Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments
Nemeth, Alexandra; Mancal, Tomas; Lukes, Vladimir; Hauer, Juergen; Kauffmann, Harald F; Sperling, Jaroslaw
2010-01-01
This is the first in a series of two papers investigating the effect of electron-phonon coupling in two-dimensional Fourier transformed electronic spectroscopy. We present a series of one- and two-dimensional nonlinear spectroscopic techniques for studying a dye molecule in solution. Ultrafast laser pulse excitation of an electronic transition coupled to vibrational modes induces a propagating vibrational wave packet that manifests itself in oscillating signal intensities and line-shapes. For the two-dimensional electronic spectra we can attribute the observed modulations to periodic enhancement and decrement of the relative amplitudes of rephasing and non-rephasing contributions to the total response. Different metrics of the two-dimensional signals are shown to relate to the frequency-frequency correlation function which provides the connection between experimentally accessible observations and the underlying microscopic molecular dynamics. A detailed theory of the time-dependent two-dimensional spectral li...
Efremov, MA; Petropavlovsky, SV; Fedorov, MV; Schleich, WP; Yakovlev, VP
2005-01-01
The formation of two-dimensional nonspreading atomic wave packets produced in the interaction of a beam of two-level atoms with two standing light waves polarised in the same plane is considered. The mechanism providing a dispersionless particle dynamics is the balance of two processes: a rapid deca
Chen, Cao; Chu, Xinzhao
2017-09-01
Waves in the atmosphere and ocean are inherently intermittent, with amplitudes, frequencies, or wavelengths varying in time and space. Most waves exhibit wave packet-like properties, propagate at oblique angles, and are often observed in two-dimensional (2-D) datasets. These features make the wavelet transforms, especially the 2-D wavelet approach, more appealing than the traditional windowed Fourier analysis, because the former allows adaptive time-frequency window width (i.e., automatically narrowing window size at high frequencies and widening at low frequencies), while the latter uses a fixed envelope function. This study establishes the mathematical formalism of modified 1-D and 2-D Morlet wavelet transforms, ensuring that the power of the wavelet transform in the frequency/wavenumber domain is equivalent to the mean power of its counterpart in the time/space domain. Consequently, the modified wavelet transforms eliminate the bias against high-frequency/small-scale waves in the conventional wavelet methods and many existing codes. Based on the modified 2-D Morlet wavelet transform, we put forward a wave recognition methodology that automatically identifies and extracts 2-D quasi-monochromatic wave packets and then derives their wave properties including wave periods, wavelengths, phase speeds, and time/space spans. A step-by-step demonstration of this methodology is given on analyzing the lidar data taken during 28-30 June 2014 at McMurdo, Antarctica. The newly developed wave recognition methodology is then applied to two more lidar observations in May and July 2014, to analyze the recently discovered persistent gravity waves in Antarctica. The decomposed inertia-gravity wave characteristics are consistent with the conclusion in Chen et al. (2016a) that the 3-10 h waves are persistent and dominant, and exhibit lifetimes of multiple days. They have vertical wavelengths of 20-30 km, vertical phase speeds of 0.5-2 m/s, and horizontal wavelengths up to several
Misra, A P
2010-01-01
We consider the nonlinear propagation of electrostatic wave packets in an ultra-relativistic (UR) degenerate dense electron-ion plasma, whose dynamics is governed by the nonlocal two-dimensional nonlinear Schroedinger-like equations. The coupled set of equations are then used to study the modulational instability (MI) of a uniform wave train to an infinitesimal perturbation of multi-dimensional form. The condition for the MI is obtained, and it is shown that the nondimensional parameter, $\\beta\\propto\\lambda_C n_0^{1/3}$ (where $\\lambda_C$ is the reduced Compton wavelength and $n_0$ is the particle number density), associated with the UR pressure of degenerate electrons, shifts the stable (unstable) regions at $n_{0}\\sim10^{30}$ cm$^{-3}$ to unstable (stable) ones at higher densities, i.e. $n_{0}\\gtrsim7\\times10^{33}$. It is also found that higher the values of $n_{0}$, the lower is the growth rate of MI with cut-offs at lower wave numbers of modulation. Furthermore, the dynamical evolution of the wave packet...
Vibrational wave packet induced oscillations in two-dimensional electronic spectra. II. Theory
Mancal, Tomas; Milota, Franz; Lukes, Vladimir; Kauffmann, Harald F; Sperling, Jaroslaw
2010-01-01
We present a theory of vibrational modulation of two-dimensional coherent Fourier transformed electronic spectra. Based on an expansion of the system's energy gap correlation function in terms of Huang-Rhys factors, we explain the time-dependent oscillatory behavior of the absorptive and dispersive parts of two-dimensional spectra of a two-level electronic system, weakly coupled to intramolecular vibrational modes. The theory predicts oscillations in the relative amplitudes of the rephasing and non-rephasing parts of the two-dimensional spectra, and enables to analyze time dependent two-dimensional spectra in terms of simple elementary components whose line-shapes are dictated by the interaction of the system with the solvent only. The theory is applicable to both low and high energy (with respect to solvent induced line broadening) vibrations. The results of this paper enable to qualitatively explain experimental observations on low energy vibrations presented in the preceding paper [A. Nemeth et al, arXiv:1...
Energy Technology Data Exchange (ETDEWEB)
Robinett, R.W
2004-03-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.
Robinett, R. W.
2004-03-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (‘minipackets’ or ‘clones’) is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.
Robinett, R W
2004-01-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (`minipackets' or `clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum w...
A TCAM-based Two-dimensional Prefix Packet Classification Algorithm
Institute of Scientific and Technical Information of China (English)
王志恒; 刘刚; 白英彩
2004-01-01
Packet classification (PC) has become the main method to support the quality of service and security of network application. And two-dimensional prefix packet classification (PPC) is the popular one. This paper analyzes the problem of ruler conflict, and then presents a TCAMbased two-dimensional PPC algorithm. This algorithm makes use of the parallelism of TCAM to lookup the longest prefix in one instruction cycle. Then it uses a memory image and associated data structures to eliminate the conflicts between rulers, and performs a fast two-dimensional PPC.Compared with other algorithms, this algorithm has the least time complexity and less space complexity.
Energy Technology Data Exchange (ETDEWEB)
Sacks, R.A.; Robinson, J.E.
1980-02-15
The time-dependent Schroedinger equation is integrated numerically to obtain the time evolution of an initially Gaussian packet in the presence of Eckart, truncated quadratic, and untruncated quadratic potentials. Potential and packet parameters are chosen with hydrogen interstitials in transition metals in mind and are varied over significant ranges. Use of the smooth, bounded Eckart potential eliminates the pronounced structure and the anomalous spreading reported previously for other potentials. An interesting transient feature of the scattered packet is found and discussed in terms of the Wigner time delay. Packet transmission coefficients are discussed, and a quasiclassical approximation is found to agree closely with the exact results.
Rotating Gaussian wave packets in weak external potentials
Goussev, Arseni
2017-07-01
We address the time evolution of two- and three-dimensional nonrelativistic Gaussian wave packets in the presence of a weak external potential of arbitrary functional form. The focus of our study is the phenomenon of rotation of a Gaussian wave packet around its center of mass, as quantified by mean angular momentum computed relative to the wave-packet center. Using a semiclassical approximation of the eikonal type, we derive an explicit formula for a time-dependent change of mean angular momentum of a wave packet induced by its interaction with a weak external potential. As an example, we apply our analytical approach to the scenario of a two-dimensional quantum particle crossing a tilted ridge potential barrier. In particular, we demonstrate that the initial orientation of the particle wave packet determines the sense of its rotation, and report a good agreement between analytical and numerical results.
Sound waves in two-dimensional ducts with sinusoidal walls
Nayfeh, A. H.
1974-01-01
The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.
Averaged two-dimensional low-frequency wave spectrum of wind waves
Kimura, A.
1984-01-01
This report deals with second order, two-dimensional low frequency waves induced by the non-linear interactions of the first order component waves in a two-dimensional short wave field. The convolution to calculate the averaged two-dimensional low frequency wave spectrum is developed. Any given two-
Stress Wave Propagation in Two-dimensional Buckyball Lattice
Xu, Jun; Zheng, Bowen
2016-11-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.
Dynamics of quantum wave packets
Energy Technology Data Exchange (ETDEWEB)
Gosnell, T.R.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop ultrafast laser techniques for the creation and measurement of quantum vibrational wave packets in gas phase diatomic molecules. Moreover, the authors sought to manipulate the constitution of these wave packets in terms of harmonic-oscillator basis wavefunctions by manipulating the time-dependent amplitude and phase of the incident ultrashort laser pulse. They specifically investigated gaseous diatomic potassium (K{sub 2}), and discovered variations in the shape of the wave packets as a result of changing the linear chirp in the ultrashort preparation pulse. In particular, they found evidence for wave-packet compression for a specific degree of chirp. Important ancillary results include development of new techniques for denoising and deconvolution of femtosecond time traces and techniques for diagnosing the phase and amplitude of the electric field of femtosecond laser pulses.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Heisenberg's wave packet reconsidered
Grabbe, J. Orlin
2005-01-01
This note shows that Heisenberg's choice for a wave function in his original paper on the uncertainty principle is simply a renormalized characteristic function of a stable distribution with certain restrictions on the parameters. Relaxing Heisenberg's restrictions leads to a more general formulation of the uncertainty principle. This reformulation shows quantum uncertainty can exist at a macroscopic level. These modifications also give rise to a new form of Schrodinger's wave equation as the...
Topology optimization of two-dimensional elastic wave barriers
DEFF Research Database (Denmark)
Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.
2016-01-01
Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...
Two-dimensional dispersive shock waves in dissipative optical media
Kartashov, Yaroslav V
2013-01-01
We study generation of two-dimensional dispersive shock waves and oblique dark solitons upon interaction of tilted plane waves with negative refractive index defects embedded into defocusing material with linear gain and two-photon absorption. Different evolution regimes are encountered including the formation of well-localized disturbances for input tilts below critical one, and generation of extended shock waves containing multiple intensity oscillations in the "upstream" region and gradually vanishing oblique dark solitons in "downstream" region for input tilts exceeding critical one. The generation of stable dispersive shock waves is possible only below certain critical defect strength.
Causal evolution of wave packets
Eckstein, Michał
2016-01-01
Drawing from the optimal transport theory adapted to the relativistic setting we formulate the principle of a causal flow of probability and apply it in the wave packet formalism. We demonstrate that whereas the Dirac system is causal, the relativistic-Schr\\"odinger Hamiltonian impels a superluminal evolution of probabilities. We quantify the causality breakdown in the latter system and argue that, in contrast to the popular viewpoint, it is not related to the localisation properties of the states.
Configuration of Shock Waves in Two-Dimensional Overexpanded Jets
Institute of Scientific and Technical Information of China (English)
Masashi Kashitani; Yutaka Yamaguchi; Yoshiaki Miyazato; Mitsuharu Masuda; Kazuyasu Matsuo
2003-01-01
An experimental and analytical study has been carried out to obtain the clear understanding of a shock wave transition associated with a steady two-dimensional overexpanded flow. Two-dimensional inviscid theory with respect to a shock wave reflection is used in the present study on the characteristic of shock waves. The results obtained from the flow analysis are compared with those obtained from flow visualizations. It is shown that in the region of regular reflection, the angle of an incident shock wave becomes lower than that calculated by two shock theory with an increment in the ratio pe/pb of the nozzle exit pressure pe to the back pressure pb. It is indicated that the configuration of shock waves in overexpanded jets is influenced by the divergent angle at the nozzle exit. Also it is shown from the flow visualization that a series of shock waves move into the nozzle inside with a decrease in pressure ratio pe/pb, even if the pe/pb is under overexpanded conditions.
Efficient computation method for two-dimensional nonlinear waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.
Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices.
Chong, C; Kevrekidis, P G; Ablowitz, M J; Ma, Yi-Ping
2016-01-01
Linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices are explored in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. For weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. The transition between these two types of propagation is explored.
Finite amplitude waves in two-dimensional lined ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
A second-order uniform expansion is obtained for nonlinear wave propagation in a two-dimensional duct lined with a point-reacting acoustic material consisting of a porous sheet followed by honeycomb cavities and backed by the impervious wall of the duct. The waves in the duct are coupled with those in the porous sheet and the cavities. An analytical expression is obtained for the absorption coefficient in terms of the sound frequency, the physical properties of the porous sheet, and the geometrical parameters of the flow configuration. The results show that the nonlinearity flattens and broadens the absorption vs. frequency curve, irrespective of the geometrical dimensions or the porous material acoustic properties, in agreement with experimental observations.
Two-dimensional wave propagation in layered periodic media
Quezada de Luna, Manuel
2014-09-16
We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.
WAVE PROPAGATION IN TWO-DIMENSIONAL DISORDERED PIEZOELECTRIC PHONONIC CRYSTALS
Institute of Scientific and Technical Information of China (English)
Jinqiang Li; Fengming Li; Yuesheng Wang; Kikuo Kishimoto
2008-01-01
The wave propagation is studied in two-dimensional disordered piezoelectric phononie crystals using the finite-difference time-domain (FDTD) method. For different eases of disorder,the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of. size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder.In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced.
Propagation of gravity wave packet near critical level
Institute of Scientific and Technical Information of China (English)
YUE Xianchang; YI Fan
2005-01-01
A couple of two-dimensional linear and fully nonlinear numerical models for compressible atmosphere are used to numerically study the propagation of the gravity wave packet into a mean wind shear. For a linear propagation wave packet, the critical level interactions are in good agreement with the linear critical level theory. The dynamically and convectively unstable regions are formed due to the critical level interaction of a finite-amplitude wave packet, but they would not break. The free exchange of potential energy with kinetic energy in the background atmosphere at rest ceases after entering the mean wind shear. However, it still goes on in the nonlinear propagation. It is shown that the nonlinear effects modify the mean flow markedly, reduce the momentum and energy propagation velocity and drop the elevation of the critical level.The gravity wave packet becomes unstable and breaks down into smaller scales in some regions. It expends much more kinetic energy than potential energy in the early phase of the breakdown. This means that the wave breakdown sets up due to the action of the shear instability rather than a convective one.
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
Segregation of helicity in inertial wave packets
Ranjan, A.
2017-03-01
Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Stavroula Foteinopoulou
2003-12-12
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates
Fictitious time wave packet dynamics: I. Nondispersive wave packets in the quantum Coulomb problem
Fabčič, T; Wunner, G
2009-01-01
Nondispersive wave packets in a fictitious time variable are calculated analytically for the field-free hydrogen atom. As is well known by means of the Kustaanheimo-Stiefel transformation the Coulomb problem can be converted into that of a four-dimensional harmonic oscillator, subject to a constraint. This regularization makes use of a fictitious time variable, but arbitrary Gaussian wave packets in that time variable in general violate that constraint. The set of "restricted Gaussian wave packets" consistent with the constraint is constructed and shown to provide a complete basis for the expansion of states in the original three-dimensional coordinate space. Using that expansion arbitrary localized Gaussian wave packets of the hydrogen atom can be propagated analytically, and exhibit a nondispersive periodic behavior as functions of the fictitious time. Restricted wave packets with and without well defined angular momentum quantum n umbers are constructed. They will be used as trial functions in time-depende...
Reduced-order prediction of rogue waves in two-dimensional deep-water waves
Farazmand, Mohammad
2016-01-01
We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue wave...
Squeezed Wave Packets in Quantum Cosmology
Pedram, Pouria
2010-11-01
We use an appropriate initial condition for constructing squeezed wave packets in the context of Wheeler-DeWitt equation with complete classical description. This choice of initial condition does not alter the classical paths and only affect the quantum mechanical picture. To demonstrate the method, we consider an empty 4+1-dimensional Kaluza-Klein quantum cosmology in the presence of a negative cosmological constant. We show that these wave packets do not disperse and sharply peak on the classical trajectories in the whole configuration space. So, the probability of finding the corresponding physical quantities approaches zero everywhere except on the classical paths.
Wave packet dynamics and factorization of numbers
Mack, H; Haug, F; Straub, F S; Freyberger, M; Schleich, W P; Mack, Holger; Bienert, Marc; Haug, Florian; Straub, Frank S.; Freyberger, Matthias; Schleich, Wolfgang P.
2002-01-01
We connect three phenomena of wave packet dynamics: Talbot images, revivals of a particle in a box and fractional revivals. The physical origin of these effects is deeply rooted in phase factors which are quadratic in the quantum number. We show that the characteristic structures in the time evolution of these systems allow us to factorize large integers.
Relativistic suppression of wave packet spreading.
Su, Q; Smetanko, B; Grobe, R
1998-03-30
We investigate numerically the solution of Dirac equation and analytically the Klein-Gordon equation and discuss the relativistic motion of an electron wave packet in the presence of an intense static electric field. In contrast to the predictions of the (non-relativistic) Schroedinger theory, the spreading rate in the field's polarization direction as well as in the transverse directions is reduced.
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Reduced-order prediction of rogue waves in two-dimensional deep-water waves
Farazmand, Mohammad; Sapsis, Themistoklis P.
2017-07-01
We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. We assess the validity of this scheme in several cases of ocean wave spectra.
TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION
Directory of Open Access Journals (Sweden)
Lorand Catalin STOENESCU
2011-05-01
Full Text Available The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishing of the flood wave is important in the case of sinuous courses of water or with urban settlements very close to the minor river bed. In the case of Poiana Uzului dam, 2 scenarios were simulated with the help of Ph.D. Eng. Dan Stematiu, plausible scenarios but with very little chances of actually producing. The results were presented as animations with flooded surfaces at certain time steps successively.
VARIATION METHOD FOR ACOUSTIC WAVE IMAGING OF TWO DIMENSIONAL TARGETS
Institute of Scientific and Technical Information of China (English)
冯文杰; 邹振祝
2003-01-01
A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations, which linked wave number perturbation function with wave field, was firstly deduced. By taking variation on these integral equations an inversion equation, which reflected the relation between the little variation of wave number perturbation function and that of scattering field, was further obtained. Finally, the perturbation functions of some identical targets were reconstructed, and some properties of the novel method including converging speed, inversion accuracy and the abilities to resist random noise and identify complex targets were discussed. Results of numerical simulation show that the method based on the variation principle has great theoretical and applicable value to quantitative nondestructive evaluation.
Teleportation of Nonclassical Wave Packets of light
Lee, Noriyuki; Takeno, Yuishi; Takeda, Shuntaro; Webb, James; Huntington, Elanor; Furusawa, Akira
2012-01-01
We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile non-classicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences.
Transient Topology Optimization of Two-Dimensional Elastic Wave Propagation
DEFF Research Database (Denmark)
Matzen, René; Jensen, Jakob Søndergaard; Sigmund, Ole
2008-01-01
A tapering device coupling two monomodal waveguides is designed with the topology optimization method based on transient wave propagation. The gradient-based optimization technique is applied to predict the material distribution in the tapering area such that the squared output displacement (a...
Elastic Wave Scattering by Two-Dimensional Periodical Array of Cylinders
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full vector character of the elastic wave. As a demonstration of application of the formalism, we calculate the band structure of elastic wave propagating in a two-dimensional periodic arrangement of cylinders. The results manifest that the MST shows great promise in complementing the plane-wave (PW) approach for the study of elastic wave.
Spectral Modulation by Rotational Wave Packets
Baertschy, Mark; Hartinger, Klaus
2005-05-01
Periodic rephasing of molecular rotational wave packets can create rapid fluctuations in the optical properties of a molecular gas which can be used to manipulate the temporal phase and spectral content of ultrashort light pulses. We have demonstrated spectral control of a time-delayed ultrafast probe pulse propagating through the rotational wave packet prepared by a pump laser pulse. The spectrum of the probe pulse can be either broadened or compressed, depending on the relative sign of the temporal phase modulation and the initial chirp of the probe pulse. Adjustment of the spectral phase at the output of the interaction region allows controlled temporal pulse streching^1 and compression^2. The degree to which the spectrum of an ultrafast pulse can be modified depends on the strength and shape of the rotational wavepacket. We are studying the optimization of the rotational wave packet excitation with complex, shaped pump laser pulses for the purpose of optimizing probe pulse spectra modulation. ^1 Klaus Hartinger and Randy A. Bartels, Opt. Lett., submitted (2005). ^2 R.A. Bartels, T.C. Weinacht, N. Wagner, M. Baertschy, Chris H. Greene, M.M. Murnane, and H.C. Kapteyn , Phys. Rev. Lett., 88, 013903 (2002). This work was supported by the NSF.
Numerical modeling of transient two-dimensional viscoelastic waves
Lombard, Bruno
2010-01-01
This paper deals with the numerical modeling of transient mechanical waves in linear viscoelastic solids. Dissipation mechanisms are described using the Zener model. No time convolutions are required thanks to the introduction of memory variables that satisfy local-in-time differential equations. By appropriately choosing the Zener parameters, it is possible to accurately describe a large range of materials, such as solids with constant quality factors. The evolution equations satisfied by the velocity, the stress, and the memory variables are written in the form of a first-order system of PDEs with a source term. This system is solved by splitting it into two parts: the propagative part is discretized explicitly, using a fourth-order ADER scheme on a Cartesian grid, and the diffusive part is then solved exactly. Jump conditions along the interfaces are discretized by applying an immersed interface method. Numerical experiments of wave propagation in viscoelastic and fluid media show the efficiency of this nu...
Solitary wave propagation through two-dimensional treelike structures.
Falls, William J; Sen, Surajit
2014-02-01
It is well known that a velocity perturbation can travel through a mass spring chain with strongly nonlinear interactions as a solitary and antisolitary wave pair. In recent years, nonlinear wave propagation in 2D structures have also been explored. Here we first consider the propagation of such a velocity perturbation for cases where the system has a 2D "Y"-shaped structure. Here each of the three pieces that make up the "Y" are made of a small mass spring chain. In addition, we consider a case where multiple "Y"-shaped structures are used to generate a "tree." We explore the early time dynamical behavior associated with the propagation of a velocity perturbation initiated at the trunk and at the extremities for both cases. We are looking for the energy transmission properties from one branch to another of these "Y"-shaped structures. Our dynamical simulations suggest the following broad observations: (i) for strongly nonlinear interactions, mechanical energy propagation resembles pulse propagation with the energy propagation being dispersive in the linear case; (ii) for strong nonlinear interactions, the tree-like structure acts as an energy gate showing preference for large perturbations in the system while the behavior of the linear case shows no such preference, thereby suggesting that such structures can possibly act as switches that activate at sufficiently high energies. The study aspires to develop insights into the nature of nonlinear wave propagation through a network of linear chains.
Kelvin wave packets and flow acceleration - A comparison of modeling and observations
Coy, L.; Hitchman, M.
1984-01-01
Atmospheric Kelvin waves, as revealed by temperatures obtained from the recent Limb Infrared Monitor of the Stratosphere (LIMS) experiment, commonly occur in packets. A simple two-dimensional gravity-wave model is used to study the upward propagation of these packets through different zonal mean wind profiles derived from the LIMS data. The observed prevalence of high frequency waves in the lower mesosphere and low frequency waves in the lower stratosphere can be exlained by dispersion of energy associated with the range of frequencies comprising a packet. Dominant wave frequencies at upper and lower levels are more distinctly separated if the packet propagates through a layer of westerly winds. Due to dispersion and shear effects, a packet of short temporal length at low levels will have a considerably extended impact on a layer of westerly winds at higher levels. Observed and modeled westerly accelerations resulting from packet absorption occur in the same layer, and are similar in magnitude and duration. These results support the theory that Kelvin waves are responsible for the westerly phase of the semiannual oscillation.
Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media
Luna, Manuel
2011-05-01
Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.
Two-dimensional nonlinear travelling waves in magnetohydrodynamic channel flow
Hagan, Jonathan
2013-01-01
The present study is concerned with the stability of a flow of viscous conducting liquid driven by pressure gradient in the channel between two parallel walls subject to a transverse magnetic field. Although the magnetic field has a strong stabilizing effect, this flow, similarly to its hydrodynamic counterpart -- plane Poiseuille flow, is known to become turbulent significantly below the threshold predicted by linear stability theory. We investigate the effect of the magnetic field on 2D nonlinear travelling-wave states which are found at substantially subcritical Reynolds numbers starting from $Re_n=2939$ without the magnetic field and from $Re_n\\sim6.50\\times10^3Ha$ in a sufficiently strong magnetic field defined by the Hartmann number $Ha.$ Although the latter value is by a factor of seven lower than the linear stability threshold $Re_l\\sim4.83\\times10^4Ha$,it is still more by an order of magnitude higher than the experimentally observed value for the onset of turbulence in this flow.
Malo, Sergio; Fateri, Sina; Livadas, Makis; Mares, Cristinel; Gan, Tat-Hean
2017-07-01
Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.
SAR IMAGING SIMULATION OF HORIZONTAL FULLY TWO-DIMENSIONAL INTERNAL WAVES
Institute of Scientific and Technical Information of China (English)
SHEN Hui; HE Yi-Jun
2006-01-01
Based on the research of Lynett and Liu, a new horizontal fully two-dimensional internal wave propagation model with rotation effect was deduced, which can be used to simulate the characteristics of internal waves in a horizontal fully two-dimensional plane. By combining the imaging mechanism of Synthetic Aperture Radar(SAR), a simulation procedure was fatherly acquired, which can simulate the propagation characteristics of oceanic internal waves into SAR images. In order to evaluate the validity of the proposed simulation procedure, case studies are performed in South China Sea and results from simulation procedure are analyzed in detail. A very good consistency was found between the simulation results and satellite images. The proposed simulation procedure will be a possible foundation for the quantitative interpretation of internal waves from fully two-dimensional satellite images.
Massachusetts Bay - Internal wave packets digitized from SAR imagery
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...
Scattering of wave packets with phases
Karlovets, Dmitry
2016-01-01
A general problem of $2\\rightarrow N_f$ scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in $(3+1)$ D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet $\\sigma_p/\\langle p\\rangle$ as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the...
Scattering of wave packets with phases
Karlovets, Dmitry V.
2017-03-01
A general problem of 2 → N f scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3 + 1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ p /p> as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.
Negative Dispersion of Lattice Waves in a Two-Dimensional Yukawa System
Institute of Scientific and Technical Information of China (English)
刘艳红; 刘斌; 杨思泽; 王龙
2002-01-01
Collective motion modes existing in a two-dimensional Yukawa system are investigated by molecular dynamics simulation. The dispersion relations of transverse and longitudinal lattice waves obtained for hexagonal lattice are in agreement with the theoretical results. The negative dispersion of the parallel longitudinal wave is demonstrated by the simulation, and is explained by a physical model.
Spreading of Ultrarelativistic Wave Packet and Redshift
Lev, Felix M
2012-01-01
The red shift of light coming to the Earth from distant objects is usually explained as a consequence of the fact that the Universe is expanding. Such an explanation implies that photons emitted by distant objects travel in the interstellar medium practically without interaction with interstellar matter and hence they can survive their long journey to the Earth. We analyze this assumption by considering wave-packet spreading for an ultrarelativistic particle. We derive a formula which shows that spreading in the direction perpendicular to the particle momentum is very important and cannot be neglected. The implications of the results are discussed.
Square-integrability of multivariate metaplectic wave-packet representations
Ghaani Farashahi, Arash
2017-03-01
This paper presents a systematic study for harmonic analysis of metaplectic wave-packet representations on the Hilbert function space {{L}2}≤ft({{{R}}d}\\right) . The abstract notions of symplectic wave-packet groups and metaplectic wave-packet representations will be introduced. We then present an admissibility condition on closed subgroups of the real symplectic group \\text{Sp}≤ft({{{R}}d}\\right) , which guarantees the square-integrability of the associated metaplectic wave-packet representation on {{L}2}≤ft({{{R}}d}\\right) .
A Study of Two-Dimensional Unsteady Breaking Waves in Finite-Depth Water
2010-01-01
1880). [8] J. H. Duncan, “An experimental investigation of breaking waves produced by a towed hydrofoil ,” Proc. R. Soc. London, Ser. A 377, 331(1981...measured the drag per unit length due to quasi-steady breaking waves generated with a submerged hydrofoil . His measurements illustrated that the... hydrofoil . Proc. R. Soc. London Ser. A 377, 331-348. DUNCAN, J. H. 1983 The breaking and non-breaking wave resistance of a two- dimensional hydrofoil . J
Observation of two-dimensional Faraday waves in extremely shallow depth.
Li, Xiaochen; Yu, Zhengyue; Liao, Shijun
2015-09-01
A family of two-dimensional Faraday waves in extremely shallow depth (1 mm to 2 mm) of absolute ethanol are observed experimentally using a Hele-Shaw cell that vibrates vertically. The same phenomena are not observed by means of water, ethanol solution, and silicone oil. These Faraday waves are quite different from the traditional ones. These phenomena are helpful to deepen and enrich our understandings about Faraday waves, and besides provide a challenging problem for computational fluid dynamics.
A preliminary study on sea wave packet equations on slowly varying topography
Institute of Scientific and Technical Information of China (English)
朱首贤; 丁平兴; 孔亚珍; 沙文钰
2001-01-01
There is a common hypothesis for the presently popular mild-slope equations that wave particle motion is irrotational. In this paper, an attempt is made to abandon the irrotational assumption and to set up new sea wave packet equations on slowly varying topography by use of the WKBJ method. To simplify the deduction, the two-dimensional shallow water equations are used to describe the sea wave particle motion in the very shallow nearshore area. The established equations can give some characteristics of wave propagation near shore.
Two-dimensional dissipative rogue waves due to time-delayed feedback in cavity nonlinear optics
Tlidi, Mustapha; Panajotov, Krassimir
2017-01-01
We demonstrate a way to generate two-dimensional rogue waves in two types of broad area nonlinear optical systems subject to time-delayed feedback: in the generic Lugiato-Lefever model and in the model of a broad-area surface-emitting laser with saturable absorber. The delayed feedback is found to induce a spontaneous formation of rogue waves. In the absence of delayed feedback, spatial pulses are stationary. The rogue waves are exited and controlled by the delay feedback. We characterize their formation by computing the probability distribution of the pulse height. The long-tailed statistical contribution, which is often considered as a signature of the presence of rogue waves, appears for sufficiently strong feedback. The generality of our analysis suggests that the feedback induced instability leading to the spontaneous formation of two-dimensional rogue waves is a universal phenomenon.
Controlling the spreading of wave packets of a dissociating molecule
DEFF Research Database (Denmark)
Tiwari, Ashwani Kumar; Møller, Klaus Braagaard; Henriksen, Niels Engholm
2007-01-01
in the Franck-Condon region whereas, as well known, the positively chirped pulses focus the wave packet in the asymptotic region. For the negatively chirped pulses, we show that the time corresponding to the minimum in the width of the wave packet can be predicted by an analytical formula. (C) 2007 Elsevier B.V...
Equations of motion for a relativistic wave packet
Indian Academy of Sciences (India)
L Kocis
2012-05-01
The time derivative of the position of a relativistic wave packet is evaluated. It is found that it is equal to the mean value of the momentum of the wave packet divided by the mass of the particle. The equation derived represents a relativistic version of the second Ehrenfest theorem.
Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole
Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua
2016-06-01
The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.
Andreev, Pavel A
2016-01-01
Hydrodynamics analysis of waves in two-dimensional degenerate electron gas with the account of separate spin evolution is presented. The transverse electric field is included along with the longitudinal electric field. The Coulomb exchange interaction is included in the analysis. In contrast with the three-dimensional plasma-like mediums the contribution of the transverse electric field is small. We show the decrease of frequency of both the extraordinary (Langmuir) wave and the spin-electron acoustic wave due to the exchange interaction. Moreover, spin-electron acoustic wave has negative dispersion at the relatively large spin-polarization. Corresponding dispersion dependencies are presented and analyzed.
Energy Technology Data Exchange (ETDEWEB)
Graham, D. B.; Robinson, P. A.; Cairns, Iver H. [School of Physics, University of Sydney, New South Wales 2006 (Australia); Skjaeraasen, O. [ProsTek, Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller (Norway)
2011-07-15
Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed {nu}{sub e}/c increases and as the temperature ratio T{sub i}/T{sub e} of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on {nu}{sub e}/c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T{sub i}/T{sub e}. The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of {nu}{sub e}/c. For {nu}{sub e}/c < or approx. 0.17, strong turbulence is approximately electrostatic and wave packets have very similar structure to purely electrostatic wave packets. For {nu}{sub e}/c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all {nu}{sub e}/c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as {nu}{sub e}/c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.
Analysis of circular wave packets generated by pulsed electric fields
Energy Technology Data Exchange (ETDEWEB)
Yoshida, S., E-mail: shuhei@concord.itp.tuwien.ac.at [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Reinhold, C.O. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Burgdoerfer, J. [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Wyker, B.; Ye, S.; Dunning, F.B. [Department of Physics and Astronomy and the Rice Quantum Institute, Rice University, Houston, TX 77005-1892 (United States)
2012-05-15
We demonstrate that circular wave packets in high Rydberg states generated by a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wave packets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficients.
Two Dimensional Fully Nonlinear Numerical Wave Tank Based on the BEM
Institute of Scientific and Technical Information of China (English)
Zhe Sun; Yongjie Pang; Hongwei Li
2012-01-01
The development of a two dimensional numerical wave tank (NWT) with a rocker or piston type wavemaker based on the high order boundary element method (BEM) and mixed Eulerian-Lagrangian (MEL) is examined.The cauchy principle value (CPV) integral is calculated by a special Gauss type quadrature and a change of variable.In addition the explicit truncated Taylor expansion formula is employed in the time-stepping process.A modified double nodes method is assumed to tackle the comer problem,as well as the damping zone technique is used to absorb the propagation of the free surface wave at the end of the tank.A variety of waves are generated by the NWT,for example; a monochromatic wave,solitary wave and irregular wave.The results confirm the NWT model is efficient and stable.
Numerical simulations of blast wave characteristics with a two-dimensional axisymmetric room model
Sugiyama, Y.; Homae, T.; Wakabayashi, K.; Matsumura, T.; Nakayama, Y.
2017-01-01
This paper numerically visualizes explosion phenomena in order to discuss blast wave characteristics with a two-dimensional axisymmetric room model. After the shock wave exits via an opening, the blast wave propagates into open space. In the present study, a parametric study was conducted to determine the blast wave characteristics from the room exit by changing the room shape and the mass of the high explosive. Our results show that the blast wave characteristics can be correctly estimated using a scaling factor proposed in the present paper that includes the above parameters. We conducted normalization of the peak overpressure curve using the shock overpressure at the exit and the length scale of the room volume. In the case where the scaling factor has the same value, the normalized peak overpressure curve does not depend on the calculation conditions, and the scaling factor describes the blast wave characteristics emerging from the current room model.
Negative refraction and focusing of electromagnetic wave through two-dimensional photonic crystals
Institute of Scientific and Technical Information of China (English)
ZHANG Xiang-dong
2006-01-01
The negative refraction of electromagnetic waves in photonic crystals was recently demonstrated experimentally,and the physical properties were analyzed.Microsuperlenses based on two-dimensional photonic crystals were designed and the subwavelength images were observed.In this review,after providing a brief history of the research related to the above phenomena,we will summarize our research works in this field including the method of creating a negative refraction region,generating an absolute negative refraction,the focusing of unpolarized electromagnetic waves,and the effect of interface and disorder on the image by the two-dimensional photonic crystal flat lens.The discussion on the negative refraction and the focusing by high symmetric quasicrystals is also presented.
Interaction of a Surface Acoustic Wave with a Two-dimensional Electron Gas
Institute of Scientific and Technical Information of China (English)
YANG Shi-Jie; ZHAO Hu; YU Yue
2005-01-01
When a surface acoustic wave (SAW) propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coefficient is calculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is strongly dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.
Scattering of Fexural Gravity Waves by a Two-Dimensional Thin Plate
Directory of Open Access Journals (Sweden)
Sudeshna Banerjee
2017-01-01
Full Text Available An approximate analysis based on standard perturbation technique together with an application of Green’s integral theorem is used in this paper to study the problem of scattering of water waves by a two dimensional thin plate submerged in deep ocean with ice cover. The reﬂection and transmission coefﬁcients upto ﬁrst order are obtained in terms of the shape function describing the plate and are studied graphically for different shapes of the plate.
Third order finite volume evolution Galerkin (FVEG) methods for two-dimensional wave equation system
Lukácová-Medvid'ová, Maria; Warnecke, Gerald; Zahaykah, Yousef
2003-01-01
The subject of the paper is the derivation and analysis of third order finite volume evolution Galerkin schemes for the two-dimensional wave equation system. To achieve this the first order approximate evolution operator is considered. A recovery stage is carried out at each level to generate a piecewise polynomial approximation from the piecewise constants, to feed into the calculation of the fluxes. We estimate the truncation error and give numerical examples to demonstrate the higher order...
Multi-resonance tunneling of acoustic waves in two-dimensional locally-resonant phononic crystals
Yang, Aichao; He, Wei; Zhang, Jitao; Zhu, Liang; Yu, Lingang; Ma, Jian; Zou, Yang; Li, Min; Wu, Yu
2017-03-01
Multi-resonance tunneling of acoustic waves through a two-dimensional phononic crystal (PC) is demonstrated by substituting dual Helmholtz resonators (DHRs) for acoustically-rigid scatterers in the PC. Due to the coupling of the incident waves with the acoustic multi-resonance modes of the DHRs, acoustic waves can tunnel through the PC at specific frequencies which lie inside the band gaps of the PC. This wave tunneling transmission can be further broadened by using the multilayer Helmholtz resonators. Thus, a PC consisting of an array of dual/multilayer Helmholtz resonators can serve as an acoustic band-pass filter, used to pick out acoustic waves with certain frequencies from noise.
