WorldWideScience

Sample records for two-electrode distributed feedback

  1. An 11 μ w, two-electrode transimpedance biosignal amplifier with active current feedback stabilization.

    Science.gov (United States)

    Inan, O T; Kovacs, G T A

    2010-04-01

    A novel two-electrode biosignal amplifier circuit is demonstrated by using a composite transimpedance amplifier input stage with active current feedback. Micropower, low gain-bandwidth product operational amplifiers can be used, leading to the lowest reported overall power consumption in the literature for a design implemented with off-the-shelf commercial integrated circuits (11 μW). Active current feedback forces the common-mode input voltage to stay within the supply rails, reducing baseline drift and amplifier saturation problems that can be present in two-electrode systems. The bandwidth of the amplifier extends from 0.05-200 Hz and the midband voltage gain (assuming an electrode-to-skin resistance of 100 kΩ) is 48 dB. The measured output noise level is 1.2 mV pp, corresponding to a voltage signal-to-noise ratio approaching 50 dB for a typical electrocardiogram (ECG) level input of 1 mVpp. Recordings were taken from a subject by using the proposed two-electrode circuit and, simultaneously, a three-electrode standard ECG circuit. The residual of the normalized ensemble averages for both measurements was computed, and the power of this residual was 0.54% of the power of the standard ECG measurement output. While this paper primarily focuses on ECG applications, the circuit can also be used for amplifying other biosignals, such as the electroencephalogram.

  2. General Voltage Feedback Circuit Model in the Two-Dimensional Networked Resistive Sensor Array

    Directory of Open Access Journals (Sweden)

    JianFeng Wu

    2015-01-01

    Full Text Available To analyze the feature of the two-dimensional networked resistive sensor array, we firstly proposed a general model of voltage feedback circuits (VFCs such as the voltage feedback non-scanned-electrode circuit, the voltage feedback non-scanned-sampling-electrode circuit, and the voltage feedback non-scanned-sampling-electrode circuit. By analyzing the general model, we then gave a general mathematical expression of the effective equivalent resistor of the element being tested in VFCs. Finally, we evaluated the features of VFCs with simulation and test experiment. The results show that the expression is applicable to analyze the VFCs’ performance of parameters such as the multiplexers’ switch resistors, the nonscanned elements, and array size.

  3. Mixed-Modality Stimulation to Evoke Two Modalities Simultaneously in One Channel for Electrocutaneous Sensory Feedback.

    Science.gov (United States)

    Choi, Kyunghwan; Kim, Pyungkang; Kim, Kyung-Soo; Kim, Soohyun

    2017-12-01

    One of the long-standing challenges in upper limb prosthetics is restoring the sensory feedback that is missing due to amputation. Two approaches have previously been presented to provide various types of sensory information to users, namely, multi-modality sensory feedback and using an array of single-modality stimulators. However, the feedback systems used in these approaches were too bulky to be embedded in prosthesis sockets. In this paper, we propose an electrocutaneous sensory feedback method that is capable of conveying two modalities simultaneously with only one electrode. The stimulation method, which we call mixed-modality stimulation, utilizes the phenomenon in which the superposition of two electric pulse trains of different frequencies is able to evoke two different modalities (i.e., pressure and tapping) at the same time. We conducted psychophysical experiments in which healthy subjects were required to recognize the intensity of pressure or the frequency of tapping from mixed-modality or two-channel stimulations. The results demonstrated that the subjects were able to discriminate the features of the two modalities in one electrode during mixed-modality stimulation and that the accuracies of successful recognitions (mean ± standard deviation) for the two feedback variables were 84.3 ± 7% for mixed-modality stimulation and 89.5 ± 6% for two-channel dual-modality stimulation, showing no statistically significant difference. Therefore, mixed-modality stimulation is an attractive method for modulating two modalities independently with only one electrode, and it could be used for implementing a compact sensory feedback system that is able to provide two different types of sensory information from prosthetics.

  4. Multi-electrode laterally coupled distributed feedback InGaAsP/InP lasers: a prescription for longitudinal mode control

    Science.gov (United States)

    Benhsaien, Abdessamad; Dridi, Kais; Zhang, Jessica; Hall, Trevor J.

    2013-10-01

    Photonic Integrated Circuits (PICs) enable photons as data carriers at a very high speed. PIC market opportunities call for reduced wafer dimensions, power consumption and cost as well as enhanced reliability. The PIC technology development must cater for the latter relentless traits. In particular, monolithic PICs are sought as they can integrate hundreds of components and functions onto a single chip. InGaAsP/InP laterally-coupled distributed feedback (LC-DFB) lasers stand as key enablers in the PIC technology thanks to the compelling advantages their embedded high-order surface-gratings have. The patterning of the spatial corrugation along the sidewalls of the LC-DFB ridge, has been established to make the epitaxial overgrowth unnecessary thereby reducing the cost and time of manufacturing, and ultimately increasing the yield. LC-DFBs boast a small footprint synonymous of enhanced monolithic integrate-ability. Nonetheless, LC-DFBs suffer from the adverse longitudinal spatial hole burning (LSHB) effects materialized by typically quite high threshold current levels. Indeed, the carrier density longitudinal gradient- responsible for modes contending for the available material gain in the cavity- may be alleviated somewhat by segmenting the LC-DFB electrode into two or three reasonably interspaced longitudinal sections. In this work we report on the realization and performance of various electrode partition configurations. At room temperature, the experimental characterization of many as-cleaved LC-DFB devices provides ample evidence of superior performance such as a narrow linewidth (less than 400 kHz), a wide wavelength tune-ability (over 4 nm) and a hop-free single mode emission (side mode suppression ratio (SMSR) exceeding 54dB).

  5. Random distributed feedback fibre lasers

    Energy Technology Data Exchange (ETDEWEB)

    Turitsyn, Sergei K., E-mail: s.k.turitsyn@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Babin, Sergey A. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Churkin, Dmitry V. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Vatnik, Ilya D.; Nikulin, Maxim [Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Podivilov, Evgenii V. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation)

    2014-09-10

    generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres). This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1–1.6 μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide

  6. Random distributed feedback fibre lasers

    International Nuclear Information System (INIS)

    Turitsyn, Sergei K.; Babin, Sergey A.; Churkin, Dmitry V.; Vatnik, Ilya D.; Nikulin, Maxim; Podivilov, Evgenii V.

    2014-01-01

    generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres). This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1–1.6 μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide

  7. Single-mode biological distributed feedback laser

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Maier-Flaig, Florian; Lemmer, Uli

    2013-01-01

    Single-mode second order distributed feedback (DFB) lasers of riboflavin (vitamin B2) doped gelatine films on nanostructured low refractive index material are demonstrated. Manufacturing is based on a simple UV nanoimprint and spin-coating. Emission wavelengths of 543 nm and 562 nm for two...

  8. First operation of a powerful FEL with two-dimensional distributed feedback

    CERN Document Server

    Agarin, N V; Bobylev, V B; Ginzburg, N S; Ivanenko, V G; Kalinin, P V; Kuznetsov, S A; Peskov, N Yu; Sergeev, A S; Sinitsky, S L; Stepanov, V D

    2000-01-01

    A W-band (75 GHz) FEL of planar geometry driven by a sheet electron beam was realised using the pulse accelerator ELMI (0.8 MeV/3 kA/5 mu s). To provide the spatial coherence of radiation from different parts of the electron beam with a cross-section of 0.4x12 cm two-dimensional distributed feedback systems have been employed using a 2-D Bragg resonator of planar geometry. The resonator consisted of two 2-D Bragg reflectors separated by a regular waveguide section. The total energy in the microwave pulse of microsecond duration was 100 J corresponding to a power of approx 100 MW. The main component of the FEL radiation spectrum was at 75 GHz that corresponded to the zone of effective Bragg reflection found from 'cold' microwave testing of the resonator. The experimental data compared well with the results of theoretical analysis.

  9. Mesoscale characterization of local property distributions in heterogeneous electrodes

    Science.gov (United States)

    Hsu, Tim; Epting, William K.; Mahbub, Rubayyat; Nuhfer, Noel T.; Bhattacharya, Sudip; Lei, Yinkai; Miller, Herbert M.; Ohodnicki, Paul R.; Gerdes, Kirk R.; Abernathy, Harry W.; Hackett, Gregory A.; Rollett, Anthony D.; De Graef, Marc; Litster, Shawn; Salvador, Paul A.

    2018-05-01

    The performance of electrochemical devices depends on the three-dimensional (3D) distributions of microstructural features in their electrodes. Several mature methods exist to characterize 3D microstructures over the microscale (tens of microns), which are useful in understanding homogeneous electrodes. However, methods that capture mesoscale (hundreds of microns) volumes at appropriate resolution (tens of nm) are lacking, though they are needed to understand more common, less ideal electrodes. Using serial sectioning with a Xe plasma focused ion beam combined with scanning electron microscopy (Xe PFIB-SEM), two commercial solid oxide fuel cell (SOFC) electrodes are reconstructed over volumes of 126 × 73 × 12.5 and 124 × 110 × 8 μm3 with a resolution on the order of ≈ 503 nm3. The mesoscale distributions of microscale structural features are quantified and both microscale and mesoscale inhomogeneities are found. We analyze the origin of inhomogeneity over different length scales by comparing experimental and synthetic microstructures, generated with different particle size distributions, with such synthetic microstructures capturing well the high-frequency heterogeneity. Effective medium theory models indicate that significant mesoscale variations in local electrochemical activity are expected throughout such electrodes. These methods offer improved understanding of the performance of complex electrodes in energy conversion devices.

  10. Distributed Wireless Power Transfer With Energy Feedback

    Science.gov (United States)

    Lee, Seunghyun; Zhang, Rui

    2017-04-01

    Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.

  11. Numerical analysis of the heat source characteristics of a two-electrode TIG arc

    International Nuclear Information System (INIS)

    Ogino, Y; Hirata, Y; Nomura, K

    2011-01-01

    Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.

  12. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    Science.gov (United States)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-10-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.

  13. A comparison of two patient friendly ERG electrodes

    International Nuclear Information System (INIS)

    Hidajat, R.; McLay, J.; Elder, M.; Burley, C.; Goode, D.; Morton, J.

    2000-01-01

    Full text: The ideal electroretinography (ERG) electrode should provide reproducible waveforms, maximal amplitudes and minimal irritation of the patient's eyes. Contact lens electrodes (e.g. Burian-Allen, ERG jet) generate large amplitudes but are very uncomfortable and quite intimidating for the patient. Two other types, the gold foil and the H-K loop, provide a much more patient friendly alternative at the cost of somewhat reduced amplitudes. With the purchase of a new Nicolet Bravo electrodiagnostic system we had to select a suitable type of ERG electrode and establish the normal range for each ERG test with that electrode. It was decided to trial two electrodes, the gold foil (CH Electronics, UK) and the H-K loop (Avanta, Slovenia) before making the final choice. Seventeen normal volunteers, ranging in age from 14 to 56 years, were subjected to three standard measurements namely the flash photopic, white flash scotopic and transient pattern (PERG) ERG. Each test followed the guidelines set by the International Society for Clinical Electrophysiology of Vision (ISCEV). Before starting the measurements both eyes were anaesthetised with Ophthetic and for the flash ERG's the pupils were dilated with 1% Tropicamide. Immediately after the measurements each subject was asked which electrode was most comfortable. As specified by ISCEV the amplitudes were measured between adjacent troughs and peaks. The mean and standard deviation of the flash ERG b wave and the PERG P 50 amplitudes for each electrode are shown m the accompanying table together with the mean and standard deviation of the ratios of the amplitudes (gold foil/H-K loop) from each subject. It can be seen that the amplitudes measured with the gold foil electrodes are approximately twice those from the H-K loop and that the fractional variation (standard deviation/mean) of the gold foil amplitudes is also lower. In addition nearly all the subjects (13/17) felt less discomfort with the gold foil electrodes, only

  14. Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.

    Science.gov (United States)

    El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K

    2011-01-15

    We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.

  15. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.

    Science.gov (United States)

    Wagenaar, Justin; Adler, Andy

    2016-06-01

    Electrical impedance tomography (EIT) uses body surface electrical stimulation and measurements to create conductivity images; it shows promise as a non-invasive technology to monitor the distribution of lung ventilation. Most applications of EIT have placed electrodes in a 2D ring around the thorax, and thus produced 2D cross-sectional images. These images are unable to distinguish out-of-plane contributions, or to image volumetric effects. Volumetric EIT can be calculated using multiple electrode planes and a 3D reconstruction algorithm. However, while 3D reconstruction algorithms are available, little has been done to understand the performance of 3D EIT in terms of the measurement configurations available. The goal of this paper is to characterize the phantom and in vivo performance of 3D EIT with two electrode planes. First, phantom measurements are used to measure the reconstruction characteristics of seven stimulation and measurement configurations. Measurements were then performed on eight healthy volunteers as a function of body posture, postures, and with various electrode configurations. Phantom results indicate that 3D EIT using two rings of electrodes provides reasonable resolution in the electrode plane but low vertical resolution. For volunteers, functional EIT images are created from inhalation curve features to analyze the effect of posture (standing, sitting, supine and decline) on regional lung behaviour. An ability to detect vertical changes in lung volume distribution was shown for two electrode configurations. Based on tank and volunteer results, we recommend the use of the 'square' stimulation and measurement pattern for two electrode plane EIT.

  16. Estimation of current density distribution under electrodes for external defibrillation

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2002-12-01

    Full Text Available Abstract Background Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. Method and Results Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. Conclusion The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.

  17. Bayesian feedback versus Markovian feedback in a two-level atom

    International Nuclear Information System (INIS)

    Wiseman, H.M.; Mancini, Stefano; Wang Jin

    2002-01-01

    We compare two different approaches to the control of the dynamics of a continuously monitored open quantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)]. The second is feedback based on an estimate of the system state, developed recently by Doherty and Jacobs [Phys. Rev. A 60, 2700 (1999)]. Here we choose to call it, for brevity, Bayesian feedback. For systems with nonlinear dynamics, we expect these two methods of feedback control to give markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of inefficient detection and other forms of decoherence. Our results (obtained without recourse to stochastic simulations) prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback. However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in the face of inevitable experimental imperfections

  18. Impact of uniform electrode current distribution on ETF

    Science.gov (United States)

    Bents, D. J.

    1982-01-01

    The design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution are examined and the alternate consolidation design which occur are presented compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is given for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.

  19. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    International Nuclear Information System (INIS)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-01-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler–Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained. -- Highlights: ► Increasing arc current will increase the coupling arc temperature. ► Arc length seldom affects the peak temperature of the coupling arc. ► Increasing arc length will increase the extension of temperature near the anode. ► Increasing distance will decrease temperatures in the central part of the arc.

  20. High-power random distributed feedback fiber laser: From science to application

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xueyuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Naval Academy of Armament, Beijing 100161 (China); Zhang, Hanwei; Xiao, Hu; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-10-15

    A fiber laser based on random distributed feedback has attracted increasing attention in recent years, as it has become an important photonic device and has found wide applications in fiber communications or sensing. In this article, recent advances in high-power random distributed feedback fiber laser are reviewed, including the theoretical analyses, experimental approaches, discussion on the practical applications and outlook. It is found that a random distributed feedback fiber laser can not only act as an information photonics device, but also has the feasibility for high-efficiency/high-power generation, which makes it competitive with conventional high-power laser sources. In addition, high-power random distributed feedback fiber laser has been successfully applied for midinfrared lasing, frequency doubling to the visible and high-quality imaging. It is believed that the high-power random distributed feedback fiber laser could become a promising light source with simple and economic configurations. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Raman fiber distributed feedback lasers.

    Science.gov (United States)

    Westbrook, Paul S; Abedin, Kazi S; Nicholson, Jeffrey W; Kremp, Tristan; Porque, Jerome

    2011-08-01

    We demonstrate fiber distributed feedback (DFB) lasers using Raman gain in two germanosilicate fibers. Our DFB cavities were 124 mm uniform fiber Bragg gratings with a π phase shift offset from the grating center. Our pump was at 1480 nm and the DFB lasers operated on a single longitudinal mode near 1584 nm. In a commercial Raman gain fiber, the maximum output power, linewidth, and threshold were 150 mW, 7.5 MHz, and 39 W, respectively. In a commercial highly nonlinear fiber, these figures improved to 350 mW, 4 MHz, and 4.3 W, respectively. In both lasers, more than 75% of pump power was transmitted, allowing for the possibility of substantial amplification in subsequent Raman gain fiber. © 2011 Optical Society of America

  2. Tailored ion energy distributions on plasma electrodes

    International Nuclear Information System (INIS)

    Economou, Demetre J.

    2013-01-01

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods include the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas

  3. Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Downar, T.J.

    1987-01-01

    A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback

  4. Pilot acute study of feedback-controlled retrograde peristalsis invoked by neural gastric electrical stimulation

    International Nuclear Information System (INIS)

    Aelen, P; Jurkov, A; Aulanier, A; Mintchev, M P

    2009-01-01

    Neural gastric electrical stimulation (NGES) is a new method for invoking gastric contractions under microprocessor control. However, optimization of this technique using feedback mechanisms to minimize power consumption and maximize effectiveness has been lacking. The present pilot study proposes a prototype feedback-controlled neural gastric electric stimulator for the treatment of obesity. Both force-based and inter-electrode impedance-based feedback neurostimulators were implemented and tested. Four mongrel dogs (2 M, 2 F, weight 14.9 ± 2.3 kg) underwent subserosal implantation of two-channel, 1 cm, bipolar electrode leads and two force transducers in the distal antrum. Two of the dogs were stimulated with a force feedback system utilizing the force transducers, and the other two animals were stimulated utilizing an inter-electrode impedance-based feedback system utilizing the proximal electrode leads. Both feedback systems were able to recognize erythromycin-driven contractions of the stomach and were capable of overriding them with NGES-invoked retrograde contractions which exceeded the magnitudes of the erythromycin-driven contractions by an average of 100.6 ± 33.5% in all animals. The NGES-invoked contractions blocked the erythromycin-driven contractions past the proximal electrode pair and induced temporary gastroparesis in the vicinity of the distal force transducer despite the continuing erythromycin infusion. The amplitudes of the erythromycin-invoked contractions in the vicinity of the proximal force transducer decreased abruptly by an average of 47.9 ± 6.3% in all four dogs after triggering-invoked retrograde contractions, regardless of the specific feedback-controlled mechanism. The proposed technique could be helpful for retaining food longer in the stomach, thus inducing early satiety and diminishing food intake

  5. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions. [Patent application

    Science.gov (United States)

    Mrazek, F.C.; Smaga, J.A.; Battles, J.E.

    1981-01-19

    A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  6. Impact of uniform electrode current distribution on ETF. [Engineering Test Facility MHD generator

    Science.gov (United States)

    Bents, D. J.

    1982-01-01

    A basic reason for the complexity and sheer volume of electrode consolidation hardware in the MHD ETF Powertrain system is the channel electrode current distribution, which is non-uniform. If the channel design is altered to provide uniform electrode current distribution, the amount of hardware required decreases considerably, but at the possible expense of degraded channel performance. This paper explains the design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution, and presents the alternate consolidation designs which occur. They are compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is presented for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.

  7. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influencedby the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled. (semiconductor devices)

  8. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation.

    Science.gov (United States)

    Arfin, Scott K; Sarpeshkar, Rahul

    2012-02-01

    In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important.

  9. Transient current distributions in porous zinc electrodes in KOH electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.B.; Yamazaki, Y.; Cook, G.M.; Yao, N.P.

    1981-02-01

    A zero-resistance ammeter circuit with a 10-channel operational amplifier was used to measure the current distribution during a discharge of 10 to 100 mA with simulated zinc porous electrodes in 7.24 M KOH saturated with ZnO. The reaction distribution was found to be highly nonuniform, with 70 to 78% of the charge transfer reaction completed in a depth of 0.01 cm. The high nonuniformity of the initial reaction profile was believed to be due to low conductivity of the electrolyte in the electrode pores. The current distribution changes during passivation of the electrode were experimentally obtained. A mathematical model based upon a macroscope averaging technique was used to predict the time dependence of charge transfer reaction profiles. With mathematical model, current distributions and overpotentials were predicted as a function of time for the segmented zinc electrode discharged at a current of 10 to 100 mA; for these predictions, assumed values of both precipitation rate constants for porous ZnO and diffusion coefficients for hydroxide and zincate ions were used. A gradual decrease in the specific conductivity of the pore electrolyte to 20% of the initial value during discharge yields predictions of current distributions and overpotentials in good agreement with the experimental data. The extent of reduction in the specific conductivity of the pore electrolyte implies a supersaturation of zincate of four times chemical saturation, which was been observed experimentally.At high discharge current (25 to 100 mA), the passivation behavior of the electrode has been simulated. The results of the experiments and mathematical model show that the effective reaction penetration depth is less than 0.02 cm.

  10. Distributed feedback dye laser pumped with copper-vapor laser emission

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    The power-spectrum characteristics of the emission of a distributed feedback dye laser pumped with a copper vapor laser have been studied. Laser action has been observed in five dyes over a tuning range of 530-723 nm with an efficiency of 12.4%. The specfic features of the distributed feedback dye laser operating at pulse repetition rates of 4 kHz are discussed.

  11. Elucidating the Polymeric Binder Distribution within Lithium-ion Battery Electrodes Using SAICAS.

    Science.gov (United States)

    Kim, Kyuman; Byun, Seoungwoo; Choi, Jaecheol; Hong, Seungbum; Ryou, Myung-Hyun; Lee, Yong Min

    2018-03-30

    Polymeric binder distribution within electrodes is crucial to guarantee the electrochemical performance of lithium-ion batteries (LIBs) for their long-term use in applications such as electric vehicles and energy-storage systems. However, due to limited analytical tools, such analyses have not been conducted so far. Herein, the adhesion properties of LIB electrodes at different depths are measured using a surface and interfacial cutting analysis system (SAICAS). Moreover, two LiCoO 2 electrodes, dried at 130 and 230 °C, are carefully prepared and used to obtain the adhesion properties at every 10 μm of depth as well as the interface between the electrode composite and the current collector. At high drying temperatures, more of the polymeric binder material and conductive agent appears adjacent to the electrode surface, resulting in different adhesion properties as a function of depth. When the electrochemical properties are evaluated at different temperatures, the LiCoO 2 electrode dried at 130 °C shows a much better high-temperature cycling performance than does the electrode dried at 230 °C due to the uniform adhesion properties and the higher interfacial adhesion strength. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Theoretical Analysis of Potential and Current Distributions in Planar Electrodes of Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Taheri, Peyman; Mansouri, Abraham; Yazdanpour, Maryam; Bahrami, Majid

    2014-01-01

    An analytical model is proposed to describe the two-dimensional distribution of potential and current in planar electrodes of pouch-type lithium-ion batteries. A concentration-independent polarization expression, obtained experimentally, is used to mimic the electrochemical performance of the battery. By numerically solving the charge balance equation on each electrode in conjugation with the polarization expression, the battery behavior during constant-current discharge processes is simulated. Our numerical simulations show that reaction current between the electrodes remains approximately uniform during most of the discharge process, in particular, when depth-of-discharge varies from 5% to 85%. This observation suggests to simplify the electrochemical behavior of the battery such that the charge balance equation on each electrode can be solved analytically to obtain closed-form solutions for potential and current density distributions. The analytical model shows fair agreement with numerical data at modest computational cost. The model is applicable for both charge and discharge processes, and its application is demonstrated for a prismatic 20 Ah nickel-manganese-cobalt lithium-ion battery during discharge processes

  13. Effects of electrode size and spacing on sensory modalities in the phantom thumb perception area for the forearm amputees.

    Science.gov (United States)

    Li, P; Chai, G H; Zhu, K H; Lan, N; Sui, X H

    2015-01-01

    Tactile sensory feedback plays a key role in accomplishing the dexterous manipulation of prosthetic hands for the amputees, and the non-invasive transcutaneous electrical nerve stimulation (TENS) of the phantom finger perception (PFP) area would be an effective way to realize sensory feedback clinically. In order to realize the high-spatial-resolution tactile sensory feedback in the PFP region, we investigated the effects of electrode size and spacing on the tactile sensations for potentially optimizing the surface electrode array configuration. Six forearm-amputated subjects were recruited in the psychophysical studies. With the diameter of the circular electrode increasing from 3 mm to 12 mm, the threshold current intensity was enhanced correspondingly under different sensory modalities. The smaller electrode could potentially lead to high sensation spatial resolution. Whereas, the smaller the electrode, the less the number of sensory modalities. For an Φ-3 mm electrode, it is even hard for the subject to perceive any perception modalities under normal stimulating current. In addition, the two-electrode discrimination distance (TEDD) in the phantom thumb perception area decreased with electrode size decreasing in two directions of parallel or perpendicular to the forearm. No significant difference of TEDD existed along the two directions. Studies in this paper would guide the configuration optimization of the TENS electrode array for potential high spatial-resolution sensory feedback.

  14. Chromatic aberrations of two-electrode transaxial mirrors

    International Nuclear Information System (INIS)

    Bejzina, L.G.; Karetskaya, S.P.

    1991-01-01

    Second order chromatic aberrations of electrostatic two-electrode transaxial mirrors in case the beam axial trajectory of charged particles is curvilinear are considered. Interrelations between coefficients of linear and angular chromatic aberrations are determined. Values of these coefficients for concave and convex transaxial mirrors with plane electrodes in dependence on potential ratio on electrodes by different onnular clearance radii are presented

  15. Trainees' Perceptions of Feedback: Validity Evidence for Two FEEDME (Feedback in Medical Education) Instruments.

    Science.gov (United States)

    Bing-You, Robert; Ramesh, Saradha; Hayes, Victoria; Varaklis, Kalli; Ward, Denham; Blanco, Maria

    2018-01-01

    Construct: Medical educators consider feedback a core component of the educational process. Effective feedback allows learners to acquire new skills, knowledge, and attitudes. Learners' perceptions of feedback are an important aspect to assess with valid methods in order to improve the feedback skills of educators and the feedback culture. Although guidelines for delivering effective feedback have existed for several decades, medical students and residents often indicate that they receive little feedback. A recent scoping review on feedback in medical education did not reveal any validity evidence on instruments to assess learner's perceptions of feedback. The purpose of our study was to gather validity evidence on two novel FEEDME (Feedback in Medical Education) instruments to assess medical students' and residents' perceptions of the feedback that they receive. After the authors developed an initial instrument with 54 items, cognitive interviews with medical students and residents suggested that 2 separate instruments were needed, one focused on the feedback culture (FEEDME-Culture) and the other on the provider of feedback (FEEDME-Provider). A Delphi study with 17 medical education experts and faculty members assessed content validity. The response process was explored involving 31 medical students and residents at 2 academic institutions. Exploratory factor analysis and reliability analyses were performed on completed instruments. Two Delphi consultation rounds refined the wording of items and eliminated several items. Learners found both instruments easy and quick to answer; it took them less than 5 minutes to complete. Learners preferred an electronic format of the instruments over paper. Factor analysis revealed a two- and three-factor solution for the FEEDME-Culture and FEEDME-Provider instruments, respectively. Cronbach's alpha was greater than 0.80 for all factors. Items on both instruments were moderately to highly correlated (range, r = .3-.7). Our

  16. Smith-Purcell Distributed Feedback Laser

    CERN Document Server

    Kipnis, D; Gover, A

    2005-01-01

    Smith-Purcell radiation is the emission of electromagnetic radiation by an electron beam passing next to an optical grating. Recently measurement of relatively intense power of such radiation was observed in the THz-regime [1]. To explain the high intensity and the super-linear dependence on current beyond a threshold it was suggested that the radiating device operated in the high gain regime, amplifying spontaneous emission (ASE) [1,2]. We contest this interpretation and suggest an alternative mechanism. According to our interpretation the device operates as a distributed feedback (DFB) laser oscillator, in which a forward going surface wave, excited by the beam on the grating surface, is coupled to a backward going surface wave by a second order Bragg reflection process. This feedback process produces a saturated oscillator. We present theoretical analysis of the proposed process, which fits the reported experimental results, and enables better design of the radiation device, operating as a Smith-Purcell DF...

  17. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    International Nuclear Information System (INIS)

    Zhang, Bing; Dong, Wei; Wen, Yizhang; Pang, Kai; Wang, Xiaoping; Li, Yazhuo; Zhan, Shuyue

    2016-01-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions. (paper)

  18. Event-triggered output feedback control for distributed networked systems.

    Science.gov (United States)

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2016-01-01

    This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Mitigating IPMC back relaxation through feedforward and feedback control of patterned electrodes

    International Nuclear Information System (INIS)

    Fleming, Maxwell J; Leang, Kam K; Kim, Kwang J

    2012-01-01

    With low driving voltage ( < 5 V) and the ability to be operated in aqueous environments, ionic polymer–metal composite (IPMC) materials are quickly gaining attention for use in many applications including soft bio-inspired actuators and sensors. There are, however, drawbacks to IPMC actuators, including the ‘back relaxation’ effect. Specifically, when subjected to an excessively slow input, the IPMC actuator will slowly relax back toward its original position. There is debate over the physical mechanism of back relaxation, although one prevalent theory describes an initial current, caused by the electrostatic forces of the charging electrodes, which drives water molecules across the ion exchange membrane and deforms the IPMC. Once the electrodes are fully charged, however, the dominant element of the motion is the osmotic pressure, driving the water molecules back to equilibrium, thus causing back relaxation. A new method to mitigate back relaxation is proposed, taking advantage of controlled activation of patterned (sectored) electrodes on the IPMC. By actuating sectors in opposing directions, back relaxation can be effectively canceled out. An integrated feedforward and feedback controller is employed based on this concept, and is shown to minimize back relaxation, while reducing the input voltage required, as compared to the case of the non-sectored IPMC. Experimental results show nearly an order of magnitude reduction in the tracking error compared to the uncompensated case, and that the IPMC’s position can be maintained over a period of 60 and 1200 s with minimal evidence of back relaxation. (paper)

  20. Emission wavelength of multilayer distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron L. C.; Brøkner Christiansen, Mads

    2012-01-01

    Precise emission wavelength modeling is essential for understanding and optimization of distributed feedback (DFB) lasers. An analytical approach for determining the emission wavelength based on setting the propagation constant of the Bragg condition and solving for the resulting slab waveguide m...

  1. Distributed Feedback Laser Based on Single Crystal Perovskite

    Science.gov (United States)

    Sun, Shang; Xiao, Shumin; Song, Qinghai

    2017-06-01

    We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.

  2. Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters

    DEFF Research Database (Denmark)

    Wang, Z.; Durhuus, T.; Mikkelsen, Benny

    1994-01-01

    A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....

  3. Distribution of Feedback among Teacher and Students in Online Collaborative Learning in Small Groups

    Science.gov (United States)

    Coll, Cesar; Rochera, Maria Jose; de Gispert, Ines; Diaz-Barriga, Frida

    2013-01-01

    This study explores the characteristics and distribution of the feedback provided by the participants (a teacher and her students) in an activity organized inside a collaborative online learning environment. We analyse 853 submissions made by two groups of graduate students and their teacher (N1 = 629 & N2 = 224) involved in the collaborative…

  4. Thulium distributed-feedback fiber lasers

    DEFF Research Database (Denmark)

    Agger, Søren Dyøe

    2006-01-01

    in silica and the fabri- cation, design and characterization of coherent Distributed Feed-Back (DFB) ber lasers incorporating thulium as the active laser medium. Our recent results have proved that single-frequency, single-polarization, narrow-linewidth (tens of kHz) operation of thulium doped DFB ber...... lasers is possible. Demonstrations of single-frequency lasers have, until now, been achieved at 1740 nm, 1984 nm and at a record-breaking 2090 nm. The 1740 nm laser has been boosted to 60 mW of output power with a linewidth of only 3 kHz and implemented in a plug-and-play turnkey system with SMF28-APC...

  5. Distributed User Selection in Network MIMO Systems with Limited Feedback

    KAUST Repository

    Elkhalil, Khalil; Eltayeb, Mohammed E.; Dahrouj, Hayssam; Al-Naffouri, Tareq Y.

    2015-01-01

    We propose a distributed user selection strategy in a network MIMO setting with M base stations serving K users. Each base station is equipped with L antennas, where LM ≪ K. The conventional selection strategy is based on a well known technique called semi-orthogonal user selection when the zero-forcing beamforming (ZFBF) is adopted. Such technique, however, requires perfect channel state information at the transmitter (CSIT), which might not be available or need large feedback overhead. This paper proposes an alternative distributed user selection technique where each user sets a timer that is inversely proportional to his channel quality indicator (CQI), as a means to reduce the feedback overhead. The proposed strategy allows only the user with the highest CQI to respond with a feedback. Such technique, however, remains collision free only if the transmission time is shorter than the difference between the strongest user timer and the second strongest user timer. To overcome the situation of longer transmission times, the paper proposes another feedback strategy that is based on the theory of compressive sensing, where collision is allowed and all users encode their feedback information and send it back to the base-stations simultaneously. The paper shows that the problem can be formulated as a block sparse recovery problem which is agnostic on the transmission time, which makes it a good alternative to the timer approach when collision is dominant.

  6. Distributed User Selection in Network MIMO Systems with Limited Feedback

    KAUST Repository

    Elkhalil, Khalil

    2015-09-06

    We propose a distributed user selection strategy in a network MIMO setting with M base stations serving K users. Each base station is equipped with L antennas, where LM ≪ K. The conventional selection strategy is based on a well known technique called semi-orthogonal user selection when the zero-forcing beamforming (ZFBF) is adopted. Such technique, however, requires perfect channel state information at the transmitter (CSIT), which might not be available or need large feedback overhead. This paper proposes an alternative distributed user selection technique where each user sets a timer that is inversely proportional to his channel quality indicator (CQI), as a means to reduce the feedback overhead. The proposed strategy allows only the user with the highest CQI to respond with a feedback. Such technique, however, remains collision free only if the transmission time is shorter than the difference between the strongest user timer and the second strongest user timer. To overcome the situation of longer transmission times, the paper proposes another feedback strategy that is based on the theory of compressive sensing, where collision is allowed and all users encode their feedback information and send it back to the base-stations simultaneously. The paper shows that the problem can be formulated as a block sparse recovery problem which is agnostic on the transmission time, which makes it a good alternative to the timer approach when collision is dominant.

  7. Distributed force feedback in the spinal cord and the regulation of limb mechanics.

    Science.gov (United States)

    Nichols, T Richard

    2018-03-01

    This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.

  8. Framing Feedback for School Improvement around Distributed Leadership

    Science.gov (United States)

    Kelley, Carolyn; Dikkers, Seann

    2016-01-01

    Purpose: The purpose of this article is to examine the utility of framing formative feedback to improve school leadership with a focus on task-based evaluation of distributed leadership rather than on role-based evaluation of an individual leader. Research Methods/Approach: Using data from research on the development of the Comprehensive…

  9. Two-component feedback loops and deformed mechanics

    International Nuclear Information System (INIS)

    Tourigny, David S.

    2015-01-01

    It is shown that a general two-component feedback loop can be viewed as a deformed Hamiltonian system. Some of the implications of using ideas from theoretical physics to study biological processes are discussed. - Highlights: • Two-component molecular feedback loops are viewed as q-deformed Hamiltonian systems. • Deformations are reversed using Jackson derivatives to take advantage of working in the Hamiltonian limit. • New results are derived for the particular examples considered. • General deformations are suggested to be associated with a broader class of biological processes

  10. Damping of resistive instability in UNK-1 with digital electronics in feedback

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.; Ivanov, I.N.; Korenev, I.L.; Yudin, L.A.

    1991-01-01

    The basis of resistive instability damper system for the UNK-1 is obtained. The system for each of two directions of beam transverse oscillations includes two pairs of pick-up electrodes and damping kickers connected by delayed negative feedback with digital electronics. The requirements for digital electronics in feedback are discussed. The influence of a notch filter is under consideration. In turns out that a 0.8 MHz feedback system damps the resistive instability in the UNK-1 with increment of 0.7 revolution frequency (for low frequencies). 7 refs.; 8 figs

  11. Wafer-scale fabrication of polymer distributed feedback lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Balslev, Søren

    2006-01-01

    The authors demonstrate wafer-scale, parallel process fabrication of distributed feedback (DFB) polymer dye lasers by two different nanoimprint techniques: By thermal nanoimprint lithography (TNIL) in polymethyl methacrylate and by combined nanoimprint and photolithography (CNP) in SU-8. In both...... techniques, a thin film of polymer, doped with rhodamine-6G laser dye, is spin coated onto a Borofloat glass buffer substrate and shaped into a planar waveguide slab with first order DFB surface corrugations forming the laser resonator. When optically pumped at 532 nm, lasing is obtained in the wavelength...... range between 576 and 607 nm, determined by the grating period. The results, where 13 laser devices are defined across a 10 cm diameter wafer substrate, demonstrate the feasibility of NIL and CNP for parallel wafer-scale fabrication of advanced nanostructured active optical polymer components...

  12. Operation of the PEP transverse beam feedback

    International Nuclear Information System (INIS)

    Olson, C.W.; Paterson, J.M.; Pellegrin, J.L.; Rees, J.R.

    1981-02-01

    The PEP Storage Ring has been equipped with a wide band beam feedback system capable of damping the vertical and horizontal motion of six bunches. The oscillation detection is done at a symmetry point on the Storage Ring and feedback is applied at the same location one orbital period later. The signal is synchronously gated and the system appears as twelve independent feedback loops, operating on the two coordinates of each of the six bunches. Two beam deflection electrodes are driven each by a low-Q push-pull amplifier which is tuned at the 72nd harmonic of the revolution frequency and suppressed-carrier modulation is generated by a sequence of the detected bunch oscillations. The design parameters are reviewed as well as the salient features of the hardware, and the impact of this system on the machine operation is evaluated in the light of experimental results

  13. Quality-factor amplification in piezoelectric MEMS resonators applying an all-electrical feedback loop

    International Nuclear Information System (INIS)

    Manzaneque, T; Hernando-García, J; Sánchez-Rojas, J L; Ababneh, A; Schwarz, P; Seidel, H; Schmid, U

    2011-01-01

    An all-electrical velocity feedback control to enhance the quality factor of piezoelectric aluminium nitride (AlN)-based microcantilevers and microbridges was implemented. Two alternatives to obtain a velocity-proportional signal were demonstrated depending on the top electrode configuration. For a straightforward electrode design in one-port configuration (i.e. self-actuation and self-sensing), a velocity signal, proportional to the piezoelectric current, was used in the feedback loop by cancelling out the dielectric current electronically. For top electrodes allowing a two-port configuration (i.e. one for actuation and one for sensing), the piezoelectric current is directly extracted and its relationship with velocity is analysed taking the symmetry of the modal shape into account. Standard operational amplifier-based configurations for the feedback circuits were implemented on a printed circuit board. Quality factors were determined from the transient electrical response of the devices. Comparable results were obtained from the displacement spectrum applying a laser Doppler vibrometer. Quality factors as high as 2 × 10 5 , corresponding to an enhancement factor of about 200, were achieved in air for the lowest gain margin achievable before the circuit becomes unstable, making this kind of device more competitive for mass sensor applications due to enhanced spectral resolution.

  14. Electrochemical Deposition of CdTe Semiconductor Thin Films for Solar Cell Application Using Two-Electrode and Three-Electrode Configurations: A Comparative Study

    Directory of Open Access Journals (Sweden)

    O. K. Echendu

    2016-01-01

    Full Text Available Thin films of CdTe semiconductor were electrochemically deposited using two-electrode and three-electrode configurations in potentiostatic mode for comparison. Cadmium sulphate and tellurium dioxide were used as cadmium and tellurium sources, respectively. The layers obtained using both configurations exhibit similar structural, optical, and electrical properties with no specific dependence on any particular electrode configuration used. These results indicate that electrochemical deposition (electrodeposition of CdTe and semiconductors in general can equally be carried out using two-electrode system as well as the conventional three-electrode system without compromising the essential qualities of the materials produced. The results also highlight the advantages of the two-electrode configuration in process simplification, cost reduction, and removal of a possible impurity source in the growth system, especially as the reference electrode ages.

  15. Optofluidic third order distributed feedback dye laser

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2006-01-01

    which has a refractive index lower than that of the polymer. In combination with a third order DFB grating, formed by the array of nanofluidic channels, this yields a low threshold for lasing. The laser is straightforward to integrate on lab-on-a-chip microsystems where coherent, tunable light......This letter describes the design and operation of a polymer-based third order distributed feedback (DFB) microfluidic dye laser. The device relies on light confinement in a nanostructured polymer film where an array of nanofluidic channels is filled by capillary action with a liquid dye solution...

  16. Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback

    Energy Technology Data Exchange (ETDEWEB)

    Cronin-Golomb; Yariv

    1986-07-01

    A GaA1As semiconductor laser with feedback from a barium titanate photorefractive ring passive phase-conjugate mirror can be made to perform repeating or nonrepeating frequency scans over a 10-nm range toward either the blue or the red. The direction of scanning and whether the scans repeat may be controlled by adjusting the overlap of the interaction beams in the crystal. This overlap region may be adjusted so that the diode frequency spectrum, originally occupying about 10 longitudinal modes, scans and narrows as the conjugate signal builds up, coming to rest often in one, but sometimes two or three, longitudinal modes as a result of self-generated distributed-feedback effects. Also reported similar effects caused by feedback from the total-internal-reflection passive phase-conjugate mirror. The alignment-control mechanism of the ring mirror is, however, not available in this case.

  17. Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback

    Energy Technology Data Exchange (ETDEWEB)

    Cronin-Golomb, M.; Yariv, A.

    1986-07-01

    A GaAlAs semiconductor laser with feedback from a barium titanate photorefractive ring passive phase-conjugate mirror can be made to perform repeating or nonrepeating frequency scans over a 10-nm range toward either the blue or the red. The direction of scanning and whether the scans repeat may be controlled by adjusting the overlap of the interaction beams in the crystal. This overlap region may be adjusted so that the diode frequency spectrum, originally occupying about 10 longitudinal modes, scans and narrows as the conjugate signal builds up, coming to rest often in one, but sometimes two or three, longitudinal modes as a result of self-generated distributed-feedback effects. We also report similar effects caused by feedback from the total-internal-reflection passive phase-conjugate mirror. The alignment-control mechanism of the ring mirror is, however, not available in this case.

  18. Self-induced frequency scanning and distributed bragg reflection in semiconductor lasers with phase-conjugate feedback

    Science.gov (United States)

    Cronin-Golomb, Mark; Yariv, Amnon

    1986-07-01

    A GaAlAs semiconductor laser with feedback from a barium titanate photorefractive ring passive phase-conjugate mirror can be made to perform repeating or nonrepeating frequency scans over a 10-nm range toward either the blue or the red. The direction of scanning and whether the scans repeat may be controlled by adjusting the overlap of the interaction beams in the crystal. This overlap region may be adjusted so that the diode frequency spectrum, originally occupying about 10 longitudinal modes, scans and narrows as the conjugate signal builds up, coming to rest often in one, but sometimes two or three, longitudinal modes as a result of self-generated distributed-feedback effects. We also report similar effects caused by feedback from the total-internal-reflection passive phase-conjugate mirror. The alignment-control mechanism of the ring mirror is, however, not available in this case.

  19. Short structured feedback training is equivalent to a mechanical feedback device in two-rescuer BLS: a randomised simulation study.

    Science.gov (United States)

    Pavo, Noemi; Goliasch, Georg; Nierscher, Franz Josef; Stumpf, Dominik; Haugk, Moritz; Breckwoldt, Jan; Ruetzler, Kurt; Greif, Robert; Fischer, Henrik

    2016-05-13

    Resuscitation guidelines encourage the use of cardiopulmonary resuscitation (CPR) feedback devices implying better outcomes after sudden cardiac arrest. Whether effective continuous feedback could also be given verbally by a second rescuer ("human feedback") has not been investigated yet. We, therefore, compared the effect of human feedback to a CPR feedback device. In an open, prospective, randomised, controlled trial, we compared CPR performance of three groups of medical students in a two-rescuer scenario. Group "sCPR" was taught standard BLS without continuous feedback, serving as control. Group "mfCPR" was taught BLS with mechanical audio-visual feedback (HeartStart MRx with Q-CPR-Technology™). Group "hfCPR" was taught standard BLS with human feedback. Afterwards, 326 medical students performed two-rescuer BLS on a manikin for 8 min. CPR quality parameters, such as "effective compression ratio" (ECR: compressions with correct hand position, depth and complete decompression multiplied by flow-time fraction), and other compression, ventilation and time-related parameters were assessed for all groups. ECR was comparable between the hfCPR and the mfCPR group (0.33 vs. 0.35, p = 0.435). The hfCPR group needed less time until starting chest compressions (2 vs. 8 s, p feedback or by using a mechanical audio-visual feedback device was similar. Further studies should investigate whether extended human feedback training could further increase CPR quality at comparable costs for training.

  20. Frequency Locking and Monitoring Based on Bi-directional Terahertz Radiation of a 3rd-Order Distributed Feedback Quantum Cascade Laser

    NARCIS (Netherlands)

    Van Marrewijk, N.; Mirzaei, B.; Hayton, D.; Gao, J.R.; Kao, T.Y.; Hu, Q.; Reno, J.L.

    2015-01-01

    We have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency

  1. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Darghouth, Naïm R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer

  2. On the application of frequency selective common mode feedback for multifrequency EIT.

    Science.gov (United States)

    Langlois, Peter J; Wu, Yu; Bayford, Richard H; Demosthenous, Andreas

    2015-06-01

    Common mode voltages are frequently a problem in electrical impedance tomography (EIT) and other bioimpedance applications. To reduce their amplitude common mode feedback is employed. Formalised analyses of both current and voltage feedback is presented in this paper for current drives. Common mode effects due to imbalances caused by the current drives, the electrode connections to the body load and the introduction of the body impedance to ground are considered. Frequency selective narrowband common mode feedback previously proposed to provide feedback stability is examined. As a step towards multifrequency applications the use of narrowband feedback is experimentally demonstrated for two simultaneous current drives. Measured results using standard available components show a reduction of 62 dB for current feedback and 31 dB for voltage feedback. Frequencies ranged from 50 kHz to 1 MHz.

  3. In situ distributed diagnostics of flowable electrode systems: resolving spatial and temporal limitations.

    Science.gov (United States)

    Dennison, C R; Gogotsi, Y; Kumbur, E C

    2014-09-14

    In this study, we have developed an in situ distributed diagnostics tool to investigate spatial and temporal effects in electrochemical systems based on flowable electrodes. Specifically, an experimental approach was developed that enables spatially-resolved voltage measurements to be obtained in situ, in real-time. To extract additional data from these distributed measurements, an experimentally-parameterized equivalent circuit model with a new 'flow capacitor' circuit element was developed to predict the distributions of various system parameters during operation. As a case study, this approach was applied to investigate the behavior of the suspension electrodes used in an electrochemical flow capacitor under flowing and static conditions. The volumetric capacitance is reduced from 15.6 F ml(-1) to 1.1 F ml(-1) under flowing conditions. Results indicate that the majority of the charging in suspension electrodes occurs within ∼750 μm of the current collectors during flow, which gives rise to significant state-of-charge gradients across the cell, as well as underutilization of the available active material. The underlying cause of this observation is attributed to the relatively high electrical resistance of the slurry coupled with a stratified charging regime and insufficient residence time. The observations highlight the need to develop more conductive slurries and to design cells with reduced charge transport lengths.

  4. Suppression of resistive wall instabilities with distributed, independently controlled, active feedback coils

    International Nuclear Information System (INIS)

    Cates, C.; Shilov, M.; Mauel, M. E.; Navratil, G. A.; Maurer, D.; Mukherjee, S.; Nadle, D.; Bialek, J.; Boozer, A.

    2000-01-01

    External kink instabilities are suppressed in a tokamak experiment by either (1) energizing a distributed array of independently controlled active feedback coils mounted outside a segmented resistive wall or (2) inserting a second segmented wall having much higher electrical conductivity. When the active feedback coils are off and the highly conducting wall is withdrawn, kink instabilities excited by plasma current gradients grow at a rate comparable to the magnetic diffusion rate of the resistive wall. (c) 2000 American Institute of Physics

  5. Multisensor Distributed Track Fusion AlgorithmBased on Strong Tracking Filter and Feedback Integration1)

    Institute of Scientific and Technical Information of China (English)

    YANGGuo-Sheng; WENCheng-Lin; TANMin

    2004-01-01

    A new multisensor distributed track fusion algorithm is put forward based on combiningthe feedback integration with the strong tracking Kalman filter. Firstly, an effective tracking gateis constructed by taking the intersection of the tracking gates formed before and after feedback.Secondly, on the basis of the constructed effective tracking gate, probabilistic data association andstrong tracking Kalman filter are combined to form the new multisensor distributed track fusionalgorithm. At last, simulation is performed on the original algorithm and the algorithm presented.

  6. Output Feedback Distributed Containment Control for High-Order Nonlinear Multiagent Systems.

    Science.gov (United States)

    Li, Yafeng; Hua, Changchun; Wu, Shuangshuang; Guan, Xinping

    2017-01-31

    In this paper, we study the problem of output feedback distributed containment control for a class of high-order nonlinear multiagent systems under a fixed undirected graph and a fixed directed graph, respectively. Only the output signals of the systems can be measured. The novel reduced order dynamic gain observer is constructed to estimate the unmeasured state variables of the system with the less conservative condition on nonlinear terms than traditional Lipschitz one. Via the backstepping method, output feedback distributed nonlinear controllers for the followers are designed. By means of the novel first virtual controllers, we separate the estimated state variables of different agents from each other. Consequently, the designed controllers show independence on the estimated state variables of neighbors except outputs information, and the dynamics of each agent can be greatly different, which make the design method have a wider class of applications. Finally, a numerical simulation is presented to illustrate the effectiveness of the proposed method.

