WorldWideScience

Sample records for two-dimensional thermal neutron

  1. Measurement of two-dimensional thermal neutron flux in a water phantom and evaluation of dose distribution characteristics

    International Nuclear Information System (INIS)

    Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Horiguchi, Yoji

    2001-03-01

    To evaluate nitrogen dose, boron dose and gamma-ray dose occurred by neutron capture reaction of the hydrogen at the medical irradiation, two-dimensional distribution of the thermal neutron flux is very important because these doses are proportional to the thermal neutron distribution. This report describes the measurement of the two-dimensional thermal neutron distribution in a head water phantom by neutron beams of the JRR-4 and evaluation of the dose distribution characteristic. Thermal neutron flux in the phantom was measured by gold wire placed in the spokewise of every 30 degrees in order to avoid the interaction. Distribution of the thermal neutron flux was also calculated using two-dimensional Lagrange's interpolation program (radius, angle direction) developed this time. As a result of the analysis, it was confirmed to become distorted distribution which has annular peak at outside of the void, though improved dose profile of the deep direction was confirmed in the case which the radiation field in the phantom contains void. (author)

  2. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  3. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active ...

  4. Discrete formulation for two-dimensional multigroup neutron diffusion equations

    Energy Technology Data Exchange (ETDEWEB)

    Vosoughi, Naser E-mail: vosoughi@mehr.sharif.edu; Salehi, Ali A.; Shahriari, Majid

    2003-02-01

    The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method.

  5. Discrete formulation for two-dimensional multigroup neutron diffusion equations

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Salehi, Ali A.; Shahriari, Majid

    2003-01-01

    The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method

  6. Two-dimensional neutron scintillation detector with optimal gamma discrimination

    International Nuclear Information System (INIS)

    Kanyo, M.; Reinartz, R.; Schelten, J.; Mueller, K.D.

    1993-01-01

    The gamma sensitivity of a two-dimensional scintillation neutron detector based on position sensitive photomultipliers (Hamamatsu R2387 PM) has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by ±25% a discrimination unit was developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. By this method narrow discriminator windows can be used to reduce the gamma background drastically without effecting the neutron sensitivity of the detector. The new discrimination method and its performance tested by neutron measurements will be described. Experimental results concerning spatial resolution and γ-sensitivity are presented

  7. Two-dimensional void reconstruction by neutron transmission

    International Nuclear Information System (INIS)

    Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.

    1978-01-01

    Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data

  8. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  9. Seismically constrained two-dimensional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...

  10. TUTANK a two-dimensional neutron kinetics code

    International Nuclear Information System (INIS)

    Watts, M.G.; Halsall, M.J.; Fayers, F.J.

    1975-04-01

    TUTANK is a two-dimensional neutron kinetics code which treats two neutron energy groups and up to six groups of delayed neutron precursors. A 'theta differencing' method is used to integrate the time dependence of the equations. A position dependent exponential transformation on the time variable is available as an option, which in many circumstances can remove much of the time dependence, and thereby allow longer time steps to be taken. A further manipulation is made to separate the solutions of the neutron fluxes and the precursor concentrations. The spatial equations are based on standard diffusion theory, and their solution is obtained from alternating direction sweeps with a transverse buckling - the so-called ADI-B 2 method. Other features of the code include an elementary temperature feedback and heat removal treatment, automatic time step adjustment, a flexible method of specifying cross-section and heat transfer coefficient variations during a transient, and a restart facility which requires a minimal data specification. Full details of the code input are given. An example of the solution of a NEACRP benchmark for an LWR control rod withdrawal is given. (author)

  11. Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal

    International Nuclear Information System (INIS)

    Konno, R; Hatayama, N; Takahashi, Y; Nakano, H

    2009-01-01

    Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.

  12. Two-dimensional fruit ripeness estimation using thermal imaging

    Science.gov (United States)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2013-06-01

    Some green fruits do not change their color from green to yellow when being ripe. As a result, ripeness estimation via color and fluorescent analytical approaches cannot be applied. In this article, we propose and show for the first time how a thermal imaging camera can be used to two-dimensionally classify fruits into different ripeness levels. Our key idea relies on the fact that the mature fruits have higher heat capacity than the immature ones and therefore the change in surface temperature overtime is slower. Our experimental proof of concept using a thermal imaging camera shows a promising result in non-destructively identifying three different ripeness levels of mangoes Mangifera indica L.

  13. FX2-TH: a two-dimensional nuclear reactor kinetics code with thermal-hydraulic feedback

    International Nuclear Information System (INIS)

    Shober, R.A.; Daly, T.A.; Ferguson, D.R.

    1978-10-01

    FX2-TH is a two-dimensional, time-dependent nuclear reactor kinetics program with thermal and hydraulic feedback. The neutronics model used is multigroup neutron diffusion theory. The following geometry options are available: x, r, x-y, r-z, theta-r, and triangular. FX2-TH contains two basic thermal and hydraulic models: a simple adiabatic fuel temperature calculation, and a more detailed model consisting of an explicit representation of a fuel pin, gap, clad, and coolant. FX2-TH allows feedback effects from both fuel temperature (Doppler) and coolant temperature (density) changes. FX2-TH will calculate a consistent set of steady state conditions by iterating between the neutronics and thermal-hydraulics until convergence is reached. The time-dependent calculation is performed by the use of the improved quasistatic method. A disk editing capability is available. FX2-TH is operational on IBM system 360 or 370 computers and on the CDC 7600

  14. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Nuclear Energy Research Center, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Firoozabadi, M. M.; Mohammadi, H. [Department of Physics, University of Birjand, Birjand 97175 (Iran, Islamic Republic of)

    2014-01-15

    A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ − z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79 × 10{sup 6} cm{sup −2}s{sup −1} and 2.20 ×10{sup 5} cm{sup −3}s{sup −1}, respectively.

  15. Two-dimensional disruption thermal analysis code DREAM

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayashi, Takeshi; Seki, Masahiro.

    1988-08-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing components such as first wall and divertor/limiter are subjected to an intense heat load with very high heat flux and short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs, it causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes (melting/evaporation) and radiation heat loss is required in the design of these components. This paper describes the computer code DREAM developed to perform the two-dimensional transient thermal analysis that takes phase changes and radiation into account. The input and output of the code and a sample analysis on a disruption simulation experiment are also reported. The user's input manual is added as an appendix. The profiles and time variations of temperature, and melting and evaporated thicknesses of the material subjected to intense heat load can be obtained, using this computer code. This code also gives the temperature data for elastoplastic analysis with FEM structural analysis codes (ADINA, MARC, etc.) to evaluate the thermal stress and crack propagation behavior within the wall materials. (author)

  16. Test of a two-dimensional neutron spin analyzer

    International Nuclear Information System (INIS)

    Falus, Peter; Vorobiev, Alexei; Krist, Thomas

    2006-01-01

    The aim of this measurement was to test the new large-area spin polarization analyzer for the EVA-SERGIS beamline at Institute Laue Langevin (ILL). The spin analyzer, which was built in Berlin selects one of the two spin states of a neutron beam of wavelength 5.5 A impinging on a horizontal sample and reflected or scattered from the sample. The spin is analyzed for all neutrons scattered into a detector with an area of 190 mmx190 mm positioned 2.7 m behind the sample, thus covering an angular interval of 4 o x4 o . The tests were done at the HMI V14 beamline followed by tests at the EVA beamline at ILL. The transmission for the two spin components, the flipping ratio and small angle scattering were recorded while scanning the incoming beam on the analyzer. It was clearly visible, that due to the stacked construction the intensity is blocked at regular intervals. Careful inspection shows that the transmission of the good spin component is more than 0.72 for 60% of the detector area and the corrected flipping ratio is more than 47 for 60% of the detector area. Although some small-angle scattering is visible, it is notable that this analyzer design has small scattering intensities

  17. Test of a two-dimensional neutron spin analyzer

    Science.gov (United States)

    Falus, Péter; Vorobiev, Alexei; Krist, Thomas

    2006-11-01

    The aim of this measurement was to test the new large-area spin polarization analyzer for the EVA-SERGIS beamline at Institute Laue Langevin (ILL). The spin analyzer, which was built in Berlin selects one of the two spin states of a neutron beam of wavelength 5.5 Å impinging on a horizontal sample and reflected or scattered from the sample. The spin is analyzed for all neutrons scattered into a detector with an area of 190 mm×190 mm positioned 2.7 m behind the sample, thus covering an angular interval of 4°×4°. The tests were done at the HMI V14 beamline followed by tests at the EVA beamline at ILL. The transmission for the two spin components, the flipping ratio and small angle scattering were recorded while scanning the incoming beam on the analyzer. It was clearly visible, that due to the stacked construction the intensity is blocked at regular intervals. Careful inspection shows that the transmission of the good spin component is more than 0.72 for 60% of the detector area and the corrected flipping ratio is more than 47 for 60% of the detector area. Although some small-angle scattering is visible, it is notable that this analyzer design has small scattering intensities.

  18. Complex of two-dimensional multigroup programs for neutron-physical computations of nuclear reactor

    International Nuclear Information System (INIS)

    Karpov, V.A.; Protsenko, A.N.

    1975-01-01

    Briefly stated mathematical aspects of the two-dimensional multigroup method of neutron-physical computation of nuclear reactor. Problems of algorithmization and BESM-6 computer realisation of multigroup diffuse approximations in hexagonal and rectangular calculated lattices are analysed. The results of computation of fast critical assembly having complicated composition of the core are given. The estimation of computation accuracy of criticality, neutron fields distribution and efficiency of absorbing rods by means of computer programs developed is done. (author)

  19. Two-dimensional thermal analysis of liquid hydrogen tank insulation

    Energy Technology Data Exchange (ETDEWEB)

    Babac, Gulru; Sisman, Altug [Istanbul Technical University, Energy Institute, Ayazaga campus, 34469 Maslak, Istanbul (Turkey); Cimen, Tolga [Jaguar and Landrover, Banbury Road, Gaydon, Warwick CV35 0RR (United Kingdom)

    2009-08-15

    Liquid hydrogen (LH{sub 2}) storage has the advantage of high volumetric energy density, while boil-off losses constitute a major disadvantage. To minimize the losses, complicated insulation techniques are necessary. In general, Multi Layer Insulation (MLI) and a Vapor-Cooled Shield (VCS) are used together in LH{sub 2} tanks. In the design of an LH{sub 2} tank with VCS, the main goal is to find the optimum location for the VCS in order to minimize heat leakage. In this study, a 2D thermal model is developed by considering the temperature dependencies of the thermal conductivity and heat capacity of hydrogen gas. The developed model is used to analyze the effects of model considerations on heat leakage predictions. Furthermore, heat leakage in insulation of LH{sub 2} tanks with single and double VCS is analyzed for an automobile application, and the optimum locations of the VCS for minimization of heat leakage are determined for both cases. (author)

  20. Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation

    International Nuclear Information System (INIS)

    Chen, G.S.

    1997-01-01

    We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used. TFQMR (transpose free quasi-minimal residual algorithm), CGS (conjuage gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These sub-routines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. (author)

  1. A two-dimensional detector with delay line readout for slow neutron fields measurements

    International Nuclear Information System (INIS)

    Cheremukhina, G.A.; Chernenko, S.P.; Ivanov, A.B.

    1992-01-01

    This article presents the description of a two-dimensional detector of slow neutrons together with its readout and data acquisition electronics based on a PC/AT> The detector with a sensitive area of 260x140 mm 2 is based on a high pressure multiwire proportional chamber with delay line readout and gas filling of 3.0 atm. 3 He + propane. 25 refs.; 10 figs.; 2 tabs

  2. Solution of two-dimensional neutron diffusion equation for triangular region by finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke; Ishibashi, Hideo

    1978-01-01

    A two-dimensional neutron diffusion equation for a triangular region is shown to be solved by the finite Fourier transformation. An application of the Fourier transformation to the diffusion equation for triangular region yields equations whose unknowns are the expansion coefficients of the neutron flux and current in Fourier series or Legendre polynomials expansions only at the region boundary. Some numerical calculations have revealed that the present technique gives accurate results. It is shown also that the solution using the expansion in Legendre polynomials converges with relatively few terms even if the solution in Fourier series exhibits the Gibbs' phenomenon. (auth.)

  3. Theoretical investigation of the neutron noise diagnostics of two-dimensional control rod vibrations in a PWR

    International Nuclear Information System (INIS)

    Pazsit, I.; Analytis, G.T.

    1980-01-01

    In order to develop a method for monitoring control rod vibrations by neutron noise measurements, the noise induced by two-dimensional vibrations of control elements is investigated. The two-dimensional Green's function relating the small stochastic cross-section fluctuations to the neutron noise is determined for a rectangular slab reactor in the modified one-group theory, and subsequently, the neutron response to two-dimensional vibrating noise sources is investigated. Two possible diagnostical applications are considered: (a) the reconstruction of the mechanical trajectory of the vibrating element by neutron noise measurements, and (b) the possibility of locating the vibrating element in the core. (author)

  4. Solution of two-dimensional equations of neutron transport in 4P0-approximation of spherical harmonics method

    International Nuclear Information System (INIS)

    Polivanskij, V.P.

    1989-01-01

    The method to solve two-dimensional equations of neutron transport using 4P 0 -approximation is presented. Previously such approach was efficiently used for the solution of one-dimensional problems. New an attempt is made to apply the approach to solution of two-dimensional problems. Algorithm of the solution is given, as well as results of test neutron-physical calculations. A considerable as compared with diffusion approximation is shown. 11 refs

  5. Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation

    International Nuclear Information System (INIS)

    Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco

    2002-01-01

    In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S N equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS N method, which consists in the application of the Laplace transform to the set of nodal S N equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S N up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S N equations for N up to 16 and we begin the convergence of the S N nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)

  6. An analytical approach for a nodal scheme of two-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Cabrera, L.C.; Prolo Filho, J.F.

    2011-01-01

    Research highlights: → Nodal equations for a two-dimensional neutron transport problem. → Analytical Discrete Ordinates Method. → Numerical results compared with the literature. - Abstract: In this work, a solution for a two-dimensional neutron transport problem, in cartesian geometry, is proposed, on the basis of nodal schemes. In this context, one-dimensional equations are generated by an integration process of the multidimensional problem. Here, the integration is performed for the whole domain such that no iterative procedure between nodes is needed. The ADO method is used to develop analytical discrete ordinates solution for the one-dimensional integrated equations, such that final solutions are analytical in terms of the spatial variables. The ADO approach along with a level symmetric quadrature scheme, lead to a significant order reduction of the associated eigenvalues problems. Relations between the averaged fluxes and the unknown fluxes at the boundary are introduced as the usually needed, in nodal schemes, auxiliary equations. Numerical results are presented and compared with test problems.

  7. Two-dimensional over-all neutronics analysis of the ITER device

    Science.gov (United States)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi

    1993-07-01

    The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.

  8. Two-dimensional over-all neutronics analysis of the ITER device

    International Nuclear Information System (INIS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi.

    1993-07-01

    The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR) and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li 2 O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No.5 and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design. (author)

  9. Two-dimensional Thermal Modeling of Lithium-ion Battery Cell Based on Electrothermal Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Knap, Vaclav

    2016-01-01

    Thermal modeling of lithium-ion batteries is gaining its importance together with increasing power density and compact design of the modern battery systems in order to assure battery safety and long lifetime. Thermal models of lithium-ion batteries are usually either expensive to develop...... and accurate or equivalent thermal circuit based with moderate accuracy and without spatial temperature distribution. This work presents initial results that can be used as a fundament for the cost-efficient development of the two-dimensional thermal model of lithium-ion battery based on multipoint...

  10. The discrete cones method for two-dimensional neutron transport calculations

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1986-01-01

    A novel method, the discrete cones method (DC/sub N/), is proposed as an alternative to the discrete ordinates method (S/sub N/) for solutions of the two-dimensional neutron transport equation. The new method utilizes a new concept, discrete cones, which are made by partitioning a unit spherical surface that the direction vector of particles covers. In this method particles in a cone are simultaneously traced instead of those in discrete directions so that an anomaly of the S/sub N/ method, the ray effects, can be eliminated. The DC/sub N/ method has been formulated for X-Y geometry and a program has been creaed by modifying the standard S/sub N/ program TWOTRAN-II. Our sample calculations demonstrate a strong mitigation of the ray effects without a computing cost penalty

  11. Two-dimensional neutron scattering in a floating heavy water bridge

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Baroni, Patrick; Noirez, Laurence; Bitschnau, Brigitte

    2010-01-01

    When a high voltage is applied to pure water in two filled beakers kept close to each other, a connection forms spontaneously, giving the impression of a floating water bridge. This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the first two-dimensional structural study of a floating heavy water bridge is presented as a function of the azimuthal angle. A small anisotropy in the angular distribution of the intensity of the first structural peak was observed, indicating a preferred orientation of a part of the D 2 O molecules along the electric field lines without breaking the local tetrahedral symmetry. The experiment is carried out by neutron scattering on a D 2 O bridge.

  12. Two-dimensional neutron scattering in a floating heavy water bridge

    Science.gov (United States)

    Fuchs, Elmar C.; Baroni, Patrick; Bitschnau, Brigitte; Noirez, Laurence

    2010-03-01

    When a high voltage is applied to pure water in two filled beakers kept close to each other, a connection forms spontaneously, giving the impression of a floating water bridge. This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the first two-dimensional structural study of a floating heavy water bridge is presented as a function of the azimuthal angle. A small anisotropy in the angular distribution of the intensity of the first structural peak was observed, indicating a preferred orientation of a part of the D2O molecules along the electric field lines without breaking the local tetrahedral symmetry. The experiment is carried out by neutron scattering on a D2O bridge.

  13. Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation

    International Nuclear Information System (INIS)

    Chen, G.S.; Yang, D.Y.

    1998-01-01

    We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used: TFQMR (transpose free quasi-minimal residual algorithm) CGS (conjugate gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These subroutines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. The reasons to choose the generalized conjugate gradient methods are that the methods have better residual (equivalent to error) control procedures in the computation and have better convergent rate. The pointwise incomplete LU factorization ILU, modified pointwise incomplete LU factorization MILU, block incomplete factorization BILU and modified blockwise incomplete LU factorization MBILU are the preconditioning techniques used in the several testing problems. In Bi-CGSTAB, CGS, TFQMR and QMRCGSTAB method, we find that either CGS or Bi-CGSTAB method combined with preconditioner MBILU is the most efficient algorithm in these methods in the several testing problems. The numerical solution of flux by preconditioned CGS and Bi-CGSTAB methods has the same result as those from Cray computer, obtained by either the point successive relaxation method or the line successive relaxation method combined with Gaussian elimination

  14. Test of quantum thermalization in the two-dimensional transverse-field Ising model.

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-12-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems.