Neutrino Oscillations in Intermediate States.II -- Wave Packets
Asahara, A; Shimomura, T; Yabuki, T
2004-01-01
We analyze oscillations of intermediate neutrinos in terms of scattering of particles described by Gaussian wave packets. We study a scalar model as in the previous paper (I) but in realistic situations, where two particles of the initial state and final state are wave packets and neutrinos are in the intermediate state. The oscillation of the intermediate neutrino is found from the time evolution of the total transition probability between the initial state and final state. The effect of a finite lifetime and a finite relaxation time $\\tau$ are also studied. We find that the oscillation pattern depends on the magnitude of wave packet sizes of particles in the initial state and final state and the lifetime of the initial particle. For $\\Delta m^2=10^{-2}$ eV$^2$, the oscillation probability deviates from the standard formula, if the wave packet sizes are around $10^{-13}$ m for 0.4 MeV neutrino.
Resonance-Assisted Decay of Nondispersive Wave Packets
Wimberger, S.; Schlagheck, P.; Eltschka, C.; Buchleitner, A.
2006-01-01
We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.
p-wave superconductivity in a two-dimensional generalized Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Millan, J. Samuel [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70-360, 04510, Mexico D.F. (Mexico); Facultad de Ingenieria, UNACAR, 24180, Cd. de Carmen, Campeche (Mexico); Perez, Luis A. [Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000, Mexico D.F. (Mexico); Wang Chumin [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70-360, 04510, Mexico D.F. (Mexico)]. E-mail: chumin@servidor.unam.mx
2005-02-21
In this Letter, we consider a two-dimensional Hubbard model that includes a second-neighbor correlated hopping interaction, and we find a triplet p-wave superconducting ground state within the BCS formalism. A small distortion of the square-lattice right angles is introduced in order to break the degeneracy of kx+/-ky oriented p-wave pairing states. For the strong coupling limit, analytical results are obtained. An analysis of the superconducting critical temperature reveals the existence of an optimal electron density and the gap ratio exhibits a non-BCS behavior. Finally, the particular case of strontium ruthenate is examined.
Elastic Wave Propagation in Two-Dimensional Ordered and Weakly Disordered Phononic Crystals
Institute of Scientific and Technical Information of China (English)
YUAN Zuo-Dong; CHENG Jian-Chun
2005-01-01
@@ Elastic wave propagation in two-dimensional solid-solid ordered and weakly disordered phononic crystals is studied by using finite-difference time-domain method.Theoretical results show that obvious band gaps in the ordered crystal could be found, while in the weakly disordered ones the band gaps could partially vanish.Furthermore,with increase of disorder, band gaps are destructed badly and prominently in the high frequency regime while slightly in the low regime.Comparing the energy transmission dependent on time, we find that the coda wave phenomenon is prominent in the ordered crystal while weakened in the weakly disordered ones, and the physical properties are discussed.
Wave packet dynamics of potassium dimers attached to helium nanodroplets
Claas, P.; Droppelmann, G.; Schulz, C. P.; Mudrich, M.; Stienkemeier, F.
2006-01-01
The dynamics of vibrational wave packets excited in K$_2$ dimers attached to superfluid helium nanodroplets is investigated by means of femtosecond pump-probe spectroscopy. The employed resonant three-photon-ionization scheme is studied in a wide wavelength range and different pathways leading to K$^+_2$-formation are identified. While the wave packet dynamics of the electronic ground state is not influenced by the helium environment, perturbations of the electronically excited states are obs...
Electronic Wave Packet in a Quantized Electromagnetic Field
Institute of Scientific and Technical Information of China (English)
程太旺; 薛艳丽; 李晓峰; 吴令安; 傅盘铭
2002-01-01
We study a non-stationary electronic wave packet in a quantized electromagnetic field. Generally, the electron and field become entangled as the electronic wave packet evolves. Here we find that, when the initial photon state is a coherent one, the wavefunction of the system can be factorized if we neglect the transferred photon number. In this case, the quantized-field calculation is equivalent to the semi-classical calculation.
On wave-packet dynamics in a decaying quadratic potential
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Henriksen, Niels Engholm
1997-01-01
We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....
Wave transmission through two-dimensional structures by the hybrid FE/WFE approach
Mitrou, Giannoula; Ferguson, Neil; Renno, Jamil
2017-02-01
The knowledge of the wave transmission and reflection characteristics in connected two-dimensional structures provides the necessary background for many engineering prediction methodologies. Extensive efforts have previously been exerted to investigate the propagation of waves in two-dimensional periodic structures. This work focuses on the analysis of the wave propagation and the scattering properties of joined structures comprising of two or more plates. The joint is modelled using the finite element (FE) method whereas each (of the joined) plate(s) is modelled using the wave and finite element (WFE) method. This latter approach is based on post-processing a standard FE model of a small segment of the plate using periodic structure theory; the FE model of the segment can be obtained using any commercial/in-house FE package. Stating the equilibrium and continuity conditions at the interfaces and expressing the motion in the plates in terms of the waves in each plate yield the reflection and transmission matrices of the joint. These can then be used to obtain the response of the whole structure, as well as investigating the frequency and incidence dependence for the flow of power in the system.
Zhu, Guo-Yi; Wang, Ziqiang; Zhang, Guang-Ming
2017-05-01
Motivated by the recent observations of nodeless superconductivity in the monolayer CuO2 grown on the Bi2Sr2CaCu2O8+δ substrates, we study the two-dimensional superconducting (SC) phases described by the two-dimensional t\\text-J model in proximity to an antiferromagnetic (AF) insulator. We found that i) the nodal d-wave SC state can be driven via a continuous transition into a nodeless d-wave pairing state by the proximity-induced AF field. ii) The energetically favorable pairing states in the strong field regime have extended s-wave symmetry and can be nodal or nodeless. iii) Between the pure d-wave and s-wave paired phases, there emerge two topologically distinct SC phases with (s+\\text{i}d) symmetry, i.e., the weak and strong pairing phases, and the weak pairing phase is found to be a Z 2 topological superconductor protected by valley symmetry, exhibiting robust gapless nonchiral edge modes. These findings strongly suggest that the high-T c superconductors in proximity to antiferromagnets can realize fully gapped symmetry-protected topological SC.
Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas
Energy Technology Data Exchange (ETDEWEB)
Ata-ur-Rahman [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Mushtaq, A. [National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan)
2013-07-15
The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are strongly influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.
Wave analysis of the evolution of a single wave packet in supersonic boundary layer
Yermolaev, Yury G.; Yatskikh, Aleksey A.; Kosinov, Alexander D.; Semionov, Nickolay V.
2016-10-01
The evolution of the artificial wave packet in laminar flat-plate boundary layer was experimentally studied by hot-wire measurements at M=2. The localized disturbances were generated by pulse glow discharge. The wave analysis of evolution of wave packet was provided. It was found, that the most unstable waves are oblique, that consistent with results of linear theory.
A two-dimensionally focusing, quasi-optical antenna for millimeter-wave scattering in plasmas
Energy Technology Data Exchange (ETDEWEB)
Idehara, T.; Tatsukawa, T. (Faculty of Engineering, Fukui University, Fukui 910, Japan (JP)); Brand, G.F.; Fekete, P.W.; Moore, K.J. (School of Physics, University of Sydney, NSW 2006 (Australia))
1990-06-01
A two-dimensionally focusing, quasi-optical antenna having one elliptical reflector and one parabolic reflector has been built for use with a tunable gyrotron in order to carry out millimeter-wave scattering measurements on the TORTUS tokamak plasma at the University of Sydney. The advantages of this antenna are the following: (1) The elliptical reflector focuses the radiation beam in the toroidal direction, while the parabolic reflector focuses in the direction of major radius. This gives excellent two-dimensional focusing in the plasma region, and consequently excellent spatial resolution. (2) The focal point can be easily swept along the direction of major radius in the whole plasma region, simply by changing the angle of the parabolic reflector by a small amount. These features have been demonstrated experimentally using the tunable gyrotron source, GYROTRON III, and in computations of the radiated fields.
Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The robustness and breakup of spiral wave in a two-dimensional lattice networks of neurons are investigated. The effect of small- world type connection is often simplified with local regular connection and the long-range connection with certain probability. The network effect on the development of spiral wave can be better described by local regular connection and changeable long-range connection probability than fixed long-range connection probability because the long-range probability could be changeable in realistic biological system. The effect from the changeable probability for long-range connection is simplified by multiplicative noise. At first, a stable rotating spiral wave is developed by using appropriate initial values, parameters and no-flux boundary conditions, and then the effect of networks is investigated. Extensive numerical studies show that spiral wave keeps its alive and robust when the intensity of multiplicative noise is below a certain threshold, otherwise, the breakup of spiral wave occurs. A statistical factor of synchronization in two-dimensional array is defined to study the phase transition of spiral wave by checking the membrane potentials of all neurons corresponding to the critical parameters(the intensity of noise or forcing current)in the curve for factor of synchronization. The Hindmarsh-Rose model is investigated, the Hodgkin-Huxley neuron model in the presence of the channel noise is also studied to check the model independence of our conclusions. And it is found that breakup of spiral wave is easier to be induced by the multiplicative noise in presence of channel noise.
Tie, B.; Tian, B. Y.; Aubry, D.
2013-12-01
The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave propagation are highlighted in high frequency domains. One important result presented herein is the comparison between the first Bloch wave modes to the membrane and bending/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homogenized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retropropagating Bloch wave modes with a negative group velocity, and of the corresponding "retro-propagating" frequency bands.
Unsteady Free-surface Waves Due to a Submerged Body in Two-dimensional Oseen Flows
Institute of Scientific and Technical Information of China (English)
LUDong-qiang; AllenT.CHWANG
2004-01-01
The two-dimensional unsteady free-surface waves due to a submerged body moving in an incompressible viscous fluid of infinite depth is considered.The disturbed flow is governed by the unsteadyOseen equations with the kinematic and dynamic boundary conditions linearized for the free-surface waves.Accordingly, the body is mathematically simulated by an Oseenlet with a periodically oscillating strength.By means of Fourier transforms,the exact solution for the free-surface waves is expressed by an integral with a complex dispersion function, which explicitly shows that the wave dynamics is characterized by a Reynolds number and a Strouhal number.By applying Lighthill's theorem, asymptotic representations are derived for the far-field waves with a sub-critical and a super-critical Strouhal number. It is found that the generated waves due to the oscillating Oseenlet consist of the steady-state and transient responses. For the viscous flow with a sub-critical Strouhal number, there exist four waves: three propagate downstream while one propagates upstream.However, for the viscous flow with a super-critical Strouhal number, there exist two waves only,which propagate downstream.
Institute of Scientific and Technical Information of China (English)
LIN Chang; ZHANG Xiu-Lian
2005-01-01
The nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation is analytically investigated by using the formally variable separation approach. New analytical solutions for the governing equation of this system have been obtained for dust acoustic waves in a dust plasma for the first time. We derive exact analytical expressions for the general case of the nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Samiran, E-mail: sran_g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
Climatology of extratropical atmospheric wave packets in the northern hemisphere
Grazzini, Federico
2010-01-01
Planetary and synoptic scale wave-packets represents one important component of the atmospheric large-scale circulation. These dissipative structures are able to rapidly transport eddy kinetic energy, generated locally (e.g. by baroclinic conversion), downstream along the upper tropospheric flow. The transported energy, moving faster than individual weather systems, will affect the development of the next meteorological system on the leading edge of the wave packet, creating a chain of connections between systems that can be far apart in time and space, with important implications on predictability. In this work we present a different and novel approach to investigate atmospheric variability, based on the objective recognition of planetary and synoptic wave packets. We have developed an objective tracking algorithm which allows to extract relevant statistical properties of the wave trains as a function of their dominant wavelength. We have applied the algorithm to the daily analysis (every 12h) from 1958-2009...
Electron acceleration by Landau resonance with whistler mode wave packets
Gurnett, D. A.; Reinleitner, L. A.
1983-01-01
Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.
Particle-like wave packets in complex scattering systems
Gérardin, Benoît; Ambichl, Philipp; Prada, Claire; Rotter, Stefan; Aubry, Alexandre
2016-01-01
A wave packet undergoes a strong spatial and temporal dispersion while propagating through a complex medium. This wave scattering is often seen as a nightmare in wave physics whether it be for focusing, imaging or communication purposes. Controlling wave propagation through complex systems is thus of fundamental interest in many areas, ranging from optics or acoustics to medical imaging or telecommunications. Here, we study the propagation of elastic waves in a cavity and a disordered waveguide by means of laser interferometry. We demonstrate how the direct experimental access to the information stored in the scattering matrix of these systems allows us to selectively excite scattering states and wave packets that travel along individual classical trajectories. Due to their limited dispersion, these particle-like scattering states will be crucially relevant for all applications involving selective wave focusing and efficient information transfer through complex media.
|m| Partial wave treatment for two-dimensional Coulomb-scattering and Regge pole
Institute of Scientific and Technical Information of China (English)
WANG; Jing; ZENG; Jinyan
2004-01-01
The symmetry and |m| partial-wave analysis for two-dimensional (2D) Coulomb-scattering is investigated. As a function of energy E, the |m| partial-wave scattering amplitude f|m|(θ) is analytically continuated to the negative E (complex k) plane, and it is found that the bound state energy eigenvalues (E<0) are just located at the poles of f|m|(θ) on the positive imaginary k axis as is expected. In addition, as a function of |m|, f|m|(θ) is analytically continuated to the complex |m| plane, the bound state energy eigenvalues are just located at the poles of f|m|(θ) on the positive real |m| axis.
Anti-periodic traveling wave solution to a forced two-dimensional generalized KdV-Burgers equation
Institute of Scientific and Technical Information of China (English)
TAN Junyu
2003-01-01
The anti-periodic traveling wave solutions to a forced two-dimensional generalized KdV-Burgers equation are studied.Some theorems concerning the boundness, existence and uniqueness of the solution to this equation are proved.
The Spatiotemporal Evolution of Wave Packets under Chaotic Condition
Institute of Scientific and Technical Information of China (English)
LIU Fang; LI Jun-Qing; LUO Yi-Xiao; XU Gong-Ou; ZUO Wei
2001-01-01
Using the minimum uncertainty state of quantum integrable system H0 as initial state,the spatiotemporal evolution of the wave packet under the action of perturbed Hamiltonian is studied causally as in classical mechanics. Due to the existence of the avoided energy level crossing in the spectrum there exist nonlinear resonances between somepairs of neighboring components of the wave packet,the deterministic dynamical evolution becomes very complicated and appears to be chaotic.It is proposed to use expectation values for the whole set of basic dynamical variables and the corresponding spreading widths to describe the topological features concisely such that the quantum chaotic motion can be studied in contrast with the quantum regular motion and well characterized with the asymptotic behaviors.It has been demonstrated with numerical results that such a wave packet has indeed quantum behaviors of ergodicity asin corresponding classical case.
Wave packet propagation across barriers by semiclassical initial value methods
Petersen, Jakob; Kay, Kenneth G.
2015-07-01
Semiclassical initial value representation (IVR) formulas for the propagator have difficulty describing tunneling through barriers. A key reason is that these formulas do not automatically reduce, in the classical limit, to the version of the Van Vleck-Gutzwiller (VVG) propagator required to treat barrier tunneling, which involves trajectories that have complex initial conditions and that follow paths in complex time. In this work, a simple IVR expression, that has the correct tunneling form in the classical limit, is derived for the propagator in the case of one-dimensional barrier transmission. Similarly, an IVR formula, that reduces to the Generalized Gaussian Wave Packet Dynamics (GGWPD) expression [D. Huber, E. J. Heller, and R. Littlejohn, J. Chem. Phys. 89, 2003 (1988)] in the classical limit, is derived for the transmitted wave packet. Uniform semiclassical versions of the IVR formulas are presented and simplified expressions in terms of real trajectories and WKB penetration factors are described. Numerical tests show that the uniform IVR treatment gives good results for wave packet transmission through the Eckart and Gaussian barriers in all cases examined. In contrast, even when applied with the proper complex trajectories, the VVG and GGWPD treatments are inaccurate when the mean energy of the wave packet is near the classical transmission threshold. The IVR expressions for the propagator and wave packet are cast as contour integrals in the complex space of initial conditions and these are generalized to potentially allow treatment of a larger variety of systems. A steepest descent analysis of the contour integral formula for the wave packet in the present cases confirms its relationship to the GGWPD method, verifies its semiclassical validity, and explains results of numerical calculations.
Analysis of Circular Wave Packets Generated by Pulsed Electric Fields
Energy Technology Data Exchange (ETDEWEB)
Yoshida, S. [Vienna University of Technology, Austria; Reinhold, Carlos O [ORNL; Burgdorfer, J. [Vienna University of Technology, Austria; Wyker, B. [Rice University; Ye, S. [Rice University; Dunning, F. B. [Rice University
2011-01-01
We demonstrate that circular wave packets in high Rydberg states generated using a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wavepackets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficient.
Wave packet dynamics under effect of a pulsed electric field
da Silva, A. R. C. B.; de Moura, F. A. B. F.; Dias, W. S.
2016-06-01
We studied the dynamics of an electron in a crystalline one-dimensional model under effect of a time-dependent Gaussian field. The time evolution of an initially Gaussian wave packet it was obtained through the numerical solution of the time-dependent Schrödinger equation. Our analysis consists of computing the electronic centroid as well as the mean square displacement. We observe that the electrical pulse is able to promote a special kind of displacement along the chain. We demonstrated a direct relation between the group velocity of the wave packet and the applied electrical pulses. We compare those numerical calculations with a semi-classical approach.
Wave packets and initial conditions in quantum cosmology
Gousheh, S S
2000-01-01
We discuss the construction of wave packets resulting from the solutions of a class of Wheeler-DeWitt equations in Robertson-Walker type cosmologies. We present an ansatz for the initial conditions which leads to a unique determination of the expansion coefficients in the construction of the wave packets with probability distributions which, in an interesting contrast to some of the earlier works, agree well with all possible classical paths. The possible relationship between these initial conditions and signature transition in the context of classical cosmology is also discussed.
Symmetry and conservation laws in semiclassical wave packet dynamics
Energy Technology Data Exchange (ETDEWEB)
Ohsawa, Tomoki, E-mail: tomoki@utdallas.edu [Department of Mathematical Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, Texas 75080-3021 (United States)
2015-03-15
We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum as well as naturally corresponds to the quantum picture.
Short-time Chebyshev wave packet method for molecular photoionization
Sun, Zhaopeng; Zheng, Yujun
2016-08-01
In this letter we present the extended usage of short-time Chebyshev wave packet method in the laser induced molecular photoionization dynamics. In our extension, the polynomial expansion of the exponential in the time evolution operator, the Hamiltonian operator can act on the wave packet directly which neatly avoids the matrix diagonalization. This propagation scheme is of obvious advantages when the dynamical system has large Hamiltonian matrix. Computational simulations are performed for the calculation of photoelectronic distributions from intense short pulse ionization of K2 and NaI which represent the Born-Oppenheimer (BO) model and Non-BO one, respectively.
Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data.
Lin, Kui; McLaughlin, Joyce R; Thomas, Ashley; Parker, Kevin; Castaneda, Benjamin; Rubens, Deborah J
2011-07-01
The crawling wave experiment was developed to capture a shear wave induced moving interference pattern that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference pattern. It has been shown that the speed of the moving interference pattern, i.e., the crawling wave speed, is proportional to the shear wave speed with a nonlinear factor. This factor can generate high-speed artifacts in the crawling wave speed images that do not actually correspond to increased stiffness. In this paper, an inverse algorithm is developed to reconstruct both the crawling wave speed and the shear wave speed using the phases of the crawling wave and the shear wave. The feature for the data is the application to in vitro prostate data, while the features for the algorithm include the following: (1) A directional filter is implemented to obtain a wave moving in only one direction; and (2) an L(1) minimization technique with physics inspired constraints is employed to calculate the phase of the crawling wave and to eliminate jump discontinuities from the phase of the shear wave. The algorithm is tested on in vitro prostate data measured at the Rochester Center for Biomedical Ultrasound and University of Rochester. Each aspect of the algorithm is shown to yield image improvement. The results demonstrate that the shear wave speed images can have less artifacts than the crawling wave images. Examples are presented where the shear wave speed recoveries have excellent agreement with histology results on the size, shape, and location of cancerous tissues in the glands. © 2011 Acoustical Society of America
Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium.
Wang, Ken Kang-Hsin; Ye, Zhen
2003-10-01
In this paper, we discuss the transport phenomena of electromagnetic waves in a two-dimensional random system which is composed of arrays of electrical dipoles, following the model presented earlier by Erdogan et al. [J. Opt. Soc. Am. B 10, 391 (1993)]. A set of self-consistent equations is presented, accounting for the multiple scattering in the system, and is then solved numerically. A strong localization regime is discovered in the frequency domain. The transport properties within, near the edge of, and nearly outside the localization regime are investigated for different parameters such as filling factor and system size. The results show that within the localization regime, waves are trapped near the transmitting source. Meanwhile, the diffusive waves follow an intuitive but expected picture. That is, they increase with traveling path as more and more random scattering incurs, followed by a saturation, then start to decay exponentially when the travelling path is large enough, signifying the localization effect. For the cases where the frequencies are near the boundary of or outside the localization regime, the results of diffusive waves are compared with the diffusion approximation, showing less encouraging agreement as in other systems [Asatryan et al., Phys. Rev. E 67, 036605 (2003)].
Edge waves and resonances in two-dimensional phononic crystal plates
Hsu, Jin-Chen; Hsu, Chih-Hsun
2015-05-01
We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. We design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.
Wave-induced response of a floating two-dimensional body with a moonpool
Fredriksen, Arnt G.; Kristiansen, Trygve; Faltinsen, Odd M.
2015-01-01
Regular wave-induced behaviour of a floating stationary two-dimensional body with a moonpool is studied. The focus is on resonant piston-mode motion in the moonpool and rigid-body motions. Dedicated two-dimensional experiments have been performed. Two numerical hybrid methods, which have previously been applied to related problems, are further developed. Both numerical methods couple potential and viscous flow. The semi-nonlinear hybrid method uses linear free-surface and body-boundary conditions. The other one uses fully nonlinear free-surface and body-boundary conditions. The harmonic polynomial cell method solves the Laplace equation in the potential flow domain, while the finite volume method solves the Navier–Stokes equations in the viscous flow domain near the body. Results from the two codes are compared with the experimental data. The nonlinear hybrid method compares well with the data, while certain discrepancies are observed for the semi-nonlinear method. In particular, the roll motion is over-predicted by the semi-nonlinear hybrid method. Error sources in the semi-nonlinear hybrid method are discussed. The moonpool strongly affects heave motions in a frequency range around the piston-mode resonance frequency of the moonpool. No resonant water motions occur in the moonpool at the piston-mode resonance frequency. Instead large moonpool motions occur at a heave natural frequency associated with small damping near the piston-mode resonance frequency. PMID:25512594
Wave Packet Dynamics in the Infinite Square Well with the Wigner Quasi-probability Distribution
Belloni, Mario; Doncheski, Michael; Robinett, Richard
2004-05-01
Over the past few years a number of authors have been interested in the time evolution and revivals of Gaussian wave packets in one-dimensional infinite wells and in two-dimensional infinite wells of various geometries. In all of these circumstances, the wave function is guaranteed to revive at a time related to the inverse of the system's ground state energy, if not sooner. To better visualize these revivals we have calculated the time-dependent Wigner quasi-probability distribution for position and momentum, P_W(x; p), for Gaussian wave packet solutions of this system. The Wigner quasi-probability distribution clearly demonstrates the short-term semi-classical time dependence, as well as longer-term revival behavior and the structure during the collapsed state. This tool also provides an excellent way of demonstrating the patterns of highly-correlated Schrödinger-cat-like `mini-packets' which appear at fractional multiples of the exact revival time. This research is supported in part by a Research Corporation Cottrell College Science Award (CC5470) and the National Science Foundation under contracts DUE-0126439 and DUE-9950702.
Stochastic Acceleration of Ions Driven by Pc1 Wave Packets
Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.
2015-01-01
The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.
Finite Element Analysis of Electromagnetic Waves in Two-Dimensional Transformed Bianisotropic Media
Liu, Yan; Guenneau, Sebastien
2015-01-01
We analyse wave propagation in two-dimensional bianisotropic media with the Finite Element Method (FEM). We start from the Maxwell-Tellegen's equations in bianisotropic media, and derive some system of coupled Partial Difference Equations (PDEs) for longitudinal electric and magnetic field components. Perfectly Matched Layers (PMLs) are discussed to model such unbounded media. We implement these PDEs and PMLs in a finite element software. We apply transformation optics in order to design some bianisotropic media with interesting functionalities, such as cloaks, concentrators and rotators. We propose a design of metamaterial with concentric layers made of homogeneous media with isotropic permittivity, permeability and magneto-electric parameters that mimic the required effective anisotropic tensors of a bianisotropic cloak in the long wavelength limit (homogenization approach). Our numerical results show that well-known metamaterials can be transposed to bianisotropic media.
Well-posedness of two-dimensional hydroelastic waves with mass
Liu, Shunlian; Ambrose, David M.
2017-05-01
We study hydroelastic waves in interfacial flow of two-dimensional irrotational fluids. Each of the fluids is taken to be of infinite extent in one vertical direction, and bounded by a free surface in the other vertical direction. Elastic effects are considered at the free surface; this can describe physical settings such as the ocean bounded above by a layer of ice. A previous study proved well-posedness without considering the mass of the elastic surface; we now consider the effect of this mass. Under the assumption that a certain integral equation is solvable, we prove well-posedness of the initial value problem for the system. We are able to demonstrate that in some cases, such as the case of small mass parameter, the integral equation is indeed solvable. The proof uses geometric dependent variables, a normalized arclength parameterization, and a small-scale decomposition in the evolution equations.
Abdilghanie, Ammar M.; Diamessis, Peter J.
2012-01-01
Numerical simulations of internal gravity wave (IGW) dynamics typically rely on wave velocity and density fields which are either generated through forcing terms in the governing equations or are explicitly introduced as initial conditions. Both approaches are based on the associated solution to the inviscid linear internal wave equations and, thus, assume weak-amplitude, space-filling waves. Using spectral multidomain-based numerical simulations of the two-dimensional Navier-Stokes equations and focusing on the forcing-driven approach, this study examines the generation and subsequent evolution of large-amplitude IGW packets which are strongly localized in the vertical in a linearly stratified fluid. When the vertical envelope of the forcing terms varies relatively rapid when compared to the vertical wavelength, the associated large vertical gradients in the Reynolds stress field drive a nonpropagating negative horizontal mean flow component in the source region. The highly nonlinear interaction of this mean current with the propagating IGW packet leads to amplification of the wave, a significant distortion of its rear flank, and a substantial decay of its amplitude. Scaling arguments show that the mean flow is enhanced with a stronger degree of localization of the forcing, larger degree of hydrostaticity, and increasing wave packet steepness. Horizontal localization results in a pronounced reduction in mean flow strength mainly on account of the reduced vertical gradient of the wave Reynolds stress. Finally, two techniques are proposed toward the efficient containment of the mean flow at minimal computational cost. The findings of this study are of particular value in overcoming challenges in the design of robust computational process studies of IGW packet (or continuously forced wave train) interactions with a sloping boundary, critical layer, or caustic, where large wave amplitudes are required for any instabilities to develop. In addition, the detailed
Derivation of asymptotic two-dimensional time-dependent equations for ocean wave propagation
Lannes, David
2007-01-01
A general method for the derivation of asymptotic nonlinear shallow water and deep water models is presented. Starting from a general dimensionless version of the water-wave equations, we reduce the problem to a system of two equations on the surface elevation and the velocity potential at the free surface. These equations involve a Dirichlet-Neumann operator and we show that all the asymptotic models can be recovered by a simple asymptotic expansion of this operator, in function of the shallowness parameter (shallow water limit) or the steepness parameter (deep water limit). Based on this method, a new two-dimensional fully dispersive model for small wave steepness is also derived, which extends to uneven bottom the approach developed by Matsuno \\cite{matsuno3} and Choi \\cite{choi}. This model is still valid in shallow water but with less precision than what can be achieved with Green-Naghdi model, when fully nonlinear waves are considered. The combination, or the coupling, of the new fully dispersive equati...
Surface acoustic waves in two dimensional phononic crystal with anisotropic inclusions
Directory of Open Access Journals (Sweden)
Ketata H.
2012-06-01
Full Text Available An analysis is given to the band structure of the two dimensional solid phononic crystal considered as a semi infinite medium. The lattice includes an array of elastic anisotropic materials with different shapes embedded in a uniform matrix. For illustration two kinds of phononic materials are assumed. A particular attention is devoted to the computational procedure which is mainly based on the plane wave expansion (PWE method. It has been adapted to Matlab environment. Numerical calculations of the dispersion curves have been achieved by introducing particular functions which transform motion equations into an Eigen value problem. Significant improvements are obtained by increasing reasonably the number of Fourier components even when a large elastic mismatch is assumed. Such approach can be generalized to different types of symmetry and permit new physical properties as piezoelectricity to be added. The actual semi infinite phononic structure with a free surface has been shown to support surface acoustic waves (SAW. The obtained dispersion curves reveal band gaps in the SAW branches. It has been found that the influence, of the filling factor and anisotropy on their band gaps, is different from that of bulk waves.
Massachusetts Bay - Internal Wave Packets Digitized from SAR Imagery and Intersected with Bathymetry
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with bathymetry for Massachusetts Bay. The internal wave packets were...
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with tidal zones for Massachusetts Bay. The internal wave packets were...
Weisskopf-Wigner model for wave packet excitation
Paloviita, A; Stenholm, S; Paloviita, Asta; Suominen, Kalle-Antti; Stenholm, Stig
1997-01-01
We consider a laser induced molecular excitation process as a decay of a single energy state into a continuum. The analytic results based on Weisskopf-Wigner approach and perturbation calculations are compared with numerical wave packet results. We find that the decay model describes the excitation process well within the expected parameter region.
Chirp dependence of wave packet motion in oxazine 1.
Malkmus, Stephan; Dürr, Regina; Sobotta, Constanze; Pulvermacher, Horst; Zinth, Wolfgang; Braun, Markus
2005-11-24
The motion of vibrational wave packets in the system oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral properties of the probe pulse from 600 to 700 nm were chosen to cover the overlap region where ground-state bleach and stimulated emission signals are detected. The spectral phase of the pump pulse was manipulated by a liquid crystal display based pulse-shaping setup. Chirped excitation pulses of negative and positive chirp can be used to excite vibrational modes predominantly in the ground or excited state, respectively. To distinguish the observed wave packets in oxazine 1 moving in the ground or excited state, spectrally resolved transient absorption experiments are performed for various values of the linear chirp of the pump pulses. The amplitudes of the wave packet motion show an asymmetric behavior with an optimum signal for a negative chirp of -0.75 +/- 0.2 fs/nm, which indicates that predominantly ground-state wave packets are observed.
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
J Banerji
2001-02-01
We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.
Nonlinear dynamics of Airy-Vortex 3D wave packets: Emission of vortex light waves
Driben, Rodislav
2014-01-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Due to the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and non-zero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse, especially those having small width.
Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.
Driben, Rodislav; Meier, Torsten
2014-10-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse.
Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger
2008-01-01
Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve
Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger Karl
2008-01-01
Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve
Inversion of an Atomic Wave Packet in a Circularly Polarized Electromagnetic Wave
Institute of Scientific and Technical Information of China (English)
ZENG Gao-Jian
2001-01-01
We study behavior of an atomic wave packet in a circularly polarized electromagnetic wave, and particularly calculate the atomic inversion of the wave packet. A general method of calculation is presented. The results are interesting. For example, if the wave packet is very narrow or/and the interaction is very strong, no matter the atom is initially in its ground state or excited state, the atomic inversion approaches zero as time approaches infinity. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is an even function, then the atomic inversion equals zero at any time.``
On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current
Directory of Open Access Journals (Sweden)
Dali Guo
2014-01-01
Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.
A two-dimensional Stockwell transform for gravity wave analysis of AIRS measurements
Hindley, Neil P.; Smith, Nathan D.; Wright, Corwin J.; Rees, D. Andrew S.; Mitchell, Nicholas J.
2016-06-01
Gravity waves (GWs) play a crucial role in the dynamics of the earth's atmosphere. These waves couple lower, middle and upper atmospheric layers by transporting and depositing energy and momentum from their sources to great heights. The accurate parameterisation of GW momentum flux is of key importance to general circulation models but requires accurate measurement of GW properties, which has proved challenging. For more than a decade, the nadir-viewing Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite has made global, two-dimensional (2-D) measurements of stratospheric radiances in which GWs can be detected. However, one problem with current one-dimensional methods for GW analysis of these data is that they can introduce significant unwanted biases. Here, we present a new analysis method that resolves this problem. Our method uses a 2-D Stockwell transform (2DST) to measure GW amplitudes, horizontal wavelengths and directions of propagation using both the along-track and cross-track dimensions simultaneously. We first test our new method and demonstrate that it can accurately measure GW properties in a specified wave field. We then show that by using a new elliptical spectral window in the 2DST, in place of the traditional Gaussian, we can dramatically improve the recovery of wave amplitude over the standard approach. We then use our improved method to measure GW properties and momentum fluxes in AIRS measurements over two regions known to be intense hotspots of GW activity: (i) the Drake Passage/Antarctic Peninsula and (ii) the isolated mountainous island of South Georgia. The significance of our new 2DST method is that it provides more accurate, unbiased and better localised measurements of key GW properties compared to most current methods. The added flexibility offered by the scaling parameter and our new spectral window presented here extend the usefulness of our 2DST method to other areas of geophysical data analysis and beyond.
Zhao, Sheng-Dong; Wang, Yue-Sheng
2016-05-01
The negative refraction behavior and imaging effect for acoustic waves in a kind of two-dimensional square chiral lattice structure are studied in this paper. The unit cell of the proposed structure consists of four zigzag arms connected through a thin circular ring at the central part. The relation of the symmetry of the unit cell and the negative refraction phenomenon is investigated. Using the finite element method, we calculate the band structures and the equi-frequency surfaces of the system, and confirm the frequency range where the negative refraction is present. Due to the rotational symmetry of the unit cell, a phase difference is induced to the waves propagating from a point source through the structure to the other side. The phase difference is related to the width of the structure and the frequency of the source, so we can get a tunable deviated imaging. This kind of phenomenon is also demonstrated by the numerical simulation of two Gaussian beams that are symmetrical about the interface normal with the same incident angle, and the different negative refractive indexes are presented. Based on this special performance, a double-functional mirror-symmetrical slab is proposed for realizing acoustic focusing and beam separation.
Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Agio, Mario [Iowa State Univ., Ames, IA (United States)
2002-12-31
This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.
Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model
Panajotov, Krassimir; Clerc, Marcel G.; Tlidi, Mustapha
2017-06-01
Driven nonlinear optical cavities can exhibit complex spatiotemporal dynamics. We consider the paradigmatic Lugiato-Lefever model describing driven nonlinear optical resonator. This model is one of the most-studied nonlinear equations in optics. It describes a large spectrum of nonlinear phenomena from bistability, to periodic patterns, localized structures, self-pulsating localized structures and to a complex spatiotemporal behavior. The model is considered also as prototype model to describe several optical nonlinear devices such as Kerr media, liquid crystals, left handed materials, nonlinear fiber cavity, and frequency comb generation. We focus our analysis on a spatiotemporal chaotic dynamics in one-dimension. We identify a route to spatiotemporal chaos through an extended quasiperiodicity. We have estimated the Kaplan-Yorke dimension that provides a measure of the strange attractor complexity. Likewise, we show that the Lugiato-Leferver equation supports rogues waves in two-dimensional settings. We characterize rogue-wave formation by computing the probability distribution of the pulse height. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Dipolar matter-wave solitons in two-dimensional anisotropic discrete lattices
Chen, Huaiyu; Liu, Yan; Zhang, Qiang; Shi, Yuhan; Pang, Wei; Li, Yongyao
2016-05-01
We numerically demonstrate two-dimensional (2D) matter-wave solitons in the disk-shaped dipolar Bose-Einstein condensates (BECs) trapped in strongly anisotropic optical lattices (OLs) in a disk's plane. The considered OLs are square lattices which can be formed by interfering two pairs of plane waves with different intensities. The hopping rates of the condensates between two adjacent lattices in the orthogonal directions are different, which gives rise to a linearly anisotropic system. We find that when the polarized orientation of the dipoles is parallel to disk's plane with the same direction, the combined effects of the linearly anisotropy and the nonlocal nonlinear anisotropy strongly influence the formations, as well as the dynamics of the lattice solitons. Particularly, the isotropy-pattern solitons (IPSs) are found when these combined effects reach a balance. Motion, collision, and rotation of the IPSs are also studied in detail by means of systematic simulations. We further find that these IPSs can move freely in the 2D anisotropic discrete system, hence giving rise to an anisotropic effective mass. Four types of collisions between the IPSs are identified. By rotating an external magnetic field up to a critical angular velocity, the IPSs can still remain localized and play as a breather. Finally, the influences from the combined effects between the linear and the nonlocal nonlinear anisotropy with consideration of the contact and/or local nonlinearity are discussed too.
Nonlinear Evolution of Alfvenic Wave Packets
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Two-dimensional Rarefaction Waves in the High-speed Two-phase Flow
Nakagawa, Masafumi; Harada, Atsushi
Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. The purpose of the present study is to elucidate theoretically the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. Two-dimensional basic equations for the compressible two-phase flow are introduced considering the inter-phase momentum transfer. Sound velocities are obtained from these equations by using monochromatic wave approximation. Those depend on the relaxation time that determines the momentum transfer. The two-phase flow with large relaxation times has a frozen sound velocity, and with small one has an equilibrium sound velocity. Rarefaction waves which occurred behind the two-phase flow nozzle are calculated by the CIP method. Although the frozen Mach number, below one, controls these basic equations, the rarefaction waves appeared for small relaxation time. The Mach line behind which the expansion starts depends on the inlet velocity and the relaxation time. Those relationships are shown in this paper. The pressure expansion curves are only a function of the revolution angle around the corner of the nozzle outlet for the relaxation time less than 0.1. For the larger relaxation time, the pressure decays because of internal friction caused by inter phase momentum transfer, and the expansion curves are a function of not only the angle but also the flow direction. The calculated expansion curves are compared with the experimental ones
Indian Academy of Sciences (India)
ALY R SEADAWY
2017-09-01
Nonlinear two-dimensional Kadomtsev–Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the twodimensional nonlinear KP equation by implementing sech–tanh, sinh–cosh, extended direct algebraic and fraction direct algebraicmethods. We found the electrostatic field potential and electric field in the form travellingwave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of $\\it{Mathematica}$ program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.