  7. Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dingke, E-mail: dingke.zhang@gmail.com, E-mail: shijianchen@gmail.com [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Chen, Shijian, E-mail: dingke.zhang@gmail.com, E-mail: shijianchen@gmail.com; Huang, Yingzhou; Zhang, Zhen [School of Physics, Chongqing University, Chongqing 401331 (China); Wang, Yanping; Ma, Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-01-14

    Optical losses associated with the metallic contacts necessary for charge injection are an obstacle to the development of electrically pumped organic lasers. In this work, we show that it is possible to overcome these losses by introducing surface plasmons (SPs) in a distributed feedback laser to enhance the lasing emission. We perform a detailed study of the SPs influence on the lasing emission. We experimentally show that enhanced lasing emission has been successfully achieved in the presence of a metal electrode. The laser emission is strongly dependent on the thickness of Ag layer. By optimizing the thickness of Ag layer, surface-plasmon-enhanced lasing emission has been achieved with much reduced thresholds and higher intensity. When the thickness of the Ag layer increases to 50 nm, the device exhibits ten-fold emission intensity and a fifth of excitation threshold comparing with Ag-free one. The finite-difference time-domain (FDTD) results show that large field intensity is built at the 4-(dicyanomethylene)-2-i-propyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran:/poly(9-vinylcarbazole)Ag interface, which could lead to a strong coupling between lasing and SPs, and consequently a much enhanced laser emission at the photon energy of around 2.02 eV (615 nm). Our FDTD simulations gave an explanation of the effects of the SPs on lasing operation in the periodic structures. The use of SPs would lead to a new class of highly efficient solid-state laser sources and provide a new path to achieve electrically pumped organic lasers.

  8. Highly stable microwave carrier generation using a dual-frequency distributed feedback laser

    NARCIS (Netherlands)

    Khan, M.R.H.; Bernhardi, Edward; Marpaung, D.A.I.; Burla, M.; de Ridder, R.M.; Worhoff, Kerstin; Pollnau, Markus; Roeloffzen, C.G.H.

    2012-01-01

    Photonic generation of microwave carriers by using a dual-frequency distributed feedback waveguide laser in ytterbium-doped aluminum oxide is demonstrated. A highperformance optical frequency locked loop is implemented to stabilize the microwave carrier. This approach results in a microwave

  9. Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Wörhoff, Kerstin; de Ridder, René M; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped amorphous aluminum oxide on a silicon substrate is demonstrated. Real-time detection and accurate size measurement of single micro-particles with diameters

  10. Distributed-feedback dye laser for picosecond ultraviolet and visible spectroscopy

    International Nuclear Information System (INIS)

    Yaney, Perry P.; Kliner, Dahv A. V.; Schrader, Paul E.; Farrow, Roger L.

    2000-01-01

    We describe the design and operation of a tunable, picosecond laser system for use in time-resolved spectroscopic measurements in the visible and ultraviolet (UV) spectral region. The laser is designed for fine tuning and high wavelength stability. A Nd:YAG-pumped distributed-feedback dye laser (DFDL) generates pulses that are ∼100 ps in duration with a nearly transform-limited linewidth (∼5 GHz) at a 20 Hz repetition rate. The DFDL pulses are amplified in two bow-tie amplifiers, providing pulse energies of up to 3.0 mJ; the amplified pulses may be frequency doubled to the UV spectral region, providing up to 1.0 mJ. The DFDL wavelength is computer stabilized to within ±0.8 pm (±0.7 GHz, two standard deviations), allowing the wavelength to be stationed on a narrow atomic or molecular transition or permitting nearly continuous spectral scans. Application of the laser system to studies of OH energy transfer has been demonstrated; both laser-induced-fluorescence and degenerate-four-wave-mixing spectra have been recorded. (c) 2000 American Institute of Physics

  11. Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Jemangin, M H; Harun, S W

    2013-01-01

    A novel S-band multimode Brillouin–Raman random fiber laser based on distributed feedback of Rayleigh scattered light is demonstrated. It relies on a short length, 7.7 km long angle-cleaved dispersion compensating fiber in a mirror-less open cavity. Two 1425 nm laser diodes at a modest operating power amplify a Brillouin pump (BP) signal, which in turn generates a multi-wavelength laser output through the stimulated Brillouin scattering. Eleven Brillouin Stokes lines, spanning from 1515.15 to 1516.00 nm, were obtained at a Raman pump power of 361.66 mW. Out of these, five odd Brillouin Stokes lines were generated with a flat peak power of about 0 dBm. (letter)

  12. A review of invasive and non-invasive sensory feedback in upper limb prostheses.

    Science.gov (United States)

    Svensson, Pamela; Wijk, Ulrika; Björkman, Anders; Antfolk, Christian

    2017-06-01

    The constant challenge to restore sensory feedback in prosthetic hands has provided several research solutions, but virtually none has reached clinical fruition. A prosthetic hand with sensory feedback that closely imitates an intact hand and provides a natural feeling may induce the prosthetic hand to be included in the body image and also reinforces the control of the prosthesis. Areas covered: This review presents non-invasive sensory feedback systems such as mechanotactile, vibrotactile, electrotactile and combinational systems which combine the modalities; multi-haptic feedback. Invasive sensory feedback has been tried less, because of the inherent risk, but it has successfully shown to restore some afferent channels. In this review, invasive methods are also discussed, both extraneural and intraneural electrodes, such as cuff electrodes and transverse intrafascicular multichannel electrodes. The focus of the review is on non-invasive methods of providing sensory feedback to upper-limb amputees. Expert commentary: Invoking embodiment has shown to be of importance for the control of prosthesis and acceptance by the prosthetic wearers. It is a challenge to provide conscious feedback to cover the lost sensibility of a hand, not be overwhelming and confusing for the user, and to integrate technology within the constraint of a wearable prosthesis.

  13. The influence of electrode angle on the minimization of the aberration coefficients of the two electrodes electrostatic immersion lens

    International Nuclear Information System (INIS)

    Al-Khashab, M. A.; Ahmad, A. A.

    2012-01-01

    This paper deals with electron optical properties of a set asymmetrical electrostatic immersion lenses with two electrodes which have been designed using different angles (θ) of the outer lens electrodes as well as air gaps (S) between the electrodes of each lens. It was found that the angle of the outer electrode and the air gap have a clear effect on the electron optical performance of such lenses. In addition to that, it was noticed that the better electron optical properties occurred when the angle of the outer electrode equals (θ = O d egree) and the air gap equals (S = 11 mm). the results of the perferable design of the prsent work were compared with those in published papers in terms of the optical properties. It was found that results are in good agreement with each other. (authors).

  14. Plasmonic distributed feedback lasers at telecommunications wavelengths.

    Science.gov (United States)

    Marell, Milan J H; Smalbrugge, Barry; Geluk, Erik Jan; van Veldhoven, Peter J; Barcones, Beatrix; Koopmans, Bert; Nötzel, Richard; Smit, Meint K; Hill, Martin T

    2011-08-01

    We investigate electrically pumped, distributed feedback (DFB) lasers, based on gap-plasmon mode metallic waveguides. The waveguides have nano-scale widths below the diffraction limit and incorporate vertical groove Bragg gratings. These metallic Bragg gratings provide a broad bandwidth stop band (~500 nm) with grating coupling coefficients of over 5000/cm. A strong suppression of spontaneous emission occurs in these Bragg grating cavities, over the stop band frequencies. This strong suppression manifests itself in our experimental results as a near absence of spontaneous emission and significantly reduced lasing thresholds when compared to similar length Fabry-Pérot waveguide cavities. Furthermore, the reduced threshold pumping requirements permits us to show strong line narrowing and super linear light current curves for these plasmon mode devices even at room temperature.

  15. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees.

    Science.gov (United States)

    Tan, Daniel W; Schiefer, Matthew A; Keith, Michael W; Anderson, J Robert; Tyler, Dustin J

    2015-04-01

    Stability and selectivity are important when restoring long-term, functional sensory feedback in individuals with limb-loss. Our objective is to demonstrate a chronic, clinical neural stimulation system for providing selective sensory response in two upper-limb amputees. Multi-contact cuff electrodes were implanted in the median, ulnar, and radial nerves of the upper-limb. Nerve stimulation produced a selective sensory response on 19 of 20 contacts and 16 of 16 contacts in subjects 1 and 2, respectively. Stimulation elicited multiple, distinct percept areas on the phantom and residual limb. Consistent threshold, impedance, and percept areas have demonstrated that the neural interface is stable for the duration of this on-going, chronic study. We have achieved selective nerve response from multi-contact cuff electrodes by demonstrating characteristic percept areas and thresholds for each contact. Selective sensory response remains consistent in two upper-limb amputees for 1 and 2 years, the longest multi-contact sensory feedback system to date. Our approach demonstrates selectivity and stability can be achieved through an extraneural interface, which can provide sensory feedback to amputees.

  16. Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Kwon, Kyungjung; Park, Jung Ock; Yoo, Duck Young; Yi, Jung S.

    2009-01-01

    The ionomer content in electrode is one of the most important parameters for the high performance of fuel cells. The high temperature PEMFC based on phosphoric acid (PA)-doped polymer membrane with unhumidified reactant gases has a difficulty in controlling the liquid state PA ionomer content in electrode. To evaluate the PA content in electrode, the three techniques of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and acid-base titration (ABT) are carried out in situ or ex situ. The properties of membrane electrode assembly (MEA) such as electrochemical surface area (ESA), ohmic resistance, charge transfer resistance, double layer capacitance and the amount of PA in MEA components (anode, cathode and membrane) are extracted by each technique. Ex situ CV with the usage of dry gases has a limitation in assessing the reliable ESA of unhumidified PEMFC. While in situ EIS presents some informative values of resistance and capacitance for understanding the PA distribution in MEA, its sensitivity to the PA content in MEA components needs to be higher for detecting a subtle change in PA distribution. Ex situ ABT supplies a clear PA distribution in MEA at room temperature but does not seem to reflect the operating state well at high temperatures. However, it can be used as a detection tool for the loss of the initial acid content in membrane during a long-term MEA durability study.

  17. Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyungjung [Fuel Cell Group, Energy Lab, SAIT, Samsung Electronics Co., Ltd., San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-712 (Korea, Republic of)], E-mail: kfromberk@gmail.com; Park, Jung Ock; Yoo, Duck Young; Yi, Jung S. [Fuel Cell Group, Energy Lab, SAIT, Samsung Electronics Co., Ltd., San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-712 (Korea, Republic of)

    2009-11-01

    The ionomer content in electrode is one of the most important parameters for the high performance of fuel cells. The high temperature PEMFC based on phosphoric acid (PA)-doped polymer membrane with unhumidified reactant gases has a difficulty in controlling the liquid state PA ionomer content in electrode. To evaluate the PA content in electrode, the three techniques of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and acid-base titration (ABT) are carried out in situ or ex situ. The properties of membrane electrode assembly (MEA) such as electrochemical surface area (ESA), ohmic resistance, charge transfer resistance, double layer capacitance and the amount of PA in MEA components (anode, cathode and membrane) are extracted by each technique. Ex situ CV with the usage of dry gases has a limitation in assessing the reliable ESA of unhumidified PEMFC. While in situ EIS presents some informative values of resistance and capacitance for understanding the PA distribution in MEA, its sensitivity to the PA content in MEA components needs to be higher for detecting a subtle change in PA distribution. Ex situ ABT supplies a clear PA distribution in MEA at room temperature but does not seem to reflect the operating state well at high temperatures. However, it can be used as a detection tool for the loss of the initial acid content in membrane during a long-term MEA durability study.

  18. Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.

    Science.gov (United States)

    Li, Xianwei; Gao, Huijun

    2015-10-01

    Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.

  19. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    Science.gov (United States)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  20. Nanoimprinted distributed feedback dye laser sensor for real-time imaging of small molecule diffusion

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2014-01-01

    Label-free imaging is a promising tool for the study of biological processes such as cell adhesion and small molecule signaling processes. In order to image in two dimensions of space current solutions require motorized stages which results in low imaging frame rates. Here, a highly sensitive...... distributed feedback (DFB) dye laser sensor for real-time label-free imaging without any moving parts enabling a frame rate of 12 Hz is presented. The presence of molecules on the laser surface results in a wavelength shift which is used as sensor signal. The unique DFB laser structure comprises several areas...

  1. Factorization and the synthesis of optimal feedback gains for distributed parameter systems

    Science.gov (United States)

    Milman, Mark H.; Scheid, Robert E.

    1990-01-01

    An approach based on Volterra factorization leads to a new methodology for the analysis and synthesis of the optimal feedback gain in the finite-time linear quadratic control problem for distributed parameter systems. The approach circumvents the need for solving and analyzing Riccati equations and provides a more transparent connection between the system dynamics and the optimal gain. The general results are further extended and specialized for the case where the underlying state is characterized by autonomous differential-delay dynamics. Numerical examples are given to illustrate the second-order convergence rate that is derived for an approximation scheme for the optimal feedback gain in the differential-delay problem.

  2. Electro-chemical deposition of zinc oxide nanostructures by using two electrodes

    Directory of Open Access Journals (Sweden)

    B. A. Taleatu

    2011-09-01

    Full Text Available One of the most viable ways to grow nanostructures is electro deposition. However, most electrodeposited samples are obtained by three-electrode electrochemical cell. We successfully use a much simpler two-electrode cell to grow different ZnO nanostructures from common chemical reagents. Concentration, pH of the electrolytes and growth parameters like potentials at the electrodes, are tailored to allow fast growth without complexity. Morphology and surface roughness are investigated by Scanning Electron and Air Force Microscopy (SEM and AFM respectively, crystal structure by X-Ray Diffraction measurements (XRD and ZnO stoichiometry by core level photoemission spectroscopy (XPS.

  3. Perceptions of teachers' general and informational feedback and intrinsic motivation in physical education: two-year effects.

    Science.gov (United States)

    Koka, Andre; Hein, Vello

    2006-10-01

    Relative change or stability of perceived positive general feedback and perceived informational feedback and their influence on students' intrinsic motivation in physical education over two years were examined. 302 students, ages 11 to 15 years, responded to the Perception of Teacher's Feedback questionnaire. Two years later, these students filled out the questionnaire again, along with a modified version of the Sport Motivation Scale. Analysis showed that both types of perceived feedback exhibited moderate stability over the two years. Perceived positive general feedback demonstrated a significant direct effect on students' intrinsic motivation measured concurrently in physical education. Further, fixing to zero the effect of perceived positive general feedback on intrinsic motivation measured concurrently, an effect emerged over the two years.

  4. Critical electrode size in measurement of d33 coefficient of films via spatial distribution of piezoelectric displacement

    International Nuclear Information System (INIS)

    Wang Zhihong; Miao Jianmin

    2008-01-01

    Spatial distributions of piezoelectric displacement response across the top electrode have been used in this paper to measure the piezoelectric coefficient d 33 of films based on the converse piezoelectric effect. The technical details and features of a scanning laser Doppler vibrometer have been summarized and discussed for accurately obtaining the spatial displacement distributions. Three definitions, including the apparent, the effective and the constrained piezoelectric coefficient d 33 of films, have been clarified and used to better understand the fundamental phenomenon behind the measured displacement distributions. Finite element analysis reveals that both the apparent and the effective piezoelectric coefficients depend on the electrode radius of test capacitor as well as film thickness. However, there exists a critical electrode size for apparent piezoelectric coefficients and a critical test capacitor aspect ratio for effective piezoelectric coefficient. Beyond their respective critical values, both coefficients converge to the constrained piezoelectric coefficient irrespective of film thickness. The finding of the critical electric size makes it possible to consistently measure the constrained piezoelectric coefficient of films by using the spatial distributions of the piezoelectric displacement response and becomes the fundamental criterion of this measurement method

  5. Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Camel, J.; Maciejko, R.

    2002-01-01

    The problem of the linewidth degradation in systems using distributed-feedback lasers together with strained-layer multi-quantum-well semiconductor optical amplifiers (SOAs) is examined. A modified expression for the linewidth in the case of antireflection-coated SOA output facets is derived and ...

  6. Moving mesh finite element method for finite time extinction of distributed parameter systems with positive exponential feedback

    International Nuclear Information System (INIS)

    Garnadi, A.D.

    1997-01-01

    In the distributed parameter systems with exponential feedback, non-global existence of solution is not always exist. For some positive initial values, there exist finite time T such that the solution goes to infinity, i.e. finite time extinction or blow-up. Here is present a numerical solution using Moving Mesh Finite Element to solve the distributed parameter systems with exponential feedback close to blow-up time. The numerical behavior of the mesh close to the time of extinction is the prime interest in this study

  7. A diamond-based electrode for detection of neurochemicals in the human brain

    Directory of Open Access Journals (Sweden)

    Kevin E. Bennet

    2016-03-01

    Full Text Available Deep brain stimulation (DBS, a surgical technique to treat certain neurologic and psychiatric conditions, relies on pre-determined stimulation parameters in an open-loop configuration. The major advancement in DBS devices is a closed-loop system that uses neurophysiologic feedback to dynamically adjust stimulation frequency and amplitude. Stimulation-driven neurochemical release can be measured by fast-scan cyclic voltammetry (FSCV, but existing FSCV electrodes rely on carbon fiber, which degrades quickly during use and is therefore unsuitable for chronic neurochemical recording. To address this issue, we developed durable, synthetic boron-doped diamond-based electrodes capable of measuring neurochemical release in humans. Compared to carbon fiber electrodes, they were more than two orders-of-magnitude more physically-robust and demonstrated longevity in vitro without deterioration. Applied for the first time in humans, diamond electrode recordings from thalamic targets in patients (n=4 undergoing DBS for tremor produced signals consistent with adenosine release at a sensitivity comparable to carbon fiber electrodes.

  8. The characteristic of twin-electrode TIG coupling arc pressure

    International Nuclear Information System (INIS)

    Leng Xuesong; Zhang Guangjun; Wu Lin

    2006-01-01

    The coupling arc of twin-electrode TIG (T-TIG) is a particular kind of arc, which is achieved through the coupling of two arcs generated from two insulated electrodes in the same welding torch. It is therefore different from the single arc of conventional TIG in its physical characteristics. This paper studies the distribution of T-TIG coupling arc pressure, and analyses the influences of welding current, arc length, the distance between electrode tips and electrode shape upon arc pressure on the basis of experiment. It is expected that the T-TIG welding method can be applied in high efficiency welding according to its low arc pressure

  9. Novel UEP LT Coding Scheme with Feedback Based on Different Degree Distributions

    Directory of Open Access Journals (Sweden)

    Li Ya-Fang

    2016-01-01

    Full Text Available Traditional unequal error protection (UEP schemes have some limitations and problems, such as the poor UEP performance of high priority data and the seriously sacrifice of low priority data in decoding property. Based on the reasonable applications of different degree distributions in LT codes, this paper puts forward a novel UEP LT coding scheme with a simple feedback to compile these data packets separately. Simulation results show that the proposed scheme can effectively protect high priority data, and improve the transmission efficiency of low priority data from 2.9% to 22.3%. Furthermore, it is fairly suitable to apply this novel scheme to multicast and broadcast environments since only a simple feedback introduced.

  10. Feedback controlled dephasing and population relaxation in a two-level system

    International Nuclear Information System (INIS)

    Wang Jin

    2009-01-01

    This Letter presents the maximum achievable stability and purity that can be obtained in a two-level system with both dephasing and population relaxation processes by using homodyne-mediated feedback control. An analytic formula giving the optimal amplitudes of the driving and feedback for the steady-state is also presented. Experimental examples are used to show the importance of controlling the dephasing process.

  11. Single-mode biological distributed feedback lasers based on vitamin B2 doped gelatin

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Maier-Flaig, F.; Lemmer, U.

    Biological second-order distributed feedback (DFB) lasers are presented. Riboflavin (vitamin B2) doped gelatin as active material is spin-coated onto nanoimprinted polymer with low refractive index. DFB grating periods of 368 nm and 384 nm yield laser emission at 543 nm and 562 nm, respectively....

  12. Single-mode surface plasmon distributed feedback lasers.

    Science.gov (United States)

    Karami Keshmarzi, Elham; Tait, R Niall; Berini, Pierre

    2018-03-29

    Single-mode surface plasmon distributed feedback (DFB) lasers are realized in the near infrared using a two-dimensional non-uniform long-range surface plasmon polariton structure. The surface plasmon mode is excited onto a 20 nm-thick, 1 μm-wide metal stripe (Ag or Au) on a silica substrate, where the stripe is stepped in width periodically, forming a 1st order Bragg grating. Optical gain is provided by optically pumping a 450 nm-thick IR-140 doped PMMA layer as the top cladding, which covers the entire length of the Bragg grating, thus creating a DFB laser. Single-mode lasing peaks of very narrow linewidth were observed for Ag and Au DFBs near 882 nm at room temperature. The narrow linewidths are explained by the low spontaneous emission rate into the surface plasmon lasing mode as well as the high quality factor of the DFB structure. The lasing emission is exclusively TM polarized. Kinks in light-light curves accompanied by spectrum narrowing were observed, from which threshold pump power densities can be clearly identified (0.78 MW cm-2 and 1.04 MW cm-2 for Ag and Au DFB lasers, respectively). The Schawlow-Townes linewidth for our Ag and Au DFB lasers is estimated and very narrow linewidths are predicted for the lasers. The lasers are suitable as inexpensive, recyclable and highly coherent sources of surface plasmons, or for integration with other surface plasmon elements of similar structure.

  13. Multivariable Feedback Control of Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Rune Moen

    1982-07-01

    Full Text Available Multivariable feedback control has been adapted for optimal control of the spatial power distribution in nuclear reactor cores. Two design techniques, based on the theory of automatic control, were developed: the State Variable Feedback (SVF is an application of the linear optimal control theory, and the Multivariable Frequency Response (MFR is based on a generalization of the traditional frequency response approach to control system design.

  14. Radiofrequency ablation in the liver using two cooled-wet electrodes in the bipolar mode

    International Nuclear Information System (INIS)

    Han, Joon Koo; Lee, Jeong Min; Kim, Se Hyung; Lee, Jae Young; Park, Hee Sun; Eo, Hong; Choi, Byung Ihn

    2005-01-01

    The purpose of this study was to demonstrate the efficacy of bipolar radiofrequency ablation (RFA) using cooled-wet electrodes inducing coagulation in ex vivo bovine livers and in in vivo canine livers. In ex vivo experiments, 20 coagulations were created by monopolar (group A), and bipolar RFA (group B) using a 200 W generator (Valleylab) and one or two cooled-wet electrodes. In in vivo experiments, one coagulation was created by bipolar RFA in each of eight dogs via laparotomy. In ex vivo and in vivo experiments, RF was applied to one or two electrodes at 100 W for 10 min. The dimensions of the coagulations were compared in the two groups. In ex vivo experiments, the mean volumes of the coagulations produced in group B (54.0±16.5 cm 3 ) were greater than those produced in group A (33.9±12.7 cm 3 ) (P=0.007). In in vivo experiments, bipolar RFA produced a coagulation of 39.4±15.6 cm 3 without a major complication. The present study showed that a RF electrode system using two cooled-wet electrodes in the bipolar mode created larger coagulation volumes than the monopolar mode, and this system can be used to create large coagulation without major complications. (orig.)

  15. Non-fragile observer-based output feedback control for polytopic uncertain system under distributed model predictive control approach

    Science.gov (United States)

    Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun

    2017-07-01

    In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.

  16. Optimum Electrode Configurations for Two-Probe, Four-Probe and Multi-Probe Schemes in Electrical Resistance Tomography for Delamination Identification in Carbon Fiber Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Luis Waldo Escalona-Galvis

    2018-04-01

    Full Text Available Internal damage in Carbon Fiber Reinforced Polymer (CFRP composites modifies the internal electrical conductivity of the composite material. Electrical Resistance Tomography (ERT is a non-destructive evaluation (NDE technique that determines the extent of damage based on electrical conductivity changes. Implementation of ERT for damage identification in CFRP composites requires the optimal selection of the sensing sites for accurate results. This selection depends on the measuring scheme used. The present work uses an effective independence (EI measure for selecting the minimum set of measurements for ERT damage identification using three measuring schemes: two-probe, four-probe and multi-probe. The electrical potential field in two CFRP laminate layups with 14 electrodes is calculated using finite element analyses (FEA for a set of specified delamination damage cases. The measuring schemes consider the cases of 14 electrodes distributed on both sides and seven electrodes on only one side of the laminate for each layup. The effectiveness of EI reduction is demonstrated by comparing the inverse identification results of delamination cases for the full and the reduced sets using the measuring schemes and electrode sets. This work shows that the EI measure optimally reduces electrode and electrode combinations in ERT based damage identification for different measuring schemes.

  17. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...... are operated by filling the DFB laser resonator with a dye solution by capillary action and optical pumping with a frequency doubled Nd: YAG laser. The low reflection order of the DFB laser resonator yields low out-of-plane scattering losses as well as a large free spectral range (FSR), and low threshold...... fluences down to similar to 7 mu J/mm2 are observed. The large FSR facilitates wavelength tuning over the full gain spectrum of the chosen laser dye and we demonstrate 45 nm tunability using a single laser dye by changing the grating period and dye solution refractive index. The lasers are straight...

  18. Nanoimprinted distributed feedback lasers comprising TiO2 thin films

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron; Leung, Michael C.

    2013-01-01

    Design guidelines for optimizing the sensing performance of nanoimprinted second order distributed feedback dye lasers are presented. The guidelines are verified by experiments and simulations. The lasers, fabricated by UV-nanoimprint lithography into Pyrromethene doped Ormocomp thin films on glass......, have their sensor sensitivity enhanced by a factor of up to five via the evaporation of a titanium dioxide (TiO2) waveguiding layer. The influence of the TiO2 layer thickness on the device sensitivity is analyzed with a simple model that accurately predicts experimentally measured wavelength shifts...

  19. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    Science.gov (United States)

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2014-10-01

    Objective. Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. Approach. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide ‘tactile’ sensation to a non-human primate. Main result. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Significance. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  20. Mean Velocity Prediction Information Feedback Strategy in Two-Route Systems under ATIS

    Directory of Open Access Journals (Sweden)

    Jianqiang Wang

    2015-02-01

    Full Text Available Feedback contents of previous information feedback strategies in advanced traveler information systems are almost real-time traffic information. Compared with real-time information, prediction traffic information obtained by a reliable and effective prediction algorithm has many undisputable advantages. In prediction information environment, a traveler is prone to making a more rational route-choice. For these considerations, a mean velocity prediction information feedback strategy (MVPFS is presented. The approach adopts the autoregressive-integrated moving average model (ARIMA to forecast short-term traffic flow. Furthermore, prediction results of mean velocity are taken as feedback contents and displayed on a variable message sign to guide travelers' route-choice. Meanwhile, discrete choice model (Logit model is selected to imitate more appropriately travelers' route-choice behavior. In order to investigate the performance of MVPFS, a cellular automaton model with ARIMA is adopted to simulate a two-route scenario. The simulation shows that such innovative prediction feedback strategy is feasible and efficient. Even more importantly, this study demonstrates the excellence of prediction feedback ideology.

  1. Two Proximal Skin Electrodes — A Respiration Rate Body Sensor

    Directory of Open Access Journals (Sweden)

    Viktor Avbelj

    2012-10-01

    Full Text Available We propose a new body sensor for extracting the respiration rate based on the amplitude changes in the body surface potential differences between two proximal body electrodes. The sensor could be designed as a plaster-like reusable unit that can be easily fixed onto the surface of the body. It could be equipped either with a sufficiently large memory for storing the measured data or with a low-power radio system that can transmit the measured data to a gateway for further processing. We explore the influence of the sensor’s position on the quality of the extracted results using multi-channel ECG measurements and considering all the pairs of two neighboring electrodes as potential respiration-rate sensors. The analysis of the clinical measurements, which also include reference thermistor-based respiration signals, shows that the proposed approach is a viable option for monitoring the respiration frequency and for a rough classification of breathing types. The obtained results were evaluated on a wireless prototype of a respiration body sensor. We indicate the best positions for the respiration body sensor and prove that a single sensor for body surface potential difference on proximal skin electrodes can be used for combined measurements of respiratory and cardiac activities.

  2. Textile Electrodes for EEG Recording — A Pilot Study

    Directory of Open Access Journals (Sweden)

    Johan Löfhede

    2012-12-01

    Full Text Available The overall aim of our research is to develop a monitoring system for neonatal intensive care units. Long-term EEG monitoring in newborns require that the electrodes don’t harm the sensitive skin of the baby, an especially relevant feature for premature babies. Our approach to EEG monitoring is based on several electrodes distributed over the head of the baby, and since the weight of the head always will be on some of them, any type of hard electrode will inevitably cause a pressure-point that can irritate the skin. Therefore, we propose the use of soft conductive textiles as EEG electrodes, primarily for neonates, but also for other kinds of unobtrusive long-term monitoring. In this paper we have tested two types of textile electrodes on five healthy adults and compared them to standard high quality electrodes. The acquired signals were compared with respect to morphology, frequency distribution, spectral coherence, correlation and power line interference sensitivity, and the signals were found to be similar in most respects. The good measurement performance exhibited by the textile electrodes indicates that they are feasible candidates for EEG recording, opening the door for long-term EEG monitoring applications.

  3. Rateless feedback codes

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip

    2012-01-01

    This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....

  4. Automatic sleep stage classification using two facial electrodes.

    Science.gov (United States)

    Virkkala, Jussi; Velin, Riitta; Himanen, Sari-Leena; Värri, Alpo; Müller, Kiti; Hasan, Joel

    2008-01-01

    Standard sleep stage classification is based on visual analysis of central EEG, EOG and EMG signals. Automatic analysis with a reduced number of sensors has been studied as an easy alternative to the standard. In this study, a single-channel electro-oculography (EOG) algorithm was developed for separation of wakefulness, SREM, light sleep (S1, S2) and slow wave sleep (S3, S4). The algorithm was developed and tested with 296 subjects. Additional validation was performed on 16 subjects using a low weight single-channel Alive Monitor. In the validation study, subjects attached the disposable EOG electrodes themselves at home. In separating the four stages total agreement (and Cohen's Kappa) in the training data set was 74% (0.59), in the testing data set 73% (0.59) and in the validation data set 74% (0.59). Self-applicable electro-oculography with only two facial electrodes was found to provide reasonable sleep stage information.

  5. Distributed feedback interband cascade lasers with top grating and corrugated sidewalls

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Feng [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Stocker, Michael [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Pham, John [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Towner, Frederick [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Shen, Kun [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Wang, Jie [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA; Lascola, Kevin [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA

    2018-03-26

    Distributed feedback (DFB) interband cascade lasers (ICLs) with a 1st order top surface grating were designed and fabricated. Partially corrugated sidewalls were implemented to suppress high order lateral modes. The DFB ICLs have 4 mm long and 4.5 mu m wide ridge waveguides and are mounted epi-up on AlN submounts. We demonstrated a continuous-wave (CW) DFB ICL, from a first wafer which has a large detuning of the gain peak from the DFB wavelength, with a side mode suppression ratio of 30 dB. With proper matching of grating feedback and the gain peak wavelength for the second wafer, a DFB ICL was demonstrated with a maximum CW output power and a maximum wall plug efficiency reaching 42 mW and 2%, respectively, at 25 degrees C. The lasing wavelengths of both lasers are around 3.3 mu m at 25 degrees C. Published by AIP Publishing.

  6. Determining the platinum loading and distribution of industrial scale polymer electrolyte membrane fuel cell electrodes using low energy X-ray imaging

    DEFF Research Database (Denmark)

    Holst, T.; Vassiliev, Anton; Kerr, R.

    2014-01-01

    Low energy X-ray imaging (E <25 keV) is herein demonstrated to be a rapid, effective and non-destructive tool for the quantitative determination of the platinum loading and distribution over the entire geometric area of gas diffusion electrodes for polymer electrolyte membrane fuel cells. A linea...... of electrodes fabricated using an industrial spraying process. This technique proves to be an attractive option for the electrode performance study, the process optimization and quality control of electrode fabrication on an industrial scale....

  7. Weighted congestion coefficient feedback in intelligent transportation systems

    International Nuclear Information System (INIS)

    Dong Chuanfei; Ma Xu; Wang Binghong

    2010-01-01

    In traffic systems, a reasonable information feedback can improve road capacity. In this Letter, we study dynamics of traffic flow with real-time information. And the influence of a feedback strategy named Weighted Congestion Coefficient Feedback Strategy (WCCFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.

  8. Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics

    Science.gov (United States)

    Meng Yam, Kah; Guo, Na; Zhang, Chun

    2018-06-01

    Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu2Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu2Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu2Si–NiPc–Cu2Si junction is about three orders higher than that through graphene–NiPc–graphene. Detailed analysis shows that the surprisingly high conductivity of Cu2Si–NiPc–Cu2Si originates from the mixing of the Cu2Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu2Si may be an excellent candidate for electrode materials for future nanoscale devices.

  9. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  10. Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings

    Science.gov (United States)

    Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun

    2018-03-01

    Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.

  11. Distributed Intrusion Sensor Using DFB Laser with Optical Feedback and Saturable Absorber

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi

    2018-01-01

    Full Text Available Characteristics of a distributed intrusion sensor using a coherent DFB laser diode with an external optical feedback and saturable absorber were experimentally investigated. The stimulus at a location of 2 km using a PZT transducer placed the location of a simulated intruder in Φ-OTDR trace after averaging 32 times. Field trials demonstrated the detection of a vehicle and a pedestrian crossing above the sensing line and a loop in a burial depth of 50 cm. This distributed intrusion sensor using a coherent DFB laser diode as the light source had the advantages of a simple structure and intruder detection capability at the underground burial location.

  12. Electrostatic Spectrograph with a Wide Range of Simultaneously Recorded Energies Composed of Two Coaxial Electrodes with Closed End Faces and a Discrete Combined External Electrode

    Science.gov (United States)

    Fishkova, T. Ya.

    2018-01-01

    An optimal set of geometric and electrical parameters of a high-aperture electrostatic charged-particle spectrograph with a range of simultaneously recorded energies of E/ E min = 1-50 has been found by computer simulation, which is especially important for the energy analysis of charged particles during fast processes in various materials. The spectrograph consists of two coaxial electrodes with end faces closed by flat electrodes. The external electrode with a conical-cylindrical form is cut into parts with potentials that increase linearly, except for the last cylindrical part, which is electrically connected to the rear end electrode. The internal cylindrical electrode and the front end electrode are grounded. In the entire energy range, the system is sharply focused on the internal cylindrical electrode, which provides an energy resolution of no worse than 3 × 10-3.

  13. Mode Selection Rules for a Two-Delay System with Positive and Negative Feedback Loops

    Science.gov (United States)

    Takahashi, Kin'ya; Kobayashi, Taizo

    2018-04-01

    The mode selection rules for a two-delay system, which has negative feedback with a short delay time t1 and positive feedback with a long delay time t2, are studied numerically and theoretically. We find two types of mode selection rules depending on the strength of the negative feedback. When the strength of the negative feedback |α1| (α1 0), 2m + 1-th harmonic oscillation is well sustained in a neighborhood of t1/t2 = even/odd, i.e., relevant condition. In a neighborhood of the irrelevant condition given by t1/t2 = odd/even or t1/t2 = odd/odd, higher harmonic oscillations are observed. However, if |α1| is slightly less than α2, a different mode selection rule works, where the condition t1/t2 = odd/even is relevant and the conditions t1/t2 = odd/odd and t1/t2 = even/odd are irrelevant. These mode selection rules are different from the mode selection rule of the normal two-delay system with two positive feedback loops, where t1/t2 = odd/odd is relevant and the others are irrelevant. The two types of mode selection rules are induced by individually different mechanisms controlling the Hopf bifurcation, i.e., the Hopf bifurcation controlled by the "boosted bifurcation process" and by the "anomalous bifurcation process", which occur for |α1| below and above the threshold value αth, respectively.

  14. Development of a Two-dimensional Thermohydraulic Hot Pool Model and ITS Effects on Reactivity Feedback during a UTOP in Liquid Metal Reactors

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Jeong, Hae Yong; Cho, Chung Ho; Kwon, Young Min; Ha, Kwi Seok; Chang, Won Pyo; Suk, Soo Dong; Hahn, Do Hee

    2009-01-01

    The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect

  15. Feedback-related negativity in children with two subtypes of attention deficit hyperactivity disorder.

    Directory of Open Access Journals (Sweden)

    Jingbo Gong

    Full Text Available The current model of ADHD suggests abnormal reward and punishment sensitivity, although differences in ADHD subgroups are unclear. This study aimed to investigate the effect of feedback valence (reward or punishment and punishment magnitude (small or large on Feedback-Related Negativity (FRN and Late Positive Potential (LPP in two subtypes of ADHD (ADHD-C and ADHD-I compared to typically developing children (TD during a children's gambling task.Children with ADHD-C (n = 16, children with ADHD-I (n = 15 and typically developing children (n = 15 performed a children's gambling task under three feedback conditions: large losses, small losses and gains. FRN and LPP components in brain potentials were recorded and analyzed.In TD children and children with ADHD-C, large loss feedback evoked more negative FRN amplitudes than small loss feedback, suggesting that brain sensitivity to the punishment and its magnitude is not impaired in children with ADHD-C. In contrast to these two groups, the FRN effect was absent in children with ADHD-I. The LPP amplitudes were larger in children with ADHD-C in comparison with those with ADHD-I, regardless of feedback valence and magnitude.Children with ADHD-C exhibit intact brain sensitivity to punishment similar to TD children. In contrast, children with ADHD-I are significantly impaired in neural sensitivity to the feedback stimuli and in particular, to punishment, compared to TD and ADHD-C children. Thus, FRN, rather than LPP, is a reliable index of the difference in reward and punishment sensitivity across different ADHD-subcategories.

  16. Single-frequency thulium-doped distributed-feedback fibre laser

    DEFF Research Database (Denmark)

    Agger, Søren; Povlsen, Jørn Hedegaard; Varming, Poul

    2004-01-01

    We have successfully demonstrated a single-frequency distributed-feedback (DFB) thulium-doped silica fiber laser emitting at a wavelength of 1735 nm. The laser cavity is less than 5 cm long and is formed by intracore UV-written Bragg gratings with a phase shift. The laser is pumped at 790 nm from...... a Ti:sapphire laser and has a threshold pump power of 59 mW. The laser has a maximum output power of 1 mW in a singlefrequency, single-polarization radiation mode and is tunable over a few nanometers. To the best of the authors’ knowledge, this is the first report of a single-frequency DFB fiber laser...... that uses thulium as the amplifying medium. The lasing wavelength is the longest demonstrated with DFB fiber lasers and yet is among the shortest obtained for thulium-doped silica fiber lasers....

  17. Wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback

    International Nuclear Information System (INIS)

    Osborne, S; Heinricht, P; Brandonisio, N; Amann, A; O’Brien, S

    2012-01-01

    The wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback are presented. These devices incorporate slotted regions etched into the laser ridge waveguide for tailoring the output spectrum. Experimental measurements are presented demonstrating that optical injection in one or both modes of these devices can induce wavelength bistability. Measured switching dynamics with modulated optical injection are shown to be in excellent agreement with numerical simulations based on a simple rate equation model. We also demonstrate experimentally that time-delayed optical feedback can induce wavelength bistability for short external cavity lengths. Numerical simulations indicate that this two-colour optical feedback system can provide fast optical memory functionality based on injected optical pulses without the need for an external holding beam. (paper)

  18. Feedback optimal control of dynamic stochastic two-machine flowshop with a finite buffer

    Directory of Open Access Journals (Sweden)

    Thang Diep

    2010-06-01

    Full Text Available This paper examines the optimization of production involving a tandem two-machine system producing a single part type, with each machine being subject to random breakdowns and repairs. An analytical model is formulated with a view to solving an optimal stochastic production problem of the system with machines having up-downtime non-exponential distributions. The model developed is obtained by using a dynamic programming approach and a semi-Markov process. The control problem aims to find the production rates needed by the machines to meet the demand rate, through a minimization of the inventory/shortage cost. Using the Bellman principle, the optimality conditions obtained satisfy the Hamilton-Jacobi-Bellman equation, which depends on time and system states, and ultimately, leads to a feedback control. Consequently, the new model enables us to improve the coefficient of variation (CVup/down to be less than one while it is equal to one in Markov model. Heuristics methods are used to involve the problem because of the difficulty of the analytical model using several states, and to show what control law should be used in each system state (i.e., including Kanban, feedback and CONWIP control. Numerical methods are used to solve the optimality conditions and to show how a machine should produce.

  19. Interface Prostheses With Classifier-Feedback-Based User Training.

    Science.gov (United States)

    Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai

    2017-11-01

    It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well

  20. Mitigation of Cognitive Bias with a Serious Game: Two Experiments Testing Feedback Timing and Source

    Science.gov (United States)

    Dunbar, Norah E.; Jensen, Matthew L.; Miller, Claude H.; Bessarabova, Elena; Lee, Yu-Hao; Wilson, Scott N.; Elizondo, Javier; Adame, Bradley J.; Valacich, Joseph; Straub, Sara; Burgoon, Judee K.; Lane, Brianna; Piercy, Cameron W.; Wilson, David; King, Shawn; Vincent, Cindy; Schuetzler, Ryan M.

    2017-01-01

    One of the benefits of using digital games for education is that games can provide feedback for learners to assess their situation and correct their mistakes. We conducted two studies to examine the effectiveness of different feedback design (timing, duration, repeats, and feedback source) in a serious game designed to teach learners about…

  1. Feedback effect on flute dynamics in a mirror machine

    International Nuclear Information System (INIS)

    Be’ery, I; Seemann, O

    2015-01-01

    The effect of active feedback on flute instability is experimentally studied in a table-top mirror machine. Changing the plasma conditions from mirror-loss dominated to flute-loss dominated, it is demonstrated that while the feedback has no effect on plasma density in the first case, it increases the plasma density by up to 50% in the second case. Measurements of the dependence of instability amplitude on feedback gain show that large gain stimulates high frequency perturbations. The period of these perturbations corresponds to the inherent delay of immersed electrode feedback. Variation of the spatial phase between the input and output of the phase reveals a large asymmetry between positive and negative phase shifts. A simplified model is introduced to explain how a negative phase shift causes positive feedback between the external feedback and the centrifugally driven rotation. (paper)

  2. Acoustic Emission Source Location Using a Distributed Feedback Fiber Laser Rosette

    Directory of Open Access Journals (Sweden)

    Fang Li

    2013-10-01

    Full Text Available This paper proposes an approach for acoustic emission (AE source localization in a large marble stone using distributed feedback (DFB fiber lasers. The aim of this study is to detect damage in structures such as those found in civil applications. The directional sensitivity of DFB fiber laser is investigated by calculating location coefficient using a method of digital signal analysis. In this, autocorrelation is used to extract the location coefficient from the periodic AE signal and wavelet packet energy is calculated to get the location coefficient of a burst AE source. Normalization is processed to eliminate the influence of distance and intensity of AE source. Then a new location algorithm based on the location coefficient is presented and tested to determine the location of AE source using a Delta (Δ DFB fiber laser rosette configuration. The advantage of the proposed algorithm over the traditional methods based on fiber Bragg Grating (FBG include the capability of: having higher strain resolution for AE detection and taking into account two different types of AE source for location.

  3. Large gap plasma display cell with auxiliary electrodes: macro-cell experiments and two-dimensional modelling

    International Nuclear Information System (INIS)

    Ouyang, J T; Callegari, Th; Caillier, B; Boeuf, J-P

    2003-01-01

    In this paper we use a two-dimensional fluid model and a 'macroscopic' PDP cell to investigate the possibility of using large gap configurations with auxiliary electrodes to improve the efficiency of PDP discharge cells. The large gap allows operation in a transient positive column regime where energy is more efficiently deposited into xenon excitation, while the auxiliary electrodes are used to keep reasonable values of the operating voltage. Two types of auxiliary electrode configurations (floating and powered) are considered. The discharge characteristics and the discharge efficiency in exciting xenon are studied with simulations and by measuring the intensity of infrared emission from xenon and visible emission from neon in a macroscopic PDP cell. The results show that an efficient positive column regime can be achieved at reasonably low operating voltages when the auxiliary electrode configuration is carefully designed

  4. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Chamousis, RL; Chang, LL; Watterson, WJ; Montgomery, RD; Taylor, RP; Moule, AJ; Shaheen, SE; Ilan, B; van de Lagemaat, J; Osterloh, FE

    2014-08-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm x 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flat electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm(-2) are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10-20 mW cm(-2)) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. The low IPCE values (0.3-0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal-polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.

  5. Modeling and experimental verification of laser self-mixing interference phenomenon with the structure of two-external-cavity feedback

    Science.gov (United States)

    Chen, Peng; Liu, Yuwei; Gao, Bingkun; Jiang, Chunlei

    2018-03-01

    A semiconductor laser employed with two-external-cavity feedback structure for laser self-mixing interference (SMI) phenomenon is investigated and analyzed. The SMI model with two directions based on F-P cavity is deduced, and numerical simulation and experimental verification were conducted. Experimental results show that the SMI with the structure of two-external-cavity feedback under weak light feedback is similar to the sum of two SMIs.

  6. Update on Peripheral Nerve Electrodes for Closed-Loop Neuroprosthetics

    Directory of Open Access Journals (Sweden)

    Emil H. Rijnbeek

    2018-05-01

    Full Text Available In this paper various types of electrodes for stimulation and recording activity of peripheral nerves for the control of neuroprosthetic limbs are reviewed. First, an overview of interface devices for (feedback- controlled movement of a prosthetic device is given, after which the focus is on peripheral nervous system (PNS electrodes. Important electrode properties, i.e., longevity and spatial resolution, are defined based upon the usability for neuroprostheses. The cuff electrode, longitudinal intrafascicular electrodes (LIFE, transverse intrafascicular multichannel electrode (TIME, Utah slanted electrode array (USEA, and the regenerative electrode are discussed and assessed on their longevity and spatial resolution. The cuff electrode seems to be a promising electrode for the control of neuroprostheses in the near future, because it shows the best longevity and good spatial resolution and it has been used on human subjects in multiple studies. The other electrodes may be promising in the future, but further research on their longevity and spatial resolution is needed. A more quantitatively uniform study protocol used for all electrodes would allow for a proper comparison of recording and stimulation performance. For example, the discussed electrodes could be compared in a large in vivo study, using one uniform comparison protocol.

  7. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Webb, M.J.; Senior, C.A.; Sexton, D.M.H.; Ingram, W.J.; Williams, K.D.; Ringer, M.A. [Hadley Centre for Climate Prediction and Research, Met Office, Exeter (United Kingdom); McAvaney, B.J.; Colman, R. [Bureau of Meteorology Research Centre (BMRC), Melbourne (Australia); Soden, B.J. [University of Miami, Rosenstiel School for Marine and Atmospheric Science, Miami, FL (United States); Gudgel, R.; Knutson, T. [Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ (United States); Emori, S.; Ogura, T. [National Institute for Environmental Studies (NIES), Tsukuba (Japan); Tsushima, Y. [Japan Agency for Marine-Earth Science and Technology, Frontier Research Center for Global Change (FRCGC), Kanagawa (Japan); Andronova, N. [University of Michigan, Department of Atmospheric, Oceanic and Space Sciences, Ann Arbor, MI (United States); Li, B. [University of Illinois at Urbana-Champaign (UIUC), Department of Atmospheric Sciences, Urbana, IL (United States); Musat, I.; Bony, S. [Institut Pierre Simon Laplace (IPSL), Paris (France); Taylor, K.E. [Program for Climate Model Diagnosis and Intercomparison (PCMDI), Livermore, CA (United States)

    2006-07-15

    Global and local feedback analysis techniques have been applied to two ensembles of mixed layer equilibrium CO{sub 2} doubling climate change experiments, from the CFMIP (Cloud Feedback Model Intercomparison Project) and QUMP (Quantifying Uncertainty in Model Predictions) projects. Neither of these new ensembles shows evidence of a statistically significant change in the ensemble mean or variance in global mean climate sensitivity when compared with the results from the mixed layer models quoted in the Third Assessment Report of the IPCC. Global mean feedback analysis of these two ensembles confirms the large contribution made by inter-model differences in cloud feedbacks to those in climate sensitivity in earlier studies; net cloud feedbacks are responsible for 66% of the inter-model variance in the total feedback in the CFMIP ensemble and 85% in the QUMP ensemble. The ensemble mean global feedback components are all statistically indistinguishable between the two ensembles, except for the clear-sky shortwave feedback which is stronger in the CFMIP ensemble. While ensemble variances of the shortwave cloud feedback and both clear-sky feedback terms are larger in CFMIP, there is considerable overlap in the cloud feedback ranges; QUMP spans 80% or more of the CFMIP ranges in longwave and shortwave cloud feedback. We introduce a local cloud feedback classification system which distinguishes different types of cloud feedbacks on the basis of the relative strengths of their longwave and shortwave components, and interpret these in terms of responses of different cloud types diagnosed by the International Satellite Cloud Climatology Project simulator. In the CFMIP ensemble, areas where low-top cloud changes constitute the largest cloud response are responsible for 59% of the contribution from cloud feedback to the variance in the total feedback. A similar figure is found for the QUMP ensemble. Areas of positive low cloud feedback (associated with reductions in low level

  8. Effects of feedback reliability on feedback-related brain activity: A feedback valuation account.

    Science.gov (United States)

    Ernst, Benjamin; Steinhauser, Marco

    2018-04-06

    Adaptive decision making relies on learning from feedback. Because feedback sometimes can be misleading, optimal learning requires that knowledge about the feedback's reliability be utilized to adjust feedback processing. Although previous research has shown that feedback reliability indeed influences feedback processing, the underlying mechanisms through which this is accomplished remain unclear. Here we propose that feedback processing is adjusted by the adaptive, top-down valuation of feedback. We assume that unreliable feedback is devalued relative to reliable feedback, thus reducing the reward prediction errors that underlie feedback-related brain activity and learning. A crucial prediction of this account is that the effects of feedback reliability are susceptible to contrast effects. That is, the effects of feedback reliability should be enhanced when both reliable and unreliable feedback are experienced within the same context, as compared to when only one level of feedback reliability is experienced. To evaluate this prediction, we measured the event-related potentials elicited by feedback in two experiments in which feedback reliability was varied either within or between blocks. We found that the fronto-central valence effect, a correlate of reward prediction errors during reinforcement learning, was reduced for unreliable feedback. But this result was obtained only when feedback reliability was varied within blocks, thus indicating a contrast effect. This suggests that the adaptive valuation of feedback is one mechanism underlying the effects of feedback reliability on feedback processing.

