research continues to be driven by astronomy.
Magnetohydrodynamic (MHD) driven droplet mixer
Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.
2004-05-11
A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.
Magnetohydrodynamic Propulsion for the Classroom
Font, Gabriel I.; Dudley, Scott C.
2004-10-01
The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.
Buoyancy-driven Magnetohydrodynamic Waves
Hague, A.; Erdélyi, R.
2016-09-01
Turbulent motions close to the visible solar surface may generate low-frequency internal gravity waves (IGWs) that propagate through the lower solar atmosphere. Magnetic activity is ubiquitous throughout the solar atmosphere, so it is expected that the behavior of IGWs is to be affected. In this article we investigate the role of an equilibrium magnetic field on propagating and standing buoyancy oscillations in a gravitationally stratified medium. We assume that this background magnetic field is parallel to the direction of gravitational stratification. It is known that when the equilibrium magnetic field is weak and the background is isothermal, the frequencies of standing IGWs are sensitive to the presence of magnetism. Here, we generalize this result to the case of a slowly varying temperature. To do this, we make use of the Boussinesq approximation. A comparison between the hydrodynamic and magnetohydrodynamic cases allows us to deduce the effects due to a magnetic field. It is shown that the frequency of IGWs may depart significantly from the Brunt-Väisälä frequency, even for a weak magnetic field. The mathematical techniques applied here give a clearer picture of the wave mode identification, which has previously been misinterpreted. An observational test is urged to validate the theoretical findings.
Magnetohydrodynamic Models of Molecular Tornadoes
Au, Kelvin; Fiege, Jason D.
2017-07-01
Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.
Smoothed particle hydrodynamics and magnetohydrodynamics
Price, Daniel J.
2012-02-01
This paper presents an overview and introduction to smoothed particle hydrodynamics and magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several 'urban myths' regarding SPH, in particular the idea that one can simply increase the 'neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.
NDSPMHD Smoothed Particle Magnetohydrodynamics Code
Price, Daniel J.
2011-01-01
This paper presents an overview and introduction to Smoothed Particle Hydrodynamics and Magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several 'urban myths' regarding SPH, in particular the idea that one can simply increase the 'neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.
Magnetohydrodynamics of Chiral Relativistic Fluids
Boyarsky, Alexey; Ruchayskiy, Oleg
2015-01-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
Computational algorithms for multiphase magnetohydrodynamics and applications to accelerator targets
Directory of Open Access Journals (Sweden)
R.V. Samulyak
2010-01-01
Full Text Available An interface-tracking numerical algorithm for the simulation of magnetohydrodynamic multiphase/free surface flows in the low-magnetic-Reynolds-number approximation of (Samulyak R., Du J., Glimm J., Xu Z., J. Comp. Phys., 2007, 226, 1532 is described. The algorithm has been implemented in multi-physics code FronTier and used for the simulation of MHD processes in liquids and weakly ionized plasmas. In this paper, numerical simulations of a liquid mercury jet entering strong and nonuniform magnetic field and interacting with a powerful proton pulse have been performed and compared with experiments. Such a mercury jet is a prototype of the proposed Muon Collider/Neutrino Factory, a future particle accelerator. Simulations demonstrate the elliptic distortion of the mercury jet as it enters the magnetic solenoid at a small angle to the magnetic axis, jet-surface instabilities (filamentation induced by the interaction with proton pulses, and the stabilizing effect of the magnetic field.
Magnetohydrodynamic models of bipolar knotty jet in henize 2-90
Lee, C.; Sahai, R.
2004-01-01
A remarkably linear, bipolar, knotty jet was recently discovered in Hen 2-90, an object classified as a young planetary nebula. Using two-dimensional, magnetohydrodynamic simulations, we investigate periodic variations in jet density and velocity as the mechanism for producing the jet and its knotty structures.
Haverkort, J. W.; de Blank, H. J.; Huysmans, G. T. A.; Pratt, J.; Koren, B.
2016-01-01
Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more c
On the behavior of hyperbolic neutral points in two-dimensional ideal magnetohydrodynamics.
Cordoba, D; Marliani, C
1999-03-16
We study ideal incompressible magnetohydrodynamics in two dimensions. We obtain an exponential estimate on the closing of the angle at hyperbolic saddle points of the magnetic stream function under the assumption that the velocity remains bounded. The analytic results are supported by numerical simulations. These results give evidence against a standard scenario for singularity formation for these equations.
Coherent effects in the stochastic electrodynamics of two-fluid plasma
Auluck, S K H
2012-01-01
Random electromagnetic fields are ubiquitous in plasmas, the most common example being electromagnetic radiation of thermal origin. They should exert a random force on electrons and ions in a plasma, adding a random component to their motion. Products of randomly fluctuating quantities, such as velocity and magnetic field, which are correlated through the dynamical equations of the two-fluid model of plasma, should then exhibit non-zero average values. Investigation of such effects requires spatial-spectral representation of the non-linear equations of the two-fluid model. Chandrasekhar-Kendall (CK) functions, their generating function and its gradient defined over an infinite domain are shown to simultaneously provide orthogonal basis for solenoidal, scalar and irrotational fields respectively, facilitating transformation from coordinate space to mode number space and back. This paper constructs a theoretical framework for studying coherent effects of random forces due to random electromagnetic fields in a t...
Slowly rotating superfluid neutron stars with isospin dependent entrainment in a two-fluid model
Kheto, Apurba
2015-01-01
We investigate the slowly rotating general relativistic superfluid neutron stars including the entrainment effect in a two-fluid model, where one fluid represents the superfluid neutrons and the other is the charge-neutral fluid called the proton fluid, made of protons and electrons. The equation of state and the entrainment effect between the superfluid neutrons and the proton fluid are computed using a relativistic mean field (RMF) model where baryon-baryon interaction is mediated by the exchange of $\\sigma$, $\\omega$, and $\\rho$ mesons and scalar self interactions are also included. The equations governing rotating neutron stars in the slow rotation approximation are second order in rotational velocities of neutron and proton fluids. We explore the effects of the isospin dependent entrainment and the relative rotation between two fluids on the global properties of rotating superfluid neutron stars such as mass, shape, and the mass shedding (Kepler) limit within the RMF model with different parameter sets. ...
Accurate, meshless methods for magnetohydrodynamics
Hopkins, Philip F.; Raives, Matthias J.
2016-01-01
Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.
On magnetohydrodynamic gauge field theory
Webb, G. M.; Anco, S. C.
2017-06-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.
Electron magnetohydrodynamics: dynamics and turbulence.
Lyutikov, Maxim
2013-11-01
We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k(1)=k(2) do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade [proportionality]k(-2). The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated.
From the Einstein-Szilard Patent to Modern Magnetohydrodynamics.
Povh, I. L.; Barinberg, A. D.
1979-01-01
Examines present-day and future prospects of the applications of modern magnetohydrodynamics in a number of countries. Explains how the electromagnetic pump, which was invented by Einstein and Leo Szilard, led to the development of applied magnetohydrodynamics. (HM)
Non-adiabatic spherical collapse with a two-fluid atmosphere
Govender, M
2014-01-01
In this work we present an exact model of a spherically symmetric star undergoing dissipative collapse in the form of a radial heat flux. The interior of the star is matched smoothly to the generalised Vaidya line element representing a two-fluid atmosphere comprising null radiation and a string fluid. The influence of the string density on the thermal behaviour of the model is investigated by employing a causal heat transport equation of Maxwell-Cattaneo form.
Microscopic construction of the two-fluid model for superfluid helium-4
Directory of Open Access Journals (Sweden)
P. Shygorin
2009-01-01
Full Text Available Using a system of Heisenberg's equation of motion for both the normal and the anomalous correlation functions a two-fluid hydrodynamics for superfluid helium-4 was constructed. The method is based on a gradient expansion of the exact equations of motion for correlation functions about a local equilibrium together with explicit use of the local equilibrium statistical operator for superfluid helium in the frame of reference, where condensate is in the state of rest.
Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.
Energy Technology Data Exchange (ETDEWEB)
Keicher, David M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cook, Adam W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.
A two-fluid model for black-hole accretion flows: particle acceleration and disc structure
Lee, Jason P.; Becker, Peter A.
2017-02-01
Hot, tenuous advection-dominated accretion flows around black holes are ideal sites for the Fermi acceleration of relativistic particles at standing shock waves in the accretion disc. Previous work has demonstrated that the shock-acceleration process can be efficient enough to power the observed, strong outflows in radio-loud active galaxies such as M87. However, the dynamical effect (back-reaction) on the flow, exerted by the pressure of the relativistic particles, has not been previously considered, and this effect can have a significant influence on the disc structure. We reexamine the problem by developing a new, two-fluid model for the structure of the accretion disc that includes the dynamical effect of the relativistic particle pressure, combined with the pressure of the background (thermal) gas. The new model is analogous to the two-fluid model of cosmic ray acceleration in supernova-driven shock waves. As part of the model, we also develop a new set of shock jump conditions, which are solved along with the hydrodynamic conservation equations to determine the structure of the accretion disc. The solutions include the formation of a mildly relativistic outflow (jet) at the shock radius, driven by the relativistic particles accelerated in the disc. One of our main conclusions is that in the context of the new two-fluid accretion model, global smooth (shock-free) solutions do not exist, and the disc must always contain a standing shock wave, at least in the inviscid case considered here.
Phase diagram of the two-fluid Lipkin model: a butterfly catastrophe
García-Ramos, J E; Arias, J M; Freire, E
2016-01-01
Background: In the last few decades quantum phase transitions have been of great interest in Nuclear Physics. In this context, two-fluid algebraic models are ideal systems to study how the concept of quantum phase transition evolves when moving into more complex systems, but the number of publications along this line has been scarce up to now. Purpose: We intend to determine the phase diagram of a two-fluid Lipkin model, that resembles the nuclear proton-neutron interacting boson model Hamiltonian, using both numerical results and analytic tools, i.e., catastrophe theory, and to compare the mean-field results with exact diagonalizations for large systems. Method: The mean-field energy surface of a consistent-Q-like two-fluid Lipkin Hamiltonian is studied and compared with exact results coming from a direct diagonalization. The mean-field results are analyzed using the framework of catastrophe theory. Results: The phase diagram of the model is obtained and the order of the different phase-transition lines and ...
A numerical algorithm for magnetohydrodynamics of ablated materials.
Lu, Tianshi; Du, Jian; Samulyak, Roman
2008-07-01
A numerical algorithm for the simulation of magnetohydrodynamics in partially ionized ablated material is described. For the hydro part, the hyperbolic conservation laws with electromagnetic terms is solved using techniques developed for free surface flows; for the electromagnetic part, the electrostatic approximation is applied and an elliptic equation for electric potential is solved. The algorithm has been implemented in the frame of front tracking, which explicitly tracks geometrically complex evolving interfaces. An elliptic solver based on the embedded boundary method were implemented for both two- and three-dimensional simulations. A surface model on the interface between the solid target and the ablated vapor has also been developed as well as a numerical model for the equation of state which accounts for atomic processes in the ablated material. The code has been applied to simulations of the pellet ablation in a magnetically confined plasma and the laser-ablated plasma plume expansion in magnetic fields.
Variational Integrators for Ideal and Reduced Magnetohydrodynamics
Kraus, Michael; Maj, Omar; Tassi, Emanuele; Grasso, Daniela
2016-10-01
Ideal and reduced magnetohydrodynamics are simplified sets of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. Discrete exterior calculus is used for the discretisation of the field variables in order to preserve their geometrical character. The resulting integrators preserve important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As these integrators are free of numerical resistivity, the magnetic field line topology is preserved and spurious reconnection is absent in the ideal case. Only when effects of finite electron mass are added, magnetic reconnection takes place. The excellent conservation properties of the methods are exemplified with numerical examples in 2D. We conclude with an outlook towards the treatment of general geometries in 3D and full magnetohydrodynamics.
Magnetic moment nonconservation in magnetohydrodynamic turbulence models.
Dalena, S; Greco, A; Rappazzo, A F; Mace, R L; Matthaeus, W H
2012-07-01
The fundamental assumptions of the adiabatic theory do not apply in the presence of sharp field gradients or in the presence of well-developed magnetohydrodynamic turbulence. For this reason, in such conditions the magnetic moment μ is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width Δμ (defined as the half peak-to-peak difference in the particle magnetic moments) and the bounce frequency ω(b). We perform test-particle simulations to investigate magnetic moment behavior when resonance overlapping occurs and during the interaction of a ring-beam particle distribution with a broadband slab spectrum. We find that the changes of magnetic moment and changes of pitch angle are related when the level of magnetic fluctuations is low, δB/B(0) = (10(-3),10(-2)), where B(0) is the constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation values and its effect on pitch angle is the isotropization of the distribution function f(α). This is a transient regime during which magnetic moment distribution f(μ) exhibits a characteristic one-sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance grows linearly in time as in normal diffusion. With strong fluctuations f(α) becomes completely isotropic, spatial diffusion sets in, and the f(μ) behavior is closely related to the sampling of the varying magnetic field associated with that spatial diffusion.
Development of Non-staggered, semi-implicit ICE numerical scheme for a two-fluid, three-field model
Energy Technology Data Exchange (ETDEWEB)
Jeong, Jae Jun; Yoon, H. Y.; Bae, S. W
2007-11-15
A pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. In this code, the semi-implicit ICE numerical scheme has been adapted to a 'non-staggered' grid. Using several conceptual problems, the numerical scheme has been verified. The results of the verifications are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, two-phase mixture flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. The non-staggered, semi-implicit ICE numerical scheme, which has been developed in this study, will be a starting point of a new code development that adopts an unstructured finite volume method.
The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics
Wheatley, V.