Development of fast two-dimensional standing wave microscopy using acousto-optic deflectors
Gliko, Olga; Reddy, Duemani G.; Brownell, William E.; Saggau, Peter
2008-02-01
A novel scheme for two-dimensional (2D) standing wave fluorescence microscopy (SWFM) using acousto-optic deflectors (AODs) is proposed. Two laser beams were coupled into an inverted microscope and focused at the back focal plane of the objective lens. The position of each of two beams at the back focal plane was controlled by a pair of AODs. This resulted in two collimated beams that interfered in the focal plane, creating a lateral periodic excitation pattern with variable spacing and orientation. The phase of the standing wave pattern was controlled by phase delay between two RF sinusoidal signals driving the AODs. Nine SW patterns of three different orientations about the optical axis and three different phases were generated. The excitation of the specimen using these patterns will result in a SWFM image with enhanced 2D lateral resolution with a nearly isotropic effective point-spread function. Rotation of the SW pattern relative to specimen and varying the SW phase do not involve any mechanical movements and are only limited by the time required for the acoustic wave to fill the aperture of AOD. The resulting total acquisition time can be as short as 100 Âµs and is only further limited by speed and sensitivity of the employed CCD camera. Therefore, this 2D SWFM can provide a real time imaging of subresolution processes such as docking and fusion of synaptic vesicles. In addition, the combination of 2D SWFM with variable angle total internal reflection (TIR) can extend this scheme to fast microscopy with enhanced three-dimensional (3D) resolution.
Bacigalupo, Andrea; Gambarotta, Luigi
2017-05-01
Dispersive waves in two-dimensional blocky materials with periodic microstructure made up of equal rigid units, having polygonal centro-symmetric shape with mass and gyroscopic inertia, connected with each other through homogeneous linear interfaces, have been analyzed. The acoustic behavior of the resulting discrete Lagrangian model has been obtained through a Floquet-Bloch approach. From the resulting eigenproblem derived by the Euler-Lagrange equations for harmonic wave propagation, two acoustic branches and an optical branch are obtained in the frequency spectrum. A micropolar continuum model to approximate the Lagrangian model has been derived based on a second-order Taylor expansion of the generalized macro-displacement field. The constitutive equations of the equivalent micropolar continuum have been obtained, with the peculiarity that the positive definiteness of the second-order symmetric tensor associated to the curvature vector is not guaranteed and depends both on the ratio between the local tangent and normal stiffness and on the block shape. The same results have been obtained through an extended Hamiltonian derivation of the equations of motion for the equivalent continuum that is related to the Hill-Mandel macro homogeneity condition. Moreover, it is shown that the hermitian matrix governing the eigenproblem of harmonic wave propagation in the micropolar model is exact up to the second order in the norm of the wave vector with respect to the same matrix from the discrete model. To appreciate the acoustic behavior of some relevant blocky materials and to understand the reliability and the validity limits of the micropolar continuum model, some blocky patterns have been analyzed: rhombic and hexagonal assemblages and running bond masonry. From the results obtained in the examples, the obtained micropolar model turns out to be particularly accurate to describe dispersive functions for wavelengths greater than 3-4 times the characteristic dimension of
Semiclassical wave-packets emerging from interaction with an environment
Energy Technology Data Exchange (ETDEWEB)
Recchia, Carla, E-mail: carla.recchia@libero.it [D.I.S.I.M., Università di L’Aquila, Via Vetoio - Loc. Coppito - 67010 L’Aquila (Italy); Teta, Alessandro, E-mail: teta@mat.uniroma1.it [Dipartimento di Matematica, “Sapienza” Università di Roma, P.le A. Moro 5, 00185 Roma (Italy)
2014-01-15
We study the quantum evolution in dimension three of a system composed by a test particle interacting with an environment made of N harmonic oscillators. At time zero the test particle is described by a spherical wave, i.e., a highly correlated continuous superposition of states with well localized position and momentum, and the oscillators are in the ground state. Furthermore, we assume that the positions of the oscillators are not collinear with the center of the spherical wave. Under suitable assumptions on the physical parameters characterizing the model, we give an asymptotic expression of the solution of the Schrödinger equation of the system with an explicit control of the error. The result shows that the approximate expression of the wave function is the sum of two terms, orthogonal in L{sup 2}(R{sup 3(N+1)}) and describing rather different situations. In the first one, all the oscillators remain in their ground state and the test particle is described by the free evolution of a slightly deformed spherical wave. The second one consists of a sum of N terms where in each term there is only one excited oscillator and the test particle is correspondingly described by the free evolution of a wave packet, well concentrated in position and momentum. Moreover, the wave packet emerges from the excited oscillator with an average momentum parallel to the line joining the oscillator with the center of the initial spherical wave. Such wave packet represents a semiclassical state for the test particle, propagating along the corresponding classical trajectory. The main result of our analysis is to show how such a semiclassical state can be produced, starting from the original spherical wave, as a result of the interaction with the environment.
Spin Hall conductivity in the impure two-dimensional Rashba s-wave superconductor
Biderang, M.; Yavari, H.
2016-06-01
Based on the Kubo formula approach, the spin Hall conductivity (SHC) of a two-dimensional (2D) Rashba s-wave superconductor in the presence of nonmagnetic impurities is calculated. We will show that by increasing the superconducting gap, the SHC decreases monotonically to zero, while by decreasing the concentration of impurities at zero gap, the SHC closes to the clean limit universal value - e/8 π. As a function of the impurity relaxation rate τ at Tc = 0.1 and γ = 0.01 (γ is the spin-orbit coupling in unit of eV · m), we will show that in the dirty limit (τ → 0) the SHC vanishes, and by increasing the relaxation time (τ → ∞) the SHC depends on the value of superconducting gap (Δ = 1.76Tc√{ 1 -T/Tc }), is changed from zero for full gap to -e/8 π in zero gap. At low temperatures, the SHC goes to zero exponentially and near the critical temperature depending on the concentration of the scattering centers, the SHC will tend to the value of normal state. We will also show that the SHC is independent of spin-orbit coupling (γ) in the clean limit.
Dispersive shock waves in the Kadomtsev-Petviashvili and two dimensional Benjamin-Ono equations
Ablowitz, Mark J.; Demirci, Ali; Ma, Yi-Ping
2016-10-01
Dispersive shock waves (DSWs) in the Kadomtsev-Petviashvili (KP) equation and two dimensional Benjamin-Ono (2DBO) equation are considered using step like initial data along a parabolic front. Employing a parabolic similarity reduction exactly reduces the study of such DSWs in two space one time (2 + 1) dimensions to finding DSW solutions of (1 + 1) dimensional equations. With this ansatz, the KP and 2DBO equations can be exactly reduced to the cylindrical Korteweg-de Vries (cKdV) and cylindrical Benjamin-Ono (cBO) equations, respectively. Whitham modulation equations which describe DSW evolution in the cKdV and cBO equations are derived and Riemann type variables are introduced. DSWs obtained from the numerical solutions of the corresponding Whitham systems and direct numerical simulations of the cKdV and cBO equations are compared with very good agreement obtained. In turn, DSWs obtained from direct numerical simulations of the KP and 2DBO equations are compared with the cKdV and cBO equations, again with good agreement. It is concluded that the (2 + 1) DSW behavior along self similar parabolic fronts can be effectively described by the DSW solutions of the reduced (1 + 1) dimensional equations.
Tian, Liangfei; Martin, Nicolas; Bassindale, Philip G.; Patil, Avinash J.; Li, Mei; Barnes, Adrian; Drinkwater, Bruce W.; Mann, Stephen
2016-10-01
The spontaneous assembly of chemically encoded, molecularly crowded, water-rich micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media by a combination of an acoustic standing wave pressure field and in situ complex coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet per node micro-arrays that exhibit variable surface-attachment properties, spontaneously uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting coalescence to produce acoustically trapped lattices of droplet clusters that display fast and reversible changes in shape and spatial configuration in direct response to modulations in the acoustic frequencies and fields. Our results offer a novel route to the design and construction of `water-in-water' micro-droplet arrays with controllable spatial organization, programmable signalling pathways and higher order collective behaviour.
Alfvén waves and ideal two-dimensional Galerkin truncated magnetohydrodynamics.
Krstulovic, Giorgio; Brachet, Marc-Etienne; Pouquet, Annick
2011-07-01
We investigate numerically the dynamics of two-dimensional Euler and ideal magnetohydrodynamics (MHD) flows in systems with a finite number of modes, up to 4096(2), for which several quadratic invariants are preserved by the truncation and the statistical equilibria are known. Initial conditions are the Orszag-Tang vortex with a neutral X point centered on a stagnation point of the velocity field in the large scales. In MHD, we observe that the total energy spectra at intermediate times and intermediate scales correspond to the interactions of eddies and waves, E(T)(k)~k(-3/2). Moreover, no pseudodissipative range is visible for either Euler or ideal MHD in two dimensions. In the former case, this may be linked to the existence of a vanishing turbulent viscosity whereas in MHD, the numerical resolution employed may be insufficient. When imposing a uniform magnetic field to the flow, we observe a lack of saturation of the formation of small scales together with a significant slowing down of their equilibration, with however a cutoff independent partial thermalization being reached at intermediate scales.
Energy and Information Transfer Via Coherent Exciton Wave Packets
Zang, Xiaoning
Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The
Wave packet dynamics in the optimal superadiabatic approximation
Betz, Volker; Manthe, Uwe
2016-01-01
We explain the concept of superadiabatic approximations and show how in the context of the Born- Oppenheimer approximation they lead to an explicit formula that can be used to predict transitions at avoided crossings. Based on this formula, we present a simple method for computing wave packet dynamics across avoided crossings. Only knowledge of the adiabatic electronic energy levels near the avoided crossing is required for the computation. In particular, this means that no diabatization procedure is necessary, the adiabatic energy levels can be computed on the fly, and they only need to be computed to higher accuracy when an avoided crossing is detected. We test the quality of our method on the paradigmatic example of photo-dissociation of NaI, finding very good agreement with results of exact wave packet calculations.
Shoushtari, Seyed Mohammad Hossein Jazayeri; Cartwright, Nick; Perrochet, Pierre; Nielsen, Peter
2017-01-01
This paper presents a new laboratory dataset on the moisture-pressure relationship above a dispersive groundwater wave in a two-dimensional vertical unconfined sand flume aquifer driven by simple harmonic forcing. A total of five experiments were conducted in which all experimental parameters were kept constant except for the oscillation period, which ranged from 268 s to 2449 s between tests. Moisture content and suction head sensor pairings were co-located at two locations in the unsaturated zone both approximately 0.2 m above the mean watertable elevation and respectively 0.3 m and 0.75 m from the driving head boundary. For all oscillation periods except for the shortest (T = 268s), the formation of a hysteretic moisture-pressure scanning loop was observed. Consistent with the decay of the saturated zone groundwater wave, the size of the observed moisture-pressure scanning loops decayed with increasing distance landward and the decay rate is larger for the shorter oscillation periods. At the shortest period (T = 268s), the observed moisture-pressure relationship was observed to be non-hysteretic but with a capillary capacity that differs from that of the static equilibrium wetting and drying curves. This finding is consistent with observations from existing one-dimensional vertical sand column experiments. The relative damping of the moisture content with distance landward is higher than that for the suction head consistent with the fact that transmission of pressure through a porous medium occurs more readily than mass transfer. This is further supported by the fact that observed phase lags for the unsaturated zone variables (i.e. suction head and moisture content) relative to the driving head are greater than the saturated zone variables (i.e. piezometric head). Harmonic analysis of the data reveals no observable generation of higher harmonics in either moisture or pressure despite the strongly non-linear relationship between the two. In addition, a phase lag
Inclusion of quantum fluctuations in wave packet dynamics
Ohnishi, A
1996-01-01
We discuss a method by which quantum fluctuations can be included in microscopic transport models based on wave packets that are not energy eigenstates. By including the next-to-leading order term in the cumulant expansion of the statistical weight, which corresponds to the wave packets having Poisson energy distributions, we obtain a much improved global description of the quantum statistical properties of the many-body system. In the case of atomic nuclei, exemplified by 12C and 40Ca, the standard liquid-drop results are reproduced at low temperatures and a phase transformation to a fragment gas occurs as the temperature is raised. The treatment can be extended to dynamical scenarios by means of a Langevin force emulating the transitions between the wave packets. The general form of the associated transport coefficients is derived and it is shown that the appropriate microcanonical equilibrium distribution is achieved in the course of the time evolution. Finally, invoking Fermi's golden rule, we derive spec...
Electron Rydberg wave packets in one-dimensional atoms
Indian Academy of Sciences (India)
Supriya Chatterjee; Amitava Choudhuri; Aparna Saha; B Talukdar
2010-09-01
An expression for the transition probability or form factor in one-dimensional Rydberg atom irradiated by short half-cycle pulse was constructed. In applicative contexts, our expression was found to be more useful than the corresponding result given by Landau and Lifshitz. Using the new expression for the form factor, the motion of a localized quantum wave packet was studied with particular emphasis on its revival and super-revival properties. Closed form analytical expressions were derived for expectation values of the position and momentum operators that characterized the widths of the position and momentum distributions. Transient phase-space localization of the wave packet produced by the application of a single impulsive kick was explicitly demonstrated. The undulation of the uncertainty product as a function of time was studied in order to visualize how the motion of the wave packet in its classical trajectory spreads throughout the orbit and the system becomes nonclassical. The process, however, repeats itself such that the atom undergoes a free evolution from a classical, to a nonclassical, and back to a classical state.
Rydberg Wave Packets and Half-Cycle Electromagnetic Pulses
Raman, Chandra S.
1998-05-01
This dissertation summarizes an examination of the dynamics of atomic Rydberg wave packets with coherent pulses of THz electromagnetic radiation consisting of less than a single cycle of the electric field. The bulk of the energy is contained in just a half-cycle. Previous work ( R. Jones, D. You, and P. Bucksbaum, ``Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 70, 1993. had shown how these half-cycle pulses can be used to ionize the highly excited states of an atom, and that a classical view of electronic motion in the atom explains the ionization mechanism. To further probe the boundary between classical trajectories and quantum mechanics, in this work I investigate dynamical combinations of Rydberg states, or Rydberg wave packets, and how they ionize under the influence of a half-cycle electromagnetic pulse. With time-domain techniques I am able to extract the dynamics of the wave packet from the ionization rate, and to observe wave packet motion in both the electronic radial ( C. Raman, C. Conover, C. Sukenik, and P. Bucksbaum, ``Ionization of Rydberg wavepackets by sub-picosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 76, 1996.and angular ( C. Raman, T. Weinacht, and P. Bucksbaum, ``Stark wavepackets viewed with half cycle pulses.'' Phys. Rev. A), vol. 55, No. 6, 1997. coordinates. This is the first time a wavepacket technique has been used to view electron motion everywhere on its trajectory, and not just at the nucleus. This is the principal feature of half-cycle pulse ionization. Semiclassical ideas of ionization in conjunction with quantum descriptions of the wave packet, are capable of reproducing the main trends in the data, and in the absence of a rigorous model I rely on these. Experiments of this nature provide examples of the ongoing effort to use the coherent properties of radiation to control electronic motion in an atom, as well as to probe the boundaries between
Maamache, Mustapha; Bouguerra, Yacine; Choi, Jeong Ryeol
2016-06-01
A Gaussian wave packet of the inverted oscillator is investigated using the invariant operator method together with the unitary transformation method. A simple wave packet directly derived from the eigenstates of the invariant operator of the system corresponds to a plane wave that is fully delocalized. However, we can construct a weighted wave packet in terms of such plane waves, which corresponds to a Gaussian wave. This wave packet is associated with the generalized coherent state, which can be crucially utilized for investigating the classical limit of quantum wave mechanics. Various quantum properties of the system, such as fluctuations of the canonical variables, the uncertainty product, and the motion of the wave packet or quantum particle, are analyzed by means of this wave packet. We have confirmed that the time behavior of such a wave packet is very similar to the counterpart classical state. The wave packet runs away from the origin in the positive or negative direction in the 1D coordinate depending on the condition of the initial state. We have confirmed that this wave packet not only moves acceleratively but also spreads out during its propagation.
Energy Technology Data Exchange (ETDEWEB)
Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)
2017-01-15
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.
Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y.
2016-02-01
Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |" separators=" Ψ2 ( 1 ) ( p u , t ) > , prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, resembles the zeroth order wave packet |" separators=" Ψ1 ( 0 ) ( t ) > on the lower PES spatially, but with a force on |" separators=" Ψ2 ( 1 ) ( p u , t ) > along the coordinates of the reporter modes due to displacements in the equilibrium position, so that . The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω ¯ j ( t ) . We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational frequency up-shift time constants for the C12-H wagging mode at 216 fs and for the C10-H wagging mode at 161 fs which are larger than for the C11-H wagging mode at 127 fs, i.e., the C11-H wagging mode arrives at its final frequency while the C12-H and C10-H wagging modes are still up-shifting to their final values, agreeing with the findings of Yan et al. [Biochemistry 43, 10867 (2004)].
Energy Technology Data Exchange (ETDEWEB)
Morvan, B.; Tinel, A.; Sainidou, R.; Rembert, P. [Laboratoire Ondes et Milieux Complexes, UMR CNRS 6294, Université du Havre, 75 rue Bellot, 76058 Le Havre (France); Vasseur, J. O.; Hladky-Hennion, A.-C. [Institut d' Electronique, de Micro-électronique et de Nanotechnologie, UMR CNRS 8520, Cité Scientifique, 59652 Villeneuve d' Ascq Cedex (France); Swinteck, N.; Deymier, P. A. [Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721 (United States)
2014-12-07
Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.
Directory of Open Access Journals (Sweden)
F Bakhshi Garmi
2016-02-01
Full Text Available In this paper we studied the focusing effect of electromagnetic wave in the two-dimensional graded photonic crystal consisting of Silicon rods in the air background with gradually varying lattice constant. The results showed that graded photonic crystal can focus wide beams on a narrow area at frequencies near the lower edge of the band gap, where equal frequency contours are not concave. For calculation of photonic band structure and equal frequency contours, we have used plane wave expansion method and revised plane wave expansion method, respectively. The calculation of the electric and magnetic fields was performed by finite difference time domain method.
Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner
Kaya, N.; Matsumoto, H.; Tsurutani, B. T.
1989-01-01
Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.
Institute of Scientific and Technical Information of China (English)
Ma Jun; Ying He-Ping; Liu Yong; Li Shi-Rong
2009-01-01
The dynamics and the transition of spiral waves in the couplcd Hindmarsh-Rose (H-R) neurons in two-dimensional space are investigated in the paper. It is found that the spiral wave can be induced and developed in the coupled HR neurons in two-dimensional space, with appropriate initial values and a parameter region given. However, the spiral wave could encounter instability when the intensity of the external current reaches a threshold value of 1.945. The transition of spiral wave is found to be affected by coupling intensity D and bifurcation parameter r. The spiral wave becomes sparse as the coupling intensity increases, while the spiral wave is eliminated and the whole neuronal system becomes homogeneous as the bifurcation parameter increases to a certain threshold value. Then the coupling action of the four sub-adjacent neurons, which is described by coupling coefficient DI, is also considered, and it is found that the spiral wave begins to breakup due to the introduced coupling action from the sub-adjacent neurons (or sites) and together with the coupling action of the nearest-neighbour neurons, which is described by the coupling intensity D.
Wave packet molecular dynamics simulations of warm dense hydrogen
Knaup, M; Toepffer, C; Zwicknagel, G
2003-01-01
Recent shock-wave experiments with deuterium in a regime where a plasma phase-transition has been predicted and their theoretical interpretation are the matter of a controversial discussion. In this paper, we apply 'wave packet molecular dynamics' (WPMD) simulations to investigate warm dense hydrogen. The WPMD method was originally used by Heller for a description of the scattering of composite particles such as simple atoms and molecules; later it was applied to Coulomb systems by Klakow et al. In the present version of our model the protons are treated as classical point-particles, whereas the electrons are represented by a completely anti-symmetrized Slater sum of periodic Gaussian wave packets. We present recent results for the equation of state of hydrogen at constant temperature T = 300 K and of deuterium at constant Hugoniot E - E sub 0 + 1/2(1/n - 1/n sub 0)(p + p sub 0) = 0, and compare them with the experiments and several theoretical approaches.
Riemann zeta function from wave-packet dynamics
DEFF Research Database (Denmark)
Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.
2010-01-01
is governed by the temperature of the thermal phase state and tau is proportional to t. We use the JWKB method to solve the inverse spectral problem for a general logarithmic energy spectrum; that is, we determine a family of potentials giving rise to such a spectrum. For large distances, all potentials...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...
Wave packet dynamics of the matter wave field of a Bose-Einstein condensate
Sudheesh, C; Lakshmibala, S
2004-01-01
We show in the framework of a tractable model that revivals and fractional revivals of wave packets afford clear signatures of the extent of departure from coherence and from Poisson statistics of the matter wave field in a Bose-Einstein condensate, or of a suitably chosen initial state of the radiation field propagating in a Kerr-like medium.
Field structure of collapsing wave packets in 3D strong Langmuir turbulence
Newman, D. L.; Robinson, P. A.; Goldman, M. V.
1989-01-01
A simple model is constructed for the electric fields in the collapsing wave packets found in 3D simulations of driven and damped isotropic strong Langmuir turbulence. This model, based on a spherical-harmonic decomposition of the electrostatic potential, accounts for the distribution of wave-packet shapes observed in the simulations, particularly the predominance of oblate wave packets. In contrast with predictions for undamped and undriven subsonic collapse of scalar fields, oblate vector-field wave packets do not flatten during collapse but, instead, remain approximately self-similar and rigid.
Cho, Jungyeon
2011-01-01
Electron magnetohydrodynamics (EMHD) provides a fluid-like description of small-scale magnetized plasmas. An EMHD wave (also known as whistler wave) propagates along magnetic field lines. The direction of propagation can be either parallel or anti-parallel to the magnetic field lines. We numerically study propagation of 3-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results: 1. Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite traveling wave packets via self-interaction and cascade energy to smaller scales. 2. EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and 2-dimensional (2D) hydrodynamic turbulence.
Qualitative dynamics of wave packets in turbulent jets
Semeraro, Onofrio; Lusseyran, François; Pastur, Luc; Jordan, Peter
2017-09-01
We analyze the temporal dynamics associated with axisymmetric coherent structures in a turbulent jet. It has long been established that turbulent jets comprise large-scale coherent structures, now more commonly referred to as "wave packets" [Jordan and Colonius, Annu. Rev. Fluid Mech. 45, 173 (2013), 10.1146/annurev-fluid-011212-140756]. These structures exhibit a marked spatiotemporal organization, despite turbulence, and we aim to characterize their temporal dynamics by means of nonlinear statistical tools. The analysis is based on data presented Breakey et al., in Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013-2083 (AIAA, Reston, VA, 2013), where time series of the wave-packet signatures are extracted at different streamwise locations. The experiment runs at Ma=0.6 and Re=5.7 ×105 . A thorough analysis is performed. Statistical tools are used to estimate the embedding and correlation dimensions that characterize the dynamical system. Input-output transfer functions are designed as control-oriented models; and for this special case, consistent with other recent studies, we find that linear models can reproduce much of the convective input-ouput behavior. Finally, we show how surrogate models can partially reproduce the nonlinear dynamics.
Nonlinear single Compton scattering of an electron wave-packet
Angioi, A; Di Piazza, A
2016-01-01
In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...
Information Geometry of Quantum Entangled Gaussian Wave-Packets
Kim, D -H; Cafaro, C; Mancini, S
2011-01-01
Describing and understanding the essence of quantum entanglement and its connection to dynamical chaos is of great scientific interest. In this work, using information geometric (IG) techniques, we investigate the effects of micro-correlations on the evolution of maximal probability paths on statistical manifolds induced by systems whose microscopic degrees of freedom are Gaussian distributed. We use the statistical manifolds associated with correlated and non-correlated Gaussians to model the scattering induced quantum entanglement of two spinless, structureless, non-relativistic particles, the latter represented by minimum uncertainty Gaussian wave-packets. Knowing that the degree of entanglement is quantified by the purity P of the system, we express the purity for s-wave scattering in terms of the micro-correlation coefficient r - a quantity that parameterizes the correlated microscopic degrees of freedom of the system; thus establishing a connection between entanglement and micro-correlations. Moreover, ...
Directory of Open Access Journals (Sweden)
M. G. Hafez
2016-01-01
Full Text Available Two-dimensional three-component plasma system consisting of nonextensive electrons, positrons, and relativistic thermal ions is considered. The well-known Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili equations are derived to study the basic characteristics of small but finite amplitude ion acoustic waves of the plasmas by using the reductive perturbation method. The influences of positron concentration, electron-positron and ion-electron temperature ratios, strength of electron and positrons nonextensivity, and relativistic streaming factor on the propagation of ion acoustic waves in the plasmas are investigated. It is revealed that the electrostatic compressive and rarefactive ion acoustic waves are obtained for superthermal electrons and positrons, but only compressive ion acoustic waves are found and the potential profiles become steeper in case of subthermal positrons and electrons.
2006-06-01
sech2 wave form is used because the amplitude and horizontal displacement are solutions of the Korteweg de Vries ( KdV ) non linear wave equation which...a solution to the KDV wave equation . After making the frozen field approximation, the soliton can be represented by the following mathematical...scattering. 3. The Gaussian Soliton As discussed, the sech2 form of a soliton is chosen because it is an exact solution to the KDV wave equation . For
Directory of Open Access Journals (Sweden)
N. S. Ginzburg
2015-12-01
Full Text Available A coaxial Ka-band backward wave oscillator with a two-dimensional Bragg structure located at the output of the interaction space has been studied. This structure has a double-period corrugation and provides azimuthal electromagnetic energy fluxes, which act on the synchronized radiation of an oversized tubular electron beam. Proof-of-principle experiments were conducted based on the Saturn thermionic accelerator (300 keV/200 A/2 μs. In accordance with simulations, narrow-band generation was obtained at a frequency of 30 GHz and a power level of 1.5–2 MW. As a result, the possibility of using a two-dimensional distributed feedback mechanism in oscillators of the Cherenkov type has been demonstrated.
Excitation of instability waves in a two-dimensional shear layer by sound
Tam, C. K. W.
1978-01-01
The excitation of instability waves in a plane compressible shear layer by sound waves is studied. The problem is formulated mathematically as an inhomogeneous boundary-value problem. A general solution for abitrary incident sound wave is found by first constructing the Green's function of the problem. Numerical values of the coupling constants between incident sound waves and excited instability waves for a range of flow Mach number are calculated. The effect of the angle of incidence in the case of a beam of acoustic waves is analyzed. It is found that for moderate subsonic Mach numbers a narrow beam aiming at an angle between 50 to 80 deg to the flow direction is most effective in exciting instability waves.
Van Gorder, Robert A.
2016-05-01
Very recent experimental work has demonstrated the existence of Kelvin waves along quantized vortex filaments in superfluid helium. The possible configurations and motions of such filaments is of great physical interest, and Svistunov previously obtained a Hamiltonian formulation for the dynamics of quantum vortex filaments in the low-temperature limit under the assumption that the vortex filament is essentially aligned along one axis, resulting in a two-dimensional (2D) problem. It is standard to approximate the dynamics of thin filaments by employing the local induction approximation (LIA), and we show that by putting the two-dimensional LIA into correspondence with the first equation in the integrable Wadati-Konno-Ichikawa-Schimizu (WKIS) hierarchy, we immediately obtain solutions to the two-dimensional LIA, such as helix, planar, and self-similar solutions. These solutions are obtained in a rather direct manner from the WKIS equation and then mapped into the 2D-LIA framework. Furthermore, the approach can be coupled to existing inverse scattering transform results from the literature in order to obtain solitary wave solutions including the analog of the Hasimoto one-soliton for the 2D-LIA. One large benefit of the approach is that the correspondence between the 2D-LIA and the WKIS allows us to systematically obtain vortex filament solutions directly in the Cartesian coordinate frame without the need to solve back from curvature and torsion. Implications of the results for the physics of experimentally studied solitary waves, Kelvin waves, and postvortex reconnection events are mentioned.
The pump-probe coupling of matter wave packets to remote lattice states
DEFF Research Database (Denmark)
Sherson, Jacob F; Park, Sung Jong; Pedersen, Poul Lindholm;
2012-01-01
containing a Bose–Einstein condensate. The evolution of these wave packets is monitored in situ and their six-photon reflection at a band gap is observed. In direct analogy with pump–probe spectroscopy, a probe pulse allows for the resonant de-excitation of the wave packet into states localized around...
Simulation on the electronic wave packet cyclotron motion in a Weyl semimetal slab.
Yao, Haibo; Zhu, Mingfeng; Jiang, Liwei; Zheng, Yisong
2017-04-20
We perform a numerical simulation on the time evolution of an electronic wave packet in a Weyl semimetal (WSM) slab driven by a magnetic field. We find that the evolution trajectory of the wave packet depends sensitively on its initial spin state. Only with initial spin state identical to that of the Fermi arc state at the surface it localized, does the wave packet evolution demonstrate the characteristic cyclotron orbit of WSM previously predicted from a semiclassical viewpoint. By analyzing the eigen-expansion of the electronic wave packet, we find the chiral Landau levels (LLs) of the WSM slab, as ingredients of the wave packet, to be responsible for establishing the characteristic WSM cyclotron orbit. In contrast, the nonchiral LLs contribute irregular oscillations to the wave packet evolution, going against the formation of a well-defined cyclotron orbit. In addition, the tilted magnetic field does not affect the motion of the electronic wave packet along the Fermi arcs in the momentum space. It does, however, alter the evolution trajectory of the electronic wave packet in real space and spin space. Finally, the energy disalignment of the Weyl nodes results in a 3D cyclotron orbit in real space.
Tsurutani, Bruce T.; Smith, Edward J.; Brinca, Armando L.; Thorne, Richard M.; Matsumoto, Hiroshi
1989-01-01
The physical characteristics of high-frequency wave packets detected at the steepened edge of magnetosonic waves near Comet Giacobini-Zinner are explored, based on an examination of over 45 well-defined events. The results suggest that the wave packets play an important role in the reorientation and reduction in field magnitude from the steepened magnetosonic waves to the upstream ambient field. The observed properties of the wave packets are shown to be consistent with anomalously Doppler-shifted right-hand polarized waves.
Institute of Scientific and Technical Information of China (English)
LUO Xiao-Bing; HAI Wen-Hua
2005-01-01
@@ We have studied the dynamics of two-dimensional (2D) trapped and untrapped Bose-Einstein condensates (BECs) with a rapid periodic modulation of the scattering length via a Feshbach resonance technique, a → ao + a1 sin(Ωt) with an attractive (negative) mean value and the large constants ao, a1 and Ω.Applying a variation approximation (VA), the critical threshold for the collapse of the 2D trapped vortex BEC is predicted and the collapse is prevented by causing the scattering length oscillating rapidly.On the other hand, with analytical calculation, we prove that the stabilization of a bright soliton in a 2D untrapped BEC is impossible for enough large interaction intensity and the upper limit of the intensity for the soliton stabilization is derived.
Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro
2016-07-01
Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.
Energy Technology Data Exchange (ETDEWEB)
Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-25
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.
Tam, C. K. W.; Burton, D. E.
1984-01-01
An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.
Directory of Open Access Journals (Sweden)
Shogo Kaneko
2014-01-01
Full Text Available We describe an extension of the time-resolved two-dimensional gigahertz surface acoustic wave imaging based on the optical pump-probe technique with periodic light source at a fixed repetition frequency. Usually such imaging measurement may generate and detect acoustic waves with their frequencies only at or near the integer multiples of the repetition frequency. Here we propose a method which utilizes the amplitude modulation of the excitation pulse train to modify the generation frequency free from the mentioned limitation, and allows for the first time the discrimination of the resulted upper- and lower-side-band frequency components in the detection. The validity of the method is demonstrated in a simple measurement on an isotropic glass plate covered by a metal thin film to extract the dispersion curves of the surface acoustic waves.
Bloch waves in an arbitrary two-dimensional lattice of subwavelength Dirichlet scatterers
Schnitzer, Ory
2016-01-01
We study waves governed by the planar Helmholtz equation, propagating in an infinite lattice of subwavelength Dirichlet scatterers, the periodicity being comparable to the wavelength. Applying the method of matched asymptotic expansions, the scatterers are effectively replaced by asymptotic point constraints. The resulting coarse-grained Bloch-wave dispersion problem is solved by a generalised Fourier series, whose singular asymptotics in the vicinities of scatterers yield the dispersion relation governing modes that are strongly perturbed from plane-wave solutions existing in the absence of the scatterers; there are also empty-lattice waves that are only weakly perturbed. Characterising the latter is useful in interpreting and potentially designing the dispersion diagrams of such lattices. The method presented, that simplifies and expands on Krynkin & McIver [Waves Random Complex, 19 347 2009], could be applied in the future to study more sophisticated designs entailing resonant subwavelength elements di...
Riccati parameterized self-similar waves in two-dimensional graded-index waveguide
Kumar De, Kanchan; Goyal, Amit; Raju, Thokala Soloman; Kumar, C. N.; Panigrahi, Prasanta K.
2015-04-01
An analytical method based on gauge-similarity transformation technique has been employed for mapping a (2+1)- dimensional variable coefficient coupled nonlinear Schrödinger equations (vc-CNLSE) with dispersion, nonlinearity and gain to standard NLSE. Under certain functional relations we construct a large family of self-similar waves in the form of bright similaritons, Akhmediev breathers and rogue waves. We report the effect of dispersion on the intensity of the solitary waves. Further, we illustrate the procedure to amplify the intensity of self-similar waves using isospectral Hamiltonian approach. This approach provides an efficient mechanism to generate analytically a wide class of tapering profiles and widths by exploiting the Riccati parameter. Equivalently, it enables one to control efficiently the self-similar wave structures and hence their evolution.
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase transition point
Nixon, Sean; Yang, Jianke
2012-01-01
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase-transition point are analytically studied. A nonlinear Klein-Gordon equation is derived for the envelope of these wave packets. A variety of novel phenomena known to exist in this envelope equation are shown to also exist in the full equation including wave blowup, periodic bound states and solitary wave solutions.
Institute of Scientific and Technical Information of China (English)
Ali Chen; Yuesheng Wang; Guilan Yu; Yafang Guo; Zhengdao Wang
2008-01-01
The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phcnonic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.
Flavor entanglement in neutrino oscillations in the wave packet description
Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio
2015-10-01
The wave packet approach to neutrino oscillations provides an enlightening description of quantum decoherence induced, during propagation, by localization effects. Within this approach, we show that a deeper insight into the dynamical aspects of particle mixing can be obtained if one investigates the behavior of quantum correlations associated to flavor oscillations. By identifying the neutrino three-flavor modes with (suitably defined) three-qubit modes, the exploitation of tools of quantum information theory for mixed states allows a detailed analysis of the dynamical behavior of flavor entanglement during free propagation. This provides further elements leading to a more complete understanding of the phenomenon of neutrino oscillations, and a basis for possible applicative implementations. The analysis is carried out by studying the distribution of the flavor entanglement; to this aim, we perform combined investigations of the behaviors of the two-flavor concurrence and of the logarithmic negativities associated with specific bipartitions of the three flavors.
Discrete Wave-Packet Representation in Nuclear Matter Calculations
Müther, H; Kukulin, V I; Pomerantsev, V N
2016-01-01
The Lippmann-Schwinger equation for the nucleon-nucleon $t$-matrix as well as the corresponding Bethe-Goldstone equation to determine the Brueckner reaction matrix in nuclear matter are reformulated in terms of the resolvents for the total two-nucleon Hamiltonians defined in free space and in medium correspondingly. This allows to find solutions at many energies simultaneously by using the respective Hamiltonian matrix diagonalization in the stationary wave packet basis. Among other important advantages, this approach simplifies greatly the whole computation procedures both for coupled-channel $t$-matrix and the Brueckner reaction matrix. Therefore this principally novel scheme is expected to be especially useful for self-consistent nuclear matter calculations because it allows to accelerate in a high degree single-particle potential iterations. Furthermore the method provides direct access to the properties of possible two-nucleon bound states in the nuclear medium. The comparison between reaction matrices f...
Recovery time in quantum dynamics of wave packets
Energy Technology Data Exchange (ETDEWEB)
Strekalov, M. L., E-mail: strekalov@kinetics.nsc.ru [Russian Academy of Sciences, Voevodskii Institute of Chemical Kinetics and Combustion, Siberian Branch (Russian Federation)
2017-01-15
A wave packet formed by a linear superposition of bound states with an arbitrary energy spectrum returns arbitrarily close to the initial state after a quite long time. A method in which quantum recovery times are calculated exactly is developed. In particular, an exact analytic expression is derived for the recovery time in the limiting case of a two-level system. In the general case, the reciprocal recovery time is proportional to the Gauss distribution that depends on two parameters (mean value and variance of the return probability). The dependence of the recovery time on the mean excitation level of the system is established. The recovery time is the longest for the maximal excitation level.