  15. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Richter, Johannes M; Branchi, Federico; Valduga de Almeida Camargo, Franco; Zhao, Baodan; Friend, Richard H; Cerullo, Giulio; Deschler, Felix

    2017-08-29

    In band-like semiconductors, charge carriers form a thermal energy distribution rapidly after optical excitation. In hybrid perovskites, the cooling of such thermal carrier distributions occurs on timescales of about 300 fs via carrier-phonon scattering. However, the initial build-up of the thermal distribution proved difficult to resolve with pump-probe techniques due to the requirement of high resolution, both in time and pump energy. Here, we use two-dimensional electronic spectroscopy with sub-10 fs resolution to directly observe the carrier interactions that lead to a thermal carrier distribution. We find that thermalization occurs dominantly via carrier-carrier scattering under the investigated fluences and report the dependence of carrier scattering rates on excess energy and carrier density. We extract characteristic carrier thermalization times from below 10 to 85 fs. These values allow for mobilities of 500 cm 2  V -1  s -1 at carrier densities lower than 2 × 10 19  cm -3 and limit the time for carrier extraction in hot carrier solar cells.Carrier-carrier scattering rates determine the fundamental limits of carrier transport and electronic coherence. Using two-dimensional electronic spectroscopy with sub-10 fs resolution, Richter and Branchi et al. extract carrier thermalization times of 10 to 85 fs in hybrid perovskites.

  16. Test of quantum thermalization in the two-dimensional transverse-field Ising model

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-01-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523

  17. Thermal ignition revisited with two-dimensional molecular dynamics: role of fluctuations in activated collisions

    OpenAIRE

    Sirmas, Nick; Radulescu, Matei I.

    2016-01-01

    The problem of thermal ignition in a homogeneous gas is revisited from a molecular dynamics perspective. A two-dimensional model is adopted, which assumes reactive disks of type A and B in a fixed area that react to form type C products if an activation threshold for impact is surpassed. Such a reaction liberates kinetic energy to the product particles, representative of the heat release. The results for the ignition delay are compared with those obtained from the continuum description assumi...

  18. Longitudinal On-Column Thermal Modulation for Comprehensive Two-Dimensional Liquid Chromatography.

    Science.gov (United States)

    Creese, Mari E; Creese, Mathew J; Foley, Joe P; Cortes, Hernan J; Hilder, Emily F; Shellie, Robert A; Breadmore, Michael C

    2017-01-17

    Longitudinal on-column thermal modulation for comprehensive two-dimensional liquid chromatography is introduced. Modulation optimization involved a systematic investigation of heat transfer, analyte retention, and migration velocity at a range of temperatures. Longitudinal on-column thermal modulation was realized using a set of alkylphenones and compared to a conventional valve-modulator employing sample loops. The thermal modulator showed a reduced modulation-induced pressure impact than valve modulation, resulting in reduced baseline perturbation by a factor of 6; yielding a 6-14-fold improvement in signal-to-noise. A red wine sample was analyzed to demonstrate the potential of the longitudinal on-column thermal modulator for separation of a complex sample. Discrete peaks in the second dimension using the thermal modulator were 30-55% narrower than with the valve modulator. The results shown herein demonstrate the benefits of an active focusing modulator, such as reduced detection limits and increased total peak capacity.

  19. Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.

    Science.gov (United States)

    Khrustalyov, Yu V; Vaulina, O S

    2012-04-01

    Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.

  20. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    CERN Document Server

    Sakai, K; Oku, T; Morimoto, K; Shimizu, H M; Tokanai, F; Gorin, A; Manuilov, I V; Ryazantsev, A; Ino, T; Kuroda, K; Suzuki, J

    2002-01-01

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50 x 50 mm sup 2. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of propor to 1.0 mm was obtained. (orig.)

  1. Boundary element methods applied to two-dimensional neutron diffusion problems

    International Nuclear Information System (INIS)

    Itagaki, Masafumi

    1985-01-01

    The Boundary element method (BEM) has been applied to two-dimensional neutron diffusion problems. The boundary integral equation and its discretized form have been derived. Some numerical techniques have been developed, which can be applied to critical and fixed-source problems including multi-region ones. Two types of test programs have been developed according to whether the 'zero-determinant search' or the 'source iteration' technique is adopted for criticality search. Both programs require only the fluxes and currents on boundaries as the unknown variables. The former allows a reduction in computing time and memory in comparison with the finite element method (FEM). The latter is not always efficient in terms of computing time due to the domain integral related to the inhomogeneous source term; however, this domain integral can be replaced by the equivalent boundary integral for a region with a non-multiplying medium or with a uniform source, resulting in a significant reduction in computing time. The BEM, as well as the FEM, is well suited for solving irregular geometrical problems for which the finite difference method (FDM) is unsuited. The BEM also solves problems with infinite domains, which cannot be solved by the ordinary FEM and FDM. Some simple test calculations are made to compare the BEM with the FEM and FDM, and discussions are made concerning the relative merits of the BEM and problems requiring future solution. (author)

  2. TRIDENT: a two-dimensional, multigroup, triangular mesh discrete ordinates, explicit neutron transport code

    International Nuclear Information System (INIS)

    Seed, T.J.; Miller, W.F. Jr.; Brinkley, F.W. Jr.

    1977-03-01

    TRIDENT solves the two-dimensional-multigroup-transport equations in rectangular (x-y) and cylindrical (r-z) geometries using a regular triangular mesh. Regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue searches) problems subject to vacuum, reflective, white, or source boundary conditions are solved. General anisotropic scattering is allowed and anisotropic-distributed sources are permitted. The discrete-ordinates approximation is used for the neutron directional variables. An option is included to append a fictitious source to the discrete-ordinates equations that is defined such that spherical-harmonics solutions (in x-y geometry) or spherical-harmonics-like solutions (in r-z geometry) are obtained. A spatial-finite-element method is used in which the angular flux is expressed as a linear polynomial in each triangle that is discontinous at triangle boundaries. Unusual Features of the program: Provision is made for creation of standard interface output files for S/sub N/ constants, angle-integrated (scalar) fluxes, and angular fluxes. Standard interface input files for S/sub N/ constants, inhomogeneous sources, cross sections, and the scalar flux may be read. Flexible edit options as well as a dump and restart capability are provided

  3. Thermal neutron moderating device

    International Nuclear Information System (INIS)

    Takigami, Hiroyuki.

    1995-01-01

    In a thermal neutron moderating device, superconductive coils for generating magnetic fields capable of applying magnetic fields vertical to the longitudinal direction of a thermal neutron passing tube, and superconductive coils for magnetic field gradient for causing magnetic field gradient in the longitudinal direction of the thermal neutron passing tube are disposed being stacked at the outside of the thermal neutron passing tube. When magnetic field gradient is present vertically to the direction of a magnetic moment, thermal neutrons undergo forces in the direction of the magnetic field gradient in proportion to the magnetic moment. Then, the magnetic moment of the thermal neutrons is aligned with the direction vertical to the passing direction of the thermal neutrons, to cause the magnetic field gradient in the passing direction of the thermal neutrons. The speed of the thermal neutrons can be optionally selected and the wavelength can freely be changed by applying forces to the thermal neutrons and changing the extent and direction of the magnetic field gradient. Superconductive coils are used as the coils for generating magnetic fields and the magnetic field gradient in order to change extremely high energy of the thermal neutrons. (N.H.)

  4. Thermal transport in a two-dimensional Z2 spin liquid

    Science.gov (United States)

    Metavitsiadis, Alexandros; Pidatella, Angelo; Brenig, Wolfram

    2017-11-01

    We study the dynamical thermal conductivity of the two-dimensional Kitaev spin model on the honeycomb lattice. We find a strongly temperature dependent low-frequency spectral intensity as a direct consequence of fractionalization of spins into mobile Majorana matter and a static Z2 gauge field. The latter acts as an emergent thermally activated disorder, leading to the appearance of a pseudogap which closes in the thermodynamic limit, indicating a dissipative heat conductor. Our analysis is based on complementary calculations of the current correlation function, comprising exact diagonalization by means of a complete summation over all gauge sectors, as well as a phenomenological mean-field treatment of thermal gauge fluctuations, valid at intermediate and high temperatures. The results will also be contrasted against the conductivity discarding gauge fluctuations.

  5. Thermal structure of the ionosphere of Mars - simulations with one- and two-dimensional models

    International Nuclear Information System (INIS)

    Singhal, R.P.; Whitten, R.C.

    1988-01-01

    Heat flux saturation effects are included in the present one- and two-dimensional models of the Martian upper ionosphere's thermal structure. The inclusion of small upper boundary and volume heat sources is found to yield satisfactory simulations of the dayside ion temperature observation results obtained by Viking 1's retarding potential analyzers. It is noted that the plasma flow-transport of heat from the dayside to the nightside makes no contribution to the ion and electron temperatures that have been calculated for the nightside. 22 references

  6. The band gap variation of a two dimensional binary locally resonant structure in thermal environment

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-01-01

    Full Text Available In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap. A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.

  7. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.

    Science.gov (United States)

    Hong, Yang; Zhang, Jingchao; Huang, Xiaopeng; Zeng, Xiao Cheng

    2015-11-28

    A recently discovered two-dimensional (2D) layered material phosphorene has attracted considerable interest as a promising p-type semiconducting material. In this work, thermal conductivity (κ) of monolayer phosphorene is calculated using large-scale classical non-equilibrium molecular dynamics (NEMD) simulations. The predicted thermal conductivities for infinite length armchair and zigzag phosphorene sheets are 63.6 and 110.7 W m(-1) K(-1) respectively. The strong anisotropic thermal transport is attributed to the distinct atomic structures at altered chiral directions and direction-dependent group velocities. Thermal conductivities of 2D graphene sheets with the same dimensions are also computed for comparison. The extrapolated κ of the 2D graphene sheet are 1008.5(+37.6)(-37.6) and 1086.9(+59.1)(-59.1) W m(-1) K(-1) in the armchair and zigzag directions, respectively, which are an order of magnitude higher than those of phosphorene. The overall and decomposed phonon density of states (PDOS) are calculated in both structures to elucidate their thermal conductivity differences. In comparison with graphene, the vibrational frequencies that can be excited in phosphorene are severely limited. The temperature effect on the thermal conductivity of phosphorene and graphene sheets is investigated, which reveals a monotonic decreasing trend for both structures.

  8. Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions

    International Nuclear Information System (INIS)

    Carpenter, D.C.

    1997-01-01

    Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions

  9. Thermality and excited state Rényi entropy in two-dimensional CFT

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Feng-Li [Department of Physics, National Taiwan Normal University,Taipei 11677, Taiwan (China); Wang, Huajia [Department of Physics, University of Illinois,Urbana-Champaign, IL 61801 (United States); Zhang, Jia-ju [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China)

    2016-11-21

    We evaluate one-interval Rényi entropy and entanglement entropy for the excited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine their differences from the ones for the thermal state. We assume the interval to be short so that we can use operator product expansion (OPE) of twist operators to calculate Rényi entropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement entropy for highly excited state and thermal state behave the same way after appropriate identification of the conformal weight of the state with the temperature. However, there exists no such universal identification for the Rényi entropy in the short-interval expansion. Therefore, the highly excited state does not look thermal when comparing its Rényi entropy to the thermal state one. As the Rényi entropy captures the higher moments of the reduced density matrix but the entanglement entropy only the average, our results imply that the emergence of thermality depends on how refined we look into the entanglement structure of the underlying pure excited state.

  10. COBRA/TRAC analysis of two-dimensional thermal-hydraulic behavior in SCTF reflood tests

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Ohnuki, Akira; Sobajima, Makoto; Adachi, Hiromichi

    1987-01-01

    The effects of radial power distribution and non-uniform upper plenum water accumulation on thermal-hydraulic behavior in the core were observed in the reflood tests with Slab Core Test Facility (SCTF). In order to examine the predictability of these two effects by a multi-dimensional analysis code, the COBRA/TRAC calculations were made. The calculated results indicated that the heat transfer enhancement in high power bundles above quench front was caused by high vapor flow rate in those bundles due to the radial power distribution. On the other hand, the heat transfer degradation in the peripheral bundles under the condition of non-uniform upper plenum water accumulation was caused by the lower flow rates of vapor and entrained liquid above the quench front in those bundles by the reason that vapor concentrated in the center bundles due to the cross flow induced by the horizontal pressure gradient in the core. The above-mentioned two-dimensional heat transfer behaviors calculated with the COBRA/TRAC code is similar to those observed in SCTF tests and therefore those calculations are useful to investigate the mechanism of the two-dimensional effects in SCTF reflood tests. (author)

  11. Thermal neutron polarisation

    International Nuclear Information System (INIS)

    Satya Murthy, N.S.; Madhava Rao, L.

    1984-01-01

    The basic principle for the production of polarised thermal neutrons is discussed and the choice of various crystal monochromators surveyed. Brief mention of broad-spectrum polarisers is made. The application of polarised neutrons to the study of magnetisation density distributions in magnetic crystals, the dynamic concept of polarisation, principle and use of polarisation analysis, the neutron spin-echo technique are discussed. (author)

  12. Two-dimensional simulation of the thermal stress effect on static and dynamic VDMOS characteristics

    International Nuclear Information System (INIS)

    Alwan, M.; Beydoun, B.; Ketata, K.; Zoaeter, M.

    2005-01-01

    Using a two-dimensional simulator, the effect of the thermal stress on static and dynamic vertical double-diffusion metal oxide semiconductor (VDMOS) characteristics have been investigated. The use of the device under certain thermal stress conditions can produce modifications of its physical and electrical properties. Based on physics and 2D simulations, this paper proposes an analysis of this stress effect observed on the electrical characteristics of the device. Parameters responsible of these modifications are determined. Approximate expressions of the ionization coefficients and breakdown voltage in terms of temperature are proposed. Non-punch-through junction theory is used to express the breakdown voltage and the space charge extension with respect to the impurity concentration and the temperature. The capacitances of the device have been also studied. The effect of the stress on C-V characteristics is observed and analyzed. We notice that the drain-gate, drain-source and gate-source capacitances are shifted due to the degradation of device physical properties versus thermal stress

  13. Two dimensional PMMA nanofluidic device fabricated by hot embossing and oxygen plasma assisted thermal bonding methods

    Science.gov (United States)

    Yin, Zhifu; Sun, Lei; Zou, Helin; Cheng, E.

    2015-05-01

    A method for obtaining a low-cost and high-replication precision two-dimensional (2D) nanofluidic device with a polymethyl methacrylate (PMMA) sheet is proposed. To improve the replication precision of the 2D PMMA nanochannels during the hot embossing process, the deformation of the PMMA sheet was analyzed by a numerical simulation method. The constants of the generalized Maxwell model used in the numerical simulation were calculated by experimental compressive creep curves based on previously established fitting formula. With optimized process parameters, 176 nm-wide and 180 nm-deep nanochannels were successfully replicated into the PMMA sheet with a replication precision of 98.2%. To thermal bond the 2D PMMA nanochannels with high bonding strength and low dimensional loss, the parameters of the oxygen plasma treatment and thermal bonding process were optimized. In order to measure the dimensional loss of 2D nanochannels after thermal bonding, a dimension loss evaluating method based on the nanoindentation experiments was proposed. According to the dimension loss evaluating method, the total dimensional loss of 2D nanochannels was 6 nm and 21 nm in width and depth, respectively. The tensile bonding strength of the 2D PMMA nanofluidic device was 0.57 MPa. The fluorescence images demonstrate that there was no blocking or leakage over the entire microchannels and nanochannels.

  14. Surface harmonics method for two-dimensional time-dependent neutron transport problems of square-lattice nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A. [National Research Centre Kurchatov Institute, Kurchatov Sq. 1, Moscow (Russian Federation)

    2013-07-01

    Time-dependent equations of the Surface Harmonics Method (SHM) have been derived from the time-dependent neutron transport equation with explicit representation of delayed neutrons for solving the two-dimensional time-dependent problems. These equations have been realized in the SUHAM-TD code. The TWIGL benchmark problem has been used for verification of the SUHAM-TD code. The results of the study showed that computational costs required to achieve necessary accuracy of the solution can be an order of magnitude less than with the use of the conventional finite difference method (FDM). (authors)

  15. Parametric analyses of DEMO Divertor using two dimensional transient thermal hydraulic modelling

    Science.gov (United States)

    Domalapally, Phani; Di Caro, Marco

    2018-05-01

    Among the options considered for cooling of the Plasma facing components of the DEMO reactor, water cooling is a conservative option because of its high heat removal capability. In this work a two-dimensional transient thermal hydraulic code is developed to support the design of the divertor for the projected DEMO reactor with water as a coolant. The mathematical model accounts for transient 2D heat conduction in the divertor section. Temperature-dependent properties are used for more accurate analysis. Correlations for single phase flow forced convection, partially developed subcooled nucleate boiling, fully developed subcooled nucleate boiling and film boiling are used to calculate the heat transfer coefficients on the channel side considering the swirl flow, wherein different correlations found in the literature are compared against each other. Correlation for the Critical Heat Flux is used to estimate its limit for a given flow conditions. This paper then investigates the results of the parametric analysis performed, whereby flow velocity, diameter of the coolant channel, thickness of the coolant pipe, thickness of the armor material, inlet temperature and operating pressure affect the behavior of the divertor under steady or transient heat fluxes. This code will help in understanding the basic parameterś effect on the behavior of the divertor, to achieve a better design from a thermal hydraulic point of view.

  16. Thermalization of a two-dimensional photonic gas in a `white wall' photon box

    Science.gov (United States)

    Klaers, Jan; Vewinger, Frank; Weitz, Martin

    2010-07-01

    Bose-Einstein condensation, the macroscopic accumulation of bosonic particles in the energetic ground state below a critical temperature, has been demonstrated in several physical systems. The perhaps best known example of a bosonic gas, blackbody radiation, however exhibits no Bose-Einstein condensation at low temperatures. Instead of collectively occupying the lowest energy mode, the photons disappear in the cavity walls when the temperature is lowered-corresponding to a vanishing chemical potential. Here we report on evidence for a thermalized two-dimensional photon gas with a freely adjustable chemical potential. Our experiment is based on a dye-filled optical microresonator, acting as a `white wall' box for photons. Thermalization is achieved in a photon-number-conserving way by photon scattering off the dye molecules, and the cavity mirrors provide both an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. As a striking example of the unusual system properties, we demonstrate a yet unobserved light concentration effect into the centre of the confining potential, an effect with prospects for increasing the efficiency of diffuse solar light collection.

  17. Limitations to the use of two-dimensional thermal modeling of a nuclear waste repository

    International Nuclear Information System (INIS)

    Davis, B.W.