2014-01-10
The magnetohydrodynamic Richtmyer-Meshkov instability is investigated for the case where the initial magnetic field is unperturbed and aligned with the mean interface location. For this initial condition, the magnetic field lines penetrate the perturbed density interface, forbidding a tangential velocity jump and therefore the presence of a vortex sheet. Through simulation, we find that the vorticity distribution present on the interface immediately after the shock acceleration breaks up into waves traveling parallel and anti-parallel to the magnetic field, which transport the vorticity. The interference of these waves as they propagate causes the perturbation amplitude of the interface to oscillate in time. This interface behavior is accurately predicted over a broad range of parameters by an incompressible linearized model derived presently by solving the corresponding impulse driven, linearized initial value problem. Our use of an equilibrium initial condition results in interface motion produced solely by the impulsive acceleration. Nonlinear compressible simulations are used to investigate the behavior of the transverse field magnetohydrodynamic Richtmyer-Meshkov instability, and the performance of the incompressible model, over a range of shock strengths, magnetic field strengths, perturbation amplitudes and Atwood numbers.
Mean-field magnetohydrodynamics and dynamo theory
Krause, F
2013-01-01
Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen
Generalized magnetofluid connections in relativistic magnetohydrodynamics.
Asenjo, Felipe A; Comisso, Luca
2015-03-20
The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept.
On the Rayleigh-Taylor instability for incompressible viscous magnetohydrodynamic equations
Jiang, Fei; Wang, Yanjin
2012-01-01
We study the Rayleigh-Taylor problem for two incompressible, immiscible, viscous magnetohydrodynamic (MHD) flows, with zero resistivity, surface tension (or without surface tenstion) and special initial magnetic field, evolving with a free interface in the presence of a uniform gravitational field. First, we reformulate in Lagrangian coordinates MHD equations in a infinite slab as one for the Navier-Stokes equations with a force term induced by the fluid flow map. Then we analyze the linearized problem around the steady state which describes a denser immiscible fluid lying above a light one with an free interface separating the two fluids, and both fluids being in (unstable) equilibrium. By a general method of studying a family of modified variational problems, we construct smooth (when restricted to each fluid domain) solutions to the linearized problem that grow exponentially fast in time in Sobolev spaces, thus leading to an global instability result for the linearized problem. Finally, using these patholo...
Hamiltonian and action principle formalisms for spin-1/2 magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Lingam, M., E-mail: manasvi@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)
2015-02-15
A Hamiltonian and Action Principle formulation of spin-1/2 magnetohydrodynamics is presented via a first-principles derivation of the underlying Lagrangian, and the associated Hamiltonian. The derivation invokes the notion of “frozen-in” constraints, symmetry breaking, and similarities with Ginzburg-Landau theory to arrive at the relevant terms in the Hamiltonian. The model thus obtained includes the effects of spin and other quantum corrections and is shown to be in full agreement with existent models in the literature. It is also indicated how two-fluid effects, gyroviscosity, and anisotropic pressure can be included in the model, in addition to incorporating higher-order (nonlinear) quantum spin corrections. An interesting analogy with the theory of liquid crystals is also highlighted.
Well-posedness and convergence of cfd two-fluid model for bubbly flows
Vaidheeswaran, Avinash
The current research is focused on developing a well-posed multidimensional CFD two-fluid model (TFM) for bubbly flows. Two-phase flows exhibit a wide range of local flow instabilities such as Kelvin-Helmholtz, Rayleigh-Taylor, plume and jet instabilities. They arise due to the density difference and/or the relative velocity between the two phases. A physically correct TFM is essential to model these instabilities. However, this is not the case with the TFMs in numerical codes, which can be shown to have complex eigenvalues due to incompleteness and hence are ill-posed as initial value problems. A common approach to regularize an incomplete TFM is to add artificial physics or numerically by using a coarse grid or first order methods. However, it eliminates the local physical instabilities along with the undesired high frequency oscillations resulting from the ill-posedness. Thus, the TFM loses the capability to predict the inherent local dynamics of the two-phase flow. The alternative approach followed in the current study is to introduce appropriate physical mechanisms that make the TFM well-posed. First a well-posed 1-D TFM for vertical bubbly flows is analyzed with characteristics, and dispersion analysis. When an incomplete TFM is used, it results in high frequency oscillations in the solution. It is demonstrated through the travelling void wave problem that, by adding the missing short wavelength physics to the numerical TFM, this can be removed by making the model well-posed. To extend the limit of well-posedness beyond the well-known TFM of Pauchon and Banerjee [1], the mechanism of collision is considered, and it is shown by characteristics analysis that the TFM then becomes well-posed for all void fractions of practical interest. The aforementioned ideas are then extended to CFD TFM. The travelling void wave problem is again used to demonstrate that by adding appropriate physics, the problem of ill-posedness is resolved. Furthermore, issues pertaining to
Modelling flow and heat transfer in two-fluid interfacial flows, with applications to drops and jets
Mehdi-Nejad, Vala
2003-10-01
A two-dimensional, axi-symmetric model is developed to calculate flow and heat transfer in a two-fluid system. The model uses one set of the governing equations combined with a volume tracking method on a fixed structured mesh to model the simultaneous movement of mass, momentum and energy across cell boundaries. Both first and second-order methods are used to approximate temperature fields with sharp gradients that exist near a fluid-fluid interface. The model is first used to simulate the effect of surrounding air during a droplet impact. Bubble entrapment is observed in both numerical simulation and experimental photographs. The impact of water, n-heptane and molten nickel droplets on a solid surface is simulated. When a droplet approaches another surface, air in the gap between them was forced out. Increased air pressure below the droplet creates a depression in its surface, in which air is trapped. Different behaviors observed for water and n-heptane simulations are attributed to differences in wetting behavior. Next, to demonstrate the capabilities of the model, the interfacial heat transfer from molten tin droplets falling in an oil bath is modelled. The development of vortices behind droplets is simulated and the effect of fluid recirculation and oil thermal conductivity on heat dissipation is studied. The thesis concludes with application of the model to a study of interfacial heat transfer during jet break up. It is demonstrated that the change of fluid properties associated with interfacial heat transfer affects the jet break up and the resulting droplet size. It is also shown that obtaining a desirable droplet size during jet break up not only depends on hydrodynamic conditions such as nozzle diameter, jet initial velocity, and pressure, but also on thermal conditions such as the initial jet temperature and the surrounding fluid thermal properties.
On energy conservation in extended magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Kimura, Keiji [Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Morrison, P. J. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712-1060 (United States)
2014-08-15
A systematic study of energy conservation for extended magnetohydrodynamic models that include Hall terms and electron inertia is performed. It is observed that commonly used models do not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In particular, a term in the momentum equation that is often neglected is seen to be needed for conservation of energy.
Dynamic grid adaptation for computational magnetohydrodynamics
Keppens, R.; Nool, M.; Zegeling, P. A.; Goedbloed, J. P.; Bubak, M.; Williams, R.; Afsarmanesh, H.; Hertzberger, B.
2000-01-01
In many plasma physical and astrophysical problems, both linear and nonlinear effects can lead to global dynamics that induce, or occur simultaneously with, local phenomena. For example, a magnetically confined plasma column can potentially posses global magnetohydrodynamic (MHD) eigenmodes with an
Potential vorticity formulation of compressible magnetohydrodynamics.
Arter, Wayne
2013-01-04
Compressible ideal magnetohydrodynamics is formulated in terms of the time evolution of potential vorticity and magnetic flux per unit mass using a compact Lie bracket notation. It is demonstrated that this simplifies analytic solution in at least one very important situation relevant to magnetic fusion experiments. Potentially important implications for analytic and numerical modelling of both laboratory and astrophysical plasmas are also discussed.
A consistent thermodynamics of the MHD wave-heated two-fluid solar wind
Directory of Open Access Journals (Sweden)
I. V. Chashei
Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at
Phase diagram of the two-fluid Lipkin model: A "butterfly" catastrophe
García-Ramos, J. E.; Pérez-Fernández, P.; Arias, J. M.; Freire, E.
2016-03-01
Background: In the past few decades quantum phase transitions have been of great interest in nuclear physics. In this context, two-fluid algebraic models are ideal systems to study how the concept of quantum phase transition evolves when moving into more complex systems, but the number of publications along this line has been scarce up to now. Purpose: We intend to determine the phase diagram of a two-fluid Lipkin model that resembles the nuclear proton-neutron interacting boson model Hamiltonian using both numerical results and analytic tools, i.e., catastrophe theory, and compare the mean-field results with exact diagonalizations for large systems. Method: The mean-field energy surface of a consistent-Q -like two-fluid Lipkin Hamiltonian is studied and compared with exact results coming from a direct diagonalization. The mean-field results are analyzed using the framework of catastrophe theory. Results: The phase diagram of the model is obtained and the order of the different phase-transition lines and surfaces is determined using a catastrophe theory analysis. Conclusions: There are two first-order surfaces in the phase diagram, one separating the spherical and the deformed shapes, while the other separates two different deformed phases. A second-order line, where the later surfaces merge, is found. This line finishes in a transition point with a divergence in the second-order derivative of the energy that corresponds to a tricritical point in the language of the Ginzburg-Landau theory for phase transitions.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Adams, Mark F. [Columbia Univ., New York, NY (United States); Samtaney, Ravi [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Brandt, Achi [Weizmann Inst. of Science, Rehovot (Israel)
2013-12-14
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics
Mocz, Philip; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars
2016-01-01
We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code Arepo. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this co...
The small-scale turbulent dynamo in smoothed particle magnetohydrodynamics
Tricco, Terrence S; Federrath, Christoph
2016-01-01
Supersonic turbulence is believed to be at the heart of star formation. We have performed smoothed particle magnetohydrodynamics (SPMHD) simulations of the small-scale dynamo amplification of magnetic fields in supersonic turbulence. The calculations use isothermal gas driven at rms velocity of Mach 10 so that conditions are representative of star-forming molecular clouds in the Milky Way. The growth of magnetic energy is followed for 10 orders in magnitude until it reaches saturation, a few percent of the kinetic energy. The results of our dynamo calculations are compared with results from grid-based methods, finding excellent agreement on their statistics and their qualitative behaviour. The simulations utilise the latest algorithmic developments we have developed, in particular, a new divergence cleaning approach to maintain the solenoidal constraint on the magnetic field and a method to reduce the numerical dissipation of the magnetic shock capturing scheme. We demonstrate that our divergence cleaning met...
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R G; Federrath, Christoph
2015-01-01
Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures -- models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pre...
Protostellar jets and magnetised turbulence with smoothed particle magnetohydrodynamics
Tricco, Terrence
2016-01-01
Magnetic fields are an integral component of the formation of stars. During my thesis work, I built new methods to model magnetic fields in smoothed particle magnetohydrodynamics which enforce the divergence-free constraint on the magnetic field and reduce numerical dissipation of the magnetic field. Using these methods, we have performed simulations of isolated protostar formation, studying the production of jets and outflows of material and their effect on transporting angular momentum away from the protostar and reducing the efficiency of star formation. A major code comparison project on the small-scale turbulent dynamo amplification of magnetic fields was performed, using conditions representative of molecular clouds, the formation site of stars. The results were compared against results from grid-based methods, finding excellent agreement on their statistics and qualitative behaviour. I will outline the numerical methods developed, and present the results from our protostar and molecular cloud simulations.
On the energy spectrum of strong magnetohydrodynamic turbulence
Perez, Jean Carlos; Boldyrev, Stanislav; Cattaneo, Fausto
2012-01-01
The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of MHD turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^3 mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state MHD turbulence to date. We study both the balanced case, where the energies associated with Alfv\\'en modes propagating in opposite directions along the guide field, E^+ and $E^-, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, consistent with phenomenological models that include sc...
Waves in General Relativistic Two-fluid Plasma around a Schwarzschild Black Hole
Rahman, M Atiqur
2010-01-01
Waves propagating in the relativistic electron-positron or ions plasma are investigated in a frame of two-fluid equations using the 3+1 formalism of general relativity developed by Thorne, Price and Macdonald (TPM). The plasma is assumed to be freefalling in the radial direction toward the event horizon due to the strong gravitational field of a Schwarzschild black hole. The local dispersion relations for transverse and longitudinal waves have been derived, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon using WKB approximation
Cosmic Ray propagation in sub-Alfvenic magnetohydrodynamic turbulence
Cohet, Romain
2016-01-01
This work has the main objective to provide a detailed investigation of cosmic ray propagation in magnetohydrodynamic turbulent fields generated by forcing the fluid velocity field at large scales. It provides a derivation of the particle mean free path dependences in terms of the turbulence level described by the Alfv\\'enic Mach number and in terms of the particle rigidity. We use an upgrade version of the magnetohydrodynamic code {\\tt RAMSES} which includes a forcing module and a kinetic module and solve the Lorentz equation for each particle. The simulations are performed using a 3 dimension periodical box in the test-particle and magnetostatic limits. The forcing module is implemented using an Ornstein-Uhlenbeck process. An ensemble average over a large number of particle trajectories is applied to reconstruct the particle mean free paths. We derive the cosmic ray mean free paths in terms of the Alfv\\'enic Mach numbers and particle reduced rigidities in different turbulence forcing geometries. The reduced...
Small-scale behavior of Hall magnetohydrodynamic turbulence.