  9. The Effect of Two Types of Corrective Feedback on EFL Learners’ Writing Skill

    Directory of Open Access Journals (Sweden)

    Sina Soltanabadi Farshi

    2015-02-01

    Full Text Available The purpose of this study was to compare the effects of two types of corrective feedback on EFL learners’ writing skill. Thirty five advanced learners in three groups participated in this study. Structures of written texts were taught in all three classes during fourteen sessions of treatment; and each session, a related topic was given and the learners were asked to write about it. In class A, the learners had to deliver their assignments to the teacher in classroom; then the teacher wrote the corrective notes on their papers and gave their papers back the next session. In class B, students had to write their assignments on their electronic instruments, and after that send written tasks via email to the teacher, and he also sent the corrective comments on their errors through email. In class C, as control group, no corrective feedback was given to learners’ errors in their written tasks. Moreover, in class C, learners were free to deliver their writings whether in class or by email. The obtained results showed both methods to be effective since the scores of both experimental groups were significantly higher than the scores of control group, but electronic feedback was more effective and profitable than traditional type; because scores of the learners in group B (Electronic feedback were significantly higher than class C (Traditional feedback. Keywords: writing skill, corrective feedback, electronic feedback, traditional feedback

  10. Broader energy distribution of CO adsorbed at polycrystalline Pt electrode in comparison with that at Pt(111) electrode in H_2SO_4 solution confirmed by potential dependent IR/visible double resonance sum frequency generation spectroscopy

    International Nuclear Information System (INIS)

    Yang, Shuo; Noguchi, Hidenori; Uosaki, Kohei

    2017-01-01

    Highlights: • Electrochemical SFG spectroscopy is an efficient in situ probe of electronic structure at electrochemical interface. • Electrooxidation performances of CO adsorbed on polycrystalline Pt and Pt(111) electrodes were compared. • The enhanced SFG signal of CO on Pt electrodes was observed due to a vibrational-electronic double resonance effect. • The broader energy distribution of 5sa state of CO on polycrystalline Pt than on Pt(111) is proved by SFG results. - Abstract: Electrochemical cyclic voltammetry and potential dependent double resonance sum frequency generation (DR-SFG) spectroscopy were performed on CO adsorbed on polycrystalline Pt and Pt(111) electrodes in H_2SO_4 solution to examine the effect of substrate on the electronic structure of CO. The dependence of SFG intensity on potential and visible energy for atop CO band was observed on both polycrystalline and single crystalline Pt electrodes. Enhancement of the SFG intensity was determined to be a direct result of a surface electronic resonance of the visible/SF light with the electronic transition from Fermi level of Pt to the 5σ_a anti-bonding state of adsorbed CO, in agreement with previous results. Interestingly, when compared to the Pt(111) electrode, the distribution width of the intensity enhancement region on polycrystalline Pt is broader than on Pt(111). This suggests that the energy distribution of the 5σ_a state of CO on polycrystalline Pt surface is broader than that on Pt(111) due to the complex surface structure of the polycrystalline Pt electrode.

  11. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte

    KAUST Repository

    Rakhi, R.B.

    2016-10-16

    VO2 is a low band-gap semiconductor with relatively high conductivity among transition metal oxides, which makes it an interesting material for supercapacitor electrode applications. The performance of VO2 as supercapacitor electrode in organic electrolytes has never been reported before. Herein, two-dimensional nanosheets of VO2 are prepared by the simultaneous solution reduction and exfoliation from bulk V2O5 powder by hydrothermal method. A specific capacitance of 405 Fg−1 is achieved for VO2 based supercapacitor in an organic electrolyte, in three electrode configuration. The symmetric capacitor based on VO2 nanosheet electrodes and the liquid organic electrolyte exhibits an energy density of 46 Wh kg−1 at a power density of 1.4 kW kg−1 at a constant current density of 1 Ag−1. Furthermore, flexible solid-state supercapacitors are fabricated using same electrode material and Alumina-silica based gel electrolyte. The solid-state device delivers a specific capacitance of 145 Fg−1 and a device capacitance of 36 Fg−1 at a discharge current density of 1 Ag−1. Series combination of three solid state capacitors is capable of lighting up a red LED for more than 1 minute.

  12. The measurement of gas–liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe

    International Nuclear Information System (INIS)

    Zhai, Lu-Sheng; Bian, Peng; Han, Yun-Feng; Gao, Zhong-Ke; Jin, Ning-De

    2016-01-01

    We design a dual-sensor multi-electrode conductance probe to measure the flow parameters of gas–liquid two-phase flows in a vertical pipe with an inner diameter of 20 mm. The designed conductance probe consists of a phase volume fraction sensor (PVFS) and a cross-correlation velocity sensor (CCVS). Through inserting an insulated flow deflector in the central part of the pipe, the gas–liquid two-phase flows are forced to pass through an annual space. The multiple electrodes of the PVFS and the CCVS are flush-mounted on the inside of the pipe wall and the outside of the flow deflector, respectively. The geometry dimension of the PVFS is optimized based on the distribution characteristics of the sensor sensitivity field. In the flow loop test of vertical upward gas–liquid two-phase flows, the output signals from the dual-sensor multi-electrode conductance probe are collected by a data acquisition device from the National Instruments (NI) Corporation. The information transferring characteristics of local flow structures in the annular space are investigated using the transfer entropy theory. Additionally, the kinematic wave velocity is measured based on the drift velocity model to investigate the propagation behavior of the stable kinematic wave in the annular space. Finally, according to the motion characteristics of the gas–liquid two-phase flows, the drift velocity model based on the flow patterns is constructed to measure the individual phase flow rate with higher accuracy. (paper)

  13. Corresponding Angle Feedback in an innovative weighted transportation system

    International Nuclear Information System (INIS)

    Dong Chuanfei; Ma Xu

    2010-01-01

    The optimal information feedback has a significant effect on many socioeconomic systems like stock market and traffic systems aiming to make full use of resources. In this Letter, we study dynamics of traffic flow with real-time information. The influence of a feedback strategy named Corresponding Angle Feedback Strategy (CAFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.

  14. Simultaneous noncontact topography and electrochemical imaging by SECM/SICM featuring ion current feedback regulation.

    Science.gov (United States)

    Takahashi, Yasufumi; Shevchuk, Andrew I; Novak, Pavel; Murakami, Yumi; Shiku, Hitoshi; Korchev, Yuri E; Matsue, Tomokazu

    2010-07-28

    We described a hybrid system of scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM) with ion current feedback nanopositioning control for simultaneous imaging of noncontact topography and spatial distribution of electrochemical species. A nanopipette/nanoring electrode probe provided submicrometer resolution of the electrochemical measurement on surfaces with complex topology. The SECM/SICM probe had an aperture radius of 220 nm. The inner and outer radii of the SECM Au nanoring electrode were 330 and 550 nm, respectively. Characterization of the probe was performed with scanning electron microscopy (SEM), cyclic voltammetry (CV), and approach curve measurements. SECM/SICM was applied to simultaneous imaging of topography and electrochemical responses of enzymes (horse radish peroxidase (HRP) and glucose oxidase (GOD)) and single live cells (A6 cells, superior cervical ganglion (SCG) cells, and cardiac myocytes). The measurements revealed the distribution of activity of the enzyme spots on uneven surfaces with submicrometer resolution. SECM/SICM acquired high resolution topographic images of cells together with the map of electrochemical signals. This combined technique was also applied to the evaluation of the permeation property of electroactive species through cellular membranes.

  15. Single-user MIMO versus multi-user MIMO in distributed antenna systems with limited feedback

    Science.gov (United States)

    Schwarz, Stefan; Heath, Robert W.; Rupp, Markus

    2013-12-01

    This article investigates the performance of cellular networks employing distributed antennas in addition to the central antennas of the base station. Distributed antennas are likely to be implemented using remote radio units, which is enabled by a low latency and high bandwidth dedicated link to the base station. This facilitates coherent transmission from potentially all available antennas at the same time. Such distributed antenna system (DAS) is an effective way to deal with path loss and large-scale fading in cellular systems. DAS can apply precoding across multiple transmission points to implement single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO) transmission. The throughput performance of various SU-MIMO and MU-MIMO transmission strategies is investigated in this article, employing a Long-Term evolution (LTE) standard compliant simulation framework. The previously theoretically established cell-capacity improvement of MU-MIMO in comparison to SU-MIMO in DASs is confirmed under the practical constraints imposed by the LTE standard, even under the assumption of imperfect channel state information (CSI) at the base station. Because practical systems will use quantized feedback, the performance of different CSI feedback algorithms for DASs is investigated. It is shown that significant gains in the CSI quantization accuracy and in the throughput of especially MU-MIMO systems can be achieved with relatively simple quantization codebook constructions that exploit the available temporal correlation and channel gain differences.

  16. Two-Layer Feedback Neural Networks with Associative Memories

    International Nuclear Information System (INIS)

    Gui-Kun, Wu; Hong, Zhao

    2008-01-01

    We construct a two-layer feedback neural network by a Monte Carlo based algorithm to store memories as fixed-point attractors or as limit-cycle attractors. Special attention is focused on comparing the dynamics of the network with limit-cycle attractors and with fixed-point attractors. It is found that the former has better retrieval property than the latter. Particularly, spurious memories may be suppressed completely when the memories are stored as a long-limit cycle. Potential application of limit-cycle-attractor networks is discussed briefly. (general)

  17. Comparison of proximally versus distally placed spatially distributed sequential stimulation electrodes in a dynamic knee extension task

    Directory of Open Access Journals (Sweden)

    Marco Laubacher

    2016-06-01

    Full Text Available Spatially distributed sequential stimulation (SDSS has demonstrated substantial power output and fatigue benefits compared to single electrode stimulation (SES in the application of functional electrical stimulation (FES. This asymmetric electrode setup brings new possibilities but also new questions since precise placement of the electrodes is one critical factor for good muscle activation. The aim of this study was to compare the power output, fatigue and activation properties of proximally versus distally placed SDSS electrodes in an isokinetic knee extension task simulating knee movement during recumbent cycling. M. vastus lateralis and medialis of seven able-bodied subjects were stimulated with rectangular bi-phasic pulses of constant amplitude of 40 mA and at an SDSS frequency of 35 Hz for 6 min on both legs with both setups (i.e. n=14. Torque was measured during knee-extension movement by a dynamometer at an angular velocity of 110 deg/s. Mean power, peak power and activation time were calculated and compared for the initial and final stimulation phases, together with an overall fatigue index. Power output values (Pmean, Ppeak were scaled to a standardised reference input pulse width of 100 μs (Pmean,s, Ppeak,s. The initial evaluation phase showed no significant differences between the two setups for all outcome measures. Ppeak and Ppeak,s were both significantly higher in the final phase for the distal setup (25.4 ± 8.1 W vs. 28.2 ± 6.2 W, p=0.0062 and 34.8 ± 9.5 W vs. 38.9 ± 6.7 W, p=0.021, respectively. With distal SDSS, there was modest evidence of higher Pmean and Pmean,s (p=0.071, p=0.14, respectively but of longer activation time (p=0.096. The rate of fatigue was similar for both setups. For practical FES applications, distal placement of the SDSS electrodes is preferable.

  18. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  19. CFD analysis of a symmetrical planar SOFC with heterogeneous electrode properties

    International Nuclear Information System (INIS)

    Shi Junxiang; Xue Xingjian

    2010-01-01

    A comprehensive 2-D CFD model is developed to investigate bi-electrode supported cell (BSC) performance. The model takes into account the coupled complex transport phenomena of mass/heat transfer, charge (electron/ion) transport, and electrochemical reactions. The uniqueness of this modeling work is that heterogeneous electrode properties are taken into account, which includes not only linear functionally graded porosity distribution but also various nonlinear distributions in a general sense according to porous electrode features in BSC design. Extensive numerical analysis is performed to elucidate various heterogeneous porous electrode property effects on cell performance. Results indicate that cell performance is strongly dependent on porous microstructure distributions of electrodes. Among the various porosity distributions, inverse parabolic porosity distribution shows promising effects on cell performance. For a given porosity distribution of electrodes, cell performance is also dependent on operating conditions, typically fuel/gas pressure losses across the electrodes. The mathematical model developed in this paper can be utilized for high performance BSC SOFC design and optimization.

  20. The resistive instability damper system for the first stage of the UNK accelerator with IIR-filter in feedback

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.; Korenev, I.L.; Yudin, L.A.

    1991-01-01

    The resistive instability damper system for the coasting beam in the accelerator is discussed. The system for each of two directions of beam transverse coherent oscillations includes two pairs of pick-up electrodes and damping kickers connected by delayed negative feedback. It has been shown that damping regime can be achieved for one and the same pick-up and kicker location independently on imQ. 8 refs.; 4 figs

  1. Spectral Characteristic Based on Fabry—Pérot Laser Diode with Two-Stage Optical Feedback

    International Nuclear Information System (INIS)

    Wu Jian-Wei; Nakarmi Bikash

    2013-01-01

    An optical device, consisting of a multi-mode Fabry—Pérot laser diode (MMFP-LD) with two-stage optical feedback, is proposed and experimentally demonstrated. The results show that the single-mode output with side-mode suppression ratio (SMSR) of ∼21.7 dB is attained by using the first-stage feedback. By using the second-stage feedback, the SMSR of single-mode operation could be increased to ∼28.5 dB while injection feedback power of −29 dBm is introduced into the laser diode. In the case of up to −29 dBm feedback power, the outcome SMSR is rapidly decayed to a very low level so that an obvious multi-mode operation in the output spectrum could be achieved at the feedback power level of −15.5 dBm. Thus, a transition between single- and multi-mode operations could be flexibly controlled by adjusting the injected power in the second-stage feedback system. Additionally, in the case of injection locking, the outcome SMSR and output power at the locked wavelength are as high as ∼50 dB and ∼5.8 dBm, respectively

  2. Overview Electrotactile Feedback for Enhancing Human Computer Interface

    Science.gov (United States)

    Pamungkas, Daniel S.; Caesarendra, Wahyu

    2018-04-01

    To achieve effective interaction between a human and a computing device or machine, adequate feedback from the computing device or machine is required. Recently, haptic feedback is increasingly being utilised to improve the interactivity of the Human Computer Interface (HCI). Most existing haptic feedback enhancements aim at producing forces or vibrations to enrich the user’s interactive experience. However, these force and/or vibration actuated haptic feedback systems can be bulky and uncomfortable to wear and only capable of delivering a limited amount of information to the user which can limit both their effectiveness and the applications they can be applied to. To address this deficiency, electrotactile feedback is used. This involves delivering haptic sensations to the user by electrically stimulating nerves in the skin via electrodes placed on the surface of the skin. This paper presents a review and explores the capability of electrotactile feedback for HCI applications. In addition, a description of the sensory receptors within the skin for sensing tactile stimulus and electric currents alsoseveral factors which influenced electric signal to transmit to the brain via human skinare explained.

  3. Automatic feedback to promote safe walking and speech loudness control in persons with multiple disabilities: two single-case studies.

    Science.gov (United States)

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Green, Vanessa A; Alberti, Gloria; Boccasini, Adele; Smaldone, Angela; Oliva, Doretta; Bosco, Andrea

    2014-08-01

    Assessing automatic feedback technologies to promote safe travel and speech loudness control in two men with multiple disabilities, respectively. The men were involved in two single-case studies. In Study I, the technology involved a microprocessor, two photocells, and a verbal feedback device. The man received verbal alerting/feedback when the photocells spotted an obstacle in front of him. In Study II, the technology involved a sound-detecting unit connected to a throat and an airborne microphone, and to a vibration device. Vibration occurred when the man's speech loudness exceeded a preset level. The man included in Study I succeeded in using the automatic feedback in substitution of caregivers' alerting/feedback for safe travel. The man of Study II used the automatic feedback to successfully reduce his speech loudness. Automatic feedback can be highly effective in helping persons with multiple disabilities improve their travel and speech performance.

  4. Electrode Processes in Porous Electrodes.

    Science.gov (United States)

    1985-11-26

    F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution of...al. (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As

  5. Enhancing the Performance of Distributed Feedback Dye Lasers and Plasmonic V-grooves for Lab-on-a-chip Systems

    DEFF Research Database (Denmark)

    Smith, Cameron

    The ability to perform laboratory operations in compact systems is not only advantageous for the development of diagnostics tools and their production, but also provides unique opportunities to explore the natural world on the micro- and nanoscale. To this end, we focus on two optical schemes: 1...... to the advantages they bring to lab-on-a-chip systems.......) polymer-based distributed feedback (DFB) dye lasers, and 2) plasmonic V-grooves. Regarding the first, DFB dye lasers are well suited to serve as compact, minimal analyte volume and highly sensitive refractive index sensors, where changes occurring in an analyte result in readily measurable shifts...

  6. Detecting vegetation-precipitation feedbacks in mid-Holocene North Africa from two climate models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Notaro, Michael; Liu, Zhengyu; Gallimore, Robert; Levis, Samuel; Kutzbach, John E.

    2008-03-31

    Using two climate-vegetation model simulations from the Fast Ocean Atmosphere Model (FOAM) and the Community Climate System Model (CCSM, version 2), we investigate vegetation-precipitation feedbacks across North Africa during the mid-Holocene. From mid-Holocene snapshot runs of FOAM and CCSM2, we detect a negative feedback at the annual timescale with our statistical analysis. Using the Monte- Carlo bootstrap method, the annual negative feedback is further confirmed to be significant in both simulations. Additional analysis shows that this negative interaction is partially caused by the competition between evaporation and transpiration in North African grasslands. Furthermore, we find the feedbacks decrease with increasing timescales, and change signs from positive to negative at increasing timescales in FOAM. The proposed mechanism for this sign switch is associated with the different persistent timescales of upper and lower soil water contents, and their interactions with vegetation and atmospheric precipitation.

  7. Output feedback control of heat transport mechanisms in parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2016-08-05

    This paper presents an output feedback control for distributed parabolic solar collectors. The controller aims at forcing the outlet temperature to track a desired reference in order to manage the produced heat despite the external disturbances. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a constant velocity, which allows to control the transient behavior and the response time of the closed loop. The designed controller depends only on the accessible measured variables which makes it easy for real time implementation and useful for industrial plants. Simulation results show the efficiency of the reference tracking closed loop under different working conditions.

  8. Resistivity tomography using line electrode; Sendenryugen wo tsukatta hiteiko tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y [Dia Consultants Company, Tokyo (Japan)

    1996-10-01

    Resistivity tomography (RT) using line electrode was studied. Although line electrode is available even for RT, in casing line electrode, only one kind of electrode data is obtained. The calculation method of potential and sensitivity distributions based on line electrode is not yet established. Since various data in various measurement arrangements are required for analysis of RT, the new measurement method was devised which measures resistivities while successively changing the tip depth of line electrode. Until now, although potential has been calculated under the assumption that outflow current per unit length of line electrode is uniform, this assumption is incorrect. The new potential distribution calculation method was thus proposed. Sensitivity distribution calculation for inverse analysis is also described. RT using line electrode could precisely obtain deep information which couldn`t be obtained only by measurement along the surface measuring line. Although RT is poorer in accuracy than the previous point electrode method, it will be probably improved by 3-electrode arrangement. RT is also useful in the case difficult to apply point electrode method. 3 refs., 10 figs.

  9. Stable Single-Mode Operation of Distributed Feedback Quantum Cascade Laser by Optimized Reflectivity Facet Coatings

    Science.gov (United States)

    Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2018-02-01

    In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.

  10. Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback

    International Nuclear Information System (INIS)

    Buldu, J M; Trull, J; Torrent, M C; GarcIa-Ojalvo, J; Mirasso, Claudio R

    2002-01-01

    The dynamics of power distribution between longitudinal modes of a multimode semiconductor laser subjected to external optical feedback is experimentally analysed in the low-frequency fluctuation regime. Power dropouts in the total light intensity are invariably accompanied by sudden activations of several longitudinal modes. These activations are seen not to be simultaneous to the dropouts, but to occur after them. The phenomenon is statistically analysed in a systematic way, and the corresponding delay is estimated. (letter to the editor)

  11. Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Buldu, J M [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Trull, J [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Torrent, M C [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); GarcIa-Ojalvo, J [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Mirasso, Claudio R [Departament de FIsica, Universitat de les Illes Balears, E-07071 Palma de Mallorca (Spain)

    2002-02-01

    The dynamics of power distribution between longitudinal modes of a multimode semiconductor laser subjected to external optical feedback is experimentally analysed in the low-frequency fluctuation regime. Power dropouts in the total light intensity are invariably accompanied by sudden activations of several longitudinal modes. These activations are seen not to be simultaneous to the dropouts, but to occur after them. The phenomenon is statistically analysed in a systematic way, and the corresponding delay is estimated. (letter to the editor)

  12. Plasma flow between equipotential electrodes in an ion current transport mode

    International Nuclear Information System (INIS)

    Zimin, A.M.; Morozov, A.I.

    1995-01-01

    The paper deals with calculation of parameters in accelerator channel and near electrodes, when realizing ion current transport mode. Model on the basis of two-dimensional two-liquid nondissipative magnetohydrodynamics was formulated, and its solution for isomagnetic flow in smooth channel approximation was conducted. Change of parameters near anode surface was considered in detail. It is shown that regular joining of flow with equipotential electrodes without large near-electrode jumps is performed during ion current transport. Current distribution along accelerator length was calculated when determining ion intake through anode surface due to inertial-drift emission. It is shown that this mechanism can provide rather high current density in ion current transport. 10 refs.; 6 figs

  13. Image-guided Electro-assisted Drug Delivery: Comparison Between Two Types of Electrodes

    Directory of Open Access Journals (Sweden)

    Biliana Nikolova

    2015-06-01

    Full Text Available Electroporation-based cancer treatment techniques are currently after active investigations in the field of drug delivery, optimization of electrical parameters and elucidation of the exact mechanisms at a molecular level. The present study is designed to investigate the exact in vivo redistribution and persistence of nanoparticles in the tumor tissue of colon-cancer grafted mice after electroporation with two different kinds of electrodes. The aim of the study is to avoid artifacts during electroporation due to accumulation of nanoparticles in the surrounding non-cancer tissues. The isolated electrodes are appropriate for the treatment of 3-dimensional tumors and have a large potential in this field.

  14. Automatic detection of ECG electrode misplacement: a tale of two algorithms

    International Nuclear Information System (INIS)

    Xia, Henian; Garcia, Gabriel A; Zhao, Xiaopeng

    2012-01-01

    Artifacts in an electrocardiogram (ECG) due to electrode misplacement can lead to wrong diagnoses. Various computer methods have been developed for automatic detection of electrode misplacement. Here we reviewed and compared the performance of two algorithms with the highest accuracies on several databases from PhysioNet. These algorithms were implemented into four models. For clean ECG records with clearly distinguishable waves, the best model produced excellent accuracies (> = 98.4%) for all misplacements except the LA/LL interchange (87.4%). However, the accuracies were significantly lower for records with noise and arrhythmias. Moreover, when the algorithms were tested on a database that was independent from the training database, the accuracies may be poor. For the worst scenario, the best accuracies for different types of misplacements ranged from 36.1% to 78.4%. A large number of ECGs of various qualities and pathological conditions are collected every day. To improve the quality of health care, the results of this paper call for more robust and accurate algorithms for automatic detection of electrode misplacement, which should be developed and tested using a database of extensive ECG records. (paper)

  15. The kinetics of porous insertion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Atlung, S; West, K [British Columbia Univ., Vancouver (Canada)

    1989-05-01

    The principles of porous electrodes are discussed as well as the discharge of the insertion compound, the working potential, transport in the electrolyte, the time dependence of the electrolyte concentration, and modeling of the porous electrode. The simulation of a TiS2 porous electrode and the composite insertion electrode are considered as well. The influence of electrode thickness and porosity in a typical porous TiS2 electrode is revealed. It is shown that the use of insertion compounds as battery electrodes is limited by the requirement that the inserted ion must be distributed in the interior of the insertion compound particle. 15 refs.

  16. Supercapacitor Electrode Materials from Highly Porous Carbon Nanofibers with Tailored Pore Distributions

    Science.gov (United States)

    Chathurika Abeykoon, Nimali

    Environmental and human health risks associated with the traditional methods of energy production (e.g., oil and gas) and intermittency and uncertainty of renewable sources (e.g., solar and wind) have led to exploring effective and alternative energy sources to meet the growing energy demands. Electricity based on energy storage devices are the most promising solutions for realization of these objectives. Among the energy storage devices, electrochemical double layer capacitors (EDLCs) or supercapacitors have become an attractive research interest due to their outstanding performance, especially high power densities, long cycle life and rapid charge and discharge times, which enables them to utilize in many applications including consumer electronics and transportation, where high power is needed. However, low energy density of supercapacitors is a major obstacle to compete with the commercially existing high energy density energy storage device such as batteries. The fabrication of advanced electrodes materials with very high surface area from novel precursors and utilization of electrolytes with higher operating voltages are essential to enhance energy density of supercapacitors. In this work, carbon nanofibers (CNFs) from different polymer precursors with new fabrication techniques are explored to develop highly porous carbon with tailored pore distributions to match with employed ionic liquid electrolytes (which possess high working voltages), to realize high energy storage capability. Novel electrode materials derived from electrospun immiscible polymer blends and synthesized copolymers and terpolymers were described. Pore distributions of CNFs were tailored by varying the composition of polymers in immiscible blends or varying the monomer ratios of copolymer or terpolymers. Chapter 1 gives the detailed introduction of supercapacitors including history and storage principle of EDLCs, fabrication of carbon nanofiber based electrodes and electrolytes employed

  17. Investigation of Imbalanced Activated Carbon Electrode Supercapacitors

    Directory of Open Access Journals (Sweden)

    Tieshi He

    2015-01-01

    Full Text Available Imbalanced supercapacitor was constructed by using various ratio of activated carbon (AC of positive to negative electrode. The electrochemical behavior of imbalanced supercapacitor was investigated using 1.0 M spiro-(1,1′-bipyrrolidinium tetrafluoroborate electrolyte in propylene carbonate. The results showed that there are some factors that influenced the imbalanced supercapacitor with different AC ratio of positive to negative electrode, the utilization of AC, electrode potential distribution, and life cycle. The imbalanced supercapacitor with an AC weight ratio of 80 : 120 of positive to negative electrode has an average potential distribution in each electrode, and it revealed the best electrochemical performance: specific capacitor was 39.6 F·g−1, while the charge-discharge efficiency was 97.2% after 2000 life cycle tests.

  18. [Optimization of electrode configuration in soil electrokinetic remediation].

    Science.gov (United States)

    Liu, Fang; Fu, Rong-Bing; Xu, Zhen

    2015-02-01

    Electric field distributions of several different electrode configurations in non-uniform electric field were simulated using MATLAB software, and the electrokinetic remediation device was constructed according to the best electrode configuration. The changes of soil pH and heavy metal residues in different parts of the device during the electrokinetic remediation were also studied. The results showed that, in terms of the effectiveness of the electric field strength, the square (1-D-1) and hexagonal (2-D-3) were the optimal electrode configurations for one-dimensional and two-dimensional respectively and the changes of soil pH, the removal of heavy metals and the distribution of electric field were closely related to one another. An acidic migration band, which could prevent premature precipitation of heavy metals to a certain extent and promote electrokinetic removal of heavy metals, was formed gradually along with the remediation in the whole hexagon device when the cathodic pH was controlled during the remediation of the four cationic metallic ions, Cd2+, Ni2+, Pb2+ and Cu2+. After 480-hour remediation, the total removals of Cd, Ni, Pb and Cu were 86.6%, 86.2%, 67.7% and 73.0%, respectively. Remediation duration and replacement frequency of the electrodes could be adjusted according to the repair target.

  19. Current distribution effects in AC impedance spectroscopy of electroceramic point contact and thin film model electrodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben

    2010-01-01

    the primary current distribution to the DC current distribution restricted to the Three-Phase-Boundary (TPB) zone introduces an error in the determination of the reaction resistance, Rreac = Z(freq. → 0) − Z(freq. → ∞). The error is estimated for different width of the effective TPB zone and a rule of thumb...... regarding its significance is provided. The associated characteristic impedance spectrum shape change is simulated and its origin discussed. Furthermore, the characteristic shape of impedance spectra of thin electroceramic film electrodes with lateral ohmic resistance is studied as a function...

  20. The Effect of Corrective Feedback on Performance in Basic Cognitive Tasks: An Analysis of RT Components

    Directory of Open Access Journals (Sweden)

    Carmen Moret-Tatay

    2016-12-01

    Full Text Available The current work examines the effect of trial-by-trial feedback about correct and error responding on performance in two basic cognitive tasks: a classic Stroop task (n = 40 and a color-word matching task ('n' = 30. Standard measures of both RT and accuracy were examined in addition to measures obtained from fitting the ex-Gaussian distributional model to the correct RTs. For both tasks, RTs were faster in blocks of trials with feedback than in blocks without feedback, but this difference was not significant. On the other hand, with respect to the distributional analyses, providing feedback served to significantly reduce the size of the tails of the RT distributions. Such results suggest that, for conditions in which accuracy is fairly high, the effect of corrective feedback might either be to reduce the tendency to double-check before responding or to decrease the amount of attentional lapsing.

  1. Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng, E-mail: rchsh@dlut.edu.cn [School of Physics and Optoelectronic Technology, Key laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116023 (China)

    2015-04-15

    Asymmetric surface dielectric barrier discharge (SDBD) plasma actuators have been intensely studied for a number of years due to their potential applications for aerodynamic control. In this paper, four types of actuators with different configurations of exposed electrode are proposed. The SDBD actuators investigated are driven by dual-power supply, referred to as a fixed AC high voltage and an adjustable DC bias. The effects of the electrode structures on the dielectric surface potential distribution, the electric wind velocity, and the mean thrust production are studied, and the dominative factors of airflow acceleration behavior are revealed. The results have shown that the actions of the SDBD actuator are mainly dependent on the geometry of the exposed electrode. Besides, the surface potential distribution can effectively affect the airflow acceleration behavior. With the application of an appropriate additional DC bias, the surface potential will be modified. As a result, the performance of the electric wind produced by a single SDBD can be significantly improved. In addition, the work also illustrates that the actuators with more negative surface potential present better mechanical performance.

  2. Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages

    International Nuclear Information System (INIS)

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng

    2015-01-01

    Asymmetric surface dielectric barrier discharge (SDBD) plasma actuators have been intensely studied for a number of years due to their potential applications for aerodynamic control. In this paper, four types of actuators with different configurations of exposed electrode are proposed. The SDBD actuators investigated are driven by dual-power supply, referred to as a fixed AC high voltage and an adjustable DC bias. The effects of the electrode structures on the dielectric surface potential distribution, the electric wind velocity, and the mean thrust production are studied, and the dominative factors of airflow acceleration behavior are revealed. The results have shown that the actions of the SDBD actuator are mainly dependent on the geometry of the exposed electrode. Besides, the surface potential distribution can effectively affect the airflow acceleration behavior. With the application of an appropriate additional DC bias, the surface potential will be modified. As a result, the performance of the electric wind produced by a single SDBD can be significantly improved. In addition, the work also illustrates that the actuators with more negative surface potential present better mechanical performance

  3. Picoseconds pulse generation and pulse width determination processes of a distributed feedback dye laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2004-08-01

    A mathematical model has been developed to describe the dynamic emission of Nd-glass, distributed feedback dye laser (DFDL), and periodical grating temperature. The suggested model allows the investigation of the time behavior of Nd-glass laser and DFDL pulsed. Moreover, it allows studying the effect of the laser input parameters of Nd-glass laser on the spectral characteristics of the output DFDL pulses such as pulse width, delay time, and time separation

  4. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks

    Science.gov (United States)

    Faria, Teresa; Oliveira, José J.

    This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.

  5. Carbon Nanofiber Electrode Array for Neurochemical Monitoring

    Science.gov (United States)

    Koehne, Jessica E.

    2017-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report using vertically aligned CNF as neurotransmitter recording electrodes for application in a smart deep brain stimulation (DBS) device. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  6. High voltage distributions in RPCs

    International Nuclear Information System (INIS)

    Inoue, Y.; Muranishi, Y.; Nakamura, M.; Nakano, E.; Takahashi, T.; Teramoto, Y.

    1996-01-01

    High voltage distributions on the inner surfaces of RPCs electrodes were calculated by using a two-dimensional resistor network model. The calculated result shows that the surface resistivity of the electrodes should be high, compared to their volume resistivity, to get a uniform high voltage over the surface. Our model predicts that the rate capabilities of RPCs should be inversely proportional to the thickness of the electrodes if the ratio of surface-to-volume resistivity is low. (orig.)

  7. MATLAB simulation of a Distributed Feedback (DFB) laser with chirp effects

    Science.gov (United States)

    Espe, Burt L.

    1994-12-01

    A model of a distributed feedback (DFB) laser was implemented in MATLAB and SIMULINK. Using the laser rate equation, the model was simulated to obtain general characteristics of the chirp of the lasers frequency. The simulations were controlled by using different drive current waveforms, based on various bit patterns, data rates, and drive current values (threshold current and the extinction ratio). Once created, the laser drive current was passed to the SIMULINK DFB laser model. The output of a simulation provided frequency chirp, laser power emitted, photon density, and carrier density data. Two sets of simulations were conducted. The first set of simulations focused on the data rates and bit patterns. From these simulations it was determined that the transition from a ZERO bit to a ONE bit caused the greatest frequency excursions. Also, as the data rate increases the maximum frequency excursion increases. Finally, the first set of simulations revealed that the predictability of the chirp decreases as the data rate increases and as the complexity of the bit pattern increases. The second set of simulations examined the effect of the extinction ratio on frequency chirp. By plotting the maximum frequency excursion against its respective extinction ratio, it was determined that in some cases the maximum frequency excursions in a system could be minimized.

  8. Statistical model of a gas diffusion electrode. III. Photomicrograph study

    Energy Technology Data Exchange (ETDEWEB)

    Winsel, A W

    1965-12-01

    A linear section through a gas diffusion electrode produces a certain distribution function of sinews with the pores. From this distribution function some qualities of the pore structure are derived, and an automatic device to determine the distribution function is described. With a statistical model of a gas diffusion electrode the behavior of a DSK electrode is discussed and compared with earlier measurements of the flow resistance of this material.

  9. Li distribution characterization in Li-ion batteries positive electrodes containing LixNi0.8Co0.15Al0.05O2 secondary particles (0.75 ⩽ x ⩽ 1.0)

    International Nuclear Information System (INIS)

    Mima, K.; Gonzalez-Arrabal, R.; Azuma, H.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Sawada, H.; Fujita, K.; Kato, Y.; Perlado, J.M.; Nakai, S.

    2012-01-01

    The elemental distribution of as-received (non-charged) and charged Li-ion battery positive electrodes containing Li x Ni 0.8 Co 0.15 Al 0.05 O 2 (0.75 ⩽ x ⩽ 1.0) microparticles as active material is characterized by combining μ-PIXE and μ-PIGE techniques. PIGE measurements evidence that the Li distribution is inhomogeneous (existence of Li-rich and Li-depleted regions) in as-received electrodes corresponding with the distribution of secondary particles but it is homogeneous within the studied individual secondary micro-particles. The dependence of the Li distribution on electrode thickness and on charging conditions is characterized by measuring the Li distribution maps in specifically fabricated cross-sectional samples. These data show that decreasing the electrode thickness down to 35 μm and charging the batteries at slow rate give rise to more homogeneous Li depth profiles.

  10. Stability and oscillation of two coupled Duffing equations with time delay state feedback

    International Nuclear Information System (INIS)

    El-Bassiouny, A F

    2006-01-01

    This paper presents an analytical study of the simultaneous principal parametric resonances of two coupled Duffing equations with time delay state feedback. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. The method of multiple scales is used to determine a set of ordinary differential equations governing the modulation of the amplitudes and phases of the two modes. The first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the frequency-response curves. We analyse the effect of time delay and the other different parameters on these oscillations. The stability of the fixed points is examined by using the variational method. Numerical solutions are carried out and graphical representations of the results are presented and discussed. Increasing in the time delay τ given decreasing and increasing in the regions of definition and stability respectively and the first mode has decreased magnitudes. The multivalued solutions disappear when decreasing the coefficients of cubic nonlinearities of the second mode α 3 and the detuning parameter σ 2 respectively. Both modes shift to the left for increasing linear feedback gain v 1 and the coefficient of parametric excitation f 1 respectively

  11. Structure of gold monoatomic wires connected to two electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zoubkoff, Remi [Centre de Recherche en Matiere Condensee et Nanosciences, CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9 (France)]. E-mail: zoubkoff@crmcn.univ-mrs.fr; Vega, L. de la [Departamento de Fisica de la Materia Condensada C-V, Facultad de Ciencias, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Martin-Rodero, A. [Departamento de Fisica de la Materia Condensada C-V, Facultad de Ciencias, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Levy Yeyati, A. [Departamento de Fisica de la Materia Condensada C-V, Facultad de Ciencias, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Saul, Andres [Centre de Recherche en Matiere Condensee et Nanosciences, CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9 (France)

    2007-09-01

    In this work, we present calculations concerning the stability of infinite monoatomic Au wires and finite Au wires between electrodes. For the systems with the electrodes, that we represent by FCC slabs with (0 0 1) surfaces, the total energy calculations have been performed with a spd non-orthogonal tight-binding Hamiltonian. For the infinite wires, the calculations were also compared to semi-empirical and first principle ones. For the infinite wires and small enough inter-atomic distances, we find that a zig-zag structure is most stable than the linear one, in agreement with previous calculations. For the system between electrodes, one gets an almost concave or a symmetric broken edges structure depending on the inter-atomic distance.

  12. Can Social Comparison Feedback Affect Indicators of Eco-Friendly Travel Choices? Insights from Two Online Experiments

    Directory of Open Access Journals (Sweden)

    Rouven Doran

    2017-01-01

    Full Text Available Two online experiments explored the effects of social comparison feedback on indicators of eco-friendly travel choices. It was tested whether the chosen indicators are sensitive to the information conveyed, and if this varies as a function of in-group identification. Study 1 (N = 134 focused on unfavourable feedback (i.e., being told that one has a larger ecological footprint than the average member of a reference group. People who received unfavourable feedback reported stronger intentions to choose eco-friendly travel options than those who received nondiscrepant feedback, when in-group identification was high (not moderate or low. Perceived self- and collective efficacy were not associated with the feedback. Study 2 (N = 323 extended the focus on favourable feedback (i.e., being told that one has a smaller ecological footprint than the average member of a reference group. Neither unfavourable nor favourable feedback was associated with behavioural intentions, self- or collective efficacy. This means that Study 2 failed to replicate the finding of Study 1 that behavioural intentions were associated with unfavourable feedback, given that in-group identification is high. The findings are discussed in light of the existing literature. Suggestions are made for future studies investigating social comparison feedback as a means to motivate people to make eco-friendly travel choices.

  13. Novel Reduced-Feedback Wireless Communication Systems

    KAUST Repository

    Shaqfeh, Mohammad Obaidah; Alnuweiri, Hussein; Alouini, Mohamed-Slim

    2011-01-01

    We have recently contributed to this field and published several journal and conference papers. We are the pioneers to propose a novel reduced-feedback opportunistic scheduling scheme that combines many desired features including fairness in resources distribution across the active terminals and distributed processing at the MAC layer level. In addition our scheme operates close to the upper capacity limits of achievable transmission rates over wireless links. We have also proposed another hybrid scheme that enables adjusting the feedback load flexibly based on rates requirements. We are currently investigating other novel ideas to design reduced-feedback communication systems.

  14. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  15. Sea ice-albedo climate feedback mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J.L.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States); Ebert, E.E. [Bureau of Meterology Research Center, Melbourne (Australia)

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  16. Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance

    Science.gov (United States)

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2018-04-01

    Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.

  17. Business Activity Monitoring: Real-Time Group Goals and Feedback Using an Overhead Scoreboard in a Distribution Center

    Science.gov (United States)

    Goomas, David T.; Smith, Stuart M.; Ludwig, Timothy D.

    2011-01-01

    Companies operating large industrial settings often find delivering timely and accurate feedback to employees to be one of the toughest challenges they face in implementing performance management programs. In this report, an overhead scoreboard at a retailer's distribution center informed teams of order selectors as to how many tasks were…

  18. Real time global orbit feedback system for NSLS x-ray ring

    International Nuclear Information System (INIS)

    Yu, L.H.; Biscardi, R.; Bittner, J.; Fauchet, A.M.; Krinsky, F.S.; Nawrocky, R.J.; Rothman, J.; Singh, O.V.; Yang, K.M.

    1991-01-01

    We report on the design and commissioning of a real time harmonic global orbit feedback system for the NSLS X-ray ring. This system uses 8 pick-up electrode position monitors and 16 trim dipole magnets to eliminate 3 harmonic components of the orbit fluctuations. Because of the larger number of position monitors and trim magnets, the X-ray ring feedback system differs from the previously reported VUV ring system in that the Fourier analysis and harmonic generation networks are comprised of MDAC boards controlled by computer. The implementation of the global feedback system has resulted in a dramatic improvement of orbit stability, by more than a factor of five everywhere. Simultaneous operation of the global and several local bump feedback systems has been achieved. 4 refs., 5 figs

  19. Integrated Circuit Design of 3 Electrode Sensing System Using Two-Stage Operational Amplifier

    Science.gov (United States)

    Rani, S.; Abdullah, W. F. H.; Zain, Z. M.; N, Aqmar N. Z.

    2018-03-01

    This paper presents the design of a two-stage operational amplifier(op amp) for 3-electrode sensing system readout circuits. The designs have been simulated using 0.13μm CMOS technology from Silterra (Malaysia) with Mentor graphics tools. The purpose of this projects is mainly to design a miniature interfacing circuit to detect the redox reaction in the form of current using standard analog modules. The potentiostat consists of several op amps combined together in order to analyse the signal coming from the 3-electrode sensing system. This op amp design will be used in potentiostat circuit device and to analyse the functionality for each module of the system.

  20. SAFCM: A Security-Aware Feedback Control Mechanism for Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Ma, Yue; Jiang, Wei; Sang, Nan

    2012-01-01

    Distributed Real-time Embedded (DRE) systems are facing great challenges in networked, unpredictable and especially unsecured environments. In such systems, there is a strong need to enforce security on distributed computing nodes in order to guard against potential threats, while satisfying......-time systems, a multi-input multi-output feedback loop is designed and a model predictive controller is deployed based on an equation model that describes the dynamic behavior of the DRE systems. This control loop uses security level scaling to globally control the CPU utilization and security performance...... for the whole system. We propose a "security level" metric based on an evolution of cryptography algorithms used in embedded systems. Experimental results demonstrate that SAFCM not only has the excellent adaptivity compared to open-loop mechanism, but also has a better overall performance than PID control...

  1. Zinc electrode - its behaviour in the nickel oxide-zinc accumulator

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling. 193 references.

  2. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-01-01

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster

  3. Can executive control be influenced by performance feedback? Two experimental studies with younger and older adults

    Directory of Open Access Journals (Sweden)

    Barbara eDrueke

    2012-04-01

    Full Text Available Executive control describes a wide range of cognitive processes which are critical for the goal-directed regulation of stimulus processing and action regulation. Previous studies have shown that executive control performance declines with age but yet, it is still not clear whether different internal and external factors - as performance feedback and age - influence these cognitive processes and how they might interact with each other. Therefore, we investigated feedback effects in the flanker task in young as well as in older adults in two experiments. Performance feedback significantly improved executive performance in younger adults at the expense of errors. In older adults, feedback also led to higher error rates, but had no significant effect on executive performance which might be due to stronger interference. Results indicate that executive functions can be positively influenced by performance feedback in younger adults, but not necessarily in older adults.

  4. Zoom system without moving element by using two liquid crystal lenses with spherical electrode

    Science.gov (United States)

    Yang, Ren-Kai; Lin, Chia-Ping; Su, Guo-Dung J.

    2017-08-01

    A traditional zoom system is composed of several elements moving relatively toward other components to achieve zooming. Unlike tradition system, an electrically control zoom system with liquid crystal (LC) lenses is demonstrated in this paper. To achieve zooming, we apply two LC lenses whose optical power is controlled by voltage to replace two moving lenses in traditional zoom system. The mechanism of zoom system is to use two LC lenses to form a simple zoom system. We found that with such spherical electrodes, we could operate LC lens at voltage range from 31V to 53 V for 3X tunability in optical power. For each LC lens, we use concave spherical electrode which provide lower operating voltage and great tunability in optical power, respectively. For such operating voltage and compact size, this zoom system with zoom ratio approximate 3:1 could be applied to mobile phone, camera and other applications.

  5. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers

    Science.gov (United States)

    Duan, J.; Huang, H.; Lu, Z. G.; Poole, P. J.; Wang, C.; Grillot, F.

    2018-03-01

    This paper reports on the spectral linewidth of InAs/InP quantum dot distributed feedback lasers. Owing to a low inversion factor and a low linewidth enhancement factor, a narrow spectral linewidth of 160 kHz (80 kHz intrinsic linewidth) with a low sensitivity to temperature is demonstrated. When using anti-reflection coatings on both facets, narrow linewidth operation is extended to high powers, believed to be due to a reduction in the longitudinal spatial hole burning. These results confirm the high potential of quantum dot lasers for increasing transmission capacity in future coherent communication systems.

  6. The point ground electrode in vicinity of the semi-spherical inhomogenity

    Directory of Open Access Journals (Sweden)

    Cvetković Nenad N.

    2005-01-01

    Full Text Available Characterization of the point ground electrode placed in the surroundings or inside of the semi-spherical earth inhomogenity and fed by low frequency (LF current using isolated earthling conductor, is presented in this paper. The ground impedance (resistance and reactance and potential distribution on the ground surface are determined. Image theory for two-layer semi conducting media, as well as for the one point electrode placed nearby or inside of the spherical body is used during the analysis.

  7. Flexible and stretchable electrodes for dielectric elastomer actuators

    Science.gov (United States)

    Rosset, Samuel; Shea, Herbert R.

    2013-02-01

    Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs.

  8. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating

    Science.gov (United States)

    Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2018-03-01

    We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (current and temperature ranges.

  9. Reactivity at the film/solution interface of ex situ prepared bismuth film electrodes: A scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM) investigation

    International Nuclear Information System (INIS)

    Hocevar, Samo B.; Daniele, Salvatore; Bragato, Carlo; Ogorevc, Bozidar

    2007-01-01

    Bismuth film electrodes (BiFEs) prepared ex situ with and without complexing bromide ions in the modification solution were investigated using scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM). A feedback mode of the SECM was employed to examine the conductivity and reactivity of a series of thin bismuth films deposited onto disk glassy carbon substrate electrodes (GCEs) of 3 mm in diameter. A platinum micro-electrode (φ = 25 μm) was used as the SECM tip, and current against tip/substrate distance was recorded in solutions containing either Ru(NH 3 ) 6 3+ or Fe(CN) 6 4- species as redox mediators. With both redox mediators positive feedback approach curves were recorded, which indicated that the bismuth film deposition protocol associated with the addition of bromide ions in the modification solution did not compromise the conductivity of the bismuth film in comparison with that prepared without bromide. However, at the former Bi film a slight kinetic hindering was observed in recycling Ru(NH 3 ) 6 3+ , suggesting a different surface potential. On the other hand, the approach curves recorded by using Fe(CN) 6 4- showed that both types of the aforementioned bismuth films exhibited local reactivity with the oxidised form of the redox mediator, and that bismuth film obtained with bromide ions exhibited slightly lower reactivity. The use of SECM in the scanning operation mode allowed us to ascertain that the bismuth deposits were uniformly distributed across the whole surface of the glassy carbon substrate electrode. Comparative AFM measurements corroborated the above findings and additionally revealed a denser growth of smaller bismuth crystals over the surface of the substrate electrode in the presence of bromide ions, while the crystals were bigger but sparser in the absence of bromide ions in the modification solution

  10. Piperidine adsorption on two different silver electrodes: A combined surface enhanced Raman spectroscopy and density functional theory study

    International Nuclear Information System (INIS)

    Hao Yanling; Fang Yan

    2007-01-01

    The surface enhanced Raman scattering (SERS) spectra of piperidine in silver colloid solution, on roughened silver electrode and on roughened silver electrode modified with silver nanoparticles were studied, and the high-quality SERS spectra of piperidine on roughened silver electrode modified with silver nanoparticles were obtained for the first time. Surface selection rules derived from the EM enhancement model were employed to deduce piperidine orientations on the different surfaces. On the basis of this, two models of piperidine adsorbed on the surface of the silver nanoparticles were built, and DFT-B3PW91/LanL2dz was applied to calculate the Raman frequencies. It proves that, at higher potential values, the piperidine is perpendicularly standing on the roughened silver electrode surface though its lone-electron pair, but in silver colloid solution and on the silver nanoparticles modified silver electrode the piperidine molecular lies flat on the silver surface. In the meantime, the potential dependent SERS of piperidine on the modified electrode were studied

  11. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  12. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  13. A reduced feedback proportional fair multiuser scheduling scheme

    KAUST Repository

    Shaqfeh, Mohammad

    2011-12-01

    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed and ordered scheduling mechanism. A slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we propose a novel proportional fair multiuser switched-diversity scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the per-user feedback thresholds. We demonstrate by numerical examples that our reduced feedback proportional fair scheduler operates within 0.3 bits/sec/Hz from the achievable rates by the conventional full feedback proportional fair scheduler in Rayleigh fading conditions. © 2011 IEEE.