Time delay of wave packets during their tunnelling through a quantum diode
Energy Technology Data Exchange (ETDEWEB)
Ivanov, N A; Skalozub, V V [Dnipropetrovsk National University Oles Honchar (Ukraine)
2014-04-28
A modified saddle-point method is used to investigate the process of propagation of a wave packet through a quantum diode. A scattering matrix is constructed for the structure in question. The case of tunnelling of a packet with a Gaussian envelope through the diode is considered in detail. The time delay and the shape of the wave packet transmitted are calculated. The dependence of the delay time on the characteristics of the input packet and the internal characteristics of the quantum diode is studied. Possible applications of the results obtained are discussed. (laser applications and other topics in quantum electronics)
Dynamical properties of a particle in a wave packet: Scaling invariance and boundary crisis
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [CAMTP, Center For Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor (Slovenia); Robnik, Marko, E-mail: robnik@uni-mb.si [CAMTP, Center For Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor (Slovenia); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatistica, Matematica Aplicada e Computacao, UNESP, Univ Estadual Paulista, Av. 24A, 1515-Bela Vista, 13506-900 Rio Claro, SP (Brazil)
2011-10-15
Highlights: > Acceleration of particles in a wave packet. > The location of the first invariant spanning curve which borders the chaotic sea. > Scaling to characterise the transition from integrability to non-integrability. > The property of area preservation is broken and attractors emerge. > After a tiny increase of the dissipation the system experience a boundary crisis. - Abstract: Some dynamical properties present in a problem concerning the acceleration of particles in a wave packet are studied. The dynamics of the model is described in terms of a two-dimensional area preserving map. We show that the phase space is mixed in the sense that there are regular and chaotic regions coexisting. We use a connection with the standard map in order to find the position of the first invariant spanning curve which borders the chaotic sea. We find that the position of the first invariant spanning curve increases as a power of the control parameter with the exponent 2/3. The standard deviation of the kinetic energy of an ensemble of initial conditions obeys a power law as a function of time, and saturates after some crossover. Scaling formalism is used in order to characterise the chaotic region close to the transition from integrability to nonintegrability and a relationship between the power law exponents is derived. The formalism can be applied in many different systems with mixed phase space. Then, dissipation is introduced into the model and therefore the property of area preservation is broken, and consequently attractors are observed. We show that after a small change of the dissipation, the chaotic attractor as well as its basin of attraction are destroyed, thus leading the system to experience a boundary crisis. The transient after the crisis follows a power law with exponent -2.
Two Dimensional Finite Element Analysis for the Effect of a Pressure Wave in the Human Brain
Ponce L., Ernesto; Ponce S., Daniel
2008-11-01
Brain injuries in people of all ages is a serious, world-wide health problem, with consequences as varied as attention or memory deficits, difficulties in problem-solving, aggressive social behavior, and neuro degenerative diseases such as Alzheimer's and Parkinson's. Brain injuries can be the result of a direct impact, but also pressure waves and direct impulses. The aim of this work is to develop a predictive method to calculate the stress generated in the human brain by pressure waves such as high power sounds. The finite element method is used, combined with elastic wave theory. The predictions of the generated stress levels are compared with the resistance of the arterioles that pervade the brain. The problem was focused to the Chilean mining where there are some accidents happen by detonations and high sound level. There are not formal medical investigation, however these pressure waves could produce human brain damage.
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.
Wang, Ken Kang-Hsin; Ye, Zhen
2003-12-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.
Two-Dimensional Wave Motion on the Charged Surface of a Viscous Liquid
Institute of Scientific and Technical Information of China (English)
LI Fang; YIN Xie-Yuan; YIN Xie-Zhen
2008-01-01
The wave motion on the charged surface of a viscous Newtonian liquid is solved as an initial-value problem. Both the leaky dielectric and perfect dielectric cases are considered. The amplitude of wave is assumed to be small. The electric field induced by surface charge is shown to have a generally destabilizing effect on surface wave. The neutral stability curve is drawn in the (G, N,e) plane (G: the gravitational bond number; Ne: the electrical Bond number). The Ohnesorge number, Taylor-Melcher number and permittivity ratio have little influence on the neutral stability curve. It is testified that the classical normal mode method cannot predict wave behaviour at small times.
Statistical behavior of Langmuir wave packets observed inside the electron foreshock of Saturn
Pisa, David; Hospodarsky, George B.; Kurth, Willam S.; Gurnett, Donald A.; Santolik, Ondrej; Soucek, Jan
2014-05-01
We present a statistical study of Langmuir wave packets in the Saturnian foreshock using Cassini Wideband Receiver electric field waveforms. We analyzed all foreshock crossings from 2004 to 2012 using an automatic method for the identification of Langmuir wave signatures. Observed waveforms exhibit a shape similar to Langmuir solitons or monochromatic wave packets with a slowly varying envelope. This is in agreement with a variety of previous observations of Langmuir waves in the terrestrial foreshock and associated with Type III radio bursts. We determined the peak amplitude for all wave packets, and found the distributions of amplitude appeared to follow a power law with P(E) ≈ E-2. We confirm that the most intense electron plasma waves are observed near the foreshock boundary. We estimated the energy density ratio to be about one order below previously reported values at Saturn. Finally, we discuss the properties of the Langmuir wave packets at different locations in the foreshock.
Coriolis-coupled wave packet dynamics of H + HLi reaction.
Padmanaban, R; Mahapatra, S
2006-05-11
We investigated the effect of Coriolis coupling (CC) on the initial state-selected dynamics of H+HLi reaction by a time-dependent wave packet (WP) approach. Exact quantum scattering calculations were obtained by a WP propagation method based on the Chebyshev polynomial scheme and ab initio potential energy surface of the reacting system. Partial wave contributions up to the total angular momentum J=30 were found to be necessary for the scattering of HLi in its vibrational and rotational ground state up to a collision energy approximately 0.75 eV. For each J value, the projection quantum number K was varied from 0 to min (J, K(max)), with K(max)=8 until J=20 and K(max)=4 for further higher J values. This is because further higher values of K do not have much effect on the dynamics and also because one wishes to maintain the large computational overhead for each calculation within the affordable limit. The initial state-selected integral reaction cross sections and thermal rate constants were calculated by summing up the contributions from all partial waves. These were compared with our previous results on the title system, obtained within the centrifugal sudden and J-shifting approximations, to demonstrate the impact of CC on the dynamics of this system.
Chan, Yat-Long; Tsui, Ka Ming; Wong, Chan Fai; Xu, Jianyi
2015-01-01
We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 $\\sigma$ confidence level.
Wave packet approach to the Jayne-Cummings and Rabi models
Larson, J
2006-01-01
This paper numerically studies the Jaynes-Cummings model with and without the rotating wave approximation in a non-standard way. Expressing the models with field quadrature operators, instead of the typically used boson ladder operators, a wave packet propagation approach is applied. The obtained evolved wave packets are then used to calculate various quantities, such as, Rabi oscillations, squeezing and entanglement. Many of the phenomenon can be explained from the wave packet evolution, either in the adiabatic or diabatic frames. Different behaviours of the two models are discussed.
KP solitons and the Grassmannians combinatorics and geometry of two-dimensional wave patterns
Kodama, Yuji
2017-01-01
This is the first book to treat combinatorial and geometric aspects of two-dimensional solitons. Based on recent research by the author and his collaborators, the book presents new developments focused on an interplay between the theory of solitons and the combinatorics of finite-dimensional Grassmannians, in particular, the totally nonnegative (TNN) parts of the Grassmannians. The book begins with a brief introduction to the theory of the Kadomtsev–Petviashvili (KP) equation and its soliton solutions, called the KP solitons. Owing to the nonlinearity in the KP equation, the KP solitons form very complex but interesting web-like patterns in two dimensions. These patterns are referred to as soliton graphs. The main aim of the book is to investigate the detailed structure of the soliton graphs and to classify these graphs. It turns out that the problem has an intimate connection with the study of the TNN part of the Grassmannians. The book also provides an elementary introduction to the recent development of ...
Coexistence of superconductivity and density waves in quasi-two-dimensional metals
Energy Technology Data Exchange (ETDEWEB)
Ismer, Jan-Peter
2011-06-03
This dissertation deals with the high-temperature superconductivity in the hole- and electron-doped copper superconductors. In the first part, superconducting phases are investigated on a background of different types of density waves. Singlet superconductivity is studied with s- and d-wave symmetry on a background of spin, charge or D-density waves with respect to stability as well as phase structure and impulse dependence of the gap function. In the second part, the dynamic spin susceptibility for different phases is calculated and compared with experimental data extracted from results of inelastic neutron scattering experiments. The observed phases are d-wave superconductivity, D-density wave, and coexistence of the two. For d-wave superconductivity, the influence of a magnetic field parallel to the copper oxide layer and the temperature development of the susceptibility when for T >> T{sub c} a spin density wave phase is present are investigated. [German] Diese Dissertation beschaeftigt sich mit der Hochtemperatursupraleitung in den loch- und elektron-dotierten Kuprat-Supraleitern. Im ersten Teil der Arbeit werden supraleitende Phasen auf einem Hintergrund verschiedener Typen von Dichtewellen untersucht. Es wird Singlett-Supraleitung mit s- und d-Wellen-Symmetrie auf einem Hintergrund von Spin-, Ladungs- oder D-Dichtewelle hinsichtlich Stabilitaet sowie Phasenstruktur und Impulsabhaengigkeit der Gapfunktion untersucht. Im zweiten Teil wird die dynamische Spinsuszeptibilitaet fuer verschiedene Phasen berechnet und mit experimentellen Daten verglichen, die aus Ergebnissen von Inelastischen Neutronenstreuungsexperimenten extrahiert wurden. Die betrachteten Phasen sind d-Wellen-Supraleitung, D-Dichtewelle und Koexistenz der beiden. Fuer d-Wellen-Supraleitung werden der Einfluss eines Magnetfelds parallel zur Kupferoxidschicht und die Temperaturentwicklung der Suszeptibilitaet, wenn fuer T >> T{sub c} eine Spin-Dichtewelle-Phase vorliegt, untersucht.
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2016-09-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and
Propagation of General Wave Packets in Some Classical and Quantum Systems
Institute of Scientific and Technical Information of China (English)
LIN Qiong-Gui
2006-01-01
In quantum mechanics the center of a wave packet is precisely defined as the center of probability. The center-of-probability velocity describes the entire motion of the wave packet. In classical physics there is no precise counterpart to the center-of-probability velocity of quantum mechanics, in spite of the fact that there exist in the literature at least eight different velocities for the electromagnetic wave. We propose a center-of-energy velocity to describe the entire motion of general wave packets in classical physical systems. It is a measurable quantity, and is well defined for both continuous and discrete systems. For electromagnetic wave packets it is a generalization of the velocity of energy transport. General wave packets in several classical systems are studied and the center-of-energy velocity is calculated and expressed in terms of the dispersion relation and the Fourier coefficients. These systems include string subject to an external force, monatomic chain and diatomic chain in one dimension, and classical Heisenberg model in one dimension. In most cases the center-of-energy velocity reduces to the group velocity for quasi-monochromatic wave packets. Thus it also appears to be the generalization of the group velocity. Wave packets of the relativistic Dirac equation are discussed briefly.
Quenching Plasma Waves in Two Dimensional Electron Gas by a Femtosecond Laser Pulse
Shur, Michael; Rudin, Sergey; Greg Rupper Collaboration; Andrey Muraviev Collaboration
Plasmonic detectors of terahertz (THz) radiation using the plasma wave excitation in 2D electron gas are capable of detecting ultra short THz pulses. To study the plasma wave propagation and decay, we used femtosecond laser pulses to quench the plasma waves excited by a short THz pulse. The femtosecond laser pulse generates a large concentration of the electron-hole pairs effectively shorting the 2D electron gas channel and dramatically increasing the channel conductance. Immediately after the application of the femtosecond laser pulse, the equivalent circuit of the device reduces to the source and drain contact resistances connected by a short. The total response charge is equal to the integral of the current induced by the THz pulse from the moment of the THz pulse application to the moment of the femtosecond laser pulse application. This current is determined by the plasma wave rectification. Registering the charge as a function of the time delay between the THz and laser pulses allowed us to follow the plasmonic wave decay. We observed the decaying oscillations in a sample with a partially gated channel. The decay depends on the gate bias and reflects the interplay between the gated and ungated plasmons in the device channel. Army Research Office.
Semiclassical wave packet study of anomalous isotope effect in ozone formation.
Vetoshkin, Evgeny; Babikov, Dmitri
2007-10-21
We applied the semiclassical initial value representation method to calculate energies, lifetimes, and wave functions of scattering resonances in a two-dimensional potential for O+O2 collision. Such scattering states represent the metastable O3* species and play a central role in the process of ozone formation. Autocorrelation functions for scattering states were computed and then analyzed using the Prony method, which permits one to extract accurate energies and widths of the resonances. We found that the results of the semiclassical wave packet propagation agree well with fully quantum results. The focus was on the 16O16O18O isotopomer and the anomalous isotope effect associated with formation of this molecule, either through the 16O16O+18O or the 16O+16O18O channels. An interesting correlation between the local vibration mode character of the metastable states and their lifetimes was observed and explained. New insight is obtained into the mechanism by which the long-lived resonances in the delta zero-point energy part of spectrum produce the anomalously large isotope effect.
Küchler, Sebastian; Meurer, Thomas; Jacobs, Laurence J; Qu, Jianmin
2009-03-01
This study investigates two-dimensional wave propagation in an elastic half-space with quadratic nonlinearity. The problem is formulated as a hyperbolic system of conservation laws, which is solved numerically using a semi-discrete central scheme. These numerical results are then analyzed in the frequency domain to interpret the nonlinear effects, specifically the excitation of higher-order harmonics. To quantify and compare the nonlinearity of different materials, a new parameter is introduced, which is similar to the acoustic nonlinearity parameter beta for one-dimensional longitudinal waves. By using this new parameter, it is found that the nonlinear effects of a material depend on the point of observation in the half-space, both the angle and the distance to the excitation source. Furthermore it is illustrated that the third-order elastic constants have a linear effect on the acoustic nonlinearity of a material.
Frequency degeneracy of acoustic waves in two-dimensional phononic crystals
Energy Technology Data Exchange (ETDEWEB)
Darinskii, A N [Institute of Crystallography RAS, Leninskiy pr. 59, Moscow, 119333 (Russian Federation); Le Clezio, E [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France); Feuillard, G [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France)
2007-12-15
Degeneracies of acoustic wave spectra in 2D phononic crystals (PC) and PC slabs are studied. A PC structure is constituted of parallel steel rods immersed into water and forming the quadratic lattice. Given the projection k{sub z} of the wave vector on the direction of rods, the bulk wave spectrum of the infinite PC is a set of frequency surfaces f{sub i}(k{sub x}, k{sub y}), i = 1,2,..., where k{sub x,y} are the components of the wave vector in the plane perpendicular to the rods. An investigation is performed of the shape of frequency surfaces in the vicinity of points (k{sub dx}, k{sub dy}), where these surfaces fall into contact. In addition, the evolution of the degeneracy with changing rod radius and cross-section shape is examined. Degeneracy in the spectrum of leaky modes propagating along a single waveguide in a PC slab is also investigated.
Two-dimensional manipulation of microparticles using phase-controllable ultrasonic standing waves
Courtney, C. R. P.; Ong, C.-K.; Drinkwater, B. W.; Wilcox, P. D.; Grinenko, A.
2012-05-01
The ability to trap, and then manipulate, micro-particles in a fluid, is of interest as a research tool in the biosciences. Applications include tissue engineering, particle sorting and improving alignment with bio-sensors. This paper relates to the use of phase-controllable counter-propagating ultrasonic waves to generate a standing wave with pressure nodes whose positions are determined by the relative phases of the component counter-propagating travelling waves. As dense (relative to the fluid) particles are forced to nodes in the pressure field this allows particles to be trapped at particular points and moved to arbitrary positions. Counter-propagating waves are generated using pairs of opposing transducers, matched and backed to minimise reflection. Using one pair of transducers allows particles to be trapped and manipulated in one dimension. Using two pairs of transducers, positioned orthogonally, and adjusting the relative phases appropriately, allows trapping and manipulation in two dimensions. The device is shown experimentally to be capable of trapping and manipulating 10-micron-diameter polystyrene beads in two dimensions.
Directory of Open Access Journals (Sweden)
Kai Tsuruta
2013-05-01
Full Text Available We prove the existence of the wave operator for the Klein-Gordon-Schrodinger system with Yukawa coupling. This non-linearity type is below Strichartz scaling, and therefore classic perturbation methods will fail in any Strichartz space. Instead, we follow the "first iteration method" to handle these critical non-linearities.
A Bicharacteristic Scheme for the Numerical Computation of Two-Dimensional Converging Shock Waves
Meier, U E; Meier, Uwe E.; Demmig, Frank
1997-01-01
A 2d unsteady bicharacteristic scheme with shock fitting is presented and its characteristic step, shock point step and boundary step are described. The bicharacteristic scheme is compared with an UNO scheme and the Moretti scheme. Its capabilities are illustrated by computing a converging, deformed shock wave.
Institute of Scientific and Technical Information of China (English)
LU Yong-jin; LIU Hua; WU Wei; ZHANG Jiu-shan
2007-01-01
A new mathematical model for the overtopping against seawalls armored with artificial units in regular waves was established. The 2-D numerical wave flume, based on the Reynolds Averaged Navier-Stokes (RANS) equations and the standard k-ε turbulence model, was developed to simulate the turbulent flows with the free surface, in which the Volume Of Fluid (VOF) method was used to handle the large deformation of the free surface and the relaxation approach of combined wave generation and absorbing was implemented. In order to consider the effects of energy dissipation due to the armors on a slope seawall, a porous media model was proposed and implemented in the numerical wave flume. A series of physical model experiments were carried out in the same condition of the numerical simulation to determine the drag coefficient in the porous media model in terms of the overtopping discharge. Compared the computational value of overtopping over the seawall with the experimental data, the values of the effective drag coefficient was calibrated for the layers of blocks at different locations along the seawalls.
Yehorchenko, Irina
2010-01-01
We study possible Lie and non-classical reductions of multidimensional wave equations and the special classes of possible reduced equations - their symmetries and equivalence classes. Such investigation allows to find many new conditional and hidden symmetries of the original equations.
Stability and evolution of wave packets in strongly coupled degenerate plasmas
Misra, A P
2011-01-01
We study the nonlinear propagation of electrostatic wave packets in a collisional plasma composed of strongly coupled ions and relativistically degenerate electrons. The equilibrium of ions is maintained by an effective temperature associated with their strong coupling, whereas that of electrons is provided by the relativistic degeneracy pressure. Using a multiple scale technique, a (3+1)-dimensional coupled set of nonlinear Schr\\"{o}dinger-like equations with nonlocal nonlinearity is derived from a generalized viscoelastic hydrodynamic model. These coupled equations, which govern the dynamics of wave packets, are used to study the oblique modulational instability of a Stoke's wave train to a small plane wave perturbation. We show that the wave packets, though stable to the parallel modulation, becomes unstable against oblique modulations. In contrast to the long-wavelength carrier modes, the wave packets with short-wavelengths are shown to be stable in the weakly relativistic case, whereas they can be stable...
Spreading of wave packets, Uncertainty Relations and the de Broglie Frequency
Caldas, H C G
1998-01-01
The spreading of quantum mechanical wave packets are studied in two cases. Firstly we look at the time behavior of the packet width of a free particle confined in the observable Universe. Secondly, by imposing the conservation of the time average of the packet width of a particle driven by a harmonic oscillator potential, we find a zero-point energy which frequency is the de Broglie frequency.
Einstein-de Broglie relations for wave packet: the acoustic world
Simaciu, Ion; Dumitrescu, Gheorghe; Georgeta, Nan
2015-01-01
In this paper we study the relations of Einstein-de Broglie type for the wave packets. We assume that the wave packet is a possible model of particle . When studying the behaviour of the wave packet for standing waves, in relation to an accelerated observer (i.e. Rindler observer), there can be demonstrated that the equivalent mass of the packet is the inertial mass. In our scenario, the waves and of the wave packets are depicted by the strain induced/produced in the medium. The properties of the waves, of the wave packet and, generally, of the perturbations in a material medium suggest the existence of an acoustic world. The acoustic world has mechanical and thermodynamical properties. The perturbations that are generated and propagated in the medium are correlated by means of acoustic waves with maximum speed. The observers of this world of disturbances (namely the acoustic world) have senses that are based on the perception of mechanical waves (disturbance of any kind) and apparatus for detecting and acqui...
Slow-light Airy wave packets and their active control via electromagnetically induced transparency
Hang, Chao
2014-01-01
We propose a scheme to generate (3+1)-dimensional slow-light Airy wave packets in a resonant $\\Lambda$-type three-level atomic gas via electromagnetically induced transparency. We show that in the absence of dispersion the Airy wave packets formed by a probe field consist of two Airy wave packets accelerated in transverse directions and a longitudinal Gaussian pulse with a constant propagating velocity lowered to $10^{-5}\\,c$ ($c$ is the light speed in vacuum). We also show that in the presence of dispersion it is possible to generate another type of slow-light Airy wave packets consisting of two Airy beams in transverse directions and an Airy wave packet in the longitudinal direction. In this case, the longitudinal velocity of the Airy wave packet can be further reduced during propagation. Additionally, we further show that the transverse accelerations (or bending) of the both types of slow-light Airy wave packets can be completely eliminated and the motional trajectories of them can be actively manipulated ...
Generation of two-dimensional water waves by moving bottom disturbances
Nersisyan, Hayk; Zuazua, Enrique
2012-01-01
In this study we investigate the potential and limitations of the wave generation by disturbances moving at the bottom. More precisely, we assume that the wavemaker is composed of an underwater object of a given shape which can be displaced according to a given trajectory. The practical question we address in this study is how to compute the wavemaker shape and its trajectory in order to generate a wave with prescribed characteristics? For the sake of simplicity we model the hydrodynamics by a generalized forced BBM equation. This practical problem is reformulated as a constrained nonlinear optimization problem. Some constraints are imposed in order to make practically feasible the computed solution. Finally, we show some numerical results to support our theoretical and algorithmic developments.
Directory of Open Access Journals (Sweden)
P. Sahebsara
2006-09-01
Full Text Available The self-energy-functional approach is a powerful many-body tool to investigate different broken symmetry phases of strongly correlated electron systems. We use the variational cluster perturbation theory (also called the variational cluster approximation to investigate the interplay between the antiferromagnetism and d-wave superconductivity of κ-(ET2 X conductors. These compounds are described by the so-called dimer Hubbard model, with various values of the on-site repulsion U and diagonal hopping amplitude t. At strong coupling, our zero-temperature calculations show a transition from Néel antiferromagnetism to a spin-liquid phase with no long range order, at around t ~ 0.9. At lower values of U, we find d-wave superconductivity. Taking into account the point group symmetries of the lattice, we find a transition between dx2-y2 and dxy pairing symmetries, the latter happening for smaller values of U.
Two-dimensional time-domain finite-difference modeling for viscoelastic seismic wave propagation
Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing
2016-09-01
Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a trade-off between accuracy and computational costs to incorporate Q into 2-D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second order in time and fourth order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.
Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves
Qiu, Shi; Liu, Kuang; Eliasson, Veronica
2016-10-01
Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.
Quantum wave packet dynamics with trajectories: reflections on a downhill ramp potential
Lopreore, Courtney L.; Wyatt, Robert E.
2000-07-01
The quantum trajectory method (QTM) for wave packet dynamics involves solving discretized hydrodynamic equations-of-motion in the Lagrangian picture (C. Lopreore, R.E. Wyatt, Phys. Rev. Lett. 82 (1999) 5190). In this Letter, results are presented which illustrate the dynamics of an initial Gaussian wave packet on a downhill ramp potential. Plots are shown for the time evolving probability density, as well as phase space plots and force diagrams. The mechanism, deduced from these plots, surprisingly shows some of the transmitted fluid elements of the wave packet making a U-turn before they head downhill on the ramp potential.
Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I
2014-04-01
We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.
Discontinuity of the Spin-Wave Stiffness in the Two-Dimensional XY Model
Chayes, L.
Using a graphical representation based on the Wolff algorithm, the (classical) d-dimensional XY model and some related spin-systems are studied. It is proved that in d≡2, the predicted discontinuity in the spin-wave stiffness indeed occurs. Further, the critical properties of the spin-system are related to percolation properties of the graphical representation. In particular, a suitably defined notion of percolation in the graphical representation is proved to be the necessary and sufficient condition for positivity of the spontaneous magnetization.
Annular wave packets at Dirac points and probability oscillation in graphene
Luo, Ji; Valencia, Daniel
2011-01-01
Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that respectively belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly fro...
Ozevin, Didem; Fazel, Hossein; Cox, Justin; Hardman, William; Kessler, Seth S.; Timmons, Alan
2014-04-01
Gearbox components of aerospace structures are typically made of brittle materials with high fracture toughness, but susceptible to fatigue failure due to continuous cyclic loading. Structural Health Monitoring (SHM) methods are used to monitor the crack growth in gearbox components. Damage detection methodologies developed in laboratory-scale experiments may not represent the actual gearbox structural configuration, and are usually not applicable to real application as the vibration and wave properties depend on the material, structural layers and thicknesses. Also, the sensor types and locations are key factors for frequency content of ultrasonic waves, which are essential features for pattern recognition algorithm development in noisy environments. Therefore, a deterministic damage detection methodology that considers all the variables influencing the waveform signature should be considered in the preliminary computation before any experimental test matrix. In order to achieve this goal, we developed two dimensional finite element models of a gearbox cross section from front view and shaft section. The cross section model consists of steel revolving teeth, a thin layer of oil, and retention plate. An ultrasonic wave up to 1 MHz frequency is generated, and waveform histories along the gearbox are recorded. The received waveforms under pristine and cracked conditions are compared in order to analyze the crack influence on the wave propagation in gearbox, which can be utilized by both active and passive SHM methods.
Two-Dimensional Tests of Wave Transmission and Reflection Characteristics of Laboratory Breakwaters.
1980-06-01
should be adjusted to KFC = - - 2C)- 0 and 1 on 15 fronting slope (16)R R Figures 17 and 18 illustrate the observed and predicted wave transmission...65. 1.69 1.0 .337 .337 .016 .0006 700301124. as. 1.69 0.3 .215 .sibs016 .0015 78103011131. 65. 1.41 9.6 .100 .100 .016 t00l0 76430211400 45. logo 13.6... logo 1. .391 .397 .016 .0020 78002631ft3. 35. 1.30 11.5 0862 .3A2 .001 .0069 7830eh610?. 35. 1.301 18.8 also o3’0 .021 .0069 780261236. 30. 2.17 7.7
Wave mode coupling due to plasma wakes in two-dimensional plasma crystals: In-depth view
Couëdel, L; Ivlev, A V; Nosenko, V; Thomas, H M; Morfill, G E
2011-01-01
Experiments with two-dimensional (2D) plasma crystals are usually carried out in rf plasma sheaths, where the interparticle interactions are modified due to the presence of plasma wakes. The wake-mediated interactions result in the coupling between wave modes in 2D crystals, which can trigger the mode-coupling instability and cause melting. The theory predicts a number of distinct fingerprints to be observed upon the instability onset, such as the emergence of a new hybrid mode, a critical angular dependence, a mixed polarization, and distinct thresholds. In this paper we summarize these key features and provide their detailed discussion, analyze the critical dependence on experimental parameters, and highlight the outstanding issues.
Zhou, Changjiang; Sai, Yi; Chen, Jiujiu
2016-09-01
This paper theoretically investigates the band gaps of Lamb mode waves in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field. With the assumption of uniformly oriented magnetization, an equivalent piezomagnetic material model is used. The effects of magnetostatic field on phononic crystals are considered carefully in this model. The numerical results indicate that the width of the first band gap is significantly changed by applying the external magnetic field with different amplitude, and the ratio between the maximum and minimum gap widths reaches 228%. Further calculations demonstrate that the orientation of the magnetic field obviously affects the width and location of the first band gap. The contactless tunability of the proposed phononic crystal slabs shows many potential applications of vibration isolation in engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
Two-dimensional structure of mountain wave observed by aircraft during the PYREX experiment
Directory of Open Access Journals (Sweden)
J. L. Attié
Full Text Available This study presents an experimental analysis from aircraft measurements above the Pyrenees chain during the PYREX experiment. The Pyrenees chain, roughly WE oriented, is a major barrier for northerly and southerly airflows. We present a case of southerly flow (15 October 1990 and three successive cases of northerly flows above the Pyrenees (14, 15 and 16 November 1990 documented by two aircraft. The aircraft have described a vertical cross section perpendicular to the Pyrenean ridge. This area is described via the thermodynamical and dynamical fields which have a horizontal resolution of 10 km. Three methods for computing the vertical velocity of the air are presented. The horizontal advection terms which play a role in the budget equations are also evaluated. The altitude turbulence zone of 15 October are shown via turbulent fluxes, turbulent kinetic energy (TKE, dissipation rate of TKE and inertial length-scale. A comparison of results obtained by eddy-correlation and inertial-dissipation method is presented. The experimental results show a warm and dry downdraft for the southerly flow with large values for advection terms. All the mountain wave cases are also shown to present an important dynamical perturbation just above the Pyrenees at upper altitudes.
Discrete wave-packet representation in nuclear matter calculations
Müther, H.; Rubtsova, O. A.; Kukulin, V. I.; Pomerantsev, V. N.
2016-08-01
The Lippmann-Schwinger equation for the nucleon-nucleon t matrix as well as the corresponding Bethe-Goldstone equation to determine the Brueckner reaction matrix in nuclear matter are reformulated in terms of the resolvents for the total two-nucleon Hamiltonians defined in free space and in medium correspondingly. This allows one to find solutions at many energies simultaneously by using the respective Hamiltonian matrix diagonalization in the stationary wave-packet basis. Among other important advantages, this approach simplifies greatly the whole computation procedures both for the coupled-channel t matrix and the Brueckner reaction matrix. Therefore this principally novel scheme is expected to be especially useful for self-consistent nuclear matter calculations because it allows one to accelerate in a high degree single-particle potential iterations. Furthermore the method provides direct access to the properties of possible two-nucleon bound states in the nuclear medium. The comparison between reaction matrices found via the numerical solution of the Bethe-Goldstone integral equation and the straightforward Hamiltonian diagonalization shows a high accuracy of the method suggested. The proposed fully discrete approach opens a new way to an accurate treatment of two- and three-particle correlations in nuclear matter on the basis of the three-particle Bethe-Faddeev equation by an effective Hamiltonian diagonalization procedure.
Pulse-induced focusing of Rydberg wave packets
Arbó, D. G.; Reinhold, C. O.; Burgdörfer, J.; Pattanayak, A. K.; Stokely, C. L.; Zhao, W.; Lancaster, J. C.; Dunning, F. B.
2003-06-01
We demonstrate that strong transient phase-space localization can be achieved by the application of a single impulsive “kick” in the form of a short (600 ps) unidirectional electric-field pulse to a strongly polarized, quasi-one-dimensional Rydberg atom. The underlying classical dynamics is analyzed and it is shown that phase-space localization results from a focusing effect analogous to rainbow scattering. Moreover, it is shown that the essential features of the classical analysis remain valid in a quantum-mechanical treatment of the system in terms of its phase-space Husimi distribution. The degree of phase-space localization is characterized by the coarse-grained Renyi entropy. Transient phase-space localization is demonstrated experimentally using extreme redshifted m=0 potassium Stark states in the n=351 manifold and a short probe pulse. The experimental data are in good agreement with theoretical predictions. The localized state provides an excellent starting point for further control and manipulation of the electron wave packet.
Trajectory description of the quantum–classical transition for wave packet interference
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-08-15
The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow the main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.
Signatures of wave packet revival phenomena in the expectation values of observables
Sudheesh, C; Balakrishnan, V
2004-01-01
Wave packet revivals and fractional revivals are striking quantum interference phenomena that can occur under suitable conditions in a system with a nonlinear spectrum. In the framework of a specific model (the propagation of an initially coherent wave packet in a Kerr-like medium), it is shown that distinctive signatures of these revivals and fractional revivals are displayed by the time evolution of the expectationWave packet revivals and fractional revivals are striking quantum interference phenomena that can occur under suitable conditions in a system with a nonlinear spectrum. In the framework of a specific model (the propagation of an initially coherent wave packet in a Kerr-like medium), it is shown that distinctive signatures of these revivals and fractional revivals are displayed by the time evolution of the expectation values of physical observables and their powers, i.e., by experimentally measurable quantities. Moreover, different fractional revivals can be selectively identified by examining appr...
On the classical limit of Bohmian mechanics for Hagedorn wave packets
Dürr, Detlef
2010-01-01
We consider the classical limit of quantum mechanics in terms of Bohmian trajectories. For wave packets as defined by Hagedorn we show that the Bohmian trajectories converge to Newtonian trajectories in probability.
Goos-Haenchen and Imbert-Fedorov shifts for bounded wave packets of light
Ornigotti, Marco
2012-01-01
We present precise expressions of the spatial and angular Goos-Haenchen and Imbert-Fedorov shifts experienced by a longitudinally and transversally limited beam of light (wave packet) upon reflection from a dielectric interface, as opposed to the well-known case of a monochromatic beam which is bounded in transverse directions but infinitely extended along the direction of propagation. This is done under the assumption that the detector time is longer than the temporal length of the wave packet (wave packet regime). Our results will be applied to the case of a Gaussian wave packet and show that, at the leading order in the Taylor expansion of reflected-field amplitudes, the results are the same of the monochromatic case.
Yan, Zhi-Zhong; Zhang, Chuanzeng; Wang, Yue-Sheng
2011-03-01
The band structures of in-plane elastic waves propagating in two-dimensional phononic crystals with one-dimensional random disorder and aperiodicity are analyzed in this paper. The localization of wave propagation is discussed by introducing the concept of the localization factor, which is calculated by the plane-wave-based transfer-matrix method. By treating the random disorder and aperiodicity as the deviation from the periodicity in a special way, three kinds of aperiodic phononic crystals that have normally distributed random disorder, Thue-Morse and Rudin-Shapiro sequence in one direction and translational symmetry in the other direction are considered and the band structures are characterized using localization factors. Besides, as a special case, we analyze the band gap properties of a periodic planar layered composite containing a periodic array of square inclusions. The transmission coefficients based on eigen-mode matching theory are also calculated and the results show the same behaviors as the localization factor does. In the case of random disorders, the localization degree of the normally distributed random disorder is larger than that of the uniformly distributed random disorder although the eigenstates are both localized no matter what types of random disorders, whereas, for the case of Thue-Morse and Rudin-Shapiro structures, the band structures of Thue-Morse sequence exhibit similarities with the quasi-periodic (Fibonacci) sequence not present in the results of the Rudin-Shapiro sequence.
Institute of Scientific and Technical Information of China (English)
Ruey-syan SHIH; Chung-ren CHOU; John Z. YIM
2004-01-01
The modeling of generation and subsequent propagation of irregular waves in a numerical wave flume is performed by mean of the boundary element method. Random waves are generated by a piston-type wave generator at one end of the flume with the Mitsuyasu-Bretschneider spectrum used as the target spectrum for the generation. An artificial absorbing beach is placed at the other end of the flume to minimize wave reflection. Surface fluctuations are described by use of the Lagrangian description, and finite difference is adopted for the approximation of time derivative. To monitor the developments of the waves, a number of pseudo wave gauges are installed along the tank. Through comparison of the spectra from those gauges with the target spectrum, satisfactory results can be obtained from the present numerical scheme.
Do, V. Nam; Le, H. Anh; Vu, V. Thieu
2017-04-01
We propose a computational approach to combining the plane-wave method and the real-space treatment to describe the periodic variation in the material plane and the decay of wave functions from the material surfaces. The proposed approach is natural for two-dimensional material systems and thus may circumvent some intrinsic limitations involving the artificial replication of material layers in traditional supercell methods. In particular, we show that the proposed method is easy to implement and, especially, computationally effective since low-cost computational algorithms, such as iterative and recursive techniques, can be used to treat matrices with block tridiagonal structure. Using this approach we show first-principles features that supplement the current knowledge of some fundamental issues in bilayer graphene systems, including the coupling between the two graphene layers, the preservation of the σ band of monolayer graphene in the electronic structure of the bilayer system, and the differences in low-energy band structure between the AA- and AB-stacked configurations.
Coelho, Flávio S
2016-01-01
We analyse the causal structure of the two dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two $D$-dimensional Aichelburg-Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter-Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green's functions appearing in the perturbative expansion, at each order, which is crucial for a su...
Energy Technology Data Exchange (ETDEWEB)
Woo, Sung-Jae; Hong, Jin Hee; Kim, Tae Yun; Bae, Byung Wook; Lee, Kyoung J [CRI Center for Neurodynamics and Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of)], E-mail: kyoung@nld.korea.ac.kr
2008-01-15
Understanding spiral reentry wave dynamics in cardiac systems is important since it underlies various cardiac arrhythmia including cardiac fibrillation. Primary cultures of dissociated cardiac cells have been a convenient and useful system for studying cardiac wave dynamics, since one can carry out systematic and quantitative studies with them under well-controlled environments. One key drawback of the dissociated cell culture is that, inevitably, some spatial inhomogeneities in terms of cell types and density, and/or the degree of gap junction connectivity, are introduced to the system during the preparation. These unintentional spatial inhomogeneities can cause some non-trivial wave dynamics, for example, the entrainment dynamics among different spiral waves and the generation of complex-oscillatory spiral waves. The aim of this paper is to quantify these general phenomena in an in vitro cardiac system and provide explanations for them with a simple physiological model having some realistic spatial inhomogeneities incorporated.
Karlovets, D V; Serbo, V G
2015-01-01
Laser photons carrying non-zero orbital angular momentum are known and exploited during the last twenty years. Recently it has been demonstrated experimentally that such (twisted) electrons can be produced and even focused to a subnanometer scale. Thus, twisted electrons emerge as a new tool in atomic physics. The state of a twisted electron can be considered as a specific wave packet of plane waves. In the present paper-I we consider elastic scattering of the wave packets of fast non-relativistic particles on a potential field. We obtain simple and convenient formulae for a number of events in such a scattering. The equations derived represent, in fact, generalization of the well-known Born approximation for the case when finite sizes and inhomogeneity of the initial packet should be taken into account. To illustrate the obtained results, we consider two simple models corresponding to scattering of a Gaussian wave packet on the Gaussian potential and on the hydrogen atom. The scattering of twisted electrons ...