Stawarz, Julia E; Pouquet, Annick
2015-12-01
Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional (3D) direct numerical simulations with grids up to 768(3) points and two different types of initial conditions. Results are compared to analogous magnetohydrodynamic (MHD) runs and both Laplacian and Laplacian-squared dissipative operators are examined. At scales below the ion inertial length, the ratio of magnetic to kinetic energy as a function of wave number transitions to a magnetically dominated state. The transition in behavior is associated with the advection term in the momentum equation becoming subdominant to dissipation. Examination of autocorrelation functions reveals that, while current and vorticity structures are similarly sized in MHD, HMHD current structures are narrower and vorticity structures are wider. The electric field autocorrelation function is significantly narrower in HMHD than in MHD and is similar to the HMHD current autocorrelation function at small separations. HMHD current structures are found to be significantly more intense than in MHD and appear to have an enhanced association with strong alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. When hyperdiffusivity is used, a longer region consistent with a k(-7/3) scaling is present for right-polarized fluctuations when compared to Laplacian dissipation runs.
Validation of Magnetospheric Magnetohydrodynamic Models
Curtis, Brian
Magnetospheric magnetohydrodynamic (MHD) models are commonly used for both prediction and modeling of Earth's magnetosphere. To date, very little validation has been performed to determine their limits, uncertainties, and differences. In this work, we performed a comprehensive analysis using several commonly used validation techniques in the atmospheric sciences to MHD-based models of Earth's magnetosphere for the first time. The validation techniques of parameter variability/sensitivity analysis and comparison to other models were used on the OpenGGCM, BATS-R-US, and SWMF magnetospheric MHD models to answer several questions about how these models compare. The questions include: (1) the difference between the model's predictions prior to and following to a reversal of Bz in the upstream interplanetary field (IMF) from positive to negative, (2) the influence of the preconditioning duration, and (3) the differences between models under extreme solar wind conditions. A differencing visualization tool was developed and used to address these three questions. We find: (1) For a reversal in IMF Bz from positive to negative, the OpenGGCM magnetopause is closest to Earth as it has the weakest magnetic pressure near-Earth. The differences in magnetopause positions between BATS-R-US and SWMF are explained by the influence of the ring current, which is included in SWMF. Densities are highest for SWMF and lowest for OpenGGCM. The OpenGGCM tail currents differ significantly from BATS-R-US and SWMF; (2) A longer preconditioning time allowed the magnetosphere to relax more, giving different positions for the magnetopause with all three models before the IMF Bz reversal. There were differences greater than 100% for all three models before the IMF Bz reversal. The differences in the current sheet region for the OpenGGCM were small after the IMF Bz reversal. The BATS-R-US and SWMF differences decreased after the IMF Bz reversal to near zero; (3) For extreme conditions in the solar
Formation of relativistic jets. Magnetohydrodynamics and synchrotron radiation
Energy Technology Data Exchange (ETDEWEB)
Porth, Oliver Joachim Georg
2011-11-09
In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor Γ>or similar 8 and half-opening angles below 1 are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic
Two Types of Magnetohydrodynamic Sheath Jets
Kaburaki, Osamu
2009-01-01
Recent observations of astrophysical jets emanating from various galactic nuclei strongly suggest that a double layered structure, or a spine-sheath structure, is likely to be their common feature. We propose that such a sheath jet structure can be formed magnetohydrodynamically within a valley of the magnetic pressures, which is formed between the peaks due to the poloidal and toroidal components, with the centrifugal force acting on the rotating sheath plasma is balanced by the hoop stress of the toroidal field. The poloidal field concentrated near the polar axis is maintained by a converging plasma flow toward the jet region, and the toroidal field is developed outside the jet cone owing to the poloidal current circulating through the jet. Under such situations, the set of magnetohydrodynamic (MHD) equations allows two main types of solutions, at least, in the region far from the footpoint. The first type solution describes the jets of marginally bound nature. This type is realized when the jet temperature...
Efficient Acceleration of Relativistic Magnetohydrodynamic Jets
Toma, Kenji
2013-01-01
Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although conversion mechanism from Poynting into particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences ...
Magnetohydrodynamic stability of stochastically driven accretion flows
Nath, Sujit K; Chattopadhyay, Amit K
2013-01-01
We investigate the evolution of magnetohydrodynamic/hydromagnetic perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable, but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations/experiments. The mismatch seems to have been resolved, atleast in certain regimes, in the presence of weak magnetic field revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It ...
Multi-region relaxed magnetohydrodynamics with flow
Dennis, G R; Dewar, R L; Hole, M J
2014-01-01
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
Multi-region relaxed magnetohydrodynamics with flow
Energy Technology Data Exchange (ETDEWEB)
Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2014-04-15
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
A hierarchy of simple hyperbolic two-fluid models for bubbly flows
Drui, Florence; Kokh, Samuel; Massot, Marc
2016-01-01
With the objective of modeling both separate and disperse two-phase flows, we use in this paper a methodology for deriving two-fluid models that do not assume any flow topology. This methodology is based on a variational principle and on entropy dissipation requirement. Some of the models that are such derived and studied are already known in the contexts of the description of separate-or disperse-phase flows. However, we here propose an arrangement of these models into a hierarchy based on their links through relaxation parameters. Moreover, the models are shown to be compatible with the description of a monodisperse bubbly flow and, within this frame, the relaxation parameters can be identified. This identification is finally verified and discussed through comparisons with experimental measures of sound dispersion and with dispersion relations of a reference model for bubbly media.
Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics
Früngel, Frank B A
1965-01-01
High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel`s theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism.
Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas
Energy Technology Data Exchange (ETDEWEB)
Jardin, S C
2010-09-28
Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.
Directory of Open Access Journals (Sweden)
Domingues M. O.
2013-12-01
Full Text Available We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution.
The inverse cascade of magnetic helicity in magnetohydrodynamic turbulence
Müller, Wolf-Christian; Busse, Angela
2012-01-01
The nonlinear dynamics of magnetic helicity, $H^M$, which is responsible for large-scale magnetic structure formation in electrically conducting turbulent media is investigated in forced and decaying three-dimensional magnetohydrodynamic turbulence. This is done with the help of high resolution direct numerical simulations and statistical closure theory. The numerically observed spectral scaling of $H^M$ is at variance with earlier work using a statistical closure model [Pouquet et al., J. Fluid Mech. \\textbf{77} 321 (1976)]. By revisiting this theory a universal dynamical balance relation is found that includes effects of kinetic helicity, as well as kinetic and magnetic energy on the inverse cascade of $H^M$ and explains the above-mentioned discrepancy. Considering the result in the context of mean-field dynamo theory suggests a nonlinear modification of the $\\alpha$-dynamo effect important in the context of magnetic field excitation in turbulent plasmas.
Scaling properties of small-scale fluctuations in magnetohydrodynamic turbulence
Perez, J C; Boldyrev, S; Cattaneo, F
2014-01-01
Magnetohydrodynamic (MHD) turbulence in the majority of natural systems, including the interstellar medium, the solar corona, and the solar wind, has Reynolds numbers far exceeding the Reynolds numbers achievable in numerical experiments. Much attention is therefore drawn to the universal scaling properties of small-scale fluctuations, which can be reliably measured in the simulations and then extrapolated to astrophysical scales. However, in contrast with hydrodynamic turbulence, where the universal structure of the inertial and dissipation intervals is described by the Kolmogorov self-similarity, the scaling for MHD turbulence cannot be established based solely on dimensional arguments due to the presence of an intrinsic velocity scale -- the Alfven velocity. In this Letter, we demonstrate that the Kolmogorov first self-similarity hypothesis cannot be formulated for MHD turbulence in the same way it is formulated for the hydrodynamic case. Besides profound consequences for the analytical consideration, this...
Magnetic helicity and the evolution of decaying magnetohydrodynamic turbulence.
Berera, Arjun; Linkmann, Moritz
2014-10-01
Ensemble-averaged high resolution direct numerical simulations of reverse spectral transfer are presented, extending on the many single realization numerical studies done up to now. This identifies this type of spectral transfer as a statistical property of magnetohydrodynamic turbulence and thus permits reliable numerical exploration of its dynamics. The magnetic energy decay exponent from these ensemble runs has been determined to be nE=(0.47±0.03)+(13.9±0.8)/Rλ for initially helical magnetic fields. We show that even after removing the Lorentz force term in the momentum equation, thus decoupling it from the induction equation, reverse spectral transfer still persists. The induction equation is now linear with an externally imposed velocity field, thus amenable to numerous analysis techniques. A new door has opened for analyzing reverse spectral transfer, with various ideas discussed.
Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.
Zhdankin, Vladimir; Uzdensky, Dmitri A; Boldyrev, Stanislav
2015-02-13
Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.
Lagrangian frequency spectrum as a diagnostic for magnetohydrodynamic turbulence dynamics.
Busse, Angela; Müller, Wolf-Christian; Gogoberidze, Grigol
2010-12-01
For the phenomenological description of magnetohydrodynamic turbulence competing models exist, e.g., Boldyrev [Phys. Rev. Lett. 96, 115002 (2006)] and Gogoberidze [Phys. Plasmas 14, 022304 (2007)], which predict the same Eulerian inertial-range scaling of the turbulent energy spectrum although they employ fundamentally different basic interaction mechanisms. A relation is found that links the Lagrangian frequency spectrum with the autocorrelation time scale of the turbulent fluctuations τ(ac) and the associated cascade time scale τ(cas). Thus, the Lagrangian energy spectrum can serve to identify weak (τ(ac) ≪ τ(cas)) and strong (τ(ac) ∼ τ(cas)) interaction mechanisms providing insight into the turbulent energy cascade. The new approach is illustrated by results from direct numerical simulations of two- and three-dimensional incompressible MHD turbulence.
Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.
Meyrand, Romain; Galtier, Sébastien
2012-11-01
Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed.
Nonuniversality and Finite Dissipation in Decaying Magnetohydrodynamic Turbulence.
Linkmann, M F; Berera, A; McComb, W D; McKay, M E
2015-06-12
A model equation for the Reynolds number dependence of the dimensionless dissipation rate in freely decaying homogeneous magnetohydrodynamic turbulence in the absence of a mean magnetic field is derived from the real-space energy balance equation, leading to Cϵ=Cϵ,∞+C/R-+O(1/R-(2)), where R- is a generalized Reynolds number. The constant Cϵ,∞ describes the total energy transfer flux. This flux depends on magnetic and cross helicities, because these affect the nonlinear transfer of energy, suggesting that the value of Cϵ,∞ is not universal. Direct numerical simulations were conducted on up to 2048(3) grid points, showing good agreement between data and the model. The model suggests that the magnitude of cosmological-scale magnetic fields is controlled by the values of the vector field correlations. The ideas introduced here can be used to derive similar model equations for other turbulent systems.
Inverse cascade of magnetic helicity in magnetohydrodynamic turbulence.
Müller, Wolf-Christian; Malapaka, Shiva Kumar; Busse, Angela
2012-01-01
The nonlinear dynamics of magnetic helicity HM, which is responsible for large-scale magnetic structure formation in electrically conducting turbulent media, is investigated in forced and decaying three-dimensional magnetohydrodynamic turbulence. This is done with the help of high-resolution direct numerical simulations and statistical closure theory. The numerically observed spectral scaling of HM is at variance with earlier work using a statistical closure model [Pouquet et al., J. Fluid Mech. 77, 321 (1976)]. By revisiting this theory, a universal dynamical balance relation is found that includes the effects of kinetic helicity as well as kinetic and magnetic energies on the inverse cascade of HM and explains the above-mentioned discrepancy. Consideration of the result in the context of mean-field dynamo theory suggests a nonlinear modification of the α-dynamo effect, which is important in the context of magnetic-field excitation in turbulent plasmas.
Magnetohydrodynamic turbulent cascade of coronal loop magnetic fields.
Rappazzo, A F; Velli, M
2011-06-01
The Parker model for coronal heating is investigated through a high resolution simulation. An inertial range is resolved where fluctuating magnetic energy EMk[Please see symbol]) [Please see symbol] k[Please see symbol](-2.7) exceeds kinetic energy EK(k[Please see symbol])[Please see symbol]k[Please see symbol](-0.6). Increments scale as δbℓ ~/= ℓ(-0.85) and δuℓ ~/= ℓ(+0.2) with velocity increasing at small scales, indicating that magnetic reconnection plays a prime role in this turbulent system. We show that spectral energy transport is akin to standard magnetohydrodynamic (MHD) turbulence even for a system of reconnecting current sheets sustained by the boundary. In this new MHD turbulent cascade, kinetic energy flows are negligible while cross-field flows are enhanced, and through a series of "reflections" between the two fields, cascade more than half of the total spectral energy flow.
Wave-driven dynamo action in spherical magnetohydrodynamic systems.
Reuter, K; Jenko, F; Tilgner, A; Forest, C B
2009-11-01
Hydrodynamic and magnetohydrodynamic numerical studies of a mechanically forced two-vortex flow inside a sphere are reported. The simulations are performed in the intermediate regime between the laminar flow and developed turbulence, where a hydrodynamic instability is found to generate internal waves with a characteristic m=2 zonal wave number. It is shown that this time-periodic flow acts as a dynamo, although snapshots of the flow as well as the mean flow are not dynamos. The magnetic fields' growth rate exhibits resonance effects depending on the wave frequency. Furthermore, a cyclic self-killing and self-recovering dynamo based on the relative alignment of the velocity and magnetic fields is presented. The phenomena are explained in terms of a mixing of nonorthogonal eigenstates of the time-dependent linear operator of the magnetic induction equation. The potential relevance of this mechanism to dynamo experiments is discussed.
A Vector Potential implementation for Smoothed Particle Magnetohydrodynamics
Stasyszyn, Federico
2014-01-01
The development of smooth particle magnetohydrodynamic (SPMHD) has significantly improved the simulation of complex astrophysical processes. However, the preservation the solenoidality of the magnetic field is still a severe problem for the MHD. A formulation of the induction equation with a vector potential would solve the problem. Unfortunately all previous attempts suffered from instabilities. In the present work, we evolve the vector potential in the Coulomb gauge and smooth the derived magnetic field for usage in the momentum equation. With this implementation we could reproduce classical test cases in a stable way. A simple test case demonstrates the possible failure of widely used direct integration of the magnetic field, even with the usage of a divergence cleaning method.
Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?
Wurster, James; Bate, Matthew R
2015-01-01
We investigate whether or not the low ionisation fractions in molecular cloud cores can solve the `magnetic braking catastrophe', where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionisation chemistry assuming 0.1 micron grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13AU ca...
Large scale instabilities in two-dimensional magnetohydrodynamics
Boffetta; Celani; Prandi
2000-04-01
The stability of a sheared magnetic field is analyzed in two-dimensional magnetohydrodynamics with resistive and viscous dissipation. Using a multiple-scale analysis, it is shown that at large enough Reynolds numbers the basic state describing a motionless fluid and a layered magnetic field, becomes unstable with respect to large scale perturbations. The exact expressions for eddy-viscosity and eddy-resistivity are derived in the nearby of the critical point where the instability sets in. In this marginally unstable case the nonlinear phase of perturbation growth obeys to a Cahn-Hilliard-like dynamics characterized by coalescence of magnetic islands leading to a final new equilibrium state. High resolution numerical simulations confirm quantitatively the predictions of multiscale analysis.
Stability of an impulsively accelerated density interface in magnetohydrodynamics.
Wheatley, V; Pullin, D I; Samtaney, R
2005-09-16
In the framework of ideal incompressible magnetohydrodynamics, we examine the stability of an impulsively accelerated, sinusoidally perturbed density interface in the presence of a magnetic field that is parallel to the acceleration. This is accomplished by analytically solving the linearized initial value problem, which is a model for the Richtmyer-Meshkov instability. We find that the initial growth rate of the interface is unaffected by the presence of a magnetic field, but for a finite magnetic field the interface amplitude asymptotes to a constant value. Thus the instability of the interface is suppressed. The interface behavior from the analytical solution is compared to the results of both linearized and nonlinear compressible numerical simulations.
Revisiting low-fidelity two-fluid models for gas-solids transport
Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus
2016-08-01
Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.
Integrable, oblique travelling waves in quasi-charge-neutral two-fluid plasmas
Directory of Open Access Journals (Sweden)
G. M. Webb
2008-02-01
Full Text Available A Hamiltonian description of oblique travelling waves in a two-fluid, charge-neutral, electron-proton plasma reveals that the transverse momentum equations for the electron and proton fluids are exactly integrable in cases where the total transverse momentum flux integrals, P_{y}^{(d} and P_{z}^{(d}, are both zero in the de Hoffman Teller (dHT frame. In this frame, the transverse electric fields are zero, which simplifies the transverse momentum equations for the two fluids. The integrable travelling waves for the case P_{y}^{(d}=P_{z}^{(d}=0, are investigated based on the Hamiltonian trajectories in phase space, and also on the longitudinal structure equation for the common longitudinal fluid velocity component u_{x} of the electron and proton fluids. Numerical examples of a variety of travelling waves in a cold plasma, including oscillitons, are used to illustrate the physics. The transverse, electron and proton velocity components u_{jy} and u_{jz} (j=e, p of the waves exhibit complex, rosette type patterns over several periods for u_{x}. The role of separatrices in the phase space, the rotational integral and the longitudinal structure equation on the different wave forms are discussed.
Revisiting low-fidelity two-fluid models for gas–solids transport
Energy Technology Data Exchange (ETDEWEB)
Adeleke, Najeem, E-mail: najm@psu.edu; Adewumi, Michael, E-mail: m2a@psu.edu; Ityokumbul, Thaddeus
2016-08-15
Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.
TURBULENT MAGNETOHYDRODYNAMIC RECONNECTION MEDIATED BY THE PLASMOID INSTABILITY
Energy Technology Data Exchange (ETDEWEB)
Huang, Yi-Min; Bhattacharjee, A., E-mail: yiminh@princeton.edu [Department of Astrophysical Sciences and Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)
2016-02-10
It has been established that the Sweet–Parker current layer in high Lundquist number reconnection is unstable to the super-Alfvénic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime where the Sweet–Parker current layer changes into a chain of plasmoids connected by secondary current sheets, and the averaged reconnection rate becomes nearly independent of the Lundquist number. In this work, a three-dimensional simulation with a guide field shows that the additional degree of freedom allows plasmoid instabilities to grow at oblique angles, which interact and lead to self-generated turbulent reconnection. The averaged reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfvén speed, which is similar to the two-dimensional result but is an order of magnitude lower than the fastest reconnection rate reported in recent studies of externally driven three-dimensional turbulent reconnection. Kinematic and magnetic energy fluctuations both form elongated eddies along the direction of the local magnetic field, which is a signature of anisotropic magnetohydrodynamic turbulence. Both energy fluctuations satisfy power-law spectra in the inertial range, where the magnetic energy spectral index is in the range from −2.3 to −2.1, while the kinetic energy spectral index is slightly steeper, in the range from −2.5 to −2.3. The anisotropy of turbulence eddies is found to be nearly scale-independent, in contrast with the prediction of the Goldreich–Sridhar theory for anisotropic turbulence in a homogeneous plasma permeated by a uniform magnetic field.
Servidio, S; Matthaeus, W H; Carbone, V
2008-10-01
We explore the problem of the ergodicity of magnetohydrodynamics and Hall magnetohydrodynamics in three-dimensional, ideal Galerkin systems that are truncated to a finite number of Fourier modes. We show how single Fourier modes follow the Gibbs ensemble prediction, and how the ergodicity of the phase space is restored for long-time Galerkin solutions. Running time averages and two-time correlation functions show, at long times, a convergence towards zero of time averaged single Fourier modes. This suggests a delayed approach to, rather than a breaking of, ergodicity. Finally, we present some preliminary ideas concerning the origin of the associated time scales.
Steady-state properties of driven magnetic reconnection in 2D electron magnetohydrodynamics.
Chacón, L; Simakov, Andrei N; Zocco, A
2007-12-07
We formulate a rigorous nonlinear analytical model that describes the dynamics of the diffusion (reconnection) region in driven systems in the context of electron magnetohydrodynamics (EMHD). A steady-state analysis yields allowed geometric configurations and associated reconnection rates. In addition to the well-known open X-point geometry, elongated configurations are found possible. The model predictions have been validated numerically with two-dimensional EMHD nonlinear simulations, and are in excellent agreement with previously published work.
Energy Technology Data Exchange (ETDEWEB)
Masella, J.M.
1997-05-29
This thesis is devoted to the numerical simulation of some two-fluid models describing gas-liquid two-phase flow in pipes. The numerical models developed here can be more generally used in the modelling of a wide class of physical models which can be put under an hyperbolic form. We introduce first two isothermal two-fluid models, composed of a mass balance equation and a momentum equation written in each phase, describing respectively a stratified two-phase flow and a dispersed two-phase flow. These models are hyperbolic under some physical assumptions and can be written under a nonconservative vectorial system. We define and analyse a new numerical finite volume scheme (v{integral}Roe) founded on a linearized Riemann solver. This scheme does not need any analytical calculation and gives good results in the tracking of shocks. We compare this new scheme with the classical Roe scheme. Then we propose and study some numerical models, with and without flux splitting method, which are adapted to the discretization of the two-fluid models. This numerical models are given by a finite volume integration of the equations, and lean on the v{integral} scheme. In order to reducing cpu time, due to the low Mach number of two-phase flows, acoustic waves are implicit. Afterwards we proposed a discretization of boundary conditions, which allows the generation of transient flows in pipe. Some numerical academic and more physical tests show the good behaviour of the numerical methods. (author) 77 refs.
Numerical Studies of Two-Fluid Axisymmetric Steady-States with Flow in Ohmic NSTX-like Plasmas
Ferraro, Nathaniel; Jardin, Stephen
2008-11-01
Axisymmetric steady-states of the resistive two-fluid equations, including flow and gyroviscosity, are obtained by evolving these nonlinear equations from an initial ideal MHD equilibrium using the code M3D-C^1 [1], which has now been extended to toroidal geometry. Steady-states for high-β, inductively driven discharges in diverted NSTX geometries are studied. Excellent agreement with theoretical predictions of cross-surface Pfirsch-Schlüter flows in the axisymmetric steady-states is found. The dependence of flow velocities with resistivity is explored. It is found that in the two-fluid model, the statistical steady-state may be a fixed point, a limit cycle, or chaotic, depending on the parameters. Two-fluid terms lead to a preferred direction of toroidal rotation. The inclusion of gyroviscosity is observed to alter the character of the steady-state. The three-dimensional linear stability of simple equilibria in this two-fluid model are also explored using M3D-C^1 [2]. [1] N. Ferraro, S. Jardin. Phys. Plasmas 13:092101 (2006). [2] S. Jardin, N. Ferraro, J. Breslau, J. Chen, and M. Chance. Initial results for linear 3D Toroidal Two-Fluid stability using M3D-C1. APS DPP Conference, Dallas, TX (2008).
Energy Technology Data Exchange (ETDEWEB)
No, H.C.; Kazimi, M.S.
1983-03-01
This work involves the development of physical models for the constitutive relations of a two-fluid, three-dimensional sodium boiling code, THERMIT-6S. The code is equipped with a fluid conduction model, a fuel pin model, and a subassembly wall model suitable for stimulating LMFBR transient events. Mathematically rigorous derivations of time-volume averaged conservation equations are used to establish the differential equations of THERMIT-6S. These equations are then discretized in a manner identical to the original THERMIT code. A virtual mass term is incorporated in THERMIT-6S to solve the ill-posed problem. Based on a simplified flow regime, namely cocurrent annular flow, constitutive relations for two-phase flow of sodium are derived. The wall heat transfer coefficient is based on momentum-heat transfer analogy and a logarithmic law for liquid film velocity distribution. A broad literature review is given for two-phase friction factors. It is concluded that entrainment can account for some of the discrepancies in the literature. Mass and energy exchanges are modelled by generalization of the turbulent flux concept. Interfacial drag coefficients are derived for annular flows with entrainment. Code assessment is performed by simulating three experiments for low flow-high power accidents and one experiment for low flow/low power accidents in the LMFBR. While the numerical results for pre-dryout are in good agreement with the data, those for post-dryout reveal the need for improvement of the physical models. The benefits of two-dimensional non-equilibrium representation of sodium boiling are studied.
Channeling of fast ions through the bent carbon nanotubes: The extended two-fluid hydrodynamic model
Lazar, Karbunar; Duško, Borka; Ivan, Radović; Zoran, L. Mišković
2016-04-01
We investigate the interactions of charged particles with straight and bent single-walled carbon nanotubes (SWNTs) under channeling conditions in the presence of dynamic polarization of the valence electrons in carbon. This polarization is described by a cylindrical, two-fluid hydrodynamic model with the parameters taken from the recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nano-structures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at a speed of 3 atomic units. The image potential is then combined with the Doyle-Turner atomic potential to obtain the total potential in the bent carbon nanotubes. Using that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential. Project supported by the Funds from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 45005). Z. L. Mišković thanks the Natural Sciences and Engineering Research Council of Canada for Finacial Support.
Exploring Vacuum Energy in a Two-Fluid Bianchi Type I Universe
Kohli, Ikjyot Singh
2014-01-01
We use a dynamical systems approach based on the method of orthonormal frames to study the dynamics of a two-fluid, non-tilted Bianchi Type I cosmological model. In our model, one of the fluids is a fluid with bulk viscosity, while the other fluid assumes the role of a cosmological constant and represents nonnegative vacuum energy. We begin by completing a detailed fixed-point analysis of the system which gives information about the local sinks, sources and saddles. We then proceed to analyze the global features of the dynamical system by using topological methods such as finding Lyapunov and Chetaev functions, and finding the $\\alpha$- and $\\omega$-limit sets using the LaSalle invariance principle. The fixed points found were a flat Friedmann-LeMa\\^{\\i}tre-Robertson-Walker (FLRW) universe with no vacuum energy, a de Sitter universe, a flat FLRW universe with both vacuum and non-vacuum energy, and a Kasner quarter-circle universe. We also show in this paper that the vacuum energy we observe in our present-day...
CENTORI: a global toroidal electromagnetic two-fluid plasma turbulence code
Knight, P J; Edwards, T D; Hein, J; Romanelli, M; McClements, K G
2011-01-01
A new global two-fluid electromagnetic turbulence code, CENTORI, has been developed for the purpose of studying magnetically-confined fusion plasmas. This code is used to evolve the combined system of electron and ion fluid equations and Maxwell equations in fully toroidal geometry, and is applicable to tokamaks of arbitrary aspect ratio and high plasma beta. A predictor corrector, semi-implicit finite difference scheme is used to compute the time evolution of fluid quantities and fields. Vector operations and the evaluation of flux surface averages are speeded up by choosing the Jacobian of the transformation from laboratory to plasma coordinates to be a function of the equilibrium poloidal magnetic flux. A subroutine, GRASS, is used to co-evolve the plasma equilibrium by computing the steady-state solutions of a diffusion equation with a pseudo-time derivative. The code is written in Fortran 95 and is efficiently parallelized using Message Passing Interface (MPI). Illustrative examples of output from a simu...
A two-fluid model for reactive dilute solid-liquid mixtures with phase changes
Reis, Martina Costa; Wang, Yongqi
2016-12-01
Based on the Eulerian spatial averaging theory and the Müller-Liu entropy principle, a two-fluid model for reactive dilute solid-liquid mixtures is presented. Initially, some averaging theorems and properties of average quantities are discussed and, then, averaged balance equations including interfacial source terms are postulated. Moreover, constitutive equations are proposed for a reactive dilute solid-liquid mixture, where the formation of the solid phase is due to a precipitation chemical reaction that involves ions dissolved in the liquid phase. To this end, principles of constitutive theory are used to propose linearized constitutive equations that account for diffusion, heat conduction, viscous and drag effects, and interfacial deformations. A particularity of the model is that the mass interfacial source term is regarded as an independent constitutive variable. The obtained results show that the inclusion of the mass interfacial source term into the set of independent constitutive variables permits to easily describe the phase changes associated with precipitation chemical reactions.