  14. Optimal allocation of reviewers for peer feedback

    DEFF Research Database (Denmark)

    Wind, David Kofoed; Jensen, Ulf Aslak; Jørgensen, Rasmus Malthe

    2017-01-01

    feedback to be effective students should give and receive useful feedback. A key challenge in peer feedback is allocating the feedback givers in a good way. It is important that reviewers are allocated to submissions such that the feedback distribution is fair - meaning that all students receive good......Peer feedback is the act of letting students give feedback to each other on submitted work. There are multiple reasons to use peer feedback, including students getting more feedback, time saving for teachers and increased learning by letting students reflect on work by others. In order for peer...... indicated the quality of the feedback. Using this model together with historical data we calculate the feedback-giving skill of each student and uses that as input to an allocation algorithm that assigns submissions to reviewers, in order to optimize the feedback quality for all students. We test...

  15. Distributed Role Selection With ANC and TDBC Protocols in Two-Way Relaying Systems

    KAUST Repository

    Ding, Haiyang

    2015-09-28

    This paper advocates a distributed role selection strategy to coordinate two-way relaying transmissions among three cooperative nodes. For such, the local channel state information comparison and decision feedback mechanism are merged into classical analog network coding (ANC) and time division broadcast (TDBC) protocols such that the cooperative role of each node can be designated in a distributed fashion. We refer to this distributed role selection rule as d-ROSE. In both ANC-based and TDBC-based two-way relaying scenarios, strict proof for the equivalence of d-ROSE and optimal ROSE is given, which indicates that albeit the different form, their final role decision is essentially the same. Outage analysis for the d-ROSE strategy is carried out and the scaling law of the system outage behavior at high signal-to-noise ratio (SNR) is characterized, which manifests that d-ROSE can enhance the system diversity gain to one-order higher relative to the ANC and TDBC protocols. It is also shown that d-ROSE can reduce the signaling overhead upto 60% to perform the outage-optimal role selection. Finally, the impacts of node placement on the outage performance as well as the average signaling overhead of d-ROSE are numerically evaluated and some useful conclusions are drawn. © 2015 IEEE.

  16. Moving mesh finite element method for finite time extinction of distributed parameter systems with positive exponential feedback; Lokakarya Komputasi dalam Sains dan Teknologi Nuklir VI

    Energy Technology Data Exchange (ETDEWEB)

    Garnadi, A D [Department of Matematics, Bogor Institute of Agriculture, Bogor (Indonesia)

    1997-07-01

    In the distributed parameter systems with exponential feedback, non-global existence of solution is not always exist. For some positive initial values, there exist finite time T such that the solution goes to infinity, i.e. finite time extinction or blow-up. Here is present a numerical solution using Moving Mesh Finite Element to solve the distributed parameter systems with exponential feedback close to blow-up time. The numerical behavior of the mesh close to the time of extinction is the prime interest in this study.

  17. Amperometric titration of thorium and some lanthanoids in acetic-acid medium using two indicator electrodes

    International Nuclear Information System (INIS)

    Khadeev, V.A.; Gevorgyan, A.M.; Talipov, Sh.T.; Kostylev, V.S.

    1979-01-01

    The votammetric behaviour of nitriletrimethylphosphonic acid (NTMP) in the medium of anhydrous acetic acid with different backgrounds in the anode region of polarization of a platinum microdisk electrode, is studied. The optimal conditions are found for the amperometric titration with two indicator electrodes of thorium and same lanthanides by a NTMP solution in anhydrous acetic medium. The influence of foreign anions and cations on the results of titration by the NTPM solution in anhydrous acetic acid is studied. The selectivity of titration in anhydrous medium is higher than in aqueous

  18. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Ma Li; Zhu Hong-Liang; Liang Song; Zhao Ling-Juan; Chen Ming-Hua

    2013-01-01

    Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 × 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demonstrated. The average output power and the threshold current are 1.8 mW and 35 mA, respectively, when the injection current of the SOA is 100 mA, with a side mode suppression ratio (SMSR) exceeding 40 dB. The four channels have a 1-nm average channel spacing and can operate separately or simultaneously. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    Science.gov (United States)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  20. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A. Y.; Umemura, M. [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  1. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    International Nuclear Information System (INIS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  2. Method for finding the distribution function of the ions formed in an electrode sheath in a plasma

    International Nuclear Information System (INIS)

    Chumenkov, V.

    1981-01-01

    A steady-state one-dimensional kinetic equation is studied for the ions formed in an electrode sheath in a discharge in a transverse magnetic field and also in the ionization--acceleration zone of Hall accelerators. Only single ionization of atoms by electron impact is considered in the collision term on the right side of the equation. The variables which appear on the right side are grouped into an expression which is a measure of the ion energy distribution. The problem is solved through the use of an empirical expression for the integrated ion energy distribution. This approach for finding the ion distribution function makes it a comparatively simple matter to trace the evolution of the distribution function due to changes in the external parameters (the magnetic field, the discharge voltage, and the pressure) or in the geometric characteristics of the discharge apparatus

  3. Inversionless gain via six-wave mixing and the investigation of distributed feedback

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong [College of Physics and Electronic Engineering, Hainan Normal University, Haikou, 571158 (China); Zhang, Ting-Gui [School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158 (China); Zou, Xu [College of Physics and Electronic Engineering, Hainan Normal University, Haikou, 571158 (China); Zhang, Yan, E-mail: zhangy345@nenu.edu.cn [School of Physics and Center for Quantum Sciences, Northeast Normal University, Changchun 130024 (China)

    2017-05-10

    In the present paper, we investigate the spectral-line enhancement of a coherently driven treble-Λ type atomic system. The numerical results show that the amplitudes and the amplification region of probe fields can be all-optically manipulated by modulating the detunings and intensities of coupling fields. In this case, we trap the cold atoms of treble-Λ type in a one-dimensional optical lattice to study the intensity envelopes by the modulation of gain or simultaneous modulation of gain and index. - Highlights: • There are three advantages in this model. • Firstly, it can simultaneously control the three-color probe fields. • Secondly, it allows synchronous nonlinear manipulation of treble-light signals at one network node. • Thirdly, it can be realized distributed feedback lasers.

  4. A configurable electrical capacitance tomography system using a combining electrode strategy

    International Nuclear Information System (INIS)

    Yang, Yunjie; Peng, Lihui

    2013-01-01

    Systematic investigation of a combining electrode strategy for electrical capacitance tomography (ECT) is carried out. A configurable digital and analogue mixed ECT system using a combining electrode strategy is presented. Compared to the traditional ECT system, the presented system can be configured flexibly as the traditional ECT sensor mode and the combining electrode mode by connecting a number of electrodes as a combined electrode. In particular, the combining electrode mode is increasing the number of capacitance measurement data and the amelioration of sensitivity distribution. An image reconstruction framework is proposed by configuring the presented ECT system as the corresponding sensor mode adaptive to the permittivity distribution to be reconstructed, which includes the traditional ECT sensor mode, the symmetric combining electrode mode, the asymmetric combining electrode mode and the mixed combining electrode mode. Both simulation and experimental results show that image reconstructions with better quality and robustness to measurement noise can be obtained under the proposed adaptive image reconstruction framework by using the presented configurable ECT system. (paper)

  5. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries

    Science.gov (United States)

    Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng

    2016-03-01

    Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution.

  6. Evaluation of equine electroretinographic responses by using two different electrodes and four different Alpha-2 agonist sedatives

    Directory of Open Access Journals (Sweden)

    Maurílio Rosa

    2014-12-01

    Full Text Available ABSTRACT. Rosa M., Botteon P.T.L., Pereira J.S., Brooks D.E. & Rosa M.V.D. Evaluation of equine electroretinographic responses by using two different electrodes and four different Alpha-2 agonist sedatives. [Avaliação da resposta eletroretinográfica de equinos utilizando dois tipos de eletrodos quatro sedativos Alfa-2 agonistas diferentes.] Revista Brasileira de Medicina Veterinária, 36(4:367-374, 2014. Centro de Pesquisa em Oftalmologia Veterinária (CEPOV, Avenida das Américas, 700, Bloco 8, Loja 103J, Barra da Tijuca, Rio de Janeiro, RJ 22640-100, Brasil. E-mail: marcmax@globo.com The aim of this study was the evaluation and comparison of field electroretinographic responses in standing horses using two different active electrodes (DTL- plus™ and ERG-jet®, and four different alpha-2 agonist drugs Xylazine, Romifidine, Detomidine, Medetomidine. Forty healthy horses were evaluated by full field ERG. Horses were randomly allocated into eight groups according four sedative drugs and two electrodes types. In all groups a- and b- wave amplitudes and implicit times were investigated and compared for both eyes. Quality and costs of sedation drugs were estimated. This research leaded to the conclusion that there were no significant differences of a- and b-wave complex results between ERG-jet® and DTL-plus™ electrodes with any sedative type. The ERG-jet® lens proved to be more practical during the examination than the DTL-plus™ electrode. The use of a single dose of xylazine, romifidine, detomidine or medetomidine was sufficient to provide a good level of sedation and muscle relaxation during the ERG examination, although detomidine and medetomidine gave slightly superior results when compared with the otherdrugs in this study. The sedation with xylazine was the least when compared with the other drugs and it was also the cheapest to use. Any of the sedatives and either active electrode tested in this study should permit a good full field

  7. The Effects of Computerized Auditory Feedback on Electronic Article Surveillance Tag Placement in an Auto-Parts Distribution Center

    Science.gov (United States)

    Goomas, David T.

    2008-01-01

    In this report from the field, computerized auditory feedback was used to inform order selectors and order selector auditors in a distribution center to add an electronic article surveillance (EAS) adhesive tag. This was done by programming handheld computers to emit a loud beep for high-priced items upon scanning the item's bar-coded Universal…

  8. Design, implementation and testing of an implantable impedance-based feedback-controlled neural gastric stimulator

    International Nuclear Information System (INIS)

    Arriagada, A J; Jurkov, A S; Mintchev, M P; Neshev, E; Andrews, C N; Muench, G

    2011-01-01

    Functional neural gastrointestinal electrical stimulation (NGES) is a methodology of gastric electrical stimulation that can be applied as a possible treatment for disorders such as obesity and gastroparesis. NGES is capable of generating strong lumen-occluding local contractions that can produce retrograde or antegrade movement of gastric content. A feedback-controlled implantable NGES system has been designed, implemented and tested both in laboratory conditions and in an acute animal setting. The feedback system, based on gastric tissue impedance change, is aimed at reducing battery energy requirements and managing the phenomenon of gastric tissue accommodation. Acute animal testing was undertaken in four mongrel dogs (2 M, 2 F, weight 25.53 ± 7.3 kg) that underwent subserosal two-channel electrode implantation. Three force transducers sutured serosally along the gastric axis and a wireless signal acquisition system were utilized to record stimulation-generated contractions and tissue impedance variations respectively. Mechanically induced contractions in the stomach were utilized to indirectly generate a tissue impedance change that was detected by the feedback system. Results showed that increasing or decreasing impedance changes were detected by the implantable stimulator and that therapy can be triggered as a result. The implantable feedback system brings NGES one step closer to long term treatment of burdening gastric motility disorders in humans

  9. Structural design of flexible Au electrode to enable shape memory polymer for electrical actuation

    Science.gov (United States)

    Lu, Haibao; Lei, Ming; Zhao, Chao; Xu, Ben; Leng, Jinsong; Fu, Y. Q.

    2015-04-01

    An effective resistive Joule heating approach was conducted to improve the electrical actuation and shape-recovery performance of a shape memory polymer (SMP) nanocomposite. Two types of gold (Au) film patterns were deposited to be used as electrodes to drive thermal-responsive SMPs and achieve a uniform temperature distribution during electro-activated shape recovery. Furthermore, the sensing capability of the Au electrode to both mechanical and thermal stimuli applied to the SMP nanocomposite was experimentally investigated and theoretically analyzed. It was found that the change in the electrical resistance of the Au electrode could be used as an indication of shape-recovery performance. The linear response of the electrical resistance to strain was identified mainly due to the opening/closing of microcracks and their propagations in the Au electrodes during out-of-plane deformations. With an increment of thermomechanical bending cycles, the electrical resistance was increased exponentially, but it returned back to the original reading when the SMP nanocomposite returned back to its permanent shape. Finally, the flexible Au electrode enabled the actuation of the SMP nanocomposite under an electric voltage of 13.4 V, with an improved shape-recovery performance and temperature distribution.

  10. Electrotactile feedback improves performance and facilitates learning in the routine grasping task

    Directory of Open Access Journals (Sweden)

    Milica Isaković

    2016-06-01

    Full Text Available Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels. First (baseline and the last (validation session were performed in open loop, while the second and the third session (training included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  11. Electrotactile Feedback Improves Performance and Facilitates Learning in the Routine Grasping Task.

    Science.gov (United States)

    Isaković, Milica; Belić, Minja; Štrbac, Matija; Popović, Igor; Došen, Strahinja; Farina, Dario; Keller, Thierry

    2016-06-13

    Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels). First (baseline) and the last (validation) session were performed in open loop, while the second and the third session (training) included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  12. A multi-channel stimulator and electrode array providing a rotating current whirlpool for electrical stimulation of wounds.

    Science.gov (United States)

    Petrofsky, J; Suh, H J; Fish, A; Hernandez, V; Abdo, A; Collins, K; Mendoza, E; Yang, T-N

    2008-01-01

    When electrical stimulation is used on wounds, the electrical current has difficulty penetrating areas where there is necrotic tissue. Further, for an irregularly shaped wound, current distribution is poor in some areas of the wound since conventional two-electrode delivery systems provide the greatest current in a line directly between the electrodes. A new stimulator and electrode system is described which uses three electrodes spaced around a wound to disperse current more evenly. The stimulator senses tissue impedance and then redirects current by altering its Thevenin's output impedance for each electrode; each of the three electrodes becomes the active one in sequence while the remaining are the sink electrodes. Eight subjects were examined to test the stimulator. Electrical stimulation was applied to the skin above the quadriceps muscle at currents of 15 mA in six subjects without wounds and in two subjects with wounds. The relationship between electrode position and current dispersion on the skin was examined with a two-electrode vs. a three-electrode system to set stimulation parameters for the computer. The results showed that the three-electrode system could (1) detect areas of the skin with high impedance; (2) compensate by altering the Thevenin's output impedance at each of the three electrodes to shift current to high impedance areas; (3) provide uniform current across the skin as assessed by skin current and blood flow measurements with a laser Doppler flow imager.

  13. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    Science.gov (United States)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  14. Feedback mechanism for smart nozzles and nebulizers

    Science.gov (United States)

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  15. Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors

    KAUST Repository

    Nagaraju, Doddahalli H.

    2014-08-27

    In this article, we report the synthesis of electrode materials based on two-dimensional (2D) heterostructures of V2O5 nanosheets (V2O5 NS) and reduced graphene oxide (rGO) electrodes for asymmetric supercapacitor applications. Specifically, the 2D V2O5 and rGO/V2O5 nanosheet electrodes showed a specific capacitance of 253 F g-1 and 635 F g-1, respectively at a current density of 1 A g-1. The capacitance of the heterostructures is almost 2.5 times higher than the 2D V2O5 nanosheets alone. The corresponding energy density of 39 Wh kg-1 and 79.5 Wh kg-1 were achieved for the two electrodes at a power density of 900 W kg-1 in an asymmetric supercapacitor configuration. The energy and power density using the nanosheet heterostructure are, to our knowledge, higher than any of those that were previously reported for asymmetric supercapacitors using V2O5 electrodes. This journal is

  16. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Oh, Kyeongmin; Won, Seongyeon; Ju, Hyunchul

    2015-01-01

    Highlights: • The effects of electrode compression on VRFB are examined. • The electronic conductivity is improved when the compression is increased. • The kinetic losses are similar regardless of the electrode compression level. • The vanadium distribution is more uniform within highly compressed electrode. - Abstract: The porous carbon felt electrode is one of the major components of all-vanadium redox flow batteries (VRFBs). These electrodes are necessarily compressed during stack assembly to prevent liquid electrolyte leakage and diminish the interfacial contact resistance among VRFB stack components. The porous structure and properties of carbon felt electrodes have a considerable influence on the electrochemical reactions, transport features, and cell performance. Thus, a numerical study was performed herein to investigate the effects of electrode compression on the charge and discharge behavior of VRFBs. A three-dimensional, transient VRFB model developed in a previous study was employed to simulate VRFBs under two degrees of electrode compression (10% vs. 20%). The effects of electrode compression were precisely evaluated by analysis of the solid/electrolyte potential profiles, transfer current density, and vanadium concentration distributions, as well as the overall charge and discharge performance. The model predictions highlight the beneficial impact of electrode compression; the electronic conductivity of the carbon felt electrode is the main parameter improved by electrode compression, leading to reduction in ohmic loss through the electrodes. In contrast, the kinetics of the redox reactions and transport of vanadium species are not significantly altered by the degree of electrode compression (10% to 20%). This study enhances the understanding of electrode compression effects and demonstrates that the present VRFB model is a valuable tool for determining the optimal design and compression of carbon felt electrodes in VRFBs.

  17. Two-dimensional nickel hydroxide nanosheets as high performance pseudo-capacitor electrodes

    Science.gov (United States)

    Bhat, Karthik S.; Nagaraja, H. S.

    2018-04-01

    Electrochemical supercapacitor is a vital technology for the progress of consistent energy harvesting devices. Herein, we report the fabrication of supercapacitor electrodes based on nickel hydroxide nanosheets synthesized via one-pot hydrothermal method. Structure and shape of synthesized materials were analyzed with XRD and SEM measurements. Pseudo-capacitive performances of the fabricated electrodes were evaluated through cyclic voltammetry and galvanostatic charge-discharge measurements with three-electrode configurations. Results indicated the specific capacitance of l80 F g-1 at 5 mV s-1 scan rate and complimented with capacitance retention of 76% for l500 cycles.

  18. Immediate Feedback on Accuracy and Performance: The Effects of Wireless Technology on Food Safety Tracking at a Distribution Center

    Science.gov (United States)

    Goomas, David T.

    2012-01-01

    The effects of wireless ring scanners, which provided immediate auditory and visual feedback, were evaluated to increase the performance and accuracy of order selectors at a meat distribution center. The scanners not only increased performance and accuracy compared to paper pick sheets, but were also instrumental in immediate and accurate data…

  19. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  20. About Politeness, Face, and Feedback: Exploring Resident and Faculty Perceptions of How Institutional Feedback Culture Influences Feedback Practices.

    Science.gov (United States)

    Ramani, Subha; Könings, Karen D; Mann, Karen V; Pisarski, Emily E; van der Vleuten, Cees P M

    2018-03-06

    To explore resident and faculty perspectives on what constitutes feedback culture, their perceptions of how institutional feedback culture (including politeness concepts) might influence the quality and impact of feedback, feedback seeking, receptivity, and readiness to engage in bidirectional feedback. Using a constructivist grounded theory approach, five focus group discussions with internal medicine residents, three focus group discussions with general medicine faculty, and eight individual interviews with subspecialist faculty were conducted at Brigham and Women's Hospital between April and December 2016. Discussions and interviews were audiotaped and transcribed verbatim; concurrent data collection and analysis were performed using the constant comparative approach. Analysis was considered through the lens of politeness theory and organizational culture. Twenty-nine residents and twenty-two general medicine faculty participated in focus group discussions, and eight subspecialty faculty participated in interviews. The institutional feedback culture was described by participants as: (1) a culture of politeness, in which language potentially damaging to residents' self-esteem was discouraged, and (2) a culture of excellence, in which the institution's outstanding reputation and pedigree of trainees inhibited constructive feedback. Three key themes situated within this broader cultural context were discovered: normalizing constructive feedback to promote a culture of growth, overcoming the mental block to feedback seeking, and hierarchical culture impeding bidirectional feedback. An institutional feedback culture of excellence and politeness may impede honest, meaningful feedback and may impact feedback seeking, receptivity, and bidirectional feedback exchanges. It is essential to understand the institutional feedback culture before it can be successfully changed.

  1. Effect of shape and resistivity of electrodes in a Faraday MHD duct

    International Nuclear Information System (INIS)

    Jayakumar, R.; Ghosh, S.

    1976-01-01

    The object of achieving uniform current distribution in the presence of high axial fields has prompted the use of resistive electrodes in flat and wedge geometries. In the case of flat geometry the technique involves the generation of voltage drop along the surface of the electrodes in the axial direction, due to the Faraday current collected by the electrode and flowing into a lead wire, to reduce or eliminate the discontinuity in the axial electrical field that would otherwise occur, say in case of metal electrodes. In the case of wedge shapes, higher resistance path is provided for the regions where current is likely to concentrate. In the case of flat geometry, the effect of the position of lead wire also influences the current distribution in the plasma and on the electrode surface. The resistive electrodes have been investigated for the actual current distribution by numerically solving the Laplace's equation for current stream function, arising out of Maxwell's equation and generalised Ohm's law. In the case of wedge electrode, the solution has been sought by numerical analysis of both plasma and electrode zones. It is shown that both geometries, the flat geometry with a lead wire shifted optimally from one edge and the wedge electrode can almost eliminate current concentration. (author)

  2. Robust Speed Tracking Control for a Micro Turbine as a Distributed Energy Resource via Feedback Domination and Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Ancheng Xu

    2017-01-01

    Full Text Available Micro turbine (MT is characterized with complex dynamics, parameter uncertainties, and variable working conditions. In this paper, a novel robust controller is investigated for a single-shaft micro turbine as a distributed energy resource by integrating a feedback domination control technique and a feedforward disturbance compensation. An active estimation process of the mismatched disturbances is firstly enabled by constructing a disturbance observer. Secondly, we adopt a feedback domination technique, rather than popularly used feedback linearization methods, to handle the system nonlinearities. In an explicit way, the composite controllers are then derived by recursive design based on Lyapunov theory while a global input-to-state stability can be guaranteed. Abundant comparison simulation results are provided to demonstrate the effectiveness of the proposed scheme, which not only perform an improved closed-loop control performance comparing to all existing results, but also render a simple control law which will ease its practical implementation.

  3. Stimulation and recording electrodes for neural prostheses

    CERN Document Server

    Pour Aryan, Naser; Rothermel, Albrecht

    2015-01-01

    This book provides readers with basic principles of the electrochemistry of the electrodes used in modern, implantable neural prostheses. The authors discuss the boundaries and conditions in which the electrodes continue to function properly for long time spans, which are required when designing neural stimulator devices for long-term in vivo applications. Two kinds of electrode materials, titanium nitride and iridium are discussed extensively, both qualitatively and quantitatively. The influence of the counter electrode on the safety margins and electrode lifetime in a two electrode system is explained. Electrode modeling is handled in a final chapter.

  4. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin, E-mail: wangxx@tsinghua.edu.cn [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.

  5. A Mid-scala Cochlear Implant Electrode Design Achieves a Stable Post-surgical Position in the Cochlea of Patients Over Time-A Prospective Observational Study.

    Science.gov (United States)

    Dees, Guido; Smits, Jeroen Jules; Janssen, A Miranda L; Hof, Janny R; Gazibegovic, Dzemal; Hoof, Marc van; Stokroos, Robert J

    2018-04-01

    Cochlear implant (CI) electrode design impacts the clinical performance of patients. Stability and the occurrence of electrode array migration, which is the postoperative movement of the electrode array, were investigated using a mid-scalar electrode array and postoperative image analysis. A prospective observational study was conducted. A mid-scalar electrode was surgically placed using a mastoidectomy, followed by a posterior tympanotomy and an extended round-window or cochleostomy insertion. A few days after surgery and 3 months later Cone Beam Computed Tomography (CBCT) was performed. The two different CBCT's were fused, and the differences between the electrode positions in three dimensions were calculated (the migration). A migration greater than 0.5 mm was deemed clinically relevant. Fourteen subjects participated. The mid-scalar electrode migrated in one patient (7%). This did not lead to the extrusion of an electrode contact. The mean migration of every individual electrode contact in all patients was 0.36 mm (95% confidence interval 0.22-0.50 mm), which approximates to the estimated measurement error of the CBCT technique. A mid-scalar electrode array achieves a stable position in the cochlea in a small but representative group of patients. The methods applied in this work can be used for providing postoperative feedback for surgeons and for benchmarking electrode designs.

  6. Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution

    Directory of Open Access Journals (Sweden)

    Weijiong Wu

    2017-05-01

    Full Text Available Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees’ perceived insider status (PIS, as a kind of employee-organization relationship, could also influence employees’ reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper.

  7. Feedback loop compensates for rectifier nonlinearity

    Science.gov (United States)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  8. Advanced porous electrodes with flow channels for vanadium redox flow battery

    Science.gov (United States)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon

    2017-02-01

    Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.

  9. Distributed Cooperative Current-Sharing Control of Parallel Chargers Using Feedback Linearization

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    2014-01-01

    Full Text Available We propose a distributed current-sharing scheme to address the output current imbalance problem for the parallel chargers in the energy storage type light rail vehicle system. By treating the parallel chargers as a group of agents with output information sharing through communication network, the current-sharing control problem is recast as the consensus tracking problem of multiagents. To facilitate the design, input-output feedback linearization is first applied to transform the nonidentical nonlinear charging system model into the first-order integrator. Then, a general saturation function is introduced to design the cooperative current-sharing control law which can guarantee the boundedness of the proposed control. The cooperative stability of the closed-loop system under fixed and dynamic communication topologies is rigorously proved with the aid of Lyapunov function and LaSalle invariant principle. Simulation using a multicharging test system further illustrates that the output currents of parallel chargers are balanced using the proposed control.

  10. The Effect of Two Types of Corrective Feedback on EFL Learners' Writing Skill

    Science.gov (United States)

    Farshi, Sina Soltanabadi; Safa, Saeedeh Khalili

    2015-01-01

    The purpose of this study was to compare the effects of two types of corrective feedback on EFL learners' writing skill. Thirty five advanced learners in three groups participated in this study. Structures of written texts were taught in all three classes during fourteen sessions of treatment; and each session, a related topic was given and the…

  11. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    Science.gov (United States)

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-15

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  12. Sensory feedback for upper limb prostheses.

    Science.gov (United States)

    Hsiao, Steven S; Fettiplace, Michael; Darbandi, Bejan

    2011-01-01

    In this chapter, we discuss the neurophysiological basis of how to provide sensory feedback to users with an upper limb prosthesis and discuss some of the theoretical issues that need to be considered when directly stimulating neurons in the somatosensory system. We focus on technologies that are currently available and discuss approaches that are most likely to succeed in providing natural perception from the artificial hand to the user. First, we discuss the advantages and disadvantages of providing feedback by stimulating directly the remaining afferents that originally innervated the arm and hand. In particular, we pay close attention to the normal functional roles that the peripheral afferents play in perception. What are the consequences and implications of stimulating these afferents? We then discuss whether it is reasonable to stimulate neurons in the ascending pathways that carry the information from the afferents to the cortex or directly in neurons in the primary somatosensory cortex. We show that for some modalities there are advantages for stimulating in the spinal cord, while for others it is advantageous to stimulate directly in the somatosensory cortex. Finally, we discuss results from a current experiment in which we used electrical stimuli in primary somatosensory cortex to restore the percept of the intensity of a mechanical probe indented into the hand. The results suggest that the simple percept of stimulus intensity can be provided to the animal from a single finger using four electrodes. We propose that significantly more electrodes will be needed to reproduce more complex aspects of tactile perception. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Feedback Reduction in Broadcast and two Hop Multiuser Networks: A Compressed Sensing Approach

    KAUST Repository

    Shibli, Hussain J.

    2013-05-21

    In multiuser wireless networks, the base stations (BSs) rely on the channel state information (CSI) of the users to in order to perform user scheduling and downlink transmission. While the downlink channels can be easily estimated at all user terminals via a single broadcast, several key challenges are faced during uplink (feedback) transmission. Firstly, the noisy and fading feedback channels are usually unknown at the base station, and therefore, channel training is usually required from all users. Secondly, the amount of air-time required for feedback transmission grows linearly with the number of users. This domination of the network resources by feedback information leads to increased scheduling delay and outdated CSI at the BS. In this thesis, we tackle the above challenges and propose feedback reduction algorithms based on the theory of compressive sensing (CS). The proposed algorithms encompass both single and dual hop wireless networks, and; i) permit the BS to obtain CSI with acceptable recovery guarantees under substantially reduced feedback overhead, ii) are agnostic to the statistics of the feedback channels, and iii) utilize the apriori statistics of the additive noise to identify strong users. Numerical results show that the proposed algorithms are able to reduce the feedback overhead, improve detection at the BS, and achieve a sum-rate close to that obtained by noiseless dedicated feedback algorithms.

  14. Feedback control of two-headed Brownian motors in flashing ratchet potential

    International Nuclear Information System (INIS)

    Zhao A-Ke; Zhang Hong-Wei; Li Yu-Xiao

    2010-01-01

    We presented a detailed investigation on the movement of two-headed Brownian motors in an asymmetric potential under a feedback control. By numerical simulations the direct current is obtained. The current is periodic in the initial length of spring. There is an optimal value of the spring constant. And the dependence of the current on the opposing force is reversed. Then we found that when the change of the temperature and the opposing force have optimal values, the Brownian motors can also obtain the optimal efficiency

  15. 2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe₃O₄.

    Science.gov (United States)

    Bock, David C; Kirshenbaum, Kevin C; Wang, Jiajun; Zhang, Wei; Wang, Feng; Wang, Jun; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-24

    When electroactive nanomaterials are fully incorporated into an electrode structure, characterization of the crystallite sizes, agglomerate sizes, and dispersion of the electroactive materials can lend insight into the complex electrochemistry associated with composite electrodes. In this study, composite magnetite electrodes were sectioned using ultramicrotome techniques, which facilitated the direct observation of crystallites and agglomerates of magnetite (Fe3O4) as well as their dispersal patterns in large representative sections of electrode, via 2D cross sectional analysis by Transmission Electron Microscopy (TEM). Further, the electrochemistry of these electrodes were recorded, and Transmission X-ray Microscopy (TXM) was used to determine the distribution of oxidation states of the reduced magnetite. Unexpectedly, while two crystallite sizes of magnetite were employed in the production of the composite electrodes, the magnetite agglomerate sizes and degrees of dispersion in the two composite electrodes were similar to each other. This observation illustrates the necessity for careful characterization of composite electrodes, in order to understand the effects of crystallite size, agglomerate size, and level of dispersion on electrochemistry.

  16. Dynamics of iterative reader feedback. An analysis of two successive plus-minus evaluation studies

    NARCIS (Netherlands)

    de Jong, Menno D.T.; Rijnks, Dietha

    2006-01-01

    A brochure that had been revised on the basis of feedback from readers using the plus-minus evaluation method was evaluated again using the same method. This article compares the results of these two successive evaluation studies to examine the dynamics of evaluating and revising using a

  17. Investigation of Heat Transfer and Magnetohydrodynamic Flow in Electroslag Remelting Furnace Using Vibrating Electrode

    Science.gov (United States)

    Wang, Fang; Wang, Qiang; Lou, Yanchun; Chen, Rui; Song, Zhaowei; Li, Baokuan

    2016-01-01

    A transient three-dimensional (3D) coupled mathematical model has been developed to understand the effect of a vibrating electrode on the electromagnetic, two-phase flow and temperature fields as well as the solidification in the electroslag remelting (ESR) process. With the magnetohydrodynamic model, the Joule heating and Lorentz force, which are the source terms in the energy and momentum equations, are recalculated at each iteration as a function of the phase distribution. The influence of the vibrating electrode on the formation of the metal droplet is demonstrated by the volume of fluid approach. Additionally, the solidification of the metal is modeled by an enthalpy-based technique, in which the mushy zone is treated as a porous medium with porosity equal to the liquid fraction. The present work is the first attempt to investigate the innovative technology of the ESR process with a vibrating electrode by a transient 3D comprehensive model. A reasonable agreement between the experiment and simulation is obtained. The results indicate that the whole process is presented as a periodic activity. When the metal droplets fall from the tip of the electrode, the horizontal component of velocity will generate electrode vibration. This will lead to the distribution variation of the flow field in the slag layer. The variation of temperature distribution occurs regularly and is periodically accompanied by the behavior of the falling metal droplets. With the decreasing vibrating frequency and amplitude, the relative velocity of the electrode and molten slag increase accordingly. The diameter of the molten droplets, the maximum temperature and the depth of the molten pool gradually become smaller, lower and shallower.

  18. Linear feedback control, adaptive feedback control and their combination for chaos (lag) synchronization of LC chaotic systems

    International Nuclear Information System (INIS)

    Yan Zhenya; Yu Pei

    2007-01-01

    In this paper, we study chaos (lag) synchronization of a new LC chaotic system, which can exhibit not only a two-scroll attractor but also two double-scroll attractors for different parameter values, via three types of state feedback controls: (i) linear feedback control; (ii) adaptive feedback control; and (iii) a combination of linear feedback and adaptive feedback controls. As a consequence, ten families of new feedback control laws are designed to obtain global chaos lag synchronization for τ < 0 and global chaos synchronization for τ = 0 of the LC system. Numerical simulations are used to illustrate these theoretical results. Each family of these obtained feedback control laws, including two linear (adaptive) functions or one linear function and one adaptive function, is added to two equations of the LC system. This is simpler than the known synchronization controllers, which apply controllers to all equations of the LC system. Moreover, based on the obtained results of the LC system, we also derive the control laws for chaos (lag) synchronization of another new type of chaotic system

  19. FX2-TH: a two-dimensional nuclear reactor kinetics code with thermal-hydraulic feedback

    International Nuclear Information System (INIS)

    Shober, R.A.; Daly, T.A.; Ferguson, D.R.

    1978-10-01

    FX2-TH is a two-dimensional, time-dependent nuclear reactor kinetics program with thermal and hydraulic feedback. The neutronics model used is multigroup neutron diffusion theory. The following geometry options are available: x, r, x-y, r-z, theta-r, and triangular. FX2-TH contains two basic thermal and hydraulic models: a simple adiabatic fuel temperature calculation, and a more detailed model consisting of an explicit representation of a fuel pin, gap, clad, and coolant. FX2-TH allows feedback effects from both fuel temperature (Doppler) and coolant temperature (density) changes. FX2-TH will calculate a consistent set of steady state conditions by iterating between the neutronics and thermal-hydraulics until convergence is reached. The time-dependent calculation is performed by the use of the improved quasistatic method. A disk editing capability is available. FX2-TH is operational on IBM system 360 or 370 computers and on the CDC 7600

  20. Numerical Study of Electrolyte Wetting Phenomena in the Electrode of Lithium Ion Battery Using Lattice Boltzmann Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Gun [Seoul Nat' l Univ., Seoul (Korea, Republic of); Jeon, Dong Hyup [Dongguk Univ., Seoul (Korea, Republic of)

    2014-04-15

    The electrolyte wetting phenomena in the electrode of lithium ion battery is studied numerically using a multiphase lattice Boltzmann method (LBM). When a porous electrode is compressed during roll-pressing process, the porosity and thickness of the compressed electrode are changed, which can affect its wettability. In this study, the change in electrolyte distribution and degree of saturation as a result of varying the compression ratio are investigated with two-dimensional LBM approach. We found that changes in the electrolyte transport path are caused by a reduction in through-plane pore size and result in a decrease in the wettability of the compressed electrode.

  1. Electrochemical synthesis and characterization of stable colloidal suspension of graphene using two-electrode cell system

    Energy Technology Data Exchange (ETDEWEB)

    Danial, Wan Hazman, E-mail: hazmandanial@gmail.com; Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my; Aziz, Madzlan [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia); Chutia, Arunabhiram [Institute of Fluid Sciences, Tohoku University, Sendai 980-8577 (Japan); Sahnoun, Riadh [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia)

    2015-07-22

    The present work reports the synthesis and characterization of graphene via electrochemical exfoliation of graphite rod using two-electrode system assisted by Sodium Dodecyl Sulphate (SDS) as a surfactant. The electrochemical process was carried out with sequence of intercalation of SDS onto the graphite anode followed by exfoliation of the SDS-intercalated graphite electrode when the anode was treated as cathode. The effect of intercalation potential from 5 V to 9 V and concentration of the SDS surfactant of 0.1 M and 0.01 M were investigated. UV-vis Spectroscopic analysis indicated an increase in the graphene production with higher intercalation potential. Transmission Electron Microscopy (TEM) analysis showed a well-ordered hexagonal lattice of graphene image and indicated an angle of 60° between two zigzag directions within the honeycomb crystal lattice. Raman spectroscopy analysis shows the graphitic information effects after the exfoliation process.

  2. Lithium manganese oxide spinel electrodes

    Science.gov (United States)

    Darling, Robert Mason

    Batteries based oil intercalation eletrodes are currently being considered for a variety of applications including automobiles. This thesis is concerned with the simulation and experimental investigation of one such system: spinel LiyMn2O4. A mathematical model simulating the behavior of an electrochemical cell containing all intercalation electrode is developed and applied to Li yMn2O4 based systems. The influence of the exchange current density oil the propagation of the reaction through the depth of the electrode is examined theoretically. Galvanostatic cycling and relaxation phenomena on open circuit are simulated for different particle-size distributions. The electrode with uniformly sized particles shows the best performance when the current is on, and relaxes towards equilibrium most quickly. The impedance of a porous electrode containing a particle-size distribution at low frequencies is investigated with all analytic solution and a simplified version of the mathematical model. The presence of the particle-size distribution leads to an apparent diffusion coefficient which has all incorrect concentration dependence. A Li/1 M LiClO4 in propylene carbonate (PC)/ LiyMn 2O4 cell is used to investigate the influence of side reactions oil the current-potential behavior of intercalation electrodes. Slow cyclic voltammograms and self-discharge data are combined to estimate the reversible potential of the host material and the kinetic parameters for the side reaction. This information is then used, together with estimates of the solid-state diffusion coefficient and main-reaction exchange current density, in a mathematical model of the system. Predictions from the model compare favorably with continuous cycling results and galvanostatic experiments with periodic current interruptions. The variation with respect to composition of' the diffusion coefficient of lithium in LiyMn2O4 is estimated from incomplete galvanostatic discharges following open-circult periods. The

  3. Distribution of electrode elements near contacts and junction layers in amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Imura, T; Hiraki, A; Okamoto, H

    1982-01-01

    Auger electron spectroscopy with the ion sputter-etching technique and secondary ion mass spectroscopy have been utilized to investigate the depth distribution of Sn and In electrode elements in amorphous silicon layers of the photovoltaic device. The comparison of the depth profiles with the cell performances has indicated that the presence of the reduced state of In in both the p and i-layers affects the solar cell performance, but that of Sn does not. It was also shown that layered structure of In-Sn oxide (ITO)/SnO2 effectively prevents the diffusion of In and achieves high cell performances, having the thickness of the SnO2 layer about 200 A. 8 references.

  4. Atmospheric radiative feedbacks associated with transient climate change and climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Colman, Robert A.; Power, Scott B. [Bureau of Meteorology, Centre for Australian Weather and Climate Research, GPO Box 1289, Melbourne, VIC (Australia)

    2010-06-15

    This study examines in detail the 'atmospheric' radiative feedbacks operating in a coupled General Circulation Model (GCM). These feedbacks (defined as the change in top of atmosphere radiation per degree of global surface temperature change) are due to responses in water vapour, lapse rate, clouds and surface albedo. Two types of radiative feedback in particular are considered: those arising from century scale 'transient' warming (from a 1% per annum compounded CO{sub 2} increase), and those operating under the model's own unforced 'natural' variability. The time evolution of the transient (or 'secular') feedbacks is first examined. It is found that both the global strength and the latitudinal distributions of these feedbacks are established within the first two or three decades of warming, and thereafter change relatively little out to 100 years. They also closely approximate those found under equilibrium warming from a 'mixed layer' ocean version of the same model forced by a doubling of CO{sub 2}. These secular feedbacks are then compared with those operating under unforced (interannual) variability. For water vapour, the interannual feedback is only around two-thirds the strength of the secular feedback. The pattern reveals widespread regions of negative feedback in the interannual case, in turn resulting from patterns of circulation change and regions of decreasing as well as increasing surface temperature. Considering the vertical structure of the two, it is found that although positive net mid to upper tropospheric contributions dominate both, they are weaker (and occur lower) under interannual variability than under secular change and are more narrowly confined to the tropics. Lapse rate feedback from variability shows weak negative feedback over low latitudes combined with strong positive feedback in mid-to-high latitudes resulting in no net global feedback - in contrast to the dominant negative low

  5. Who wants feedback? An investigation of the variables influencing residents' feedback-seeking behavior in relation to night shifts.

    Science.gov (United States)

    Teunissen, Pim W; Stapel, Diederik A; van der Vleuten, Cees; Scherpbier, Albert; Boor, Klarke; Scheele, Fedde

    2009-07-01

    The literature on feedback in clinical medical education has predominantly treated trainees as passive recipients. Past research has focused on how clinical supervisors can use feedback to improve a trainee's performance. On the basis of research in social and organizational psychology, the authors reconceptualized residents as active seekers of feedback. They investigated what individual and situational variables influence residents' feedback-seeking behavior on night shifts. Early in 2008, the authors sent obstetrics-gynecology residents in the Netherlands--both those in their first two years of graduate training and those gaining experience between undergraduate and graduate training--a questionnaire that assessed four predictor variables (learning and performance goal orientation, and instrumental and supportive leadership), two mediator variables (perceived feedback benefits and costs), and two outcome variables (frequency of feedback inquiry and monitoring). They used structural equation modeling software to test a hypothesized model of relationships between variables. The response rate was 76.5%. Results showed that residents who perceive more feedback benefits report a higher frequency of feedback inquiry and monitoring. More perceived feedback costs result mainly in more feedback monitoring. Residents with a higher learning goal orientation perceive more feedback benefits and fewer costs. Residents with a higher performance goal orientation perceive more feedback costs. Supportive physicians lead residents to perceive more feedback benefits and fewer costs. This study showed that some residents actively seek feedback. Residents' feedback-seeking behavior partially depends on attending physicians' supervisory style. Residents' goal orientations influence their perceptions of the benefits and costs of feedback-seeking.

  6. Development of DBD plasma actuators: The double encapsulated electrode

    Science.gov (United States)

    Erfani, Rasool; Zare-Behtash, Hossein; Hale, Craig; Kontis, Konstantinos

    2015-04-01

    Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The standard plasma actuator consists of a single encapsulated (ground) electrode. The aim of this project is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Utilising a transformer cascade, a variety of input voltages are studied for their effect. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry. Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design is proposed. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with a shallow initial encapsulated electrode induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial encapsulated electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric.

  7. Improved technology for manufacture of carbon electrodes

    Indian Academy of Sciences (India)

    distribution, surface area, porosity, particle size distribution and type of pores. The .... the point from where the electrode sample has been drawn. ... In addition, qualitative information on the shape and the type of pores can be determined.

  8. Temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers

    Science.gov (United States)

    Duan, J.; Huang, H.; Schires, K.; Poole, P. J.; Wang, C.; Grillot, F.

    2018-02-01

    In this paper, we investigate the temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers. In comparison with their quantum well counterparts, results show that quantum dot lasers have spectral linewidths rather insensitive to the temperature with minimum values below 200 kHz in the range of 283K to 303K. The experimental results are also well confirmed by numerical simulations. Overall, this work shows that quantum dot lasers are excellent candidates for various applications such as coherent communication systems, high-resolution spectroscopy, high purity photonic microwave generation and on-chip atomic clocks.

  9. Extraction electrode geometry for a calutron

    International Nuclear Information System (INIS)

    Veach, A.M.; Bell, W.A. Jr.

    1975-01-01

    This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source

  10. Collaborative Assembly Operation between Two Modular Robots Based on the Optical Position Feedback

    Directory of Open Access Journals (Sweden)

    Liying Su

    2009-01-01

    Full Text Available This paper studies the cooperation between two master-slave modular robots. A cooperative robot system is set up with two modular robots and a dynamic optical meter-Optotrak. With Optotrak, the positions of the end effectors are measured as the optical position feedback, which is used to adjust the robots' end positions. A tri-layered motion controller is designed for the two cooperative robots. The RMRC control method is adopted to adjust the master robot to the desired position. With the kinematics constraints of the two robots including position and pose, joint velocity, and acceleration constraints, the two robots can cooperate well. A bolt and nut assembly experiment is executed to verify the methods.

  11. Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2012-06-15

    The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 {mu}g cm{sup -2} was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.

  12. Analysis of different categories of feedback in two organizational ways in gymnastics Análisis de diferentes categorías del feedback en dos formas organizativas del medio gimnástico.

    Directory of Open Access Journals (Sweden)

    J. López Bedoya

    2010-09-01

    Full Text Available

    The objetive of this study is to evaluate the relation of two organizational methods of learning and performance of one gymnastic skill and their influence in some categories of feedback. 35 subjets of both sexes, 10 and 12 years old, were tested. The results showed the importance of a continuous and circular organizational method based on mini-circuits, since it promotes both individual and prescriptive feedback, important ingredients for an efficient training.
    KEY WORDS: gymnastics, learning, feedback.

    El objetivo de este trabajo es estudiar la posible relación de dos formas organizativas diferentes en el aprendizaje y rendimiento de una habilidad gimnástica y su influencia en diversas categorías del feedback. 35 sujetos de ambos sexos, de 10 a 12 años fueron testeados. Los resultados mostraron la importancia de una forma organizativa continua y circular basada en los mini-circuitos, ya que potencia los tipos de feedbacks individuales y prescriptivos, ingredientes claves para una enseñanza eficaz.

    PALABRAS CLAVE: gimnasia, aprendizaje, feedback.

  13. LHC beam stability and feedback control

    International Nuclear Information System (INIS)

    Steinhagen, Ralph

    2007-01-01

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a proportional

  14. Common-Message Broadcast Channels with Feedback in the Nonasymptotic Regime: Full Feedback

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Yang, Wei; Durisi, Giuseppe

    2018-01-01

    We investigate the maximum coding rate achievable on a two-user broadcast channel for the case where a common message is transmitted with feedback using either fixed-blocklength codes or variable-length codes. For the fixed-blocklength-code setup, we establish nonasymptotic converse and achievabi......We investigate the maximum coding rate achievable on a two-user broadcast channel for the case where a common message is transmitted with feedback using either fixed-blocklength codes or variable-length codes. For the fixed-blocklength-code setup, we establish nonasymptotic converse...... and achievability bounds. An asymptotic analysis of these bounds reveals that feedback improves the second-order term compared to the no-feedback case. In particular, for a certain class of anti-symmetric broadcast channels, we show that the dispersion is halved. For the variable-length-code setup, we demonstrate...

  15. Full State Feedback Control for Virtual Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Tillay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimal control commands to the DERs of the VPP.

  16. Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist

    DEFF Research Database (Denmark)

    Balslev, Søren; Rasmussen, Torben; Shi, Peixiong

    2005-01-01

    We demonstrate grey scale electron beam lithography on functionalized SU-8 resist for fabrication of single mode solid state dye laser devices. The resist is doped with Rhodamine 6G perchlorate and the lasers are based on a first order Bragg grating distributed feedback resonator. The lasers...

  17. Altered Sensory Feedbacks in Pianist's Dystonia: the altered auditory feedback paradigm and the glove effect

    Directory of Open Access Journals (Sweden)

    Felicia Pei-Hsin Cheng

    2013-12-01

    Full Text Available Background: This study investigates the effect of altered auditory feedback (AAF in musician's dystonia (MD and discusses whether altered auditory feedback can be considered as a sensory trick in MD. Furthermore, the effect of AAF is compared with altered tactile feedback, which can serve as a sensory trick in several other forms of focal dystonia. Methods: The method is based on scale analysis (Jabusch et al. 2004. Experiment 1 employs synchronization paradigm: 12 MD patients and 25 healthy pianists had to repeatedly play C-major scales in synchrony with a metronome on a MIDI-piano with 3 auditory feedback conditions: 1. normal feedback; 2. no feedback; 3. constant delayed feedback. Experiment 2 employs synchronization-continuation paradigm: 12 MD patients and 12 healthy pianists had to repeatedly play C-major scales in two phases: first in synchrony with a metronome, secondly continue the established tempo without the metronome. There are 4 experimental conditions, among them 3 are the same altered auditory feedback as in Experiment 1 and 1 is related to altered tactile sensory input. The coefficient of variation of inter-onset intervals of the key depressions was calculated to evaluate fine motor control. Results: In both experiments, the healthy controls and the patients behaved very similarly. There is no difference in the regularity of playing between the two groups under any condition, and neither did AAF nor did altered tactile feedback have a beneficial effect on patients’ fine motor control. Conclusions: The results of the two experiments suggest that in the context of our experimental designs, AAF and altered tactile feedback play a minor role in motor coordination in patients with musicians' dystonia. We propose that altered auditory and tactile feedback do not serve as effective sensory tricks and may not temporarily reduce the symptoms of patients suffering from MD in this experimental context.

  18. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    Science.gov (United States)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  19. Multi-Electrode Impedance Method for Detection of Regional Ventilation

    International Nuclear Information System (INIS)

    Furuya, Norio; Sakamoto, Katsuyuki

    2013-01-01

    By means of computer simulation and experiment, we investigated the feasibility of simultaneously measuring the transfer impedance changes in the right apex, left apex, right base and left base of the lungs using the multi-electrode impedance method. To obtain the transfer impedance in each region, while suppressing the effects of other regions, changing the amplitude and polarity of the applied current must localize the high sensitivity areas in the interest region. Twelve current and eight voltage electrodes were equidistantly arranged on the anterior and posterior chest walls. The amplitudes and polarities of the currents that were simultaneously applied to the current electrodes, and which provided the appropriate sensitivity distribution, were theoretically obtained. The effects of the localized sensitivity distribution were verified by comparing the simulation results of the investigated method with the results of the conventional four-electrode method. From the results of the computer simulation, we developed a multi-electrode impedance pneumography and applied it to healthy adult volunteers who were both in sitting position and in left decubitus. We found that the measurement results were physiologically reasonable.