Energy Technology Data Exchange (ETDEWEB)
Van Gorder, Robert A., E-mail: Robert.VanGorder@maths.ox.ac.uk [Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG (United Kingdom)
2015-09-15
In a recent paper, we give a study of the purely rotational motion of general stationary states in the two-dimensional local induction approximation (2D-LIA) governing superfluid turbulence in the low-temperature limit [B. Svistunov, “Superfluid turbulence in the low-temperature limit,” Phys. Rev. B 52, 3647 (1995)]. Such results demonstrated that variety of stationary configurations are possible from vortex filaments exhibiting purely rotational motion in addition to commonly discussed configurations such as helical or planar states. However, the filaments (or, more properly, waves along these filaments) can also exhibit translational motion along the axis of orientation. In contrast to the study on vortex configurations for purely rotational stationary states, the present paper considers non-stationary states which exhibit a combination of rotation and translational motions. These solutions can essentially be described as waves or disturbances which ride along straight vortex filament lines. As expected from our previous work, there are a number of types of structures that can be obtained under the 2D-LIA. We focus on non-stationary states, as stationary states exhibiting translation will essentially take the form of solutions studied in [R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014)], with the difference being translation along the reference axis, so that qualitative appearance of the solution geometry will be the same (even if there are quantitative differences). We discuss a wide variety of general properties of these non-stationary solutions and derive cases in which they reduce to known stationary states. We obtain various routes to Kelvin waves along vortex filaments and demonstrate that if the phase and amplitude of a disturbance both propagate with the same wave speed, then Kelvin waves will result. We also consider the self
Energy Technology Data Exchange (ETDEWEB)
Hou Zhilin [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)], E-mail: zhilin.hou@lpmi.uhp-nancy.fr; Assouar, Badreddine M. [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)
2008-03-17
We show that the conversional three-dimensional plane wave expansion method can be revised to investigate the lamb wave propagation in the plate with two-dimensional phononic crystal layer coated on uniform substrate. We find that an imaginary three-dimensional periodic system can be constructed by stacking the studied plates and vacuum layers alternately, and then the Fourier series expansion can be performed. The difference between our imaginary periodic system and the true three-dimensional one is that, in our system, the Bloch feature of the wave along the thickness direction is broken. Three different systems are investigated by the proposed method as examples. The principle and reliability of the method are also discussed.
Wave breaking onset of two-dimensional deep-water wave groups in the presence and absence of wind
Saket, Arvin; Banner, Michael L; Barthelemy, Xavier; Allis, Michael J
2015-01-01
The criterion for the initiation of breaking demonstrated numerically by Barthelemy et al. (2015) has been investigated in the laboratory for unidirectional wave groups in deep-water and extended to include conditions of moderate wind forcing. Thermal Image Velocimetry was used to compare measurements of the crest surface water particle velocity (Us) with the wave crest velocity (C), as determined by an array of closely-spaced wave gauges. The energy flux ratio Bx = Us/C that distinguishes maximum recurrence from marginal breaking was found to be 0.840 $\\pm$ 0.016 in good agreement with the numerically determined value of 0.855. Further, the threshold was found to be robust for different classes of wave groups of distinct characteristic steepness at the breaking threshold. Increasing wind forcing from zero to U{\\lambda}/4/C0=1.42 increased this threshold by 2%. Increasing the spectral bandwidth (decreasing the Benjamin-Feir index from 0.39 to 0.31) systematically reduced the threshold by 1.5%.
Gaussian and Airy wave-packets of massive particles with orbital angular momentum
Karlovets, Dmitry V
2014-01-01
While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate that there is a family of such solutions, which are exact, by employing a null-plane (light-cone) variables formalism. A scalar Gaussian wave-packet in transverse plane is generalized so that it acquires a well-defined z-component of the orbital angular momentum (OAM), while may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel ones, may have an azimuthal-angle-dependent probability density and finite quantum uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave-packet, which can be interpreted as a one-particle state for relativistic massive boson, show that its center moves along the same quasi-classical straight path and, what is more important, spreads with time and distance exactly as a Gaussian wave-packet does, in accordance with the uncertainty principle. It is expla...
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-22
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-01
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N2 reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
DEFF Research Database (Denmark)
Wenger, F.; Käll, M.
1997-01-01
We analyze the Raman-scattering response in a two-dimensional d(x2-y2)-wave superconductor and point out a strong suppression of relative intensity in the screened A(1g) channel compared to the B-1g channel for a generic tight-binding model. This is in contrast with the observed behavior in high...
Principle of stationary phase for propagating wave packets in the unidimensional scattering problem
Energy Technology Data Exchange (ETDEWEB)
Bernardini, A.E. [Universidade Federal de Sao Carlos, Departamento de Fisica, PO Box 676, Sao Carlos, SP (Brazil)
2008-08-15
We point out some incompatibilities which appear when one applies the stationary phase method for deriving phase times to obtain the spatial localization of wave packets scattered by a unidimensional potential barrier. We concentrate on the above barrier diffusion problem where the wave packet collision implies the possibility of multiple reflected and transmitted wave packets, which, depending on the boundary conditions, can overlap or stand in relative separation in space. We demonstrate that the indiscriminate use of the method for such a particular configuration leads to paradoxical results for which the correct interpretation, confirmed by analytical/numerical calculations, imposes the necessity of the appearance of multiple peaks as a consequence of multiple reflections by the barrier steps. (orig.)
Analysis of wave packet motion in frequency and time domain: oxazine 1.
Braun, Markus; Sobotta, Constanze; Dürr, Regina; Pulvermacher, Horst; Malkmus, Stephan
2006-08-17
Wave packet motion in the laser dye oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral range of 600-690 nm was accessible by amplified broadband probe pulses covering the overlap region of ground-state bleach and stimulated emission signal. The influence of vibrational wave packets on the optical signal is analyzed in the frequency domain and the time domain. For the analysis in the frequency domain an algorithm is presented that accounts for interference effects of neighbored vibrational modes. By this method amplitude, phase and decay time of vibrational modes are retrieved as a function of probe wavelength and distortions due to neighbored modes are reduced. The analysis of the data in the time domain yields complementary information on the intensity, central wavelength, and spectral width of the optical bleach spectrum due to wave packet motion.
Resonance-Radiation Force Exerted by a Circularly Polarized Light on an Atomic Wave Packet
Institute of Scientific and Technical Information of China (English)
YE Yong-Hua; ZENG Gao-Jian; LI Jin-Hui
2006-01-01
We study the behaviour of an atomic wave packet in a circularly polarized light, and especially give the calculation of the radiative force exerted by the circularly polarized light on the atomic wave packet under the resonance condition. A general method of the calculation is presented and the result is interesting. For example, under the condition that the wave packet is very narrow or/and the interaction is very strong, no matter whether the atom is initially in its ground state or excited state, as time approaches to infinity, the resonance-radiation force exerted by the light on the atom approaches to zero. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is a even function, then the resonance-radiation force exerted by the light on the atom is equal to zero.
Propagation of Gaussian wave packets in complex media and application to fracture characterization
Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu
2017-08-01
Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model
Institute of Scientific and Technical Information of China (English)
WU; Shaoping(吴少平); YI; Fan(易帆)
2002-01-01
By using FICE scheme, a numerical simulation of nonlinear propagation of gravity wave packet in three-dimension compressible atmosphere is presented. The whole nonlinear propagation process of the gravity wave packet is shown; the basic characteristics of nonlinear propagation and the influence of the ambient winds on the propagation are analyzed. The results show that FICE scheme can be extended in three-dimension by which the calculation is steady and kept for a long time; the increase of wave amplitude is faster than the exponential increase according to the linear gravity theory; nonlinear propagation makes the horizontal perturbation velocity increase greatly which can lead to enhancement of the local ambient winds; the propagation path and the propagation velocity of energy are different from the results expected by the linear gravity waves theory, the nonlinearity causes the change in propagation characteristics of gravity wave; the ambient winds alter the propagation path and group velocity of gravity wave.
Indian Academy of Sciences (India)
Maninder Kaur; Bindiya Arora; Mahmood Mian
2016-01-01
We examine the dynamical evolution of wave packets in a cubical billiard where three quantum numbers (, , ) determine its energy spectrum and consequently its dynamical behaviour. We have constructed the wave packet in the cubical billiard and have observed its time evolution for various closed orbits. The closed orbits are possible for certain specific values of quantum numbers (, , ) and initial momenta (, , ). We observe that a cubical billiard exhibits degenerate energy levels and the path lengths of the closed orbits for these degenerate energy levels are identical. In spite of the identical path lengths, the shapes of the closed orbits for degenerate levels are different and depend upon angles and which we term as the sweep and the elevation angles, respectively. These degenerate levels owe their origin to the symmetries prevailing in the cubical billiard and these levels disappear completely or partially for a parallelepiped billiard as the symmetry breaks due to commensurate or incommensurate ratio of sides.
Strong field dissociative ionization of the D2+: Nuclear wave packet analysis
Tóth, A.; Borbély, S.; Halász, G. J.; Vibók, Á.
2017-09-01
Theoretical ab initio investigation of strong field dissociative ionization of the D2+ molecule in the multiphoton regime is reported. The dynamics is initiated by ultrashort laser pulses for fixed molecular axis orientations. Nuclear wave packet calculations are performed to provide the joint energy spectra (JES): ionization-dissociation probability density via electron (Ee) and nuclear (En) kinetic energy. Analyzing the time-dependent nuclear wave packet densities we have successfully identified the exact path followed by the D2+ target for each multiphoton peak.
Initial Dynamics of The Norrish Type I Reaction in Acetone: Probing Wave Packet Motion
DEFF Research Database (Denmark)
Brogaard, Rasmus Y.; Sølling, Theis I.; Møller, Klaus Braagaard
2011-01-01
agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival...... of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S1 minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics...
Bai, Xiao-Dong; Malomed, Boris A.; Deng, Fu-Guo
2016-09-01
We consider the transfer of lattice wave packets through a tilted discrete breather (TDB) in opposite directions in the discrete nonlinear Schrödinger model with asymmetric defects, which may be realized as a Bose-Einstein condensate trapped in a deep optical lattice, or as optical beams in a waveguide array. A unidirectional transport mode is found, in which the incident wave packets, whose energy belongs to a certain interval between full reflection and full passage regions, pass the TDB only in one direction, while in the absence of the TDB, the same lattice admits bidirectional propagation. The operation of this mode is accurately explained by an analytical consideration of the respective energy barriers. The results suggest that the TDB may emulate the unidirectional propagation of atomic and optical beams in various settings. In the case of the passage of the incident wave packet, the scattering TDB typically shifts by one lattice unit in the direction from which the wave packet arrives, which is an example of the tractor-beam effect, provided by the same system, in addition to the rectification of incident waves.
Directory of Open Access Journals (Sweden)
L.-L. Wang
2011-08-01
Full Text Available Due to the specific characteristics of semi-arid catchments, this paper aims to establish a grid-and-Green-Ampt-and-two-dimensional-kinematic-wave-based distributed hydrological physical model (Grid-GA-2D model coupling Green-Ampt infiltration method and two dimensional overland flow routing model based on kinematic wave theory for flood simulation and forecasting with using GIS technology and digital elevation model (DEM. Taking into consideration the soil moisture redistribution at hillslope, Green-Ampt infiltration physical method is applied for grid-based runoff generation and two-dimensional implicit finite difference kinematic wave model is introduced to solve depressions water storing for grid-based overland flow concentration routing in the Grid-GA-2D model. The Grid-GA-2D model, the Grid-GA model with coupling Green-Ampt infiltration method and one-dimension kinematic wave theory, and Shanbei model were employed to the upper Kongjiapo catchment in Qin River, a tributary of the Yellow River, with an area of 1454 km^{2} for flood simulation. Results show that two grid-based distributed hydrological models perform better in flood simulation and can be used for flood forecasting in semi-arid catchments. Comparing with the Grid-GA model, the flood peak simulation accuracy of the newly developed model is higher.
Wang, L.-L.; Chen, D.-H.; Li, Z.-J.; Zhao, L.-N.
2011-08-01
Due to the specific characteristics of semi-arid catchments, this paper aims to establish a grid-and-Green-Ampt-and-two-dimensional-kinematic-wave-based distributed hydrological physical model (Grid-GA-2D model) coupling Green-Ampt infiltration method and two dimensional overland flow routing model based on kinematic wave theory for flood simulation and forecasting with using GIS technology and digital elevation model (DEM). Taking into consideration the soil moisture redistribution at hillslope, Green-Ampt infiltration physical method is applied for grid-based runoff generation and two-dimensional implicit finite difference kinematic wave model is introduced to solve depressions water storing for grid-based overland flow concentration routing in the Grid-GA-2D model. The Grid-GA-2D model, the Grid-GA model with coupling Green-Ampt infiltration method and one-dimension kinematic wave theory, and Shanbei model were employed to the upper Kongjiapo catchment in Qin River, a tributary of the Yellow River, with an area of 1454 km2 for flood simulation. Results show that two grid-based distributed hydrological models perform better in flood simulation and can be used for flood forecasting in semi-arid catchments. Comparing with the Grid-GA model, the flood peak simulation accuracy of the newly developed model is higher.
Program for quantum wave-packet dynamics with time-dependent potentials
Dion, C M; Rahali, G
2014-01-01
We present a program to simulate the dynamics of a wave packet interacting with a time-dependent potential. The time-dependent Schr\\"odinger equation is solved on a one-, two-, or three-dimensional spatial grid using the split operator method. The program can be compiled for execution either on a single processor or on a distributed-memory parallel computer.
Frame properties of wave packet systes in L^2 (R^d)
DEFF Research Database (Denmark)
Christensen, Ole; Rahimi, Asghar
2008-01-01
Extending work by Hernandez, Labate and Weiss, we present a sufficent condition for a generalized shift-invariant system to be a Bessel sequence or even a frame forL(2)(R-d). In particular, this leads to a sufficient condition for a wave packet system to form a frame. On the other hand, we show...
Monte Carlo Wave Packet Theory of Dissociative Double Ionization
DEFF Research Database (Denmark)
Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus
2009-01-01
Nuclear dynamics in strong-field double ionization processes is predicted using a stochastic Monte Carlo wave packet technique. Using input from electronic structure calculations and strong-field electron dynamics the description allows for field-dressed dynamics within a given molecule as well...
Quantum Chaos and Exponential Growth of Spreading Width of a Wave Packet in Chaotic Systems
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The quantum correspondence of one particular signature of classical chaos———the exponential instability f motion can be characterized by the initial exponential growth rate of the spreading width of the propagating quantum wave packet.In a former study~[1] a one to one correspondence has been found between the initial
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jianxin; Zhang, Zhenjun [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Tong, Peiqing, E-mail: pqtong@njnu.edu.cn [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023 (China)
2013-07-15
We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth.
Recollision dynamics of electron wave packets in high-order harmonic generation
Yuan, Kai-Jun; Bandrauk, André D.
2009-11-01
We numerically investigate the dynamics of recollision of an electron in high-order harmonic generation (HHG) for an H atom and a molecular ion H2+ using a short (ten optical cycles), and intense (I0≥1014W/cm2) , z -polarized linear laser pulse with wavelength 800 nm by accurately solving the three-dimensional time-dependent Schrödinger equation. A time-frequency analysis obtained via Gabor transforms is employed to identify electron recollision and recombination times responsible for the generation of harmonics. We find that the HHG spectra are mainly attributed to the recollision of an inner electron wave packet with the parent ion in agreement with the classical recollision model. A time delay of the electron recollision occurs between wave packets in inner and outer regions, near to and far from the parent ion, due to different phase of the acceleration (as well as dipole velocity) of the electron. Inner wave packets at recollision contain mainly short and long trajectories whereas outer wave packets contain only single trajectories. Lower-order harmonics are generated mainly by single recollisions near field extrema, i.e., in strong electric fields whereas higher-order harmonics are generated by double trajectories with different intensities. In the case of H2+ at a critical nuclear distance for charge resonance enhanced ionization, we also find that HHG mainly comes from contributions of the inner electron wave packet, but with more complex recollision trajectories due to the presence of more than one Coulomb center. Triple recollision trajectories are shown to occur generally for the latter.
Energy Technology Data Exchange (ETDEWEB)
Chan, Yat-Long; Chu, M.C.; Xu, Jianyi [The Chinese University of Hong Kong, Department of Physics, Shatin (China); Tsui, Ka Ming [University of Tokyo, RCCN, ICRR, Kashiwa, Chiba (Japan); Wong, Chan Fai [Sun Yat-Sen University, Guangzhou (China)
2016-06-15
We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level. (orig.)
Momentum mapping of continuum electron wave packet interference
Yang, Weifeng; Lin, Cheng; Xu, Jingwen; Sheng, Zhihao; Song, Xiaohong; Hu, Shilin; Chen, Jing
2016-01-01
We analyze the two-dimensional photoelectrons momentum distribution of Ar atom ionized by midinfrared laser pulses and mainly concentrate on the energy range below 2Up. By using a generalized quantum trajectory Monte Carlo (GQTMC) simulation and comparing with the numerical solution of time-dependent Schrodinger equation (TDSE), we show that in the deep tunneling regime, the rescattered electron trajectories plays unimportant role and the interplay between the intracycle and inter-cycle results in a ring-like interference pattern. The ring-like interference pattern will mask the holographic interference structure in the low longitudinal momentum region. When the nonadiabatic tunneling contributes significantly to ionization, i.e., the Keldysh parameter 1, the contribution of the rescattered electron trajectories become large, thus holographic interference pattern can be clearly observed. Our results help paving the way for gaining physical insight into ultrafast electron dynamic process with attosecond tempor...
Yuan, T.; Heale, C. J.; Snively, J. B.; Cai, X.; Pautet, P.-D.; Fish, C.; Zhao, Y.; Taylor, M. J.; Pendleton, W. R.; Wickwar, V.; Mitchell, N. J.
2016-01-01
Gravity wave packets excited by a source of finite duration and size possess a broad frequency and wave number spectrum and thus span a range of temporal and spatial scales. Observing at a single location relatively close to the source, the wave components with higher frequency and larger vertical wavelength dominate at earlier times and at higher altitudes, while the lower frequency components, with shorter vertical wavelength, dominate during the latter part of the propagation. Utilizing observations from the Na lidar at Utah State University and the nearby Mesospheric Temperature Mapper at Bear Lake Observatory (41.9°N, 111.4°W), we investigate a unique case of vertical dispersion for a spectrally broad gravity wave packet in the mesopause region over Logan, Utah (41.7°N, 111.8°W), that occurred on 2 September 2011, to study the waves' evolution as it propagates upward. The lidar-observed temperature perturbation was dominated by close to a 1 h modulation at 100 km during the early hours but gradually evolved into a 1.5 h modulation during the second half of the night. The vertical wavelength also decreased simultaneously, while the vertical group and phase velocities of the packet apparently slowed, as it was approaching a critical level during the second half of the night. A two-dimensional numerical model is used to simulate the observed gravity wave processes, finding that the location of the lidar relative to the source can strongly influence which portion of the spectrum can be observed at a particular location relative to a source.
Matsumoto, Takuma
2011-01-01
We report the results of the first two-dimensional self-consistent simulations directly covering from the photosphere to the interplanetary space. We carefully set up grid points with spherical coordinate to treat Alfv\\'enic waves in the atmosphere with the huge density contrast, and successfully simulate hot coronal wind streaming out as a result of surface convective motion. Footpoint motion excites upwardly propagating Alfv\\'enic waves along an open magnetic flux tube. These waves, traveling in non-uniform medium, suffer reflection, nonlinear mode conversion to compressive modes, and turbulent cascade. Combination of these mechanisms, the Alfv\\'enic waves eventually dissipate to accelerate the solar wind. While the shock heating by the dissipation of the compressive wave plays a primary role in the coronal heating, both turbulent cascade and shock heating contribute to drive the solar wind.
Wang, Chun-Ni; Ma, Jun; Tang, Jun; Li, Yan-Long
2010-02-01
Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriate parameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventricular tachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system often consists of a large number of neurons with complex connections. In this paper, we theoretically study the transition from spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of the Hindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiral wave is developed and selected as the initial state, then the bifurcation parameters are changed to different values to observe the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave, respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition from spiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of mean membrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharp changing points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition from spiral wave to other states. And the results are independent of the number of neurons we used.
Frequencies of wave packets of whistler-mode chorus inside its source region: a case study
Directory of Open Access Journals (Sweden)
O. Santolik
2008-06-01
Full Text Available Whistler-mode chorus is a structured wave emission observed in the Earth's magnetosphere in a frequency range from a few hundreds of Hz to several kHz. We investigate wave packets of chorus using high-resolution measurements recorded by the WBD instrument on board the four Cluster spacecraft. A night-side chorus event observed during geomagnetically disturbed conditions is analyzed. We identify lower and upper frequencies for a large number of individual chorus wave packets inside the chorus source region. We investigate how these observations are related to the central position of the chorus source which has been previously estimated from the Poynting flux measurements. We observe typical frequency bandwidths of chorus of approximately 10% of the local electron cyclotron frequency. Observed time scales are around 0.1 s for the individual wave packets. Our results indicate a lower occurrence probability for lower frequencies in the vicinity of the central position of the source compared to measurements recorded closer to the outer boundaries of the source. This is in agreement with recent research based on the backward wave oscillator theory.
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2012-01-01
The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.
Podgórski, Michał; Grzelak, Piotr; Kaczmarska, Magdalena; Polguj, Michał; Łukaszewski, Maciej; Stefańczyk, Ludomir
2017-01-01
Objective Arterial stiffening is an early marker of atherosclerosis that has a prognostic value for cardiovascular morbidity and mortality. Although many markers of arterial hardening have been proposed, the search is on for newer, more user-friendly and reliable surrogates. One such potential candidate has emerged from cardiology, the speckle-tracking technique. The aim of this study was to evaluate the feasibility of the two-dimensional speckle tracking for the evaluation of arterial wall stiffness in comparison with standard stiffness parameters. Methods Carotid ultrasound and applanation tonometry were performed in 188 patients with no cardiovascular risk factors. The following parameters were then evaluated: the intima-media complex thickness, distensibility coefficient, β-stiffness index, circumferential strain/strain rate, and pulse wave velocity and augmentation index. These variables were compared with each other and with patient age, and their reliability was assessed with Bland-Altman plots. Results Strain parameters derived from two-dimensional speckle tracking and intima-media complex thickness correlated better with age and pulse wave velocity than standard makers of arterial stiffness. Moreover, the reliability of these measurements was significantly higher than conventional surrogates. Conclusions Two-dimensional speckle tracing is a reliable method for the evaluation of arterial stiffness. Therefore, together with intima-media complex thickness measurement, it offers great potential in clinical practice as an early marker of atherosclerosis.
Rupper, Greg; Rudin, Sergey; Crowne, Frank J.
2012-12-01
In the Dyakonov-Shur terahertz detector the conduction channel of a heterostructure High Electron Mobility Transistor (HEMT) is used as a plasma wave resonator for density oscillations in electron gas. Nonlinearities in the plasma wave propagation lead to a constant source-to-drain voltage, providing the detector output. In this paper, we start with the quasi-classical Boltzmann equation and derive the hydrodynamic model with temperature dependent transport coefficients for a two-dimensional viscous flow. This derivation allows us to obtain the parameters for the hydrodynamic model from the band-structure of the HEMT channel. The treatment here also includes the energy balance equation into the analysis. By numerical solution of the hydrodynamic equations with a non-zero boundary current we evaluate the detector response function and obtain the temperature dependence of the plasma resonance. The present treatment extends the theory of Dyakonov-Shur plasma resonator and detector to account for the temperature dependence of viscosity, the effects of oblique wave propagation on detector response, and effects of boundary current in two-dimensional flow on quality of the plasma resonance. The numerical results are given for a GaN channel. We also investigated a stability of source to drain flow and formation of shock waves.
Kaur, Maninder; Main, M
2015-01-01
We examine the dynamical evolution of wave packets in a cubical billiard where three quantum numbers ($n_x,n_y,n_z$) determine its energy spectrum and consequently its dynamical behavior. We have constructed the wave packet in the cubical billiard and have observed its time evolution for various closed orbits. The closed orbits are possible for certain specific values of quantum numbers ($n_x,n_y,n_z$) and initial momenta ($k_x,k_y,k_z$). We observe that a cubical billiard exhibits degenerate energy levels and the path lengths of the closed orbits for these degenerate energy levels are identical. In spite of the identical path lengths, the shapes of the closed orbits for degenerate levels are different and depend upon angles $\\theta$ and $\\phi$ which we term as the sweep and the elevation angle respectively. These degenerate levels owe their origin to the symmetries prevailing in the cubical billiard and degenerate levels disappear completely or partially for a parallelepiped billiard as the symmetry breaks d...
Modulated Wave Packets in DNA and Impact of Viscosity
Institute of Scientific and Technical Information of China (English)
Conrad Bertrand Tabi; Alidou Mohamadou; Timoleon Crepin Kofan(e)
2009-01-01
We study the nonlinear dynamics of a DNA molecular system at physiological temperature in a viscous media by using the Peyrard-Bishop model.The nonlinear dynamics of the above system is shown to be governed by the discrete complex Ginzburg-Landau equation.In the non-viscous limit,the equation reduces to the nonlinear Schrodinger equation.Modulational instability criteria are derived for both the cases.On the basis of these criteria,numerical simulations are made,which confirm the analytical predictions.The planar wave solution used as the initial condition makes localized oscillations of base pairs and causes energy localization.The results also show that the viscosity of the solvent in the surrounding damps out the amplitude of wave patterns.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
DEFF Research Database (Denmark)
Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert
2017-01-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation......, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state...... is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...
Abdel-Latif, Mahmoud K
2011-01-01
The excitation of the degenerate $E_1$ carbonyl stretching vibrations in dimanganese decacarbonyl is shown to trigger wave packet circulation in the subspace of these two modes. On the time scale of about 5 picoseconds intramolecular anharmonic couplings do not cause appreciable disturbance, even under conditions where the two $E_1$ modes are excited by up to about two vibrational quanta each. The compactness of the circulating wave packet is shown to depend strongly on the excitation conditions such as pulse duration and field strength. Numerical results for the solution of the seven-dimensional vibrational Schr\\"odinger equation are obtained for a density functional theory based potential energy surface and using the multi-configuration time-dependent Hartree method.
Monte Carlo wave packet approach to dissociative multiple ionization in diatomic molecules
DEFF Research Database (Denmark)
Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus
2010-01-01
A detailed description of the Monte Carlo wave packet technique applied to dissociative multiple ionization of diatomic molecules in short intense laser pulses is presented. The Monte Carlo wave packet technique relies on the Born-Oppenheimer separation of electronic and nuclear dynamics...... and provides a consistent theoretical framework for treating simultaneously both ionization and dissociation. By simulating the detection of continuum electrons and collapsing the system onto either the neutral, singly ionized or doubly ionized states in every time step the nuclear dynamics can be solved....... The computational effort is restricted and the model is applicable to any molecular system where electronic Born-Oppenheimer curves, dipole moment functions, and ionization rates as a function of nuclear coordinates can be determined....
Space-time evolution of Gaussian wave packets through superlattices containing left-handed layers
Energy Technology Data Exchange (ETDEWEB)
Pereyra, P; Romero-Serrano, M [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico); Robledo-Martinez, A, E-mail: ppereyra@correo.azc.uam.m, E-mail: a.robledo@mailaps.or [Departamento de EnergIa, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico)
2009-05-01
We study the space-time evolution of Gaussian electromagnetic wave packets moving through (L/R){sup n} superlattices, containing alternating layers of left and right-handed materials. We show that the time spent by the wave packet moving through arbitrary (L/R){sup n} superlattices are well described by the phase time. We show that in the particular case where the thicknesses d{sub L,R} and indices n{sub l,r} of the layers satisfy the condition d{sub L}|n{sub L}| = d{sub R}n{sub R}, the usual band structure becomes a sequence of isolated and equidistant peaks with negative phase times.
High frequency wave packets for the Schr\\"odinger equation and its numerical approximations
Marica, Aurora-Mihaela
2010-01-01
We build Gaussian wave packets for the linear Schr\\"odinger equation and its finite difference space semi-discretization and illustrate the lack of uniform dispersive properties of the numerical solutions as established in Ignat, Zuazua, Numerical dispersive schemes for the nonlinear Schr\\"odinger equation, SIAM. J. Numer. Anal., 47(2) (2009), 1366-1390. It is by now well known that bigrid algorithms provide filtering mechanisms allowing to recover the uniformity of the dispersive properties as the mesh size goes to zero. We analyze and illustrate numerically how these high frequency wave packets split and propagate under these bigrid filtering mechanisms, depending on how the fine grid/coarse grid filtering is implemented.
System-level physics of autonomous nanorobots for hard chemistry and wave packet engineering
Santoli, Salvatore
1994-08-01
The operation of the prospective autonomous molecular robots that would represent the most advanced achievement of the molecular manufacturing conception is examined at various levels of physical description: the thermodynamic, the hydrodynamic, and the kinetic (Boltzmann) level down to local nonequilibrium thermodynamical and/or mechanical conditions possibly arising in work in some circumstances. The concept of wave packet engineering is suggested as a special technique in the exploitation of molecular robots possibilities, which are generally characterized as 'hard chemistry'.
Expansion of a wave-packet in lattices with disorder and nonlinearity
Naether, Uta; Martinez, Alejandro J; Sützer, Simon; Tünnermann, Andreas; Nolte, Stefan; Molina, Mario I; Vicencio, Rodrigo A; Szameit, Alexander
2012-01-01
We show, theoretically and experimentally, the counterintuitive result that an increase of disorder can result in an enhanced spreading of an initially localized excitation. Moreover, we find that adding a focusing nonlinearity facilitates the expansion of the wave-packet even further by increasing its effective size. We find a clear transition between between the regions of enhanced spreading (weak disorder) and localization (strong localization) described by a "diffusion peak".
Quantum control of electron wave packets in bound molecules by trains of half-cycle pulses
Energy Technology Data Exchange (ETDEWEB)
Persson, Emil; Pichler, Markus; Wachter, Georg; Hisch, Thomas; Burgdoerfer, Joachim; Graefe, Stefanie [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Jakubetz, Werner [Institute for Theoretical Chemistry, University of Vienna, Waehringerstr. 38, A-1090 Vienna (Austria)
2011-10-15
We investigate protocols for transient localization of electrons in homodiatomic molecules, as well as permanent localization via population inversion in polar molecules. By examining three different model systems with one electronic and one nuclear degree of freedom, we identify mechanisms leading to control over the localization of the electronic wave packets. We show that electronic states dressed by the quasi-dc component of the train of half-cycle pulses steer the combined electronic and nuclear motion toward the targeted state.
Massachusetts Bay - Internal Wave Packets Extracted from SAR Imagery Binned in 1x1 minute grid cells
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets extracted from SAR imagery that were binned in 1x1 minute latitude/longitude polygon grid cells. Statistics were...
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface for Massachusetts Bay. The...
Wave packet dynamics in one-dimensional linear and nonlinear generalized Fibonacci lattices.
Zhang, Zhenjun; Tong, Peiqing; Gong, Jiangbin; Li, Baowen
2011-05-01
The spreading of an initially localized wave packet in one-dimensional linear and nonlinear generalized Fibonacci (GF) lattices is studied numerically. The GF lattices can be classified into two classes depending on whether or not the lattice possesses the Pisot-Vijayaraghavan property. For linear GF lattices of the first class, both the second moment and the participation number grow with time. For linear GF lattices of the second class, in the regime of a weak on-site potential, wave packet spreading is close to ballistic diffusion, whereas in the regime of a strong on-site potential, it displays stairlike growth in both the second moment and the participation number. Nonlinear GF lattices are then investigated in parallel. For the first class of nonlinear GF lattices, the second moment of the wave packet still grows with time, but the corresponding participation number does not grow simultaneously. For the second class of nonlinear GF lattices, an analogous phenomenon is observed for the weak on-site potential only. For a strong on-site potential that leads to an enhanced nonlinear self-trapping effect, neither the second moment nor the participation number grows with time. The results can be useful in guiding experiments on the expansion of noninteracting or interacting cold atoms in quasiperiodic optical lattices.
Multi-resolution schemes for time scaled propagation of wave packets
Frapiccini, Ana Laura; Mota-Furtado, Francisca; O'Mahony, Patrick F; Piraux, Bernard
2014-01-01
We present a detailed analysis of the time scaled coordinate approach and its implementation for solving the time-dependent Schr\\"odinger equation describing the interaction of atoms or molecules with radiation pulses. We investigate and discuss the performance of multi-resolution schemes for the treatment of the squeezing around the origin of the bound part of the scaled wave packet. When the wave packet is expressed in terms of B-splines, we consider two different types of breakpoint sequences: an exponential sequence with a constant density and an initially uniform sequence with a density of points around the origin that increases with time. These two multi-resolution schemes are tested in the case of a one-dimensional gaussian potential and for atomic hydrogen. In the latter case, we also use Sturmian functions to describe the scaled wave packet and discuss a multi-resolution scheme which consists in working in a sturmian basis characterized by a set of non-linear parameters. Regarding the continuum part ...
Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.
Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B
2011-02-10
The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.
Quantum Interferometry and Correlated Two-Electron Wave-Packet Observation in Helium
Ott, Christian; Raith, Philipp; Meyer, Kristina; Laux, Martin; Zhang, Yizhu; Hagstotz, Steffen; Ding, Thomas; Heck, Robert; Pfeifer, Thomas
2012-01-01
The concerted motion of two or more bound electrons governs atomic and molecular non-equilibrium processes and chemical reactions. It is thus a long-standing scientific dream to measure the dynamics of two bound correlated electrons in the quantum regime. Quantum wave packets were previously observed for single-active electrons on their natural attosecond timescales. However, at least two active electrons and a nucleus are required to address the quantum three-body problem. This situation is realized in the helium atom, but direct time-resolved observation of two-electron wave-packet motion remained an unaccomplished challenge. Here, we measure a 1.2-femtosecond quantum beating among low-lying doubly-excited states in helium to evidence a correlated two-electron wave packet. Our experimental method combines attosecond transient-absorption spectroscopy at unprecedented high spectral resolution (20 meV near 60 eV) with an intensity-tuneable visible laser field to couple the quantum states from the perturbative ...
Fujita, Toshiyuki; Sasaki, Takahiko; Yoneyama, Naoki; Kobayashi, Norio
2004-06-01
Current-voltage characteristics are measured in the quasi-two dimensional organic conductor α-(BEDT-TTF)2KHg(SCN)4 at temperatures down to 0.5 K and in the magnetic field up to 25 T. The non-linear conduction with a threshold electric field is found in the density wave state. The features of threshold electric field obtained in the low magnetic field region are explained by the unconventional charge density wave model. In the high magnetic field region, where the Shubnikov-de Haas oscillations appear, the current-voltage characteristics reveal that the density wave state synchronizes with the filling of the electron on the Landau level and continues even above a kink field 23 T.
Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.; Yan, Min
2016-09-01
Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two two-dimensional grooved metal plates by a full-wave scattering approach. The enhancement originates from both transverse-magnetic spoof surface-plasmon polaritons and a series of transverse-electric bonding- and anti-bonding-waveguide modes at surfaces. The RHT spectrum is frequency selective and highly geometrically tailorable. Our simulation also reveals thermally excited nonresonant surface waves in constituent metallic materials may play a prevailing role for RHT at an extremely small separation between two metal plates, rendering metamaterial modes insignificant for the energy-transfer process.
Li, Shi-You; Zhang, Shi-Feng; Deng, Xiao-Hua; Cai, Hong
2013-01-01
More than 300 electrostatic solitary waves (ESWs) with a large perpendicular component which is a bi-polar waveform structure are observed in the boundary layer within the magnetic reconnection diffusion region in the near-Earth magnetotail. Such ESWs are called two-dimensional ESWs. A Singe-reconnection-based-statistical study of two-dimensional ESWs shows that: (1) ESWs can be continuously observed in the plasma sheet boundary layer (PSBL) associated with the magnetic reconnection diffusion region, and their amplitude ranges are mainly from several tens to hundreds of μV/m (2) both one-dimension-like ESWs (very small magnitude on E⊥) and two-dimension-like ESWs (large magnitude on E⊥, which are even comparable to that in the E‖) are observed within a small time interval; (3) within the observation time spans, more than 61% of ESWs are regarded as two-dimensional ESWs for the I2D > 20%. We discuss the bi-polar structure in E⊥. The observation of ESWs with a large bi-polar structure in the perpendicular electric field gives evidence that the unique waveform differs from previous understanding from observations and simulations which suggests that it should be a uni-polar waveform structure in the E⊥ of ESWs.
Liu, Rongqiang; Zhao, Haojiang; Zhang, Yingying; Guo, Honghwei; Deng, Zongquan
2015-12-01
The plane wave expansion (PWE) method is used to calculate the band gaps of two-dimensional (2D) phononic crystals (PCs) with a hybrid square-like (HSL) lattice. Band structures of both XY-mode and Z-mode are calculated. Numerical results show that the band gaps between any two bands could be maximized by altering the radius ratio of the inclusions at different positions. By comparing with square lattice and bathroom lattice, the HSL lattice is more efficient in creating larger gaps.
Energy Technology Data Exchange (ETDEWEB)
Mahato, Bipul Kumar; Rana, Bivas; Kumar, Dheeraj; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Sugimoto, Satoshi [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Otani, YoshiChika [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2014-07-07
We demonstrate tunable spin wave spectrum in two-dimensional Ni{sub 80}Fe{sub 20} nanodot lattices by varying dot shape. A single collective mode in elliptical dot lattices transforms into three distinct modes for the half-elliptical, rectangular, and diamond dot lattices, albeit with different peak frequencies and intensities. A drastic change is observed for the triangular dots, where eight modes covering a broad band are observed. Using micromagnetic simulations, we characterized the modes as different localized, extended, and quantized modes, whose frequencies and spatial profiles are determined by a combination of internal field profiles within the nanodots and the stray magnetic field within the lattice.