Dispersion Relations and Polarizations of Low-frequency Waves in Two-fluid Plasmas
Zhao, Jinsong
2015-01-01
Analytical expressions for the dispersion relations and polarizations of low-frequency waves in magnetized plasmas based on two-fluid model are obtained. The properties of waves propagating at different angles (to the ambient magnetic field $\\mathbf{B}_{0}$) and \\beta (the ratio of the plasma to magnetic pressures) values are investigated. It is shown that two linearly polarized waves, namely the fast and Alfv\\'{e}n modes in the low-\\beta $\\left( \\beta \\ll 1\\right)$ plasmas, the fast and slow modes in the \\beta \\sim 1 plasmas, and the Alfv\\'{e}n and slow modes in the high-\\beta $\\left( \\beta \\gg 1\\right)$ plasmas, become circularly polarized at the near-parallel (to $\\mathbf{B}_{0}$) propagation. The negative magnetic-helicity of the Alfv\\'{e}n mode occurs only at small or moderate angles in the low-\\beta plasmas, and the ion cross-helicity of the slow mode is nearly the same as that of the Alfv\\'{e}n mode in the high-\\beta plasmas. It also shown the electric polarization $\\delta E_{z}/\\delta E_{y}$ decreases...
A two-fluid approximation for calculating the cosmic microwave background anisotropies
Seljak, Uros
1994-01-01
We present a simplified treatment for calculating the cosmic microwave background anisotropy power spectrum in adiabatic models. It consists of solving for the evolution of a two-fluid model until the epoch of recombination and then integrating over the sources to obtain the cosmic microwave background (CMB) anisotropy power spectrum. The approximation is useful both for a physical understanding of CMB anisotropies as well as for a quantitative analysis of cosmological models. Comparison with exact calculations shows that the accuracy is typically 10%-20% over a large range of angles and cosmological models, including those with curvature and cosmological constant. Using this approximation we investigate the dependence of the CMB anisotropy on the cosmological parameters. We identify six dimensionless parameters that uniquely determine the anisotropy power spectrum within our approximation. CMB experiments on different angular scales could in principle provide information on all these parameters. In particular, mapping of the Doppler peaks would allow an independent determination of baryon mass density, matter mass density, and the Hubble constant.
Steady-State Flows in Two-Fluid Models of NSTX and DIII-D Plasmas
Ferraro, N. M.; Jardin, S. C.; Chen, J.
2009-05-01
Accurate axisymmetric steady-states of a comprehensive two-fluid model are calculated for plasmas in diverted NSTX and DIII-D geometries using the M3D-C^1 code [1]. It is found that gyroviscosity may have a significant effect on the flows in steady-state when a localized density source is present. The model implemented in M3D-C^1 self-consistently includes the effects of flows, anisotropic viscosity, anisotropic thermal conductivity, and resistivity. Results for ohmically driven plasmas are presented. New capabilities of M3D-C^1 allow the three-dimensional linear stability of axisymmetric equilibria to be calculated; these capabilities and preliminary stability results are discussed. Also discussed are recent and future extensions to M3D-C^1, including heuristic bootstrap current models, coupling to a physics-based transport model, and nonlinear non-axisymmetric capability. 3pt[1] S. C. Jardin, J. Breslau, N. Ferraro, J. Comput. Phys, 226 (2007) 2146
A two-fluid model for reactive dilute solid-liquid mixtures with phase changes
Reis, Martina Costa; Wang, Yongqi
2017-03-01
Based on the Eulerian spatial averaging theory and the Müller-Liu entropy principle, a two-fluid model for reactive dilute solid-liquid mixtures is presented. Initially, some averaging theorems and properties of average quantities are discussed and, then, averaged balance equations including interfacial source terms are postulated. Moreover, constitutive equations are proposed for a reactive dilute solid-liquid mixture, where the formation of the solid phase is due to a precipitation chemical reaction that involves ions dissolved in the liquid phase. To this end, principles of constitutive theory are used to propose linearized constitutive equations that account for diffusion, heat conduction, viscous and drag effects, and interfacial deformations. A particularity of the model is that the mass interfacial source term is regarded as an independent constitutive variable. The obtained results show that the inclusion of the mass interfacial source term into the set of independent constitutive variables permits to easily describe the phase changes associated with precipitation chemical reactions.
Thermoelectric magnetohydrodynamic stirring of liquid metals.
Jaworski, M A; Gray, T K; Antonelli, M; Kim, J J; Lau, C Y; Lee, M B; Neumann, M J; Xu, W; Ruzic, D N
2010-03-01
The direct observation of a thermoelectric magnetohydrodynamic (TEMHD) flow has been achieved and is reported here. The origin of the flow is identified based on a series of qualitative tests and corresponds, quantitatively, with a swirling flow TEMHD model. A theory for determining the dominant driver of a free-surface flow, TEMHD or thermocapillary (TC), is found to be consistent with the experimental results. The use of the analytical form for an open geometry develops a new dimensionless parameter describing the ratio of TEMHD to TC generated flows.
Decaying magnetohydrodynamics: effects of initial conditions
Basu
2000-02-01
We study the effects of homogenous and isotropic initial conditions on decaying magnetohydrodynamics (MHD). We show that for an initial distribution of velocity and magnetic-field fluctuations, appropriately defined structure functions decay as a power law in time. We also show that for a suitable choice of initial cross correlations between velocity and magnetic fields even-order structure functions acquire anomalous scaling in time where as scaling exponents of the odd-order structure functions remain unchanged. We discuss our results in the context of fully developed MHD turbulence.
DECAY ESTIMATES FOR ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN BOUNDED DOMAIN
Institute of Scientific and Technical Information of China (English)
Mohamed Ahmed Abdallah; Jiang Fei; Tan Zhong
2012-01-01
In this paper,under the hypothesis that (o) is upper bounded,we construct a Lyapunov functional for the multidimensional isentropic compressible magnetohydrodynamic equations and show that the weak solutions decay exponentially to the equilibrium state in L2 norm.Our result verifies that the method of Daoyuan Fang,Ruizhao Zi and Ting Zhang [1] can be adapted to magnetohydrodynamic equations.
Effects of seed magnetic fields on magnetohydrodynamic implosion structure and dynamics
Mostert, W.
2014-12-01
The effects of various seed magnetic fields on the dynamics of cylindrical and spherical implosions in ideal magnetohydrodynamics are investigated. Here, we present a fundamental investigation of this problem utilizing cylindrical and spherical Riemann problems under three seed field configurations to initialize the implosions. The resulting flows are simulated numerically, revealing rich flow structures, including multiple families of magnetohydrodynamic shocks and rarefactions that interact non-linearly. We fully characterize these flow structures, examine their axi- and spherisymmetry-breaking behaviour, and provide data on asymmetry evolution for different field strengths and driving pressures for each seed field configuration. We find that out of the configurations investigated, a seed field for which the implosion centre is a saddle point in at least one plane exhibits the least degree of asymmetry during implosion.
Comparison of Two Fluid Replacement Protocols During a 20-km Trail Running Race in the Heat.
Lopez, Rebecca M; Casa, Douglas J; Jensen, Katherine A; Stearns, Rebecca L; DeMartini, Julie K; Pagnotta, Kelly D; Roti, Melissa W; Armstrong, Lawrence E; Maresh, Carl M
2016-09-01
Lopez, RM, Casa, DJ, Jensen, K, Stearns, RL, DeMartini, JK, Pagnotta, KD, Roti, MW, Armstrong, LE, and Maresh, CM. Comparison of two fluid replacement protocols during a 20-km trail running race in the heat. J Strength Cond Res 30(9): 2609-2616, 2016-Proper hydration is imperative for athletes striving for peak performance and safety, however, the effectiveness of various fluid replacement strategies in the field setting is unknown. The purpose of this study was to investigate how two hydration protocols affect physiological responses and performance during a 20-km trail running race. A randomized, counter-balanced, crossover design was used in a field setting (mean ± SD: WBGT 28.3 ± 1.9° C). Well-trained male (n = 8) and female (n = 5) runners (39 ± 14 years; 175 ± 9 cm; 67.5 ± 11.1 kg; 13.4 ± 4.6% BF) completed two 20-km trail races (5 × 4-km loop) with different water hydration protocols: (a) ad libitum (AL) consumption and (b) individualized rehydration (IR). Data were analyzed using repeated measures ANOVA. Paired t-tests compared pre-race-post-race measures. Main outcome variables were race time, heart rate (HR), gastrointestinal temperature (TGI), fluid consumed, percent body mass loss (BML), and urine osmolality (Uosm). Race times between groups were similar. There was a significant condition × time interaction (p = 0.048) for HR, but TGI was similar between conditions. Subjects replaced 30 ± 14% of their water losses in AL and 64 ± 16% of their losses in IR (p 2% BML in AL. Ad libitum drinking resulted in 1.3% greater BML over the 20-km race, which resulted in no thermoregulatory or performance differences from IR.
Double-diffusive two-fluid flow in a slippery channel: A linear stability analysis
Ghosh, Sukhendu; Usha, R.; Sahu, Kirti Chandra
2014-12-01
The effect of velocity slip at the walls on the linear stability characteristics of two-fluid three-layer channel flow (the equivalent core-annular configuration in case of pipe) is investigated in the presence of double diffusive (DD) phenomenon. The fluids are miscible and consist of two solute species having different rates of diffusion. The fluids are assumed to be of the same density, but varying viscosity, which depends on the concentration of the solute species. It is found that the flow stabilizes when the less viscous fluid is present in the region adjacent to the slippery channel walls in the single-component (SC) system but becomes unstable at low Reynolds numbers in the presence of DD effect. As the mixed region of the fluids moves towards the channel walls, a new unstable mode (DD mode), distinct from the Tollman Schlichting (TS) mode, arises at Reynolds numbers smaller than the critical Reynolds number for the TS mode. We also found that this mode becomes more prominent when the mixed layer overlaps with the critical layer. It is shown that the slip parameter has nonmonotonic effect on the stability characteristics in this system. Through energy budget analysis, the dual role of slip is explained. The effect of slip is influenced by the location of mixed layer, the log-mobility ratio of the faster diffusing scalar, diffusivity, and the ratio of diffusion coefficients of the two species. Increasing the value of the slip parameter delays the first occurrence of the DD-mode. It is possible to achieve stabilization or destabilization by controlling the various physical parameters in the flow system. In the present study, we suggest an effective and realistic way to control three-layer miscible channel flow with viscosity stratification.
Analytical study of magnetohydrodynamic propulsion stability
Abdollahzadeh Jamalabadi, M. Y.
2014-09-01
In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.
Analytical Study of Magnetohydrodynamic Propulsion Stability
Institute of Scientific and Technical Information of China (English)
M.Y.Abdollahzadeh Jamalabadi
2014-01-01
In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.
Magnetohydrodynamic stability of stochastically driven accretion flows.
Nath, Sujit Kumar; Mukhopadhyay, Banibrata; Chattopadhyay, Amit K
2013-07-01
We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.
Double-duct liquid metal magnetohydrodynamic engine
Haaland, Carsten M.
1995-01-01
An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.
DEFF Research Database (Denmark)
Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn
2008-01-01
understood. This paper provides a systematic and up-to-date review of two-fluid nozzle designs and principles together with a presentation of nozzle fundamentals introducing basic nozzle theory and thermodynamics. Correlations for the prediction of mean droplet diameters are reviewed, compared...
A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics
Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars
2016-11-01
We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.
THE SIGNATURE OF INITIAL CONDITIONS ON MAGNETOHYDRODYNAMIC TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Dallas, V.; Alexakis, A., E-mail: vdallas@lps.ens.fr, E-mail: alexakis@lps.ens.fr [Laboratoire de Physique Statistique, École Normale Supérieure, Université Pierre et Marié Curie, Université Paris Diderot, CNRS, 24 rue Lhomond, F-75005 Paris (France)
2014-06-20
We demonstrate that the initial correlation between velocity and current density fluctuations can lead to the formation of enormous current sheets in freely evolving magnetohydrodynamic (MHD) turbulence. These coherent structures are observed at the peak of the energy dissipation rate and are the carriers of long-range correlations despite all of the nonlinear interactions during the formation of turbulence. The size of these structures spans our computational domain, dominating the scaling of the energy spectrum, which follows a E∝k {sup –2} power law. As the Reynolds number increases, the curling of the current sheets due to Kelvin-Helmholtz-type instabilities and reconnection modifies the scaling of the energy spectrum from k {sup –2} toward k {sup –5/3}. This transition occurs due to the decorrelation of the velocity and the current density which is proportional to Re{sub λ}{sup −3/2}. Finite Reynolds number behavior is observed without reaching a finite asymptote for the energy dissipation rate even for a simulation of Re{sub λ} ≅ 440 with 2048{sup 3} grid points. This behavior demonstrates that even state-of-the-art numerical simulations of the highest Reynolds numbers can be influenced by the choice of initial conditions and consequently they are inadequate to deduce unequivocally the fate of universality in MHD turbulence. Implications for astrophysical observations are discussed.
Criticality and turbulence in a resistive magnetohydrodynamic current sheet.
Klimas, Alexander J; Uritsky, Vadim M
2017-02-01
Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.