    1979-01-01

    Thermal modeling of a nuclear waste repository is basic to most waste management predictive models. It is important that the modeling techniques accurately determine the time-dependent temperature distribution of the waste emplacement media. Recent modeling studies show that the time-dependent temperature distribution can be accurately modeled in the far-field using a 2-dimensional (2-D) planar numerical model; however, the near-field cannot be modeled accurately enough by either 2-D axisymmetric or 2-D planar numerical models for repositories in salt. The accuracy limits of 2-D modeling were defined by comparing results from 3-dimensional (3-D) TRUMP modeling with results from both 2-D axisymmetric and 2-D planar. Both TRUMP and ADINAT were employed as modeling tools. Two-dimensional results from the finite element code, ADINAT were compared with 2-D results from the finite difference code, TRUMP; they showed almost perfect correspondence in the far-field. This result adds substantially to confidence in future use of ADINAT and its companion stress code ADINA for thermal stress analysis. ADINAT was found to be somewhat sensitive to time step and mesh aspect ratio. 13 figures, 4 tables

  18. A two-dimensional simulator of the neutronic behaviour of low power fast reactors

    International Nuclear Information System (INIS)

    Penha, M.A.V.R. da.

    1984-01-01

    A model to simulate the temporal neutronic behaviour of fast breeder reactors was developed. The effective cross-sections are corrected, whenever the reactor state change; by using linear correlations and interpolation schemes with data contained in a library previously compiled. This methodology was coupled with a simplified spatial neutronic calculation to investigate the temporal behaviour of neutronic parameters such as breeding gain, flux and power. (Author) [pt

  19. Two dimensional finite element thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2016-10-01

    A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.

  20. Two-dimensional thermometry by using neutron resonance absorption spectrometer DOG

    International Nuclear Information System (INIS)

    Kamiyama, T.; Noda, H.; Kiyanagi, Y.; Ikeda, S.

    2001-01-01

    We applied the neutron resonance absorption spectroscopy to thermometry of a bulk object. The measurement was done by using the neutron resonance absorption spectrometer, DOG, installed at KENS, High Energy Accelerator Research Organization Neutron Source, which enables us to investigate effective temperature of a particular element by analyzing line width of resonance absorption spectrum. The effective temperature becomes consistence with the sample temperature above room temperature. For the analysis we applied the computed tomography method to reconstruct the temperature distribution on the object cross section. The results and the calculated distribution by the heat conducting equation are well agreed on the temperature difference inside the object. (author)

  1. An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem

    International Nuclear Information System (INIS)

    Filho, J. F. P.; Barichello, L. B.

    2013-01-01

    In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)

  2. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  3. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  4. A low noise ASIC for two dimensional neutron gas detector with performance of high spatial resolution (Contract research)

    International Nuclear Information System (INIS)

    Yamagishi, Hideshi; Toh, Kentaro; Nakamura, Tatsuya; Sakasai, Kaoru; Soyama, Kazuhiko

    2012-02-01

    An ASD-ASIC (Amplifier-Shaper-Discriminator ASIC) with fast response and low noise performances has been designed for two-dimensional position sensitive neutron gas detectors (InSPaD). The InSPaD is a 2D neutron detector system with 3 He gas and provides a high spatial resolution by making distinction between proton and triton particles generated in the gas chamber. The new ASD-ASIC is required to have very low noise, a wide dynamic range, good output linearity and high counting rate. The new ASD-ASIC has been designed by using CMOS and consisted of 64-channel ASDs, a 16-channel multiplexer with LVTTL drivers and sum amplifier system for summing all analog signals. The performances were evaluated by the Spice simulation. It was confirmed that the new ASD-ASIC had very low noise performance, wide dynamic range and fast signal processing functions. (author)

  5. Two-dimensional geometrical corner singularities in neutron diffusion. Part 2: Application to the SNR-300 benchmark

    International Nuclear Information System (INIS)

    Cacuci, D.G.; Univ. of Karlsruhe; Kiefhaber, E.; Stehle, B.

    1998-01-01

    The explicit solution developed by Cacuci for the multigroup neutron diffusion equation at interior corners in two-dimensional two-region domains has been applied to the SNR-300 fast reactor prototype design to obtain the exact behavior of the multigroup fluxes at and around typical corners arising between absorber/fuel and follower/fuel assemblies. The calculations have been performed in hexagonal geometry using four energy groups, and the results clearly show that the multigroup fluxes are finite but not analytical at interior corners. In particular, already the first-order spatial derivatives of the multigroup fluxes become unbounded at the corners between follower and fuel assemblies. These results highlight the need to treat properly the influence of corners, both for the direct calculation and for the reconstruction of pointwise neutron flux and power distributions in heterogeneous reactor cores

  6. Neutronics code VALE for two-dimensional triagonal (hexagonal) and three-dimensional geometries

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1981-08-01

    This report documents the computer code VALE designed to solve multigroup neutronics problems with the diffusion theory approximation to neutron transport for a triagonal arrangement of mesh points on planes in two- and three-dimensional geometry. This code parallels the VENTURE neutronics code in the local computation system, making exposure and fuel management capabilities available. It uses and generates interface data files adopted in the cooperative effort sponsored by Reactor Physics RRT Division of the US DOE. The programming in FORTRAN is straightforward, although data is transferred in blocks between auxiliary storage devices and main core, and direct access schemes are used. The size of problems which can be handled is essentially limited only by cost of calculation since the arrays are variably dimensioned. The memory requirement is held down while data transfer during iteration is increased only as necessary with problem size. There is provision for the more common boundary conditions including the repeating boundary, 180 0 rotational symmetry, and the rotational symmetry conditions for the 30 0 , 60 0 , and 120 0 triangular grids on planes. A variety of types of problems may be solved: the usual neutron flux eignevalue problem, or a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations. The adjoint problem and fixed source problem may be solved, as well as the dominating higher harmonic, or the importance problem for an arbitrary fixed source

  7. Two-dimensional thermal modeling of power monolithic microwave integrated circuits (MMIC's)

    Science.gov (United States)

    Fan, Mark S.; Christou, Aris; Pecht, Michael G.

    1992-01-01

    Numerical simulations of the two-dimensional temperature distributions for a typical GaAs MMIC circuit are conducted, aiming at understanding the heat conduction process of the circuit chip and providing temperature information for device reliability analysis. The method used is to solve the two-dimensional heat conduction equation with a control-volume-based finite difference scheme. In particular, the effects of the power dissipation and the ambient temperature are examined, and the criterion for the worst operating environment is discussed in terms of the allowed highest device junction temperature.

  8. Studsvik thermal neutron facility

    International Nuclear Information System (INIS)

    Pettersson, O.A.; Larsson, B.; Grusell, E.; Svensson, P.

    1992-01-01

    The Studsvik thermal neutron facility at the R2-0 reactor originally designed for neutron capture radiography has been modified to permit irradiation of living cells and animals. A hole was drilled in the concrete shielding to provide a cylindrical channel with diameter of 25.3 cm. A shielding water tank serves as an entry holder for cells and animals. The advantage of this modification is that cells and animals can be irradiated at a constant thermal neutron fluence rate of approximately 10 9 n cm -2 s -1 (at 100 kW) without stopping and restarting the reactor. Topographic analysis of boron done by neutron capture autoradiography (NCR) can be irradiated under the same conditions as previously

  9. Two-dimensional position-sensitive detectors for small-angle neutron scattering

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Vandermolen, R.I.

    1990-05-01

    In this paper, various detectors available for small angle neutron scattering (SANS) are discussed, along with some current developments being actively pursued. A section has been included to outline the various methodologies of position encoding/decoding with discussions on trends and limitations. Computer software/hardware vary greatly from institute and experiment and only a general discussion is given to this area. 85 refs., 33 figs

  10. Development of two-dimensional velocity field measurement using particle tracking velocimetry on neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Suzuki, T.; Matsubayashi, M.

    2003-01-01

    The structures of liquid metal two-phase flow are investigated for analyzing the core meltdown accident of fast reactor. The experiments of high-density ratio two-phase flow for lead-bismuth molten metal and nitrogen gases are conducted to understand in detail. The liquid phase velocity distributions of lead-bismuth molten metal are measured by neutron radiography using Au-Cd tracer particles. The liquid phase velocity distributions are obtained usually by using particle image velocimetry (PIV) on the neutron radiography. The PIV, however is difficult to get the velocity vector distribution quantitatively. An image of neutron radiography is divided into two images of the bubbles and the tracer particles each in particle tracking velocimetry (PTV), which distinguishes tracer contents in the bubble from them in the liquid phase. The locations of tracer particles in the liquid phase are possible to determine by particle mask correlation method, in which the bubble images are separated from the tracer images by Σ-scaling method. The particle tracking velocimetry give a full detail of the velocity vector distributions of the liquid phase in two-phase flow, in comparison with the PIV method. (M. Suetake)

  11. Microfabricated thermal modulator for comprehensive two-dimensional micro gas chromatography: design, thermal modeling, and preliminary testing.

    Science.gov (United States)

    Kim, Sung-Jin; Reidy, Shaelah M; Block, Bruce P; Wise, Kensall D; Zellers, Edward T; Kurabayashi, Katsuo

    2010-07-07

    In comprehensive two-dimensional gas chromatography (GC x GC), a modulator is placed at the juncture between two separation columns to focus and re-inject eluting mixture components, thereby enhancing the resolution and the selectivity of analytes. As part of an effort to develop a microGC x microGC prototype, in this report we present the design, fabrication, thermal operation, and initial testing of a two-stage microscale thermal modulator (microTM). The microTM contains two sequential serpentine Pyrex-on-Si microchannels (stages) that cryogenically trap analytes eluting from the first-dimension column and thermally inject them into the second-dimension column in a rapid, programmable manner. For each modulation cycle (typically 5 s for cooling with refrigeration work of 200 J and 100 ms for heating at 10 W), the microTM is kept approximately at -50 degrees C by a solid-state thermoelectric cooling unit placed within a few tens of micrometres of the device, and heated to 250 degrees C at 2800 degrees C s(-1) by integrated resistive microheaters and then cooled back to -50 degrees C at 250 degrees C s(-1). Thermal crosstalk between the two stages is less than 9%. A lumped heat transfer model is used to analyze the device design with respect to the rates of heating and cooling, power dissipation, and inter-stage thermal crosstalk as a function of Pyrex-membrane thickness, air-gap depth, and stage separation distance. Experimental results are in agreement with trends predicted by the model. Preliminary tests using a conventional capillary column interfaced to the microTM demonstrate the capability for enhanced sensitivity and resolution as well as the modulation of a mixture of alkanes.

  12. Two dimensional neutron transport calculation system for plate-reactors: experimental design and qualification with SILOE

    International Nuclear Information System (INIS)

    Roussos, N.

    1982-01-01

    The main objective of this work is to create a neutronic calculations system for the SILOE-SILOETTE reactors, adaptable to other types of plate reactors. The author presents the methodology and the development of the APOLLO 1D (99 gr.) calculations for the creation of cross sections libraries. After a recall of the Discrete Ordinate Method (DOT), the method accuracy is studied in order to optimize the spatial discretization of the calculations; calculations of DOT 3.5 and of SILOETTE core are conducted and their convergence and costs are examined. DOT calculations of SILOETTE and experimental tests results are then compared [fr

  13. Development of a large area, curved two-dimensional detector for single-crystal neutron diffraction studies

    International Nuclear Information System (INIS)

    Moon, Myung-Kook; Lee, Chang-Hee; Kim, Shin-Ae; Noda, Yukio

    2013-01-01

    A new type of two-dimensional curved position-sensitive neutron detector has been developed for a high-throughput single-crystal neutron diffractometer, which was designed to cover 110° horizontally and 56° vertically. The prototype curved detector covering 70° horizontally and 45° vertically was first developed to test the technical feasibility of the detector parameters, the internal anode and cathode structures for the curved shape, technical difficulties in the assembly procedure, and so on. Then, based on this experience, a full-scale curved detector with twice the active area of the prototype was fabricated with newly modified anode and cathode planes and optimized design parameters in terms of mechanical and electric properties. The detector was installed in a dedicated diffractometer at the ST3 beam port of the research reactor HANARO. In this paper, the fabrication and application of the prototype and a new larger-area curved position-sensitive neutron detector for single crystal diffraction is presented

  14. Two-dimensional Haar wavelet Collocation Method for the solution of Stationary Neutron Transport Equation in a homogeneous isotropic medium

    International Nuclear Information System (INIS)

    Patra, A.; Saha Ray, S.

    2014-01-01

    Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet Collocation Method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: This paper emphasizes on finding the solution for a stationary transport equation using the technique of Haar wavelet Collocation Method (HWCM). Haar wavelet Collocation Method is efficient and powerful in solving wide class of linear and nonlinear differential equations. Recently Haar wavelet transform has gained the reputation of being a very effective tool for many practical applications. This paper intends to provide the great utility of Haar wavelets to nuclear science problem. In the present paper, two-dimensional Haar wavelets are applied for solution of the stationary Neutron Transport Equation in homogeneous isotropic medium. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency of the method, one test problem is discussed. It can be observed from the computational simulation that the numerical approximate solution is much closer to the exact solution

  15. Calculation of two-dimensional thermal transients by the finite element method

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da; Barcellos, C.S. de

    1981-01-01

    The linear heat conduction through anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is analysed. It only accepts time-independent boundary conditions and it is possible to have internal heat generation. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. (Author) [pt

  16. Modelling of the thermal parameters of high-power linear laser-diode arrays. Two-dimensional transient model

    International Nuclear Information System (INIS)

    Bezotosnyi, V V; Kumykov, Kh Kh

    1998-01-01

    A two-dimensional transient thermal model of an injection laser is developed. This model makes it possible to analyse the temperature profiles in pulsed and cw stripe lasers with an arbitrary width of the stripe contact, and also in linear laser-diode arrays. This can be done for any durations and repetition rates of the pump pulses. The model can also be applied to two-dimensional laser-diode arrays operating quasicontinuously. An analysis is reported of the influence of various structural parameters of a diode array on the thermal regime of a single laser. The temperature distributions along the cavity axis are investigated for different variants of mounting a crystal on a heat sink. It is found that the temperature drop along the cavity length in cw and quasi-cw laser diodes may exceed 20%. (lasers)

  17. Calculation of two-dimensional thermal transients by the method of finite elements

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da.

    1980-08-01

    The unsteady linear heat conduction analysis throught anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is presented. The boundary conditions and the internal heat generation are supposed time - independent. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. Optionally, it can be used with a reduced resolution method called Stoker Economizing Method wich allows a decrease on the program processing costs. (Author) [pt

  18. Quantum Fidelity and Thermal Phase Transitions in a Two-Dimensional Spin System

    International Nuclear Information System (INIS)

    Wang Bo; Kou Su-Peng; Huang Hai-Lin; Sun Zhao-Yu

    2012-01-01

    We investigate the ability of quantum fidelity in detecting the classical phase transitions (CPTs) in a two-dimensional Heisenberg—Ising mixed spin model, which has a very rich phase diagram and is exactly soluble. For a two-site subsystem of the model, the reduced fidelity (including the operator fidelity and the fidelity susceptibility) at finite temperatures is calculated, and it is found that an extreme value presents at the critical temperature, thus shows a signal for the CPTs. In some parameter region, the signal becomes blurred. We propose to use the 'normalized fidelity susceptibility' to solve this problem

  19. Semiconductor Thermal Neutron Detector

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2014-02-01

    Full Text Available The  CdTe  and  GaN  detector  with  a  Gd  converter  have  been developed  and  investigated  as  a  neutron  detector  for neutron  imaging.  The  fabricated  Gd/CdTe  detector  with  the  25  mm  thick  Gd  was  designed  on  the  basis  of  simulation results  of  thermal  neutron  detection  efficiency  and  spatial  resolution.  The  Gd/CdTe  detector  shows  the  detection  of neutron  capture  gamma  ray  emission  in  the  155Gd(n,  g156Gd,  157Gd(n,  g158Gd  and  113Cd(n,  g114Cd  reactions  and characteristic X-ray emissions due to conversion-electrons generated inside the Gd film. The observed efficient thermal neutron detection with the Gd/CdTe detector shows its promise in neutron radiography application. Moreover, a BGaN detector has also investigated to separate neutron signal from gamma-ray clearly. 

  20. Development of an Advanced Two-Dimensional Thermal Model for Large size Lithium-ion Pouch Cells

    International Nuclear Information System (INIS)

    Samba, Ahmadou; Omar, Noshin; Gualous, Hamid; Firouz, Youssef; Van den Bossche, Peter; Van Mierlo, Joeri; Boubekeur, Tala Ighil

    2014-01-01

    In this work, a LiFePO4/graphite lithium-ion pouch cell with a rated capacity of 45Ah has been used and a two dimensional thermal model is developed to predict the cell temperature distribution over the surface of the battery, this model requires less input parameters and still has high accuracy. The used input parameters are the heat generation and thermal properties. The ANSYS FLUENT software has been used to solve the models. In addition, a new estimation tool has been developed for estimation of the thermal model parameters. Furthermore, the thermal behavior of the proposed battery has been investigated at different environmental conditions as well as during the abuse conditions. Thermal runaway is investigated in depth by the model

  1. Two-dimensional transient thermal analysis of a fuel rod by finite volume method

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Rhayanne Yalle Negreiros; Silva, Mário Augusto Bezerra da; Lira, Carlos Alberto de Oliveira, E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2017-07-01

    One of the greatest concerns when studying a nuclear reactor is the warranty of safe temperature limits all over the system at all time. The preservation of core structure along with the constraint of radioactive material into a controlled system are the main focus during the operation of a reactor. The purpose of this paper is to present the temperature distribution for a nominal channel of the AP1000 reactor developed by Westinghouse Co. during steady-state and transient operations. In the analysis, the system was subjected to normal operation conditions and then to blockages of the coolant flow. The time necessary to achieve a new safe stationary stage (when it was possible) was presented. The methodology applied in this analysis was based on a two-dimensional survey accomplished by the application of Finite Volume Method (FVM). A steady solution is obtained and compared with an analytical analysis that disregard axial heat transport to determine its relevance. The results show the importance of axial heat transport consideration in this type of study. A transient analysis shows the behavior of the system when submitted to coolant blockage at channel's entrance. Three blockages were simulated (10%, 20% and 30%) and the results show that, for a nominal channel, the system can still be considerate safe (there's no bubble formation until that point). (author)

  2. Development of a neutron transport code many-group two-dimensional heterogeneous calculations by the method of characteristics

    International Nuclear Information System (INIS)

    Petkov, P.T.

    2000-01-01

    The method of characteristics (MOC) is gaining increased popularity in the reactor physics community all over the world because it gives a new degree of freedom in nuclear reactor analysis. The MARIKO code solves the neutron transport equation by the MOC in two-dimensional real geometry. The domain of solution can be a rectangle or right hexagon with periodic boundary conditions on the outer boundary. Any reasonable symmetry inside the domain can be fully accounted for. The geometry is described in three levels-macro-cells, cells, and regions. The macro-cells and cells can be any polygon. The outer boundary of a region can be any combination of straight line and circular arc segments. Any level of embedded regions is allowed. Procedures for automatic geometry description of hexagonal fuel assemblies and reflector macro-cells have been developed. The initial ray tracing procedure is performed for the full rectangular or hexagonal domain, but only azimuthal angles in the smallest symmetry interval are tracked. (Authors)

  3. Neutron scattering study on the spin dynamics of the two dimensional square lattice antiferromagnet, La2NiO4

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Yamada, Kazuyoshi; Hosoya, Syoichi; Endoh, Yasuo; Omata, Tomoya; Arai, Masatoshi; Taylor, A.