Asymmetric acoustic propagation of wave packets via the self-demodulation effect
Devaux, Thibaut; Richoux, Olivier; Pagneux, Vincent
2015-01-01
This article presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to $10^6$, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems.
Directory of Open Access Journals (Sweden)
Y. Trabelsi
2011-08-01
Full Text Available Two-dimensional quasi-periodic band gap structures were investigated theoretically in microwave frequency range. Quasiperiodic photonic crystal based on the square range, arranged in a quasi-periodical fashion which follows Thue Morse or Fibonaci period substitutional sequences were obtained by the inflation rules emerging from the quasi-periodic sequence. The introduction of 2D quasi-periodicity distribution like Thue Morse or Fibonacci order and deterministic aperiodicity give some interesting microwave properties and offers amultitude of adjacent pseudo-band gap in different frequency range. The potential of photonic structures are explored by varying the structural parameters. The photonic band gap formation was explored as function of geometries of the structures such as pillar radius and parameters of quasi-periodical sequences. The electromagnetic field distribution can be described as a quasi-localized state varied by some defect carried by Thue Morse order. These structures provide interesting properties, which could be used to design novelmicrowave devices.
Energy Technology Data Exchange (ETDEWEB)
Mandal, R.; Barman, S.; Saha, S.; Barman, A., E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Otani, Y. [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)
2015-08-07
Ferromagnetic antidot lattices are important systems for magnetic data storage and magnonic devices, and understanding their magnetization dynamics by varying their structural parameters is an important problems in magnetism. Here, we investigate the variation in spin wave spectrum in two-dimensional nanoscale Ni{sub 80}Fe{sub 20} antidot lattices with lattice symmetry. By varying the bias magnetic field values in a broadband ferromagnetic resonance spectrometer, we observed a stark variation in the spin wave spectrum with the variation of lattice symmetry. The simulated mode profiles showed further difference in the spatial nature of the modes between different lattices. While for square and rectangular lattices extended modes are observed in addition to standing spin wave modes, all modes in the hexagonal, honeycomb, and octagonal lattices are either localized or standing waves. In addition, the honeycomb and octagonal lattices showed two different types of modes confined within the honeycomb (octagonal) units and between two such consecutive units. Simulated internal magnetic fields confirm the origin of such a wide variation in the frequency and spatial nature of the spin wave modes. The tunability of spin waves with the variation of lattice symmetry is important for the design of future magnetic data storage and magnonic devices.
Quantum optimal control of wave packet dynamics under the influence of dissipation
Energy Technology Data Exchange (ETDEWEB)
Ohtsuki, Yukiyoshi; Nakagami, Kazuyuki; Zhu, Wusheng; Rabitz, Herschel
2003-02-01
Optimal control within the density matrix formalism is applied to the production of desired non-equilibrium distributions in condensed phases. The time evolution of a molecular system modeled by a displaced harmonic oscillator is assumed to be described by the Markoffian master equation with phenomenological relaxation parameters. The physical objectives of concern are the creation of a specified vibronic state, population inversion and wave packet shaping. The effects of an initial thermal distribution and dissipation on these targets are examined. In order to transfer a large amount of population (i.e., the strong-field regime) to a target wave packet in an electronic excited state, it is shown that creating a shaped packet in the ground state is often required to achieve high yield. This control pathway cannot be taken into account within the weak-field approximation, and is especially important when the target state includes vibrational states that are weakly accessible from the initial state or that have preferential indirect excitation paths from the initial state. Although relaxation effects usually reduce the control efficiency, under certain conditions, the bath-induced dynamics can help to create an objective state.
Energy Technology Data Exchange (ETDEWEB)
Ma, Tian-Xue [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)
2017-01-30
A phoxonic crystal is a periodically patterned material that can simultaneously localize optical and acoustic modes. The acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities is investigated numerically. The photons can be well confined in the slot owing to the large electric field discontinuity at the air/dielectric interfaces. Besides, the surface acoustic modes lead to the localization of the phonons near the air-slot. The high overlap of the photonic and phononic cavity modes near the slot results in a significant enhancement of the moving interface effect, and thus strengthens the total acousto-optical interaction. The results of two cavities with different slot widths show that the coupling strength is dependent on the slot width. It is expected to achieve a strong acousto-optical/optomechanical coupling in air-slot phoxonic crystal structures by utilizing surface acoustic modes. - Highlights: • Two-dimensional air-slot phoxonic crystal cavities which can confine simultaneously optical and acoustic waves are proposed. • The acoustic and optical waves are highly confined near/in the air-slot. • The high overlap of the photonic and phononic cavity modes significantly enhances the moving interface effect. • Different factors which affect the acousto-optical coupling are discussed.
Bias driven coherent carrier dynamics in a two-dimensional aperiodic potential
de Moura, F. A. B. F.; Viana, L. P.; Lyra, M. L.; Malyshev, Victor; Dominguez-Adame, F.
2008-01-01
We study the dynamics of an electron wave-packet in a two-dimensional square lattice with an aperiodic site potential in the presence of an external uniform electric field. The aperiodicity is described by epsilon(m) = V cos(pi alpha m(x)(nu x)) cos(pi alpha m(y)(nu y)) at lattice sites (m(x),m(y)),
Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing
2014-11-17
Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.
Energy Technology Data Exchange (ETDEWEB)
Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others
2016-09-15
Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.
Determining the wavelength of Langmuir wave packets at the Earth's bow shock
Krasnoselskikh, V V; Bale, S D; 10.5194/angeo-29-613-2011
2011-01-01
The propagation of Langmuir waves in plasmas is known to be sensitive to density fluctuations. Such fluctuations may lead to the coexistence of wave pairs that have almost opposite wave-numbers in the vicinity of their reflection points. Using high frequency electric field measurements from the WIND satellite, we determine for the first time the wavelength of intense Langmuir wave packets that are generated upstream of the Earth's electron foreshock by energetic electron beams. Surprisingly, the wavelength is found to be 2 to 3 times larger than the value expected from standard theory. These values are consistent with the presence of strong inhomogeneities in the solar wind plasma rather than with the effect of weak beam instabilities.
Transport of time-varying plasma currents by whistler wave packets
Stenzel, R. L.; Urrutia, J. M.; Rousculp, C.
1992-01-01
The relationship between pulsed currents and electromagnetic waves is examined in a regime characterized by electron MHD. Pulsed currents are generated by (1) collection/emission of charged particles by/from biased electrodes and (2) induction of currents by time-varying and moving magnetic fields. Pulsed currents are observed to propagate at the speed of whistler wave packets. Their field structure forms ropelike configurations which are electromagnetically force-free. Moving sources induce 'eddy' currents which excite waves and form Cerenkov-like whistler 'wings'. The radiation patterns of moving magnetic antennas and electrodynamic tethers are investigated. Nonlinear effects of large-amplitude, antenna-launched whistler pulses are observed. These involve a new modulational instability in which a channel of high conductivity which permits the wave/currents to penetrate deeply into a collisional plasma is formed.
Institute of Scientific and Technical Information of China (English)
李志斌; 陈天华
2002-01-01
An algorithm for constructing exact solitary wave solutions and singular solutions for a class of nonlinear dissipative-dispersive system is presented. With the aid of symbolic manipulation system Maple, some explicit solutions are obtained for the system in physically interesting but non-integrable cases.
Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.
Krafft, C; Volokitin, A
2013-05-01
Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.
Mei, Jun; Liu, Zhengyou; Qiu, Chunyin
2005-06-29
We extend the multiple-scattering theory (MST) to out-of-plane propagating elastic waves in 2D periodical composites by taking into account the full vector character. The formalism for both the band structure calculation and the reflection and transmission coefficient calculation for finite slabs is presented. The latter is based on a double-layer scheme, which obtains the reflection and transmission matrix elements for the multilayer slab from those of a single layer. Being more rapid in both the band structure and the transmission coefficient calculations for out-of-plane propagating elastic waves, our approach especially shows great advantages in handling the systems with mixed solid and fluid components, for which the conventional plane wave approach fails. As the applications of the formalism, we calculate the band structure as well as the transmission coefficients through finite slabs for systems with lead rods in an epoxy host, steel rods in a water host and water rods in a PMMA host.
Son Pham, Thanh; Kumara Ranaweera, Aruna; Dinh Lam, Vu; Lee, Jong-Wook
2016-04-01
In this letter, we propose a magneto-inductive wave (MIW) metamaterial cavity for enhanced mid-range wireless power transfer (WPT) applications. Cavity operation is achieved by controlling the propagation of MIWs at lower megahertz frequencies. The cavity is realized by omitting a cell and thereby breaking the periodicity of the closely coupled metamaterial slabs. The cavity in the proposed metamaterial effectively confines the MIWs into a subwavelength region. Consequently, it localizes the magnetic field in the WPT region and provides enhanced power transmission. When the proposed MIW metamaterial cavity is used, the measured efficiency improves significantly from 8.7 to 54.9%.
Chung, Euiheon; Kim, Daekeun; Cui, Yan; Kim, Yang-Hyo; So, Peter T C
2007-09-01
The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or approximately 100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy.
Wave-packet rectification in nonlinear electronic systems: A tunable Aharonov-Bohm diode
Li, Yunyun; Marchesoni, Fabio; Li, Baowen
2014-01-01
Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schr\\"odinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring.
Quantum dynamics of electronic transitions with Gauss-Hermite wave packets.
Borrelli, Raffaele; Peluso, Andrea
2016-03-21
A new methodology based on the superposition of time-dependent Gauss-Hermite wave packets is developed to describe the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave function parameters are obtained by employing the Dirac-Frenkel time-dependent variational principle. The methodology is applied to study the quantum dynamical behaviour of model systems with two interacting electronic states characterized by a relatively large reorganization energy and a range of energy biases. The favourable scaling properties make it a promising tool for the study of the dynamics of chemico-physical processes in molecular systems.
The phase delay and its complex time: From stationary states up to wave packets
Energy Technology Data Exchange (ETDEWEB)
Grossel, Ph., E-mail: philippe.grossel@univ-reims.fr
2013-03-15
Complex time is often invoked about tunneling effect where the classical phase delay is completed with a crucial filter effect. Usually the complex times are obtained by considering the flux-flux correlation function, but this can be obtained by a very simple approach using the search of the maximum of the generalized complex phase function, including the amplitude of the wave function. Various aspects of the phase delay are presented in the case of wave packets impinging on simple or resonant quantum barriers. Formal links with the classical mechanics give birth to quasi-trajectories of the quantum particle, totally compatible with the quantum mechanics. - Highlights: Black-Right-Pointing-Pointer The stationary phase method is extended in including the variations of the spectra. Black-Right-Pointing-Pointer The complex phase delay leads to a complex trajectory inside and out-side the barrier. Black-Right-Pointing-Pointer Examples of quasi-trajectories are given in case of different quantum barriers. Black-Right-Pointing-Pointer Phase delays are specified for resonant tunneling or above-barrier wave-packets. Black-Right-Pointing-Pointer The coherence between the quasi-trajectories and quantum mechanics is shown.
Wave-Packet Collapse Based on Weak Repeatability or Covariant Condition
Wu, Zhao-Qi; Zhu, Chuan-Xi; Wang, Jian-Hui
2016-02-01
The conflict between the dynamics postulate (unitary evolution) and the measurement postulate (wave-packet collapse) of quantum mechanics has been reconciled by Zurek from an information transfer perspective [Phys. Rev. A 76 (2007) 052110], and has further been extended to a more general scenario [Phys. Rev. A 87 (2013) 052111]. In this paper, we reconsider Zurek's new derivation by using weak repeatability postulate or covariant condition instead of repeatability postulate. Supported by National Natural Science Foundation of China under Grant Nos. 11461045, 11326099, 11361042, 11265010, and Natural Science Foundation of Jiangxi Province of China under Grant Nos. 20142BAB211016, 20132BAB201001, 20132BAB212009
Evolution of spin-dependent atomic wave packets in a harmonic potential
Institute of Scientific and Technical Information of China (English)
Wen Ling-Hua; Liu Min; Kong Ling-Bo; Chen Ai-Xi; Zhan Ming-Sheng
2005-01-01
We have investigated theoretically the evolution of spin-dependent atomic wave packets in a harmonic magnetic trapping potential. For a Bose-condensed gas, which undergoes a Mott insulator transition and a spin-dependent transport, the atomic wavefunction can be described by an entangled single-atom state. Due to the confinement of the -harmonic potential, the density distributions exhibit periodic decay and revival, which is different from the case of free expansion after switching off the combined harmonic and optical lattice potential.
Irreversible Behaviour and Collapse of Wave Packets in a Quantum System with Point Interactions
Guarneri, Italo
2011-01-01
A system of a particle and a harmonic oscillator, which have pure point spectrum if uncoupled, is known to acquire absolutely continuous spectrum when the particle and the oscillator are coupled by a sufficiently strong point interaction. Here the simple dynamical mechanism underlying this phenomenon is exposed. The energy of the oscillator is proven to exponentially diverge in time, while the spatial probability distribution of the particle collapses into a delta function in the interaction point. On account of this result, a generalized model with many oscillators which interact with the particle at different points is argued to provide a formal model for approximate measurement of position, and collapse of wave packets.
Irreversible behaviour and collapse of wave packets in a quantum system with point interactions
Energy Technology Data Exchange (ETDEWEB)
Guarneri, Italo [Center for Nonlinear and Complex Systems, Universita dell' Insubria, via Valleggio 11, I-22100 Como (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, I-27100 Pavia (Italy)
2011-12-02
A system of a particle and a harmonic oscillator, which have pure point spectra if uncoupled, is known to acquire an absolutely continuous spectrum when they are coupled by a sufficiently strong point interaction. Here, the dynamical mechanism underlying this spectral phenomenon is exposed. The energy of the oscillator is proven to exponentially diverge in time, while the spatial probability distribution of the particle collapses into a {delta}-function at the interaction point. On account of this result, a generalized model with many oscillators which interact with the particle at different points is argued to provide a formal model for the approximate measurement of position and collapse of wave packets. (paper)
Wave packet evolution approach to ionization of hydrogen molecular ion by fast electrons
Serov, V V; Joulakian, B B; Vinitsky, S I; Serov, Vladislav V.; Derbov, Vladimir L.; Joulakian, Boghos B.; Vinitsky, Sergue I.
2000-01-01
The multiply differential cross section of the ionization of hydrogen molecular ion by fast electron impact is calculated by a direct approach, which involves the reduction of the initial 6D Schr\\"{o}dinger equation to a 3D evolution problem followed by the modeling of the wave packet dynamics. This approach avoids the use of stationary Coulomb two-centre functions of the continuous spectrum of the ejected electron which demands cumbersome calculations. The results obtained, after verification of the procedure in the case atomic hydrogen, reveal interesting mechanisms in the case of small scattering angles.
Wave packet dynamics in energy space, random matrix theory, and the quantum-classical correspondence
Cohen; Izrailev; Kottos
2000-03-06
We apply random-matrix-theory (RMT) to the analysis of evolution of wave packets in energy space. We study the crossover from ballistic behavior to saturation, the possibility of having an intermediate diffusive behavior, and the feasibility of strong localization effect. Both theoretical considerations and numerical results are presented. Using quantal-classical correspondence considerations we question the validity of the emerging dynamical picture. In particular, we claim that the appearance of the intermediate diffusive behavior is possibly an artifact of the RMT strategy.
Application of Wavelet Packet De-noising in Time-Frequency Analysis of the Local Wave Method
Institute of Scientific and Technical Information of China (English)
LI Hong-kun; MA Xiao-jiang; WANG Zhen; ZHU Hong
2003-01-01
The local wave method is a very good time-frequency method for nonstationary vibration signal analysis. But the interfering noise has a big influence on the accuracy of time-frequency analysis. The wavelet packet de-noising method can eliminate the interference of noise and improve the signal-noise-ratio. This paper uses the local wave method to decompose the de-noising signal and perform a time-frequency analysis. We can get better characteristics. Finally, an example of wavelet packet de-noising and a local wave time-frequency spectrum application of diesel engine surface vibration signal is put forward.
Zhou, Faran; Golubev, Timofey; Hwang, Bin; Ruan, Chong-Yu; Duxbury, Phil; Malliakas, Christos; Kanatzidis, Mercouri
2015-03-01
Electron-phonon interactions can give rise to various charge-ordered states, especially at low dimensions, where Fermi surface is more prone to form nesting. Rare earth tritellurides compound ErTe3 develops charge density waves (CDW) along two perpendicular directions at different temperatures. By directly probing the order parameters of the two CDWs using femtosecond electron crystallography under different temperatures and driving photonic energy, we investigated the emergences of competing CDW orders in a dynamical phase diagram. The anisotropic symmetry breaking and the role of electron-phonon coupling, and photo-doping effect are discussed in reference to other CDW systems. Our work is supported by Department of Energy under Grant No. DE-FG02-06ER46309.
Energy Technology Data Exchange (ETDEWEB)
Mohammadkhani, R., E-mail: rmkhani@znu.ac.ir; Hassanloo, Gh.
2014-11-01
We have studied the tunneling conductance of a clean two dimensional electron gas/p- wave superconductor junction with Rashba spin–orbit coupling (RSOC) which is present in the normal layer and at the interface. Using the extended Blonder–Tinkham–Klapwijk formalism we have found that the subgap conductance peaks are shifted to a nonzero bias by RSOC at the interface which are the same as Ref. [1]. It is shown that for low insulating barrier and in the absence of the interface RSOC, the tunneling conductance decreases within energy gap with increasing of the RSOC in the normal layer while for high insulating barrier it enhances by increase of the RSOC. We have also shown that the RSOC inside the normal cannot affect the location of the subgap conductance peaks shifted by the interface RSOC.
Yanagisawa, Takashi
2016-11-01
The ground state of the two-dimensional (2D) Hubbard model is investigated by adopting improved wave functions that take into account intersite electron correlation beyond the Gutzwiller ansatz. The ground-state energy is lowered considerably, giving the best estimate of the ground-state energy for the 2D Hubbard model. There is a crossover from weakly to strongly correlated regions as the on-site Coulomb interaction U increases. The antiferromagnetic correlation induced by U is reduced for hole doping when U is large, being greater than the bandwidth, thus increasing the kinetic energy gain. The spin and charge fluctuations are induced in the strongly correlated region. These antiferromagnetic and kinetic charge fluctuations induce electron pairings, which results in high-temperature superconductivity.
Aharonovich, Igal
2016-01-01
We present a simple method to expedite simulation of quantum wave-packet dynamics by more than a factor of $2$ with the Strang split-operator propagation. Dynamics of quantum wave-packets are often evaluated using the the \\emph{Strang} split-step propagation, where the kinetic part of the Hamiltonian $\\hat{T}$ and the potential part $\\hat{V}$ are piecewise integrated according to $e^{- i \\hat{H} \\delta t} \\approx e^{- i \\hat{V} \\delta t/2} e^{- i \\hat{T}\\delta t} e^{- i \\hat{V} \\delta t/2}$, which is accurate to second order in the propagation time $\\delta t$. In molecular quantum dynamics, the potential propagation occurs over multiple coupled potential surfaces and requires matrix exponentiation for each position in space and time which is computationally demanding. Our method employs further splitting of the potential matrix $\\hat{V}$ into a diagonal space dependent part $\\hat{V}_{D}(R)$ and an off-diagonal time-dependent coupling-field $\\hat{V}_{OD}(t)$, which then requires only a single matrix exponentia...
Time-dependent quantum wave packet dynamics to study charge transfer in heavy particle collisions
Zhang, Song Bin; Wu, Yong; Wang, Jian Guo
2016-12-01
The method of time-dependent quantum wave packet dynamics has been successfully extended to study the charge transfer/exchange process in low energy two-body heavy particle collisions. The collision process is described by coupled-channel equations with diabatic potentials and (radial and rotational) couplings. The time-dependent coupled equations are propagated with the multiconfiguration time-dependent Hartree method and the modulo squares of S-matrix is extracted from the wave packet by the flux operator with complex absorbing potential (FCAP) method. The calculations of the charge transfer process 12Σ+ H-(1s2) +Li(1 s22 s ) →22Σ+ /32 Σ+ /12 Π H(1 s ) +Li-(1s 22 s 2 l ) (l =s ,p ) at the incident energy of about [0.3, 1.3] eV are illustrated as an example. It shows that the calculated reaction probabilities by the present FCAP reproduce that of quantum-mechanical molecular-orbital close-coupling very well, including the peak structures contributed by the resonances. Since time-dependent external interactions can be directly included in the present FCAP calculations, the successful implementation of FCAP provides us a powerful potential tool to study the quantum control of heavy particle collisions by lasers in the near future.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco
2017-05-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.
Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji
2012-02-01
Organic materials form crystals by relatively weak Van der Waals attraction between molecules, and thus differ fundamentally from covalently bonded semiconductors. Carriers in the organic semiconductors induce the drastic lattice deformation, which is called as polaron state. The polaron effect on the transport is a serious problem. Exactly what conduction mechanism applies to organic semiconductors has not been established. Therefore, we have investigated the transport properties using the Time-Dependent Wave-Packet Diffusion (TD-WPD) method [1]. To consider the polaron effect on the transport, in the methodology, we combine the wave-packet dynamics based on the quantum mechanics theory with the molecular dynamics. As the results, we can describe the electron motion modified by (electron-phonon mediated) time-dependent structural change. We investigate the transport property from an atomistic viewpoint and evaluate the mobility of organic semiconductors. We clarify the temperature dependence of mobility from the thermal activated behavior to the power law behavior. I will talk about these results in my presentation. [1] H. Ishii, N. Kobayashi, K. Hirose, Phys. Rev. B, 82 085435 (2010).
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Ba Phi [Central University of Construction, Tuy Hoa (Viet Nam); Kim, Ki Hong [Ajou University, Suwon (Korea, Republic of)
2014-02-15
We study numerically the dynamics of an initially localized wave packet in one-dimensional nonlinear Schroedinger lattices with both local and nonlocal nonlinearities. Using the discrete nonlinear Schroedinger equation generalized by including a nonlocal nonlinear term, we calculate four different physical quantities as a function of time, which are the return probability to the initial excitation site, the participation number, the root-mean-square displacement from the excitation site and the spatial probability distribution. We investigate the influence of the nonlocal nonlinearity on the delocalization to self-trapping transition induced by the local nonlinearity. In the non-self-trapping region, we find that the nonlocal nonlinearity compresses the soliton width and slows down the spreading of the wave packet. In the vicinity of the delocalization to self-trapping transition point and inside the self-trapping region, we find that a new kind of self-trapping phenomenon, which we call partial self-trapping, takes place when the nonlocal nonlinearity is sufficiently strong.
Zagoya, C; Ronto, M; Shalashilin, D V; Faria, C Figueira de Morisson
2014-01-01
We assess the suitability of quantum and semiclassical initial value representations, exemplified by the coupled coherent states (CCS) method and the Herman Kluk (HK) propagator, respectively, for modeling the dynamics of an electronic wave packet in a strong laser field, if this wave packet is initially bound. Using Wigner quasiprobability distributions and ensembles of classical trajectories, we identify signatures of over-the-barrier and tunnel ionization in phase space for static and time-dependent fields and the relevant sets of phase-space trajectories in order to model such features. Overall, we find good agreement with the full solution of the time-dependent Schr\\"odinger equation (TDSE) for Wigner distributions constructed with both initial-value representations. Our results indicate that the HK propagator does not fully account for tunneling and over-the-barrier reflections. However, it is able to partly reproduce features associated with the wave packet crossing classically forbidden regions, altho...
Quantum black hole wave packet: Average area entropy and temperature dependent width
Directory of Open Access Journals (Sweden)
Aharon Davidson
2014-09-01
Full Text Available A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator. The entropy of the mass spectrum acquires then independent contributions from the average mass and the width. Hence, Bekenstein's area entropy is formulated using the 〈mass2〉 average, leaving the 〈mass〉 average to set the Hawking temperature. The width function peaks at the Planck scale for an elementary (zero entropy, zero free energy micro black hole of finite rms size, and decreases Doppler-like towards the classical limit.
Yenn Chong, See; Lee, Jung-Ryul; Yik Park, Chan
2013-03-01
Conventional threshold crossing technique generally encounters the difficulty in setting a common threshold level in the extraction of the respective time-of-flights (ToFs) and amplitudes from the guided waves obtained at many different points by spatial scanning. Therefore, we propose a statistical threshold determination method through noise map generation to automatically process numerous guided waves having different propagation distances. First, a two-dimensional (2-D) noise map is generated using one-dimensional (1-D) WT magnitudes at time zero of the acquired waves. Then, the probability density functions (PDFs) of Gamma distribution, Weibull distribution and exponential distribution are used to model the measured 2-D noise map. Graphical goodness-of-fit measurements are used to find the best fit among the three theoretical distributions. Then, the threshold level is automatically determined by selecting the desired confidence level of the noise rejection in the cumulative distribution function of the best fit PDF. Based on this threshold level, the amplitudes and ToFs are extracted and mapped into a 2-D matrix array form. The threshold level determined by the noise statistics may cross the noise signal after time zero. These crossings are represented as salt-and-pepper noise in the ToF and amplitude maps but finally removed by the 1-D median filter. This proposed method was verified in a thick stainless steel hollow cylinder where guided waves were acquired in an area of 180 mm×126 mm of the cylinder by using a laser ultrasonic scanning system and an ultrasonic sensor. The Gamma distribution was estimated as the best fit to the verification experimental data by the proposed algorithm. The statistical parameters of the Gamma distribution were used to determine the threshold level appropriate for most of the guided waves. The ToFs and amplitudes of the first arrival mode were mapped into a 2-D matrix array form. Each map included 447 noisy points out of 90
Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets
Pullen, M G; Le, A -T; Baudisch, M; Sclafani, M; Pires, H; Schröter, C D; Ullrich, J; Moshammer, R; Pfeifer, T; Lin, C D; Biegert, J
2016-01-01
The ability to directly follow and time resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as {\\pi}g) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval of the structure of randomly oriented O2 and C2H2 molecules, with {\\pi}g and {\\pi}u symmetries, respectively, and where their ionisation probabilities do not maximise along their molecular axes. While this removes a serious bottleneck for laser induced diffraction imaging, we find unexpec...
Tunneling wave packets of atoms from intense elliptically polarized fields in natural geometry
Han, Meng; Li, Min; Liu, Ming-Ming; Liu, Yunquan
2017-02-01
We study strong-field tunneling of atoms in intense elliptically polarized laser fields in natural tunneling geometry. We obtain the temporal- and spatial-dependent tunneling ionization rates, the transverse and longitudinal momentum distributions, and the position distributions of the tunnel exit in parabolic coordinates. The tunneling electron wave packets at the tunnel exit are three dimensionally characterized for both momentum and spatial distributions. The conjunction between the tunneling point and the classical propagation of the widely used semiclassical model are naturally connected. We further calculate the ellipticity-dependent photoelectron momentum distributions on the detector, which are validated by comparison with the exact results through numerically solving the time-dependent Schrödinger equation. The theory clarifies crucial questions about strong-field tunneling ionization, which has important implications for the attoclock with elliptical or circular fields, photoelectron holography, molecular orbital imaging, etc.
Five-wave-packet quantum error correction based on continuous-variable cluster entanglement
Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi
2015-10-01
Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.
Electronic excitation by short x-ray pulses: from quantum beats to wave packet revivals
Rivière, P.; Iqbal, S.; Rost, J. M.
2014-06-01
We propose a simple way to determine the periodicities of wave packets (WPs) in quantum systems directly from the energy differences of the states involved. The resulting classical periods and revival times are more accurate than those obtained with the traditional expansion of the energies about the central quantum number \\overline{n}, especially when \\overline{n} is low. The latter type of WP motion occurs upon excitation of highly charged ions with short XUV or x-ray pulses. Moreover, we formulate the WP dynamics in such a form that it directly reveals the origin of phase shifts in the maxima of the autocorrelation function, a phenomenon most prominent in the low \\overline{n} WP dynamics.
Rapid propagation of a Bloch wave packet excited by a femtosecond ultraviolet pulse
Krasovskii, E. E.; Friedrich, C.; Schattke, W.; Echenique, P. M.
2016-11-01
Attosecond streaking spectroscopy of solids provides direct observation of the dynamics of electron excitation and transport through the surface. We demonstrate the crucial role of the exciting field in electron propagation and establish that the lattice scattering of the outgoing electron during the optical pumping leads to the wave packet moving faster than with the group velocity and faster than the free electron. We solve the time-dependent Schrödinger equation for a model of laser-assisted photoemission, with inelastic scattering treated as electron absorption and alternatively by means of random collisions. For a weak lattice scattering, the phenomenological result that the photoelectron moves with the group velocity d E /d ℏ k and traverses on average the distance equal to the mean-free path is proved to hold even at very short traveling times. This offers a novel interpretation of the delay time in streaking experiment and sheds new light on tunneling in optoelectronic devices.
Five-wave-packet quantum error correction based on continuous-variable cluster entanglement.
Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi
2015-10-26
Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.
The Liouville equation for flavour evolution of neutrinos and neutrino wave packets
Hansen, Rasmus Sloth Lundkvist
2016-01-01
We consider several aspects related to the form, derivation and applications of the Liouville equation (LE) for flavour evolution of neutrinos. To take into account the quantum nature of neutrinos we derive the evolution equation for the matrix of densities using wave packets instead of Wigner functions. The obtained equation differs from the standard LE by an additional term which is proportional to the difference of group velocities. We show that this term describes loss of the propagation coherence in the system. In absence of inelastic collisions, the LE can be reduced to a single derivative equation over a trajectory coordinate. Additional time and spacial dependence may steam from initial (production) conditions. The transition from single neutrino evolution to the evolution of a neutrino gas is considered.
Stienkemeier, Frank
2017-06-01
Time-resolved coherent spectroscopy has opened many new directions to study ultrafast dynamics in complex quantum systems. While most applications have been achieved in the condensed phase, we are focusing on dilute gas phase samples, in particular, on doped helium droplet beams. Isolation in such droplets at millikelvin temperatures provides unique opportunities to synthesize well-defined complexes, to prepare specific ro-vibronic states, and study their dynamics. To account for the small densities in our samples, we apply a phase modulation technique in order to reach enough sensitivity and a high spectral resolution in electronic wave packet interferometry experiments. The combination with mass-resolved ion detection enabled us e.g. to characterize vibrational structures of excimer molecules. By extending this technique we have observed collective resonances in samples of very low density (10^8 cm^{-3}). With a variant of this method, we are currently elaborating the implementation of nonlinear all-XUV spectroscopy.
Wave-packet analysis of strong-field ionization of sodium in the quasistatic regime*
Bunjac, Andrej; Popović, Duška B.; Simonović, Nenad S.
2016-05-01
Strong field ionization of the sodium atom in the tunnelling and over-the-barrier regimes is studied by examining the valence electron wave-packet dynamics in the static electric field. The lowest state energy and the ionization rate determined by this method for different strengths of the applied field agree well with the results obtained using other methods. The initial period of the nonstationary decay after switching the field on is analyzed and discussed. It is demonstrated that, if the Keldysh parameter is significantly lower than one (quasistatic regime), the probability of ionization by a laser pulse can be obtained from the static rates. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Energy Technology Data Exchange (ETDEWEB)
Vubangsi, M.; Tchoffo, M.; Fai, L. C. [Mesoscopic and Multilayer Structures Laboratory, Physics Department, University of Dschang, P.O. Box 417 Dschang (Cameroon); Pisma’k, Yu. M. [Department of Theoretical Physics, Saint Petersburg State University, Saint Petersburg (Russian Federation)
2015-12-15
The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .
Schmidt, Burkhard; Lorenz, Ulf
2017-04-01
WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.
Institute of Scientific and Technical Information of China (English)
LI JunQing; LIU Fang; XING YongZhong; ZUO Wei
2002-01-01
The quantum correspondence of the very peculiar phenomenon of classical chaos-the exponential instability of motion can be characterized by the initially exponential growth rate of the total uncertainty measurement of the propagating quantum wave packet. Our calculation indicates that quantitatively the growth rate is approximately twice the classical maximum Lyapunov exponent of the system.
Su, Xiao-Xing; Wang, Yue-Sheng; Zhang, Chuanzeng
2017-05-01
A time-domain method for calculating the defect states of scalar waves in two-dimensional (2D) periodic structures is proposed. In the time-stepping process of the proposed method, the column vector containing the spatially sampled field values is updated by multiplying it with an iteration matrix, which is written in a matrix-exponential form. The matrix-exponential is first computed by using the Suzuki's decomposition based technique of the fourth order, in which the Floquet-Bloch boundary conditions are incorporated. The obtained iteration matrix is then squared to enlarge the time-step that can be used in the time-stepping process (namely, the squaring technique), and the small nonzero elements in the iteration matrix is finally pruned to improve the sparse structure of the matrix (namely, the pruning technique). The numerical examples of the super-cell calculations for 2D defect-containing phononic crystal structures show that, the fourth order decomposition based technique for the matrix-exponential computation is much more efficient than the frequently used precise integration technique (PIT) if the PIT is of an order greater than 2. Although it is not unconditionally stable, the proposed time-domain method is particularly efficient for the super-cell calculations of the defect states in a 2D periodic structure containing a defect with a wave speed much higher than those of the background materials. For this kind of defect-containing structures, the time-stepping process can run stably for a sufficiently large number of the time-steps with a time-step much larger than the Courant-Friedrichs-Lewy (CFL) upper limit, and consequently the overall efficiency of the proposed time-domain method can be significantly higher than that of the conventional finite-difference time-domain (FDTD) method. Some physical interpretations on the properties of the band structures and the defect states of the calculated periodic structures are also presented.
Vetoshkin, Evgeny; Babikov, Dmitri
2007-09-28
For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.
Directory of Open Access Journals (Sweden)
Qian Wan
2015-04-01
Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.
Afraimovich, E. L.; Edemsky, I. K.; Voeykov, S. V.; Yasukevich, Y. V.; Zhivetiev, I. V.
2009-04-01
The great variety of solar terminator (ST) -linked phenomena in the atmosphere gave rise to a num¬ber of studies on the analysis of ionosphere parameter variations obtained by different ionosphere sounding methods. Main part of experimental data was obtained using methods for analyzing the spectrum of ionosphere parameter variations in separate local points. To identify ST-generated wave disturbances it is necessary to measure the dynamic and spectral characteristics of the wave disturbances and to compare it with spatial-temporal characteristics of ST. Using TEC measurements from the dense network of GPS sites GEONET (Japan), we have obtained the first GPS-TEC image of the space structure of medium-scale traveling wave packets (MS TWP) excited by the solar terminator. We use two known forms of the 2D GPS-TEC image for our presentation of the space structure of ST-generated MS TWP: 1) - the diagram "distance-time"; 2) - the 2D-space distribution of the values of filtered TEC series dI (λ, φ, t) on the latitude φ and longitude λ for each 30-sec TEC counts. We found that the time period and wave-length of ST-generated wave packets are about 10-20 min and 200-300 km, respectively. Dynamic images analysis of dI (λ, φ, t) gives precise estimation of velocity and azimuth of TWP wave front propagation. We use the method of determining velocity of traveling ionosphere disturbances (SADM-GPS), which take into account the relative moving of subionosphere points. We found that the velocity of the TWP phase front, traveling along GEONET sites, varies in accordance with the velocity of the ST line displacement. The space image of MS TWP manifests itself in pronounced anisotropy and high coherence over a long distance of about 2000 km. The TWP wave front extends along the ST line with the angular shift of about 20°. The hypothesis on the connection between the TWP generation and the solar terminator can be tested in the terminator local time (TLT) system: d
Design of two-dimensional ultrasonic wave wind speed and wind direction sensor%二维超声波风速风向传感器设计
Institute of Scientific and Technical Information of China (English)
张东明; 曹晓钟; 马尚昌
2015-01-01
Wind speed is an important factor meteorological forecast,accurate forecasting of wind speed,has certain influence on people’s production and living. Two-dimensional ultrasonic wind speed sensor is one of the most important way of wind speed measurement in meteorology and industry,on the basis of traditional ultrasonic wave anemometer,accurately adjust by measuring temperature and humidity of air,compensate influence of environmental factors such as rain and fog,design a 200 kHz ultrasonic anemometer all-weather based on STM32 processor,it is proved through experiment that the device can realize accurate wind speed and wind direction measurement,all-weather measurement error is small.%风是气象预报中的一个重要的要素，准确地预报风速，对人们的生产生活都有一定的影响。二维超声风传感器是气象与工业中最重要的风速测量方式之一，在传统的超声波测风仪器的基础上，通过测量空气温湿度来进行准确的调节，补偿了雨雾等环境因素的影响，设计一种基于STM32处理器的200 kHz全天候超声测风仪，通过实验证明：该装置可以实现全天候精确测量风速风向，测量误差小。
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Afraimovich, E.; Lesyuta, O.; Lipko, Yu.; Perevalova, N.; Voyeikov, S.; Vodyannikov, V.; Yakovets, A.; Jacobi, Ch.