Resistive magnetohydrodynamic reconnection: Resolving long-term, chaotic dynamics
Energy Technology Data Exchange (ETDEWEB)
Keppens, R.; Restante, A. L.; Lapenta, G. [Centre for mathematical Plasma-Astrophysics, Department of Mathematics, KU Leuven (Belgium); Porth, O. [Department of Applied Mathematics, The University of Leeds, Leeds LS2 9JT (United Kingdom); Galsgaard, K.; Frederiksen, J. T. [The Niels Bohr Institute, University of Copenhagen, København K (Denmark); Parnell, C. [School of Mathematics and Statistics, University of St. Andrews, Fife (United Kingdom)
2013-09-15
In this paper, we address the long-term evolution of an idealised double current system entering reconnection regimes where chaotic behavior plays a prominent role. Our aim is to quantify the energetics in high magnetic Reynolds number evolutions, enriched by secondary tearing events, multiple magnetic island coalescence, and compressive versus resistive heating scenarios. Our study will pay particular attention to the required numerical resolutions achievable by modern (grid-adaptive) computations, and comment on the challenge associated with resolving chaotic island formation and interaction. We will use shock-capturing, conservative, grid-adaptive simulations for investigating trends dominated by both physical (resistivity) and numerical (resolution) parameters, and confront them with (visco-)resistive magnetohydrodynamic simulations performed with very different, but equally widely used discretization schemes. This will allow us to comment on the obtained evolutions in a manner irrespective of the adopted discretization strategy. Our findings demonstrate that all schemes used (finite volume based shock-capturing, high order finite differences, and particle in cell-like methods) qualitatively agree on the various evolutionary stages, and that resistivity values of order 0.001 already can lead to chaotic island appearance. However, none of the methods exploited demonstrates convergence in the strong sense in these chaotic regimes. At the same time, nonperturbed tests for showing convergence over long time scales in ideal to resistive regimes are provided as well, where all methods are shown to agree. Both the advantages and disadvantages of specific discretizations as applied to this challenging problem are discussed.
Sparse Jacobian construction for mapped grid visco-resistive magnetohydrodynamics
Reynolds, Daniel R.
2012-01-01
We apply the automatic differentiation tool OpenAD toward constructing a preconditioner for fully implicit simulations of mapped grid visco-resistive magnetohydrodynamics (MHD), used in modeling tokamak fusion devices. Our simulation framework employs a fully implicit formulation in time, and a mapped finite volume spatial discretization. We solve this model using inexact Newton-Krylov methods. Of critical importance in these iterative solvers is the development of an effective preconditioner, which typically requires knowledge of the Jacobian of the nonlinear residual function. However, due to significant nonlinearity within our PDE system, our mapped spatial discretization, and stencil adaptivity at physical boundaries, analytical derivation of these Jacobian entries is highly nontrivial. This paper therefore focuses on Jacobian construction using automatic differentiation. In particular, we discuss applying OpenAD to the case of a spatially-adaptive stencil patch that automatically handles differences between the domain interior and boundary, and configuring AD for reduced stencil approximations to the Jacobian. We investigate both scalar and vector tangent mode differentiation, along with simple finite difference approaches, to compare the resulting accuracy and efficiency of Jacobian construction in this application. © 2012 Springer-Verlag.
Criticality and turbulence in a resistive magnetohydrodynamic current sheet
Klimas, Alexander J.; Uritsky, Vadim M.
2017-02-01
Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This
Energy Technology Data Exchange (ETDEWEB)
Balsara, Dinshaw S., E-mail: dbalsara@nd.edu [Physics Department, University of Notre Dame (United States); Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033 (Japan); Garain, Sudip, E-mail: sgarain@nd.edu [Physics Department, University of Notre Dame (United States); Kim, Jinho, E-mail: jkim46@nd.edu [Physics Department, University of Notre Dame (United States)
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is
On the convexity of Relativistic Ideal Magnetohydrodynamics
Ibáñez, José-María; Aloy, Miguel-Ángel; Martí, José-María; Miralles, Juan-Antonio
2015-01-01
We analyze the influence of the magnetic field in the convexity properties of the relativistic magnetohydrodynamics system of equations. To this purpose we use the approach of Lax, based on the analysis of the linearly degenerate/genuinely non-linear nature of the characteristic fields. Degenerate and non-degenerate states are discussed separately and the non-relativistic, unmagnetized limits are properly recovered. The characteristic fields corresponding to the material and Alfv\\'en waves are linearly degenerate and, then, not affected by the convexity issue. The analysis of the characteristic fields associated with the magnetosonic waves reveals, however, a dependence of the convexity condition on the magnetic field. The result is expressed in the form of a generalized fundamental derivative written as the sum of two terms. The first one is the generalized fundamental derivative in the case of purely hydrodynamical (relativistic) flow. The second one contains the effects of the magnetic field. The analysis ...
Shear instabilities in shallow-water magnetohydrodynamics
Mak, Julian; Hughes, D W
2016-01-01
Within the framework of shallow-water magnetohydrodynamics, we investigate the linear instability of horizontal shear flows, influenced by an aligned magnetic field and stratification. Various classical instability results, such as H{\\o}iland's growth rate bound and Howard's semi-circle theorem, are extended to this shallow-water system for quite general profiles. Two specific piecewise-constant velocity profiles, the vortex sheet and the rectangular jet, are studied analytically and asymptotically; it is found that the magnetic field and stratification (as measured by the Froude number) are generally both stabilising, but weak instabilities can be found at arbitrarily large Froude number. Numerical solutions are computed for corresponding smooth velocity profiles, the hyperbolic-tangent shear layer and the Bickley jet, for a uniform background field. A generalisation of the long-wave asymptotic analysis of Drazin & Howard (1962) is employed in order to understand the instability characteristics for both ...
Generalized global symmetries and dissipative magnetohydrodynamics
Grozdanov, Sašo; Iqbal, Nabil
2016-01-01
The conserved magnetic flux of U(1) electrodynamics coupled to matter in four dimensions is associated with a generalized global symmetry. We study the realization of such a symmetry at finite temperature and develop the hydrodynamic theory describing fluctuations of a conserved 2-form current around thermal equilibrium. This can be thought of as a systematic derivation of relativistic magnetohydrodynamics, constrained only by symmetries and effective field theory. We construct the entropy current and show that at first order in derivatives, there are six dissipative transport coefficients. We present a universal definition of resistivity in a theory of dynamical electromagnetism and derive a direct Kubo formula for the resistivity in terms of correlation functions of the electric field operator. We also study fluctuations and collective modes, deriving novel expressions for the dissipative widths of magnetosonic and Alfven modes. Finally, we demonstrate that a non-trivial truncation of the theory can be perf...
Aharonov–Bohm effects in magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Yahalom, Asher, E-mail: asya@ariel.ac.il [Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB3 0EH (United Kingdom); Ariel University, Ariel 40700 (Israel)
2013-10-30
It is shown that an Aharonov–Bohm (AB) effect exists in magnetohydrodynamics (MHD). This effect is best described in terms of the MHD variational variables (Kats, 2004; Yahalom and Lynden-Bell, 2008; Yahalom, 2010) [1,10,12]. If a MHD flow has a non-trivial topology some of the functions appearing in the MHD Lagrangian are non-single-valued. These functions have properties similar to the phases in the AB celebrated effect (Aharonov and Bohm, 1959; van Oudenaarden et al., 1998) [2,3]. While the manifestation of the quantum AB effect is in interference fringe patterns (Tonomura et al., 1982) [4], the manifestation of the MHD Aharonov–Bohm effects are through new dynamical conservation laws.
Extended inertial range phenomenology of magnetohydrodynamic turbulence
Matthaeus, William H.; Zhou, YE
1989-01-01
A phenomenological treatment of the inertial range of isotropic statistically steady magnetohydrodynamic turbulence is presented, extending the theory of Kraichnan (1965). The role of Alfven wave propagation is treated on equal footing with nonlinear convection, leading to a simple generalization of the relations between the times characteristic of wave propagation, convection, energy transfer, and decay of triple correlations. The theory leads to a closed-form steady inertial range spectral law that reduces to the Kraichnan and Kolmogorov laws in appropriate limits. The Kraichnan constant is found to be related in a simple way to the Kolmogorov constant; for typical values of the latter constant, the former has values in the range 1.22-1.87. Estimates of the time scale associated with spectral transfer of energy also emerge from the new approach, generalizing previously presented 'golden rules' for relating the spectral transfer time scale to the Alfven and eddy-turnover time scales.
Anomalous magnetohydrodynamics in the extreme relativistic domain
Giovannini, Massimo
2016-01-01
The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...
Exploring Astrophysical Magnetohydrodynamics in the Laboratory
Manuel, Mario
2014-10-01
Plasma evolution in many astrophysical systems is dominated by magnetohydrodynamics. Specifically of interest to this talk are collimated outflows from accretion systems. Away from the central object, the Euler equations can represent the plasma dynamics well and may be scaled to a laboratory system. We have performed experiments to investigate the effects of a background magnetic field on an otherwise hydrodynamically collimated plasma. Laser-irradiated, cone targets produce hydrodynamically collimated plasma jets and a pulse-powered solenoid provides a constant background magnetic field. The application of this field is shown to completely disrupt the original flow and a new magnetically-collimated, hollow envelope is produced. Results from these experiments and potential implications for their astrophysical analogs will be discussed.
Rarefaction wave in relativistic steady magnetohydrodynamic flows
Energy Technology Data Exchange (ETDEWEB)
Sapountzis, Konstantinos, E-mail: ksapountzis@phys.uoa.gr; Vlahakis, Nektarios, E-mail: vlahakis@phys.uoa.gr [Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece)
2014-07-15
We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.
Anisotropy in Quasi-Static Magnetohydrodynamic Turbulence
Verma, Mahendra K.
2017-08-01
In this review we summarise the current status of the quasi-static magnetohydrodynamic turbulence. The energy spectrum is steeper than Kolmogorov’s k -5/3 spectrum due to the decrease of the kinetic energy flux with wavenumber k as a result of Joule dissipation. The spectral index decreases with the increase of interaction parameter. The flow is quasi two-dimensional with strong {{\\mathbf{U}}\\bot} at small k and weak {{U}\\parallel} at large k, where {{\\mathbf{U}}\\bot} and {{U}\\parallel} are the perpendicular and parallel components of velocity relative to the external magnetic field. For small k, the energy flux of {{\\mathbf{U}}\\bot} is negative, but for large k, the energy flux of {{U}\\parallel} is positive. Pressure mediates the energy transfer from {{\\mathbf{U}}\\bot} to {{U}\\parallel} .
On stability and instability criteria for magnetohydrodynamics.
Friedlander, Susan; Vishik, Misha M.
1995-06-01
It is shown that for most, but not all, three-dimensional magnetohydrodynamic (MHD) equilibria the second variation of the energy is indefinite. Thus the class of such equilibria whose stability might be determined by the so-called Arnold criterion is very restricted. The converse question, namely conditions under which MHD equilibria will be unstable is considered in this paper. The following sufficient condition for linear instability in the Eulerian representation is presented: The maximal real part of the spectrum of the MHD equations linearized about an equilibrium state is bounded from below by the growth rate of an operator defined by a system of local partial differential equations (PDE). This instability criterion is applied to the case of axisymmetric toroidal equilibria. Sufficient conditions for instability, stronger than those previously known, are obtained for rotating MHD. (c) 1995 American Institute of Physics.
Symmetry transforms for ideal magnetohydrodynamics equilibria.
Bogoyavlenskij, Oleg I
2002-11-01
A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)
Integrable version of Burgers equation in magnetohydrodynamics.
Olesen, P
2003-07-01
It is pointed out that for the case of (compressible) magnetohydrodynamics (MHD) with the fields v(y)(y,t) and Bx(y,t), one can have equations of the Burgers type which are integrable. We discuss the solutions. It turns out that the propagation of the nonlinear effects is governed by the initial velocity (as in Burgers case) as well as by the initial Alfvén velocity. Many results previously obtained for the Burgers equation can be transferred to the MHD case. We also discuss equipartition v(y)=+/-Bx. It is shown that an initial localized small scale magnetic field will end up in fields moving to the left and the right, thus transporting energy from smaller to larger distances.
Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics
Energy Technology Data Exchange (ETDEWEB)
Klein, R I; Stone, J M
2007-11-20
We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.
A Multidimensional Code For Isothermal Magnetohydrodynamic Flows
Kim, J; Jones, T W; Hong, S S; Kim, Jongsoo; Ryu, Dongsu
1999-01-01
We present a multi-dimensional numerical code to solve isothermal magnetohydrodynamic (IMHD) equations for use in modeling astrophysical flows. First, we have built a one-dimensional code which is based on an explicit finite-difference method on an Eulerian grid, called the total variation diminishing (TVD) scheme. Recipes for building the one-dimensional IMHD code, including the normalized right and left eigenvectors of the IMHD Jacobian matrix, are presented. Then, we have extended the one-dimensional code to a multi-dimensional IMHD code through a Strang-type dimensional splitting. In the multi-dimensional code, an explicit cleaning step has been included to eliminate non-zero $\
Time dependent two phase flows in Magnetohydrodynamics: A ...
African Journals Online (AJOL)
Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Time dependent two phase flows in Magnetohydrodynamics: A Greens function approach. BK Jha, HM Jibril ...
Viscosity and Vorticity in Reduced Magneto-Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-08-12
Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.
Dislocations in magnetohydrodynamic waves in a stellar atmosphere.
López Ariste, A; Collados, M; Khomenko, E
2013-08-23
We describe the presence of wave front dislocations in magnetohydrodynamic waves in stratified stellar atmospheres. Scalar dislocations such as edges and vortices can appear in Alfvén waves, as well as in general magnetoacoustic waves. We detect those dislocations in observations of magnetohydrodynamic waves in sunspots in the solar chromosphere. Through the measured charge of all the dislocations observed, we can give for the first time estimates of the modal contribution in the waves propagating along magnetic fields in solar sunspots.