    1993-01-01

    The spin dynamics of an S = 1, two dimensional (2D) square lattice antiferromagnet, La 2 NiO 4 was studied by neutron scattering experiments in wide energy (E N ), the spin wave excitations of La 2 NiO 4 are well described by a classical spin wave theory. The nearest-neighbor-exchange coupling constant, the in-plane and the out-of-plane anisotropy constants at 10 K were determined to be 28.7±0.7 meV, 0.10±0.02 meV and 1.26±0.12 meV, respectively. Above T N , the 2D spin fluctuation was observed over 600 K. The critical slowing down behavior of the fluctuation was observed in the enhancement of the low energy component toward T N . On the other hand, the high energy component is hardly affected by the three dimensional magnetic transition and still exists even at T N as observed in La 2 CuO 4 . The spin correlation length and the static structure factor at the 2D zone center were measured and compared with theoretical calculations for 2D Heisenberg antiferromagnets. (author)

  4. Thermal neutron actinide data

    International Nuclear Information System (INIS)

    Tellier, H.

    1992-01-01

    During the 70's, the physicists involved in the cross section measurements for the low energy neutrons were almost exclusively interested in the resonance energy range. The thermal range was considered as sufficiently known. In the beginning of the 80's, reactor physicists had again to deal with the delicate problem of the power reactor temperature coefficient, essentially for the light water reactors. The measured value of the reactivity temperature coefficient does not agree with the computed one. The later is too negative. For obvious safety reasons, it is an important problem which must be solved. Several causes were suggested to explain this discrepancy. Among all these causes, the spectral shift in the thermal energy range seems to be very important. Sensibility calculations shown that this spectral shift is very sensitive to the shape of the neutron cross sections of the actinides for energies below one electron-volt. Consequently, reactor physicists require new and accurate measurements in the thermal and subthermal energy ranges. A part of these new measurement results were recently released and reviewed. The purpose of this study is to complete the preceding review with the new informations which are now available. In reactor physics the major actinides are the fertile nuclei, uranium 238, thorium 232 and plutonium 240 and the fissile nuclei, uranium 233, uranium 235 and plutonium 239. For the fertile nuclei the main datum is the capture cross section, for the fissile nuclei the data of interest are nu-bar, the fission and capture cross sections or a combination of these data such as η or α. In the following sections, we will review the neutron data of the major actinides for the energy below 1 eV

  5. Two-dimensional thermal-hydraulic behavior in core in SCTF Core-II forced feed reflood tests

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Sobajima, Makoto; Okubo, Tsutomu; Ohnuki, Akira; Abe, Yutaka; Adachi, Hiromichi

    1987-01-01

    Major purpose of the Slab Core Test Program is to investigate the two-dimensional thermal-hydraulic behavior in the core during the reflood phase of a PWR-LOCA. It was revealed in the previous Slab Core Test Facility (SCTF) Core-II test results that the heat transfer was enhanced in the higher power bundles and degraded in the lower power bundles in the non-uniform radial power profile tests. In order to separately evaluate the effect of the radial power (Q) distribution itself and the effect of the radial temperature (T) distribution, four tests were performed with steep Q and T, flat Q and T, steep Q and flat T, and flat Q and steep T. Based on the test results, it was concluded that the radial temperature distribution which accompanied the radial power distribution was the dominant factor of the two-dimensional thermal-hydraulic behavior in the core during the initial period. Selected data from these four tests are also presented in this report. Some data from Test S2-12 (steep Q, T) were compared with TRAC post-test calculations performed by the Los Alamos National Laboratory. (author)

  6. Two-dimensional finite element heat transfer model of softwood. Part I, Effective thermal conductivity

    Science.gov (United States)

    John F. Hunt; Hongmei Gu

    2006-01-01

    The anisotropy of wood complicates solution of heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential direction and do not differentiate the effects of cellular alignment, earlywood/latewood differences, or...

  7. Two-dimensional thermal analysis of radial heat transfer of monoliths in small-scale steam methane reforming

    DEFF Research Database (Denmark)

    Cui, Xiaoti; Kær, Søren Knudsen

    2018-01-01

    Monolithic catalysts have received increasing attention for application in the small-scale steam methane reforming process. The radial heat transfer behaviors of monolith reformers were analyzed by two-dimensional computational fluid dynamic (CFD) modeling. A parameter study was conducted...... by a large number of simulations focusing on the thermal conductivity of the monolith substrate, washcoat layer, wall gap, radiation heat transfer and the geometric parameters (cell density, porosity and diameter of monolith). The effective radial thermal conductivity of the monolith structure, kr......,eff, showed good agreement with predictions made by the pseudo-continuous symmetric model. This influence of the radiation heat transfer is low for highly conductive monoliths. A simplified model has been developed to evaluate the importance of radiation for monolithic reformers under different conditions...

  8. Investigation of the response of a neutron moisture meter using a multigroup, two-dimensional diffusion theory code

    International Nuclear Information System (INIS)

    Ritchie, A.I.M.; Wilson, D.J.

    1984-12-01

    A multigroup diffusion code has been used to predict the count rate from a neutron moisture meter for a range of values of soil water content ω, thermal neutron absorption cross section Ssub(a) (defined as Σsub(a)/rho) of the soil matrix and soil matrix density rho. Two dimensions adequately approximated the geometry of the source, detector and soil surrounding the detector. Seven energy groups, the data for which were condensed from 128 group data set over the neutron energy spectrum appropriate to the soil-water mixture under study, proved adequate to describe neutron slowing-down and diffusion. The soil-water mixture was an SiO 2 →water mixture, with the absorption cross section of SiO 2 increased to cover the range of Σsub(a) required. The response to changes in matrix density is, in general, linear but the response to changes in water content is not linear over the range of parameter values investigated. Tabular results are presented which allow interpolation of the response for a particular ω, Ssub(a) and rho. It is shown that R(ω, Ssub(a), rho) rho M(Ssub(a)) + C(ω) is a crude representation of the response over a very limited range of variation of ω, and Ssub(a). As the response is a slowly varying function of rho, Ssub(a) and ω, a polynomial fit will provide a better estimate of the response for values of rho, Ssub(a) and ω not tabulated

  9. Two-dimensional chemically tunable patterns with cellular structures fabricated via thermal pressing method

    International Nuclear Information System (INIS)

    Wang Bo; Zhao Qinghe; Liu Lili; Gao Changyou; Han Kun; Zhang Junhu; Xiang Zheng; Yang Bai

    2006-01-01

    A novel and versatile soft lithography method, i.e. thermal pressing method has been established to create colloid arrays by using multilevel inks. Patterned poly(dimethylsiloxane) stamp containing silicone dioxide microparticles was pressed into a polycaprolactone (PCL) film at the temperature around the T m of PCL. Subsequent removal of the colloids left cavity arrays. By initially incorporating chitosan, albumin or CdTe quantum dots into the silicone dioxide microparticles, removal of the ordered SiO 2 microspheres would then release these substances which were stably embedded into the PCL matrices or suspended in the interiors of the cellular structures. By coating the SiO 2 microspheres with multilayers previously, thin covers on the cellular structures could be obtained after removal of the templates

  10. Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material.

    Science.gov (United States)

    Huang, Cong-Liang; Huang, Zun; Lin, Zi-Zhen; Feng, Yan-Hui; Zhang, Xin-Xin; Wang, Ge

    2016-12-01

    The influence of nanopore shapes on the electronic thermal conductivity (ETC) was studied in this paper. It turns out that with same porosity, the ETC will be quite different for different nanopore shapes, caused by the different channel width for different nanopore shapes. With same channel width, the influence of different nanopore shapes can be approximately omitted if the nanopore is small enough (smaller than 0.5 times EMFP in this paper). The ETC anisotropy was discovered for triangle nanopores at a large porosity with a large nanopore size, while there is a similar ETC for small pore size. It confirmed that the structure difference for small pore size may not be seen by electrons in their moving.

  11. Two-dimensional thermal-hydraulic behavior in core in SCTF Core-II cold leg injection tests

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Sobajima, Makoto; Okubo, Tsutomu; Ohnuki, Akira; Abe, Yutaka; Adachi, Hiromichi

    1985-07-01

    Major purpose of the Slab Core Test Program is to investigate the two-dimensional thermal-hydraulic behavior in the core during the reflood phase in a PWR-LOCA. In order to investigate the effects of radial power profile, three cold leg injection tests with different radial power profiles under the same total heating power and core stored energy were performed by using the Slab Core Test Facility (SCTF) Core-II. It was revealed by comparing these three tests that the heat transfer was enhanced in the higher power bundles and degraded in the lower power bundles in the non-uniform radial power profile tests. The turnaround temperature in the high power bundles were evaluated to be reduced by about 40 to 120 K. On the other hand, a two-dimensional flow in the core was also induced by the non-uniform water accumulation in the upper plenum and the quench was delayed resultantly in the bundles corresponding to the peripheral bundles of a PWR. However, the effect of the non-uniform upper plenum water accumulation on the turnaround temperature was small because the effect dominated after the turnaround of the cladding temperature. Selected data from Tests S2-SH1, S2-SH2 and S2-O6 are also presented in this report. Some data from Tests S2-SH1 and S2-SH2 were compared with TRAC post-test calculations performed by the Los Alamos National Laboratory. (author)

  12. Effect of a two-dimensional potential on the rate of thermally induced escape over the potential barrier

    International Nuclear Information System (INIS)

    Han, S.; Lapointe, J.; Lukens, J.E.

    1992-01-01

    The thermally induced escape rate of a particle trapped in a two-dimensional (2D) potential well has been investigated through experiment and numerical simulations. The measurements were performed on a special type of superconducting quantum interference device (SQUID) which has 2 degrees of freedom. The energies associated with the motion perpendicular to (transverse) and along (longitudinal) the escape direction are quite different: the ratio between the transverse and longitudinal small oscillation frequencies is ω t /ω l ∼7. The SQUID's parameters, which were used to determine the potential shape and energy scales were all independently determined. All data were obtained under conditions for which the 2D thermal activation (TA) model is expected to be valid. The results were found in good agreement with the theoretical prediction. The measured thermal activation energy is found to be the same as the barrier height calculated from the independently determined potential parameters. No evidence of apparent potential barrier enhancement recently reported in a similar system was found. In addition, the results of our numerical simulations suggest that the region in which the 2D thermal activation model is applicable may be extended to barriers as low as ΔU∼k BT

  13. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    International Nuclear Information System (INIS)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-01-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester

  14. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  15. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Science.gov (United States)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  16. An analytical approach for a nodal formulation of a two-dimensional fixed-source neutron transport problem in heterogeneous medium

    Energy Technology Data Exchange (ETDEWEB)

    Basso Barichello, Liliane; Dias da Cunha, Rudnei [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst. de Matematica; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada

    2015-05-15

    A nodal formulation of a fixed-source two-dimensional neutron transport problem, in Cartesian geometry, defined in a heterogeneous medium, is solved by an analytical approach. Explicit expressions, in terms of the spatial variables, are derived for averaged fluxes in each region in which the domain is subdivided. The procedure is an extension of an analytical discrete ordinates method, the ADO method, for the solution of the two-dimensional homogeneous medium case. The scheme is developed from the discrete ordinates version of the two-dimensional transport equation along with the level symmetric quadrature scheme. As usual for nodal schemes, relations between the averaged fluxes and the unknown angular fluxes at the contours are introduced as auxiliary equations. Numerical results are in agreement with results available in the literature.

  17. Thermal field theory in a layer: Applications of thermal field theory methods to the propagation of photons in a two-dimensional electron sheet

    International Nuclear Information System (INIS)

    Nieves, Jose F.

    2010-01-01

    We apply the thermal field theory methods to study the propagation of photons in a plasma layer, that is a plasma in which the electrons are confined to a two-dimensional plane sheet. We calculate the photon self-energy and determine the appropriate expression for the photon propagator in such a medium, from which the properties of the propagating modes are obtained. The formulas for the photon dispersion relations and polarization vectors are derived explicitly in some detail for some simple cases of the thermal distributions of the charged particle gas, and appropriate formulas that are applicable in more general situations are also given.

  18. Bibliography for thermal neutron scattering

    International Nuclear Information System (INIS)

    Sakamoto, M.; Chihara, J.; Nakahara, Y.; Kadotani, H.; Sekiya, T.

    1976-12-01

    It contains bibliographical references to measurements, calculations, reviews and basic studies on thermal neutron scatterings and dynamical properties of condensed matter. About 2,700 documents up to the end of 1975 are covered. (auth.)

  19. A new position-sensitive detector for thermal and epithermal neutrons

    International Nuclear Information System (INIS)

    Jeavons, A.P.; Ford, N.L.; Lindberg, B.; Sachot, R.

    1977-01-01

    A new two-dimensional position-sensitive neutron detector is described. It is based on (n,γ) neutron resonance capture in a foil with subsequent detection of internal conversion electrons with a high-density proportional chamber. Large-area detectors with a 1 mm spatial resolution are feasible. A detection efficiency of 50% is possible for thermal neutrons using gadolinium-157 foil and for epithermal neutrons using hafnium-177. (Auth.)

  20. Effect of Rotation for Two-Temperature Generalized Thermoelasticity of Two-Dimensional under Thermal Shock Problem

    Directory of Open Access Journals (Sweden)

    Kh. Lotfy

    2013-01-01

    Full Text Available The theory of two-temperature generalized thermoelasticity based on the theory of Youssef is used to solve boundary value problems of two-dimensional half-space. The governing equations are solved using normal mode method under the purview of the Lord-Şhulman (LS and the classical dynamical coupled theory (CD. The general solution obtained is applied to a specific problem of a half-space subjected to one type of heating, the thermal shock type. We study the influence of rotation on the total deformation of thermoelastic half-space and the interaction with each other under the influence of two temperature theory. The material is homogeneous isotropic elastic half-space. The methodology applied here is use of the normal mode analysis techniques that are used to solve the resulting nondimensional coupled field equations for the two theories. Numerical results for the displacement components, force stresses, and temperature distribution are presented graphically and discussed. The conductive temperature, the dynamical temperature, the stress, and the strain distributions are shown graphically with some comparisons.

  1. Thermal neutron source study

    International Nuclear Information System (INIS)

    Holden, T.M.

    1983-05-01

    The value of intense neutron beams for condensed matter research is discussed with emphasis on the complementary nature of steady state and pulsed neutron sources. A large body of information on neutron sources, both existing and planned, is then summarized under four major headings: fission reactors, electron accelerators with heavy metal targets, pulsed spallation sources and 'steady state' spallation sources. Although the cost of a spallation source is expected to exceed that of a fission reactor of the same flux by a factor of two, there are significant advantages for a spallation device such as the proposed Electronuclear Materials Test Facility (EMTF)

  2. HEXAGA-II-120, -60, -30 two-dimensional multi-group neutron diffusion programmes for a uniform triangular mesh with arbitrary group scattering

    International Nuclear Information System (INIS)

    Woznicki, Z.

    1979-06-01

    This report presents the AGA two-sweep iterative methods belonging to the family of factorization techniques in their practical application in the HEXAGA-II two-dimensional programme to obtain the numerical solution to the multi-group, time-independent, (real and/or adjoint) neutron diffusion equations for a fine uniform triangular mesh. An arbitrary group scattering model is permitted. The report written for the users provides the description of input and output. The use of HEXAGA-II is illustrated by two sample reactor problems. (orig.) [de

  3. Applications of thermal neutron scattering

    International Nuclear Information System (INIS)

    Kostorz, G.

    1978-01-01

    Although in the past neutrons have been used quite frequently in the study of condensed matter, a more recent development has lead to applications of thermal neutron scattering in the investigation of more practical rather than purely academic problems. Physicists, chemists, materials scientists, biologists, and others have recognized and demonstrated that neutron scattering techniques can yield supplementary information which, in many cases, could not be obtained with other methods. The paper illustrates the use of neutron scattering in these areas of applied research. No attempt is made to present all the aspects of neutron scattering which can be found in textbooks. From the vast amount of experimental data, only a few examples are presented for the study of structure and atomic arrangement, ''extended'' structure, and dynamic phenomena in substances of current interest in applied research. (author)

  4. Measuring thermal neutron characteristics

    International Nuclear Information System (INIS)

    Johnstone, C.W.; Jacobson, L.A.

    1983-01-01

    A method for providing a background-compensated measurement of the level of inducted radiation within an earth formation is claimed. The formation is irradiated with a discrete burst of neutrons and the level of radiation in the formation measured. The level of background radiation is then measured. An average level of both measurements is obtained

  5. High precision thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  6. Bibliography for thermal neutron scattering

    International Nuclear Information System (INIS)

    Sakamoto, Masanobu; Chihara, Junzo; Gotoh, Yorio; Kadotani, Hiroyuki; Sekiya, Tamotsu.

    1979-09-01

    Bibliographic references are given for measurements, calculations, reviews and basic studies of thermal neutron scattering and dynamical properties of condensed matter. This is the sixth edition covering 3,326 articles collected up to 1978. The edition being the final issue of the present bibliography series, a forthcoming edition will be published in a new form of bibliography. (author)

  7. Fail-safe neutron shutter used for thermal neutron radiography

    International Nuclear Information System (INIS)

    Sachs, R.D.; Morris, R.A.

    1976-11-01

    A fail-safe, reliable, easy-to-use neutron shutter was designed, built, and put into operation at the Omega West Reactor, Los Alamos Scientific Laboratory. The neutron shutter will be used primarily to perform thermal neutron radiography, but is also available for a highly collimated source of thermal neutrons [neutron flux = 3.876 x 10 6 (neutrons)/(cm 2 .s)]. Neutron collimator sizes of either 10.16 by 10.16 cm or 10.16 by 30.48 cm are available

  8. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  9. Neutron thermalization in light water

    International Nuclear Information System (INIS)

    Abbate, M.J.; Lolich, J.V.