  20. Review on recent Developments on Fabrication Techniques of Distributed Feedback (DFB) Based Organic Lasers

    Science.gov (United States)

    Azrina Talik, Noor; Boon Kar, Yap; Noradhlia Mohamad Tukijan, Siti; Wong, Chuan Ling

    2017-10-01

    To date, the state of art organic semiconductor distributed feedback (DFB) lasers gains tremendous interest in the organic device industry. This paper presents a short reviews on the fabrication techniques of DFB based laser by focusing on the fabrication method of DFB corrugated structure and the deposition of organic gain on the nano-patterned DFB resonator. The fabrication techniques such as Laser Direct Writing (LDW), ultrafast photo excitation dynamics, Laser Interference Lithography (LIL) and Nanoimprint Lithography (NIL) for DFB patterning are presented. In addition to that, the method for gain medium deposition method is also discussed. The technical procedures of the stated fabrication techniques are summarized together with their benefits and comparisons to the traditional fabrication techniques.

  1. Efficient phase locking of two dual-wavelength fiber amplifiers by an all-optical self-feedback loop

    Science.gov (United States)

    Lei, Bing; Chen, Keshan; Yao, Tianfu; Shi, Jianhua; Hu, Haojun

    2017-10-01

    Efficient phase locking of two dual-wavelength fiber amplifiers has been demonstrated by using a self-feedback coupling and intracavity filtering configuration, and the effect of bandwidth and wavelength spacing on their phase locking performances have been investigated in experiment. Two independent fiber lasers with different operating wavelength were combined incoherently by a 3 dB fiber coupler to form a dual-wavelength seed source laser, which was injected into the fiber amplifiers' coupling array through the self-feedback loop. The effect of bandwidth and wavelength spacing was researched by altering the seed laser's pump power and operating wavelengths respectively. As long as the feedback loop and the single-mode fiber filtering configuration were well constructed in the unidirectional ring laser cavity, stable phase locking states and high fringe visibility interference patterns could always be obtained in our experiment. When the spacing of two operating wavelength was varied from 1.6 nm to 19.6 nm, the fringe visibility decreased slightly with the increase of wavelength spacing, and the corresponding fringe visibility was always larger than 0.6. In conclusion, we believe that efficient phase locking of several multi-wavelength laser sources is also feasible by passive self-adjusting methods, and keeping the component laser beams' phase relationship stable and fixed is more important than controlling their operating wavelengths.

  2. The Effects of Post-observational Feedback Modes on Teaching Beliefs : Peer vs. Teacher-Mediated Feedback

    Directory of Open Access Journals (Sweden)

    İlknur Yuksel

    2011-01-01

    Full Text Available The aim of this study was to investigate whether the pre-service teachers' language teaching beliefs changed as a result of two different post-observational reşective feedback modes; teacher mediated and peer feedback, during their teaching practice. For each post-observational feedback mode, two groups of eight Turkish pre-service language teachers attending to the final year at English Language Teaching Department at Anadolu University, totally 16 pre-service teachers participated in the study. The qualitative and quantitative data was collected at the beginning and end of the different feedback treatments from each group. The results indicated that the feedback modes on pre-service teachers’ teaching practice could influence their beliefs about teaching. Peer feedback had a potential to change the teachers’ beliefs through critical reşection skills that were fostered as a result of collaboration within the peer group

  3. Effects of optical feedback in a birefringence-Zeeman dual frequency laser at high optical feedback levels

    International Nuclear Information System (INIS)

    Mao Wei; Zhang Shulian

    2007-01-01

    Optical feedback effects are studied in a birefringence-Zeeman dual frequency laser at high optical feedback levels. The intensity modulation features of the two orthogonally polarized lights are investigated in both isotropic optical feedback (IOF) and polarized optical feedback (POF). In IOF, the intensities of both beams are modulated simultaneously, and four zones, i.e., the e-light zone, the o-light and e-light zone, the o-light zone, and the no-light zone, are formed in a period corresponding to a half laser wavelength displacement of the feedback mirror. In POF, the two orthogonally polarized lights will oscillate alternately. Strong mode competition can be observed, and it affects the phase difference between the two beams greatly. The theoretical analysis is presented, which is in good agreement with the experimental results. The potential use of the experimental results is also discussed

  4. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis.

    Science.gov (United States)

    Schiefer, Matthew; Tan, Daniel; Sidek, Steven M; Tyler, Dustin J

    2016-02-01

    Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject's sense of embodiment with a survey and his self-confidence. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.

  5. The different electron transport of two nanotubes incorporated in working electrode of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaobo, E-mail: zhangxiaobo@chnu.edu.cn [School of Physics, Huaibei Normal University, Huaibei 235000, Anhui (China); Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093 (China); Tian, Hanmin; Wang, Xiangyan; Xue, Guogang; Tian, Zhipeng; Zhang, Jiyuan; Yuan, Shikui [Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093 (China); Yu, Tao; Zou, Zhigang [Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2013-11-25

    Highlights: •Two TiO{sub 2} nanotubes are separately incorporated in working electrode of DSSCs. •The 6-μm-tubes incorporation improves electron transport in the cell. •The 1-μm-tubes incorporation impedes electron transport in the cell. •Both 1-D electron diffusion and nanotube percolation promote electron transport. •Electron residing at the end of 1-μm-tubes maybe impedes electron transport. -- Abstract: Two different-length (6 μm and 1 μm) TiO{sub 2} nanotubes were prepared and incorporated in working electrode of dye-sensitized solar cells (DSSCs). The analyses of the electrochemical impedance spectra of cells demonstrate that, the electron transport resistance R{sub w} decreases and increases separately to 0.3 Ω in 6-μm-tubes-cell and to 15.1 Ω in 1-μm-tubes-cell comparing with that 1.4 Ω in P25-cell, reflecting the improved electron transport in 6-μm-tubes-cell and impeded electron transport in 1-μm-tubes-cell. The reason is ascribed to the different electron transport in working electrode due to the incorporation of nanotubes. For the 6-μm-tubes incorporation, both 1-D electron diffusion along nanotubes and nanotube percolation improve electron transport in working electrode, but they cannot improve electron transport for the 1-μm-tubes incorporation. On the contrary, the 1-μm-tubes incorporation may impede electron transport because of electron residing occurring seriously at the end of 1-μm-tubes. The results of this work will help to understand the specific nature of electron transport in TiO{sub 2} nanotubes in DSSCs.

  6. Characterisation of nano-interdigitated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Skjolding, L H D; Ribayrol, A; Montelius, L [Division of Solid State Physics, Lund University, Box 118, SE-221 00 Lund (Sweden); Spegel, C [Department of Analytical Chemistry Lund University, Box 124, SE-221 00 Lund (Sweden); Emneus, J [MIC - Department of Micro and Nanotechnology, DTU - Building 345 East, DK-2800 Kgs. Lyngby (Denmark)], E-mail: lars_henrik.daehli_skjolding@ftf.lth.se

    2008-03-15

    Interdigitated electrodes made up of two individually addressable interdigitated comb-like electrode structures have frequently been suggested as ultra sensitive electrochemical biosensors. Since the signal enhancement effects due to cycling of the reduced and oxidized species are strongly dependent on the inter electrode distances, since the nature of the enhancement is due to overlying diffusion layers, interdigitated electrodes with an electrode separation of less then one micrometer are desired for maximum signal amplification. Fabrication of submicron structures can only be made by advanced lithography techniques. By use of electron beam lithography we have fabricated arrays of interdigitated electrodes with an electrode separation distance of 200 nm and an electrode finger width of likewise 200 nm. The entire electrode structure is 100 micrometre times 100 micrometre, and the active electrode area is dictated by the opening in the passivation layer, that is defined by UV lithography. Here we report measurements of redox cycling of ferrocyanide by coupled cyclic voltammograms, where the potential at one of the working electrodes are varied and either an oxidising or reducing potential is applied to the complimentary interdigitated electrode. The measurements show fast conversion and high collection efficiency round 87% as expected for nano-interdigitated electrodes.

  7. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.

    Science.gov (United States)

    Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul

    2014-02-01

    A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Design and development of electrical impedance tomography system with 32 electrodes and microcontroller

    Science.gov (United States)

    Ansory, Achmad; Prajitno, Prawito; Wijaya, Sastra Kusuma

    2018-02-01

    Electrical Impedance Tomography (EIT) is an imaging method that is able to estimate electrical impedance distribution inside an object. This EIT system is developed by using 32 electrodes and microcontroller based module. From a pair of electrodes, sinusoidal current of 3 mA is injected and the voltage differences between other pairs of electrodes are measured. Voltage measurement data are then sent to MATLAB and EIDORS software; the data are used to reconstruct two dimensions image. The system can detect and determine the position of a phantom in the tank. The object's position is accurately reconstructed and determined with the average shifting of 0.69 cm but object's area cannot be accurately reconstructed. The object's image is more accurately reconstructed when the object is located near to electrodes, has a larger size, and when the current injected to the system has a frequency of 100 kHz or 200kHz.

  9. Mechanical fatigue resistance of an implantable branched lead system for a distributed set of longitudinal intrafascicular electrodes

    Science.gov (United States)

    Pena, A. E.; Kuntaegowdanahalli, S. S.; Abbas, J. J.; Patrick, J.; Horch, K. W.; Jung, R.

    2017-12-01

    Objective. A neural interface system has been developed that consists of an implantable stimulator/recorder can with a 15-electrode lead that trifurcates into three bundles of five individual wire longitudinal intrafascicular electrodes. This work evaluated the mechanical fatigue resistance of the branched lead and distributed electrode system under conditions designed to mimic anticipated strain profiles that would be observed after implantation in the human upper arm. Approach. Custom test setups and procedures were developed to apply linear or angular strain at four critical stress riser points on the lead and electrode system. Each test was performed to evaluate fatigue under a high repetition/low amplitude paradigm designed to test the effects of arm movement on the leads during activities such as walking, or under a low repetition/high amplitude paradigm designed to test the effects of more strenuous upper arm activities. The tests were performed on representative samples of the implantable lead system for human use. The specimens were fabricated using procedures equivalent to those that will be used during production of human-use implants. Electrical and visual inspections of all test specimens were performed before and after the testing procedures to assess lead integrity. Main results. Measurements obtained before and after applying repetitive strain indicated that all test specimens retained electrical continuity and that electrical impedance remained well below pre-specified thresholds for detection of breakage. Visual inspection under a microscope at 10×  magnification did not reveal any signs of damage to the wires or silicone sheathing at the stress riser points. Significance. These results demonstrate that the branched lead of this implantable neural interface system has sufficient mechanical fatigue resistance to withstand strain profiles anticipated when the system is implanted in an arm. The novel test setups and paradigms may be useful in

  10. Mechanical fatigue resistance of an implantable branched lead system for a distributed set of longitudinal intrafascicular electrodes.

    Science.gov (United States)

    Pena, A E; Kuntaegowdanahalli, S S; Abbas, J J; Patrick, J; Horch, K W; Jung, R

    2017-12-01

    A neural interface system has been developed that consists of an implantable stimulator/recorder can with a 15-electrode lead that trifurcates into three bundles of five individual wire longitudinal intrafascicular electrodes. This work evaluated the mechanical fatigue resistance of the branched lead and distributed electrode system under conditions designed to mimic anticipated strain profiles that would be observed after implantation in the human upper arm. Custom test setups and procedures were developed to apply linear or angular strain at four critical stress riser points on the lead and electrode system. Each test was performed to evaluate fatigue under a high repetition/low amplitude paradigm designed to test the effects of arm movement on the leads during activities such as walking, or under a low repetition/high amplitude paradigm designed to test the effects of more strenuous upper arm activities. The tests were performed on representative samples of the implantable lead system for human use. The specimens were fabricated using procedures equivalent to those that will be used during production of human-use implants. Electrical and visual inspections of all test specimens were performed before and after the testing procedures to assess lead integrity. Measurements obtained before and after applying repetitive strain indicated that all test specimens retained electrical continuity and that electrical impedance remained well below pre-specified thresholds for detection of breakage. Visual inspection under a microscope at 10×  magnification did not reveal any signs of damage to the wires or silicone sheathing at the stress riser points. These results demonstrate that the branched lead of this implantable neural interface system has sufficient mechanical fatigue resistance to withstand strain profiles anticipated when the system is implanted in an arm. The novel test setups and paradigms may be useful in testing other lead systems.

  11. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    International Nuclear Information System (INIS)

    Ponomarev, A V; Pedos, M S; Scherbinin, S V; Mamontov, Y I; Ponomarev, S V

    2015-01-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface. (paper)

  12. A new measurement method for electrode gain in an orthogonally symmetric beam position monitor

    International Nuclear Information System (INIS)

    Zou Junying; Wu Fangfang; Yang Yongliang; Sun Baogen; Zhou Zeran; Luo Qing; Lu Ping; Xu Hongliang

    2014-01-01

    The new beam position monitor (BPM) system of the injector at the upgrade project of the Hefei Light Source (HLS Ⅱ) has 19 stripline beam position monitors. Most consist of four orthogonally symmetric stripline electrodes. Differences in electronic gain and mismaching tolerance can cause changes in the beam response of the BPM electrodes. This variation will couple the two measured horizontal positions, resulting in measuring error. To alleviate this effect, a new technique to measure the relative response of the four electrodes has been developed. It is independent of the beam charge, and the related coefficient can be calculated theoretically. The effect of electrode coupling on this technique is analyzed. The calibration data is used to fit the gain for all 19 injector beam position monitors. The results show the standard deviation of the distribution of measured gains is about 5%. (authors)

  13. Diagnostics for the Biased Electrode Experiment on NSTX

    International Nuclear Information System (INIS)

    Roquemore, A.L.; Zweben, S.J.; Bush, C.E.; Kaita, R.; Marsalsa, R.J.; Maqueda, R.J.

    2009-01-01

    A linear array of four small biased electrodes was installed in NSTX in an attempt to control the width of the scrape-off layer (SOL) by creating a strong local poloidal electric field. The set of electrodes were separated poloidally by a 1 cm gap between electrodes and were located slightly below the midplane of NSTX, 1 cm behind the RF antenna and oriented so that each electrode is facing approximately normal to the magnetic field. Each electrode can be independently biased to ± 100 volts. Present power supplies limit the current on two electrodes to 30 amps the other two to 10 amps each. The effect of local biasing was measured with a set of Langmuir probes placed between the electrodes and another set extending radially outward from the electrodes, and also by the gas puff imaging diagnostic (GPI) located 1 m away along the magnetic field lines intersecting the electrodes. Two fast cameras were also aimed directly at the electrode array. The hardware and controls of the biasing experiment will be presented and the initial effects on local plasma parameters will be discussed

  14. Low Energy Desalination Using Battery Electrode Deionization

    KAUST Repository

    Kim, Taeyoung

    2017-09-21

    New electrochemical technologies that use capacitive or battery electrodes are being developed to minimize energy requirements for desalinating brackish waters. When a pair of electrodes is charged in capacitive deionization (CDI) systems, cations bind to the cathode and anions bind to the anode, but high applied voltages (>1.2 V) result in parasitic reactions and irreversible electrode oxidation. In the battery electrode deionization (BDI) system developed here, two identical copper hexacyanoferrate (CuHCF) battery electrodes were used that release and bind cations, with anion separation occurring via an anion exchange membrane. The system used an applied voltage of 0.6 V, which avoided parasitic reactions, achieved high electrode desalination capacities (up to 100 mg-NaCl/g-electrode, 50 mM NaCl influent), and consumed less energy than CDI. Simultaneous production of desalinated and concentrated solutions in two channels avoided a two-cycle approach needed for CDI. Stacking additional membranes between CuHCF electrodes (up to three anion and two cation exchange membranes) reduced energy consumption to only 0.02 kWh/m3 (approximately an order of magnitude lower than values reported for CDI), for an influent desalination similar to CDI (25 mM decreased to 17 mM). These results show that BDI could be effective as a very low energy method for brackish water desalination.

  15. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  16. Entropy as a measure of the noise extent in a two-level quantum feedback controlled system

    Institute of Scientific and Technical Information of China (English)

    Wang Tao-Bo; Fang Mao-Fa; Hu Yao-Hua

    2007-01-01

    By introducing the von Neumann entropy as a measure of the extent of noise, this paper discusses the entropy evolution in a two-level quantum feedback controlled system. The results show that the feedback control can induce the reduction of the degree of noise, and different control schemes exhibit different noise controlling ability, the extent of the reduction also related with the position of the target state on the Bloch sphere. It is shown that the evolution of entropy can provide a real time noise observation and a systematic guideline to make reasonable choice of control strategy.

  17. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  18. On the importance of electrode parameters for shaping electric field patterns generated by tDCS

    DEFF Research Database (Denmark)

    B. Saturnino, Guilherme; Antunes, André; Thielscher, Axel

    2015-01-01

    Transcranial direct current stimulation (tDCS) uses electrode pads placed on the head to deliver weak direct current to the brain and modulate neuronal excitability. The effects depend on the intensity and spatial distribution of the electric field. This in turn depends on the geometry and electric...... electrode modeling influences the calculated electric field in the brain. We take into account electrode shape, size, connector position and conductivities of different electrode materials (including saline solutions and electrode gels). These factors are systematically characterized to demonstrate...... their impact on the field distribution in the brain. The goals are to assess the effect of simplified electrode models; and to develop practical rules-of-thumb to achieve a stronger stimulation of the targeted brain regions underneath the electrode pads. We show that for standard rectangular electrode pads...

  19. Fabrication of 32Gb/s Electroabsorption Modulated Distributed Feedback Lasers by Selective Area Growth Technology

    International Nuclear Information System (INIS)

    Zhou Dai-Bing; Wang Hui-Tao; Zhang Rui-Kang; Wang Bao-Jun; Bian Jing; An Xin; Lu Dan; Zhao Ling-Juan; Zhu Hong-Liang; Ji Chen; Wang Wei

    2015-01-01

    A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13 mA. The output power exceeds 10 mW at 0 V bias when the injection current of the distributed feedback laser is 100 mA at 25°C. The side mode suppression ratio is over 50 dB. A 32Gb/s eye diagram is measured with a 3.5V pp nonreturn-to-zero pseudorandom modulation signal at −2.3 V bias. A clearly opening eyediagram with a dynamic extinction ratio of 8.01 dB is obtained. (paper)

  20. Dielectric sample with two-layer charge distribution for space charge calibration purposes

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Rasmussen, C.

    2002-01-01

    In the present paper is described a dielectric test sample with two very narrow concentrations of bulk charges, achieved by two internal electrodes not affecting the acoustical properties of the sample, a fact important for optimal application of most space charge measuring systems. Space charge...

  1. Feedback to Managers, Volume II: A Review and Comparison of Sixteen Multi-Rater Feedback Instruments.

    Science.gov (United States)

    Van Velsor, Ellen; Leslie, Jean Brittain

    "Feedback to Managers" is a two-volume report. Volume 2 compares 16 of the better feedback instruments available. The following are the instruments: (1) ACUMEN Group Feedback; (2) BENCHMARKS; (3) the Campbell Leadership Index; (4) COMPASS: the Managerial Practices Survey; (5) the Executive Success Profile; (6) Leader Behavior Analysis…

  2. Transient queue-size distribution in a finite-capacity queueing system with server breakdowns and Bernoulli feedback

    Science.gov (United States)

    Kempa, Wojciech M.

    2017-12-01

    A finite-capacity queueing system with server breakdowns is investigated, in which successive exponentially distributed failure-free times are followed by repair periods. After the processing a customer may either rejoin the queue (feedback) with probability q, or definitely leave the system with probability 1 - q. The system of integral equations for transient queue-size distribution, conditioned by the initial level of buffer saturation, is build. The solution of the corresponding system written for Laplace transforms is found using the linear algebraic approach. The considered queueing system can be successfully used in modelling production lines with machine failures, in which the parameter q may be considered as a typical fraction of items demanding corrections. Morever, this queueing model can be applied in the analysis of real TCP/IP performance, where q stands for the fraction of packets requiring retransmission.

  3. Feedback-Equivalence of Nonlinear Systems with Applications to Power System Equations.

    Science.gov (United States)

    Marino, Riccardo

    The key concept of the dissertation is feedback equivalence among systems affine in control. Feedback equivalence to linear systems in Brunovsky canonical form and the construction of the corresponding feedback transformation are used to: (i) design a nonlinear regulator for a detailed nonlinear model of a synchronous generator connected to an infinite bus; (ii) establish which power system network structures enjoy the feedback linearizability property and design a stabilizing control law for these networks with a constraint on the control space which comes from the use of d.c. lines. It is also shown that the feedback linearizability property allows the use of state feedback to contruct a linear controllable system with a positive definite linear Hamiltonian structure for the uncontrolled part if the state space is even; a stabilizing control law is derived for such systems. Feedback linearizability property is characterized by the involutivity of certain nested distributions for strongly accessible analytic systems; if the system is defined on a manifold M diffeomorphic to the Euclidean space, it is established that the set where the property holds is a submanifold open and dense in M. If an analytic output map is defined, a set of nested involutive distributions can be always defined and that allows the introduction of an observability property which is the dual concept, in some sense, to feedback linearizability: the goal is to investigate when a nonlinear system affine in control with an analytic output map is feedback equivalent to a linear controllable and observable system. Finally a nested involutive structure of distributions is shown to guarantee the existence of a state feedback that takes a nonlinear system affine in control to a single input one, both feedback equivalent to linear controllable systems, preserving one controlled vector field.

  4. Can performance feedback during instruction boost knowledge acquisition? Contrasting criterion-based and social comparison feedback

    NARCIS (Netherlands)

    Kolloffel, Bas Jan; de Jong, Anthonius J.M.

    2016-01-01

    Feedback indicating how well students are performing during a learning task can be very stimulating. In this study with a pre- and post-test design, the effects of two types of performance feedback on learning results were compared: feedback during a learning task was either stated in terms of how

  5. Carbon: The Ultimate Electrode Choice for Widely Distributed Polymer Solar Cells

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Roth, Bérenger; Madsen, Morten Vesterager

    2014-01-01

    -, indium tin oxide (ITO)-, and silver-free solar cells in a fully packaged form using only roll-to-roll processing is reported. Replacing silver with carbon as electrode material signifi cantly lowers the manufacturing cost and makes the organic photovoltaic (OPV) modules environmentally safe while...... retaining their fl exibility, active area effi ciency, and stability. The substitution of silver with carbon does not affect the roll-to-roll manufacturing of the modules and allows for the same fast printing and coating. The use of carbon as electrode material is one step closer to the wide release of low...

  6. Longitudinal feedback system for PEP

    International Nuclear Information System (INIS)

    Allen, M.A.; Cornacchia, M.; Millich, A.

    1979-02-01

    Whether the wide bandwidth longitudinal feedback system described in this paper is made to act on the individual modes in frequency domain or on the individual bunches in time domain, it represents a clean and efficient way of damping the longitudinal oscillations without influencing other beam parameters such as bunch shape or synchrotron frequency distribution. The frequency domain feedback presents the advantage of providing information on which modes are unstable and on their risetimes, which may be helpful in locating dangerous resonators in the ring

  7. Tunable organic distributed feedback dye laser device excited through Förster mechanism

    Science.gov (United States)

    Tsutsumi, Naoto; Hinode, Taiki

    2017-03-01

    Tunable organic distributed feedback (DFB) dye laser performances are re-investigated and characterized. The slab-type waveguide DFB device consists of air/active layer/glass substrate. Active layer consisted of tris(8-quinolinolato)aluminum (Alq3), 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye, and polystyrene (PS) matrix. Effective energy transfer from Alq3 to DCM through Förster mechanism enhances the laser emission. Slope efficiency in the range of 4.9 and 10% is observed at pump energy region higher than 0.10-0.15 mJ cm-2 (lower threshold), which is due to the amplified spontaneous emission (ASE) and lasing. Typical slope efficiency for lasing in the range of 2.0 and 3.0% is observed at pump energy region higher than 0.25-0.30 mJ cm-2 (higher threshold). The tuning wavelength for the laser emission is ranged from 620 to 645 nm depending on the ASE region.

  8. Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides

    Science.gov (United States)

    Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.

    2007-01-01

    Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers

  9. Physically transient photonics: random versus distributed feedback lasing based on nanoimprinted DNA.

    Science.gov (United States)

    Camposeo, Andrea; Del Carro, Pompilio; Persano, Luana; Cyprych, Konrad; Szukalski, Adam; Sznitko, Lech; Mysliwiec, Jaroslaw; Pisignano, Dario

    2014-10-28

    Room-temperature nanoimprinted, DNA-based distributed feedback (DFB) laser operation at 605 nm is reported. The laser is made of a pure DNA host matrix doped with gain dyes. At high excitation densities, the emission of the untextured dye-doped DNA films is characterized by a broad emission peak with an overall line width of 12 nm and superimposed narrow peaks, characteristic of random lasing. Moreover, direct patterning of the DNA films is demonstrated with a resolution down to 100 nm, enabling the realization of both surface-emitting and edge-emitting DFB lasers with a typical line width of <0.3 nm. The resulting emission is polarized, with a ratio between the TE- and TM-polarized intensities exceeding 30. In addition, the nanopatterned devices dissolve in water within less than 2 min. These results demonstrate the possibility of realizing various physically transient nanophotonics and laser architectures, including random lasing and nanoimprinted devices, based on natural biopolymers.

  10. A New Type of distributed Enamel based Clearing Electrode

    CERN Document Server

    Kroyer, T; Caspers, Friedhelm; Hellmond, P; Métral, E; Wendel, J C; Zimmermann, F

    2007-01-01

    Clearing electrodes can be used for electron cloud (EC) suppression in high intensity particle accelerators. In this paper the use of low and highly resistive layers on a dielectric substrate are examined. The beam coupling impedance of such a structure is evaluated. Furthermore the clearing efficiency as well as technological issues are discussed.

  11. Novel Reduced-Feedback Wireless Communication Systems

    KAUST Repository

    Shaqfeh, Mohammad Obaidah

    2011-11-20

    including fairness in resources distribution across the active terminals and distributed processing at the MAC layer level. In addition our scheme operates close to the upper capacity limits of achievable transmission rates over wireless links. We have also proposed another hybrid scheme that enables adjusting the feedback load flexibly based on rates requirements. We are currently investigating other novel ideas to design reduced-feedback communication systems.

  12. The evaluation of the polarization resistance in a tubular electrode and its application to the hydrogen electrode reaction

    International Nuclear Information System (INIS)

    Montero, M.A.; Marozzi, C.A.; Chialvo, M.R. Gennero de; Chialvo, A.C.

    2007-01-01

    An alternative method for the determination of the kinetic parameters involved in the elementary steps of the reaction mechanism of the hydrogen electrode reaction is proposed. It is based on the determination of the variation of the polarization resistance in a tubular platinum electrode with a laminar flow of electrolyte as a function of the activity of protons of the electrolyte solution. A theoretical expression that relates the experimental variables and the equilibrium polarization resistance is developed, which takes into account the current distribution along the electrode surface. The results are compared with others obtained previously, contributing to the verification of the kinetic mechanism through a completely different experimental procedure

  13. High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force

    International Nuclear Information System (INIS)

    Cranch, G A; Flockhart, G M H; Kirkendall, C K

    2009-01-01

    A low-frequency magnetic field sensor, based on a current-carrying beam driven by the Lorentzian force, is described. The amplitude of the oscillation is measured by a distributed-feedback fiber laser strain sensor attached to the beam. The transduction mechanism of the sensor is derived analytically using conventional beam theory, which is shown to accurately predict the responsivity of a prototype sensor. Excellent linearity and negligible hysteresis are demonstrated. Noise sources in the fiber laser strain sensor are described and thermo-mechanical noise in the transducer is estimated. The prototype sensor achieves a magnetic field resolution of 5 nT Hz for 25 mA of current, which is shown to be close to the predicted thermo-mechanical noise limit of the sensor. The current is supplied optically through a separate optical fiber yielding an electrically passive sensor head

  14. Reliable reference electrodes for lithium-ion batteries

    KAUST Repository

    La Mantia, F.

    2013-06-01

    Despite the high attention drawn to the lithium-ion batteries by the scientific and industrial community, most of the electrochemical characterization is carried out using poor reference electrodes or even no reference electrode. In this case, the performances of the active material are inaccurate, especially at high current densities. In this work we show the error committed in neglecting the polarizability of lithium counter electrodes, and we propose two reference electrodes to use in organic electrolytes based on lithium salts, namely Li4Ti5O12 and LiFePO 4. In particular, it was observed that, the polarizability of the metallic lithium counter electrode has a relevant stochastic component, which renders measurements at high current densities (above 1 mA·cm - 2) in two electrode cells non reproducible.

  15. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    Science.gov (United States)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  16. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte

    KAUST Repository

    Baby, Rakhi Raghavan; Nagaraju, Doddahalli H.; Beaujuge, Pierre; Alshareef, Husam N.

    2016-01-01

    VO2 is a low band-gap semiconductor with relatively high conductivity among transition metal oxides, which makes it an interesting material for supercapacitor electrode applications. The performance of VO2 as supercapacitor electrode in organic

  17. Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators.

    Science.gov (United States)

    Wang, Yue; Tsiminis, Georgios; Kanibolotsky, Alexander L; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A

    2013-06-17

    Organic semiconductor lasers were fabricated by UV-nanoimprint lithography with thresholds as low as 57 W/cm(2) under 4 ns pulsed operation. The nanoimprinted lasers employed mixed-order distributed feedback resonators, with second-order gratings surrounded by first-order gratings, combined with a light-emitting conjugated polymer. They were pumped by InGaN LEDs to produce green-emitting lasers, with thresholds of 208 W/cm(2) (102 nJ/pulse). These hybrid lasers incorporate a scalable UV-nanoimprint lithography process, compatible with high-performance LEDs, therefore we have demonstrated a coherent, compact, low-cost light source.

  18. Electrotactile EMG feedback improves the control of prosthesis grasping force

    Science.gov (United States)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario

    2016-10-01

    Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for

  19. Two Ti13-oxo-clusters showing non-compact structures, film electrode preparation and photocurrent properties.

    Science.gov (United States)

    Hou, Jin-Le; Luo, Wen; Wu, Yin-Yin; Su, Hu-Chao; Zhang, Guang-Lin; Zhu, Qin-Yu; Dai, Jie

    2015-12-14

    Two benzene dicarboxylate (BDC) and salicylate (SAL) substituted titanium-oxo-clusters, Ti13O10(o-BDC)4(SAL)4(O(i)Pr)16 (1) and Ti13O10(o-BDC)4(SAL-Cl)4(O(i)Pr)16 (2), are prepared by one step in situ solvothermal synthesis. Single crystal analysis shows that the two Ti13 clusters take a paddle arrangement with an S4 symmetry. The non-compact (non-sphere) structure is stabilized by the coordination of BDC and SAL. Film photoelectrodes are prepared by the wet coating process using the solution of the clusters and the photocurrent response properties of the electrodes are studied. It is found that the photocurrent density and photoresponsiveness of the electrodes are related to the number of coating layers and the annealing temperature. Using ligand coordinated titanium-oxo-clusters as the molecular precursors of TiO2 anatase films is found to be effective due to their high solubility, appropriate stability in solution and hence the easy controllability.

  20. Distributing Leadership for Sustainable Peer Feedback on Tertiary Teaching

    Science.gov (United States)

    Wingrove, Dallas; Clarke, Angela; Chester, Andrea

    2015-01-01

    A growing evidence-based literature supports the value of peer feedback as a positive professional learning activity that enhances confidence, builds collegial relationships and supports reflective practice. Less clear is how best to embed such programs in university practices. This paper describes a leadership approach developed to support the…

  1. Traders' strategy with price feedbacks in financial market

    OpenAIRE

    Mizuno, Takayuki; Nakano, Tohur; Takayasu, Misako; Takayasu, Hideki

    2003-01-01

    We introduce an autoregressive-type model of prices in financial market taking into account the self-modulation effect. We find that traders are mainly using strategies with weighted feedbacks of past prices. These feedbacks are responsible for the slow diffusion in short times, apparent trends and power law distribution of price changes.

  2. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging.

    Science.gov (United States)

    Amato, Mariana; Basso, Bruno; Celano, Giuseppe; Bitella, Giovanni; Morelli, Gianfranco; Rossi, Roberta

    2008-10-01

    Traditional methods for studying tree roots are destructive and labor intensive, but available nondestructive techniques are applicable only to small scale studies or are strongly limited by soil conditions and root size. Soil electrical resistivity measured by geoelectrical methods has the potential to detect belowground plant structures, but quantitative relationships of these measurements with root traits have not been assessed. We tested the ability of two-dimensional (2-D) DC resistivity tomography to detect the spatial variability of roots and to quantify their biomass in a tree stand. A high-resolution resistivity tomogram was generated along a 11.75 m transect under an Alnus glutinosa (L.) Gaertn. stand based on an alpha-Wenner configuration with 48 electrodes spaced 0.25 m apart. Data were processed by a 2-D finite-element inversion algorithm, and corrected for soil temperature. Data acquisition, inversion and imaging were completed in the field within 60 min. Root dry mass per unit soil volume (root mass density, RMD) was measured destructively on soil samples collected to a depth of 1.05 m. Soil sand, silt, clay and organic matter contents, electrical conductivity, water content and pH were measured on a subset of samples. The spatial pattern of soil resistivity closely matched the spatial distribution of RMD. Multiple linear regression showed that only RMD and soil water content were related to soil resistivity along the transect. Regression analysis of RMD against soil resistivity revealed a highly significant logistic relationship (n = 97), which was confirmed on a separate dataset (n = 67), showing that soil resistivity was quantitatively related to belowground tree root biomass. This relationship provides a basis for developing quick nondestructive methods for detecting root distribution and quantifying root biomass, as well as for optimizing sampling strategies for studying root-driven phenomena.

  3. Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer

    NARCIS (Netherlands)

    Hayton, D. J.; Khudchencko, A.; Pavelyev, D. G.; Hovenier, J. N.; Baryshev, A.; Gao, J. R.; Kao, T. Y.; Hu, Q.; Reno, J. L.; Vaks, V.

    2013-01-01

    We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60 dB is observed in the intermediate frequency

  4. Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer

    NARCIS (Netherlands)

    Hayton, D.J.; Khudchenko, A.; Pavelyev, D.G.; Hovenier, J.N.; Baryshev, A.; Gao, J.R.; Kao, T.Y.; Hu, Q.; Reno, J.L.; Vaks, V.

    2013-01-01

    We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60?dB is observed in the intermediate frequency

  5. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis

    Science.gov (United States)

    Schiefer, Matthew; Tan, Daniel; Sidek, Steven M.; Tyler, Dustin J.

    2016-02-01

    Objective. Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Approach. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject’s sense of embodiment with a survey and his self-confidence. Main results. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Significance. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.

  6. LHC beam stability and feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, Ralph

    2007-07-20

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a

  7. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    2002-09-17

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  8. Simulation of square wave voltammetry of three electrode reactions coupled by two reversible chemical reactions

    OpenAIRE

    Lovrić, Milivoj

    2017-01-01

    Three fast and reversible electrode reactions that are connected by two reversible chemical reactions that are permanently in the equilibrium are analysed theoretically for square wave voltammetry. The dependence of peak potentials on the dimensionless equilibrium constants of chemical reactions is calculated. The influence of the basic thermodynamic parameters on the square wave voltammetric responses is analysed.

  9. Bubble boundary estimation in an annulus two-phase flow using electrical impedance tomography

    International Nuclear Information System (INIS)

    Lee, Jeong Seong

    2008-02-01

    For the visualization of the phase boundary in an annulus two-phase flows, the electrical impedance tomography (EIT) technique is introduced. In EIT, a set of predetermined electrical currents is injected trough the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrode. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm. In this, the conductivity distribution corresponds to the phase distribution. In the application of EIT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers a bubble boundary estimation with EIT in an annulus two-phase flows. And in many industrial cases there are a priori known internal structures inside the vessels which could be used as internal electrodes in tomographical imaging. In this paper internal electrodes were considered in electrical impedance tomography. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. The UKF algorithm was formulated to be incorporate into the image reconstruction algorithm for the present problem. Also, phantom experiments have been conducted to evaluate the improvement by UKF

  10. Can Performance Feedback during Instruction Boost Knowledge Acquisition? Contrasting Criterion-Based and Social Comparison Feedback

    Science.gov (United States)

    Kollöffel, Bas; de Jong, Ton

    2016-01-01

    Feedback indicating how well students are performing during a learning task can be very stimulating. In this study with a pre- and post-test design, the effects of two types of performance feedback on learning results were compared: feedback during a learning task was either stated in terms of how well the students were performing relative to…

  11. CW Performance of an InGaAs-GaAs-AlGaAs Laterally-Coupled Distributed Feedback (LC-DFB) Ridge Laser Diode

    Science.gov (United States)

    Martin, R. D.; Forouhar, S.; Keo, S.; Lang, R. J.; Hunsperger, R. G.; Tiberio, R. C.; Chapman, P. F.

    1995-01-01

    Single-mode distributed feedback (DFB) laser diodes typically require a two-step epitaxial growth or use of a corrugated substrate. We demonstrate InGaAs-GaAs-AlGaAs DFB lasers fabricated from a single epitaxial growth using lateral evanescent coupling of the optical field to a surface grating etehed along the sides of the ridge. A CW threshold current of 25 mA and external quantum efficiency of 0.48 mW/mA per facet were measured for a 1 mm cavity length device with anti-reflection coated facets. Single-mode output powers as high as 11 mW per facet at 935 nm wavelength were attained. A coupling coefficient of at least 5.8/cm was calculated from the subthreshold spectrum taking into account the 2% residual facet reflectivity.

  12. Scheduling for Multiuser MIMO Downlink Channels with Ranking-Based Feedback

    Science.gov (United States)

    Kountouris, Marios; Sälzer, Thomas; Gesbert, David

    2008-12-01

    We consider a multi-antenna broadcast channel with more single-antenna receivers than transmit antennas and partial channel state information at the transmitter (CSIT). We propose a novel type of CSIT representation for the purpose of user selection, coined as ranking-based feedback. Each user calculates and feeds back the rank, an integer between 1 and W + 1, of its instantaneous channel quality information (CQI) among a set of W past CQI measurements. Apart from reducing significantly the required feedback load, ranking-based feedback enables the transmitter to select users that are on the highest peak (quantile) with respect to their own channel distribution, independently of the distribution of other users. It can also be shown that this feedback metric can restore temporal fairness in heterogeneous networks, in which users' channels are not identically distributed and mobile terminals experience different average signal-to-noise ratio (SNR). The performance of a system that performs user selection using ranking-based CSIT in the context of random opportunistic beamforming is analyzed, and we provide design guidelines on the number of required past CSIT samples and the impact of finite W on average throughput. Simulation results show that feedback reduction of order of 40-50% can be achieved with negligible decrease in system throughput.

  13. Boundary element analysis of the directional sensitivity of the concentric EMG electrode.

    Science.gov (United States)

    Henneberg, K A; Plonsey, R

    1993-07-01

    Assessment of the motor unit architecture based on concentric electrode motor unit potentials requires a thorough understanding of the recording characteristics of the concentric EMG electrode. Previous simulation studies have attempted to include the effect of EMG electrodes on the recorded waveforms by uniformly averaging the tissue potential at the coordinates of one- or two-dimensional electrode models. By employing the boundary element method, this paper improves earlier models of the concentric EMG electrode by including an accurate geometric representation of the electrode, as well as the mutual electrical influence between the electrode surfaces. A three-dimensional sensitivity function is defined from which information about the preferential direction of sensitivity, blind spots, phase changes, rate of attenuation, and range of pick-up radius can be derived. The study focuses on the intrinsic features linked to the geometry of the electrode. The results show that the cannula perturbs the potential distribution significantly. The core and the cannula electrodes measure potentials of the same order of magnitude in all of the pick-up range, except adjacent to the central wire, where the latter dominates the sensitivity function. The preferential directions of sensitivity are determined by the amount of geometric offset between the individual sensitivity functions of the core and the cannula. The sensitivity function also reveals a complicated pattern of phase changes in the pick-up range. Potentials from fibers located behind the tip or along the cannula are recorded with reversed polarity compared to those located in front of the tip. Rotation of the electrode about its axis was found to alter the duration, the peak-to-peak amplitude, and the rise time of waveforms recorded from a moving dipole.

  14. Researches on Position Detection for Vacuum Switch Electrode

    Science.gov (United States)

    Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan

    2018-03-01

    Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.

  15. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  16. Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes

    International Nuclear Information System (INIS)

    Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui

    2016-01-01

    By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 10"4 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios. - Highlights: • The rectification properties of triangular Graphene nanoflakes are investigated. • The rectifying performance can be optimized by changing the width of the right arm-chaired GNR electrode. • The rectifying performance can also be tuned by varying the number of anchoring carbon atomic chains.

  17. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  18. Simulation model for transcervical laryngeal injection providing real-time feedback.

    Science.gov (United States)

    Ainsworth, Tiffiny A; Kobler, James B; Loan, Gregory J; Burns, James A

    2014-12-01

    This study aimed to develop and evaluate a model for teaching transcervical laryngeal injections. A 3-dimensional printer was used to create a laryngotracheal framework based on de-identified computed tomography images of a human larynx. The arytenoid cartilages and intrinsic laryngeal musculature were created in silicone from clay casts and thermoplastic molds. The thyroarytenoid (TA) muscle was created with electrically conductive silicone using metallic filaments embedded in silicone. Wires connected TA muscles to an electrical circuit incorporating a cell phone and speaker. A needle electrode completed the circuit when inserted in the TA during simulated injection, providing real-time feedback of successful needle placement by producing an audible sound. Face validation by the senior author confirmed appropriate tactile feedback and anatomical realism. Otolaryngologists pilot tested the model and completed presimulation and postsimulation questionnaires. The high-fidelity simulation model provided tactile and audio feedback during needle placement, simulating transcervical vocal fold injections. Otolaryngology residents demonstrated higher comfort levels with transcervical thyroarytenoid injection on postsimulation questionnaires. This is the first study to describe a simulator for developing transcervical vocal fold injection skills. The model provides real-time tactile and auditory feedback that aids in skill acquisition. Otolaryngologists reported increased confidence with transcervical injection after using the simulator. © The Author(s) 2014.

  19. A study on M/G/1 retrial G - queue with two phases of service, immediate feedback and working vacations

    Science.gov (United States)

    Varalakshmi, M.; Chandrasekaran, V. M.; Saravanarajan, M. C.

    2017-11-01

    In this paper, we discuss about the steady state behaviour of M/G/1 retrial queueing system with two phases of services and immediate feedbacks under working vacation policy where the regular busy server is affected due to the arrival of negative customers. Upon arrival if the customer finds the server busy, breakdown or on working vacation it enters an orbit; otherwise the customer enters into the service area immediately. After service completion, the customer is allowed to make finite number of immediate feedback. The feedback service also consists of two phases. At the service completion epoch of a positive customer, if the orbit is empty the server goes for a working vacation. The server works at a lower service rate during working vacation (WV) period. Using the supplementary variable technique, we found out the steady state probability generating function for the system and in orbit. System performance measures and reliability measures are discussed. Finally, some numerical examples are presented to validate the analyticalresults.

  20. Storage-battery electrodes. [preparation

    Energy Technology Data Exchange (ETDEWEB)

    1961-12-29

    Two incompatible thermoplastic resins are mixed with a powdered electrochemical active substance. The substance may be, for example, an oxide of cadmium, iron, lead, or zinc or nickel hydroxide. After the mixture is shaped into elements which are inserted into conducting sheaths for an electrode, the one resin is washed out to form a porous electrode. (RWR)

  1. Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode

    International Nuclear Information System (INIS)

    Zhang, Ya; Zheng, Jian Bin

    2007-01-01

    Ionic liquid, 1-heptyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6 ), has been used to fabricate two new electrodes, carbon ionic liquid electrode (CILE) and ionic liquid modified carbon paste electrode (IL/CPE), using graphite powder mixed with HMIMPF 6 or the mixture of HMIMPF 6 /paraffin liquid as the binder, respectively. The electrochemical behaviors of hydroquinone at the CILE, the IL/CPE and the CPE were investigated in phosphate buffer solution. At all these electrodes, hydroquinone showed a pair of redox peaks. The order of the current response and the standard rate constant of hydroquinone at these electrodes were as follows: CILE > IL/CPE > CPE, while the peak-to-peak potential separation was in an opposite sequence: CILE < IL/CPE < CPE. The results show the superiority of CILE to IL/CPE and CPE, and IL/CPE to CPE in terms of promoting electron transfer, improving reversibility and enhancing sensitivity. The CILE was chosen as working electrode to determine hydroquinone by differential pulse voltammetry, which can be used for sensitive, simple and rapid determination of hydroquinone in medicated skin cosmetic cream

  2. Feedback Gating Control for Network Based on Macroscopic Fundamental Diagram

    Directory of Open Access Journals (Sweden)

    YangBeibei Ji

    2016-01-01

    Full Text Available Empirical data from Yokohama, Japan, showed that a macroscopic fundamental diagram (MFD of urban traffic provides for different network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow. This provides new tools for network congestion control. Based on MFD, this paper proposed a feedback gating control policy which can be used to mitigate network congestion by adjusting signal timings of gating intersections. The objective of the feedback gating control model is to maximize the outflow and distribute the allowed inflows properly according to external demand and capacity of each gating intersection. An example network is used to test the performance of proposed feedback gating control model. Two types of background signalization types for the intersections within the test network, fixed-time and actuated control, are considered. The results of extensive simulation validate that the proposed feedback gating control model can get a Pareto improvement since the performance of both gating intersections and the whole network can be improved significantly especially under heavy demand situations. The inflows and outflows can be improved to a higher level, and the delay and queue length at all gating intersections are decreased dramatically.

  3. Discrete-time retrial queue with Bernoulli vacation, preemptive resume and feedback customers

    Directory of Open Access Journals (Sweden)

    Peishu Chen

    2015-09-01

    Full Text Available Purpose: We consider a discrete-time Geo/G/1 retrial queue where the retrial time follows a general distribution, the server subject to Bernoulli vacation policy and the customer has preemptive resume priority, Bernoulli feedback strategy. The main purpose of this paper is to derive the generating functions of the stationary distribution of the system state, the orbit size and some important performance measures. Design/methodology: Using probability generating function technique, some valuable and interesting performance measures of the system are obtained. We also investigate two stochastic decomposition laws and present some numerical results. Findings: We obtain the probability generating functions of the system state distribution as well as those of the orbit size and the system size distributions. We also obtain some analytical expressions for various performance measures such as idle and busy probabilities, mean orbit and system sizes. Originality/value: The analysis of discrete-time retrial queues with Bernoulli vacation, preemptive resume and feedback customers is interesting and to the best of our knowledge, no other scientific journal paper has dealt with this question. This fact gives the reason why efforts should be taken to plug this gap.

  4. Analysis of low-pressure dc breakdown in nitrogen between two spherical iron electrodes

    International Nuclear Information System (INIS)

    Pejovic, Momcilo M.; Nesic, Nikola T.; Pejovic, Milic M.

    2006-01-01

    The influence of afterglow period τ, voltage increase rate k, and electrode gap d on breakdown voltage U b for a nitrogen-filled tube with spherical electrodes of diameter D>>d and p=6.5 mbar has been investigated. The data for the breakdown voltage were obtained for the case when there is a presence of N( 4 S) atoms, which release secondary electrons via recombination on the cathode. By fitting the experimental data of breakdown voltage mean values as a function of the voltage increase rate, the static breakdown voltages for afterglow periods of 15 and 100 s were estimated. The electrical field as a function of the electrode gap using breakdown voltage mean values was also determined. It is shown that experimental results of the breakdown voltage mean value as a function of pd in the interval of d from 0.82 to 1.62 mm can be very well described with Paschen's law, valid for the case of parallel-plate electrodes

  5. Perceiving haptic feedback in virtual reality simulators.

    Science.gov (United States)

    Våpenstad, Cecilie; Hofstad, Erlend Fagertun; Langø, Thomas; Mårvik, Ronald; Chmarra, Magdalena Karolina

    2013-07-01

    To improve patient safety, training of psychomotor laparoscopic skills is often done on virtual reality (VR) simulators outside the operating room. Haptic sensations have been found to influence psychomotor performance in laparoscopy. The emulation of haptic feedback is thus an important aspect of VR simulation. Some VR simulators try to simulate these sensations with handles equipped with haptic feedback. We conducted a survey on how laparoscopic surgeons perceive handles with and without haptic feedback. Surgeons with different levels of experience in laparoscopy were asked to test two handles: Xitact IHP with haptic feedback and Xitact ITP without haptic feedback (Mentice AB, Gothenburg, Sweden), connected to the LapSim (Surgical Science AB, Sweden) VR simulator. They performed two tasks on the simulator before answering 12 questions regarding the two handles. The surgeons were not informed about the differences in the handles. A total of 85 % of the 20 surgeons who participated in the survey claimed that it is important that handles with haptic feedback feel realistic. Ninety percent of the surgeons preferred the handles without haptic feedback. The friction in the handles with haptic feedback was perceived to be as in reality (5 %) or too high (95 %). Regarding the handles without haptic feedback, the friction was perceived as in reality (45 %), too low (50 %), or too high (5 %). A total of 85 % of the surgeons thought that the handle with haptic feedback attempts to simulate the resistance offered by tissue to deformation. Ten percent thought that the handle succeeds in doing so. The surveyed surgeons believe that haptic feedback is an important feature on VR simulators; however, they preferred the handles without haptic feedback because they perceived the handles with haptic feedback to add additional friction, making them unrealistic and not mechanically transparent.

  6. Global climate feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  7. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment

    OpenAIRE

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environme...