This report discusses the experimental research results on the morphology and physi- cal origin of total electron content (TEC) pulsations as measured using the data from the global GPS network. Periodic electron density oscillations of the type of wave packets were investigated previously in terms of the hypothesis of their association with geomagnetic field (GP) pulsations. The greater part of evidence of the association between GP ad periodic electron density oscillations in the ionosphere was obtained by recording the frequency Doppler shift if the ionosphere-reflected radio signal and TEC variations measured using signals from geostationary satellites. However, many years of investigations have not yet provided thorough insight into the mechanisms ac- counting for the linkage between GP and ionospheric variations. One reason for that is the difficulty associated with obtaining statistically significant sets of experimental data. The use of the international ground-based network of two-frequency receivers of the navigation GPS system which comprised no less than 900 site as of August 2001 and is currently placing the data on the Internet, opens up a new era of a global, con- tinuous and fully computerized monitoring of ionospheric disturbances of a different class. This report presents a global morphology of TEC pulsations for 50 days with a different level of geomagnetic activity and the number of stations of the global GPS network from 100 to 300. A total number of the "receiver - GPS satellites" radio paths used in the analysis is about 500,000. Quasi-periodic TEC variations in the range of periods from 10 to 20 min are investigated, which is dictated by the fact that the data from the global GPS network are placed on the Internet with a standard temporal res- olution of 30 s. Most often, the observed TEC pulsations represent wave packets with a duration on the order of 1 hour. It was found that such TEC pulsations are a rela- tively rare event and are
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
DEFF Research Database (Denmark)
Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus
2010-01-01
Theoretical calculations on dissociative double ionization of H2 and D2 in short intense laser pulses using the Monte Carlo wave packet technique are presented for several different field intensities, wavelengths, and pulse durations. We find convincing agreement between theory and experimental...... results for the kinetic energy release spectra of the nuclei. Besides the correctly predicted spectra the Monte Carlo wave packet method offers insight into the nuclear dynamics during the pulse and makes it possible to address the origin of different structures observed in the spectra. Three......-photon resonances in the singly ionized molecule and charge-resonance-enhanced ionization are shown to be the main processes responsible for the observed nuclear energy distributions....
Xie, Xinhua; Kartashov, Daniil; Zhang, Li; Baltuška, Andrius; Kitzler, Markus
2016-01-01
We report on the observation of subcycle interferences of electron wave packets released during the strong field ionization of H$_2$ with cycle-shaped two-color laser fields. With a reaction microscope, channel-resolved photoelectron momentum distribution are obtained for different final products originating from single ionization of H$_2$. Our results show that the subcycle interference structures of electron wave packet are very sensitive to the cycle-shape of the two-color laser field. The reason is that the ionization time within an optical cycle is determined by the cycle-shape of the laser field. The subcycle interference structures can be further used to get the subcycle dynamics of molecules during strong field interaction.
Energy Technology Data Exchange (ETDEWEB)
Mahapatra, Susanta; Ritschel, Thomas
2003-04-15
We report theoretical investigations on the second photoelectron band of chlorine dioxide molecule by ab initio quantum dynamical methods. This band exhibits a highly complex structure and represents a composite portrait of five excited energetically close-lying electronic states of ClO{sub 2}{sup +}. Much of this complexity is likely to be arising due to strong vibronic interactions among these electronic states - which we address and examine herein. The near equilibrium MRCI potential energy surfaces (PESs) of these five cationic states reported by Peterson and Werner [J. Chem. Phys. 99 (1993) 302] for the C{sub 2v} configuration, are extended for the C{sub s} geometry assuming a harmonic vibration along the asymmetric stretching mode. The strength of the vibronic coupling parameters of the Hamiltonian are calculated by ab initio CASSCF-MRCI method and conical intersections of the PESs are established. The diabatic Hamiltonian matrix is constructed within a linear vibronic coupling scheme and the resulting PESs are employed in the nuclear dynamical simulations, carried out with the aid of a time-dependent wave packet approach. Companion calculations are performed for transitions to the uncoupled electronic states in order to reveal explicitly the impact of the nonadiabatic coupling on the photoelectron dynamics. The theoretical findings are in good accord with the experimental observations. The femtosecond nonradiative decay dynamics of ClO{sub 2}{sup +} excited electronic states mediated by conical intersections is also examined and discussed.
Trojan Wave Packets in the Quantum Cavity within the Extended Jaynes-Cummings Model
Kalinski, Matt
2016-05-01
Some time ago we have developed the theory of the Trojan Wave Packets (TWP) in the classical strong Circularly Polarized electromagnetic field in terms of the Mathieu generating functions. We have discovered that by the proper partitioning of the Coulomb spectrum i.e. by considering the deviation from the circularity and the vertical tilt of the undressed states as the new quantum numbers we can reduce the problem to the problem of several non-interacting quantum pendula for the Stark-Zeeman field dressed states. The TWP in the infinite physical space however turned out to be weakly unstable due to the spontaneous emission. Here we develop the theory in which the TWP is truly eternal when the electromagnetic interactions are considered quantum and the field is confined by the perfect quantum cavity boundary conditions. First we extend the Jaynes-Cummings (JC) model from the two to the infinite number of levels interacting with the one or two perfectly resonant quantum modes of the electromagnetic field. Similarly the model of JC and our previous pendular model the dressed electron-field eigenstates are constructed within the weakly interacting manifolds. Superpositions of those states are possible with the quantum electron density moving on the circular trajectories.
Wächtler, Maria; Guthmuller, Julien; Kupfer, Stephan; Maiuri, Margherita; Brida, Daniele; Popp, Jürgen; Rau, Sven; Cerullo, Giulio; Dietzek, Benjamin
2015-05-18
The hydrogen-evolving photocatalyst [(tbbpy)2 Ru(tpphz)Pd(Cl)2 ](2+) (tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine, tpphz=tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) shows excitation-wavelength-dependent catalytic activity, which has been correlated to the localization of the initial excitation within the coordination sphere. In this contribution the excitation-wavelength dependence of the early excited-state relaxation and the occurrence of vibrational coherences are investigated by sub-20 fs transient absorption spectroscopy and DFT/TDDFT calculations. The comparison with the mononuclear precursor [(tbbpy)2 Ru(tpphz)](2+) highlights the influence of the catalytic center on these ultrafast processes. Only in the presence of the second metal center, does the excitation of a (1) MLCT state localized on the central part of the tpphz bridge lead to coherent wave-packet motion in the excited state. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kroh, Tim; Ahlrichs, Andreas; Sprenger, Benjamin; Benson, Oliver
2017-09-01
Future quantum networks require a hybrid platform of dissimilar quantum systems. Within the platform, joint quantum states have to be mediated either by single photons, photon pairs or entangled photon pairs. The photon wavelength has to lie within the telecommunication band to enable long-distance fibre transmission. In addition, the temporal shape of the photons needs to be tailored to efficiently match the involved quantum systems. Altogether, this requires the efficient coherent wavelength-conversion of arbitrarily shaped single-photon wave packets. Here, we demonstrate the heralded temporal filtering of single photons as well as the synchronisation of state manipulation and detection as key elements in a typical experiment, besides of delaying a photon in a long fibre. All three are realised by utilising commercial telecommunication fibre-optical components which will permit the transition of quantum networks from the lab to real-world applications. The combination of these renders a temporally filtering single-photon storage in a fast switchable fibre loop possible.
Zauleck, Julius P P; Thallmair, Sebastian; Loipersberger, Matthias; de Vivie-Riedle, Regina
2016-12-13
The curse of dimensionality still remains as the central challenge of molecular quantum dynamical calculations. Either compromises on the accuracy of the potential landscape have to be made or methods must be used that reduce the dimensionality of the configuration space of molecular systems to a low dimensional one. For dynamic approaches such as grid-based wave packet dynamics that are confined to a small number of degrees of freedom this dimensionality reduction can become a major part of the overall problem. A common strategy to reduce the configuration space is by selection of a set of internal coordinates using chemical intuition. We devised two methods that increase the degree of automation of the dimensionality reduction as well as replace chemical intuition by more quantifiable criteria. Both methods reduce the dimensionality linearly and use the intrinsic reaction coordinate as guidance. The first one solely relies on the intrinsic reaction coordinate (IRC), whereas the second one uses semiclassical trajectories to identify the important degrees of freedom.
Energy Technology Data Exchange (ETDEWEB)
Sindona, A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy) and Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)]. E-mail: sindona@fis.unical.it; Riccardi, P. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Maletta, S. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Rudi, S.A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Falcone, G. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)
2007-05-15
Secondary emission of Ag{sup -} and Au{sup -} particles, following the sputtering of clean Ag(1 0 0) and Au(1 0 0) targets, respectively, is studied with a Crank-Nicholson wave-packet propagation method. A one-electron pseudo-potential is used to describe the plane metal surface, with a projected band gap, the ejected ion, whose charge state is investigated, and its nearest-neighbor substrate ion, put in motion by the collision cascade generated by the primary ion beam. Time-dependent Schroedinger equation is solved backwards in time to determine the evolution of the affinity orbital of the negative particles from an instant when they are unperturbed, at distances of the order of {approx}10{sup 2} a.u. from the surface, to the instant of ejection. The probability that a band electron will be eventually detected in affinity state of the ejected particle is, thus, calculated and compared with the result of another method based on the spectral decomposition of the one-electron Hamiltonian.
Signatures of chaos and non-integrability in two-dimensional gravity with dynamical boundary
Directory of Open Access Journals (Sweden)
Fitkevich Maxim
2016-01-01
Full Text Available We propose a model of two-dimensional dilaton gravity with a boundary. In the bulk our model coincides with the classically integrable CGHS model; the dynamical boundary cuts of the CGHS strong-coupling region. As a result, classical dynamics in our model reminds that in the spherically-symmetric gravity: wave packets of matter fields either reflect from the boundary or form black holes. We find large integrable sector of multisoliton solutions in this model. At the same time, we argue that the model is globally non-integrable because solutions at the verge of black hole formation display chaotic properties.
Characterization of a quantum phase transition in Dirac systems by means of the wave-packet dynamics
Directory of Open Access Journals (Sweden)
E. Romera
2012-12-01
Full Text Available We study the signatures of phase transitions in the time evolution of wave-packets by analyzing two simple model systems: a graphene quantum dot model in a magnetic field and a Dirac oscillator in a magnetic field. We have characterized the phase transitions using the autocorrelation function. Our work also reveals that the description in terms of Shannon entropy of the autocorrelation function is a clear phase transition indicator.
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets extracted from SAR imagery that were binned in 30x30 second latitude/longitude polygon grid cells. Statistics were...
Prodhan, Suryoday
2016-01-01
Singlet fission is a potential pathway for significant enhancement of efficiency in organic solar cells. In this article, we have studied singlet fission in a pair of polyene molecules employing exact many-body wave packet dynamics. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions and site charge-bond charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schr\\"{o}dinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, $2{}^1A$ excited singlet state leads to significant fission yield while the $1{}^1B$ state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, singlet state derived from $1{}^1B$ state also gives si...
Prodhan, Suryoday; Ramasesha, S.
2017-08-01
Singlet fission (SF) is a potential pathway for significant enhancement of efficiency in organic solar cells (OSC). In this paper, we study singlet fission in a pair of polyene molecules in two different stacking arrangements employing exact many-body wave packet dynamics. In the noninteracting model, the SF yield is absent. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions, and site-charge-bond-charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schrödinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, 2 1A excited singlet state leads to significant SF yield while the 1 1B state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, the lowest excited state will have sufficient 2 1A character and hence results in significant SF yield. Because of rapid internal conversion, the nature of the lowest excited singlet will determine the SF contribution to OSC efficiency. Furthermore, we find the fission yield depends considerably on the stacking arrangement of the polyene molecules.
Wasilewski, W; Wasilewski, Wojciech
2005-01-01
We analyze quantum entanglement of Stokes light and atomic electronic polarization excited during single-pass, linear-regime, stimulated Raman scattering in terms of optical wave-packet modes and atomic-ensemble spatial modes. The output of this process is confirmed to be decomposable into multiple discrete, bosonic mode pairs, each pair undergoing independent evolution into a two-mode squeezed state. For this we extend the Bloch-Messiah reduction theorem, previously known for discrete linear systems (S. L. Braunstein, Phys. Rev. A, vol. 71, 055801 (2005)). We present typical mode functions in the case of one-dimensional scattering in an atomic vapor. We find that in the absence of dispersion, one mode pair dominates the process, leading to a simple interpretation of entanglement in this continuous-variable system. However, many mode pairs are excited in the presence of dispersion-induced temporal walkoff of the Stokes, as witnessed by the photon-count statistics. We also consider the readout of the stored at...
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
CSIR Research Space (South Africa)
Naidoo, K
2011-06-01
Full Text Available et al. (1999) investigated the effect of continuous rapid wedge rotation on the point of transition with Euler CFD on moving meshes. In contrast to the work by Markelov et al. (1999), Khotyanovsky et al. (1999) considered larger move- ments... between the three-dimensional Euler CFD predictions of Ivanov et al. (2001) and their measurements from experiments with the finite aspect ratio wedge. This agreement established confidence in their two-dimensional Mach stem predictions with Euler CFD...
Energy Technology Data Exchange (ETDEWEB)
Zhao, Bin [Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: hguo@unm.edu [Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Guo, Hua, E-mail: zsun@dicp.ac.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2014-06-21
A recently proposed transition-state wave packet method [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)] provides an efficient and intuitive framework to study reactive quantum scattering at the state-to-state level. It propagates a few transition-state wave packets, defined by the eigenfunctions of the low-rank thermal flux operator located near the transition state, into the asymptotic regions of the reactant and product arrangement channels separately using the corresponding Jacobi coordinates. The entire S-matrix can then be assembled from the corresponding flux-flux cross-correlation functions for all arrangement channels. Since the transition-state wave packets can be defined in a relatively small region, its transformation into either the reactant or product Jacobi coordinates is accurate and efficient. Furthermore, the grid/basis for the propagation, including the maximum helicity quantum number K, is much smaller than that required in conventional wave packet treatments of state-to-state reactive scattering. This approach is implemented for atom-diatom reactions using a time-dependent wave packet method and applied to the H + D{sub 2} reaction with all partial waves. Excellent agreement with benchmark integral and differential cross sections is achieved.
Zhao, Bin; Sun, Zhigang; Guo, Hua
2014-06-01
A recently proposed transition-state wave packet method [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)] provides an efficient and intuitive framework to study reactive quantum scattering at the state-to-state level. It propagates a few transition-state wave packets, defined by the eigenfunctions of the low-rank thermal flux operator located near the transition state, into the asymptotic regions of the reactant and product arrangement channels separately using the corresponding Jacobi coordinates. The entire S-matrix can then be assembled from the corresponding flux-flux cross-correlation functions for all arrangement channels. Since the transition-state wave packets can be defined in a relatively small region, its transformation into either the reactant or product Jacobi coordinates is accurate and efficient. Furthermore, the grid/basis for the propagation, including the maximum helicity quantum number K, is much smaller than that required in conventional wave packet treatments of state-to-state reactive scattering. This approach is implemented for atom-diatom reactions using a time-dependent wave packet method and applied to the H + D2 reaction with all partial waves. Excellent agreement with benchmark integral and differential cross sections is achieved.
Iihama, S.; Sasaki, Y.; Sugihara, A.; Kamimaki, A.; Ando, Y.; Mizukami, S.
2016-07-01
Coherent spin-wave generation by focused ultrashort laser pulse irradiation was investigated for a permalloy thin film at micrometer scale using an all-optical space- and time-resolved magneto-optical Kerr effect microscope. The spin-wave packet propagating perpendicular to the magnetization direction was clearly observed; however, that propagating parallel to the magnetization direction was not observed. The propagation length, group velocity, center frequency, and packet width of the observed spin-wave packet were evaluated and quantitatively explained in terms of the propagation of a magnetostatic spin wave driven by the ultrafast change of an out-of-plane demagnetization field induced by the focused-pulse laser.
Energy Technology Data Exchange (ETDEWEB)
Gray, S.K.
1994-03-01
Vibrational predissociation of XI{sub 2} and X{sub 2}I{sub 2} van der Waals complexes, with X = He and Ne, is studied with wave packets. Three-dimensional calculations are carried out on the three-atom systems. Suitable X{center_dot}{center_dot}I potential interactions are determined, and product distributions are predicted. Reduced dimension models of X{sub 2}I{sub 2}(v{prime}) {yields} 2X + I{sub 2}(v < v{prime}) are investigated. Comparison is made with available experimental results. Mechanistic issues, including the role of intramolecular vibrational relaxation resonances, are addressed.
Time-dependent wave packet approach to the pulse delay effect upon RbI photoelectron spectrum
Institute of Scientific and Technical Information of China (English)
LIU Chunhua; MENG Qingtian; ZHANG Qinggang
2006-01-01
The time-resolved photoelectron spectrum (TRPES) of Rbl molecule is simulated using the time-dependent wave-packet method. Both the normal three-photon ionization process and auto-ionization process are involved in the simulation. The calculated results show that the change of delay time will influence the shape of the photoelectron spectrum (PES), and the influence is substantially due to the existence of the crossing between excited states and the strong laser field which will change the position of relevant curves.
Kreisbeck, C.; Kramer, T.; Molina, R. A.
2017-04-01
We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin–Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.
Goussev, Arseni; Dorfman, J. Robert
2006-01-01
We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wave length, while being small compared to the size of the ...
Energy Technology Data Exchange (ETDEWEB)
Sanz, A.S., E-mail: asanz@iff.csic.es [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain); Martínez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G. [Instituto Superior de Tecnologías y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Quinta de Los Molinos, Plaza, La Habana 10600 (Cuba); Miret-Artés, S. [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain)
2014-08-15
Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum.
Malakar, Y.; Kaderiya, B.; Zohrabi, M.; Pearson, W. L.; Ziaee, F.; Kananka Raju, P.; Ben-Itzhak, I.; Rolles, D.; Rudenko, A.
2016-05-01
Light-driven vibrational wave packets play an important role in molecular imaging and coherent control applications. Here we present the results of a pump-probe experiment characterizing laser-induced vibrational wave packets in both, neutral and ionic states of CH3 I (iodomethane), one of the prototypical polyatomic systems. Measuring yields and kinetic energies of all ionic fragments as a function of the time delay between two 25 fs, 800 nm pump and probe pulses, we map vibrational motion of the molecule, and identify the states involved by channel-resolved Fourier spectroscopy. In the Coulomb explosion channels we observe features with ~ 130 fs periodicity resulting from C-I symmetric stretch (ν3 mode) of the electronically excited cationic state. However the Fourier transform of the low-energy I+ ion yield produced by the dissociative ionization of CH3 I reveals the signatures of the same vibrational mode in the ground electronic states of both, neutral and cation, reflected in 65-70 fs oscillations. We observe the degeneration of the oscillatory structures from the cationic states within ~ 2 ps and discuss most likely reasons for this behavior. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. DOE. K. R. P. and W. L. P. supported by NSF Award No. IIA-143049.
Energy Technology Data Exchange (ETDEWEB)
Mandal, Ruma; Laha, Pinaki; Das, Kaustuv; Saha, Susmita; Barman, Saswati; Raychaudhuri, A. K.; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India)
2013-12-23
We show that the optically induced spin wave spectra of nanoscale Ni{sub 80}Fe{sub 20} (permalloy) antidot lattices can be tuned by changing the antidot shape. The spin wave spectra also show an anisotropy with the variation of the in-plane bias field orientation. Analyses show this is due to various quantized and extended modes, whose nature changes with the antidot shape and bias field orientation as a result of the variation of the internal magnetic field profile. The observed variation and anisotropy in the spin waves with the internal and external parameters are important for their applications in magnonic devices.
Directory of Open Access Journals (Sweden)
C. L. Fern
2007-02-01
Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.
National Research Council Canada - National Science Library
Lorenzo Matteini; Simone Landi; Luca Del Zanna; Marco Velli; Petr Hellinger
2010-01-01
The parametric instability of a monochromatic shear Alfvén wave in oblique propagation with respect the ambient magnetic field is investigated in a kinetic regime, performing one-dimensional (1-D...
Konkin, D. A.; Litvinov, R. V.; Parfenova, E. S.; Rakhim, R. A. A.; Stukach, O. V.
2016-11-01
We consider the frequency dependence of propagation constants (phase dispersion) and of the spatial distribution of the electromagnetic field (shape dispersion) of guided optical TE modes in a thin left-handed film. It is shown that the spatiotemporal transformation of narrow-band intramode wave packets with the spectrum adjacent to the frequency of the zero group velocity is caused by the dispersion of both types. The propagation velocity of the power carried by such wave packets is significantly lower than the group velocity of light in a bulk left-handed metamaterial.
DEFF Research Database (Denmark)
Marquetand, P.; Materny, A.; Henriksen, Niels Engholm
2004-01-01
We regard the rovibrational wave packet dynamics of NaI in a static electric field after femtosecond excitation to its first electronically excited state. The following quasibound nuclear wave packet motion is accompanied by a bonding situation changing from covalent to ionic. At times when...... the charge separation is present, i.e., when the bond-length is large, a strong dipole moment exists and rotational excitation takes place. Upon bond contraction, the then covalently bound molecule does not experience the external field. This scenario repeats itself periodically. Thus, the vibrational...
Blanc, Emilie; Chiavassa, Guillaume; Lombard, Bruno
2013-12-01
An explicit finite-difference scheme is presented for solving the two-dimensional Biot equations of poroelasticity across the full range of frequencies. The key difficulty is to discretize the Johnson-Koplik-Dashen (JKD) model which describes the viscous dissipations in the pores. Indeed, the time-domain version of Biot-JKD model involves order 1/2 fractional derivatives which amount to a time convolution product. To avoid storing the past values of the solution, a diffusive representation of fractional derivatives is used: The convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations. The coefficients of the diffusive representation follow from an optimization procedure of the dispersion relation. Then, various methods of scientific computing are applied: The propagative part of the equations is discretized using a fourth-order finite-difference scheme, whereas the diffusive part is solved exactly. An immersed interface method is implemented to discretize the geometry on a Cartesian grid, and also to discretize the jump conditions at interfaces. Numerical experiments are proposed in various realistic configurations.
Energy Technology Data Exchange (ETDEWEB)
Deckers, Elke [Department of Mechanical Engineering, Katholieke Universiteit Leuven, 3001 Heverlee (Belgium); Claeys, Claus; Atak, Onur [Department of Mechanical Engineering, Katholieke Universiteit Leuven, 3001 Heverlee (Belgium); Groby, Jean-Philippe; Dazel, Olivier [Laboratiore d' Acoustique de l' Universiteé du Maine, L' Université Nantes Angers Le Mans, Université du Maine, CNRS, UMR-6613 CNRS, Avenue Olivier Messiaen, 72085 Le Mans (France); Desmet, Wim [Department of Mechanical Engineering, Katholieke Universiteit Leuven, 3001 Heverlee (Belgium)
2016-05-01
This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch–Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch–Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Huang, Shieh-Kung; Loh, Chin-Hsiung; Chen, Chin-Tsun
2016-04-01
Seismic records collected from earthquake with large magnitude and far distance may contain long period seismic waves which have small amplitude but with dominant period up to 10 sec. For a general situation, the long period seismic waves will not endanger the safety of the structural system or cause any uncomfortable for human activity. On the contrary, for those far distant earthquakes, this type of seismic waves may cause a glitch or, furthermore, breakdown to some important equipments/facilities (such as the high-precision facilities in high-tech Fab) and eventually damage the interests of company if the amplitude becomes significant. The previous study showed that the ground motion features such as time-variant dominant frequencies extracted using moving window singular spectrum analysis (MWSSA) and amplitude characteristics of long-period waves identified from slope change of ground motion Arias Intensity can efficiently indicate the damage severity to the high-precision facilities. However, embedding a large hankel matrix to extract long period seismic waves make the MWSSA become a time-consumed process. In this study, the seismic ground motion data collected from broadband seismometer network located in Taiwan were used (with epicenter distance over 1000 km). To monitor the significant long-period waves, the low frequency components of these seismic ground motion data are extracted using wavelet packet transform (WPT) to obtain wavelet coefficients and the wavelet entropy of coefficients are used to identify the amplitude characteristics of long-period waves. The proposed method is a timesaving process compared to MWSSA and can be easily implemented for real-time detection. Comparison and discussion on this method among these different seismic events and the damage severity to the high-precision facilities in high-tech Fab is made.
Schlesinger, Martin; Stienkemeier, Frank; Strunz, Walter T
2009-01-01
Femtosecond pump-probe spectroscopy has been used to study vibrational dynamics of potassium dimers attached to superfluid helium nanodroplets. Comparing the measured data with theoretical results based on dissipative quantum dynamics we propose that the most important effect of the helium environment is a general damping of the vibrational dynamics as a result of the interaction between dimer and collective degrees of freedom of the helium droplet. The calculations allow us to explain crucial experimental findings that are unobserved in gas-phase measurements. Remarkably, best agreement with experiment is found for a model where we neglect damping once a wave packet moves below a critical velocity. In this way the results provide first direct evidence for the Landau critical velocity in superfluid nanodroplets.
Singh, D; Papini, G; Mobed, Nader; Papini, Giorgio; Singh, Dinesh
2006-01-01
We present the possibility that Dirac and Majorana neutrino wave packets can be distinguished when subject to spin-gravity interaction while propagating through vacuum described by the Lense-Thirring metric. By adopting the techniques of gravitational phase and time-independent perturbation theory following the Brillouin-Wigner method, we generate spin-gravity matrix elements from a perturbation Hamiltonian and show that this distinction is easily reflected in well-defined gravitational corrections to the neutrino oscillation length for a two-flavour system. Explicit examples are presented using the Sun and SN1987A as the gravitational sources for the Lense-Thirring metric. This approach offers the possibility to determine the absolute neutrino masses by this method and identify a theoretical upper bound for the absolute neutrino mass difference, where the distinctions between the Dirac and Majorana cases are evident. We discuss the relevance of this analysis to the upcoming attempts to measure the properties...
Institute of Scientific and Technical Information of China (English)
CHEN Shao-Hao; WANG Feng; LI Jia-Ming
2004-01-01
Introducing a theoretical method to treat time-dependent wave-packet dynamics for atom collisions, we calculate the cross sections of proton impact excitation (2s - 2p) with a Li atom by directly numerically integrating the time-dependent Schrodinger equation on a three-dimensional Cartesian mesh. Our calculated results are in good agreement with the available experimental measurements.
Energy Technology Data Exchange (ETDEWEB)
Segura, J.; Fernandez de Cordoba, P.
1993-01-01
We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)
Margerin, Ludovic; Planès, Thomas; Mayor, Jessie; Calvet, Marie
2016-01-01
Coda-wave interferometry is a technique which exploits tiny waveform changes in the coda to detect temporal variations of seismic properties in evolving media. Observed waveform changes are of two kinds: traveltime perturbations and distortion of seismograms. In the last 10 yr, various theories have been published to relate either background velocity changes to traveltime perturbations, or changes in the scattering properties of the medium to waveform decorrelation. These theories have been limited by assumptions pertaining to the scattering process itself-in particular isotropic scattering, or to the propagation regime-single-scattering and/or diffusion. In this manuscript, we unify and extend previous results from the literature using a radiative transfer approach. This theory allows us to incorporate the effect of anisotropic scattering and to cover a broad range of propagation regimes, including the contribution of coherent, singly scattered and multiply scattered waves. Using basic physical reasoning, we show that two different sensitivity kernels are required to describe traveltime perturbations and waveform decorrelation, respectively, a distinction which has not been well appreciated so far. Previous results from the literature are recovered as limiting cases of our general approach. To evaluate numerically the sensitivity functions, we introduce an improved version of a spectral technique known as the method of `rotated coordinate frames', which allows global evaluation of the Green's function of the radiative transfer equation in a finite domain. The method is validated through direct pointwise comparison with Green's functions obtained by the Monte Carlo method. To illustrate the theory, we consider a series of scattering media displaying increasing levels of scattering anisotropy and discuss the impact on the traveltime and decorrelation kernels. We also consider the related problem of imaging variations of scattering properties based on intensity
Reichert, R, S.; Biringen, S.; Howard, J. E.
1999-01-01
LINER is a system of Fortran 77 codes which performs a 2D analysis of acoustic wave propagation and noise suppression in a rectangular channel with a continuous liner at the top wall. This new implementation is designed to streamline the usage of the several codes making up LINER, resulting in a useful design tool. Major input parameters are placed in two main data files, input.inc and nurn.prm. Output data appear in the form of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed account of program usage, including input formats and graphical options. A sample run is also provided. Finally, Section 5 briefly describes the individual program files.
Nonlinear propagation of a wave packet in a hard-walled circular duct
Nayfeh, A. H.
1975-01-01
The method of multiple scales is used to derive a nonlinear Schroedinger equation for the temporal and spatial modulation of the amplitudes and the phases of waves propagating in a hard-walled circular duct. This equation is used to show that monochromatic waves are stable and to determine the amplitude dependance of the cutoff frequencies.
Yan, Limei; Zhang, Lei; Tu, Chuanyi; Marsch, Eckart; Chen, Christopher H K; Wang, Xin; Wang, Linghua; Wicks, Robert T
2016-01-01
Intensive studies have been conducted to understand the anisotropy of solar wind turbulence. However, the anisotropy of Els\\"asser variables ($\\textbf{Z}^\\pm$) in 2D wave-vector space has yet to be investigated. Here we first verify the transformation based on the projection-slice theorem between the power spectral density PSD$_{2D}(k_\\parallel,k_\\perp )$ and the spatial correlation function CF$_{2D} (r_\\parallel,r_\\perp )$. Based on the application of the transformation to the magnetic field and the particle measurements from the WIND spacecraft, we investigate the spectral anisotropy of Els\\"asser variables ($\\textbf{Z}^\\pm$), and the distribution of residual energy E$_{R}$, Alfv\\'en ratio R$_{A}$ and Els\\"asser ratio R$_{E}$ in the $(k_\\parallel,k_\\perp)$ space. The spectra PSD$_{2D}(k_\\parallel,k_\\perp )$ of $\\textbf{B}$, $\\textbf{V}$, and $\\textbf{Z}_{major}$ (the larger of $\\textbf{Z}^\\pm$) show a similar pattern that PSD$_{2D}(k_\\parallel,k_\\perp )$ is mainly distributed along a ridge inclined toward t...
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
Levanony, Dana
2010-01-01
We study the internal structure of a two-dimensional dilatonic evaporating black hole, based on the CGHS model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well-defined at the semiclassical singularity. A well-localized initial wave-packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.
Localization of Waves in Fractals : Spatial Behavior
Vries, Pedro de; Raedt, Hans De; Lagendijk, Ad
1989-01-01
Localization of a quantum particle on two-dimensional percolating networks is investigated numerically. Solving the time-dependent Schrödinger equation for particular initial wave packets we study the spatial behavior of eigenstates for two tight-binding models: the quantum percolation model and the
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Shegelski, Mark R. A.; Salayka-Ladouceur, Logan; Malmgren, Kevin
2017-01-01
We consider a one-dimensional molecule with a permanent electric dipole moment incident along the line of symmetry of a circular hole in an infinite two-dimensional conducting sheet. We calculate the probabilities of reflection p R and transmission p T of a centre of mass wave packet initially of the form of a Gaussian wave packet and moving toward the hole. We show the dependence of p T and p R on the charge Q of the atoms, the radius a of the hole as compared to the length scale 1/α of the bound molecular relative motion state, the mass and energy of the molecule. We compare a fully quantum mechanical treatment to a semiclassical approximation in which the distance between the atoms is constant. Some unexpected and surprising results emerge from this study.
Kukulin, V I
2002-01-01
The construction of the basic operators of the theory of scattering on the mass surface and beyond in the terms of the stationary wave packages, limited in the space or Eigen differentials, is described. The finite-dimensional approximations for the Green function and T-matrix are obtained for the first time on the basis of the simple single diagonalization of the Hamiltonian. It is shown that the developed approach leads to the convenient finite-dimensional presentation of the scattering operators in the basis of the wave functions of the harmonic oscillators
Two-dimensional Numerical Simulation of Melt-wave Erosion in Solid Armatures%固体电枢熔化波烧蚀的二维数值模拟
Institute of Scientific and Technical Information of China (English)
巩飞; 翁春生
2012-01-01
为了准确地反映电磁轨道炮内电枢烧蚀的特性,建立了二维固体电枢熔化波烧蚀的计算模型.采用有限差分的交替方向隐式法进行耦合计算,得到了熔化波烧蚀的变化特性.计算结果表明,烧蚀的驱动机制为速度趋肤效应,电流集中在电枢与导轨接触面的尾部边缘,使电枢焦耳热剧增导致出现烧蚀.熔化波从电枢尾部向头部推进,当传至电枢头部时,可能引发电枢转捩.%In order to reflect Armature erosion characteristics in railguns exactly, a computational model of melt-wave erosion in two-dimensional solid armatures is developed. The variation characteristics of melt-wave erosion are obtained adopting coupling calculations by using the Peaceman-Rachford(P-R) format of the finite difference method. The calculation results show that; the driving mechanism of erosion is the velocity skin effect,a concentration of current is at the rear edge of the rail-armature interface, and the erosion occurs due to the joule heating. The melt-wave moves from the back to the front of the armature. It is possible to cause an armature transition when the melt-wave reaches the front of the armature.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; QIANG Tian
2009-01-01
We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).
Directory of Open Access Journals (Sweden)
Diaz-Torres Alexis
2015-01-01
Full Text Available Recent progress in a quantitative study of the 12C+12C sub-Coulomb fusion is reported. It is carried out using full-dimensional, time-dependent wave-packet dynamics, a quantum reaction model that has not been much exploited in nuclear physics, unlike in chemical physics. The low-energy collision is described in the rotating center-of-mass frame within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave-packet through the collective potential-energy landscape that is calculated with a realistic two-center shell model. Among other preliminary results, the theoretical sub-Coulomb fusion resonances for 12C+12C seem to correspond well with observations. The method appears to be useful for expanding the cross-section predictions towards stellar energies.
Bruder, Lukas; Stienkemeier, Frank
2015-01-01
Phase-modulated wave-packet interferometry is combined with mass-resolved photoion detection to investigate rubidium atoms attached to helium nanodroplets in a molecular beam experiment. The spectra of atomic Rb electronic states show a vastly enhanced sensitivity and spectral resolution when compared to conventional pump-probe wave-packet interferometry. Furthermore, the formation of Rb*He exciplex molecules is probed and for the first time a fully resolved vibrational spectrum for transitions between the lowest excited $5\\Pi_{3/2}$ and the high-lying electronic states $2^2\\Pi$, $4^2\\Delta$, $6^2\\Sigma$ is obtained and compared to theory. The feasibility of applying coherent multidimensional spectroscopy to dilute cold gas phase samples is demonstrated in these experiments.
ACCURATE TIME-DEPENDENT WAVE PACKET STUDY OF THE H{sup +}+LiH REACTION AT EARLY UNIVERSE CONDITIONS
Energy Technology Data Exchange (ETDEWEB)
Aslan, E.; Bulut, N. [Department of Physics, Firat University, 23169 Elazig (Turkey); Castillo, J. F.; Banares, L.; Aoiz, F. J. [Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas (Unidad Asociada CSIC), Universidad Complutense de Madrid, 28040 Madrid (Spain); Roncero, O., E-mail: jfernand@quim.ucm.es [Instituto de Fisica Fundamental, CSIC, C/Serrano 123, E-28006 Madrid (Spain)
2012-11-01
The dynamics and kinetics of the H{sup +} + LiH reaction have been studied using a quantum reactive time-dependent wave packet (TDWP) coupled-channel quantum mechanical method on an ab initio potential energy surface at conditions of the early universe. The total reaction probabilities for the H{sup +} + LiH(v = 0, j = 0) {yields} H{sup +} {sub 2} + Li process have been calculated from 5 Multiplication-Sign 10{sup -3} eV up to 1 eV for total angular momenta J from 0 to 110. Using a Langevin model, integral cross sections have been calculated in that range of collision energies and extrapolated for energies below 5 Multiplication-Sign 10{sup -3} eV. The calculated rate constants are found to be nearly independent of temperature in the 10-1000 K interval with a value of Almost-Equal-To 10{sup -9} cm{sup 3} s{sup -1}, which is in good agreement with estimates used in evolutionary models of the early universe lithium chemistry.
Entropy production and wave packet dynamics in the Fock space of closed chaotic many-body systems
Flambaum, V V
2001-01-01
Highly excited many-particle states in quantum systems such as nuclei, atoms, quantum dots, spin systems, quantum computers etc., can be considered as ``chaotic'' superpositions of mean-field basis states (Slater determinants, products of spin or qubit states). This is due to a very high level density of many-body states that are easily mixed by a residual interaction between particles (quasi-particles). For such systems, we have derived simple analytical expressions for the time dependence of energy width of wave packets, as well as for the entropy, number of principal basis components and inverse participation ratio, and tested them in numerical experiments. It is shown that the energy width $\\Delta (t)$ increases linearly and very quickly saturates. The entropy of a system increases quadratically, $S(t) \\sim t^2$ at small times, and after, can grow linearly, $S(t) \\sim t$, before the saturation. Correspondingly, the number of principal components determined by the entropy, $N_{pc} \\sim exp{(S(t))}$, or by ...
Toyota, Koudai
2016-10-01
The method of the envelope Hamiltonian [K. Toyota, U. Saalmann, and J. M. Rost, New J. Phys. 17, 073005 (2015), 10.1088/1367-2630/17/7/073005] is applied to further study a detachment dynamics of a model negative ion in one dimension in the high-frequency regime. This method is based on the Floquet approach, but the time dependency of an envelope function is explicitly kept for arbitrary pulse durations. Therefore, it is capable of describing not only a photon absorption or emission, but also a nonadiabatic transition which is induced by the time-varying envelope of the pulse. It was shown that the envelope Hamiltonian accurately retrieves the results obtained by the time-dependent Schrödinger equation, and the underlying physics were well understood by the adiabatic approximation based on the envelope Hamiltonian. In this paper, we explore two more aspects of the detachment dynamics, which were not considered in our previous work. First, we determine the features of both a spatial and temporal interference of photoelectron wave packets in a photon-absorption process. We conclude that both of the interference mechanisms are universal in ionization dynamics in the high-frequency regime. Second, we extract a pulse duration which maximizes a yield of the nonadiabatic transition as a function of a pulse duration. It is shown that it becomes maximum when the pulse duration is comparable to a time scale of an electron.