    1975-05-01

    Investigations related to neutron thermalization in light water have been made. Neutron spectra under quasi-infinite-medium conditions have been measured by the time-of-flight technique and calculations were performed with different codes. Through the use of improved experimental techniques and the best known calculational techniques available, the known discrepancies between experimentals and theoretical values were below from 40% to 16%. The present disagreement is believed to be due the scattering model used (ENDF-GASKET, based on the modified Haywood II frequency spectra), that shows to be very satisfactory for poisoned light water cases. Moreover, previous experiments were completed and differential, integral and pulse-source experimental techniques were improved. Also a second step of a neutron and reactor calculation system was completed. (author)

  10. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  11. Neutron scattering studies of two-dimensional antiferromagnetic spin fluctuations in insulating and superconducting S = 1/2 systems

    Energy Technology Data Exchange (ETDEWEB)

    Bech Christensen, N

    2005-01-01

    Time-of-flight and polarized triple axis neutron scattering is used to probe the spin excitations of Cu(DCOO){sub 2}x4D{sub 2}O and La{sub 2-x}Sr{sub x}CuO{sub 4}. The first part of the thesis contains an investigation of the excitation spectrum of the square lattice S = 1/2 Heisenberg antiferromagnet Cu(DCOO){sub 2}4D{sub 2}O. Along the antiferromagnetic zone boundary a pronounced intensity variation is found for the dominant single-magnon excitations. This variation tracks an already known zone boundary dispersion. Using polarization analysis to separate the components of the excitation spectrum, a continuum of longitudinally polarized multimagnon excitations is discovered at energies above the single-magnon branch. At low energies, the findings are well described by linear spin wave theory. At high energies, linear spin wave theory fails and instead the data are very well accounted for by state-of-the-art Quantum Monte Carlo computations. In the second part of the thesis, the spin excitation spectra of the high temperature superconductors La{sub 1.90}Sr{sub 0.10}CuO{sub 4} and La{sub 1.84}Sr{sub 0.16}Cu characterized. The main discovery is that the excitations are dispersive at both doping levels. The dispersion strongly resembles that seen in other high-T{sub c} superconductors. The presence of dispersive excitations does not require superconductivity to exist. For La{sub 1.84}Sr{sub 0.16}CuO{sub 4}, but not for La{sub 1.90}Sr{sub 0.10}CuO{sub 4}, the onset superconductivity gives rise to a spectral weight shift which displays qualitative and quantitative similarities to the resonance mode observed in other high-T{sub c} superconductors. (au)

  12. Neutron scattering studies of two-dimensional antiferromagnetic spin fluctuations in insulating and superconducting S = 1/2 systems

    International Nuclear Information System (INIS)

    Bech Christensen, N.

    2005-01-01

    Time-of-flight and polarized triple axis neutron scattering is used to probe the spin excitations of Cu(DCOO) 2 x4D 2 O and La 2-x Sr x CuO 4 . The first part of the thesis contains an investigation of the excitation spectrum of the square lattice S = 1/2 Heisenberg antiferromagnet Cu(DCOO) 2 4D 2 O. Along the antiferromagnetic zone boundary a pronounced intensity variation is found for the dominant single-magnon excitations. This variation tracks an already known zone boundary dispersion. Using polarization analysis to separate the components of the excitation spectrum, a continuum of longitudinally polarized multimagnon excitations is discovered at energies above the single-magnon branch. At low energies, the findings are well described by linear spin wave theory. At high energies, linear spin wave theory fails and instead the data are very well accounted for by state-of-the-art Quantum Monte Carlo computations. In the second part of the thesis, the spin excitation spectra of the high temperature superconductors La 1.90 Sr 0.10 CuO 4 and La 1.84 Sr 0.16 Cu characterized. The main discovery is that the excitations are dispersive at both doping levels. The dispersion strongly resembles that seen in other high-T c superconductors. The presence of dispersive excitations does not require superconductivity to exist. For La 1.84 Sr 0.16 CuO 4 , but not for La 1.90 Sr 0.10 CuO 4 , the onset superconductivity gives rise to a spectral weight shift which displays qualitative and quantitative similarities to the resonance mode observed in other high-T c superconductors. (au)

  13. Hyper-thermal neutron irradiation field for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1994-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwell distribution higher than the room temperature of 300 K, has been studied in order to improve the thermal neutron flux distribution in a living body for a deep-seated tumor in neutron capture therapy (NCT). Simulation calculations using MCNP-V3 were carried out in order to investigate the characteristics of the hyper-thermal neutron irradiation field. From the results of simulation calculations, the following were confirmed: (i) The irradiation field of the hyper-thermal neutrons is feasible by using some scattering materials with high temperature, such as Be, BeO, C, SiC and ZrH 1.7 . Especially, ZrH 1.7 is thought to be the best material because of good characteristics of up-scattering for thermal neutrons. (ii) The ZrH 1.7 of 1200 K yields the hyper-thermal neutrons of a Maxwell-like distribution at about 2000 K and the treatable depth is about 1.5 cm larger comparing with the irradiation of the thermal neutrons of 300 K. (iii) The contamination by the secondary gamma-rays from the scattering materials can be sufficiently eliminated to the tolerance level for NCT through the bismuth layer, without the larger change of the energy spectrum of hyper-thermal neutrons. ((orig.))

  14. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  15. Two-dimensional finite element heat transfer model of softwood. Part III, Effect of moisture content on thermal conductivity

    Science.gov (United States)

    Hongmei Gu; John F. Hunt

    2007-01-01

    The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models for softwood use average thermal properties across either the radial or tangential direction and do not differentiate the effects of cellular alignment or...

  16. Thermal neutron shield and method of manufacture

    Science.gov (United States)

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  17. Pulsed thermal neutron source at the fast neutron generator.

    Science.gov (United States)

    Tracz, Grzegorz; Drozdowicz, Krzysztof; Gabańska, Barbara; Krynicka, Ewa

    2009-06-01

    A small pulsed thermal neutron source has been designed based on results of the MCNP simulations of the thermalization of 14 MeV neutrons in a cluster-moderator which consists of small moderating cells decoupled by an absorber. Optimum dimensions of the single cell and of the whole cluster have been selected, considering the thermal neutron intensity and the short decay time of the thermal neutron flux. The source has been built and the test experiments have been performed. To ensure the response is not due to the choice of target for the experiments, calculations have been done to demonstrate the response is valid regardless of the thermalization properties of the target.

  18. Neutron coincidence counting based on time interval analysis with dead time corrected one and two dimensional Rossi-alpha distributions: an application for passive neutron waste assay

    International Nuclear Information System (INIS)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1996-03-01

    The report describes a new neutron multiplicity counting method based on Rossi-alpha distributions. The report also gives the necessary dead time correction formulas for the multiplicity counting method. The method was tested numerically using a Monte Carlo simulation of pulse trains. The use of this multiplicity method in the field of waste assay is explained: it can be used to determine the amount of fissile material in a waste drum without prior knowledge of the actual detection efficiency

  19. A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution)

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Son, Bong Jin

    1997-01-01

    Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation

  20. Evaluating of air flow movements and thermal comfort in a model room with Euler equation: Two dimensional study

    Energy Technology Data Exchange (ETDEWEB)

    Chafi, Fatima Zohra; Halle, Stephane [Mechanical engineering department, Ecole de technologie superieure, Quebec university, 1100 rue Notre-Dame Ouest, Montreal, Quebec H3C 1K3 (Canada)

    2011-02-15

    This paper presents the results of a study that consists of estimating the temperature distribution and air flow movement in a model room with a numerical model based on the Euler equations. Numerical results obtained for two scenarios of ventilation and heating are compared with the predictions of a Navier-Stokes model, as well as with experimental results. A comparison of the local thermal comfort indices PMV and PPD obtained experimentally and numerically is also presented. Results show that the Euler model is capable of properly estimating the temperature distribution, the air movement and the comfort indices in the room. Furthermore, the use of Euler equations allows a reduction of computational time in the order of 30% compared to the Navier-Stokes modeling. (author)

  1. Composite heat transfer in a pipe with thermal radiation of two-dimensional propagation - in connection with the temperature rise in flowing medium upstream from heating section

    International Nuclear Information System (INIS)

    Echigo, R.; Hasegawa, S.; Kamiuto, K.

    1975-01-01

    An analytical procedure is presented for simultaneous convective and radiative heat transfer with a fully developed laminar flow in a pipe by taking account of the two-dimensional propagation of radiative transfer and also shows the numerical results on the temperature profiles and the heat-transfer characteristics. In order to solve the energy equation with two-dimensional radiative transfer the entire ranges of the temperature field have to be solved simultaneously both along the radial and flow directions. Moreover, the heat flux by thermal radiation emitted from the heating wall propagates upstream so that it is necessary to examine the temperature profiles of the flowing medium to a certain distance upstream from the entrance of the heating section. In this way in order to attempt to solve the governing equation numerically by a finite difference method the dimension of matrix becomes extremely large provided that a satisfactory validity of numerical calculation is required Consequently the band matrix method is used and the temperature profiles of the medium in both regions upstream and downstream from the entrance of the heating section are illustrated and the heat transfer results are discussed in some detail by comparing with those of the one-dimensional transfer of radiation.(auth)

  2. Spin dynamics, electronic, and thermal transport properties of two-dimensional CrPS4 single crystal

    Science.gov (United States)

    Pei, Q. L.; Luo, X.; Lin, G. T.; Song, J. Y.; Hu, L.; Zou, Y. M.; Yu, L.; Tong, W.; Song, W. H.; Lu, W. J.; Sun, Y. P.

    2016-01-01

    2-Dimensional (2D) CrPS4 single crystals have been grown by the chemical vapor transport method. The crystallographic, magnetic, electronic, and thermal transport properties of the single crystals were investigated by the room-temperature X-ray diffraction, electrical resistivity ρ(T), specific heat CP(T), and the electronic spin response (ESR) measurements. CrPS4 crystals crystallize into a monoclinic structure. The electrical resistivity ρ(T) shows a semiconducting behavior with an energy gap Ea = 0.166 eV. The antiferromagnetic transition temperature is about TN = 36 K. The spin flipping induced by the applied magnetic field is observed along the c axis. The magnetic phase diagram of CrPS4 single crystal has been discussed. The extracted magnetic entropy at TN is about 10.8 J/mol K, which is consistent with the theoretical value R ln(2S + 1) for S = 3/2 of the Cr3+ ion. Based on the mean-field theory, the magnetic exchange constants J1 and Jc corresponding to the interactions of the intralayer and between layers are about 0.143 meV and -0.955 meV are obtained based on the fitting of the susceptibility above TN, which agree with the results obtained from the ESR measurements. With the help of the strain for tuning the magnetic properties, monolayer CrPS4 may be a promising candidate to explore 2D magnetic semiconductors.

  3. Spin dynamics, electronic, and thermal transport properties of two-dimensional CrPS{sub 4} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Q. L.; Luo, X., E-mail: xluo@issp.ac.cn, E-mail: ypsun@issp.ac.cn; Lin, G. T.; Song, J. Y.; Hu, L.; Song, W. H.; Lu, W. J. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zou, Y. M.; Yu, L.; Tong, W. [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Y. P., E-mail: xluo@issp.ac.cn, E-mail: ypsun@issp.ac.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-01-28

    2-Dimensional (2D) CrPS{sub 4} single crystals have been grown by the chemical vapor transport method. The crystallographic, magnetic, electronic, and thermal transport properties of the single crystals were investigated by the room-temperature X-ray diffraction, electrical resistivity ρ(T), specific heat C{sub P}(T), and the electronic spin response (ESR) measurements. CrPS{sub 4} crystals crystallize into a monoclinic structure. The electrical resistivity ρ(T) shows a semiconducting behavior with an energy gap E{sub a} = 0.166 eV. The antiferromagnetic transition temperature is about T{sub N} = 36 K. The spin flipping induced by the applied magnetic field is observed along the c axis. The magnetic phase diagram of CrPS{sub 4} single crystal has been discussed. The extracted magnetic entropy at T{sub N} is about 10.8 J/mol K, which is consistent with the theoretical value R ln(2S + 1) for S = 3/2 of the Cr{sup 3+} ion. Based on the mean-field theory, the magnetic exchange constants J{sub 1} and J{sub c} corresponding to the interactions of the intralayer and between layers are about 0.143 meV and −0.955 meV are obtained based on the fitting of the susceptibility above T{sub N}, which agree with the results obtained from the ESR measurements. With the help of the strain for tuning the magnetic properties, monolayer CrPS{sub 4} may be a promising candidate to explore 2D magnetic semiconductors.

  4. A stability investigation of two-dimensional surface waves on evaporating, isothermal or condensing liquid films - Part I, Thermal non-equilibrium effects on wave velocity

    International Nuclear Information System (INIS)

    Chunxi, L.; Xuemin, Y.

    2004-01-01

    The temporal stability equation of the two-dimensional traveling waves of evaporating or condensing liquid films falling down on an inclined wall is established based on the Prandtl boundary layer theory and complete boundary conditions. The model indicates that the wave velocity is related to the effects of evaporating, isothermal and condensing states, thermo-capillarity, Reynolds number, fluid property and inclined angle, and the effects of above factors are distinctly different under different Reynolds numbers. The theoretical studies show that evaporation process induces the wave velocity to increase slightly compared with the isothermal case, and condensation process induces the wave velocity to decrease slightly. Furthermore, the wave velocity decreases because of the effects of thermo-capillarity under evaporation and increases because of the effects of thermo-capillarity under condensation. The effects of thermal non-equilibrium conditions have relatively obvious effects under lower Reynolds numbers and little effects under higher Reynolds numbers

  5. Two-dimensional thermal simulations of aluminum and carbon ion strippers for experiments at SPIRAL2 using the highest beam intensities

    International Nuclear Information System (INIS)

    Tahir, N.A.; Kim, V.; Lamour, E.; Lomonosov, I.V.; Piriz, A.R.; Rozet, J.P.; Stöhlker, Th.; Sultanov, V.; Vernhet, D.

    2012-01-01

    In this paper we report on two-dimensional numerical simulations of heating of a rotating, wheel shaped target impacted by the full intensity of the ion beam that will be delivered by the SPIRAL2 facility at Caen, France. The purpose of this work is to study heating of solid targets that will be used to strip the fast ions of SPIRAL2 to the required high charge state for the FISIC (Fast Ion–Slow Ion Collision) experiments. Strippers of aluminum with different emissivities and of carbon are exposed to high beam current of different ion species as oxygen, neon and argon. These studies show that carbon, due to its much higher sublimation temperature and much higher emissivity, is more favorable compared to aluminum. For the highest beam intensities, an aluminum stripper does not survive. However, problem of the induced thermal stresses and long term material fatigue needs to be investigated before a final conclusion can be drawn.

  6. Chemical transitions of Areca semen during the thermal processing revealed by temperature-resolved ATR-FTIR spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo

    2018-03-01

    Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.

  7. Attenuation of thermal neutron through graphite

    International Nuclear Information System (INIS)

    Adib, M.; Ismaail, H.; Fathaallah, M.; Abbas, Y.; Habib, N.; Wahba, M.

    2004-01-01

    Calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of graphite temperature and crystalline from for neutron energies from 1 me V< E<10 eV were carried out. Computer programs have been developed which allow calculation for the graphite hexagonal closed-pack structure in its polycrystalline form and pyrolytic one. I The calculated total cross-section for polycrystalline graphite were compared with the experimental values. An overall agreement is indicated between the calculated values and experimental ones. Agreement was also obtained for neutron cross-section measured for oriented pyrolytic graphite at room and liquid nitrogen temperatures. A feasibility study for use of graphite in powdered form as a cold neutron filter is details. The calculated attenuation of thermal neutrons through large mosaic pyrolytic graphite show that such crystals can be used effectively as second order filter of thermal neutron beams and that cooling improve their effectiveness

  8. Thermal neutron diffusion parameters in homogeneous mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdowicz, K.; Krynicka, E. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs.

  9. Thermal neutron diffusion parameters in homogeneous mixtures

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Krynicka, E.

    1995-01-01

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs

  10. The retrieval of two-dimensional distribution of the earth's surface aerodynamic roughness using SAR image and TM thermal infrared image

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Renhua; WANG; Jinfeng; ZHU; Caiying; SUN; Xiaomin

    2004-01-01

    After having analyzed the requirement on the aerodynamic earth's surface roughness in two-dimensional distribution in the research field of interaction between land surface and atmosphere, this paper presents a new way to calculate the aerodynamic roughness using the earth's surface geometric roughness retrieved from SAR (Synthetic Aperture Radar) and TM thermal infrared image data. On the one hand, the SPM (Small Perturbation Model) was used as a theoretical SAR backscattering model to describe the relationship between the SAR backscattering coefficient and the earth's surface geometric roughness and its dielectric constant retrieved from the physical model between the soil thermal inertia and the soil surface moisture with the simultaneous TM thermal infrared image data and the ground microclimate data. On the basis of the SAR image matching with the TM image, the non-volume scattering surface geometric information was obtained from the SPM model at the TM image pixel scale, and the ground pixel surface's equivalent geometric roughness-height standard RMS (Root Mean Square) was achieved from the geometric information by the transformation of the typical topographic factors. The vegetation (wheat, tree) height retrieved from spectrum model was also transferred into its equivalent geometric roughness. A completely two-dimensional distribution map of the equivalent geometric roughness over the experimental area was produced by the data mosaic technique. On the other hand, according to the atmospheric eddy currents theory, the aerodynamic surface roughness was iterated out with the atmosphere stability correction method using the wind and the temperature profiles data measured at several typical fields such as bare soil field and vegetation field. After having analyzed the effect of surface equivalent geometric roughness together with dynamic and thermodynamic factors on the aerodynamic surface roughness within the working area, this paper first establishes a scale

  11. EL-2 reactor: Thermal neutron flux distribution

    International Nuclear Information System (INIS)

    Rousseau, A.; Genthon, J.P.

    1958-01-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  12. Two-dimensional flexible nanoelectronics

    Science.gov (United States)

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-01

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  13. A two-dimensional nodal model with turbulent effects for the synthesis of Si nano-particles by inductively coupled thermal plasmas

    International Nuclear Information System (INIS)

    Colombo, V; Ghedini, E; Gherardi, M; Sanibondi, P; Shigeta, M

    2012-01-01

    Nano-particle synthesis by means of inductively coupled plasma torches is a material process of large technological interest. Numerous parameters are involved in the optimization of this process; hence the development of numerical models for the prediction of thermal and magneto-fluid dynamics fields, precursor powder trajectories and thermal history, as well as nano-particle formation and growth, is necessary for the up-scaling of these devices from laboratory batch production to an industrial continuous process. In this work, a two-dimensional (2D) discrete-type model (nodal model) for the analysis of nano-powder nucleation and growth is presented, taking into account convection, diffusion and turbulent effects on particle formation. Discrete-type models feature high precision and reveal a great deal of information useful for clarifying the nano-particle formation process. Using Si as the precursor material, 2D simulations of a nano-particle synthesis RF plasma apparatus with a reaction chamber are carried out. Good agreement is found when comparing results obtained with this model with those coming from a well-established nucleation-coupled moment method. Moreover, the extended amount of obtainable information that characterizes the nodal model is underlined. (paper)

  14. Analysis of honeybush tea (Cyclopia spp.) volatiles by comprehensive two-dimensional gas chromatography using a single-stage thermal modulator.