  8. Voltammetry and Electrocatalysis of Achrornobacter Xylosoxidans Copper Nitrite Reductase on Functionalized Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Welinder, Anna C.; Zhang, Jingdong; Hansen, Allan G.

    2007-01-01

    A long-standing issue in protein film voltammetry (PFV), particularly electrocatalytic voltammetry of redox enzyme monolayers, is the variability of protein adsorption modes, reflected in distributions of catalytic activity of the adsorbed protein/enzyme molecules. Use of well-defined, atomically...... planar electrode surfaces is a step towards the resolution of this central issue. We report here the voltammetry of copper nitrite reductase (CNiR, Achromobacter xylosoxidons) on Au(111)-electrode surfaces modified by monolayers of a broad variety of thiol-based linker molecules. These represent......NiR thus shows highly efficient, close to ideal reversible electrocatalytic voltammetry on cysteamine-covered Au(111)-electrode surfaces, most likely due to two cysteamine orientations previously disclosed by in situ scanning tunnelling microscopy. Such a dual orientation exposes both a hydrophobic...

  9. Distributed-feedback single heterojunction GaAs diode laser

    International Nuclear Information System (INIS)

    Scifres, D.R.; Burnham, R.D.; Streifer, W.

    1974-01-01

    Laser operation of single-heterojunction GaAl As/GaAs diode lasers using a periodic structure within the gain medium of the device, thereby obviating the need for carefully cleaved end crystal faces to produce feedback, is reported. By varying the grating period, wavelengths from 8430 to 8560 A were observed. The threshold current densities were of the same order as for normal single heterojunction diode lasers. Some advantages in output wavelengths were observed over lasers with cleared faces. (U.S.)

  10. Graphene oxide-mediated electrochemistry of glucose oxidase on glassy carbon electrodes.

    Science.gov (United States)

    Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Glucose oxidase (GOD) was immobilized on glassy carbon electrodes in the presence of graphene oxide (GO) as a model system for the interaction between GO and biological molecules. Lyotropic properties of didodecyldimethylammonium bromide (DDAB) were used to stabilize the enzymatic layer on the electrode surface resulting in a markedly improved electrochemical response of the immobilized GOD. Transmission electron microscopy images of the GO with DDAB confirmed the distribution of the GO in a two-dimensional manner as a foil-like material. Although it is known that glassy carbon surfaces are not ideal for hydrogen peroxide detection, successful chronoamperometric titrations of the GOD in the presence of GO with β-d-glucose were performed on glassy carbon electrodes, whereas no current response was detected upon β-d-glucose addition in the absence of GO. The GOD-DDAB-GO system displayed a high turnover efficiency and substrate affinity as a glucose biosensor. The simplicity and ease of the electrode preparation procedure of this GO/DDAB system make it a good candidate for immobilizing other biomolecules for fabrication of amperometric biosensors. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  11. Experimental investigation of cathode spots and plasma jets behavior subjected to two kinds of axial magnetic field electrodes

    International Nuclear Information System (INIS)

    Wang, Lijun; Deng, Jie; Zhou, Xin; Jia, Shenli; Qian, Zhonghao; Shi, Zongqian

    2016-01-01

    In this paper, cathode spot plasma jet (CSPJ) rotation and cathode spots behavior subjected to two kinds of large diameter axial magnetic field (AMF) electrode (cup-shaped and coil-shaped) are studied and analyzed based on experiments. The influence of gap distances on the CSPJ rotational behavior is analyzed. Experimental results show that CSPJ rotational phenomena extensively exist in the vacuum interrupters, and CSPJ rotational direction is along the direction of composite magnetic field (mainly the combination of the axial and azimuthal components). For coil-shaped and cup-shaped AMF electrodes, the rotational or inclination phenomena before the current peak value are much more significant than that after current peak value (for the same arc current), which is related to the larger ratio of azimuthal magnetic field B_t and AMF B_z (B_t/B_z). With the increase of the gap distance, the AMF strength decreases, when the arc current is kept as constant, the azimuthal magnetic field is kept invariable, the ratio between azimuthal magnetic field and AMF is increased, which results in the increase of rotational effect. For cathode spots motion, compared with cup-shaped electrode, coil-shaped electrode has the inverse AMF direction. The Robson drift direction of cathode spots of coil-shaped electrode is opposite to that of cup-shaped electrode. With the increase of gap distance, the Robson angle is decreased, which is associated with the reduced AMF strength. Erosion imprints of anode and cathode are also related to the CSPJ rotational phenomena and cathode spots behavior. The noise of arc voltage in the initial arcing stage is related to the weaker AMF.

  12. Experimental investigation of cathode spots and plasma jets behavior subjected to two kinds of axial magnetic field electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijun; Deng, Jie; Zhou, Xin; Jia, Shenli; Qian, Zhonghao; Shi, Zongqian [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-04-15

    In this paper, cathode spot plasma jet (CSPJ) rotation and cathode spots behavior subjected to two kinds of large diameter axial magnetic field (AMF) electrode (cup-shaped and coil-shaped) are studied and analyzed based on experiments. The influence of gap distances on the CSPJ rotational behavior is analyzed. Experimental results show that CSPJ rotational phenomena extensively exist in the vacuum interrupters, and CSPJ rotational direction is along the direction of composite magnetic field (mainly the combination of the axial and azimuthal components). For coil-shaped and cup-shaped AMF electrodes, the rotational or inclination phenomena before the current peak value are much more significant than that after current peak value (for the same arc current), which is related to the larger ratio of azimuthal magnetic field B{sub t} and AMF B{sub z} (B{sub t}/B{sub z}). With the increase of the gap distance, the AMF strength decreases, when the arc current is kept as constant, the azimuthal magnetic field is kept invariable, the ratio between azimuthal magnetic field and AMF is increased, which results in the increase of rotational effect. For cathode spots motion, compared with cup-shaped electrode, coil-shaped electrode has the inverse AMF direction. The Robson drift direction of cathode spots of coil-shaped electrode is opposite to that of cup-shaped electrode. With the increase of gap distance, the Robson angle is decreased, which is associated with the reduced AMF strength. Erosion imprints of anode and cathode are also related to the CSPJ rotational phenomena and cathode spots behavior. The noise of arc voltage in the initial arcing stage is related to the weaker AMF.

  13. Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Fu, Y.; Bazant, M.Z.

    2012-01-01

    We present porous electrode theory for the general situation of electrolytes containing mixtures of mobile ions of arbitrary valencies and diffusion coefficients (mobilities). We focus on electrodes composed of primary particles that are porous themselves. The predominantly bimodal distribution of

  14. GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)

    Science.gov (United States)

    Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.

    2017-02-01

    GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.

  15. [A Methane Detection System Using Distributed Feedback Laser at 1 654 nm].

    Science.gov (United States)

    Li, Bin; Liu, Hui-fang; He, Qi-xin; Zhai, Bing; Pan, Jiao-qing; Zheng, Chuan-tao; Wang, Yi-ding

    2016-01-01

    A methane (CH4) detection system based on tunable diode laser absorption spectroscopy (TDLAS) technique was experimentally demonstrated. A distributed feedback (DFB) laser around 1 654 nm, an open reflective sensing probe and two InGaAs photodiodes were adopted in the system. The electrical part of the system mainly includes the laser temperature control & modulation module and the orthogonal lock-in amplifier module. Temperature and spectrum tests on the DFB laser indicate that, the laser temperature fluctuation can be limited to the range of -0.02-0.02 degrees C, the laser's emitting wavelength varies linearly with the temperature and injection current, and also good operation stability of the laser was observed through experiments. Under a constant working temperature, the center wavelength of the laser is varied linearly by adjusting the driving current. Meanwhile, a 5 kHz sine wave signal and a 10 Hz saw wave signal were provided by the driving circuit for the harmonic extraction purpose. The developed orthogonal lock-in amplifier can extract the If and 2f harmonic signals with the extraction error of 3.55% and 5% respectively. By using the open optical probe, the effective optical pass length was doubled to 40 cm. Gas detection experiment was performed to derive the relation between the harmonic amplitude and the gas concentration. As the concentration increases from 1% to 5%, the amplitudes of the 1f harmonic and the 2f harmonic signal were obtained, and good linear ration between the concentration and the amplitude ratio was observed, which proves the normal function of the developed detection system. This system is capable to detect other trace gases by using relevant DFB lasers.

  16. Dye laser with distributed feedback and with pumping by copper-vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    An experimental study was made for determining the characteristics of dye lasers with distributed feedback, not requiring intricate resonator structures, and the feasibility of their pumping with radiation from a metal-vapor laser. The experiments were performed with five different dyes lasing in the yellow-red (510.6 - 578.2 nm) range of the spectrum: rhodamine 110, 6G, S and ocazine 17,1 in ethyl alcohol solution. The optical equipment included a copper-vapor pumping laser with the gas-discharge tube inside a telescopic resonator of the unstable type. Pumping pulses of 20 ns duration were generated at 510.6 and 578.2 nm wavelengths and a 4 kHz repetition rate. The pumping power was varied by means of an interference filter smoothly adjustable through rotation. The pumping laser beam was focused by a cylindrical lens on the dye cell. At optimum dye concentrations, corresponding to a maximum attainable emission power, dye concentrate was added into the circulation system for determining the dependence of the pumping threshold power on the dye concentration. Also measured were the dependence of the emission efficiency on the pumping power and the tuning range of each dye laser. The efficiency was found to remain constant over the pumping power range from threshold level to eight times higher level. The results reveal different angles of laser beam divergence in the vertical plane and in the horizontal plane, the divergence angle being four times larger in the vertical plane. The conversion efficiency increased, without significant changes in spectral characteristics, with a single annular reflector instead of two reflectors. 9 references, 4 figures, 1 table.

  17. Improved passive shunt vibration control of smart piezo-elastic beams using modal piezoelectric transducers with shaped electrodes

    International Nuclear Information System (INIS)

    Vasques, C M A

    2012-01-01

    Modal control and spatial filtering technologies for mitigation of vibration and/or structural acoustics radiation may be achieved through the use of distributed modal piezoelectric transducers with properly shaped electrodes. This approach filters out undesirable and uncontrollable modes over the bandwidth of interest in order to increase the robustness and stability of the controlled structural system, and may also yield higher values of the generalized modal electromechanical coupling coefficient, which is an important design parameter for achieving efficient passive shunt damping design. In this paper the improvements in passive shunt damping performance when using modal piezoelectric transducers with shaped electrodes are investigated for a two-layered resonant-shunted piezo-elastic smart beam structure. An electromechanical one-dimensional equivalent single-layer Euler–Bernoulli analytical model of two-layered smart piezo-elastic beams with arbitrary spatially shaped electrodes is established for modal and uniform electrode designs. The model is verified and validated by comparison with a one-dimensional discrete-layer (layerwise) finite element model, the damping performance of the shunted smart beam with shaped electrodes is investigated and assessed in terms of the generalized electromechanical coupling coefficient and frequency responses obtained when considering uniform and modally shaped electrodes and the underlying improved performance and advantages are assessed and discussed. (paper)

  18. GIVING AND RECEIVING CONSTRUCTIVE FEEDBACK

    Directory of Open Access Journals (Sweden)

    Ірина Олійник

    2015-05-01

    Full Text Available The article scrutinizes the notion of feedback applicable in classrooms where team teaching is provided. The experience of giving and receiving feedback has been a good practice in cooperation between a U.S. Peace Corps volunteer and a Ukrainian counterpart. Giving and receiving feedback is an effective means of classroom observation that provides better insight into the process of teaching a foreign language. The article discusses the stages of feedback and explicates the notion of sharing experience between two teachers working simultaneously in the same classroom. The guidelines for giving and receiving feedback have been provided as well as the most commonly used vocabulary items have been listed. It has been proved that mutual feedback leads to improving teaching methods and using various teaching styles and techniques.

  19. Electrode design for soil decontamination with Radio-Frequency heating

    Energy Technology Data Exchange (ETDEWEB)

    Roland, U.; Holzer, F.; Kraus, M.; Trommler, U.; Kopinke, F.D. [Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Leipzig (Germany)

    2011-10-15

    Radio-frequency heating to enhance soil decontamination requires adjusted solutions for the electrode design depending on scale and remediation technique. Parallel plate electrodes provide widely homogeneous field and temperature distributions and are, therefore, most suitable for supporting biodegradation processes. For thermally enhanced soil vapor extraction, certain temperature gradients can be accepted and, therefore, the less-demanding geometry of rod-shaped electrodes is usually applied. For electrode lengths of some meters, a design with an air gap has to be used in order to focus heating to the desired depth. Perforated rod electrodes may be simultaneously employed as extraction wells. Placing an oxidation catalyst in situ within the electrodes is an option for handling of highly loaded air flows. Coaxial antenna may be utilized to selectively heat soil compartments far from the surface of the soil. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Quasideterministic generation of maximally entangled states of two mesoscopic atomic ensembles by adiabatic quantum feedback

    International Nuclear Information System (INIS)

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio; Vitali, David

    2005-01-01

    We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses

  1. Effects of two types of intra-team feedback on developing a shared mental model in Command & Control teams

    NARCIS (Netherlands)

    Rasker, P.C.; Post, W.M.; Schraagen, J.M.C.

    2000-01-01

    In two studies, the effect of two types of intra-team feedback on developing a shared mental model in Command & Control teams was investigated. A distinction is made between performance monitoring and team self-correction. Performance monitoring is the ability of team members to monitor each other's

  2. Feedback in LT codes for prioritized and non-prioritized data

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Popovski, Petar; Østergaard, Jan

    2012-01-01

    In this paper feedback in LT codes is investigated. The considered type of feedback is acknowledgments, where information on which symbols have been decoded is given to the transmitter. Our analysis reveals that acknowledgments has a very low potential in LT codes with standard degree distributions....... Motivated by this, we analyze the impact of acknowledgments on multi-layer LT codes. In this case, feedback proves advantageous. By using only a single feedback message, it is possible to achieve a significant performance improvement compared to traditional LT codes....

  3. Determination of corrosion rate of reinforcement with a modulated guard ring electrode; analysis of errors due to lateral current distribution

    International Nuclear Information System (INIS)

    Wojtas, H.

    2004-01-01

    The main source of errors in measuring the corrosion rate of rebars on site is a non-uniform current distribution between the small counter electrode (CE) on the concrete surface and the large rebar network. Guard ring electrodes (GEs) are used in an attempt to confine the excitation current within a defined area. In order to better understand the functioning of modulated guard ring electrode and to assess its effectiveness in eliminating errors due to lateral spread of current signal from the small CE, measurements of the polarisation resistance performed on a concrete beam have been numerically simulated. Effect of parameters such as rebar corrosion activity, concrete resistivity, concrete cover depth and size of the corroding area on errors in the estimation of polarisation resistance of a single rebar has been examined. The results indicate that modulated GE arrangement fails to confine the lateral spread of the CE current within a constant area. Using the constant diameter of confinement for the calculation of corrosion rate may lead to serious errors when test conditions change. When high corrosion activity of rebar and/or local corrosion occur, the use of the modulated GE confinement may lead to significant underestimation of the corrosion rate

  4. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2016-09-01

    Full Text Available A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS instrumentation, based on a distributed feedback (DFB diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN. The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz, followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS can be swiftly performed down to a limit of detection (LOD (1σ of 4 × 10−6, which opens up a number of new applications.

  5. Alpha-contingent EEG feedback reduces SPECT rCBF variability

    DEFF Research Database (Denmark)

    McLaughlin, Thomas; Steinberg, Bruce; Mulholland, Thomas

    2005-01-01

    EEG feedback methods, which link the occurrence of alpha to the presentation of repeated visual stimuli, reduce the relative variability of subsequent, alpha-blocking event durations. The temporal association between electro-cortical field activation and regional cerebral blood flow (rCBF) led us...... to investigate whether the reduced variability of alpha-blocking durations with feedback is associated with a reduction in rCBF variability. Reduced variability in the rCBF response domain under EEG feedback control might have methodological implications for future brain-imaging studies. Visual stimuli were...... to quantify the variance-reducing effects of ACS across multiple, distributed areas of the brain. Both EEG and rCBF measures demonstrated decreased variability under ACS. This improved control was seen for localized as well as anatomically distributed rCBF measures....

  6. Compressive Sensing for Feedback Reduction in Wireless Multiuser Networks

    KAUST Repository

    Elkhalil, Khalil

    2015-05-01

    User/relay selection is a simple technique that achieves spatial diversity in multiuser networks. However, for user/relay selection algorithms to make a selection decision, channel state information (CSI) from all cooperating users/relays is usually required at a central node. This requirement poses two important challenges. Firstly, CSI acquisition generates a great deal of feedback overhead (air-time) that could result in significant transmission delays. Secondly, the fed-back channel information is usually corrupted by additive noise. This could lead to transmission outages if the central node selects the set of cooperating relays based on inaccurate feedback information. Motivated by the aforementioned challenges, we propose a limited feedback user/relay selection scheme that is based on the theory of compressed sensing. Firstly, we introduce a limited feedback relay selection algorithm for a multicast relay network. The proposed algorithm exploits the theory of compressive sensing to first obtain the identity of the “strong” relays with limited feedback air-time. Following that, the CSI of the selected relays is estimated using minimum mean square error estimation without any additional feedback. To minimize the effect of noise on the fed-back CSI, we introduce a back-off strategy that optimally backs-off on the noisy received CSI. In the second part of the thesis, we propose a feedback reduction scheme for full-duplex relay-aided multiuser networks. The proposed scheme permits the base station (BS) to obtain channel state information (CSI) from a subset of strong users under substantially reduced feedback overhead. More specifically, we cast the problem of user identification and CSI estimation as a block sparse signal recovery problem in compressive sensing (CS). Using existing CS block recovery algorithms, we first obtain the identity of the strong users and then estimate their CSI using the best linear unbiased estimator (BLUE). Moreover, we derive the

  7. Modeling of Changing Electrode Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, Geoffrey Allen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1980-12-01

    A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

  8. The evaluation of enhanced feedback interventions to reduce unnecessary blood transfusions (AFFINITIE): protocol for two linked cluster randomised factorial controlled trials.

    Science.gov (United States)

    Hartley, Suzanne; Foy, Robbie; Walwyn, Rebecca E A; Cicero, Robert; Farrin, Amanda J; Francis, Jill J; Lorencatto, Fabiana; Gould, Natalie J; Grant-Casey, John; Grimshaw, Jeremy M; Glidewell, Liz; Michie, Susan; Morris, Stephen; Stanworth, Simon J

    2017-07-03

    Blood for transfusion is a frequently used clinical intervention, and is also a costly and limited resource with risks. Many transfusions are given to stable and non-bleeding patients despite no clear evidence of benefit from clinical studies. Audit and feedback (A&F) is widely used to improve the quality of healthcare, including appropriate use of blood. However, its effects are often inconsistent, indicating the need for coordinated research including more head-to-head trials comparing different ways of delivering feedback. A programmatic series of research projects, termed the 'Audit and Feedback INterventions to Increase evidence-based Transfusion practIcE' (AFFINITIE) programme, aims to test different ways of developing and delivering feedback within an existing national audit structure. The evaluation will comprise two linked 2×2 factorial, cross-sectional cluster-randomised controlled trials. Each trial will estimate the effects of two feedback interventions, 'enhanced content' and 'enhanced follow-on support', designed in earlier stages of the AFFINITIE programme, compared to current practice. The interventions will be embedded within two rounds of the UK National Comparative Audit of Blood Transfusion (NCABT) focusing on patient blood management in surgery and use of blood transfusions in patients with haematological malignancies. The unit of randomisation will be National Health Service (NHS) trust or health board. Clusters providing care relevant to the audit topics will be randomised following each baseline audit (separately for each trial), with stratification for size (volume of blood transfusions) and region (Regional Transfusion Committee). The primary outcome for each topic will be the proportion of patients receiving a transfusion coded as unnecessary. For each audit topic a linked, mixed-method fidelity assessment and cost-effectiveness analysis will be conducted in parallel to the trial. AFFINITIE involves a series of studies to explore how A

  9. Pt-graphene electrodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Hoshi, Hajime; Tanaka, Shumpei; Miyoshi, Takashi

    2014-01-01

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I 3 − /I − . • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I 3 − /I − redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I 3 − /I − reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs

  10. Simulation of the Optimized Structure of a Laterally Coupled Distributed Feedback (LC-DFB Semiconductor Laser Above Threshold

    Directory of Open Access Journals (Sweden)

    M. Seifouri

    2013-10-01

    Full Text Available In this paper, the laterally coupled distributed feedback semiconductor laser is studied. In the simulations performed, variations of structural parameters such as the grating amplitude a, the ridge width W, the thickness of the active region d, and other structural properties are considered. It is concluded that for certain values ​​of structural parameters, the laser maintains the highest output power, the lowest distortion Bragg frequency δL and the smallest changes in the wavelength λ. Above threshold, output power more than 40mW and SMSR values greater than 50 dB were achieved.

  11. Psychophysical Evaluation of Subdermal Electrical Stimulation in Relation to Prosthesis Sensory Feedback.

    Science.gov (United States)

    Geng, Bo; Dong, Jian; Jensen, Winnie; Dosen, Strahinja; Farina, Dario; Kamavuako, Ernest Nlandu

    2018-03-01

    This paper evaluated the psychophysical properties of subdermal electrical stimulation to investigate its feasibility in providing sensory feedback for limb prostheses. The detection threshold (DT), pain threshold (PT), just noticeable difference (JND), as well as the elicited sensation quality, comfort, intensity, and location were assessed in 16 healthy volunteers during stimulation of the ventral and dorsal forearm with subdermal electrodes. Moreover, the results were compared with those obtained from transcutaneous electrical stimulation. Despite a lower DT and PT, subdermal stimulation attained a greater relative dynamic range (i.e., PT/DT) and significantly smaller JNDs for stimulation amplitude. Muscle twitches and movements were more commonly elicited by surface stimulation, especially at the higher stimulation frequencies, whereas the pinprick sensation was more often reported with subdermal stimulation. Less comfort was perceived in subdermal stimulation of the ventral forearm at the highest tested stimulation frequency of 100 Hz. In summary, subdermal electrical stimulation was demonstrated to be able to produce similar sensation quality as transcutaneous stimulation and outperformed the latter in terms of energy efficiency and sensitivity. These results suggest that stimulation through implantable subdermal electrodes may lead to an efficient and compact sensory feedback system for substituting the lost sense in amputees.

  12. Equilibrium of a two-route system with delayed information feedback strategies

    International Nuclear Information System (INIS)

    Zhao, Xiao-mei; Xie, Dong-fan; Gao, Zi-you; Gao, Liang

    2013-01-01

    In intelligent transport system, some advanced information feedback strategies have been developed to reduce the oscillations and enhance the capacity on the road level. However, seldom strategies have considered the information delay and user equilibrium (UE) objective. Here, a derivative cost feedback strategy (DCFS) is proposed to reduce the influence of the delay, based on the UE principle. The simulation results show that in both no-delay and delay information cases, DCFS are the best and can make the system reaching the UE. Because DCFS can predict the trend of the travel cost.

  13. Equilibrium of a two-route system with delayed information feedback strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiao-mei, E-mail: xmzhao@bjtu.edu.cn [School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); Xie, Dong-fan, E-mail: dfxie@bjtu.edu.cn [School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); Gao, Zi-you, E-mail: zygao@bjtu.edu.cn [School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); Gao, Liang, E-mail: lianggao@bjtu.edu.cn [School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2013-12-09

    In intelligent transport system, some advanced information feedback strategies have been developed to reduce the oscillations and enhance the capacity on the road level. However, seldom strategies have considered the information delay and user equilibrium (UE) objective. Here, a derivative cost feedback strategy (DCFS) is proposed to reduce the influence of the delay, based on the UE principle. The simulation results show that in both no-delay and delay information cases, DCFS are the best and can make the system reaching the UE. Because DCFS can predict the trend of the travel cost.

  14. Ni-Based Solid Oxide Cell Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Holtappels, Peter

    2013-01-01

    This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 _C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes...... and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three...

  15. DNA-modified electrodes (Ⅶ)——Preparation and characterization of DNA-bonded and DNA-adsorbed SAM/Au electrodes

    Institute of Scientific and Technical Information of China (English)

    陆琪; 庞代文; 胡深; 程介克; 蔡雄伟; 施财辉; 毛秉伟; 戴鸿平

    1999-01-01

    Two kinds of DNA-modified electrodes were prepared by covalent and adsorptive immobilization of DNA onto self-assembled monolayers of 2, 2’-dithiodiethanol on gold electrodes and characterized by cyclic voltammetry, Xray photoelectron spectroscopy and scanning tunneling microscopy. The results suggest that the methods are satisfactory for the immobilization of DNA on electrodes.

  16. INDIRECT WRITTEN CORRECTIVE FEEDBACK, REVISION, AND LEARNING

    Directory of Open Access Journals (Sweden)

    Fatemeh Poorebrahim

    2017-01-01

    Full Text Available Corrective feedback, the necessity of providing it, and how it should be provided has been one of the hot topics in the area of ELT. Amid continuing controversies over whether providing feedback helps L2 learners improve their writing accuracy, many research studies have been undertaken to compare the relative effectiveness of different types of feedback. However, the difference between two types of indirect corrective feedback, namely indication and indication plus location, have not been properly examined yet. Motivated to narrow this gap, this study is designed to compare two groups of Iranian learners, each revising their papers based on one of the aforementioned options. For data analysis, a series of independent samples t tests were employed. The results revealed that the difference between the two groups in their reduction of errors from the original draft to the revision of each task followed a growing trend and became significant. Nonetheless, the difference in accuracy of new pieces of writing fell short of significance. Finally, it was found that error reduction in revision stage cannot be considered as learning. The results of the study, discussed in relation to that of others, implicate that the purpose for which feedback is provided is essential in determining the type of feedback; more explicit feedback is better for revising purposes while more implicit feedback is good for learning purposes.

  17. DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR

    Directory of Open Access Journals (Sweden)

    AZRIDJAL AZIZ

    2012-02-01

    Full Text Available The flow configuration and distribution behavior of two-phase flow in a distributor made of acrylic resin have been investigated experimentally. In this study, air and water were used as two-phase flow working fluids. The distributor consists of one inlet and two outlets, which are set as upper and lower, respectively. The flow visualization at the distributor was made by using a high–speed camera. The flow rates of air and water flowing out from the upper and lower outlet branches were measured. Effects of inclination angle of the distributor were investigated. By changing the inclination angle from vertical to horizontal, uneven distributions were also observed. The distribution of two-phase flow through distributor tends even flow distribution on the vertical position and tends uneven distribution on inclined and horizontal positions. It is shown that even distribution could be achieved at high superficial velocities of both air and water.

  18. Fine distributed moderating material to the enhance feedback effects in LBE cooled rast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merk, Bruno [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety Div.

    2013-07-01

    In this work it is demonstrated, that the concept of enhanced feedback coefficients is transferable to LBE cooled fast reactors. The demonstration is based on the fuel assembly design of the CDT project. The effect of the moderating material on the neutron spectrum, on the k{sub inf}, and on the fuel temperature feedback and the coolant feedback is shown, discussed and compared to SFRs. The calculations are performed with the 2D lattice transport code HELIOS and based on the fully detailed fuel assembly geometry representation. (orig.)

  19. Development of liquid film thickness measurement technique by high-density multipoint electrodes method

    International Nuclear Information System (INIS)

    Arai, Takahiro; Furuya, Masahiro; Kanai, Taizo

    2010-01-01

    High-density multipoint electrode method was developed to measure a liquid film thickness transient on a curved surface. The devised method allows us to measure spatial distribution of liquid film with its conductance between electrodes. The sensor was designed and fabricated as a multilayer print circuit board, where electrode pairs were distributed in reticular pattern with narrow interval. In order to measure a lot of electrode pairs at a high sampling rate, signal-processing method used by the wire mesh sensor measurement system was applied. An electrochemical impedance spectrometry concludes that the sampling rate of 1000 slices/s is feasible without signal distortion by electric double layer. The method was validated with two experimental campaigns: (1) a droplet impingement on a flat film and (2) a jet impingement on a rod-shape sensor surface. In the former experiment, a water droplet having 4 mm in diameter impinged onto the 1 mm thick film layer. A visual observation study with high-speed video camera shows after the liquid impingement, the water layer thinning process was clearly demonstrated with the sensor. For the latter experiment, the flexible circuit board was bended to form a cylindrical shape to measure water film on a simulated fuel rod in bundle geometry. A water jet having 3 mm in diameter impinged onto the rod-shape sensor surface. The process of wetting area enlargement on the rod surface was demonstrated in the same manner that the video-frames showed. (author)

  20. Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell

    Directory of Open Access Journals (Sweden)

    Ravichandra S. Jupudi

    2009-12-01

    Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.

  1. In-situ measurement of the lithium distribution in Li-ion batteries using micro-IBA techniques

    International Nuclear Information System (INIS)

    Yamazaki, A.; Orikasa, Y.; Chen, K.; Uchimoto, Y.; Kamiya, T.; Koka, M.; Satoh, T.; Mima, K.; Kato, Y.; Fujita, K.

    2016-01-01

    Direct observation of lithium concentration distribution in lithium-ion battery composite electrodes has been performed for the first time. Lithium-ion battery model cells for particle induced X-ray emission (PIXE) and particle induced gamma ray emission (PIGE) measurements were designed and fabricated. Two dimensional images of lithium concentration in LiFePO_4 composite electrodes were obtained with PIXE and PIGE by scanning the proton microbeam for various charged states of the electrodes. Lithium concentration in LiFePO_4 composite electrodes was decreased from the contact interface between LiFePO_4 electrode and liquid electrolyte during the charge reaction.

  2. Closing the Feedback Loop: Physics Undergraduates' Use of Feedback Comments on Laboratory Coursework

    Science.gov (United States)

    Donovan, Pam

    2014-01-01

    The laboratory notebooks of physics undergraduates taking two second-year practical courses were audited to discover whether they had used feedback comments in their subsequent coursework. Ninety-five per cent of the 37 students on the first course and 100% of the 14 students on the second course whose work was audited had used feedback. The…

  3. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, Shweta; Kant, Rama, E-mail: rkant@chemistry.du.ac.in

    2013-10-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  4. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    International Nuclear Information System (INIS)

    Dhillon, Shweta; Kant, Rama

    2013-01-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  5. Electrochemical degradation of chlorobenzene on boron-doped diamond and platinum electrodes

    International Nuclear Information System (INIS)

    Liu Lei; Zhao Guohua; Wu Meifen; Lei Yanzhu; Geng Rong

    2009-01-01

    In this paper the electrochemical degradation of chlorobenzene (CB) was investigated on boron-doped diamond (BDD) and platinum (Pt) anodes, and the degradation kinetics on these two electrodes was compared. Compared with the total mineralization with a total organic carbon (TOC) removal of 85.2% in 6 h on Pt electrode, the TOC removal reached 94.3% on BDD electrode under the same operate condition. Accordingly, the mineralization current efficiency (MCE) during the mineralization on BDD electrode was higher than that on the Pt electrode. Besides TOC, the conversion of CB, the productions and decay of intermediates were also monitored. Kinetic study indicated that the decay of CB on BDD and Pt electrodes were both pseudo-first-order reactions, and the reaction rate constant (k s ) on BDD electrode was higher than that on Pt electrode. The different reaction mechanisms on the two electrodes were investigated by the variation of intermediates concentrations. Two different reaction pathways for the degradation of CB on BDD electrode and Pt electrode involving all these intermediates were proposed.

  6. Electrode redox reactions with polarizable molecules

    Science.gov (United States)

    Matyushov, Dmitry V.

    2018-04-01

    A theory of redox reactions involving electron transfer between a metal electrode and a polarizable molecule in solution is formulated. Both the existence of molecular polarizability and its ability to change due to electron transfer distinguish this problem from classical theories of interfacial electrochemistry. When the polarizability is different between the oxidized and reduced states, the statistics of thermal fluctuations driving the reactant over the activation barrier becomes non-Gaussian. The problem of electron transfer is formulated as crossing of two non-parabolic free energy surfaces. An analytical solution for these free energy surfaces is provided and the activation barrier of electrode electron transfer is given in terms of two reorganization energies corresponding to the oxidized and reduced states of the molecule in solution. The new non-Gaussian theory is, therefore, based on two theory parameters in contrast to one-parameter Marcus formulation for electrode reactions. The theory, which is consistent with the Nernst equation, predicts asymmetry between the cathodic and anodic branches of the electrode current. They show different slopes at small electrode overpotentials and become curved at larger overpotentials. However, the curvature of the Tafel plot is reduced compared to the Marcus-Hush model and approaches the empirical Butler-Volmer form with different transfer coefficients for the anodic and cathodic currents.

  7. Beam position feedback system for the advanced photon source

    International Nuclear Information System (INIS)

    Chung, Y.

    1994-01-01

    The Advanced Photon Source (APS) will implement both global and local beam position feedback systems to stabilize the particle and x-ray beams for the storage ring. The systems consist of 20 VME crates distributed around the ring, each running multiple digital signal processors (DSP) running at 4 kHz sampling rate with a proportional, integral, and derivative (PID) control algorithm. The particle and x-ray beam position data is shared by the distributed processors through networked reflective memory. A theory of closed orbit correction using the technique of singular value decomposition (SVD) of the response matrix and simulation of its application to the APS storage ring will be discussed. This technique combines the global and local feedback systems and resolves the conflict among multiple local feedback systems due to local bump closure error. Maximum correction efficiency is achieved by feeding back to the global orbit data to the local feedback systems. The effect of the eddy current induced in the relatively thick (1/2 in.) vacuum chamber by the ac corrector magnet field for local feedback systems is compensated by digital filters. Results of experiments conducted on the x-ray ring of the National Synchrotron Light Source and the SPEAR at Stanford Synchrotron Radiation Laboratory will also be presented

  8. Beam position feedback system for the advanced photon source

    International Nuclear Information System (INIS)

    Chung, Y.

    1994-01-01

    The Advanced Photon Source (APS) will implement both global and local beam position feedback systems to stabilize the particle and X-ray beams for the storage ring. The systems consist of 20 VME crates distributed around the ring, each running multiple digital signal processors (DSP) running at 4 kHz sampling rate with a proportional, integral, and derivative (PID) control algorithm. The particle and X-ray beam position data is shared by the distributed processors through networked reflective memory. A theory of closed orbit correction using the technique of singular value decomposition (SVD) of the response matrix and simulation of its application to the APS storage ring will be discussed. This technique combines the global and local feedback systems and resolves the conflict among multiple local feedback systems due to local bump closure error. Maximum correction efficiency is achieved by feeding back the global orbit data to the local feedback systems. The effect of the vacuum chamber eddy current induced by the AC corrector magnet field for local feedback systems is compensated by digital filters. Results of experiments conducted on the X-ray ring of the National Synchrotron Light Source and the SPEAR at Stanford Synchrotron Radiation Laboratory will be presented. copyright 1994 American Institute of Physics

  9. Beam position feedback system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Chung, Y.

    1993-01-01

    The Advanced Photon Source (APS) will implement both global and local beam position feedback systems to stabilize the particle and X-ray beams for the storage ring. The systems consist of 20 VME crates distributed around the ring, each running multiple digital signal processors (DSP) running at 4kHz sampling rate with a proportional, integral, and derivative (PID) control algorithm. The particle and X-ray beam position data is shared by the distributed processors through networked reflective memory. A theory of closed orbit correction using the technique of singular value decomposition (SVD) of the response matrix and simulation of its application to the APS storage ring will be discussed. This technique combines the global and local feedback systems and resolves the conflict among multiple local feedback systems due to local bump closure error. Maximum correction efficiency is achieved by feeding back the global orbit data to the local feedback systems. The effect of the vacuum chamber eddy current induced by the AC corrector magnet field for local feedback systems is compensated by digital filters. Results of experiments conducted on the X-ray ring of the National Synchrotron Light Source and the SPEAR at Stanford Synchrotron Radiation Laboratory will be presented

  10. Beam position feedback system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Chung, Y.

    1993-01-01

    The Advanced Photon Source (APS) will implement both global and local beam position feedback systems to stabilize the particle and X-ray beams for the storage ring. The systems consist of 20 VME crates distributed around the ring, each running multiple digital signal processors (DSP) running at 4kHz sampling rate with a proportional, integral, and derivative (PID) control algorithm. The particle and X-ray beam position data is shared by the distributed processors through networked reflective memory. A theory of closed orbit correction using the technique of singular value decomposition (SVD) of the response matrix and simulation of its application to the APS storage ring will be discussed. This technique combines the global and local feedback systems and resolves the conflict among multiple local feedback systems due to local bump closure error. Maximum correction efficiency is achieved by feeding back the global orbit data to the local feedback systems. The effect of the eddy current induced in the relatively thick (1/2 inch) vacuum chamber by the AC corrector magnet field for local feedback systems is compensated by digital filters. Results of experiments conducted on the X-ray ring of the National Synchrotron Light Source and the SPEAR at Stanford Synchrotron Radiation Laboratory will also be presented

  11. Plasma Temperature Determination of Hydrogen Containing High-Frequency Electrode less Lamps by Intensity Distribution Measurements of Hydrogen Molecular Band

    International Nuclear Information System (INIS)

    Gavare, Z.; Revalde, G.; Skudra, A.

    2011-01-01

    The goal of the present work was the investigation of the possibility to use intensity distribution of the Q-branch lines of the hydrogen Fulcher-a diagonal band (d3η u- a3Σg + electronic transition; Q-branch with ν=ν=2) to determine the temperature of hydrogen containing high-frequency electrode less lamps (HFEDLs). The values of the rotational temperatures have been obtained from the relative intensity distributions for hydrogen-helium and hydrogen-argon HFEDLs depending on the applied current. The results have been compared with the method of temperature derivation from Doppler profiles of He 667.8 nm and Ar 772.4 nm lines. The results of both methods are in good agreement, showing that the method of gas temperature determination from the intensity distribution in the hydrogen Fulcher-a (2-2)Q band can be used for the hydrogen containing HFEDLs. It was observed that the admixture of 10% hydrogen in the argon HFEDLs significantly reduces the gas temperature

  12. Simulation of e-cloud driven instability and its attenuation using a simulated feedback system in the CERN SPS

    International Nuclear Information System (INIS)

    Vay, J.-L.; Furman, M.A.

    2010-01-01

    Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS, and a feedback system to control the single-bunch instabilities is under active development. We present the latest improvements to the WARP-POSINST simulation framework and feedback model, and its application to the self-consistent simulations of two consecutive bunches interacting with an electron cloud in the SPS. Simulations using an idealized feedback system exhibit adequate mitigation of the instability providing that the cutoff of the feedback bandwidth is at or above 450 MHz. Artifacts from numerical noise of the injected distribution of electrons in the modeling of portions of bunch trains are discussed, and benchmarking of WARP against POSINST and HEADTAIL are presented.

  13. Two Photon Distribution Amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations

  14. Does source matter? Nurses' and Physicians' perceptions of interprofessional feedback.

    Science.gov (United States)

    van Schaik, Sandrijn M; O'Sullivan, Patricia S; Eva, Kevin W; Irby, David M; Regehr, Glenn

    2016-02-01

    Receptiveness to interprofessional feedback, which is important for optimal collaboration, may be influenced by 'in-group or out-group' categorisation, as suggested by social identity theory. We used an experimental design to explore how nurses and resident physicians perceive feedback from people within and outside their own professional group. Paediatric residents and nurses participated in a simulation-based team exercise. Two nurses and two physicians wrote anonymous performance feedback for each participant. Participants each received a survey containing these feedback comments with prompts to rate (i) the usefulness (ii) the positivity and (iii) their agreement with each comment. Half of the participants received feedback labelled with the feedback provider's profession (two comments correctly labelled and two incorrectly labelled). Half received unlabelled feedback and were asked to guess the provider's profession. For each group, we performed separate three-way anovas on usefulness, positivity and agreement ratings to examine interactions between the recipient's profession, actual provider profession and perceived provider profession. Forty-five out of 50 participants completed the survey. There were no significant interactions between profession of the recipient and the actual profession of the feedback provider for any of the 3 variables. Among participants who guessed the source of the feedback, we found significant interactions between the profession of the feedback recipient and the guessed source of the feedback for both usefulness (F1,48 = 25.6; p feedback they guessed to be from nurses were higher than ratings of feedback they guessed to be from physicians, and vice versa. Among participants who received labelled feedback, we noted a similar interaction between the profession of the feedback recipient and labelled source of feedback for usefulness ratings (F1,92 = 4.72; p feedback to the in-group than to the out-group. This finding has potential

  15. Pt-graphene electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Hajime, E-mail: hoshi@ed.tus.ac.jp; Tanaka, Shumpei; Miyoshi, Takashi

    2014-12-15

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I{sub 3}{sup −}/I{sup −}. • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I{sub 3}{sup −}/I{sup −} redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I{sub 3}{sup −}/I{sup −} reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs.

  16. Dielectric behaviors of lead zirconate titanate ceramics with coplanar electrodes

    International Nuclear Information System (INIS)

    Wang, Y.; Cheng, Y.L.; Zhang, Y.W.; Chan, H.L.W.; Choy, C.L.

    2003-01-01

    This paper reports on the dielectric behaviors of lead zirconate titanate (PZT) capacitors with coplanar electrodes. Usually a ferroelectric device has a metal-ferroelectric-metal configuration (parallel plate capacitor); when both the electrodes are on one side of a ceramic to form a coplanar capacitor, different dielectric behaviors will be anticipated because of the change in the distribution of the test field inside the dielectrics. This paper describes how the capacitance and dielectric loss of PZT-based coplanar capacitors change with electrode distance, area and test frequency

  17. Feedback systems in the SLC

    International Nuclear Information System (INIS)

    Thompson, K.A.; Jobe, R.K.; Johnson, R.; Phinney, N.

    1987-02-01

    Two classes of computer-controlled feedback have been implemented to stabilize parameters in subsystems of the SLC: (1) ''slow'' (time scales ∼ minutes) feedback, and (2) ''fast'', i.e., pulse-to-pulse, feedback. The slow loops run in a single FEEDBACK process in the SLC host VAX, which acquires signals and sets control parameters via communication with the database and the network of normal SLC microprocessors. Slow loops exist to stabilize beam energy and energy spread, beam position and angle, and timing of kicker magnets, and to compensate for changes in the phase length of the rf drive line. The fast loops run in dedicated microprocessors, and may sample and/or feedback on particular parameters as often as every pulse of the SLC beam. The first implementations of fast feedback are to control transverse beam blow-up and to stabilize the energy and energy spread of bunches going into the SLC arcs. The overall architecture of the feedback software and the operator interface for controlling loops are discussed

  18. Capacitive Sensors for Feedback Control of Microfluidic Devices

    Science.gov (United States)

    Chen, J. Z.; Darhuber, A. A.; Troian, S. M.; Wagner, S.

    2003-11-01

    Automation of microfluidic devices based on thermocapillary flow [1] requires feedback control and detection techniques for monitoring the location, and ideally also composition and volume of liquid droplets. For this purpose we have developed a co-planar capacitance technique with a sensitivity of 0.07 pF at a frequency of 370 kHz. The variation in capacitance due to the presence of a droplet is monitored by the output frequency of an RC relaxation oscillator consisting of two inverters, one resistor and one capacitor. We discuss the performance of this coplanar sensor as a function of the electrode dimensions and geometry. These geometric variables determine the electric field penetration depth within the liquid, which in our studies ranged from 30 to 450 microns. Numerical solutions for the capacitance corresponding to the exact fabricated geometry agree very well with experimental data. An approximate analytic solution, which ignores fringe field effects, provides a simple but excellent guide for design development. [1] A. A. Darhuber et al., Appl. Phys. Lett. 82, 657 (2003).

  19. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    KAUST Repository

    Ramadan, Khaled S.; Nasr, Tarek Adel Hosny; Foulds, Ian G.

    2013-01-01

    method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using ;-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow

  20. Electroretinography in dogs using a fiber electrode prototype

    Directory of Open Access Journals (Sweden)

    A.L. Pereira

    2013-03-01

    Full Text Available We compared two electroretinography (ERG electrodes in dogs using ERG standards of the International Society for Clinical Electrophysiology of Vision (ISCEV. Ten healthy Yorkshire terrier dogs (mean age, 2.80 ± 1.42 years; 6 females weighing 5.20 ± 1.56 kg were evaluated using an ERG system for veterinary use. Dark- and light-adapted ERG responses were recorded using an ERG-Jet electrode and a fiber electrode prototype. The examinations were performed during 2 visits, 3 weeks apart. Both electrodes (ERG-Jet or fiber prototype were used on each animal and the first eye to be recorded (OD × OS was selected randomly. Three weeks later the examination was repeated on the same animal switching the type of electrode to be used that day and the first eye to be examined. The magnitude and waveform quality obtained with the two electrode types were similar for all ERG responses. ERG amplitudes and implicit times obtained from dogs using the fiber electrode prototype were comparable to those obtained with the ERG-Jet electrode for rod, maximal rod-cone summed, cone, and 30-Hz flicker responses. The fiber electrode prototype is a low-cost device, available as an alternative instrument for clinical veterinary ERG recording for retinal function assessment.

  1. Electroretinography in dogs using a fiber electrode prototype

    Directory of Open Access Journals (Sweden)

    A.L. Pereira

    Full Text Available We compared two electroretinography (ERG electrodes in dogs using ERG standards of the International Society for Clinical Electrophysiology of Vision (ISCEV. Ten healthy Yorkshire terrier dogs (mean age, 2.80 ± 1.42 years; 6 females weighing 5.20 ± 1.56 kg were evaluated using an ERG system for veterinary use. Dark- and light-adapted ERG responses were recorded using an ERG-Jet electrode and a fiber electrode prototype. The examinations were performed during 2 visits, 3 weeks apart. Both electrodes (ERG-Jet or fiber prototype were used on each animal and the first eye to be recorded (OD × OS was selected randomly. Three weeks later the examination was repeated on the same animal switching the type of electrode to be used that day and the first eye to be examined. The magnitude and waveform quality obtained with the two electrode types were similar for all ERG responses. ERG amplitudes and implicit times obtained from dogs using the fiber electrode prototype were comparable to those obtained with the ERG-Jet electrode for rod, maximal rod-cone summed, cone, and 30-Hz flicker responses. The fiber electrode prototype is a low-cost device, available as an alternative instrument for clinical veterinary ERG recording for retinal function assessment.

  2. Electroretinography in dogs using a fiber electrode prototype

    International Nuclear Information System (INIS)

    Pereira, A.L.; Montiani-Ferreira, F.; Santos, V.R.; Salomão, S.R.; Souza, C.; Berezovsky, A.

    2013-01-01

    We compared two electroretinography (ERG) electrodes in dogs using ERG standards of the International Society for Clinical Electrophysiology of Vision (ISCEV). Ten healthy Yorkshire terrier dogs (mean age, 2.80 ± 1.42 years; 6 females) weighing 5.20 ± 1.56 kg were evaluated using an ERG system for veterinary use. Dark- and light-adapted ERG responses were recorded using an ERG-Jet electrode and a fiber electrode prototype. The examinations were performed during 2 visits, 3 weeks apart. Both electrodes (ERG-Jet or fiber prototype) were used on each animal and the first eye to be recorded (OD × OS) was selected randomly. Three weeks later the examination was repeated on the same animal switching the type of electrode to be used that day and the first eye to be examined. The magnitude and waveform quality obtained with the two electrode types were similar for all ERG responses. ERG amplitudes and implicit times obtained from dogs using the fiber electrode prototype were comparable to those obtained with the ERG-Jet electrode for rod, maximal rod-cone summed, cone, and 30-Hz flicker responses. The fiber electrode prototype is a low-cost device, available as an alternative instrument for clinical veterinary ERG recording for retinal function assessment

  3. A comparison study of electrodes for neonate electrical impedance tomography

    International Nuclear Information System (INIS)

    Rahal, Mohamad; Demosthenous, Andreas; Khor, Joo Moy; Tizzard, Andrew; Bayford, Richard

    2009-01-01

    Electrical impedance tomography (EIT) is an imaging technique that has the potential to be used for studying neonate lung function. The properties of the electrodes are very important in multi-frequency EIT (MFEIT) systems, particularly for neonates, as the skin cannot be abraded to reduce contact impedance. In this work, the impedance of various clinical electrodes as a function of frequency is investigated to identify the optimum electrode type for this application. Six different types of self-adhesive electrodes commonly used in general and neonatal cardiology have been investigated. These electrodes are Ag/AgCl electrodes from the Ambu® Cardiology Blue sensors range (BR, NF and BRS), Kendall (KittyCat(TM) and ARBO®) and Philips 13953D electrodes. In addition, a textile electrode without gel from Textronics was tested on two subjects to allow comparison with the hydrogel-based electrodes. Two- and four-electrode measurements were made to determine the electrode-interface and tissue impedances, respectively. The measurements were made on the back of the forearm of six healthy adult volunteers without skin preparation with 2.5 cm electrode spacing. Impedance measurements were carried out using a Solartron SI 1260 impedance/gain-phase analyser with a frequency range from 10 Hz to 1 MHz. For the electrode-interface impedance, the average magnitude decreased with frequency, with an average value of 5 kΩ at 10 kHz and 337 Ω at 1 MHz; for the tissue impedance, the respective values were 987 Ω and 29 Ω. Overall, the Ambu BRS, Kendall ARBO® and Textronics textile electrodes gave the lowest electrode contact impedance at 1 MHz. Based on the results of the two-electrode measurements, simple RC models for the Ambu BRS and Kendall-ARBO and Textronics textile electrodes have been derived for MFEIT applications

  4. Training symmetry of weight distribution after stroke: a randomized controlled pilot study comparing task-related reach, Bobath and feedback training approaches.