An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system
Energy Technology Data Exchange (ETDEWEB)
Lee, A P; Lemoff, A V; McConaghy, C F; Miles, R R
1999-03-01
An AC Magnetohydrodynamic (MHD) micropump has been demonstrated in which the Lorentz force is used to propel an electrolytic solution along a microchannel etched in silicon. This micropump has no moving parts, produces a continuous (not pulsatile) flow, and is compatible with solutions containing biological specimens. micropump, using the Lorentz force as the pumping mechanism for biological analysis. The AC Magnetohydrodynamic (MHD) micropump investigated produces a continuous flow and allows for complex microchannel design.
Dislocations in magnetohydrodynamic waves in a stellar atmosphere
Ariste, A López; Khomenko, E
2013-01-01
We describe the presence of wavefront dislocations in magnetohydrodynamic waves in stratified stellar atmospheres. Scalar dislocations such as edges and vortices can appear in Alfv\\'en waves, as well as in general magneto-acoustic waves. We detect those dislocations in observations of magnetohydrodynamic waves in sunspots in the solar chromosphere. Through the measured charge of all the dislocations observed, we can give for the first time estimates of the modal contribution in the waves propagating along magnetic fields in solar sunspots.
Remarks on the Regularity to 3-D Ideal Magnetohydrodynamic Equations
Institute of Scientific and Technical Information of China (English)
Quan Sen JIU; Cheng HE
2004-01-01
In this paper we are interested in the sufficient conditions which guarantee the regularity of solutions of 3-D ideal magnetohydrodynamic equations in the arbitrary time interval [0,T]. Five sufficient conditions are given. Our results are motivated by two main ideas: one is to control the accumulation of vorticity alone; the other is to generalize the corresponding geometric conditions of 3-D Euler equations to 3-D ideal magnetohydrodynamic equations.
Attractors of magnetohydrodynamic flows in an Alfvenic state
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel; Sanz, Javier [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
1999-08-13
We present a simplified form of the magnetohydrodynamic system which describes the evolution of a plasma where the small-scale velocity and magnetic field are aligned in the form of Alfven waves, such as happens in several turbulent situations. Bounds on the dimension of the global attractor are found, and are shown to be an improvement of the standard ones for the full magnetohydrodynamic equations. (author)
Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited
Del Zanna, L; Landi, S; Bugli, M; Bucciantini, N
2016-01-01
Fast reconnection operating in magnetically dominated plasmas is often invoked in models for magnetar giant flares, for magnetic dissipation in pulsar winds, or to explain the gamma-ray flares observed in the Crab nebula, hence its investigation is of paramount importance in high-energy astrophysics. Here we study, by means of two dimensional numerical simulations, the linear phase and the subsequent nonlinear evolution of the tearing instability within the framework of relativistic resistive magnetohydrodynamics, as appropriate in situations where the Alfven velocity approaches the speed of light. It is found that the linear phase of the instability closely matches the analysis in classical MHD, where the growth rate scales with the Lundquist number S as S^-1/2, with the only exception of an enhanced inertial term due to the thermal and magnetic energy contributions. In addition, when thin current sheets of inverse aspect ratio scaling as S^-1/3 are considered, the so-called "ideal" tearing regime is retriev...
Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind.
Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos
2012-04-27
Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.
Numerical magneto-hydrodynamics for relativistic nuclear collisions
Inghirami, Gabriele; Beraudo, Andrea; Moghaddam, Mohsen Haddadi; Becattini, Francesco; Bleicher, Marcus
2016-01-01
We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magnetohydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant $3\\!+\\!1$ formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the Quark-Gluon Plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic-flow of the final hadrons. However, s...
Approximate Riemann Solvers for the Cosmic Ray Magnetohydrodynamical Equations
Kudoh, Yuki
2016-01-01
We analyze the cosmic-ray magnetohydrodynamic (CR MHD) equations to improve the numerical simulations. We propose to solve them in the fully conservation form, which is equivalent to the conventional CR MHD equations. In the fully conservation form, the CR energy equation is replaced with the CR "number" conservation, where the CR number density is defined as the three fourths power of the CR energy density. The former contains an extra source term, while latter does not. An approximate Riemann solver is derived from the CR MHD equations in the fully conservation form. Based on the analysis, we propose a numerical scheme of which solutions satisfy the Rankine-Hugoniot relation at any shock. We demonstrate that it reproduces the Riemann solution derived by Pfrommer et al. (2006) for a 1D CR hydrodynamic shock tube problem. We compare the solution with those obtained by solving the CR energy equation. The latter solutions deviate from the Riemann solution seriously, when the CR pressure dominates over the gas p...
Approximate Riemann solvers for the cosmic ray magnetohydrodynamical equations
Kudoh, Yuki; Hanawa, Tomoyuki
2016-11-01
We analyse the cosmic ray magnetohydrodynamic (CR MHD) equations to improve the numerical simulations. We propose to solve them in the fully conservation form, which is equivalent to the conventional CR MHD equations. In the fully conservation form, the CR energy equation is replaced with the CR `number' conservation, where the CR number density is defined as the three-fourths power of the CR energy density. The former contains an extra source term, while latter does not. An approximate Riemann solver is derived from the CR MHD equations in the fully conservation form. Based on the analysis, we propose a numerical scheme of which solutions satisfy the Rankine-Hugoniot relation at any shock. We demonstrate that it reproduces the Riemann solution derived by Pfrommer et al. for a 1D CR hydrodynamic shock tube problem. We compare the solution with those obtained by solving the CR energy equation. The latter solutions deviate from the Riemann solution seriously, when the CR pressure dominates over the gas pressure in the post-shocked gas. The former solutions converge to the Riemann solution and are of the second-order accuracy in space and time. Our numerical examples include an expansion of high-pressure sphere in a magnetized medium. Fast and slow shocks are sharply resolved in the example. We also discuss possible extension of the CR MHD equations to evaluate the average CR energy.
Numerical magneto-hydrodynamics for relativistic nuclear collisions
Inghirami, Gabriele; Del Zanna, Luca; Beraudo, Andrea; Moghaddam, Mohsen Haddadi; Becattini, Francesco; Bleicher, Marcus
2016-12-01
We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magneto-hydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant 3+1 formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the quark-gluon plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic flow of the final hadrons. However, since there are uncertainties in the description of the pre-equilibrium phase and also in the properties of the medium, a more extensive survey of the possible initial conditions as well as the inclusion of dissipative effects are indeed necessary to validate this preliminary result.
The interaction of a magnetohydrodynamical shock with a filament
Goldsmith, K J A
2016-01-01
We present 3D magnetohydrodynamic numerical simulations of the adiabatic interaction of a shock with a dense, filamentary cloud. We investigate the effects of various filament lengths and orientations on the interaction using different orientations of the magnetic field, and vary the Mach number of the shock, the density contrast of the filament, and the plasma beta, in order to determine their effect on the evolution and lifetime of the filament. We find that in a parallel magnetic field filaments have longer lifetimes if they are orientated more 'broadside' to the shock front, and that an increase in the density contrast hastens the destruction of the cloud, in terms of the modified cloud-crushing time-scale, tcs. The combination of a mild shock and a perpendicular or oblique field provides the best condition for extending the life of the filament, with some filaments able to survive almost indefinitely since they are cocooned by the magnetic field. A high value for the density contrast does not initiate la...
Two-dimensional state in driven magnetohydrodynamic turbulence.
Bigot, Barbara; Galtier, Sébastien
2011-02-01
The dynamics of the two-dimensional (2D) state in driven three-dimensional (3D) incompressible magnetohydrodynamic turbulence is investigated through high-resolution direct numerical simulations and in the presence of an external magnetic field at various intensities. For such a flow the 2D state (or slow mode) and the 3D modes correspond, respectively, to spectral fluctuations in the plane k(∥)=0 and in the area k(∥)>0. It is shown that if initially the 2D state is set to zero it becomes nonnegligible in few turnover times, particularly when the external magnetic field is strong. The maintenance of a large-scale driving leads to a break for the energy spectra of 3D modes; when the driving is stopped, the previous break is removed and a decay phase emerges with Alfvénic fluctuations. For a strong external magnetic field the energy at large perpendicular scales lies mainly in the 2D state, and in all situations a pinning effect is observed at small scales.
Interactions between two magnetohydrodynamic Kelvin-Helmholtz instabilities.
Lai, S H; Ip, W-H
2011-10-01
Kelvin-Helmholtz instability (KHI) driven by velocity shear is a generator of waves found away from the vicinity of the velocity-shear layers since the fast-mode waves radiated from the surface perturbation can propagate away from the transition layer. Thus the nonlinear evolution associated with KHI is not confined near the velocity-shear layer. To understand the physical processes in multiple velocity-shear layers, the interactions between two KHIs at a pair of tangential discontinuities are studied by two-dimensional magnetohydrodynamic simulations. It is shown that the interactions between two neighboring velocity-shear layers are dominated by the propagation of the fast-mode waves radiated from KHIs in a nonuniform medium. That is, the fast-mode Mach number of the surface waves M(Fy), a key factor of the nonlinear evolution of KHI, will vary with the nonuniform background plasma velocity due to the existence of two neighboring velocity-shear layers. As long as the M(Fy) observed in the plasma rest frame across the neighboring velocity-shear layer is larger than one, newly formed fast-mode Mach-cone-like (MCL) plane waves generated by the fast-mode waves can be found in this region. As results of the interactions of two KHIs, reflection and distortion of the MCL plane waves generate the turbulence and increase the plasma temperature, which provide possible mechanisms of heating and accelerating local plasma between two neighboring velocity-shear layers.
Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence.
Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Bürger, Kai; Burns, Randal; Meneveau, Charles; Szalay, Alexander
2013-05-23
The idea of 'frozen-in' magnetic field lines for ideal plasmas is useful to explain diverse astrophysical phenomena, for example the shedding of excess angular momentum from protostars by twisting of field lines frozen into the interstellar medium. Frozen-in field lines, however, preclude the rapid changes in magnetic topology observed at high conductivities, as in solar flares. Microphysical plasma processes are a proposed explanation of the observed high rates, but it is an open question whether such processes can rapidly reconnect astrophysical flux structures much greater in extent than several thousand ion gyroradii. An alternative explanation is that turbulent Richardson advection brings field lines implosively together from distances far apart to separations of the order of gyroradii. Here we report an analysis of a simulation of magnetohydrodynamic turbulence at high conductivity that exhibits Richardson dispersion. This effect of advection in rough velocity fields, which appear non-differentiable in space, leads to line motions that are completely indeterministic or 'spontaneously stochastic', as predicted in analytical studies. The turbulent breakdown of standard flux freezing at scales greater than the ion gyroradius can explain fast reconnection of very large-scale flux structures, both observed (solar flares and coronal mass ejections) and predicted (the inner heliosheath, accretion disks, γ-ray bursts and so on). For laminar plasma flows with smooth velocity fields or for low turbulence intensity, stochastic flux freezing reduces to the usual frozen-in condition.
Data Constrained Coronal Mass Ejections in A Global Magnetohydrodynamics Model
Jin, M; van der Holst, B; Sokolov, I; Toth, G; Mullinix, R E; Taktakishvili, A; Chulaki, A; Gombosi, T I
2016-01-01
We present a first-principles-based coronal mass ejection (CME) model suitable for both scientific and operational purposes by combining a global magnetohydrodynamics (MHD) solar wind model with a flux rope-driven CME model. Realistic CME events are simulated self-consistently with high fidelity and forecasting capability by constraining initial flux rope parameters with observational data from GONG, SOHO/LASCO, and STEREO/COR. We automate this process so that minimum manual intervention is required in specifying the CME initial state. With the newly developed data-driven Eruptive Event Generator Gibson-Low (EEGGL), we present a method to derive Gibson-Low (GL) flux rope parameters through a handful of observational quantities so that the modeled CMEs can propagate with the desired CME speeds near the Sun. A test result with CMEs launched with different Carrington rotation magnetograms are shown. Our study shows a promising result for using the first-principles-based MHD global model as a forecasting tool, wh...
A switch to reduce resistivity in smoothed particle magnetohydrodynamics
Tricco, Terrence S
2013-01-01
Artificial resistivity is included in Smoothed Particle Magnetohydrodynamics simulations to capture shocks and discontinuities in the magnetic field. Here we present a new method for adapting the strength of the applied resistivity so that shocks are captured but the dissipation of the magnetic field away from shocks is minimised. Our scheme utilises the gradient of the magnetic field as a shock indicator, setting {\\alpha}_B = h|gradB|/|B|, such that resistivity is switched on only where strong discontinuities are present. The advantage to this approach is that the resistivity parameter does not depend on the absolute field strength. The new switch is benchmarked on a series of shock tube tests demonstrating its ability to capture shocks correctly. It is compared against a previous switch proposed by Price & Monaghan (2005), showing that it leads to lower dissipation of the field, and in particular, that it succeeds at capturing shocks in the regime where the Alfv\\'en speed is much less than the sound spe...
Stabilization of numerical interchange in spectral-element magnetohydrodynamics
Sovinec, C. R.
2016-08-01
Auxiliary numerical projections of the divergence of flow velocity and vorticity parallel to magnetic field are developed and tested for the purpose of suppressing unphysical interchange instability in magnetohydrodynamic simulations. The numerical instability arises with equal-order C0 finite- and spectral-element expansions of the flow velocity, magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The auxiliary projections are motivated by physical field-line bending, and coercive responses to the projections are added to the flow-velocity equation. Their incomplete expansions are limited to the highest-order orthogonal polynomial in at least one coordinate of the spectral elements. Cylindrical eigenmode computations show that the projections induce convergence from the stable side with first-order ideal-MHD equations during h-refinement and p-refinement. Hyperbolic and parabolic projections and responses are compared, together with different methods for avoiding magnetic divergence error. The projections are also shown to be effective in linear and nonlinear time-dependent computations with the NIMROD code Sovinec et al. [17], provided that the projections introduce numerical dissipation.