    Science.gov (United States)

    Ntlhokwe, Gaalebalwe; Tredoux, Andreas G J; Górecki, Tadeusz; Edwards, Matthew; Vestner, Jochen; Muller, Magdalena; Erasmus, Lené; Joubert, Elizabeth; Christel Cronje, J; de Villiers, André

    2017-07-01

    The applicability of comprehensive two-dimensional gas chromatography (GC×GC) using a single-stage thermal modulator was explored for the analysis of honeybush tea (Cyclopia spp.) volatile compounds. Headspace solid phase micro-extraction (HS-SPME) was used in combination with GC×GC separation on a non-polar × polar column set with flame ionisation (FID) detection for the analysis of fermented Cyclopia maculata, Cyclopia subternata and Cyclopia genistoides tea infusions of a single harvest season. Method optimisation entailed evaluation of the effects of several experimental parameters on the performance of the modulator, the choice of columns in both dimensions, as well as the HS-SPME extraction fibre. Eighty-four volatile compounds were identified by co-injection of reference standards. Principal component analysis (PCA) showed clear differentiation between the species based on their volatile profiles. Due to the highly reproducible separations obtained using the single-stage thermal modulator, multivariate data analysis was simplified. The results demonstrate both the complexity of honeybush volatile profiles and the potential of GC×GC separation in combination with suitable data analysis techniques for the investigation of the relationship between sensory properties and volatile composition of these products. The developed method therefore offers a fast and inexpensive methodology for the profiling of honeybush tea volatiles. Graphical abstract Surface plot obtained for the GC×GC-FID analysis of honeybush tea volatiles.

  15. Attenuation of Thermal Neutrons by Crystalline Silicon

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M.

    2002-01-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross - section including the Bragg scattering from different (hkt) planes to the neutron * transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy .A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500μ eV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given

  16. Two-dimensional turning of thermal flux from normal to lateral propagation in thin metal film irradiated by femtosecond laser pulse

    Science.gov (United States)

    Shepelev, V. V.; Inogamov, N. A.

    2018-01-01

    There are various geometrical variants of laser illumination and target design. Important direction of investigations is connected with tightly focused action (spot size may be less than micron) onto a thin metal film: thickness of a film is just few skin-layer depths. Duration of a pulse is τ L ˜ 0.1 ps. In these conditions energy absorbed in a skin layer first propagates normally to a surface: gradient ∂Te /∂x dominates, here and below x and y are normal and lateral directions. This process in 1-2 ps homogenizes electron temperature T e along thickness of a film. We consider conditions when a film or is supported by weakly conducting substrate, or is free standing. Therefore all absorbed energy is confined inside the film. At the next stage the internal energy begin to flow along the lateral direction—thus direction of energy expansion is changed from x to y because of the heat non-penetrating boundary condition imposed on the rear-side of the film. At the short two-temperature stage of lateral expansion the thermal conductivity κ is high. After that electron and ion temperatures equilibrates and later on the heat propagates with usual value of κ. Lateral expansion cools down the hot spot on long time scales and finally the molten spot recrystallizes. Two-dimensional approach allows us to consider all these stages from propagation in x direction (normal to a film) to propagation in y direction (along a film).

  17. Thermal neutrons streaming in straight duct

    International Nuclear Information System (INIS)

    Jehouani, A.; Boulkheir, M.; Ichaoui, R.

    2000-01-01

    The neutron streaming in duct is due to two phenomena: a) direct propagation and b) reflection on duct wall. We have used the Monte Carlo method to evaluate the ratio of the reflected neutrons flux by the duct wall to the total flux at the exit of the duct for iron and aluminium. Ten neutrons energy groups are considered between 10 -5 eV and 10 eV. A Fortran program is developed to evaluate the neutron double differential albedo. It is shown that the two following approximations are largely justified: i) Three collisions in the duct wall are sufficient to attain the asymptotic limit of the multiscattered neutron double differential albedo ii) The points of entry and exit of the neutron in the duct wall may be considered the same for the multiscattered neutrons. For a punctual source at the mouth of the duct, we have determined the direct and the reflected part of the total thermal neutron flux at the exit of the duct for different lengths and different radius of the duct. For a punctual source, we have found that the major contribution to the total flux of neutrons at the exit is due to the neutron reflection by walls and the reflection contribution decreases when the neutron energy decreases. For a constant length of the duct, the reflected part decreases when the duct radius increases while for the disk shaped source we have found the opposite phenomena. The transmitted neutron flux distribution at the exit of the duct are determined for disk shaped source for different neutron energy and for different distance from the exit center. (author)

  18. Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes.

    Science.gov (United States)

    Kraft, Vadim; Grützke, Martin; Weber, Waldemar; Menzel, Jennifer; Wiemers-Meyer, Simon; Winter, Martin; Nowak, Sascha

    2015-08-28

    A two-dimensional ion chromatography (IC/IC) technique with heart-cutting mode for the separation of ionic organophosphates was developed. These analytes are generated during thermal degradation of three different commercially available Selectilyte™ lithium ion battery electrolytes. The composition of the investigated electrolytes is based on 1M lithium hexafluorophosphate (LiPF6) dissolved in ethylene carbonate/dimethyl carbonate (50:50wt%, LP30), ethylene carbonate/diethyl carbonate (50:50wt%, LP40) and ethylene carbonate/ethyl methyl carbonate (50:50wt%, LP50). The organophosphates were pre-separated from PF6(-) anion on the low capacity A Supp 4 column, which was eluted with a gradient step containing acetonitrile. The fraction containing analytes was retarded on a pre-concentration column and after that transferred to the high capacity columns, where the separation was performed isocratically. Different stationary phases and eluents were applied on the 2nd dimension for the investigation of retention times, whereas the highly promising results were obtained with a high capacitive A Supp 10 column. The organophosphates generated in LP30 and LP40 electrolytes could be separated by application of an aqueous NaOH eluent providing fast analysis time within 35min. For the separation of the organophosphates of LP50 electrolyte due to its complexity a NaOH eluent containing a mixture of methanol/H2O was necessary. In addition, the developed two dimensional IC method was hyphenated to an inductively coupled plasma mass spectrometer (ICP-MS) using aqueous NaOH without organic modifiers. This proof of principle measurement was carried out for future quantitative investigation regarding the concentration of the ionic organophosphates. Furthermore, the chemical stability of several ionic organophosphates in water and acetonitrile at room temperature over a period of 10h was investigated. In both solvents no decomposition of the investigated analytes was observed and

  19. Method translation and full metadata transfer from thermal to differential flow modulated comprehensive two dimensional gas chromatography: Profiling of suspected fragrance allergens.

    Science.gov (United States)

    Cordero, Chiara; Rubiolo, Patrizia; Reichenbach, Stephen E; Carretta, Andrea; Cobelli, Luigi; Giardina, Matthew; Bicchi, Carlo

    2017-01-13

    The possibility to transfer methods from thermal to differential-flow modulated comprehensive two-dimensional gas chromatographic (GC×GC) platforms is of high interest to improve GC×GC flexibility and increase the compatibility of results from different platforms. The principles of method translation are here applied to an original method, developed for a loop-type thermal modulated GC×GC-MS/FID system, suitable for quali-quantitative screening of suspected fragrance allergens. The analysis conditions were translated to a reverse-injection differential flow modulated platform (GC×2GC-MS/FID) with a dual-parallel secondary column and dual detection. The experimental results, for a model mixture of suspected volatile allergens and for raw fragrance mixtures of different composition, confirmed the feasibility of translating methods by preserving 1 D elution order, as well as the relative alignment of resulting 2D peak patterns. A correct translation produced several benefits including an effective transfer of metadata (compound names, MS fragmentation pattern, response factors) by automatic template transformation and matching from the original/reference method to its translated counterpart. The correct translation provided: (a) 2D pattern repeatability, (b) MS fragmentation pattern reliability for identity confirmation, and (c) comparable response factors and quantitation accuracy within a concentration range of three orders of magnitude. The adoption of a narrow bore (i.e. 0.1mm d c ) first-dimension column to operate under close-to-optimal conditions with the differential-flow modulation GC×GC platform was also advantageous in halving the total analysis under the translated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800 degree C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280 degree F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found

  1. Effect of alkali cations on two-dimensional networks of two new quaternary thioarsenates (III) prepared by a facile surfactant-thermal method

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Dongming [School of Civil and Architectural Engineering, Zhejiang University, Hangzhou 310058 (China); Hou, Peipei; Liu, Chang [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chai, Wenxiang [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Zheng, Xuerong [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Luodong [School of Civil and Architectural Engineering, Zhejiang University, Hangzhou 310058 (China); Zhi, Mingjia; Zhou, Chunmei [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Liu, Yi, E-mail: liuyimse@zju.edu.cn [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-15

    Two new quaternary thioarsenates(III) NaAg{sub 2}AsS{sub 3}·H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) with high yields have been successfully prepared through a facile surfactant-thermal method. It is interesting that 2 can only be obtained with the aid of ethanediamine (en), which indicates that weak basicity of solvent is beneficial to the growth of 2 compared with 1. Both 1 and 2 feature the similar two-dimensional (2D) layer structures. However, the distortion of the primary honeycomb-like nets in 2 is more severe than that of 1, which demonstrates that Na{sup +} and K{sup +} cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Our success in preparing these two quaternary thioarsenates(III) proves that surfactant-thermal technique is a powerful yet facile synthetic method to explore new complex chalcogenides. - Graphical abstract: Two new quaternary thioarsenates(III) NaAg{sub 2}AsS{sub 3}·H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) with high yields have been successfully prepared through a facile surfactant-thermal method. X-ray single crystal diffraction analyses demonstrate that Na{sup +} and K{sup +} cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Display Omitted - Highlights: • NaAg{sub 2}AsS{sub 3}⋅H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) were prepared through surfactant-thermal method. • Crystal structures show Na{sup ±} and K{sup ±} have different structure directing effects. • The weak basicity of solvent is benefit to the growth of 2 compared with 1. • Experimental and theoretical studies confirm 1 and 2 are semiconductors.

  2. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  3. Two-dimensional models

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2005-02-01

    It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)

  4. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable

  5. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.N.

    1990-01-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing. These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale section of neutron shield from the cask. The test article was heated in an environment prescribed by NRC regulations. Results of this second testing phase show that all three materials are thermally acceptable

  6. Neutronics methods for thermal radiative transfer

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1988-01-01

    The equations of thermal radiative transfer are time discretized in a semi-implicit manner, yielding a linear transport problem for each time step. The governing equation in this problem has the form of a neutron transport equation with fission but no scattering. Numerical methods are described, whose origins lie in neutron transport, and that have been successfully adapted to this new problem. Acceleration methods that have been developed specifically for the radiative transfer problem, but may have generalizations applicable in neutronics problems, are also discussed

  7. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  8. Measurement of thermal neutron capture cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong; Han Xiaogang; Yu Weixiang; Lu Hanlin; Zhao Wenrong

    2001-01-01

    The thermal neutron capture cross sections of 71 Ga(n, γ) 72 Ga, 94 Zr(n, γ) 95 Zr and 191 Ir(n, γ) 192 Ir m1+g,m2 reactions were measured by using activation method and compared with other measured data. Meanwhile the half-life of 72 Ga was also measured. The samples were irradiated with the neutron in the thermal column of heavy water reactor of China Institute of Atomic Energy. The activities of the reaction products were measured by well-calibrated Ge(Li) detector

  9. Thermal neutron albedo measurements for multilithic reflectors

    International Nuclear Information System (INIS)

    Mehboob, Khurram; Ahmed, Raheel; Ali, Majid; Tabassam, Uzma

    2013-01-01

    Highlights: • Measurement of thermal neuron albedo for multilithic reflectors. • Modeling of experiments in MATLAB. • Comparison of numerical calculated and experimental values. • Study of thermal neutron albedo in different multilayered shielding. - Abstract: An experimental measurement of the thermal neutron (0.025 eV) albedo (αth) has been carried out for multilithic shielding by using Am–Be neutron source and BF 3 detector. The measured saturation value for the thermal albedo of paraffin wax has been found to be 0.734 ± 0.020, which is in close agreement to the corresponding value 0.83 quoted in the literature. The thermal neutron albedo has been measured for the multilayered shielding in copper–wood, copper–aluminum, wood–paraffin and paraffin–iron combinations in horizontal geometric configurations. Modeling and numerical simulation have been carried out by developing a MATLAB code which solves the diffusion equation in order to calculate the experimental results. Good agreement has been found between the numerical calculated and experimental results. The uncertainties in the measurements have also been calculated based on error propagation of the underlying Poisson distribution

  10. Method for determining thermal neutron decay times of earth formations

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1976-01-01

    A method is disclosed for measuring the thermal neutron decay time of earth formations in the vicinity of a well borehole. A harmonically intensity modulated source of fast neutrons is used to irradiate the earth formations with fast neutrons at three different intensity modulation frequencies. The tangents of the relative phase angles of the fast neutrons and the resulting thermal neutrons at each of the three frequencies of modulation are measured. First and second approximations to the earth formation thermal neutron decay time are derived from the three tangent measurements. These approximations are then combined to derive a value for the true earth formation thermal neutron decay time

  11. HEXAGA-II. A two-dimensional multi-group neutron diffusion programme for a uniform triangular mesh with arbitrary group scattering for the IBM/370-168 computer

    International Nuclear Information System (INIS)

    Woznicki, Z.

    1976-05-01

    This report presents the AGA two-sweep iterative methods belonging to the family of factorization techniques in their practical application in the HEXAGA-II two-dimensional programme to obtain the numerical solution to the multi-group, time-independent, (real and/or adjoint) neutron diffusion equations for a fine uniform triangular mesh. An arbitrary group scattering model is permitted. The report written for the users provides the description of input and output. The use of HEXAGA-II is illustrated by two sample reactor problems. (orig.) [de

  12. Study on the dose distribution of the mixed field with thermal and epi-thermal neutrons for neutron capture therapy

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Sakurai, Yoshinori; Kanda, Keiji

    1994-01-01

    Simulation calculations using DOT 3.5 were carried out in order to confirm the characteristics of depth-dependent dose distribution in water phantom dependent on incident neutron energy. The epithermal neutrons mixed to thermal neutron field is effective improving the thermal neutron depth-dose distribution for neutron capture therapy. A feasibility study on the neutron energy spectrum shifter was performed using ANISN-JR for the KUR Heavy Water Facility. The design of the neutron spectrum shifter is feasible, without reducing the performance as a thermal neutron irradiation field. (author)

  13. Thermal and magnetic properties of neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.; Ragab, H.S.; Hassan, M.Y.M.

    1990-01-01

    The Thomas-Fermi model is used to calculate the equation of state of thermal polarized neutron matter applying Seyler-Blanchard interaction. The resulting equation of state is stiff and has a small dependence on both the temperature and the spin excess parameter. We expand the Fermi integrals in powers of temperature up to second order to examine the T 2 approximation for neutron matter. It is found to be reliable up to T = 10 MeV. We also studied the ferromagnetic transition in neutron matter. We found a ferromagnetic transition at density ρ ≅ 2ρ0. This ferromagnetic transition is found to have a small dependence on both the temperature and the spin excess parameter. We also studied the dependence of the effective mass and the sound velocity for polarized neutron matter on temperature. (author). 36 refs, 17 figs

  14. Thermal neutron spectrum distribution in TRIGA fuels

    International Nuclear Information System (INIS)

    Gui Ah Auu; Harasawa, Susumu; An, Shigehiro

    1989-01-01

    The dependence of thermal neutron spectrum in TRIGA fuel cell on fuel temperature and TRIGA fuel types were studied using LIBP and THERMOS codes. Some characteristics of the TRIGA fuel including its prompt negative temperature coefficient of reactivity were explained using the results of the study. (author)

  15. Instrumentation to handle thermal polarized neutron beams

    NARCIS (Netherlands)

    Kraan, W.H.

    2004-01-01

    In this thesis we investigate devices needed to handle the polarization of thermal neutron beams: Ï/2-flippers (to start/stop Larmor precession) and Ï-flippers (to reverse polarization/precession direction) and illustrate how these devices are used to investigate the properties of matter and of the

  16. The Thermal Neutron Beam Option for NECTAR at MLZ

    Science.gov (United States)

    Mühlbauer, M. J.; Bücherl, T.; Genreith, C.; Knapp, M.; Schulz, M.; Söllradl, S.; Wagner, F. M.; Ehrenberg, H.

    The beam port SR10 at the neutron source FRM II of Heinz Maier-Leibnitz Zentrum (MLZ) is equipped with a moveable assembly of two uranium plates, which can be placed in front of the entrance window of the beam tube via remote control. With these plates placed in their operating position the thermal neutron spectrum produced by the neutron source FRM II is converted to fission neutrons with 1.9 MeV of mean energy. This fission neutron spectrum is routinely used for medical applications at the irradiation facility MEDAPP, for neutron radiography and tomography experiments at the facility NECTAR and for materials testing. If, however, the uranium plates are in their stand-by position far off the tip of the beam tube and the so-called permanent filter for thermal neutrons is removed, thermal neutrons originating from the moderator tank enter the beam tube and a thermal spectrum becomes available for irradiation or activation of samples. By installing a temporary flight tube the beam may be used for thermal neutron radiography and tomography experiments at NECTAR. The thermal neutron beam option not only adds a pure thermal neutron spectrum to the energy ranges available for neutron imaging at MLZ instruments but it also is an unique possibility to combine two quite different neutron energy ranges at a single instrument including their respective advantages. The thermal neutron beam option for NECTAR is funded by BMBF in frame of research project 05K16VK3.

  17. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1979-01-01

    A simultaneous pulsed neutron porosity and thermal neutron capture cross section logging system is provided for radiological well logging of subsurface earth formations. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a combination gamma ray and fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations; and, during the bursts, the fast neutron and epithermal neutron populations are sampled. During the interval between bursts the thermal neutron capture gamma ray population is sampled in two or more time intervals. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity phi. The capture gamma ray measurements are combined to provide a simultaneous determination of the thermal neutron capture cross section Σ

  18. THERMAL: A routine designed to calculate neutron thermal scattering

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1995-01-01

    THERMAL is designed to calculate neutron thermal scattering that is isotropic in the center of mass system. At low energy thermal motion will be included. At high energies the target nuclei are assumed to be stationary. The point of transition between low and high energies has been defined to insure a smooth transition. It is assumed that at low energy the elastic cross section is constant in the center of mass system. At high energy the cross section can be of any form. You can use this routine for all energies where the elastic scattering is isotropic in the center of mass system. In most materials this will be a fairly high energy

  19. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1993-01-01

    In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-A19897, R.H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280degF. Table 1 lists the neutron shield materials tested. The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found. The Bisco modified NS-4 and Reactor Experiments HMPP are both acceptable materials from a thermal accident standpoint for use in the shipping cask. Tests of the Kobe PP-R01 and Envirotech HDPE were stopped for safety reasons, due to inability to deal with the heavy smoke, before completion of the 30-minute heating phase. However these materials may prove satisfactory if they could undergo the complete heating. (J.P.N.)