Goussev, Arseni; Dorfman, J R
2006-07-01
We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wavelength, while being small compared to the size of the scatterers, is large enough to prevent the formation of geometric shadow over distances of the order of the particle's free flight path. The hard-disk or hard-sphere scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable. Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated sequence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential decay (or escape) rate and the revival peak structure are predominantly determined by the underlying classical dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorrelation function agree with predictions of the semiclassical periodic orbit theory.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Study on the time-dependent wave packet of IBr molecule%IBr分子含时波包的理论探究
Institute of Scientific and Technical Information of China (English)
赵起; 刘瑞琼; 刘玉芳
2011-01-01
The simulation of time-resolved photoelectron spectra for Ibr molecule is studied mainly. The time-dependent quantum wave packet method is employed to calculate and analyze the photoelectron spectra of different delay times. The common characteristic of bimodal system and the phenomenon of more peaks are interpreted in reason using the theory of wave-packet and light-induced potentials. The reason why the peak decreases monotonically as the increases of delay-time is that the wave packet on the potential energy surface of A3 Ⅱ1 for dissociation make the oscillating of wave packet on the A3 Ⅱ1 curve to decrease. By analyzing the results further, we can conclude that the propagation of wave-packet is a decreasing process of energy. In addition, the competition between different ionization channels in the process of transition also have a certain impact on the energy spectrum.%本文主要对IBr分子的飞秒含时光电子能谱进行了模拟计算.运用含时量子波包方法,对不同延迟时间的光电子能谱进行模拟计算与理论分析.应用波包和光诱导势理论,对光电子能谱共同的两峰系特征及多峰现象给予合理解释.光电子能谱的峰值随延迟时间的增加而递减现象,是由于波包在A3Ⅱ1势能面上因分子解离发散,使整个波包在势能曲线上的振荡递减造成的.研究表明:波包的传播是一个能量减弱的过程；跃迁过程中不同电离通道之间的竞争,也对能谱存在一定的影响.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Ruetzel, Stefan; Diekmann, Meike; Nuernberger, Patrick; Walter, Christof; Engels, Bernd; Brixner, Tobias
2014-06-01
Upon ultraviolet excitation, photochromic spiropyran compounds can be converted by a ring-opening reaction into merocyanine molecules, which in turn can form several isomers differing by cis and trans configurations in the methine bridge. Whereas the spiropyran-merocyanine conversion reaction of the nitro-substituted indolinobenzopyran 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6-nitro BIPS) has been studied extensively in theory and experiments, little is known about photoisomerization among the merocyanine isomers. In this article, we employ femtosecond transient absorption spectroscopy with variable excitation wavelengths to investigate the excited-state dynamics of the merocyanine in acetonitrile at room temperature, where exclusively the trans-trans-cis (TTC) and trans-trans-trans (TTT) isomers contribute. No photochemical ring-closure pathways exist for the two isomers. Instead, we found that (18±4)% of excited TTC isomers undergo an ultrafast excited-state cis→trans photoisomerization to TTT within 200 fs, while the excited-state lifetime of TTC molecules that do not isomerize is 35 ps. No photoisomerization was detected for the TTT isomer, which relaxes to the ground state with a lifetime of roughly 160 ps. Moreover, signal oscillations at 170 cm-1 and 360 cm-1 were observed, which can be ascribed to excited-state wave-packet dynamics occurring in the course of the TTC→TTT isomerization. The results of high-level time-dependent density functional theory in conjunction with polarizable continuum models are presented in the subsequent article [C. Walter, S. Ruetzel, M. Diekmann, P. Nuernberger, T. Brixner, and B. Engels, J. Chem. Phys. 140, 224311 (2014)].
Ono, Junichi; Ando, Koji
2012-11-01
A semiquantal (SQ) molecular dynamics (MD) simulation method based on an extended Hamiltonian formulation has been developed using multi-dimensional thawed gaussian wave packets (WPs), and applied to an analysis of hydrogen-bond (H-bond) dynamics in liquid water. A set of Hamilton's equations of motion in an extended phase space, which includes variance-covariance matrix elements as auxiliary coordinates representing anisotropic delocalization of the WPs, is derived from the time-dependent variational principle. The present theory allows us to perform real-time and real-space SQMD simulations and analyze nuclear quantum effects on dynamics in large molecular systems in terms of anisotropic fluctuations of the WPs. Introducing the Liouville operator formalism in the extended phase space, we have also developed an explicit symplectic algorithm for the numerical integration, which can provide greater stability in the long-time SQMD simulations. The application of the present theory to H-bond dynamics in liquid water is carried out under a single-particle approximation in which the variance-covariance matrix and the corresponding canonically conjugate matrix are reduced to block-diagonal structures by neglecting the interparticle correlations. As a result, it is found that the anisotropy of the WPs is indispensable for reproducing the disordered H-bond network compared to the classical counterpart with the use of the potential model providing competing quantum effects between intra- and intermolecular zero-point fluctuations. In addition, the significant WP delocalization along the out-of-plane direction of the jumping hydrogen atom associated with the concerted breaking and forming of H-bonds has been detected in the H-bond exchange mechanism. The relevance of the dynamical WP broadening to the relaxation of H-bond number fluctuations has also been discussed. The present SQ method provides the novel framework for investigating nuclear quantum dynamics in the many
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Energy Technology Data Exchange (ETDEWEB)
Jakob, B.
2006-10-10
In this work the wave packet molecular dynamics (WPMD) is presented and applied to dense hydrogen. In the WPMD method the electrons are described by a slater determinant of periodic Gaussian wave packets. Each single particle wave function can parametrised through 8 coordinates which can be interpreted as the position and momentum, the width and its conjugate momentum. The equation of motion for these coordinates can be derived from a time depended variational principle. Properties of the equilibrium can be ascertained by a Monte Carlo simulation. With the now completely implemented antisymmetrisation the simulation yields a fundamental different behavior for dense hydrogen compare to earlier simplified models. The results show a phase transition to metallic hydrogen with a higher density than in the molecular phase. This behavior has e.g. a large implication to the physics of giant planets. This work describes the used model and explains in particular the calculation of the energy and forces. The periodicity of the wave function leads to a description in the Fourier space. The antisymmetrisation is done by Matrix operations. Moreover the numerical implementation is described in detail to allow the further development of the code. The results provided in this work show the equation of state in the temperature range 300K - 50000K an density 10{sup 23}-10{sup 24} cm{sup -3}, according a pressure 1 GPa-1000 GPa. In a phase diagram the phase transition to metallic hydrogen can be red off. The electrical conductivity of both phases is destined. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Palistrant, M. E., E-mail: mepalistrant@yandex.com; Ursu, V. A. [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of)
2013-04-15
A theory of thermodynamic properties of a spin density wave (SDW) in a quasi-two-dimensional system (with a preset impurity concentration x) is constructed. We choose an anisotropic dispersion relation for the electron energy and assume that external magnetic field H has an arbitrary direction relative to magnetic moment M{sub Q}. The system of equations defining order parameters M{sub Q}{sup z}, M{sub Q}{sup {sigma}}, M{sub z}, and M{sup {sigma}} is constructed and transformed with allowance for the Umklapp processes. Special cases when H Double-Vertical-Line M{sub Q} and H Up-Tack M{sub Q} (H{sub Z}H{sup {sigma}} = 0) are considered in detail as well as cases of weak fields H of arbitrary direction. The condition for the transition of the system to the commensurate and incommensurate states of the SDW is analyzed. The concentration dependence of magnetic transition temperature T{sub M} is calculated, and the components of the order parameter for the incommensurate phase are determined. The phase diagram (T,{approx}x) is constructed. The effect of the magnetic field on magnetic transition temperature T{sub M} is analyzed for H{sub Z}H{sup {sigma}} = 0, and longitudinal magnetic susceptibility {chi} Double-Vertical-Line is calculated; this quantity demonstrates the temperature dependence corresponding to a system with a gap for x < x{sub c} and to a gapless state for x > x{sub c}. In the immediate vicinity of the critical impurity concentration (x {approx} x{sub c}), the temperature dependence of the magnetic susceptibility acquires a local maximum. The effect of anisotropy of the electron energy spectrum on the investigated physical quantities is also analyzed.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Bohmian trajectories of Airy packets
Energy Technology Data Exchange (ETDEWEB)
Nassar, Antonio B., E-mail: anassar@hw.com [Science Department, Harvard-Westlake School, 3700 Coldwater Canyon, Studio City, 91604 (United States); Department of Sciences, University of California, Los Angeles, Extension Program, 10995 Le Conte Avenue, Los Angeles, CA 90024 (United States); Miret-Artés, Salvador [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain)
2014-09-15
The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Tan, Rui Shan; Yan, Wei; Lin, Shi Ying
2017-01-01
A computational study for the title reaction is carried out employing recent ab initio potential energy surface. J = 0 reaction probability is obtained using both quasiclassical trajectory (QCT) and wave packet methods. The total and state resolved integral as well as differential cross sections are also obtained by means of QCT method. Dynamics of the title reaction shows qualitative similarity with its isotopic counterpart, the H + CaCl reaction, but quantitatively, reactivity is significantly enhanced in the title reaction. In addition, the effect of initial rotational state excitation on H + CaCl reaction is investigated.
Doncheski, M. A.; Robinett, R. W.
2001-10-01
We discuss the time development of Gaussian wave packet solutions of the "quantum bouncer" (a quantum mechanical particle subject to a uniform downward force, above an impermeable flat surface). We focus on the evaluation and visualization of the expectation values and uncertainties of position and momentum variables during a single quasi-classical period as well as during the long-term collapsed phase and several revivals. This approach complements existing analytic and numerical analyses of this system, as well as being useful for comparison with similar results for the harmonic oscillator and infinite well cases.
Doncheski, M A
2001-01-01
We discuss the time development of Gaussian wave packet solutions of the quantum bouncer' (a quantum mechanical particle subject to a uniform downward force, above an impermeable flat surface). We focus on the evaluation and visualization of the expectation values and uncertainties of position and momentum variables during a single quasi-classical period as well as during the long term collapsed phase and several revivals. This approach complements existing analytic and numerical analyses of this system, as well as being useful for comparison with similar results for the harmonic oscillator and infinite well cases.
Effect of Coulomb interaction on multi-electronwave packet dynamics
Energy Technology Data Exchange (ETDEWEB)
Shiokawa, T. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571 (Japan); Takada, Y. [Faculty of Engineering, Tokyo University of Science, Chiyoda, Tokyo, 102-0073, Japan and CREST, Japan Science and Technology Agency (Japan); Konabe, S.; Hatsugai, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and CREST, Japan Science and Technology Agency (Japan); Muraguchi, M. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and CREST, Japan Science and Technology Agency (Japan); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and Center for Spintronics Integrated Systems, Tohoku University, Sendai, 980-8577, Japan and CREST, Japan Science and Technology Agency (Japan); Shiraishi, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and Center for Computational Science, University of Tsukuba, Tsukuba, 305-8577, Japan and CREST, Japan Science and Technology Agency (Japan)
2013-12-04
We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Energy Technology Data Exchange (ETDEWEB)
Koner, Debasish; Panda, Aditya N., E-mail: adi07@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Barrios, Lizandra; González-Lezana, Tomás, E-mail: t.gonzalez.lezana@csic.es [Instituto de Física Fundamental, C.S.I.C., Serrano 123, Madrid 28006 (Spain)
2014-09-21
A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH{sup +} (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Spectral Radiative Properties of Two-Dimensional Rough Surfaces
Xuan, Yimin; Han, Yuge; Zhou, Yue
2012-12-01
Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.
Institute of Scientific and Technical Information of China (English)
陈召杭; 王德华; 程绍昊
2015-01-01
Using the combination of the time-dependent perturbation theory and the closed-orbit theory, we put forward a calculation formula for the autocorrelation function of H ion in a gradient electric field, and then calculate and analyze the autocorrelation function of the system. Especially, we discuss the effect of laser pulse width, electric field strength and the electric field gradient on the autocorrelation function of H ion in a gradient electric field. It is demonstrated that when the laser pulse width is very narrow, far less than the period of the detached electron, the quantum wave packet revival phenomenon is significant. A series of sharp reviving peaks appear in the autocorrelation function, which are caused by the interference between the returning electron wave packets travelling along the closed orbit and the outgoing electron wave packets. However, with the increase of laser pulse width, the quantum wave packet revival phenomenon becomes weakened. When the difference between the pulse width and the period of the closed orbit is not very large, the reviving peaks in the autocorrelation function become widely spread gradually and the oscillatory structures get flattened. This correspondence will vanish finally due to the interference between the adjacent peaks. In addition, our study also suggests that the background electric field strength and the electric field gradient in the gradient electric field can also have significant effects on the autocorrelation function. With the increase of background electric field strength and electric field gradient, the period of the detached electron’s closed orbit gets shorter, the number of the revival peaks in the autocorrelation function is increased gradually, and the quantum wave packet revival phenomenon will be enhanced. Therefore, we can control the autocorrelation function of the hydrogen negative ion by changing the laser pulse width and the external electric field strength. Our results will provide some
Wavelet packet based feature extraction and recognition of license plate characters
Institute of Scientific and Technical Information of China (English)
HUANG Wei; LU Xiaobo; LING Xiaojing
2005-01-01
To study the characteristics of license plate characters recognition, this paper proposes a method for feature extraction of license plate characters based on two-dimensional wavelet packet. We decompose license plate character images with two dimensional-wavelet packet and search for the optimal wavelet packet basis. This paper presents a criterion of searching for the optimal wavelet packet basis, and a practical algorithm. The obtained optimal wavelet packet basis is used as the feature of license plate character, and a BP neural network is used to classify the character.The testing results show that the proposed method achieved higher recognition rate than the traditional methods.
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Multipath packet switch using packet bundling
DEFF Research Database (Denmark)
Berger, Michael Stubert
2002-01-01
The basic concept of packet bundling is to group smaller packets into larger packets based on, e.g., quality of service or destination within the packet switch. This paper presents novel applications of bundling in packet switching. The larger packets created by bundling are utilized to extend...... switching capacity by use of parallel switch planes. During the bundling operation, packets will experience a delay that depends on the actual implementation of the bundling and scheduling scheme. Analytical results for delay bounds and buffer size requirements are presented for a specific scheduling...
Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas
Yang, Luyi
Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This thesis presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed
Biggs, Jason D
2009-01-01
The preceding paper describes a strategy for externally influencing the course of short-time electronic excitation transfer (EET) in molecular dimers and observing the process by nonlinear wave-packet interferometry (nl-WPI). Within a sample of isotropically oriented dimers having a specified internal geometry, a vibrational mode internal to the acceptor chromophore can be preferentially driven by electronically nonresonant impulsive stimulated Raman (or resonant infrared) excitation with a short polarized control pulse. A subsequent electronically resonant polarized pump then preferentially excites the donor, and EET ensues. Here we test both the control strategy and its spectroscopic investigation-with some sacrifice of amplitude-level detail-by calculating the pump-probe difference signal. That signal is the limiting case of the control-influenced nl-WPI signal in which the two pulses in the pump pulse-pair coincide, as do the two pulses in the probe pulse-pair. We present calculated pump-probe difference ...
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Institute of Scientific and Technical Information of China (English)
高洁; 房丽敏; 李华刚; 麦志杰
2012-01-01
Dispersion relation of 1-D photonic crystal is deduced by the method of transfer matrix, with coordinate transformation of arbitrary Fourier exponent of electromagnetic wave packet which is obliquely incident. By analyzing the dispersion relation, it is easy to find the difference between the first band gap under obliquely incident wave packet and that of plane wave, respectively. Meanwhile, the former gap is located in the latter one, for the former one is narrower than the latter one in width. Characteristic of band gap is obtained under obliquely incident wave packet, by comparing the first band gap structure with that of plane wave considering edge position and width of the gap. The condition of approximately substituting plane wave for wave packet to calculate band gap is analyzed, according to related factors such as different incident angle of central wave vector and angle spectrum of wave packet. The results demonstrate that the first band gap structure is closely related to incident angle of central wave vector and angle spectrum of wave packet. With smaller incident angle, the first band gap structure caused by wave packet would become closer to that of plane wave; and with smaller angle spectrum of wave packet, the width and position of the first band gap is closer to those of plane wave.%对波包的任意傅里叶分量进行坐标变换后,利用转移矩阵法推导出波包斜入射情形下一维光子晶体的色散关系表达式,利用色散关系曲线分析得出波包斜入射的第一带隙结构,与以往平面波的第一带隙结构不同,波包的带隙宽度小于平面波的带隙宽度,并且在位置上前者带隙包含在后者内部.比较了一维光子晶体分别在波包入射与平面波入射情形下带隙位置和宽度,分析了波包中心入射角的变化以及波包的角分布范围的变化对带隙结构的影响,得到了一维光子晶体对波包斜入射的带隙结构的基本特征,确定了计算波包带
Nonlinear acoustic propagation in two-dimensional ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
The method of multiple scales is used to obtain a second-order uniformly valid expansion for the nonlinear acoustic wave propagation in a two-dimensional duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear effects tend to flatten and broaden the absorption versus frequency curve, in qualitative agreement with the experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.
Homogenization of Two-Dimensional Phononic Crystals at Low Frequencies
Institute of Scientific and Technical Information of China (English)
NI Qing; CHENG Jian-Chun
2005-01-01
@@ Effective velocities of elastic waves propagating in two-dimensional phononic crystal at low frequencies are analysed theoretically, and exact analytical formulas for effective velocities of elastic waves are derived according to the method presented by Krokhin et al. [Phys. Rev. Lett. 91 (2003) 264302]. Numerical calculations for phononic crystals consisted of array of Pb cylinders embedded in epoxy show that the composites have distinct anisotropy at low filling fraction. The anisotropy increases as the filling fraction increases, while as the filling fraction closes to the limitation, the anisotropy decreases.
Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
严承华; 王赤忠; 程尔升
2001-01-01
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domainsecond order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results. Itis found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur forlarge amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features ofnonlinear wave and can be used instead of the fully nonlinear theory.
Extensible packet processing architecture
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
Extensible packet processing architecture
Energy Technology Data Exchange (ETDEWEB)
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [Institute for Multiscale Simulations, Friedrich-Alexander Universität, D-91052, Erlangen (Germany); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatística, Matemática Aplicada e Computação, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Departamento de Física, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, 13506-900, Rio Claro, SP (Brazil)
2012-11-01
We study some dynamical properties for the problem of a charged particle in an electric field considering both the low velocity and relativistic cases. The dynamics for both approaches is described in terms of a two-dimensional and nonlinear mapping. The structure of the phase spaces is mixed and we introduce a hole in the chaotic sea to let the particles to escape. By changing the size of the hole we show that the survival probability decays exponentially for both cases. Additionally, we show for the relativistic dynamics, that the introduction of dissipation changes the mixed phase space and attractors appear. We study the parameter space by using the Lyapunov exponent and the average energy over the orbit and show that the system has a very rich structure with infinite family of self-similar shrimp shaped embedded in a chaotic region.
Optical packet switching without packet alignment
DEFF Research Database (Denmark)
Hansen, Peter Bukhave; Danielsen, Søren Lykke; Stubkjær, Kristian
1998-01-01
Operation without packet alignment of an all-optical packet switch is proposed and predicted feasible through a detailed traffic analysis. Packet alignment units are eliminated resulting in a simple switch architecture while optimal traffic performance is maintained through the flexibility provided...
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Institute of Scientific and Technical Information of China (English)
王五松; 张利伟; 张冶文; 方恺
2013-01-01
In this paper, we study the slow propagation characteristics of surface electromagnetic waves according to theoretical analysis in the MNG (μ-negative)-DPS (double-positive)-MNG waveguide, which is composed of two-dimensional (2D) metamaterials. The dispersion curves of this waveguide vary with circuit parameter (unit capacitors) of MNG metamaterial. At the cutoff frequency of the dispersion curve the group velocity of electromagnetic wave is equal to zero in theory. So we can obtain slow propagation of the surface waves at different cutoff frequencies just by changing the unit capacitor of the MNG metamaterial. Theoretical analysis also shows that the step changes in slow waves are obtained at some fixed frequencies through changing the unit circuit parameters. The experimental results are in good agreement with simulation results.%本文在理论分析的基础上,实验研究了二维MNG/DPS/MNG(磁单负材料/双正材料/磁单负材料)表面波波导中的慢波效应.该波导的色散曲线随着电路参数(单元电容)的改变而改变,而且在色散曲线的截止频率点,电磁波的群速度理论上等于零.因此可以通过改变MNG区域的电路参数,得到在不同截止频率的慢波特性.另外,本文还通过改变MNG区域的电路参数实现在某一固定频率下波速度渐变的慢波效应.实验结果与仿真结果相一致.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
van Harrevelt, Rob; van Hemert, Marc C.
2000-04-01
A complete three-dimensional quantum mechanical description of the photodissociation of water in the B˜ band, starting from its rotational ground state, is presented. In order to include B˜-X˜ vibronic coupling and the B˜-Ã Renner-Teller coupling, diabatic electronic states have been constructed from adiabatic electronic states and matrix elements of the electronic angular momentum operators, following the procedure developed by A. J. Dobbyn and P. J. Knowles [Mol. Phys. 91, 1107 (1997)], using the ab initio results discussed in the preceding paper. The dynamics is studied using wave packet methods, and the evolution of the time-dependent wave function is discussed in detail. Results for the H2O and D2O absorption spectra, OH(A)/OH(X) and OD(A)/OD(X) branching ratios, and rovibrational distributions of the OH and OD fragments are presented and compared with available experimental data. The present theoretical results agree at least qualitatively with the experiments. The calculations show that the absorption spectrum and the product state distributions are strongly influenced by long-lived resonances on the adiabatic B˜ state. It is also shown that molecular rotation plays an important role in the photofragmentation process, due to both the Renner-Teller B˜-X˜ mixing, and the strong effect of out-of-plane molecular rotations (K>0) on the dynamics at near linear HOH and HHO geometries.
Juanes-Marcos, Juan Carlos; Althorpe, Stuart C
2005-05-22
We report quantum wave-packet calculations on the H+H(2) reaction, aimed at resolving the controversy over whether geometric phase (GP) effects can be observed in this reaction. Two sets of calculations are reported of the state-to-state reaction probabilities, and integral and differential cross sections (ICSs and DCSs). One set includes the GP using the vector potential approach of Mead and Truhlar; the other set neglects the phase. We obtain unequivocal agreement with recent results of Kendrick [J. Phys. Chem. A 107, 6739 (2003)], predicting GP effects in the state-to-state reaction probabilities, which cancel exactly on summing the partial waves to yield the ICS. Our results therefore contradict those of Kuppermann and Wu [Chem. Phys. Lett. 349 537 (2001)], which predicted pronounced GP effects in the cross sections. We also agree with Kendrick in predicting that there are no significant GP effects in the full DCS at energies below 1.8 eV, and in the partial (0
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Two-dimensional fluorescence spectroscopy of laser-produced plasmas
Energy Technology Data Exchange (ETDEWEB)
Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.
2016-08-01
We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrum is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.
两种扩展Harper模型的波包动力学%Wave packet dynamics of two extended Harper models
Institute of Scientific and Technical Information of China (English)
张振俊; 于淼; 巩龙龚; 童培庆
2011-01-01
We study the wave packet dynamics of two extended Harper models by using the second moment M2（t）and probability distribution Wn（t） numerically. The dynamical behaviors of two extended Harper models in all phases, on all phase boundary lines, and at the bicritical points are studied. For the first extended Harper model, we find that the wave packet is of ballistic diffusion in two metal phases, localized in the insulator phase, and of anomalous diffusion on the phase boundary lines and at the bicritical point. We also find the dynamical behavior on the boundary line of the metal-metal phase transition is the same as that on the metal-insulator phase transition. The spreading at the bicritical point is different from that on the phase boundary lines. For the second extended Harper model, we find that the wave packet is of ballistic diffusion in the metal phase, localized in the insulator phase, and of anomalous diffusion in the critical phase, on the phase boundary lines, and at the bicritical point. We also find the dynamical behavior on the boundary line of the critical-metal phase transition is similar to that at the bicritical point and the critical-insulator phase transition, but different from that of the metal-insulator phase transition.%本文通过二次矩M2（t）和概率分布Wn（t）数值地研究了两种扩展Harper模型的波包动力学,得到了这两种模型中各个相、各条临界线以及三相点的波包扩散情况.对于第一种扩展Harper模型,发现两个金属相中波包是弹道扩散的,在绝缘体相中波包不扩散,而在三相点以及各条临界线上波包是反常扩散的.同时,发现金属相—金属相转变的临界线上的波包动力学行为与金属相—绝缘体相转变的临界线上的相同,但三相点的动力学行为与各临界线上的不同;对于第二种扩展Harper模型,发现金属相中波包是弹道扩散的,在绝缘体相中波包不扩散,而在临界相、三相点、
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
Nonlinear optical response of a two-dimensional atomic crystal.
Merano, Michele
2016-01-01
The theory of Bloembergen and Pershan for the light waves at the boundary of nonlinear media is extended to a nonlinear two-dimensional (2D) atomic crystal, i.e., a single planar atomic lattice, placed between linear bulk media. The crystal is treated as a zero-thickness interface, a real 2D system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. As a particular case that contains all the essential physical features, second-order harmonic generation is considered. The theory, due to its simplicity that stems from the special character of a single planar atomic lattice, is able to elucidate and explain the rich experimental details of harmonic generation from a 2D atomic crystal.
Electromagnetically induced two-dimensional grating assisted by incoherent pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn
2017-04-25
We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.
Absolute band gaps in two-dimensional graphite photonic crystal
Institute of Scientific and Technical Information of China (English)
Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)
2003-01-01
The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.
Two-dimensional chiral topological superconductivity in Shiba lattices
Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei
2016-07-01
The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal.
Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.
Drift modes of a quasi-two-dimensional current sheet
Energy Technology Data Exchange (ETDEWEB)
Artemyev, A. V.; Malova, Kh. V.; Popov, V. Yu.; Zelenyi, L. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation)
2012-03-15
Stability of a plasma configuration consisting of a thin one-dimensional current sheet embedded into a two-dimensional background current sheet is studied. Drift modes developing in plasma as unstable waves along the current direction are considered. Dispersion relations for kink and sausage perturbation modes are obtained depending on the ratio of parameters of thin and background current sheets. It is shown that the existence of the background sheet results in a decrease in the instability growth rates and a significant increase in the perturbation wavelengths. The role of drift modes in the excitation of oscillations observed in the current sheet of the Earth's magnetotail is discussed.
Ghosh, Sandip; Sahoo, Tapas; Adhikari, Satrajit; Sharma, Rahul; Varandas, António J C
2015-12-17
We implement a coupled three-dimensional (3D) time-dependent wave packet formalism for the 4D reactive scattering problem in hyperspherical coordinates on the accurate double many body expansion (DMBE) potential energy surface (PES) for the ground and first two singlet states (1(1)A', 2(1)A', and 3(1)A') to account for nonadiabatic processes in the D(+) + H2 reaction for both zero and nonzero values of the total angular momentum (J). As the long-range interactions in D(+) + H2 contribute significantly due to nonadiabatic effects, the convergence profiles of reaction probabilities for the reactive noncharge transfer (RNCT), nonreactive charge transfer (NRCT), and reactive charge transfer (RCT) processes are shown for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. The total and state-to-state cross sections are presented as a function of the collision energy for the initial rovibrational state v = 0, j = 0 of the diatom, and the calculated cross sections compared with other theoretical and experimental results.
Demekhin, Philipp V; Cederbaum, Lorenz S
2013-01-01
The time-dependent Schr\\"{o}dinger equation for the hydrogen atom and its interaction with coherent intense high-frequency short laser pulses is solved numerically exactly by employing the code implemented for the multi-configurational time-dependent Hartree-Fock (MCTDHF) method. Thereby, the wavefunction is followed in space and time for times longer than the pulse duration. Results are explicitly shown for 3 and 10 fs pulses. Particular attention is paid to identifying the effect of dynamic interference of photoelectrons emitted with the same kinetic energy at different times during the rising and falling sides of the pulse predicted in [\\emph{Ph.V. Demekhin and L.S. Cederbaum}, Phys. Rev. Lett. \\textbf{108}, 253001 (2012)]. In order to be able to see the dynamic interference pattern in the computed electron spectra, the photoelectron wave packet has to be propagated over long distances. Clearly, complex absorption potentials often employed to compute spectra of emitted particles cannot be used to detect dy...
Knappenberger, Kenneth L; Lerch, Eliza-Beth W; Wen, Patrick; Leone, Stephen R
2007-09-28
A two-color (3+1(')) pump-probe scheme is employed to investigate Rydberg wave packet dynamics in carbon disulfide (CS(2) (*)). The state superpositions are created within the 4f and 5p Rydberg manifolds by three photons of the 400 nm pump pulse, and their temporal evolution is monitored with femtosecond time-resolved photoelectron spectroscopy using an 800 nm ionizing probe pulse. The coherent behavior of the non-stationary superpositions are observed through wavepacket revivals upon ionization to either the upper (12) or lower (32) spin-orbit components of CS(2) (+). The results show clearly that the composition of the wavepacket can be efficiently controlled by the power density of the excitation pulse over a range from 500 GWcm(2) to 10 TWcm(2). The results are consistent with the anticipated ac-Stark shift for 400 nm light and demonstrate an effective method for population control in molecular systems. Moreover, it is shown that Rydberg wavepackets can be formed in CS(2) with excitation power densities up to 10 TWcm(2) without significant fragmentation. The exponential 1e population decay (T(1)) of specific excited Rydberg states are recovered by analysis of the coherent part of the signal. The dissociation lifetimes of these states are typically 1.5 ps. However, a region exhibiting a more rapid decay ( approximately 800 fs) is observed for states residing in the energy range of 74 450-74 550 cm(-1), suggestive of an enhanced surface crossing in this region.
Indian Academy of Sciences (India)
Farzana Sharmin; Samir Saha; S S Bhattacharyya
2013-06-01
We have theoretically investigated the high harmonic generation (HHG) spectra of H$_{2}^{+}$ and HD+ using a time-dependent wave packet approach for the nuclear motion with pulsed lasers of peak intensities (0) of 3.5 × 1014 and 4.5 × 1014 W/cm2, wavelengths (L) of 800 and 1064 nm, and pulse durations () of 40 and 50 fs, for initial vibrational levels 0 = 0 and 1. We have argued that for these conditions the harmonic generation due to the transitions in the electronic continuum by tunnelling or multiphoton ionization will not be important. Thus, the characteristic features of HHG spectra in our model arise only due to the nuclear motions on the two lowest field-coupled electronic states between which both interelectronic and intraelectronic (due to intrinsic dipole moments, for HD+) radiative transitions can take place. For HD+, the effect of nonadiabatic (NA) interaction between the two lowest Born–Oppenheimer (BO) electronic states has been taken into account and comparison has been made with the HHG spectra of HD+ obtained in the BO approximation. Even harmonics and a second plateau in the HHG spectra of HD+ with the NA interaction and hyper-Raman lines in the spectra of both H$_{2}^{+}$ and HD+ for 0 = 1 have been observed for higher value of 0 or L. Our calculations indicate reasonable efficiencies of harmonic generation even without involving the electronic continuum.
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Indian Academy of Sciences (India)
Raman Kumar Singh; Manabendra Sarma; Ankit Jain; Satrajit Adhikari; Manoj K Mishra
2007-09-01
Results from application of a new implementation of the time-dependent wave packet (TDWP) approach to the calculation of vibrational excitation cross-sections in resonant e-CO scattering are presented to examine its applicability in the treatment of e-molecule resonances. The results show that the SCF level local complex potential (LCP) in conjunction with the TDWP approach can reproduce experimental features quite satisfactorily.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
Wu, Hui; Duan, Zhi-Xin; Yin, Shu-Hui; Zhao, Guang-Jiu
2016-09-01
The quantum dynamics calculations of the H + HS (v = 0, j = 0) reaction on the 3A' and 3A″ potential energy surfaces (PESs) are performed using the reactant coordinate based time-dependent wave packet method. State-averaged and state-resolved results for both channels of the title reaction are presented in the 0.02-1.0 eV collision energy range and compared with those carried out with quasi-classical trajectory (QCT) method. Total integral cross sections (ICSs) for both channels are in excellent agreement with previous quantum mechanical (QM)-Coriolis coupling results while poorly agree with the QCT ICSs of the exchange channel, particularly near the threshold energy region. The product rotational distributions show that for the abstraction channel, the agreement between our QM and the QCT results improves with increasing collision energy. For the exchange channel, our calculations predict colder rotational distributions as compared to those obtained by QCT calculations. Although the QM total differential cross sections (DCSs) are in qualitatively good agreement with the QCT results, the two sets of the state-to-state DCSs with several peaks exhibit great divergences. The origin of the divergences are traced by analyzing the QM DCS for the H + HS (v = 0, j = 0) → H2 (v' = 0, j' = 0) + S reaction on the 3A″ PES at Ec = 1.0 eV. It is discovered that several groups of J partial waves are involved in the reaction and the shape of the DCS is greatly altered by quantum interferences between them.
Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields
Puthumpally-joseph, Raiju; Charron, Eric
2016-01-01
We introduce an accurate non-Hermitian Schr\\"odinger-type approximation of Bloch optical equations for two-level systems. This approximation provides a complete description of the excitation, relaxation and decoherence dynamics in both weak and strong laser fields. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically-adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.
Bliokh, Konstantin Yu; Bliokh, Yury P
2006-02-24
We present a solution to the problem of reflection and refraction of a polarized Gaussian beam on the interface between two transparent media. The transverse shifts of the beams' centers of gravity are calculated. They always satisfy the total angular momentum conservation law for beams, but, in general, do not satisfy the conservation laws for individual photons as a consequence of the lack of the "which path" information in a two-channel wave scattering. The field structure for the reflected and refracted beams is analyzed. In the scattering of a linearly polarized beam, photons of opposite helicities are accumulated at the opposite edges of the beam: this is the spin Hall effect for photons, which can be registered in the cross-polarized component of the scattered beam.
Henri, Pierre; Briand, Carine; Mangeney, André; 10.1029/2009JA014969
2013-01-01
Recent observation of large amplitude Langmuir waveforms during a Type III event in the solar wind have been interpreted as the signature of the electrostatic decay of beam-driven Langmuir waves. This mechanism is thought to be a first step to explain the generation of solar Type III radio emission. The threshold for this parametric instability in typical solar wind condition is investigated here by means of 1D-1V Vlasov-Poisson simulations. We show that the amplitude of the observed Langmuir beat-like waveforms is of the order of the effective threshold computed from the full kinetic simulations. The expected level of associated ion acoustic density fluctuations have also been computed for comparison with observations.
The nonlinear optical response of a two-dimensional atomic crystal
Merano, Michele
2015-01-01
The theory of Bloembergen and Persham for the light waves at the boundary of nonlinear media is applied to a nonlinear two-dimensional atomic crystal placed in between linear bulk media. The crystal is treated as a zero-thickness interface, a real two-dimensional system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. The nonlinear polarization of these special materials is very sensitive to the substrate on which they are deposited. Experiments on second harmonic generation of a $\\rm MoS_{2}$ monolayer are discussed to elucidate this point.
Fermionic boundary modes in two-dimensional noncentrosymmetric superconductors
Samokhin, K. V.; Mukherjee, S. P.
2016-09-01
We calculate the spectrum of the Andreev boundary modes in a two-dimensional superconductor formed at an interface between two different nonsuperconducting materials, e.g., insulating oxides. Inversion symmetry is absent in this system, and both the electron band structure and the superconducting pairing are strongly affected by the spin-orbit coupling of the Rashba type. We consider isotropic s -wave pairing states, both with and without time-reversal symmetry breaking, as well as various d -wave states. In all cases, there exist subgap Andreev boundary states, whose properties, in particular, the number and location of the zero-energy modes, qualitatively depend on the gap symmetry and the spin-orbit coupling strength.
Transport of Bose-Einstein condensates through two dimensional cavities
Energy Technology Data Exchange (ETDEWEB)
Hartmann, Timo
2015-06-01
The recent experimental advances in manipulating ultra-cold atoms make it feasible to study coherent transport of Bose-Einstein condensates (BEC) through various mesoscopic structures. In this work the quasi-stationary propagation of BEC matter waves through two dimensional cavities is investigated using numerical simulations within the mean-field approach of the Gross-Pitaevskii equation. The focus is on the interplay between interference effects and the interaction term in the non-linear wave equation. One sees that the transport properties show a complicated behaviour with multi-stability, hysteresis and dynamical instabilities for non-vanishing interaction. Furthermore, the prominent weak localization effect, which is a robust interference effect emerging after taking a configuration average, is reduced and partially inverted for non-vanishing interaction.
Two dimensional hydrodynamic modeling of a high latitude braided river
Humphries, E.; Pavelsky, T.; Bates, P. D.
2014-12-01
Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.
Quantum mechanical treatment of a constrained particle on two dimensional sphere
Jahangiri, L.; Panahi, H.
2016-12-01
In this work, we study the motion of a particle on two dimensional sphere. By writing the Schrodinger equation, we obtain the wave function and energy spectra for three dimensional harmonic oscillator potential plus trigonometric Rosen-Morse non-central potential. By letting three special cases for intertwining operator, we investigate the energy spectra and wave functions for Smorodinsky-Winternitz potential model.
Fraternale, Federico
2013-01-01
The present thesis deals with the non-modal linear analysis of 3D perturbations in wall flows. In the first part,a solution to the Orr-Sommerfeld and Squire IVP, in the form of orthogonal functions expansion, is researched. The Galerkin method is successfully implemented to numerically compute approximate solutions for bounded flows. The Chandrasekhar functions revealed to ensure a fifth order of accuracy. The focus of the subsequent analysis is on the transient behavior of the perturbation frequency and phase velocity. The results confirm recent observations about a jump in the temporal evolution of the frequency of the wall-normal velocity signal, considered as the end of an Early Transient. After this jump, the wave frequency for Plane Couette flow experiences a periodic modulation about the asymptotic value, which is motivated and investigated in detail. A new result is the presence of a second frequency jump for the wall-normal vorticity. This fact, together with the possibility for different values of t...
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.