Numerical magneto-hydrodynamics for relativistic nuclear collisions
Energy Technology Data Exchange (ETDEWEB)
Inghirami, Gabriele [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany); Del Zanna, Luca [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INAF - Osservatorio Astrofisico di Arcetri, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Beraudo, Andrea [INFN - Sezione di Torino, Torino (Italy); Moghaddam, Mohsen Haddadi [INFN - Sezione di Torino, Torino (Italy); Hakim Sabzevari University, Department of Physics, P. O. Box 397, Sabzevar (Iran, Islamic Republic of); Becattini, Francesco [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany)
2016-12-15
We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magneto-hydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant 3 + 1 formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the quark-gluon plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic flow of the final hadrons. However, since there are uncertainties in the description of the pre-equilibrium phase and also in the properties of the medium, a more extensive survey of the possible initial conditions as well as the inclusion of dissipative effects are indeed necessary to validate this preliminary result. (orig.)
Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure
Energy Technology Data Exchange (ETDEWEB)
Hagstrom, George I.; Hameiri, Eliezer [Courant Institute of Mathematical Sciences, New York, New York 10012 (United States)
2014-02-15
Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also an entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.
Signatures of fast and slow magnetohydrodynamic shocks in turbulent molecular clouds
Lehmann, Andrew; Wardle, Mark
2016-01-01
The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low-velocity shocks. Fast and slow MHD shocks differ in how they compress and heat the molecular gas, and so their radiative signatures reveal distinct physical conditions. We use a two-fluid model to compare one-dimensional fast and slow MHD shocks propagating at low speeds (a few km s- 1). Fast shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables smoothly change in the shock front. In contrast, slow shocks are driven by gas pressure, and neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock. We consider shocks at velocities vs = 2-4 km s- 1 and pre-shock hydrogen nuclei densities nH = 102-104 cm-3. We include a simple oxygen chemistry and cooling by CO, H2 and H2O. CO rotational lines above J = 6-5 are more strongly excited in slow shocks. These slow-shock signatures may have already been observed in infrared dark clouds in the Milky Way.
Signatures of fast and slow magnetohydrodynamic shocks in turbulent molecular clouds
Lehmann, Andrew
2015-01-01
The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low-velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks---fast, intermediate and slow---differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions. Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks propagating at low speeds (a few km/s) in molecular clouds. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where...
Kamenetskii, E. S.; Orlova, N. S.; Tagirov, A. M.; Volik, M. V.
2016-11-01
We present the results of three-dimensional calculations of the degree of expansion of a vibrofluidized bed that were obtained with the aid of the twoPhaseEulerFoam solver of a freely accessible OpenFOAM package and the data of experiments on vibrobubbling of relatively large dolomite particles. Satisfactory agreement is obtained between the results of numerical calculations and experimental data.
Water balance simulations of a polymer-electrolyte membrane fuel cell using a two-fluid model
DEFF Research Database (Denmark)
Berning, Torsten; Odgaard, M.; Kær, Søren Knudsen
2011-01-01
A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell cathode has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various hum...
Energy Technology Data Exchange (ETDEWEB)
Gokaltun, Seckin [Florida International Univ., Miami, FL (United States); Munroe, Norman [Florida International Univ., Miami, FL (United States); Subramaniam, Shankar [Iowa State Univ., Ames, IA (United States)
2014-12-31
This study presents a new drag model, based on the cohesive inter-particle forces, implemented in the MFIX code. This new drag model combines an existing standard model in MFIX with a particle-based drag model based on a switching principle. Switches between the models in the computational domain occur where strong particle-to-particle cohesion potential is detected. Three versions of the new model were obtained by using one standard drag model in each version. Later, performance of each version was compared against available experimental data for a fluidized bed, published in the literature and used extensively by other researchers for validation purposes. In our analysis of the results, we first observed that standard models used in this research were incapable of producing closely matching results. Then, we showed for a simple case that a threshold is needed to be set on the solid volume fraction. This modification was applied to avoid non-physical results for the clustering predictions, when governing equation of the solid granular temperate was solved. Later, we used our hybrid technique and observed the capability of our approach in improving the numerical results significantly; however, improvement of the results depended on the threshold of the cohesive index, which was used in the switching procedure. Our results showed that small values of the threshold for the cohesive index could result in significant reduction of the computational error for all the versions of the proposed drag model. In addition, we redesigned an existing circulating fluidized bed (CFB) test facility in order to create validation cases for clustering regime of Geldart A type particles.
Water balance simulations of a polymer-electrolyte membrane fuel cell using a two-fluid model
DEFF Research Database (Denmark)
Berning, Torsten; Odgaard, M.; Kær, Søren Knudsen
2011-01-01
A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell cathode has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various...... humidification conditions. It was found that the specific surface area of the electrolyte in the catalyst layers close to the membrane is of critical importance for the overall water balance. Applying a high specific electrolyte surface area close to the membrane (a water-uptake layer) can prevent drying out...... of the anode and flooding at the cathode while the average membrane water content is only weakly affected. The results also indicate that in contrast to common presumption membrane dehydration may occur at either anode or cathode side, entirely depending on the direction of the net water transport because...
On the Study of Second-Order Wave Theory and Its Convergence for a Two-Fluid System
Directory of Open Access Journals (Sweden)
Chi-Min Liu
2013-01-01
Full Text Available Second-order solutions of internal and surface waves in a two-fluid system are theoretically analyzed in this study. Using the perturbation technique, the derivation of second-order solutions for internal waves is revisited, and the results are expressed in one-by-one forms instead of a matrix form. Second-order solutions arising from the interactions of two arbitrary linear waves of different frequencies contain the sum-frequency (superharmonic and the difference-frequency (subharmonic components, which are separately examined. Internal Stokes wave being a special case of present solutions is firstly investigated. Next, the convergence of second-order theory and the second-order effects on wave profiles are analyzed. For general cases, the effects of the thickness ratio of two fluids and the ratio of wavenumbers of two first-order waves on second-order wave characteristics, which include transfer functions and particle velocities, are also examined. Moreover, most existing theories for the one-fluid and two-fluid systems can be deduced from present solutions.
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Jun; Park, Ik Kyu; Yoon, Han Young [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jae, Byoung [School of Mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)
2017-01-15
Two-fluid equations are widely used to obtain averaged behaviors of two-phase flows. This study addresses a problem that may arise when the two-fluid equations are used for multi-dimensional bubbly flows. If steady drag is the only accounted force for the interfacial momentum transfer, the disperse-phase velocity would be the same as the continuous-phase velocity when the flow is fully developed without gravity. However, existing momentum equations may show unphysical results in estimating the relative velocity of the disperse phase against the continuous-phase. First, we examine two types of existing momentum equations. One is the standard two-fluid momentum equation in which the disperse-phase is treated as a continuum. The other is the averaged momentum equation derived from a solid/ fluid particle motion. We show that the existing equations are not proper for multi-dimensional bubbly flows. To resolve the problem mentioned above, we modify the form of the Reynolds stress terms in the averaged momentum equation based on the solid/fluid particle motion. The proposed equation shows physically correct results for both multi-dimensional laminar and turbulent flows.
McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.
2016-09-01
Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure and saturation. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional models, which typically consider only the relationship between capillary pressure and saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated using generalized additive models to quantitatively assess the degree to which functional relationships can explain the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field
Verification of a Higher-Order Finite Difference Scheme for the One-Dimensional Two-Fluid Model
Directory of Open Access Journals (Sweden)
William D. Fullmer
2013-06-01
Full Text Available The one-dimensional two-fluid model is widely acknowledged as the most detailed and accurate macroscopic formulation model of the thermo-fluid dynamics in nuclear reactor safety analysis. Currently the prevailing one-dimensional thermal hydraulics codes are only first-order accurate. The benefit of first-order schemes is numerical viscosity, which serves as a regularization mechanism for many otherwise ill-posed two-fluid models. However, excessive diffusion in regions of large gradients leads to poor resolution of phenomena related to void wave propagation. In this work, a higher-order shock capturing method is applied to the basic equations for incompressible and isothermal flow of the one-dimensional two-fluid model. The higher-order accuracy is gained by a strong stability preserving multi-step scheme for the time discretization and a minmod flux limiter scheme for the convection terms. Additionally the use of a staggered grid allows for several second-order centered terms, when available. The continuity equations are first tested by manipulating the two-fluid model into a pair of linear wave equations and tested for smooth and discontinuous initial data. The two-fluid model is benchmarked with the water faucet problem. With the higher-order method, the ill-posed nature of the governing equations presents severe challenges due to a growing void fraction jump in the solution. Therefore the initial and boundary conditions of the problem are modified in order to eliminate a large counter-current flow pattern that develops. With the modified water faucet problem the numerical models behave well and allow a convergence study. Using the L1 norm of the liquid fraction, it is verified that the first and higher-order numerical schemes converge to the quasi-analytical solution at a rate of O(1/2 and O(2/3, respectively. It is also shown that the growing void jump is a contact discontinuity, i.e. it is a linearly degenerate wave. The sub
Connecting Pore Scale Dynamics to Macroscopic Models for Two-Fluid Phase Flow
McClure, J. E.; Dye, A. L.; Miller, C. T.; Gray, W. G.
2015-12-01
Imaging technologies such as computed micro-tomography (CMT) provide high resolution three-dimensional images of real porous medium systems that reveal the true geometric structure of fluid and solid phases. Simulation and analysis tools are essential to extract knowledge from this raw data, and can be applied in tandem to provide information that is otherwise inaccessible. Guidance from multi-scale averaging theory is used to develop a multi-scale analysis framework to determine phase connectivity and extract interfacial areas, curvatures, common line length, contact angle and the velocities of the interface and common curve. The approach is applied to analyze pore-scale dynamics based on a multiphase lattice Boltzmann method. Dense sets of simulations are performed to evaluate the equilibrium relationship between capillary pressure, saturation and interfacial area for several experimentally imaged porous media. The approach is also used study the evolution of macroscopic quantities under dynamic conditions, which is compared to the equilibrium data.
On the application of two-fluid flows solver to the casting problem
Kamran, Kazem; Rossi, Riccardo; Dadvand, Pooyan; Idelsohn Barg, Sergio Rodolfo
2014-01-01
This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting...
The Two Fluid Drop Snap-off Problem: Experiments and Theory
1999-01-01
We address the dynamics of a drop with viscosity $\\lambda \\eta$ breaking up inside another fluid of viscosity $\\eta$. For $\\lambda=1$, a scaling theory predicts the time evolution of the drop shape near the point of snap-off which is in excellent agreement with experiment and previous simulations of Lister and Stone. We also investigate the $\\lambda$ dependence of the shape and breaking rate.
The Two Fluid Drop Snap-off Problem Experiments and Theory
Cohen, I; Eggers, J; Nagel, S R; Cohen, Itai; Brenner, Michael P.; Eggers, Jens; Nagel, Sidney R.
1999-01-01
We address the dynamics of a drop with viscosity $\\lambda \\eta$ breaking up inside another fluid of viscosity $\\eta$. For $\\lambda=1$, a scaling theory predicts the time evolution of the drop shape near the point of snap-off which is in excellent agreement with experiment and previous simulations of Lister and Stone. We also investigate the $\\lambda$ dependence of the shape and breaking rate.
Extended magneto-hydro-dynamic model for neoclassical tearing mode computations
Maget, Patrick; Février, Olivier; Garbet, Xavier; Lütjens, Hinrich; Luciani, Jean-Francois; Marx, Alain
2016-08-01
A self-consistent fluid model for describing neoclassical tearing modes in global magneto-hydro-dynamic simulations is presented. It is illustrated by its application to a simple toroidal configuration unstable to the (2, 1) tearing mode. The island saturation is verified to increase with the bootstrap current fraction. New features that are specific to this model are evidenced, like the unsteady saturated state of the island, and its deformation to a droplet shape, when the magnetic Prandtl number is not too high. Synthetic diagnostics demonstrate that diamagnetic and neoclassical effects should have in this case a measurable impact on the signature of magnetic islands.
Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind.
Lalescu, Cristian C; Shi, Yi-Kang; Eyink, Gregory L; Drivas, Theodore D; Vishniac, Ethan T; Lazarian, Alexander
2015-07-10
In situ spacecraft data on the solar wind show events identified as magnetic reconnection with wide outflows and extended "X lines," 10(3)-10(4) times ion scales. To understand the role of turbulence at these scales, we make a case study of an inertial-range reconnection event in a magnetohydrodynamic simulation. We observe stochastic wandering of field lines in space, breakdown of standard magnetic flux freezing due to Richardson dispersion, and a broadened reconnection zone containing many current sheets. The coarse-grain magnetic geometry is like large-scale reconnection in the solar wind, however, with a hyperbolic flux tube or apparent X line extending over integral length scales.
Magnetic field variation caused by rotational speed change in a magnetohydrodynamic dynamo.
Miyagoshi, Takehiro; Hamano, Yozo
2013-09-20
We have performed numerical magnetohydrodynamic dynamo simulations in a spherical shell with rotational speed or length-of-day (LOD) variation, which is motivated by correlations between geomagnetic field and climatic variations with ice and non-ice ages. The results show that LOD variation leads to magnetic field variation whose amplitude is considerably larger than that of LOD variation. The heat flux at the outer sphere and the zonal flow also change. The mechanism of the magnetic field variation due to LOD variation is also found. The keys are changes of dynamo activity and Joule heating.