  20. Cell death following thermal neutron exposure

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, L.C. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Atanackovic, J. [Ontario Power Generation, Toronto, Ontario (Canada); Boyer, C. [Canadian Neutron Beam Centre, Chalk River, Ontario (Canada); El-Jaby, S.; Priest, N.D. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Seymour, C.B.; Boreham, D.R. [McMaster Univ., Hamilton, Ontario (Canada); Richardson, R.B. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2014-07-01

    When individuals are exposed to unknown external ionizing radiation, it is desirable to have the means to assess both the absorbed dose received (Gy) and the radiation quality. Yet, conventional biodosimetry techniques, specifically the dicentric chromosome assay, cannot differentiate between the damage caused by high- and low-linear energy transfer (LET) exposures. Frequencies of apoptosis and necrosis, may provide an alternative method that assesses both the absorbed dose and radiation quality after unknown exposures. For this preliminary study, human lymphocytes were irradiated with {sup 60}Co gamma rays and thermal neutrons. Both apoptosis and necrosis increased with increasing gamma dose. In contrast, no dose-response was observed following thermal neutron exposure at doses up to 2.61 Gy. (author)

  1. Three frequency modulated combination thermal neutron lifetime log and porosity

    International Nuclear Information System (INIS)

    Paap, H.J.; Arnold, D.M.; Smith, M.P.

    1976-01-01

    Methods are disclosed for measuring simultaneously the thermal neutron lifetime of the borehole fluid and earth formations in the vicinity of a well borehole, together with the formation porosity. A harmonically intensity modulated source of fast neutrons is used to irradiate the earth formations with fast neutrons at three different modulation frequencies. Intensity modulated clouds of thermal neutrons at each of the three modulation frequencies are detected by dual spaced detectors and the relative phase shift of the thermal neutrons with respect to the fast neutrons is determined at each of the three modulation frequencies at each detector. These measurements are then combined to determine simultaneously the thermal neutron decay time of the borehole fluid, the thermal neutron decay time of surrounding earth formation media and the porosity of the formation media

  2. Thermal neutron converter for irradiations with fission neutrons

    International Nuclear Information System (INIS)

    Wagner, F.M.; Kampfer, S.; Kastenmuller, A.; Waschkowski, W.; Bucherl, Th.; Kampfer, S.

    2007-01-01

    The new research reactor FRM II at Garching started operation in March 2004. The compact core is cooled by light water, and moderated by heavy water. Two fuel plates mounted in the heavy water tank convert thermal to fast neutrons. The fast neutron flux in the connected beam tube is up to 7 centre dot 10 8 s -1 cm -2 (depending on filters and collimation); the mean neutron energy is about 1.6 MeV. There are two irradiation rooms along the beam. The first is mainly used for medical therapy (MEDAPP facility), the second for materials characterization (NECTAR facility). At the former therapy facility RENT at the old research reactor FRM, the same beam quality was available until July 2000. Therefore, only a small program is run for the determination of the biological effectiveness of the new beam. The neutron and gamma dose rates in the medical beam are 0.54 and 0.20 Gy/min, respectively. The therapy facility MEDAPP is still under examination according to European regulations for medical devices. Full medical operation will start in 2007. The radiography and tomography facility NECTAR is in operation and aims at non-destructive inspection of objects up to 400 kg mass and 80 centre dot 80 centre dot 80 cm 3 in size. As for fission neutrons the macroscopic cross section of hydrogen is much higher than for other materials (e. g. Fe and Pb), one special application is the detection of hydrogen-containing materials (e. g. oil) in dense materials

  3. Development of temperature related thermal neutron scattering database for MCNP

    International Nuclear Information System (INIS)

    Mei Longwei; Cai Xiangzhou; Jiang Dazhen; Chen Jingen; Guo Wei

    2013-01-01

    Based on ENDF/B-Ⅶ neutron library, the thermal neutron scattering library S(α, β) for molten salt reactor moderators was developed. The temperatures of this library were chose as the characteristic temperature of the molten salt reactor. The cross section of the thermal neutron scattering of ACE format was investigated, and this library was also validated by the benchmarks of ICSBEP. The uncertainties shown in the validation were in reasonable range when compared with the thermal neutron scattering library tmccs which included in the MCNP data library. It was proved that the thermal neutron scattering library processed in this study could be used in the molten salt reactor design. (authors)

  4. A study on the utilization of hyper-thermal neutrons for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1993-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwellian distribution of a higher temperature than the room temperature of 300 K, was studied in order to improve the thermal neutron flux distribution at the deeper part in a living body for neutron capture therapy. Simulation calculations were carried out using MCNP-V3 in order to confirm the characteristics of hyper-thermal neutrons, i.e., (1) depth dependence of neutron energy spectrum, and (2) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that the hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper and wider area in a living body compared with the thermal neutron irradiation. Practically, by the incidence of the hyper-thermal neutrons with a 3000 K Maxwellian distribution, the thermal neutron flux at 5 cm depth can be given about four times larger than by the incidence of the thermal neutrons of 300 K. (author)

  5. Influence of an SN solver in a fine-mesh neutronics/thermal-hydraulics framework

    International Nuclear Information System (INIS)

    Jareteg, Klas; Vinai, Paolo; Demaziere, Christophe; Sasic, Srdjan

    2015-01-01

    In this paper a study on the influence of a neutron discrete ordinates (S N ) solver within a fine-mesh neutronic/thermal-hydraulic methodology is presented. The methodology consists of coupling a neutronic solver with a single-phase fluid solver, and it is aimed at computing the two fields on a three-dimensional (3D) sub-pin level. The cross-sections needed for the neutron transport equations are pre-generated using a Monte Carlo approach. The coupling is resolved in an iterative manner with full convergence of both fields. A conservative transfer of the full 3D information is achieved, allowing for a proper coupling between the neutronic and the thermal-hydraulic meshes on the finest calculated scales. The discrete ordinates solver is benchmarked against a Monte Carlo reference solution for a two-dimensional (2D) system. The results confirm the need of a high number of ordinates, giving a satisfactory accuracy in k eff and scalar flux profile applying S 16 for 16 energy groups. The coupled framework is used to compare the S N implementation and a solver based on the neutron diffusion approximation for a full 3D system of a quarter of a symmetric, 7x7 array in an infinite lattice setup. In this case, the impact of the discrete ordinates solver shows to be significant for the coupled system, as demonstrated in the calculations of the temperature distributions. (author)

  6. Activation measurements for thermal neutrons. Part J. Evaluation of thermal neutron transmission factors

    International Nuclear Information System (INIS)

    Egbert, Stephen D.

    2005-01-01

    In order to relate thermal neutron activation measurements in samples to the calculated free-in-air thermal neutron activation levels given in Chapter 3, use is made of sample transmission factors. Transmission factors account for the modification of the fluence and activation at each sample's in situ location. For the purposes of this discussion, the transmission factor (TF) is defined as the ratio of the in situ sample activation divided by the free-in-air (FIA) activation at a height of 1 m above ground at the same ground range. The procedures for calculation of TF's and example results are presented in this section. (author)

  7. maximum neutron flux at thermal nuclear reactors

    International Nuclear Information System (INIS)

    Strugar, P.

    1968-10-01

    Since actual research reactors are technically complicated and expensive facilities it is important to achieve savings by appropriate reactor lattice configurations. There is a number of papers, and practical examples of reactors with central reflector, dealing with spatial distribution of fuel elements which would result in higher neutron flux. Common disadvantage of all the solutions is that the choice of best solution is done starting from the anticipated spatial distributions of fuel elements. The weakness of these approaches is lack of defined optimization criteria. Direct approach is defined as follows: determine the spatial distribution of fuel concentration starting from the condition of maximum neutron flux by fulfilling the thermal constraints. Thus the problem of determining the maximum neutron flux is solving a variational problem which is beyond the possibilities of classical variational calculation. This variational problem has been successfully solved by applying the maximum principle of Pontrjagin. Optimum distribution of fuel concentration was obtained in explicit analytical form. Thus, spatial distribution of the neutron flux and critical dimensions of quite complex reactor system are calculated in a relatively simple way. In addition to the fact that the results are innovative this approach is interesting because of the optimization procedure itself [sr

  8. The measurements of thermal neutron flux distribution in a paraffin

    Indian Academy of Sciences (India)

    The term `thermal flux' implies a Maxwellian distribution of velocity and energy corresponding to the most probable velocity of 2200 ms-1 at 293.4 K. In order to measure the thermal neutron flux density, the foil activation method was used. Thermal neutron flux determination in paraffin phantom by counting the emitted rays of ...

  9. Analytic scattering kernels for neutron thermalization studies

    International Nuclear Information System (INIS)

    Sears, V.F.

    1990-01-01

    Current plans call for the inclusion of a liquid hydrogen or deuterium cold source in the NRU replacement vessel. This report is part of an ongoing study of neutron thermalization in such a cold source. Here, we develop a simple analytical model for the scattering kernel of monatomic and diatomic liquids. We also present the results of extensive numerical calculations based on this model for liquid hydrogen, liquid deuterium, and mixtures of the two. These calculations demonstrate the dependence of the scattering kernel on the incident and scattered-neutron energies, the behavior near rotational thresholds, the dependence on the centre-of-mass pair correlations, the dependence on the ortho concentration, and the dependence on the deuterium concentration in H 2 /D 2 mixtures. The total scattering cross sections are also calculated and compared with available experimental results

  10. Maximum neutron flux in thermal reactors

    International Nuclear Information System (INIS)

    Strugar, P.V.

    1968-12-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples

  11. Thermalization of monoenergetic neutrons in a concrete room

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado, G.A. [UAZ, A.P. 336, 98000 Zacatecas (Mexico); Iniguez, M.P.; Martin M, A. [Universidad de Valladolid, (Spain)

    2006-07-01

    The thermalization of neutrons from monoenergetic neutron sources in a concrete room has been studied. During calibration of neutron detectors it is mandatory to make corrections due to neutron scattering produced by the room walls, therefore this factor must be known in advance. The scattered neutrons are thermalized and produce a neutron field that is directly proportional to source strength and inversely proportional to room total wall-surfaces, the proportional coefficient has been calculated for neutrons whose energy goes from 1 eV to 20 MeV. This coefficient was calculated using Monte Carlo methods for 150, 200 and 300 cm-radius spherical cavity, where monoenergetic neutrons were located at the center, along the spherical cavity radius neutron spectra were calculated at several source-to-detector distances inside the cavity. The obtained coefficient is almost three times larger than the factor normally utilized. (Author)

  12. Thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,α), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,#betta#) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide

  13. More accurate thermal neutron coincidence counting technique

    International Nuclear Information System (INIS)

    Baron, N.

    1978-01-01

    Using passive thermal neutron coincidence counting techniques, the accuracy of nondestructive assays of fertile material can be improved significantly using a two-ring detector. It was shown how the use of a function of the coincidence count rate ring-ratio can provide a detector response rate that is independent of variations in neutron detection efficiency caused by varying sample moderation. Furthermore, the correction for multiplication caused by SF- and (α,n)-neutrons is shown to be separable into the product of a function of the effective mass of 240 Pu (plutonium correction) and a function of the (α,n) reaction probability (matrix correction). The matrix correction is described by a function of the singles count rate ring-ratio. This correction factor is empirically observed to be identical for any combination of PuO 2 powder and matrix materials SiO 2 and MgO because of the similar relation of the (α,n)-Q value and (α,n)-reaction cross section among these matrix nuclei. However the matrix correction expression is expected to be different for matrix materials such as Na, Al, and/or Li. Nevertheless, it should be recognized that for comparison measurements among samples of similar matrix content, it is expected that some function of the singles count rate ring-ratio can be defined to account for variations in the matrix correction due to differences in the intimacy of mixture among the samples. Furthermore the magnitude of this singles count rate ring-ratio serves to identify the contaminant generating the (α,n)-neutrons. Such information is useful in process control

  14. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  15. Applications of thermal neutron scattering in biology, biochemistry and biophysics

    International Nuclear Information System (INIS)

    Worcester, D.L.

    1977-01-01

    Biological applications of thermal neutron scattering have increased rapidly in recent years. The following categories of biological research with thermal neutron scattering are presently identified: crystallography of biological molecules; neutron small-angle scattering of biological molecules in solution (these studies have already included numerous measurements of proteins, lippoproteins, viruses, ribosomal subunits and chromatin subunit particles); neutron small-angle diffraction and scattering from biological membranes and membrane components; and neutron quasielastic and inelastic scattering studies of the dynamic properties of biological molecules and materials. (author)

  16. Thermal analysis of Ti drive-in target for D-D neutron generation

    International Nuclear Information System (INIS)

    Jung, N.S.; Kim, I.J.; Kim, S.J.; Choi, H.D.

    2008-01-01

    Full text: Thermal analysis was performed for a Ti drive-in target of a D-D neutron generator. Numerical calculation was the only feasible way to obtain the information of the target temperature, since it was very difficult to measure the target temperature during neutron generation due to high voltage being applied to the target. Computational fluid dynamics code CFX-5 was used in this study. In order to define the heat flux term for the thermal analysis, the current profile of the ion beam was measured. The one-dimensional, integrated current profile was measured by using a single slit and a Faraday cup. The measured current profile was transformed into the axially symmetric two-dimensional distribution function by using the Abel inversion, which had the two-dimensional Gaussian function shape. Temperature distribution in the target was calculated at the operating condition. The influence of operational parameters like the ion beam energy, current, coolant mass flow rate and coolant inlet temperature on the target temperature was investigated

  17. Real-time thermal neutron radiographic detection systems

    International Nuclear Information System (INIS)

    Berger, H.; Bracher, D.A.

    1976-01-01

    Systems for real-time detection of thermal neutron images are reviewed. Characteristics of one system are presented; the data include contrast, resolution and speed of response over the thermal neutron intensity range 2.5 10 3 n/cm 2 -sec to 10 7 n/cm 2 -sec

  18. Magneto–Thermal Evolution of Neutron Stars with Emphasis to ...

    Indian Academy of Sciences (India)

    The magnetic and thermal evolution of neutron stars is a very complex process with many non-linear interactions. For a decent understanding of neutron star physics, these evolutions cannot be considered isolated. A brief overview is presented, which describes the main magneto–thermal interactions that determine the fate ...

  19. Design of hyper-thermal neutron irradiation fields for neutron capture therapy in KUR-heavy water neutron irradiation facility. Mounting of hyper-thermal neutron converter in therapeutic collimator

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2001-01-01

    Neutron capture therapy (NCP) using thermal neutron needs to improve of depth dose distribution in a living body. Epi-thermal neutron following moderation of fast neutron is usually used for improving of the depth dose distribution. The moderation method of fast neutron, however, gets mixed some of high energy neutron which give some of serious effects to a living body, and involves the difficulty for collimation of thermal neutron to the diseased part. Hyper-thermal neutrons, which are in an energy range of 0.1-3 eV at high temperature side of thermal neutron, are under consideration for application to the NCP. The hyper-thermal neutrons can be produced by up-scattering of thermal neutron in a high temperature material. Fast neutron components in collimator for the NCP reduce on application of the up-scattering method. Graphite at high temperature (>1000k) is used as a hyper-thermal neutron converter. The hyper-thermal neutron converter is planted to mount on therapeutic collimator which is located at the nearest side of patient for the NCP. Total neutron flux, ratio of hyper-thermal neutron to total neutron, and ratio of gamma-ray dose to neutron flux are calculated as a function of thickness of the graphite converter using monte carlo code MCNP-V4B. (M. Suetake)

  20. Characterization of the Ljubljana TRIGA thermal column neutron radiographic facility

    International Nuclear Information System (INIS)

    Nemec, T.; Rant, J.; Kristof, E.; Glumac, B.

    1995-01-01

    An extensive characterization of the neutron beam of the existing neutron radiographic facility in the thermal column of the Ljubljana Triga Mark II research reactor is in progress. Neutron beam characteristics are needed to determine the effect of various neutron and gamma radiation on the neutron radiographic image. Commercially available medical scintillator converter screens based on Gd dioxy sulphite as well as Gd metal neutron converters are used to record neutron radiographic image. Thermal, epithermal and fast neutron fluxes were measured using Au and In activation detectors and cadmium ratio is determined. Neutron beam flux profiles are measured by film densitometry and by Au activation detector wires. By exposing films shielded by boral or lead plates individual contributions of thermal, epithermal neutrons and gamma radiation are estimated by densitometric measurements. By recording images of neutron image quality indicators BPI (Beam Purity Indicator) and SI (Sensitivity Indicator) produced by Riso, standard neutron radiography image characteristic are established. In gamma dosimetric measurements thermoluminescent detectors (CaF 2 Mn) are used. (author)

  1. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  2. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  3. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  4. Using thermalizers in measuring 'Ukryttia' object's FCM neutron fluxes

    CERN Document Server

    Krasnyanskaya, O G; Odinokin, G I; Pavlovich, V N

    2003-01-01

    The results of research of a thermalizer (heater) width influence on neutron thermalization efficiency during FCM neutron flux measuring in the 'Ukryttia' are described. The calculations of neutron flux densities were performed by the Monte-Carlo method with the help of computer code MCNP-4C for FCM different models.Three possible installations of detectors were considered: on FCM surface,inside the FCM, and inside the concrete under the FCM layer. It was shown,that in order to increase the sensitivity of neutron detectors in intermediate and fast neutrons field,and consequently, to decrease the dependence of the readings of spectral distribution of neutron flux,it is necessary to position the detector inside the so-called thermalizer or heater. The most reasonable application of thick 'heaters' is the situation, when the detector is placed on FCM surface.

  5. Thermal neutron standard fields with the KUR heavy water facility

    International Nuclear Information System (INIS)

    Kanda, K.; Kobayashi, K.; Shibata, T.

    1978-01-01

    A heavy water facility attached to the KUR (Kyoto University Reactor, swimming pool type, 5 MW) yields pure thermal neutrons in the Maxwellian distribution. The facility is faced to the core of KUR and it contains about 2 tons of heavy water. The thickness of the layer is about 140 cm. The neutron spectrum was measured with the time of flight technique using a fast chopper. The measured spectrum was in good agreement with the Maxwellian distribution in all energy region for thermal neutrons. The neutron temperature was slightly higher than the heavy water temperature. The contamination of epithermal and fast neutrons caused by photo-neutrons of the γ-n reaction of heavy water was very small. The maximum intensity of thermal neutrons is 3x10 11 n/cm 2 sec. When the bismuth scatterer is attached, the gamma rays contamination is eliminated by the ratio of 0.05 of gamma rays to neutrons in rem. This standard neutron field has been used for such experiments as thermal neutron cross section measurement, detector calibration, activation analysis, biomedical purposes etc. (author)

  6. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Shultz, W.E.