    Science.gov (United States)

    Mudie, M H; Winzeler-Mercay, U; Radwan, S; Lee, L

    2002-09-01

    To determine (1) the most effective of three treatment approaches to retrain seated weight distribution long-term after stroke and (2) whether improvements could be generalized to weight distribution in standing. Inpatient rehabilitation unit. Forty asymmetrical acute stroke subjects were randomly allocated to one of four groups in this pilot study. Changes in weight distribution were compared between the 10 subjects of each of three treatment groups (task-specific reach, Bobath, or Balance Performance Monitor [BPM] feedback training) and a no specific treatment control group. One week of measurement only was followed by two weeks of daily training sessions with the treatment to which the subject was randomly allocated. Measurements were performed using the BPM daily before treatment sessions, two weeks after cessation of treatment and 12 weeks post study. Weight distribution was calculated in terms of mean balance (percentage of total body weight) or the mean of 300 balance points over a 30-s data run. In the short term, the Bobath approach was the most effective treatment for retraining sitting symmetry after stroke (p = 0.004). Training with the BPM and no training were also significant (p = 0.038 and p = 0.035 respectively) and task-specific reach training failed to reach significance (p = 0.26). At 12 weeks post study 83% of the BPM training group, 38% of the task-specific reach group, 29% of the Bobath group and 0% of the untrained group were found to be distributing their weight to both sides. Some generalization of symmetry training in sitting to standing was noted in the BPM training group which appeared to persist long term. Results should be treated with caution due to the small group sizes. However, these preliminary findings suggest that it might be possible to restore postural symmetry in sitting in the early stages of rehabilitation with therapy that focuses on creating an awareness of body position.

  5. Adaptive feedback synchronization of Lue system

    International Nuclear Information System (INIS)

    Han, X.; Lu, J.-A.; Wu, X.

    2004-01-01

    This letter further improves and extends the works of Chen and Lue [Chaos, Solitons and Fractals 14 (2002) 643] and Wang et al. [Phys. Lett. A 312 (2003) 34]. In detail, the linear feedback synchronization and adaptive feedback synchronization for Lue system are discussed. And the lower bound of the feedback gain in linear feedback synchronization is presented. The adaptive feedback synchronization with only one controller is designed, which improves the proof in the work by Wang et al. The adaptive synchronization with two controllers for completely uncertain Lue system is also discussed, which extends the work of Chen and Lue. Also, numerical simulations show the effectiveness of these methods

  6. Nanometer-spaced electrodes with calibrated separation

    NARCIS (Netherlands)

    Kervennic, Y.V.; Van der Zant, H.S.J.; Morpurgo, A.F.; Gurevich, L.; Kouwenhoven, L.P.

    2002-01-01

    We have fabricated pairs of platinum electrodes with separation between 20 and 3.5 nm. Our technique combines electron beam lithography and chemical electrodeposition. We show that the measurement of the conductance between the two electrodes through the electrolyte provides an accurate and

  7. Interference Alignment-based Precoding and User Selection with Limited Feedback in Two-cell Downlink Multi-user MIMO Systems

    Directory of Open Access Journals (Sweden)

    Yin Zhu

    2016-05-01

    Full Text Available Interference alignment (IA is a new approach to address interference in modern multiple-input multiple-out (MIMO cellular networks in which interference is an important factor that limits the system throughput. System throughput in most IA implementation schemes is significantly improved only with perfect channel state information and in a high signal-to-noise ratio (SNR region. Designing a simple IA scheme for the system with limited feedback and investigating system performance at a low-to-medium SNR region is important and practical. This paper proposed a precoding and user selection scheme based on partial interference alignment in two-cell downlink multi-user MIMO systems under limited feedback. This scheme aligned inter-cell interference to a predefined direction by designing user’s receive antenna combining vectors. A modified singular value decomposition (SVD-based beamforming method and a corresponding user-selection algorithm were proposed for the system with low rate limited feedback to improve sum rate performance. Simulation results show that the proposed scheme achieves a higher sum rate than traditional schemes without IA. The modified SVD-based beamforming scheme is also superior to the traditional zero-forcing beamforming scheme in low-rate limited feedback systems. The proposed partial IA scheme does not need to collaborate between transmitters and joint design between the transmitter and the users. The scheme can be implemented with low feedback overhead in current MIMO cellular networks.

  8. Identifying the subtle signatures of feedback from distant AGN using ALMA observations and the EAGLE hydrodynamical simulations

    Science.gov (United States)

    Scholtz, J.; Alexander, D. M.; Harrison, C. M.; Rosario, D. J.; McAlpine, S.; Mullaney, J. R.; Stanley, F.; Simpson, J.; Theuns, T.; Bower, R. G.; Hickox, R. C.; Santini, P.; Swinbank, A. M.

    2018-03-01

    We present sensitive 870 μm continuum measurements from our ALMA programmes of 114 X-ray selected active galactic nuclei (AGN) in the Chandra Deep Field-South and Cosmic Evolution Survey fields. We use these observations in combination with data from Spitzer and Herschel to construct a sample of 86 X-ray selected AGN, 63 with ALMA constraints at z = 1.5-3.2 with stellar mass >2 × 1010 M⊙. We constructed broad-band spectral energy distributions in the infrared band (8-1000 μm) and constrain star-formation rates (SFRs) uncontaminated by the AGN. Using a hierarchical Bayesian method that takes into account the information from upper limits, we fit SFR and specific SFR (sSFR) distributions. We explore these distributions as a function of both X-ray luminosity and stellar mass. We compare our measurements to two versions of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) hydrodynamical simulations: the reference model with AGN feedback and the model without AGN. We find good agreement between the observations and that predicted by the EAGLE reference model for the modes and widths of the sSFR distributions as a function of both X-ray luminosity and stellar mass; however, we found that the EAGLE model without AGN feedback predicts a significantly narrower width when compared to the data. Overall, from the combination of the observations with the model predictions, we conclude that (1) even with AGN feedback, we expect no strong relationship between the sSFR distribution parameters and instantaneous AGN luminosity and (2) a signature of AGN feedback is a broad distribution of sSFRs for all galaxies (not just those hosting an AGN) with stellar masses above ≈1010 M⊙.

  9. Feedback for relatedness and competence : Can feedback in blended learning contribute to optimal rigor, basic needs, and motivation?

    NARCIS (Netherlands)

    Bombaerts, G.; Nickel, P.J.

    2017-01-01

    We inquire how peer and tutor feedback influences students' optimal rigor, basic needs and motivation. We analyze questionnaires from two courses in two subsequent years. We conclude that feedback in blended learning can contribute to rigor and basic needs, but it is not clear from our data what

  10. Ozone production by an atmospheric pulsed discharge with pre-ionization electrodes and partly covered electrode

    International Nuclear Information System (INIS)

    Kaneda, S.; Shimosaki, M.; Hayashi, N.; Ihara, S.; Satoh, S.; Yamabe, C.

    2002-01-01

    In this paper, results on ozone production by atmospheric pulsed discharge, are reported. In the research, two types of ozonizer (Type I and Type II) have been used to investigate improvements of ozone concentration and production efficiency. The ozonizer has plane-to-plane metal electrodes structure, and pre-ionization electrodes are placed on the high voltage electrodes (Type I). In Type II, the surface of grounded electrode with 20 mm of width is covered partly by dielectric (thin rubber) with 11 mm of width, while the geometry of both metal electrodes is same to Type I. In the case of Type I, maximum concentration of about 100 ppm and maximum yield of 70 g/kWh were obtained at input power of 0.3 W. On the other hands, in the case of Type II, 800 ppm and 100 g/kWh were obtained at input power of 1.5 W. It was found that the ozone concentration and production yield were improved by using electrode covered by dielectric. (author)

  11. Determination of formation heterogeneity at a range of scales using novel multi-electrode resistivity scanning techniques

    International Nuclear Information System (INIS)

    Williams, G.M.; Jackson, P.D.; Ward, R.S.; Sen, M.A.; Meldrum, P.; Lovell, M.

    1991-01-01

    The traditional method of measuring ground resistivity involves passing a current through two outer electrodes, measuring the potential developed across two electrodes in between, and applying Ohm's Law. In the RESCAN system developed by the British Geological Survey, each electrode can be electronically selected and controlled by software to either pass current or measure potential. Thousands of electrodes can be attached to the system either in 2-D surface arrays or along special plastic covered probes driven vertically into the ground or emplaced in boreholes. Under computer control, the resistivity distribution within the emplaced array can be determined automatically with unprecedented detail and speed, and may be displayed as an image. So far, the RESCAN system has been applied at the meso-scale in monitoring the radial migration of an electrolyte introduced into a recharge well in an unconsolidated aquifer; and CORSCAN at the micro-scale on drill cores to evaluate spatial variability in physical properties. The RESCAN technique has considerable potential for determining formation heterogeneity at different scales and provides a basis for developing stochastic models of groundwater and solute flow in heterogeneous systems. 13 figs.; 1 tab.; 12 refs

  12. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    Science.gov (United States)

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  13. The Importance of Ion Size and Electrode Curvature on Electrical Double Layers in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Guang [Clemson University; Qiao, Rui [ORNL; Huang, Jingsong [ORNL; Dai, Sheng [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL

    2010-01-01

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) {approx} [BMIM][Cl] (near the negative electrode) {approx} [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a 'Multiple Ion Layers with Overscreening' (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  14. Electrode Conduction Processes Segmented Electrode-Insulator Ratio Effects in MHD Power Generation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pain, H. J.; Fearn, D. G.; Distefano, E. [Imperial College. London (United Kingdom)

    1966-10-15

    (a) Electrode conduction processes have been investigated using a plasma produced in an electromagnetic shock tube operating with argon at 70 {mu}mHg pressure. Complete voltage-current characteristics were obtained by the variation of load and applied voltage. These indicated the existence of two conduction regimes with a complex transition region. In the first regime the current, controlled by ion mobility, rose linearly with voltage to saturate between 10 mA and 1 A depending on conditions. Electrode contamination was significant. The second regime involved large currents controlled by electron mobility and emission from the cathode. The current again increased linearly with voltage and reached 200 A. Observation of induced voltages in transverse magnetic fields and of plasma deceleration in non-uniform fields showed that in the electromagnetic shock tube the plasma was heated predominantly by the driver discharge. Its conductivity was calculated using properties measured by a Langmuir double probe. In both regimes the plasma conductivity was also found from the gradient of the voltage current characteristics using experimental electric field fringing factors and the experimental values were compared with theory. (b) Larger-scale experiments used a combustion-driven shock tube where argon plasma flow, magnetic field and induced current flow were mutually orthogonal. The supersonic flow velocity and thermodynamic parameters of the plasma were accurately known. The electrode channel consisted of a segmented system of 12 electrode pairs with an electrode insulator ratio ranging from 1 to 21, with electrode plus insulator length remaining constant, and with maximum Hall parameter values of unity. Different electrode load combinations (Faraday and Hall generators) have been studied in measuring the power generated and the flow of longitudinal currents between adjacent electrodes. A maximum power of 0,8 MW was obtained, the power output decreasing inversely with the

  15. Electrode Conduction Processes Segmented Electrode-Insulator Ratio Effects in MHD Power Generation Experiments

    International Nuclear Information System (INIS)

    Pain, H.J.; Fearn, D.G.; Distefano, E.

    1966-01-01

    (a) Electrode conduction processes have been investigated using a plasma produced in an electromagnetic shock tube operating with argon at 70 μmHg pressure. Complete voltage-current characteristics were obtained by the variation of load and applied voltage. These indicated the existence of two conduction regimes with a complex transition region. In the first regime the current, controlled by ion mobility, rose linearly with voltage to saturate between 10 mA and 1 A depending on conditions. Electrode contamination was significant. The second regime involved large currents controlled by electron mobility and emission from the cathode. The current again increased linearly with voltage and reached 200 A. Observation of induced voltages in transverse magnetic fields and of plasma deceleration in non-uniform fields showed that in the electromagnetic shock tube the plasma was heated predominantly by the driver discharge. Its conductivity was calculated using properties measured by a Langmuir double probe. In both regimes the plasma conductivity was also found from the gradient of the voltage current characteristics using experimental electric field fringing factors and the experimental values were compared with theory. (b) Larger-scale experiments used a combustion-driven shock tube where argon plasma flow, magnetic field and induced current flow were mutually orthogonal. The supersonic flow velocity and thermodynamic parameters of the plasma were accurately known. The electrode channel consisted of a segmented system of 12 electrode pairs with an electrode insulator ratio ranging from 1 to 21, with electrode plus insulator length remaining constant, and with maximum Hall parameter values of unity. Different electrode load combinations (Faraday and Hall generators) have been studied in measuring the power generated and the flow of longitudinal currents between adjacent electrodes. A maximum power of 0,8 MW was obtained, the power output decreasing inversely with the

  16. Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing.

    Directory of Open Access Journals (Sweden)

    Luigi Acerbi

    Full Text Available Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior and of the error (the loss function. The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.

  17. Analysis of deep brain stimulation electrode characteristics for neural recording

    Science.gov (United States)

    Kent, Alexander R.; Grill, Warren M.

    2014-08-01

    Objective. Closed-loop deep brain stimulation (DBS) systems have the potential to optimize treatment of movement disorders by enabling automatic adjustment of stimulation parameters based on a feedback signal. Evoked compound action potentials (ECAPs) and local field potentials (LFPs) recorded from the DBS electrode may serve as suitable closed-loop control signals. The objective of this study was to understand better the factors that influence ECAP and LFP recording, including the physical presence of the electrode, the geometrical dimensions of the electrode, and changes in the composition of the peri-electrode space across recording conditions. Approach. Coupled volume conductor-neuron models were used to calculate single-unit activity as well as ECAP responses and LFP activity from a population of model thalamic neurons. Main results. Comparing ECAPs and LFPs measured with and without the presence of the highly conductive recording contacts, we found that the presence of these contacts had a negligible effect on the magnitude of single-unit recordings, ECAPs (7% RMS difference between waveforms), and LFPs (5% change in signal magnitude). Spatial averaging across the contact surface decreased the ECAP magnitude in a phase-dependent manner (74% RMS difference), resulting from a differential effect of the contact on the contribution from nearby or distant elements, and decreased the LFP magnitude (25% change). Reductions in the electrode diameter or recording contact length increased signal energy and increased spatial sensitivity of single neuron recordings. Moreover, smaller diameter electrodes (500 µm) were more selective for recording from local cells over passing axons, with the opposite true for larger diameters (1500 µm). Changes in electrode dimensions had phase-dependent effects on ECAP characteristics, and generally had small effects on the LFP magnitude. ECAP signal energy and LFP magnitude decreased with tighter contact spacing (100 µm), compared to

  18. Generalized Analysis of a Distribution Separation Method

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-04-01

    Full Text Available Separating two probability distributions from a mixture model that is made up of the combinations of the two is essential to a wide range of applications. For example, in information retrieval (IR, there often exists a mixture distribution consisting of a relevance distribution that we need to estimate and an irrelevance distribution that we hope to get rid of. Recently, a distribution separation method (DSM was proposed to approximate the relevance distribution, by separating a seed irrelevance distribution from the mixture distribution. It was successfully applied to an IR task, namely pseudo-relevance feedback (PRF, where the query expansion model is often a mixture term distribution. Although initially developed in the context of IR, DSM is indeed a general mathematical formulation for probability distribution separation. Thus, it is important to further generalize its basic analysis and to explore its connections to other related methods. In this article, we first extend DSM’s theoretical analysis, which was originally based on the Pearson correlation coefficient, to entropy-related measures, including the KL-divergence (Kullback–Leibler divergence, the symmetrized KL-divergence and the JS-divergence (Jensen–Shannon divergence. Second, we investigate the distribution separation idea in a well-known method, namely the mixture model feedback (MMF approach. We prove that MMF also complies with the linear combination assumption, and then, DSM’s linear separation algorithm can largely simplify the EM algorithm in MMF. These theoretical analyses, as well as further empirical evaluation results demonstrate the advantages of our DSM approach.

  19. Charge sharing in multi-electrode devices for deterministic doping studied by IBIC

    International Nuclear Information System (INIS)

    Jong, L.M.; Newnham, J.N.; Yang, C.; Van Donkelaar, J.A.; Hudson, F.E.; Dzurak, A.S.; Jamieson, D.N.

    2011-01-01

    Following a single ion strike in a semiconductor device the induced charge distribution changes rapidly with time and space. This phenomenon has important applications to the sensing of ionizing radiation with applications as diverse as deterministic doping in semiconductor devices to radiation dosimetry. We have developed a new method for the investigation of this phenomenon by using a nuclear microprobe and the technique of Ion Beam Induced Charge (IBIC) applied to a specially configured sub-100 μm scale silicon device fitted with two independent surface electrodes coupled to independent data acquisition systems. The separation between the electrodes is comparable to the range of the 2 MeV He ions used in our experiments. This system allows us to integrate the total charge induced in the device by summing the signals from the independent electrodes and to measure the sharing of charge between the electrodes as a function of the ion strike location as a nuclear microprobe beam is scanned over the sensitive region of the device. It was found that for a given ion strike location the charge sharing between the electrodes allowed the beam-strike location to be determined to higher precision than the probe resolution. This result has potential application to the development of a deterministic doping technique where counted ion implantation is used to fabricate devices that exploit the quantum mechanical attributes of the implanted ions.

  20. Nanocrystalline LaOx/NiO composite as high performance electrodes for supercapacitors.

    Science.gov (United States)

    Du, Guo; Zeng, Zifan; Xiao, Bangqing; Wang, Dengzhi; Yuan, Yuan; Zhu, Xiaohong; Zhu, Jiliang

    2017-12-21

    Nanocrystalline LaO x /NiO composite electrodes were synthesized via two types of facile cathodic electrodeposition methods onto nickel foam followed by thermal annealing without any binders. Scanning electron microscopy and transmission electron microscopy investigation revealed that LaO x nanocrystalline particles with an average diameter of 50 nm are uniformly distributed in the NiO layer or alternately deposited with the NiO layer onto the substrate. It is speculated that LaO x particles can participate in the faradaic reaction directly and offer more redox sites. Besides this, the unique Ni/La layered structure facilitates the diffusion of ions and retards the electrode polarization, thus leading to a better rate capability and cycling stability of NiO. As a result, the obtained electrodes display very competitive electrochemical performance (a specific capacitance of 1238 F g -1 at a current density of 0.5 A g -1 , excellent rate capability of 86% of the original capacitance at 10 A g -1 and excellent cycling stability of 93% capacitance after 10 000 cycles). In addition, asymmetric coin devices were assembled using LaO x /NiO as the positive electrode and active carbon as the negative electrode. The assembled asymmetric devices demonstrate a high energy density of 13.12 W h kg -1 at a power density of 90.72 W kg -1 .

  1. Supercapacitive properties of symmetry and the asymmetry two electrode coin type supercapacitor cells made from MWCNTS/nickel oxide nanocomposite

    CSIR Research Space (South Africa)

    Adekunle, AS

    2011-10-01

    Full Text Available Supercapacitive properties of synthesised nickel oxides (NiO) nanoparticles integrated with multi-walled carbon nanotubes (MWCNT) in a two-electrode coin cell type supercapacitor were investigated. Successful formation of the MWCNT-NiO nanocomposite...

  2. Mathematical modeling and measurement of electric fields of electrode-based through-the-earth (TTE) communication

    Science.gov (United States)

    Yan, Lincan; Zhou, Chenming; Reyes, Miguel; Whisner, Bruce; Damiano, Nicholas

    2017-06-01

    There are two types of through-the-earth (TTE) wireless communication in the mining industry: magnetic loop TTE and electrode-based (or linear) TTE. While the magnetic loop systems send signal through magnetic fields, the transmitter of an electrode-based TTE system sends signal directly through the mine overburden by driving an extremely low frequency (ELF) or ultralow frequency (ULF) AC current into the earth. The receiver at the other end (underground or surface) detects the resultant current and receives it as a voltage. A wireless communication link between surface and underground is then established. For electrode-based TTE communications, the signal is transmitted through the established electric field and is received as a voltage detected at the receiver. It is important to understand the electric field distribution within the mine overburden for the purpose of designing and improving the performance of the electrode-based TTE systems. In this paper, a complete explicit solution for all three electric field components for the electrode-based TTE communication was developed. An experiment was conducted using a prototype electrode-based TTE system developed by National Institute for Occupational Safety and Health. The mathematical model was then compared and validated with test data. A reasonable agreement was found between them.

  3. Commissioning of the APS real-time orbit feedback system

    International Nuclear Information System (INIS)

    Carwardine, J.; Decker, G.; Evans, K. Jr.; Hillman, A.; Lenkszus, F.; Merl, R.; Pietryla, A.

    1997-01-01

    A unified global and local closed-orbit feedback system has been implemented at the Advanced Photon Source in order to stabilize both particle and photon beams. Beam stability requirements in the band up to 50 Hz are 17 microm in the horizontal plane and 4.4 microm vertically. Orbit feedback algorithms are implemented digitally using multiple digital signal processors, with computing power distributed in 20 VME crates around the storage ring. Each crate communicates with all others via a fast reflective memory network. The system has access to 320 rf beam position monitors together with x-ray beam position monitors in both insertion device and bending magnet beamlines. Up to 317 corrector magnets are available to the system. The global system reduces horizontal rms beam motion at the x-ray source points by more than a factor of two in the frequency band from 10 mHz to 50 Hz

  4. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees.

    Science.gov (United States)

    Strbac, Matija; Isakovic, Milica; Belic, Minja; Popovic, Igor; Simanic, Igor; Farina, Dario; Keller, Thierry; Dosen, Strahinja

    2017-11-01

    Human motor control relies on a combination of feedback and feedforward strategies. The aim of this study was to longitudinally investigate artificial somatosensory feedback and feedforward control in the context of grasping with myoelectric prosthesis. Nine amputee subjects performed routine grasping trials, with the aim to produce four levels of force during four blocks of 60 trials across five days. The electrotactile force feedback was provided in the second and third block using multipad electrode and spatial coding. The first baseline and last validation block (open-loop control) evaluated the effects of long- (across sessions) and short-term (within session) learning, respectively. The outcome measures were the absolute error between the generated and target force, and the number of force saturations. The results demonstrated that the electrotactile feedback improved the performance both within and across sessions. In the validation block, the performance did not significantly decrease and the quality of open-loop control (baseline) improved across days, converging to the performance characterizing closed-loop control. This paper provides important insights into the feedback and feedforward processes in prosthesis control, contributing to the better understanding of the role and design of feedback in prosthetic systems.

  5. Simulating pad-electrodes with high-definition arrays in transcranial electric stimulation

    Science.gov (United States)

    Kempe, René; Huang, Yu; Parra, Lucas C.

    2014-04-01

    Objective. Research studies on transcranial electric stimulation, including direct current, often use a computational model to provide guidance on the placing of sponge-electrode pads. However, the expertise and computational resources needed for finite element modeling (FEM) make modeling impractical in a clinical setting. Our objective is to make the exploration of different electrode configurations accessible to practitioners. We provide an efficient tool to estimate current distributions for arbitrary pad configurations while obviating the need for complex simulation software. Approach. To efficiently estimate current distributions for arbitrary pad configurations we propose to simulate pads with an array of high-definition (HD) electrodes and use an efficient linear superposition to then quickly evaluate different electrode configurations. Main results. Numerical results on ten different pad configurations on a normal individual show that electric field intensity simulated with the sampled array deviates from the solutions with pads by only 5% and the locations of peak magnitude fields have a 94% overlap when using a dense array of 336 electrodes. Significance. Computationally intensive FEM modeling of the HD array needs to be performed only once, perhaps on a set of standard heads that can be made available to multiple users. The present results confirm that by using these models one can now quickly and accurately explore and select pad-electrode montages to match a particular clinical need.

  6. Design of distributed feedback fibre lasers

    DEFF Research Database (Denmark)

    Lauridsen, Vibeke Claudia; Søndergaard, Thomas; Varming, Poul

    1997-01-01

    A numerical model for erbium fibre lasers with Bragg gratings is presented. The model is used to optimize the location of a discrete phase-shift and the phase-shift magnitude for a distributed phase-shift.......A numerical model for erbium fibre lasers with Bragg gratings is presented. The model is used to optimize the location of a discrete phase-shift and the phase-shift magnitude for a distributed phase-shift....

  7. Feedback brake distribution control for minimum pitch

    Science.gov (United States)

    Tavernini, Davide; Velenis, Efstathios; Longo, Stefano

    2017-06-01

    The distribution of brake forces between front and rear axles of a vehicle is typically specified such that the same level of brake force coefficient is imposed at both front and rear wheels. This condition is known as 'ideal' distribution and it is required to deliver the maximum vehicle deceleration and minimum braking distance. For subcritical braking conditions, the deceleration demand may be delivered by different distributions between front and rear braking forces. In this research we show how to obtain the optimal distribution which minimises the pitch angle of a vehicle and hence enhances driver subjective feel during braking. A vehicle model including suspension geometry features is adopted. The problem of the minimum pitch brake distribution for a varying deceleration level demand is solved by means of a model predictive control (MPC) technique. To address the problem of the undesirable pitch rebound caused by a full-stop of the vehicle, a second controller is designed and implemented independently from the braking distribution in use. An extended Kalman filter is designed for state estimation and implemented in a high fidelity environment together with the MPC strategy. The proposed solution is compared with the reference 'ideal' distribution as well as another previous feed-forward solution.

  8. In-situ measurement of the lithium distribution in Li-ion batteries using micro-IBA techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, A., E-mail: yamazaki@tac.tsukuba.ac.jp [Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Orikasa, Y.; Chen, K.; Uchimoto, Y. [Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsucho, Sakyo-ku, Kyoto 606-8501 (Japan); Kamiya, T.; Koka, M.; Satoh, T. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233, Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Mima, K.; Kato, Y.; Fujita, K. [The Graduate School for the Creation of New Photonics Industries, 1955-1, Kurematsu, NIshi-ku, Hamamatsu, Shizuoka 431-1202 (Japan)

    2016-03-15

    Direct observation of lithium concentration distribution in lithium-ion battery composite electrodes has been performed for the first time. Lithium-ion battery model cells for particle induced X-ray emission (PIXE) and particle induced gamma ray emission (PIGE) measurements were designed and fabricated. Two dimensional images of lithium concentration in LiFePO{sub 4} composite electrodes were obtained with PIXE and PIGE by scanning the proton microbeam for various charged states of the electrodes. Lithium concentration in LiFePO{sub 4} composite electrodes was decreased from the contact interface between LiFePO{sub 4} electrode and liquid electrolyte during the charge reaction.

  9. A novel feedback control system – Controlling the material flow in deep drawing using distributed blank-holder force

    DEFF Research Database (Denmark)

    Endelt, Benny Ørtoft; Tommerup, Søren; Danckert, Joachim

    2013-01-01

    The performance of a feedback control system is often limited by the quality of the model on which it is based, and often the controller design is based on trial and error due to insufficient modeling capabilities. A framework is proposed where the controller design is based on classical state...... on a deep drawing operation where the objective was to control material flow throughout the part using only spatial information regarding flange draw-in. The control system controls both the magnitude and distribution of the blank-holder force. The methodology proved stable and flexible with respect...

  10. Evaluation of two typical distributed energy systems

    Science.gov (United States)

    Han, Miaomiao; Tan, Xiu

    2018-03-01

    According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.

  11. A new method for analyzing and design of guard electrodes of high voltage insulators chain

    International Nuclear Information System (INIS)

    Vahidi, B.; Mohammad Zadeh, A.

    2002-01-01

    The main aim of this paper is analyzing design of guard electrodes of high voltage insulators chain. These electrodes are used for making the distribution of uniform potential across the insulators chain, reducing leakage current and preventing the degradation of insulators. If the design is not correct or in the case of insulators chain without guard electrodes, the potential distribution will not uniform. Thus the voltage drops on the insulators adjacent to conductors will be more than maximum voltage that can be tolerated by the insulators. Therefore these voltage drops can damage the insulators. In this paper A new method is introduced for analyzing and design of ga urad electrodes of high voltage insulators chain

  12. Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-01-01

    Herein, we report for the first time, conducting polymer (polyaniline (PANI) and polypyrrole (PPY)) coated carbon nanocoils (CNCs) as efficient binder-free electrode materials for supercapacitors. CNCs act as a perfect backbone for the uniform distribution of the conducting polymers in the composites. In two electrode configuration, the samples exhibited high specific capacitance with the values reaching up to 360 and 202 F g -1 for PANI/CNCs and PPY/CNCs respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be comparable to one of the best reported values for polymer coated multi-walled carbon nanotubes. In addition, the fabricated PANI/CNC based supercapacitors exhibited a high value of 44.61 Wh kg -1 for maximum storage energy per unit mass. Although the devices exhibit an initial capacitance loss due to the instability of the polymer, the specific capacitance stabilizes at a fixed value after 500 charge-discharge cycles. © 2012 The Royal Society of Chemistry.

  13. Fast feedback in classroom practice

    NARCIS (Netherlands)

    Emmett, K.M.; Klaassen, K.; Eijkelhof, H.

    2009-01-01

    In this article we describe one application of the fast feedback method (see Berg 2003 Aust. Sci. Teach. J. 28–34) in secondary mechanics education. Two teachers tried out a particular sequence twice, in consecutive years, once with and once without the use of fast feedback. We found the method to

  14. Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO2

    Science.gov (United States)

    Huneeus, Nicolas; Boucher, Olivier; Alterskjær, Kari; Cole, Jason N. S.; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Kristjánsson, Jón Egill; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Rasch, Phil; Robock, Alan; Singh, Balwinder; Schmidt, Hauke; Schulz, Michael; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho

    2014-05-01

    The effective radiative forcings (including rapid adjustments) and feedbacks associated with an instantaneous quadrupling of the preindustrial CO2 concentration and a counterbalancing reduction of the solar constant are investigated in the context of the Geoengineering Model Intercomparison Project (GeoMIP). The forcing and feedback parameters of the net energy flux, as well as its different components at the top-of-atmosphere (TOA) and surface, were examined in 10 Earth System Models to better understand the impact of solar radiation management on the energy budget. In spite of their very different nature, the feedback parameter and its components at the TOA and surface are almost identical for the two forcing mechanisms, not only in the global mean but also in their geographical distributions. This conclusion holds for each of the individual models despite intermodel differences in how feedbacks affect the energy budget. This indicates that the climate sensitivity parameter is independent of the forcing (when measured as an effective radiative forcing). We also show the existence of a large contribution of the cloudy-sky component to the shortwave effective radiative forcing at the TOA suggesting rapid cloud adjustments to a change in solar irradiance. In addition, the models present significant diversity in the spatial distribution of the shortwave feedback parameter in cloudy regions, indicating persistent uncertainties in cloud feedback mechanisms.

  15. Evaluation of Niobium as Candidate Electrode Material for DC High Voltage Photoelectron Guns

    Science.gov (United States)

    BastaniNejad, M.; Mohamed, Abdullah; Elmustafa, A. A.; Adderley, P.; Clark, J.; Covert, S.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Mammei, R.; hide

    2012-01-01

    The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18:7 MV/m.

  16. Surface residual stress evaluation in double-electrode butt welded steel plates

    International Nuclear Information System (INIS)

    Estefen, S.F.; Gurova, T.; Castello, X.; Leontiev, A.

    2010-01-01

    Surface residual stress evaluation for double-electrode welding was studied. The stresses were monitored after each operational step: positioning, implementing of constraints, welding and constraints removal. The measurements were performed at the deposited metal, heat affected zone, base metal close to the weld joint and along the plate using the X-ray diffraction method. It was observed differences in the stress evaluations for double-electrode welding which resulted in lower bending distortions and higher values of surface residual stresses, compared with single-electrode welding. This behavior is associated with the stress distribution just after the welding processes in both heat affected zone and base metal close to the fillet for double-electrode welding. The main results from the laboratorial tests indicated lower values of the bending distortions for double-electrode welding compared with the single-electrode. In relation to the residual stress, the double-electrode welding generated, in general, higher stress values in both longitudinal and transversal directions.

  17. Activated carbon fiber obtained from textile PAN fiber to electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Cuna, Andres; Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento

    2016-01-01

    Full text: Supercapacitors are devices for electrical energy storage with application in distribution power generation, electric vehicles, electronic equipment, among others. Current challenges in the development of supercapacitors focuses on making an increasing on system density of energy. An increase of energy accumulated in the supercapacitor electrode can be achieved by developing materials with high specific electrical capacitance and low electrical resistance. Furthermore, it is expected that the electrode material present a simple procedure for obtaining, low cost and environmentally friendly. Carbon fibers are interesting materials for use as a supercapacitor electrode. Among them are carbon fibers from polyacrylonitrile (PAN). In this work were studied activated carbon fibers obtained from textile polyacrylonitrile (ACF-PAN) with deposition of Fe particles aiming to use as active material of supercapacitor electrodes. ACFPAN and ACF-PAN-Fe were characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). The behavior of the activated carbon fibers as a supercapacitor electrode was evaluated by galvanostatic charge and discharge curves, cyclic voltammetry and a electrochemical impedance using a symmetrical two-electrode Swagelok®-type cell and sulfuric acid as electrolyte. ACF-PAN had a high specific surface area, which makes it an interesting material for electrodes of supercapacitors. The electrical capacitance for the ACF-PAN is 96 F/g and ACF-PAN-Fe is 106 F/g both at a current density of 0.30 A/g. This increase in electrical capacitance can be related to the presence of iron oxides which are deposited on the activated carbon fiber. (author)

  18. Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes.

    Science.gov (United States)

    Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto

    2017-02-08

    Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.

  19. Effectiveness of feedback in a repeated spelling training

    NARCIS (Netherlands)

    Gruhn, C.M.S.; Segers, P.C.J.; Verhoeven, L.T.W.

    2017-01-01

    Effectiveness of feedback on strengthening lexical representations was investigated in a computerized spelling training by contrasting two different feedback conditions with a no feedback condition. Ninety-one Dutch fifth and sixth graders practiced spelling of 40 multisyllabic words with irregular

  20. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    Science.gov (United States)

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  1. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes

    International Nuclear Information System (INIS)

    Arras, Matthias M L; Grasl, Christian; Schima, Heinrich; Bergmeister, Helga

    2012-01-01

    A conventional electrospinning setup was upgraded by two turnable plate-like auxiliary high-voltage electrodes that allowed aligned fiber deposition in adjustable directions. Fiber morphology was analyzed by scanning electron microscopy and attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR). The auxiliary electric field constrained the jet bending instability and the fiber deposition became controllable. At target speeds of 0.9 m s −1 90% of the fibers had aligned within 2°, whereas the angular spread was 70° without the use of auxiliary electrodes. It was even possible to orient fibers perpendicular to the rotational direction of the target. The fiber diameter became smaller and its distribution narrower, while according to the FTIR-ATR measurement the molecular orientation of the polymer was unaltered. This study comprehensively documents the feasibility of directed fiber deposition and offers an easy upgrade to existing electrospinning setups. (paper)

  2. Bio-effects of repetitively pulsed ultra-fast distributed feedback dye lasers

    International Nuclear Information System (INIS)

    Khan, N.; Ahmad, M.I.; Sheikh, A.

    1999-01-01

    Results of experimental study showing an unexpected rise in pulses of distributed feedback dye laser (DFDL) output due to temperature accumulation in dye cell during passively Q-Switched, a Mode-locked operation is reported. This unintended increase in number of pulse duration, per pulse energy may cause side-effects when used for selective photo thermolysis. To probe this phenomenon most commonly dye was excited with 10 to 20 pulses of second harmonic of a passively Q-Switched and Mode-locked Nd-YaG laser. The outputs of DFDL and Nd:YaG laser were recorded by Imacon 675-streak camera. The peak of DFDL output pulses was found delayed proportionally from the peak of the NYAG pulses by more than one inter-pulse period of excitation laser. A computer program was used to simulate the experimentally measured delay to estimate thermal decay constants and energy retained by the medium to determine the amount of incremental fluctuations in output. The delay between peaks of Nd:YAG (input) and DFDL(output) pulses was found to vary from 10 to 14 nanoseconds for various cavity lengths. It was found that for smaller inter-pulse periods the effect of gradual build-up satisfies the threshold conditions for some of the pulses that otherwise can not. This may lead to unintended increase in energy fluence causing overexposure-induced side-effects. (author)

  3. Strong optical feedback in birefringent dual frequency laser

    Institute of Scientific and Technical Information of China (English)

    Mao Wei; Zhang Shu-Lian

    2006-01-01

    Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes are demonstrated in two different optical feedback cases: one is for both modes being fed back and the other is for only one of the modes being fed back. Strong mode competition can be observed between the two modes with strong optical feedback. And when one mode's intensity is near its maximum, the other mode is nearly extinguished. When both modes are fed back into the laser cavity, the mode competition is stronger than when only one mode is fed back. The difference in initial intensity between the two orthogonally polarized modes plays an important role in the mode competition, which has been experimentally and theoretically demonstrated.

  4. Feedback control of resistive wall modes in toroidal devices

    International Nuclear Information System (INIS)

    Liu Yueqiang; Bondeson, A.; Gregoratto, D.; Fransson, C.M.; Gribov, Y.; Paccagnella, R.

    2003-01-01

    Feedback of nonaxisymmetric resistive wall modes (RWM) is studied analytically for cylindrical plasmas and computationally for high beta tokamaks. Internal poloidal sensors give superior performance to radial sensors, and this is explained by the distribution of poles and residues for the transfer functions. A single poloidal array of feedback coils allows robust control with respect to variations in plasma pressure, current and rotation velocity. The control analysis is applied to advanced scenarios for ITER. Studies are also shown of configurations with multiple poloidal coils and of feedback systems for nonresonant MHD instabilities in reversed field pinches. (author)

  5. Flexible Pressure Sensor with Ag Wrinkled Electrodes Based on PDMS Substrate

    Directory of Open Access Journals (Sweden)

    Jianli Cui

    2016-12-01

    Full Text Available Flexible pressure sensors are essential components of electronic skins for future attractive applications ranging from human healthcare monitoring to biomedical diagnostics, robotic skins, and prosthetic limbs. Here we report a new kind of flexible pressure sensor. The sensors are capacitive, and composed of two Ag wrinkled electrodes separated by a carbon nanotubes (CNTs/polydimethylsiloxane (PDMS composite deformable dielectric layer. Ag wrinkled electrodes were formed by vacuum deposition on top of pre-strained and relaxed PDMS substrates which were treated using an O2 plasma, a surface functionalization process, and a magnetron sputtering process. Ultimately, the developed sensor exhibits a maximum sensitivity of 19.80% kPa−1 to capacitance, great durability over 500 cycles, and rapid mechanical responses (<200 ms. We also demonstrate that our sensor can be used to effectively detect the location and distribution of finger pressure.

  6. Two-dimensional condensation of 5-fluorocytosine at the mercury electrode

    Czech Academy of Sciences Publication Activity Database

    Fojt, Lukáš; Doneux, T.; Vetterl, Vladimír

    2012-01-01

    Roč. 73, SI (2012), s. 141-144 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GAP205/10/2378; GA MŠk(CZ) LC06035 Institutional support: RVO:68081707 Keywords : 2D condensation * Hanging mercury drop electrode * 5-Fluorocytosine Subject RIV: BO - Biophysics Impact factor: 3.777, year: 2012

  7. Power Law Distributions in Two Community Currencies

    Science.gov (United States)

    Kichiji, N.; Nishibe, M.

    2007-07-01

    The purpose of this paper is to highlight certain newly discovered social phenomena that accord with Zipf's law, in addition to the famous natural and social phenomena including word frequencies, earthquake magnitude, city size, income1 etc. that are already known to follow it. These phenomena have recently been discovered within the transaction amount (payments or receipts) distributions within two different Community Currencies (CC) that had been initiated as social experiments. One is a local CC circulating in a specific geographical area, such as a town. The other is a virtual CC used among members who belong to a certain community of interest (COI) on the Internet. We conducted two empirical studies to estimate the economic vitalization effects they had on their respective local economies. The results we found were that the amount of transactions (payments and receipts) of the two CCs was distributed according to a power-law distribution with a unity rank exponent. In addition, we found differences between the two CCs with regard to the shapes of their distribution over a low-transaction range. The result may originate from the difference in methods of issuing CCs or in the magnitudes of the minimum-value unit; however, this result calls for further investigation.

  8. Malaysian Tertiary Level ESL Students’ Perceptions toward Teacher Feedback, Peer Feedback and Self-assessment in their Writing

    Directory of Open Access Journals (Sweden)

    Kayatri Vasu

    2016-09-01

    Full Text Available In Malaysia, teacher feedback is highly preferred by students, who often believe that teachers know best. Teacher feedback shows them their teacher’s idea of an ideal writing. However, excessive dependence on teachers adds to their workload. Therefore, teachers are increasingly promoting two other alternative methods that are gradually gaining importance. These methods are peer feedback and self-assessment. This study investigates ESL students’ perceptions toward teacher feedback, peer feedback and self-assessment in students’ writing process. Questionnaires, adapted from the instruments in the literature, were administered to 107 randomly selected students in a private local university in Malaysia. Students found feedback given to the content and organization of their writing more useful than feedback provided for their vocabulary and grammar. It was also found that students perceived feedback from teacher, peers and self-assessment all as highly useful. Additionally the results indicated while there was no significant difference (p > .05 between the students’ perceptions toward teacher feedback and self-assessment, they were both perceived as significantly more useful (p < .001 than peer feedback. The students also perceived explicit feedback as significantly more useful (p < .001 than implicit feedback. The results of this study have implications for English language learning-teaching practitioners and researchers. They shed light on the options preferred by students in revising their writing in ESL writing classrooms. Future research on the effects of teacher feedback, peer feedback and self-assessment on students’ writing performance will provide better insight on the preferred methods in ESL writing classrooms in similar settings.

  9. Asymptotic stabilization of nonlinear systems using state feedback

    International Nuclear Information System (INIS)

    D'Attellis, Carlos

    1990-01-01

    This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author) [es

  10. Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates

    International Nuclear Information System (INIS)

    Chadderdon, Xiaotong H.; Chadderdon, David J.; Matthiesen, John E.

    2017-01-01

    Electrochemical reduction of biomass-derived platform molecules is an emerging route for the sustainable production of fuels and chemicals. Understanding gaps between reaction conditions, underlying mechanisms, and product selectivity have limited the rational design of active, stable, and selective catalyst systems. Here, the mechanisms of electrochemical reduction of furfural, an important biobased platform molecule and model for aldehyde reduction, are explored through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. By understanding the underlying mechanisms it enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important biobased polymer precursors and fuels.

  11. Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates.

    Science.gov (United States)

    Chadderdon, Xiaotong H; Chadderdon, David J; Matthiesen, John E; Qiu, Yang; Carraher, Jack M; Tessonnier, Jean-Philippe; Li, Wenzhen

    2017-10-11

    Electrochemical reduction of biomass-derived platform molecules is an emerging route for the sustainable production of fuels and chemicals. However, understanding gaps between reaction conditions, underlying mechanisms, and product selectivity have limited the rational design of active, stable, and selective catalyst systems. In this work, the mechanisms of electrochemical reduction of furfural, an important biobased platform molecule and model for aldehyde reduction, are explored through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important biobased polymer precursors and fuels.

  12. GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating.

    Science.gov (United States)

    Shindo, Takahiko; Okumura, Tadashi; Ito, Hitomi; Koguchi, Takayuki; Takahashi, Daisuke; Atsumi, Yuki; Kang, Joonhyun; Osabe, Ryo; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa

    2011-01-31

    We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.

  13. Synthesis of Carbon–Metal Multi-Strand Nanocomposites by Discharges in Heptane Between Two Metallic Electrodes

    KAUST Repository

    Hamdan, Ahmad

    2017-04-26

    We studied composite wires assembled from electric field-driven nanoparticles in a dielectric liquid (heptane) to elucidate the exact processes and controlling factors involved in the synthesis of the multi-phase nanocomposites. Filamentary wires are synthesized by a two-step process: (1) abundant nanoparticle production, mostly of carbonaceous types, from heptane decomposition by spark discharge and of metal nanoparticles by electrode erosion and (2) assembly of hydrogenated amorphous carbonaceous nano-clusters with incorporated metal nanoparticles forming wires by dielectrophoretic transport while maintaining a high electric field between electrodes kept sufficiently separated to avoid breakdown. Four types of nanocomposites products are identified to form at different steps in distinctive zones of the setup. The black carbonaceous agglomerates with metal spherules made by electrode erosion represent the pyrolytic residues of heptane decomposition by spark discharge during step 1. The filamentary wires grown in the interelectrode gap during step 2 get assembled by dielectrophoretic transport and chaining forces. Their great stability is shown to express the concurrent effect of polymerization favoured by the abundance of metal catalysts. The nature, abundance, and transformation of solid particles from the source materials versus discharge conditions control the morphological and compositional diversity of the wires. The production of mineral and metal nano-particles traces the efficiency of dielectrophoresis to separate compound particle mixtures by size and to co-synthesize nanostructured microcrystals and nanocomposites. The link between impurities and the variability from nano- to micro-scales of the synthesized products provides an innovative contribution to the knowledge of nanocomposite synthesis triggered by electric field.

  14. Evaluation of niobium as candidate electrode material for dc high voltage photoelectron guns

    Directory of Open Access Journals (Sweden)

    M. BastaniNejad

    2012-08-01

    Full Text Available The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirrorlike finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (<10  pA at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18.7  MV/m.

  15. Capacitance variation induced by microfluidic two-phase flow across insulated interdigital electrodes in lab-on-chip devices.

    Science.gov (United States)

    Dong, Tao; Barbosa, Cátia

    2015-01-26

    Microfluidic two-phase flow detection has attracted plenty of interest in various areas of biology, medicine and chemistry. This work presents a capacitive sensor using insulated interdigital electrodes (IDEs) to detect the presence of droplets in a microchannel. This droplet sensor is composed of a glass substrate, patterned gold electrodes and an insulation layer. A polydimethylsiloxane (PDMS) cover bonded to the multilayered structure forms a microchannel. Capacitance variation induced by the droplet passage was thoroughly investigated with both simulation and experimental work. Olive oil and deionized water were employed as the working fluids in the experiments to demonstrate the droplet sensor. The results show a good sensitivity of the droplet with the appropriate measurement connection. This capacitive droplet sensor is promising to be integrated into a lab-on-chip device for in situ monitoring/counting of droplets or bubbles.

  16. Enhancement of the static extinction ratio by using a dual-section distributed feedback laser integrated with an electro-absorption modulator

    Science.gov (United States)

    Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee

    2016-09-01

    We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.

  17. Real-time management of faulty electrodes in electrical impedance tomography.

    Science.gov (United States)

    Hartinger, Alzbeta E; Guardo, Robert; Adler, Andy; Gagnon, Hervé

    2009-02-01

    Completely or partially disconnected electrodes are a fairly common occurrence in many electrical impedance tomography (EIT) clinical applications. Several factors can contribute to electrode disconnection: patient movement, perspiration, manipulations by clinical staff, and defective electrode leads or electronics. By corrupting several measurements, faulty electrodes introduce significant image artifacts. In order to properly manage faulty electrodes, it is necessary to: 1) account for invalid data in image reconstruction algorithms and 2) automatically detect faulty electrodes. This paper presents a two-part approach for real-time management of faulty electrodes based on the principle of voltage-current reciprocity. The first part allows accounting for faulty electrodes in EIT image reconstruction without a priori knowledge of which electrodes are at fault. The method properly weights each measurement according to its compliance with the principle of voltage-current reciprocity. Results show that the algorithm is able to automatically determine the valid portion of the data and use it to calculate high-quality images. The second part of the approach allows automatic real-time detection of at least one faulty electrode with 100% sensitivity and two faulty electrodes with 80% sensitivity enabling the clinical staff to fix the problem as soon as possible to minimize data loss.

  18. EXACT SOLUTION TO FINITE TEMPERATURE SFDM: NATURAL CORES WITHOUT FEEDBACK

    International Nuclear Information System (INIS)

    Robles, Victor H.; Matos, T.

    2013-01-01

    Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. However, the standard cold dark matter model simulations predict a more cuspy behavior. One mechanism used to reconcile the simulations with the observed data is the feedback from star formation. While this mechanism may be successful in isolated dwarf galaxies, its success in LSB galaxies remains unclear. Additionally, the inclusion of too much feedback in the simulations is a double-edged sword—in order to obtain a cored DM distribution from an initially cuspy one, the feedback recipes usually require one to remove a large quantity of baryons from the center of the galaxies; however, some feedback recipes produce twice the number of satellite galaxies of a given luminosity and with much smaller mass-to-light ratios from those that are observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark matter model. Here, we consider that DM is an auto-interacting real scalar field in a thermal bath at temperature T with an initial Z 2 symmetric potential. As the universe expands, the temperature drops so that the Z 2 symmetry is spontaneously broken and the field rolls down to a new minimum. We give an exact analytic solution to the Newtonian limit of this system, showing that it can satisfy the two desired requirements and that the rotation curve profile is no longer universal.

  19. Distribution of age at menopause in two Danish samples

    DEFF Research Database (Denmark)

    Boldsen, J L; Jeune, B

    1990-01-01

    We analyzed the distribution of reported age at natural menopause in two random samples of Danish women (n = 176 and n = 150) to determine the shape of the distribution and to disclose any possible trends in the distribution parameters. It was necessary to correct the frequencies of the reported...... ages for the effect of differing ages at reporting. The corrected distribution of age at menopause differs from the normal distribution in the same way in both samples. Both distributions could be described by a mixture of two normal distributions. It appears that most of the parameters of the normal...... distribution mixtures remain unchanged over a 50-year time lag. The position of the distribution, that is, the mean age at menopause, however, increases slightly but significantly....

  20. Cochlear Implant Electrode Localization Using an Ultra-High Resolution Scan Mode on Conventional 64-Slice and New Generation 192-Slice Multi-Detector Computed Tomography.

    Science.gov (United States)

    Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I

    2017-08-01

    A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.

  1. Opportunistic Relay Selection With Limited Feedback

    KAUST Repository

    Eltayeb, Mohammed E.

    2015-08-01

    Relay selection is a simple technique that achieves spatial diversity in cooperative relay networks. Generally, relay selection algorithms require channel state information (CSI) feedback from all cooperating relays to make a selection decision. This requirement poses two important challenges, which are often neglected in the literature. Firstly, the fed back channel information is usually corrupted by additive noise. Secondly, CSI feedback generates a great deal of feedback overhead (air-time) that could result in significant performance hits. In this paper, we propose a compressive sensing (CS) based relay selection algorithm that reduces the feedback overhead of relay networks under the assumption of noisy feedback channels. The proposed algorithm exploits CS to first obtain the identity of a set of relays with favorable channel conditions. Following that, the CSI of the identified relays is estimated using least squares estimation without any additional feedback. Both single and multiple relay selection cases are considered. After deriving closed-form expressions for the asymptotic end-to-end SNR at the destination and the feedback load for different relaying protocols, we show that CS-based selection drastically reduces the feedback load and achieves a rate close to that obtained by selection algorithms with dedicated error-free feedback. © 1972-2012 IEEE.

  2. Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics.

    Science.gov (United States)

    Boulet, Jason; Balasubramaniam, Ramesh; Daffertshofer, Andreas; Longtin, André

    2010-01-28

    We report on experiments and modelling involving the 'visuo-postural control loop' in the upright stance. We experimentally manipulated an artificial delay to the visual feedback during standing, presented at delays ranging from 0 to 1 s in increments of 250 ms. Using stochastic delay differential equations, we explicitly modelled the centre-of-pressure (COP) and centre-of-mass (COM) dynamics with two independent delay terms for vision and proprioception. A novel 'drifting fixed point' hypothesis was used to describe the fluctuations of the COM with the COP being modelled as a faster, corrective process of the COM. The model was in good agreement with the data in terms of probability density functions, power spectral densities, short- and long-term correlations (Hurst exponents) as well the critical time between the two ranges. This journal is © 2010 The Royal Society

  3. Studies on two classes of positive electrode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, James Douglas [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO4/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi1/3Co1/3-yMyMn1/3O2 (M=Al, Co, Fe, Ti) and LiNi0.4Co0.2-yMyMn0.4O2 (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO4 is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO4/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO4 particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of

  4. Pierce electrodes for a multigap accelerating system

    International Nuclear Information System (INIS)

    Davydenko, V.I.; Ivanov, A.A.; Kotelnikov, I.A.; Tiunov, M.A.

    2007-01-01

    A well-known Pierce's solution that allows to focus a beam of charged particles using properly shaped electrodes outside the beam is generalized to the case of multigap accelerating system. Simple parametric formulae for Pierce electrodes are derived for an accelerating system with current density, limited either by space charge or by emitting property of the cathode. As an example of general approach, Pierce electrodes shape is analyzed for a system with two accelerating gaps. It is shown that precise Pierce's solution exists if acceleration rate within second gap is lower than within first gap. In the opposite case quasi-Pierce solution can be implemented using non-equipotential electrode between the gaps, and guidelines, based on numerical simulations, for the design of equipotential focusing electrodes are given

  5. Investigating the possible effect of electrode support structure on motion artifact in wearable bioelectric signal monitoring.

    Science.gov (United States)

    Cömert, Alper; Hyttinen, Jari

    2015-05-15

    With advances in technology and increasing demand, wearable biosignal monitoring is developing and new applications are emerging. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. The sources of the motion artifact lie in the skin-electrode interface. Reducing the motion and deformation at this interface should have positive effects on signal quality. In this study, we aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode. We compare four textile electrodes with different support structure designs: a soft padding larger than the electrode area, a soft padding larger than the electrode area with a novel skin deformation restricting design, a soft padding the same size as the electrode area, and a rigid support the same size as the electrode. With five subjects and two electrode locations placed over different kinds of tissue at various mounting forces, we simultaneously measured the motion artifact, a motion affected ECG, and the real-time skin-electrode impedance during the application of controlled motion to the electrodes. The design of the electrode support structure has an effect on the generated motion artifact; good design with a skin stabilizing structure makes the electrodes physically more motion artifact resilient, directly affecting signal quality. Increasing the applied mounting force shows a positive effect up to 1,000 gr applied force. The properties of tissue under the electrode are an important factor in the generation of the motion artifact and the functioning of the electrodes. The relationship of motion artifact amplitude to the electrode movement magnitude is seen to be linear for smaller movements. For larger movements, the increase of motion generated a disproportionally larger artifact. The motion artifact and the induced

  6. Feedback stabilization of electrostatic reactive instabilities

    International Nuclear Information System (INIS)

    Richards, R.K.

    1976-01-01

    A general theory for the feedback stabilization of electrostatic reactive instabilities is developed which includes the effects of dissipation in the plasma and frequency dependence in the sensor-suppressor elements and in the external feedback circuit. This theory is compared to experiments involving particular reactive instability, an interchange mode, found in a magnetic mirror device; these results are found to be in good agreement with theory. One noteworthy result is that a frequency dependence in the overall gain and phase shift of the feedback loop can cause destabilization at large gain. Multimode feedback stabilization is studied using the spatial variation of two interchange modes to separate them such that each can be acted upon individually by the feedback system. The transfer function of the plasma is also examined. This analysis is used for mode identification and location of the pole positions. As an example of using feedback as a diagnostic tool, instability induced transport is studied. Here feedback is used to control the amplitude of fluctuations at saturation

  7. Low-Feedback Opportunistic Scheduling Schemes for Wireless Networks with Heterogenous Users

    KAUST Repository

    Rashid, Faraan

    2012-07-01

    Efficient implementation of resource sharing strategies in a multi-user wireless environment can improve the performance of a network significantly. In this thesis we study various scheduling strategies for wireless networks and handle the problem of opportunistically scheduling transmissions using channel aware schemes. First we propose a scheme that can handle users with asymmetric channel conditions and is opportunistic in the sense that it exploits the multi-user diversity of the network. The scheme requires the users to have a priori knowledge of their channel distributions. The associated overhead is limited meaning it offers reduced feedback load, that does not scale with the increasing number of users. The main technique used to shrink the feedback load is the contention based distributed implementation of a splitting algorithm that does not require explicit feedback to the scheduler from every user. The users find the best among themselves, in a distributed manner, while requiring just a ternary broadcast feedback from the scheduler at the end of each mini-slot. In addition, it can also handle fairness constraints in time and throughput to various degrees. Next we propose another opportunistic scheduler that offers most of the benefits of the previously proposed scheme but is more practical because it can also handle heterogenous users whose channel distributions are unknown. This new scheme actually reduces the complexity and is also more robust for changing traffic patterns. Finally we extend both these schemes to the scenario where there are fixed thresholds, this enables us to handle opportunistic scheduling in practical systems that can only transmit over finite number of discrete rates with the additional benefit that full feedback session, even from the selected user, is never required.

  8. Adapting Progress Feedback and Emotional Support to Learner Personality

    Science.gov (United States)

    Dennis, Matt; Masthoff, Judith; Mellish, Chris

    2016-01-01

    As feedback is an important part of learning and motivation, we investigate how to adapt the feedback of a conversational agent to learner personality (as well as to learner performance, as we expect an interaction effect between personality and performance on feedback). We investigate two aspects of feedback. Firstly, we investigate whether the…

  9. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  10. A multipoint feedback control system for scanned focussed ultrasound hyperthermia

    International Nuclear Information System (INIS)

    Johnson, C.; Kress, R.; Roemer, R.; Hynynen, K.

    1987-01-01

    A multipoint feedback control system has been developed and tested for use with a scanned focussed ultrasound hyperthermia system. Extensive in-vivo tests (using a perfused organ model) have been made to evaluate the basic performance characteristics of the feedback control scheme for control of temperature in perfused media. The results of these tests are presented and compared with the predictions of a simulation routine. The control scheme was also tested in vivo using dogs' thighs and kidneys. Thigh experiments show the control scheme responds well to the affects of vasodilation and is able to maintain the targeted temperatures. In kidney experiments, where the rate of perfusion was controllable, the power adjusting algorithm successfully maintained uniform temperature distributions across regions of varying rates of perfusion. As a conclusion, the results show that this multipoint feedback controller scheme induces uniform temperature distributions when used with scanned focussed ultrasound systems

  11. MARTe at FTU: The new feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM - ENEA Fusion Association, Frascati Research Centre, Division of Fusion Physics, Rome, Frascati (Italy); Sadeghi, Yahya; Carnevale, Daniele; Di Geronimo, Andrea; Varano, Gianluca; Vitelli, Riccardo [Department of Computer Science, Systems and Production, University of Rome Tor Vergata, Rome (Italy); Galperti, Critsian [Istituto di Fisica del Plasma, CNR, EURATOM-ENEA Association, Milan (Italy); Zarfati, Emanuele; Pucci, Daniele [Department Antonio Ruberti, University of Rome La Sapienza, Rome (Italy)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We show that the MARTe is a candidate for ITER PSH. Black-Right-Pointing-Pointer We replace the old real-time feedback software using the MARTe framework. Black-Right-Pointing-Pointer We describe all the work done for the integration. - Abstract: Keeping in mind the necessities of a modern control system for fusion devices, such as modularity and a distributed architecture, an upgrade of the present FTU feedback control system was planned, envisaging also a possible reutilization in the proposed FAST experiment [1]. For standardization and efficiency purposes we decided to adopt a pre-existent ITER-relevant framework called MARTe [2], already used with success in other European Tokamak devices [3]. Following the developments shown in [4], in this paper we report on the structure of the new feedback system, and how it was integrated in the current control structure and pulse programming interface, and in the other MARTe systems already in FTU: RT-ODIN [5] and the ECRH and LH [6] satellite stations. The new feedback system has been installed in the FTU backup station (known as 'Feedback B'), which shares the input signals with the actual feedback system, in order to simplify the validation and debug of the new controller by testing it in parallel with the current one. Experimental results are then presented.

  12. Lorentz covariant tempered distributions in two-dimensional space-time

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1989-01-01

    The problem of describing Lorentz covariant distributions without any spectral condition has hitherto remained unsolved even for two-dimensional space-time. Attempts to solve this problem have already been made. Zharinov obtained an integral representation for the Laplace transform of Lorentz invariant distributions with support in the product of two-dimensional future light cones. However, this integral representation does not make it possible to obtain a complete description of the corresponding Lorentz invariant distributions. In this paper the author gives a complete description of Lorentz covariant distributions for two-dimensional space-time. No spectral conditions is assumed

  13. Assessment of Habitat Suitability Is Affected by Plant-Soil Feedback: Comparison of Field and Garden Experiment.

    Directory of Open Access Journals (Sweden)

    Lucie Hemrová

    Full Text Available Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern.In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment.In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly correlated between the two

  14. Visualization and mechanisms of splashing erosion of electrodes in a DC air arc

    International Nuclear Information System (INIS)

    Wu, Yi; Cui, Yufei; Rong, Mingzhe; Yang, Fei; Sun, Hao; Niu, Chunping; Fan, Shaodi; Murphy, Anthony B

    2017-01-01

    The splashing erosion of electrodes in a DC atmospheric-pressure air arc has been investigated by visualization of the electrode surface and the sputtered droplets, and tracking of the droplet trajectories, using image processing techniques. A particle tracking velocimetry algorithm has been introduced to measure the sputtering velocity distribution. Erosion of both tungsten–copper and tungsten–ceria electrodes is studied; in both cases electrode erosion is found to be dominated by droplet splashing rather than metal evaporation. Erosion is directly influenced by both melting and the formation of plasma jets, and can be reduced by the tuning of the plasma jet and electrode material. The results provide an understanding of the mechanisms that lead to the long lifetime of tungsten–copper electrodes, and may provide a path for the design of the electrode system subjected to electric arc to minimize erosion. (letter)

  15. Visualization and mechanisms of splashing erosion of electrodes in a DC air arc

    Science.gov (United States)

    Wu, Yi; Cui, Yufei; Rong, Mingzhe; Murphy, Anthony B.; Yang, Fei; Sun, Hao; Niu, Chunping; Fan, Shaodi

    2017-11-01

    The splashing erosion of electrodes in a DC atmospheric-pressure air arc has been investigated by visualization of the electrode surface and the sputtered droplets, and tracking of the droplet trajectories, using image processing techniques. A particle tracking velocimetry algorithm has been introduced to measure the sputtering velocity distribution. Erosion of both tungsten-copper and tungsten-ceria electrodes is studied; in both cases electrode erosion is found to be dominated by droplet splashing rather than metal evaporation. Erosion is directly influenced by both melting and the formation of plasma jets, and can be reduced by the tuning of the plasma jet and electrode material. The results provide an understanding of the mechanisms that lead to the long lifetime of tungsten-copper electrodes, and may provide a path for the design of the electrode system subjected to electric arc to minimize erosion.

  16. The effect of video-assisted oral feedback versus oral feedback on surgical communicative competences in undergraduate training.

    Science.gov (United States)

    Ruesseler, M; Sterz, J; Bender, B; Hoefer, S; Walcher, F

    2017-08-01

    Feedback can significantly improve future performance. Reviewing one's performance by video is discussed as useful adjunct to debriefing, particularly for non-technical skills. Communicative competencies are an essential part of daily clinical practice; thus should be taught and assessed during undergraduate training. The aim of this study was to compare the educational value of video-assisted feedback versus oral feedback in communicative competencies in the surgical context. Fourth-year medical students completed a 210-min training unit of 'taking patient's history and obtaining informed consents prior to surgery' using role plays. Oral feedback was received directly thereafter using agenda-led, outcome-based guidelines (ALOBA). In the study group, the role plays were video-taped and reviewed thereafter. Afterwards, students completed two OSCE stations, where they were assessed regarding their communicative competencies and the content of the clinical scenario. One-hundred students (49 receiving video-assisted feedback, 51 oral) participated in the study. Those receiving video-assisted feedback performed significantly better in overall score in both OSCE stations (p feedback offered a significant educational benefit over oral feedback alone during a simulated patient encounter in a surgical context.

  17. Studies on widely tunable ultra-short laser pulses using energy transfer distributed feedback dye laser

    International Nuclear Information System (INIS)

    Ahamed, M.B.; Ramalingam, A.; Palanisamy, P.K.

    2003-01-01

    This paper presents both theoretical and experimental study of the characteristics of Nd: YAG laser pumped energy transfer distributed feedback dye laser (ETDFDL). Using theoretical model proposed, the behavior of ETDFDL such as the characteristics of donor DFDL, the acceptor DFDL, the dependence of their pulse width and output power on donor-acceptor concentrations and pump power are studied for dye mixture Rhodamine 6G and Cresyl Violet in detail. Experimentally using prism-dye cell configuration, the ETDFDL output is obtained and the output energy of DFDL is measured at the emission peaks of donor and acceptor dyes for different pump powers and donor-acceptor concentrations. In addition, the DFDL linewidth measurement has been carried out at the lasing wavelengths of the donor and acceptor dyes using Fabry-Perot etalon and the tunability of DFDL is measured to be in the wavelength range of 545-680 nm

  18. Collective irrationality and positive feedback.

    Science.gov (United States)

    Nicolis, Stamatios C; Zabzina, Natalia; Latty, Tanya; Sumpter, David J T

    2011-04-26

    Recent experiments on ants and slime moulds have assessed the degree to which they make rational decisions when presented with a number of alternative food sources or shelter. Ants and slime moulds are just two examples of a wide range of species and biological processes that use positive feedback mechanisms to reach decisions. Here we use a generic, experimentally validated model of positive feedback between group members to show that the probability of taking the best of options depends crucially on the strength of feedback. We show how the probability of choosing the best option can be maximized by applying an optimal feedback strength. Importantly, this optimal value depends on the number of options, so that when we change the number of options the preference of the group changes, producing apparent "irrationalities". We thus reinterpret the idea that collectives show "rational" or "irrational" preferences as being a necessary consequence of the use of positive feedback. We argue that positive feedback is a heuristic which often produces fast and accurate group decision-making, but is always susceptible to apparent irrationality when studied under particular experimental conditions.

  19. Collective irrationality and positive feedback.

    Directory of Open Access Journals (Sweden)

    Stamatios C Nicolis

    Full Text Available Recent experiments on ants and slime moulds have assessed the degree to which they make rational decisions when presented with a number of alternative food sources or shelter. Ants and slime moulds are just two examples of a wide range of species and biological processes that use positive feedback mechanisms to reach decisions. Here we use a generic, experimentally validated model of positive feedback between group members to show that the probability of taking the best of options depends crucially on the strength of feedback. We show how the probability of choosing the best option can be maximized by applying an optimal feedback strength. Importantly, this optimal value depends on the number of options, so that when we change the number of options the preference of the group changes, producing apparent "irrationalities". We thus reinterpret the idea that collectives show "rational" or "irrational" preferences as being a necessary consequence of the use of positive feedback. We argue that positive feedback is a heuristic which often produces fast and accurate group decision-making, but is always susceptible to apparent irrationality when studied under particular experimental conditions.

  20. Study on conventional carbon characteristics as counter electrode for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Fajar, Muhammad Noer; Endarko

    2017-01-01

    Activated carbon (AC), black carbon (BC), and graphite were deposited onto ITO (Indium Tin Oxide) glass for counter electrode application in Dye-Sensitized Solar Cells. SEM-EDX was used to observe and analyse the morphology and composition of electrodes. The results showed that the particle distribution of the graphite electrode observed was approximately 34% with a size of 1 to 2 µm and BC electrode about 20% have a size of 0.5 to 1 µm, while AC electrode has a size of 0 – 0.5 µm observed around 20%. AC electrode has a more porous and uniform particle aggregates compared to BC and graphite electrodes. The efficiency of the counter electrode was measured using the solar simulator. The highest efficiency was at 0.011516% for the counter electrode that was fabricated by AC. Meanwhile, black carbon and graphite electrodes were achieved at 0.008744% and 0.010561%, respectively. The results proved that the porosity and the uniform aggregate of the particles were the most significant factors to improve the performance of DSSC. (paper)

  1. Evaluation of high-perimeter electrode designs for deep brain stimulation

    Science.gov (United States)

    Howell, Bryan; Grill, Warren M.

    2014-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, complications including infections and mis-programing following surgical replacement of the battery-powered implantable pulse generator adversely impact the safety profile of this therapy. We sought to decrease power consumption and extend battery life by modifying the electrode geometry to increase stimulation efficiency. The specific goal of this study was to determine whether electrode contact perimeter or area had a greater effect on increasing stimulation efficiency. Approach. Finite-element method (FEM) models of eight prototype electrode designs were used to calculate the electrode access resistance, and the FEM models were coupled with cable models of passing axons to quantify stimulation efficiency. We also measured in vitro the electrical properties of the prototype electrode designs and measured in vivo the stimulation efficiency following acute implantation in anesthetized cats. Main results. Area had a greater effect than perimeter on altering the electrode access resistance; electrode (access or dynamic) resistance alone did not predict stimulation efficiency because efficiency was dependent on the shape of the potential distribution in the tissue; and, quantitative assessment of stimulation efficiency required consideration of the effects of the electrode-tissue interface impedance. Significance. These results advance understanding of the features of electrode geometry that are important for designing the next generation of efficient DBS electrodes.

  2. Role of Ti and Pt electrodes on resistance switching variability of HfO2-based Resistive Random Access Memory

    International Nuclear Information System (INIS)

    Cabout, T.; Buckley, J.; Cagli, C.; Jousseaume, V.; Nodin, J.-F.; Salvo, B. de; Bocquet, M.; Muller, Ch.

    2013-01-01

    This paper deals with the role of platinum or titanium–titanium nitride electrodes on variability of resistive switching characteristics and electrical performances of HfO 2 -based memory elements. Capacitor-like Pt/HfO 2 (10 nm)/Pt and Ti/HfO 2 (10 nm)/TiN structures were fabricated on top of a tungsten pillar bottom electrode and integrated in-between two interconnect metal lines. First, quasi-static measurements were performed to apprehend the role of electrodes on electroforming, set and reset operations and their corresponding switching parameters. Memory elements with Pt as top and bottom electrodes exhibited a non-polar behavior with sharp decrease of current during reset operation while Ti/HfO 2 /TiN capacitors showed a bipolar switching behavior, with a gradual reset. In a second step, statistical distributions of switching parameters (voltage and resistance) were extracted from data obtained on few hundreds of capacitors. Even if the resistance in low resistive state and reset voltage was found to be comparable for both types of electrodes, the progressive reset operation observed on samples with Ti/TiN electrodes led to a lower variability of resistance in high resistive state and concomitantly of set voltage. In addition Ti–TiN electrodes enabled gaining: (i) lower forming and set voltages with significantly narrower capacitor-to-capacitor distributions; (ii) a better data retention capability (10 years at 65 °C instead of 10 years at 50 °C for Pt electrodes); (iii) satisfactory dynamic performances with lower set and reset voltages for ramp speed ranging from 10 −2 to 10 7 V/s. The significant improvement of switching behavior with Ti–TiN electrodes is mainly attributed to the formation of a native interface layer between HfO 2 oxide and Ti top electrode. - Highlights: ► HfO2 based capacitor-like structures were fabricated with Pt and Ti based electrodes. ► Influence of electrode materials on switching parameter variability is assessed.

  3. Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma

    International Nuclear Information System (INIS)

    Gyergyek, T.; Cercek, M.; Erzen, D.

    2003-01-01

    Plasma potential formation in the pre-sheath region of a floating electron emitting electrode (collector) is studied theoretically in a two-electron-temperature plasma using a static kinetic plasma-sheath model. Dependence of the collector floating potential, the plasma potential in the pre-sheath region, and the critical emission coefficient on the hot electron density and temperature is calculated. It is found that for high hot to cool electron temperature ratio a double layer like solutions exist in a certain range of hot to cool electron densities

  4. A Study of Corrective Feedback and Learner's Uptake in Classroom Interactions

    Directory of Open Access Journals (Sweden)

    Fatemeh Esmaeili

    2014-07-01

    Full Text Available The present study aims to examine corrective feedback and learner uptake in classroom interactions. Inspired by Lyster and Ranta’s corrective feedback framework (1997, this study intends to describe and analyze the patterns of corrective feedback utilized by Iranian teachers, and learners' uptake and the repair of those errors. To this aim, 400 minutes of classroom interaction from three elementary EFL classes which comprised 29 EFL learners were audiotaped and transcribed. The learners were within age range of 16-29 and were native speakers of Turkish language. The teachers were within 26-31 age range and had 3-4 years experience of teaching and hold MA degree in TOEFL. Analysis of data constituted the frequency of six different feedback types used by three teachers, in addition distribution of learners' uptake following each feedback type. The findings indicated that among six corrective feedback types, recast was the most frequent feedback utilized by teachers although it did not lead to high amount of learner uptake. Metalinguistic feedback, elicitation and clarification request led to higher level of uptake. It was also found that explicit feedback was more effective than implicit feedback in promoting learner uptake.

  5. OPT-TWO: Calculation code for two-dimensional MOX fuel models in the optimum concentration distribution

    International Nuclear Information System (INIS)

    Sato, Shohei; Okuno, Hiroshi; Sakai, Tomohiro

    2007-08-01

    OPT-TWO is a calculation code which calculates the optimum concentration distribution, i.e., the most conservative concentration distribution in the aspect of nuclear criticality safety, of MOX (mixed uranium and plutonium oxide) fuels in the two-dimensional system. To achieve the optimum concentration distribution, we apply the principle of flattened fuel importance distribution with which the fuel system has the highest reactivity. Based on this principle, OPT-TWO takes the following 3 calculation steps iteratively to achieve the optimum concentration distribution with flattened fuel importance: (1) the forward and adjoint neutron fluxes, and the neutron multiplication factor, with TWOTRAN code which is a two-dimensional neutron transport code based on the SN method, (2) the fuel importance, and (3) the quantity of the transferring fuel. In OPT-TWO, the components of MOX fuel are MOX powder, uranium dioxide powder and additive. This report describes the content of the calculation, the computational method, and the installation method of the OPT-TWO, and also describes the application method of the criticality calculation of OPT-TWO. (author)

  6. Rotating ring-ring electrode theory and experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kellyb, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  7. Feasibility of Parylene Coating for Planar Electroporation Copper Electrodes

    Directory of Open Access Journals (Sweden)

    Vitalij NOVICKIJ

    2017-08-01

    Full Text Available This paper is focused on the feasibility study of parylene as a biocompatible coating for planar electroporation microelectrodes. The planar parallel and the circular interdigitated electrodes are applied in the analysis. The electrodes feature 100 μm width with a 300 μm gap between anode and cathode. The parylene coating thickness was varied in the 250 nm – 2 μm range. The resultant electric field distribution evaluation has been performed using the finite element method. The electrodes have been applied in electroporation experiments with Saprolegnia parasitica. For reference the additional experiments using conventional electroporation cuvette (1 mm gap have been performed. It has been determined that the parylene coating with hydrophobic properties has limited applicability for the passivation of the planar electroporation electrodes.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.14953

  8. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    DEFF Research Database (Denmark)

    Bacco, Davide; Christensen, Jesper Bjerge; Usuga Castaneda, Mario A.

    2016-01-01

    10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak......Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last...... coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable....

  9. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    Science.gov (United States)

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-12-01

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

  10. Gram-scale production of B, N co-doped graphene-like carbon for high performance supercapacitor electrodes

    Science.gov (United States)

    Chen, Zhuo; Hou, Liqiang; Cao, Yan; Tang, Yushu; Li, Yongfeng

    2018-03-01

    Boron and nitrogen co-doped graphene-like carbon (BNC) with a gram scale was synthesized via a two-step method including a ball-milling process and a calcination process and used as electrode materials for supercapacitors. High surface area and abundant active sites of graphene-like carbon were created by the ball-milling process. Interestingly, the nitrogen atoms are doped in carbon matrix without any other N sources except for air. The textual and chemical properties can be easily tuned by changing the calcination temperature, and at 900 oC the BNC with a high surface area (802.35 m2/g), a high boron content (2.19 at%), a hierarchical pore size distribution and a relatively high graphitic degree was obtained. It shows an excellent performance of high specific capacitance retention about 78.2% at high current density (199 F/g at 100 A/g) of the initial capacitance (254 F/g at 0.25 A/g) and good cycling stability (90% capacitance retention over 1000 cycles at 100 A/g) measured in a three-electrode system. Furthermore, in a two-electrode system, a specific capacitance of 225 F/g at 0.25 A/g and a good cycling stability (93% capacitance retention over 20,000 cycles at 25 A/g) were achieved by using BNC as electrodes. The strategy of synthesis is facile and effective to fabricate multi-doped graphene-like carbon for promising candidates as electrode materials in supercapacitors.

  11. Feedback Conversations: Creating Feedback Dialogues with a New Textual Tool for Industrial Design Student Feedback

    Science.gov (United States)

    Funk, Mathias; van Diggelen, Migchiel

    2017-01-01

    In this paper, the authors describe how a study of a large database of written university teacher feedback in the department of Industrial Design led to the development of a new conceptual framework for feedback and the design of a new feedback tool. This paper focuses on the translation of related work in the area of feedback mechanisms for…

  12. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    Science.gov (United States)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  13. Comparative study of two- and three-dimensional modeling on arc discharge phenomena inside a thermal plasma torch with hollow electrodes

    International Nuclear Information System (INIS)

    Kim, Keun Su; Park, Jin Myung; Choi, Sooseok; Kim, Jongin; Hong, Sang Hee

    2008-01-01

    A comparative study between two- and three-dimensional (2D and 3D) modeling is carried out on arc discharge phenomena inside a thermal plasma torch with hollow electrodes, in order to evaluate the effects of arc root configuration characterized by either 2D annular or 3D highly localized attachment on the electrode surface. For this purpose, a more precise 3D transient model has been developed by taking account of 3D arc current distribution and arc root rotation. The 3D simulation results apparently reveal that the 3D arc root attachment brings about the inherent 3D and turbulence nature of plasma fields inside the torch. It is also found that the constricted arc column near the vortex chamber plays an important role in heating and acceleration of injected arc gases by concentrating arc currents on the axis of the hollow electrodes. The inherent 3D nature of arc discharge is well preserved inside the cathode region, while these 3D features slowly diminish behind the vortex chamber where the turbulent flow begins to be developed in the anode region. Based on the present simulation results, it is noted that the mixing effects of the strong turbulent flow on the heat and mass transfer are mainly responsible for the gradual relaxation of the 3D structures of plasma fields into the 2D axisymmetric ones that eventually appear in the anode region near the torch exit. From a detailed comparison of the 3D results with the 2D ones, the arc root configuration seems to have a significant effect on the heat transfer to the electrode surfaces interacting with the turbulent plasma flow. That is, in the 2D simulation based on an axisymmetric stationary model, the turbulence phenomena are fairly underestimated and the amount of heat transferred to the cold anode wall is calculated to be smaller than that obtained in the 3D simulation. For the validation of the numerical simulations, calculated plasma temperatures and axial velocities are compared with experimentally measured ones

  14. Feedback on Feedback: Eliciting Learners' Responses to Written Feedback through Student-Generated Screencasts

    Science.gov (United States)

    Fernández-Toro, María; Furnborough, Concha

    2014-01-01

    Despite the potential benefits of assignment feedback, learners often fail to use it effectively. This study examines the ways in which adult distance learners engage with written feedback on one of their assignments. Participants were 10 undergraduates studying Spanish at the Open University, UK. Their responses to feedback were elicited by means…

  15. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  16. A preparation of homogeneous distribution of palladium nanoparticle on poly (acrylic acid)-functionalized graphene oxide modified electrode for formalin oxidation

    International Nuclear Information System (INIS)

    Kongkaew, Supatinee; Kanatharana, Proespichaya; Thavarungkul, Panote; Limbut, Warakorn

    2017-01-01

    An excellent electrocatalytic activity, repeatability and stability of electrochemical sensor for formalin detection was fabricated based on a homogeneous distribution of ellipsoidal palladium nanoparticle (PdNPs) on poly (acrylic acid)-functionalized graphene oxide (PAA-GO) modified on a glassy carbon electrode (GCE) (PdNPs-PAA-GO/GCE) with incorporated flow injection amperometry (FI-Amp). Homogeneous distribution of ellipsoidal palladium nanoparticles (PdNPs) were dispersed on PAA-GO via an electroless deposition method. The surface morphology and electrochemical behavior of the PdNPs-PAA-GO/GCE were characterized by transmission electron microscopy, fourier transform infrared spectroscopy, cyclic voltammetry and amperometry. The PdNPs-PAA-GO/GCE exhibited excellent electrocatalytic activity toward formalin oxidation. Then this modified electrode was incorporated with FI-Amp for formalin sensor development. In order to obtain good analytical performances, many parameters such as the amount of PdNPs-PAA-GO, applied potential, flow rate and sample volume were optimized. Under optimal conditions, this sensor provided a wide linear range, 50-50,000 μmol L −1 , with high sensitivity (320 μA mmol L −1 cm −2 ). The limit of detection and limit of quantitation were 16 μmol L −1 and 53 μmol L −1 , respectively. This proposed sensor exhibited good repeatability (RSD < 3.5%), excellence stability (RSD = 1.5%, n = 500) and high sample throughput (60 samples h −1 ). This method was applied to the determination of formalin in soaked fresh food samples with satisfactory recovery.

  17. Pulse-voltammetric glucose detection at gold junction electrodes.

    Science.gov (United States)

    Rassaei, Liza; Marken, Frank

    2010-09-01

    A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.

  18. Making Movies: The Next Big Thing in Feedback?

    Science.gov (United States)

    Hope, Sheila A.

    2011-01-01

    Good quality, timely feedback is a key factor to help students achieve their full potential. Increased class sizes have put significant strain on the ability to return work promptly without compromising feedback quality. In the current study, two screencasting technologies were used to produce audiovisual feedback. For essays, Jing was used,…

  19. Comparison of electrocatalytic characterization of boron-doped diamond and SnO2 electrodes

    International Nuclear Information System (INIS)

    Lv, Jiangwei; Feng, Yujie; Liu, Junfeng; Qu, Youpeng; Cui, Fuyi

    2013-01-01

    Boron-doped diamond (BDD) and SnO 2 electrodes were prepared by direct current plasma chemical vapor deposition (DC-PCVD) and sol–gel method, respectively. Electrochemical characterization of the two electrodes were investigated by phenol electrochemical degradation, accelerated service life test, cyclic voltammetry (CV) in phenol solution, polarization curves in H 2 SO 4 . The surface morphology and crystal structure of two electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The results showed a considerable difference between the two electrodes in their electrocatalytic activity, electrochemical stability and surface properties. Phenol was readily mineralized to CO 2 at BDD electrode, favoring electrochemical combustion, but its degradation was much slower at SnO 2 electrode. The service life of BDD electrode was 10 times longer than that of SnO 2 . Higher electrocatalytic activity and electrochemical stability of BDD electrode arise from its high oxygen evolution potential and the physically absorbed hydroxyl radicals (·OH) on electrode surface.

  20. Response times in a two-node queueing network with feedback

    NARCIS (Netherlands)

    van der Mei, R.D.; Gijsen, B.M.M.; in 't Veld, N.; van den Berg, J.L.

    2002-01-01

    The study presented in this paper is motivated by the performance analysis of response times in distributed information systems, where transactions are handled by iterative server and database actions. We model system response times as sojourn times in a two-node open queueing network with a

  1. Response times in a two-node queueing network with feedback

    NARCIS (Netherlands)

    van der Mei, R.D.; Gijsen, B.M.M.; Gijsen, B.M.M.; in 't Veld, N.; van den Berg, Hans Leo

    The study presented in this paper is motivated by the performance analysis of response times in distributed information systems, where transactions are handled by iterative server and database actions. We model system response times as sojourn times in a two-node open queueing network with a

  2. News from the Library: Two new online services available at CERN: thank you for your feedback!

    CERN Multimedia

    CERN Library

    2012-01-01

    The Library has activated two different new online services, as a result of very successful trial periods and thanks to your positive feedback and strong support: PressDisplay and Nucleonica.   PressDisplay is an online portal where one can browse and read online articles from more than 1,900 newspapers from 95 countries, as soon as they are published. Le Monde, International Herald Tribune and many more titles are available in their original layout including text and images. Thanks to RSS feeds, users can directly receive news from their favorite newspapers, but articles can also be printed and sent via email. Based on the very positive feedback we got from the community, the CERN Library has activated a one-year subscription to PressDisplay, and a wealth of information is now available at everyone's fingertips at CERN. In addition to that, the latest Library news about Nucleonica, the nuclide and isotope database derived from the Karlsruhe Nuclide Chart, generated so much interest ...

  3. An analytic solution to the homogeneous EIT problem on the 2D disk and its application to estimation of electrode contact impedances

    International Nuclear Information System (INIS)

    Demidenko, Eugene

    2011-01-01

    An analytic solution of the potential distribution on a 2D homogeneous disk for electrical impedance tomography under the complete electrode model is expressed via an infinite system of linear equations. For the shunt electrode model with two electrodes, our solution coincides with the previously derived solution expressed via elliptic integral (Pidcock et al 1995 Physiol. Meas. 16 77–90). The Dirichlet-to-Neumann map is derived for statistical estimation via nonlinear least squares. The solution is validated in phantom experiments and applied for breast contact impedance estimation in vivo. Statistical hypothesis testing is used to test whether the contact impedances are the same across electrodes or all equal zero. Our solution can be especially useful for a rapid real-time test for bad surface contact in clinical setting

  4. RHIC 10 Hz global orbit feedback system

    International Nuclear Information System (INIS)

    Michnoff, R.; Arnold, L.; Carboni, L.; Cerniglia, P.; Curcio, A.; DeSanto, L.; Folz, C.; Ho, C.; Hoff, L.; Hulsart, R.; Karl, R.; Luo, Y.; Liu, C.; MacKay, W.; Mahler, G.; Meng, W.; Mernick, K.; Minty, M.; Montag, C.; Olsen, R.; Piacentino, J.; Popken, P.; Przybylinski, R.; Ptitsyn, V.; Ritter, J.; Schoenfeld, R.; Thieberger, P.; Tuozzolo, J.; Weston, A.; White, J.; Ziminski, P.; Zimmerman, P.

    2011-01-01

    Vibrations of the cryogenic triplet magnets at the Relativistic Heavy Ion Collider (RHIC) are suspected to be causing the horizontal beam perturbations observed at frequencies around 10 Hz. Several solutions to counteract the effect have been considered in the past, including a local beam feedback system at each of the two experimental areas, reinforcing the magnet base support assembly, and a mechanical servo feedback system. However, the local feedback system was insufficient because perturbation amplitudes outside the experimental areas were still problematic, and the mechanical solutions are very expensive. A global 10 Hz orbit feedback system consisting of 36 beam position monitors (BPMs) and 12 small dedicated dipole corrector magnets in each of the two 3.8 km circumference counter-rotating rings has been developed and commissioned in February 2011. A description of the system architecture and results with beam will be discussed.

  5. Converse flexoelectric effect in comb electrode piezoelectric microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhiyuan, E-mail: shenyuan675603@gmail.com [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Chen, Wei [Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore)

    2012-04-09

    We demonstrate the converse flexoelectric effect in a lead zirconate titanate microbeam. The fringe electric field of a comb electrode induces converse flexoelectric responses in uniformly poled and depoled beams. The simulated electric field distribution shows that bending of the beam is induced by piezoelectric and μ{sub 11}, μ{sub 12} flexoelectric coefficients. Simulations indicate that piezoelectric displacement occurs in different directions in the two opposite poled samples while flexoelectric displacement remains the same. This finding is verified by the displacement measurement results. -- Highlights: ► We demonstrate the converse flexoelectric effect in a PZT microbeam. ► Beams with upward and downward poling states are fabricated by MEMS technique. ► Converse flexoelectric deformation is induced by the fringe field. ► Electric field distribution is calculated by finite element analysis. ► The simulation results are verified by impedance and displacement measurements.

  6. Using sampled-data feedback control and linear feedback synchronization in a new hyperchaotic system

    International Nuclear Information System (INIS)

    Zhao Junchan; Lu Junan

    2008-01-01

    This paper investigates control and synchronization of a new hyperchaotic system which was proposed by [Chen A, Lu J-A, Lue J, Yu S. Generating hyperchaotic Lue attractor via state feedback control. Physica A 2006;364:103-10]. Firstly, we give different sampled-data feedback control schemes with the variation of system parameter d. Specifically, we only use one controller to drive the system to the origin when d element of (-0.35, 0), and use two controllers if d element of [0, 1.3]. Next, we combine PC method with linear feedback approach to realize synchronization, and derive similar conclusions with varying d. Numerical simulations are also given to validate the proposed approaches

  7. Community-level plant-soil feedbacks explain landscape distribution of native and non-native plants.

    Science.gov (United States)

    Kulmatiski, Andrew

    2018-02-01

    Plant-soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short-term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non-native species, or a mixed plant community in different plots in a common-garden experiment. After 4 years, plants were removed and one native and one non-native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non-native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non-native, Centaurea diffusa , and non-native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata . Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common-garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non-native plant community on non-native soils. In contrast, when PSF effects were removed, the model predicted that non-native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank-order abundance of native and non-native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors

  8. Dynamics for a discrete competition and cooperation model of two enterprises with multiple delays and feedback controls

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2017-03-01

    Full Text Available This paper is concerned with a competition and cooperation model of two enterprises with multiple delays and feedback controls. With the aid of the difference inequality theory, we have obtained some sufficient conditions which guarantee the permanence of the model. Under a suitable condition, we prove that the system has global stable periodic solution. The paper ends with brief conclusions.

  9. Methods for Specific Electrode Resistance Measurement during Transcranial Direct Current Stimulation

    Science.gov (United States)

    Khadka, Niranjan; Rahman, Asif; Sarantos, Chris; Truong, Dennis Q.; Bikson, Marom

    2014-01-01

    Background Transcranial Direct Current Stimulation (tDCS) is investigated to treat a wide range of neuropsychiatric disorders, for rehabilitation, and for enhancing cognitive performance. The monitoring of electrode resistance before and during tDCS is considered important for tolerability and safety, where an unusually high resistance is indicative of undesired electrode or poor skin contact conditions. Conventional resistance measurement methods do not isolate individual electrode resistance but rather measures overall voltage. Moreover, for HD-tDCS devices, cross talk across electrodes makes concurrent resistance monitoring unreliable. Objective We propose a novel method for monitoring of the individual electrode resistance during tDCS, using a super-position of direct current with a test-signal (low-intensity and low-frequency sinusoids with electrode– specific frequencies) and a single sentinel electrode (not used for DC). Methods To validate this methodology, we developed lumped-parameter models of two and multi-electrode tDCS. Approaches with and without a sentinel electrode were solved and underlying assumptions identified. Assumptions were tested and parameterized in healthy participants using forearm stimulation combining tDCS (2 mA) and sinusoidal test-signals (38 μA and 76 μA peak to peak at 1 Hz, 10 Hz, and 100 Hz) and an in vitro test (where varied electrode failure modes were created). DC and AC component voltages across the electrodes were compared and participants were asked to rate subjective pain. Results A sentinel electrode is required to isolate electrode resistance in a two-electrode tDCS system. For multi-electrode resistance tracking, cross talk was aggravated with electrode proximity and current/resistance mismatches, but could be corrected using proposed approaches. Average voltage and average pain scores were not significantly different across test current intensities and frequencies (two-way repeated measures ANOVA) indicating the

  10. Dynamic Phase Boundary Estimation in Two-phase Flows Based on Electrical Impedance Tomography

    International Nuclear Information System (INIS)

    Lee, Jeong Seong; Muhammada, Nauman Malik; Kim, Kyung Youn; Kim, Sin

    2008-01-01

    For the dynamic visualization of the phase boundary in two-phase flows, the electrical impedance tomography (EIT) technique is introduced. In EIT, a set of predetermined electrical currents is injected through the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrodes. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm where the conductivity distribution corresponds to the phase distribution. In the application of EIT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers phase boundary estimation with EIT in annular two-phase flows. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. For the present problem, the formulation of UKF algorithm involved its incorporation in the adopted image reconstruction algorithm. Also, phantom experiments have been conducted to evaluate the improvement reported by UKF

  11. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.

    Science.gov (United States)

    Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji

    2006-03-15

    We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.

  12. Pre-Feedback Risk Expectancies and Reception of Low-Risk Health Feedback: Absolute and Comparative Lack of Reassurance.

    Science.gov (United States)

    Gamp, Martina; Renner, Britta

    2016-11-01

    Personalised health-risk assessment is one of the most common components of health promotion programs. Previous research on responses to health risk feedback has commonly focused on the reception of bad news (high-risk feedback). The reception of low-risk feedback has been comparably neglected since it is assumed that good news is reassuring and readily received. However, field studies suggest mixed responses to low-risk health feedback. Accordingly, we examine whether pre-feedback risk expectancies can mitigate the reassuring effects of good news. In two studies (N = 187, N = 565), after assessing pre-feedback risk expectancies, participants received low-risk personalised feedback about their own risk of developing (the fictitious) Tucson Chronic Fatigue Syndrome (TCFS). Study 2 also included peer TCFS risk status feedback. Afterwards, self- and peer-related risk perception for TCFS was assessed. In both studies, participants who expected to be at high risk but received good news (unexpected low-risk feedback) showed absolute lack of reassurance. Specifically, they felt at significantly greater TCFS risk than participants who received expected good news. Moreover, the unexpected low-risk group even believed that their risk was as high as (Study 1) or higher (Study 2) than that of their peers (comparative lack of reassurance). Results support the notion that high pre-feedback risk expectancies can mitigate absolute and comparative reassuring effects of good news. © 2016 The International Association of Applied Psychology.

  13. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  14. The vertical distribution of climate forcings and feedbacks from the surface to top of atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Previdi, Michael [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Liepert, Beate G. [NorthWest Research Associates, Redmond, WA (United States)

    2012-08-15

    The radiative forcings and feedbacks that determine Earth's climate sensitivity are typically defined at the top-of-atmosphere (TOA) or tropopause, yet climate sensitivity itself refers to a change in temperature at the surface. In this paper, we describe how TOA radiative perturbations translate into surface temperature changes. It is shown using first principles that radiation changes at the TOA can be equated with the change in energy stored by the oceans and land surface. This ocean and land heat uptake in turn involves an adjustment of the surface radiative and non-radiative energy fluxes, with the latter being comprised of the turbulent exchange of latent and sensible heat between the surface and atmosphere. We employ the radiative kernel technique to decompose TOA radiative feedbacks in the IPCC Fourth Assessment Report climate models into components associated with changes in radiative heating of the atmosphere and of the surface. (We consider the equilibrium response of atmosphere-mixed layer ocean models subjected to an instantaneous doubling of atmospheric CO{sub 2}). It is shown that most feedbacks, i.e., the temperature, water vapor and cloud feedbacks, (as well as CO{sub 2} forcing) affect primarily the turbulent energy exchange at the surface rather than the radiative energy exchange. Specifically, the temperature feedback increases the surface turbulent (radiative) energy loss by 2.87 W m{sup -2} K{sup -1} (0.60 W m{sup -2} K{sup -1}) in the multimodel mean; the water vapor feedback decreases the surface turbulent energy loss by 1.07 W m{sup -2} K{sup -1} and increases the surface radiative heating by 0.89 W m{sup -2} K{sup -1}; and the cloud feedback decreases both the turbulent energy loss and the radiative heating at the surface by 0.43 and 0.24 W m{sup -2} K{sup -1}, respectively. Since changes to the surface turbulent energy exchange are dominated in the global mean sense by changes in surface evaporation, these results serve to highlight

  15. Making the Grade: Using Instructional Feedback and Evaluation to Inspire Evidence-Based Teaching.

    Science.gov (United States)

    Brickman, Peggy; Gormally, Cara; Martella, Amedee Marchand

    2016-01-01

    Typically, faculty receive feedback about teaching via two mechanisms: end-of-semester student evaluations and peer observation. However, instructors require more sustained encouragement and constructive feedback when implementing evidence-based teaching practices. Our study goal was to characterize the landscape of current instructional-feedback practices in biology and uncover faculty perceptions about these practices. Findings from a national survey of 400 college biology faculty reveal an overwhelming dissatisfaction with student evaluations, regardless of self-reported teaching practices, institution type, or position. Faculty view peer evaluations as most valuable, but less than half of faculty at doctoral-granting institutions report participating in peer evaluation. When peer evaluations are performed, they are more supportive of evidence-based teaching than student evaluations. Our findings reveal a large, unmet desire for greater guidance and assessment data to inform pedagogical decision making. Informed by these findings, we discuss alternate faculty-vetted feedback strategies for providing formative instructional feedback. © 2016 P. Brickman et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds.

    Science.gov (United States)

    DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg

    2016-06-01

    Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.

  17. Fabrication of Chitosan-complexed Electrode and Evaluation of Its Efficiency in Removal of Copper Ion from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Yoon Young-Chan

    2016-01-01

    Full Text Available In this study, we fabricated chitosan/PVA/activated carbon complexed electrode to remove copper ion from aqueous solution. The prepared composite electrode was analyzed by BET and SEM to investigate its physicochemical properties. Electrochemical properties of prepared composite electrodes were analyzed via cyclic voltammetry. Adsorption performance of copper ion on chitosan composite complexed electrodes was evaluated. Almost similar pore size distribution results were observed in the series of ACP not included electrodes while observed differences in pore size distribution for the ACP included one. Cyclic voltammetry results exhibited that oxidation-reduction reaction does not occur in a potential range of -1.0 ~ 1.0 V. The amount of copper ion during adsroption reaction is increase according to increase of adsorption potential to 1.0 V.

  18. Creating virtual electrodes with 2D current steering

    Science.gov (United States)

    Spencer, Thomas C.; Fallon, James B.; Shivdasani, Mohit N.

    2018-06-01

    Objective. Current steering techniques have shown promise in retinal prostheses as a way to increase the number of distinct percepts elicitable without increasing the number of implanted electrodes. Previously, it has been shown that ‘virtual’ electrodes can be created between simultaneously stimulated electrode pairs, producing unique cortical response patterns. This study investigated whether virtual electrodes could be created using 2D current steering, and whether these virtual electrodes can produce cortical responses with predictable spatial characteristics. Approach. Normally-sighted eyes of seven adult anaesthetised cats were implanted with a 42-channel electrode array in the suprachoroidal space and multi-unit neural activity was recorded from the visual cortex. Stimuli were delivered to individual physical electrodes, or electrodes grouped into triangular, rectangular, and hexagonal arrangements. Varying proportions of charge were applied to each electrode in a group to ‘steer’ current and create virtual electrodes. The centroids of cortical responses to stimulation of virtual electrodes were compared to those evoked by stimulation of single physical electrodes. Main results. Responses to stimulation of groups of up to six electrodes with equal ratios of charge on each electrode resulted in cortical activation patterns that were similar to those elicited by the central physical electrode (centroids: RM ANOVA on ranks, p  >  0.05 neural spread: one-way ANOVA on Ranks, p  >  0.05). We were also able to steer the centroid of activation towards the direction of any of the electrodes of the group by applying a greater charge to that electrode, but the movement in the centroid was not found to be significant. Significance. The results suggest that current steering is possible in two dimensions between up to at least six electrodes, indicating it may be possible to increase the number of percepts in patients without increasing the number

  19. The relativistic feedback discharge model of terrestrial gamma ray flashes

    Science.gov (United States)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  20. How Attributes of the Feedback Message affect Subsequent Feedback Seeking: The interactive effects of feedback sign and type

    OpenAIRE

    Medvedeff, Megan; Gregory, Jane Brodie; Levy, Paul E

    2008-01-01

    In the current study, we examined the interactive effects of feedback type and sign on feedback-seeking behaviour, as well as the moderating role of regulatory focus. Using a behavioural measure of feedback seeking, we demonstrated a strong interaction between feedback type and sign, such that individuals subsequently sought the most feedback after they were provided with negative process feedback. Additionally, results suggested that an individual's chronic regulatory focus has implications ...