    1980-01-01

    A method for simultaneously determining the porosity and thermal neutron capture cross-section of earth formations in the vicinity of a well borehole is claimed. It comprises the following steps: passing a well tool into a cased well borehole. The tool has a pulsed source of fast neutrons, a combination fast neutron and gamma ray detector and an epithermal neutron detector; repetitively irradiating the earth formations in the vicinity of the borehole with bursts of fast neutrons; detecting the fast neutron and epithermal neutron populations in the borehole (during the neutron bursts) and generating first and second measurement signals; detecting for second and third time intervals during the time between the neutron bursts, the gamma radiation present in the borehole due to the capture of thermalized neutrons by the nuclei of elements comprising the earth formations and generating third and fourth measurement signals; and combining the first and second measurement signals according to a predetermined relationship to derive an indication of the porosity of the earth formations and combining the third and fourth measurement signals to derive an indication of the thermal neutron capture cross-section of the earth formations

  7. Development of high flux thermal neutron generator for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vainionpaa, Jaakko H., E-mail: hannes@adelphitech.com [Adelphi Technology, 2003 E Bayshore Rd, Redwood City, CA 94063 (United States); Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K. [Adelphi Technology, 2003 E Bayshore Rd, Redwood City, CA 94063 (United States); Jones, Glenn [G& J Jones Enterprice, 7486 Brighton Ct, Dublin, CA 94568 (United States); Pantell, Richard H. [Department of Electrical Engineering, Stanford University, Stanford, CA (United States)

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3–5 · 10{sup 7} n/cm{sup 2}/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 10{sup 10} n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  8. Performance of a thermal neutron radiographic system using imaging plates

    International Nuclear Information System (INIS)

    Silvani, Maria Ines; Almeida, Gevaldo L. de; Furieri, Rosanne; Lopes, Ricardo T.

    2009-01-01

    A performance evaluation of a neutron radiographic system equipped with a thermal neutron sensitive imaging plate has been undertaken. It includes the assessment of spatial resolution, linearity, dynamic range and the response to exposure time, as well as a comparison of these parameters with the equivalent ones for neutron radiography employing conventional films and a gadolinium foil as converter. The evaluation and comparison between the radiographic systems have been performed at the Instituto de Engenharia Nuclear - CNEN, using the Argonauta Reactor as source of thermal neutrons and a commercially available imaging plate reader. (author)

  9. Two-dimensional metamaterial optics

    International Nuclear Information System (INIS)

    Smolyaninov, I I

    2010-01-01

    While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes

  10. A two-dimensional bismuth coordination polymer with tartaric acid: synthesis, characterization and thermal decomposition to Bi.sub.2./sub.O.sub.3./sub. nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Ahadiat, G.; Tabatabaee, M.; Gholivand, K.; Zare, K.; Dušek, Michal; Kučeráková, Monika

    2017-01-01

    Roč. 16, č. 1 (2017), s. 7-16 ISSN 1024-1221 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : bismuth coordination polymer * tartrate ligand * thermal decomposition * alpha-Bi 2 O 3 nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.565, year: 2016

  11. Two-dimensional shielding benchmarks for iron at YAYOI, (1)

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; An, Shigehiro; Kasai, Shigeru; Miyasaka, Shun-ichi; Koyama, Kinji.

    The aim of this work is to assess the collapsed neutron and gamma multigroup cross sections for two dimensional discrete ordinate transport code. Two dimensional distributions of neutron flux and gamma ray dose through a 70cm thick and 94cm square iron shield were measured at the fast neutron source reactor ''YAYOI''. The iron shield was placed over the lead reflector in the vertical experimental column surrounded by heavy concrete wall. The detectors used in this experiment were threshold detectors In, Ni, Al, Mg, Fe and Zn, sandwitch resonance detectors Au, W and Co, activation foils Au for neutrons and thermoluminescence detectors for gamma ray dose. The experimental results were compared with the calculated ones by the discrete ordinate transport code ANISN and TWOTRAN. The region-wise, coupled neutron-gamma multigroup cross-sections (100n+20gamma, EURLIB structure) were generated from ENDF/B-IV library for neutrons and POPOP4 library for gamma-ray production cross-sections by using the code system RADHEAT. The effective microscopic neutron cross sections were obtained from the infinite dilution values applying ABBN type self-shielding factors. The gamma ray production multigroup cross-sections were calculated from these effective microscopic neutron cross-sections. For two-dimensional calculations the group constants were collapsed into 10 neutron groups and 3 gamma groups by using ANISN. (auth.)

  12. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Schultz, W.E.; Smith, H.D.; Smith, M.P.

    1980-01-01

    An improved method and apparatus are described for simultaneously measuring the porosity and thermal neutron capture cross section of earth formations in situ in the vicinity of a well borehole using pulsed neutron well logging techniques. The logging tool which is moved through the borehole consists of a 14 MeV pulsed neutron source, an epithermal neutron detector and a combination gamma ray and fast neutron detector. The associated gating systems, counters and combined digital computer are sited above ground. (U.K.)

  13. Effects of Ramped Wall Temperature on Unsteady Two-Dimensional Flow Past a Vertical Plate with Thermal Radiation and Chemical Reaction

    Directory of Open Access Journals (Sweden)

    V. Rajesh

    2014-08-01

    Full Text Available The interaction of free convection with thermal radiation of a viscous incompressible unsteady flow past a vertical plate with ramped wall temperature and mass diffusion is presented here, taking into account the homogeneous chemical reaction of first order. The fluid is gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative flux in the energy equation. The dimensionless governing equations are solved using an implicit finite-difference method of the Crank-Nicolson type, which is stable and convergent. The velocity profiles are compared with the available theoretical solution and are found to be in good agreement. Numerical results for the velocity, the temperature, the concentration, the local and average skin friction, the Nusselt number and Sherwood number are shown graphically. This work has wide application in chemical and power engineering and also in the study of vertical air flow into the atmosphere. The present results can be applied to an important class of flows in which the driving force for the flow is provided by combination of the thermal and chemical species diffusion effects.

  14. Neutron capture therapy with thermal neutrons at IRT MIFI

    International Nuclear Information System (INIS)

    Zajtsev, K.N.; Portnov, A.A.; Savkin, V.A.; Kulakov, V.N.; Khokhlov, V.F.; Shejno, I.N.; Vajnson, A.A.; Kozlovskaya, N.G.; Meshcherikova, V.V.; Mitin, V.N.; Yarmonenko, S.P.

    2001-01-01

    Combined preclinical investigations into neutron capture therapy are conducted. Malignant melanoma was adopted as the line of investigation; boron-containing and gadolinium-containing preparations were used during the neutron capture therapy working off. Preparations produce secondary varying radiations when used in tumor. Dogs with spontaneous melanoma were used for the experiments. Procedures for the irradiation of dogs by neutron beam as the stage before use for the treatment of oncology patients were finished off; efficiency of neutron beam influence on normal tissues during the irradiation of dogs with melanoma (and without it) in antitumor and side effect sense was estimated [ru

  15. Micromachined two dimensional resistor arrays for determination of gas parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of

  16. Characteristics of thermal neutron calibration fields using a graphite pile

    International Nuclear Information System (INIS)

    Uchita, Yoshiaki; Saegusa, Jun; Kajimoto, Yoichi; Tanimura, Yoshihiko; Shimizu, Shigeru; Yoshizawa, Michio

    2005-03-01

    The Facility of Radiation Standards of Japan Atomic Energy Research Institute is equipped with thermal neutron fields for calibrating area and personal neutron dosemeters. The fields use moderated neutrons leaked from a graphite pile in which radionuclide sources are placed. In January 2003, we have renewed the pile with some modifications in its size. In accordance with the renewal, we measured and calculated thermal neutron fluence rates, neutron energy distributions and angular distributions of the fields. The thermal neutron fluence rates of the ''inside-pile fields'' and the outside-pile fields'' were determined by the gold foil activation method. The neutron energy distributions of the outside-pile fields were also measured with the Bonner multi-sphere spectrometer system. The contributions of epithermal and fast neutrons to the total dose-equivalents were 9% in the southern outside-pile field and 12% in the western outside-pile field. The personal dose-equivalents, H p,slab (10, α), in the outside-pile fields are evaluated by considering the calculated angular distributions of incoming neutrons. The H p,slab (10, α) was found to be about 40% higher than the value in assuming the unidirectional neutron between the pile and the test point. (author)

  17. Stereoscopic radiographic images with thermal neutrons

    International Nuclear Information System (INIS)

    Silvani, M.I.; Almeida, G.L.; Rogers, J.D.; Lopes, R.T.

    2011-01-01

    Spatial structure of an object can be perceived by the stereoscopic vision provided by eyes or by the parallax produced by movement of the object with regard to the observer. For an opaque object, a technique to render it transparent should be used, in order to make visible the spatial distribution of its inner structure, for any of the two approaches used. In this work, a beam of thermal neutrons at the main port of the Argonauta research reactor of the Instituto de Engenharia Nuclear in Rio de Janeiro/Brazil has been used as radiation to render the inspected objects partially transparent. A neutron sensitive Imaging Plate has been employed as a detector and after exposure it has been developed by a reader using a 0.5 μm laser beam, which defines the finest achievable spatial resolution of the acquired digital image. This image, a radiographic attenuation map of the object, does not represent any specific cross-section but a convoluted projection for each specific attitude of the object with regard to the detector. After taking two of these projections at different object attitudes, they are properly processed and the final image is viewed by a red and green eyeglass. For monochromatic images this processing involves transformation of black and white radiographies into red and white and green and white ones, which are afterwards merged to yield a single image. All the processes are carried out with the software ImageJ. Divergence of the neutron beam unfortunately spoils both spatial and contrast resolutions, which become poorer as object-detector distance increases. Therefore, in order to evaluate the range of spatial resolution corresponding to the 3D image being observed, a curve expressing spatial resolution against object-detector gap has been deduced from the Modulation Transfer Functions experimentally. Typical exposure times, under a reactor power of 170 W, were 6 min for both quantitative and qualitative measurements. In spite of its intrinsic constraints

  18. Stereoscopic radiographic images with thermal neutrons

    Science.gov (United States)

    Silvani, M. I.; Almeida, G. L.; Rogers, J. D.; Lopes, R. T.

    2011-10-01

    Spatial structure of an object can be perceived by the stereoscopic vision provided by eyes or by the parallax produced by movement of the object with regard to the observer. For an opaque object, a technique to render it transparent should be used, in order to make visible the spatial distribution of its inner structure, for any of the two approaches used. In this work, a beam of thermal neutrons at the main port of the Argonauta research reactor of the Instituto de Engenharia Nuclear in Rio de Janeiro/Brazil has been used as radiation to render the inspected objects partially transparent. A neutron sensitive Imaging Plate has been employed as a detector and after exposure it has been developed by a reader using a 0.5 μm laser beam, which defines the finest achievable spatial resolution of the acquired digital image. This image, a radiographic attenuation map of the object, does not represent any specific cross-section but a convoluted projection for each specific attitude of the object with regard to the detector. After taking two of these projections at different object attitudes, they are properly processed and the final image is viewed by a red and green eyeglass. For monochromatic images this processing involves transformation of black and white radiographies into red and white and green and white ones, which are afterwards merged to yield a single image. All the processes are carried out with the software ImageJ. Divergence of the neutron beam unfortunately spoils both spatial and contrast resolutions, which become poorer as object-detector distance increases. Therefore, in order to evaluate the range of spatial resolution corresponding to the 3D image being observed, a curve expressing spatial resolution against object-detector gap has been deduced from the Modulation Transfer Functions experimentally. Typical exposure times, under a reactor power of 170 W, were 6 min for both quantitative and qualitative measurements. In spite of its intrinsic constraints

  19. GEM-based thermal neutron beam monitors for spallation sources

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Caniello, R.; Cazzaniga, C.; Grosso, G.; Murtas, F.; Tardocchi, M.; Vassallo, E.; Gorini, G.; Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M.

    2013-01-01

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of 3 He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1μm thick B 4 C layer used to convert thermal neutrons to charged particles through the 10 B(n, 7 Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHM x =31 mm and FWHM y =36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to 3 He-based gaseous detectors

  20. Thermal neutron detectors based on complex oxide crystals

    CERN Document Server

    Ryzhikov, V; Volkov, V; Chernikov, V; Zelenskaya, O

    2002-01-01

    The ways of improvement of spectrometric quality of CWO and GSO crystals have been investigated with the aim of their application in thermal neutron detectors based on radiation capture reactions. The efficiency of the neutron detection by these crystals was measured, and the obtained data were compared with the results for sup 6 LiI(Tl) crystals. It is shown that the use of complex oxide crystals and neutron-absorption filters for spectrometry of thermal and resonance neutrons could be a promising method in combination with computer data processing. Numerical calculations are reported for spectra of gamma-quanta due to radiation capture of the neutrons. To compensate for the gamma-background lines, we used a crystal pair of heavy complex oxides with different sensitivity to neutrons.

  1. Two-dimensional network formation of cardiac myocytes in agar microculture chip with 1480 nm infrared laser photo-thermal etching.

    Science.gov (United States)

    Kojima, Kensuke; Moriguchi, Hiroyuki; Hattori, Akihiro; Kaneko, Tomoyuki; Yasuda, Kenji

    2003-11-01

    We have developed a new method that enables agar microstructures to be used to cultivate cells and that allows cell network patterns to be controlled. The method makes use of non-contact three-dimensional photo-thermal etching with a 1480 nm infrared focused laser beam, which is strongly absorbed by water and agar gel, to form the shapes of agar microstructures. It allows microstructures to be easily formed in an agar layer within a few minutes, with cell-culture holes formed by the spot heating of a 100 mW laser and tunnels by the tracing of a 100 microm s(-1), 40 mW laser. We cultivated rat cardiac myocytes in adjacent microstructures and observed synchronized beating in them 90 min after they had made physical contact. Our results indicate that the system can make and use microstructures for cell-network cultivation in a minimal amount of time without any expensive microfabrication facilities or complicated procedures.

  2. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  3. Two-dimensional thermofield bosonization

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2005-01-01

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized

  4. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  5. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  6. Finding two-dimensional peaks

    International Nuclear Information System (INIS)

    Silagadze, Z.K.

    2007-01-01

    Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems

  7. Neutron thermalization and spectra; Thermalisation et spectres de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cadilhac, M; Soule, J L; Tretiakoff, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The investigation of the neutron spectra in thermal reactors is taking an increasing importance due to the role played in them by Plutonium. Whatever the absorption law, it has been remarked that the scattering law in the.moderator affects the spectrum only through certain overall properties. It would thus seem possible to develop a simplified representation of this effect which would lead to a clear understanding of the phenomena, reducing at the same time the volume of numerical calculations required.. The synthetic model employed by the authors presents the advantage of reducing the determination of the spectra in an homogeneous medium to the resolution of a second order differential equation, like the Wigner-Wilkins model (monoatomic gaseous hydrogen) and the generalized heavy gas model of J. Horowitz which, incidentally, are both special cases. The model is, on the other hand, sufficiently general to allow a correct treatment of the situations met with in practice and in particular the important case where the presence of Plutonium introduces absorption resonances at low energy. Actually, the chemical or crystalline bonds of the moderator are introduced into the proposed model through two energy functions. These functions have been adjusted for the usual moderators (Graphite heavy water, light water) by means of known theoretical scattering laws. In a heterogeneous medium, the most important factor is the mean spectrum in the fuel of one cell, the knowledge of which is allowed by a generalization of the Amouyal-Benoist-Horowitz method. The proposed model lends itself particularly well to such calculations and also allows the effects of re-thermalization (for instance when the cooling system and the moderator are at different temperatures) to be treated. Finally, some examples are given of practical applications: codes for spectra and effective cross sections computations (editing of tables), codes for the treatment of neutron balance in a lattice or for the

  8. Neutron and thermal dynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    van Dam, H.; Kuijper, J.C.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1989-01-01

    In this paper neutron kinetics and thermal dynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focused on the properties of the fuel gas, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  9. Monte Carlo calculations of neutron thermalization in a heterogeneous system

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, T

    1959-07-15

    The slowing down of neutrons in a heterogeneous system (a slab geometry) of uranium and heavy water has been investigated by Monte Carlo methods. Effects on the neutron spectrum due to the thermal motions of the scattering and absorbing atoms are taken into account. It has been assumed that the speed distribution of the moderator atoms are Maxwell-Boltzmann in character.

  10. Determination of average activating thermal neutron flux in bulk samples

    International Nuclear Information System (INIS)

    Doczi, R.; Csikai, J.; Doczi, R.; Csikai, J.; Hassan, F. M.; Ali, M.A.

    2004-01-01

    A previous method used for the determination of the average neutron flux within bulky samples has been applied for the measurements of hydrogen contents of different samples. An analytical function is given for the description of the correlation between the activity of Dy foils and the hydrogen concentrations. Results obtained by the activation and the thermal neutron reflection methods are compared

  11. Calculation of the neutron parameters of fast thermal reactor

    International Nuclear Information System (INIS)

    Kukuleanu, V.; Mocioiu, D.; Drutse, E.; Konstantinesku, E.

    1975-01-01

    The system of neutron calculation for fast reactors is given. This system was used for estimation of physical parameters of fast thermal reactors investigated. The results obtained and different specific problems of the reactors of this type are described. (author)

  12. Transient, two-dimensional, discrete-element, far-field model for thermal impact analysis of power plant discharges in coastal and offshore regions. Part I. General description of the mathematical model and the results of an application

    International Nuclear Information System (INIS)

    Eraslan, A.H.

    1975-02-01

    A far-field mathematical model is presented for numerical simulation of short-time (within tidal cycle) transient, two-dimensional temperature distributions in large coastal and offshore regions resulting from the condenser cooling water discharges of power plants. The Eulerian FLIDE (fluid-in-discrete-element) formulation employs the integral forms of the conservation principles for mass and thermal energy in variable-sized discrete elements that span the specific flow region. The contributions of vertical variations of the velocity components and temperature are rigorously incorporated in the development of depth-averaged, two-dimensional energy transport fluxes by spatially integrating the conservation equations over the enclosure surfaces of the discrete elements. The general mathematical formulation considers completely arbitrary, transient oceanic flow conditions, which include periodic tidal, geostrophic, and wind-induced currents, as locally specified inputs to the model. The thermal impact of a hypothetical, multiunit generating station in a coastal region is analyzed where the oceanic flow conditions are assumed to be strictly periodic tidal currents within any appreciable net drift of sufficient duration to remove the heated effluent. The numerical simulation indicates that the periodic flow conditions cause considerable variations in the temperature distributions during the day and the tidal cycles, which result in severe recirculation and re-entrainment of the heated water between the intakes and the discharges of the different units. This leads to a gradual, long-term increase of the temperatures in the immediate vicinity of the discharge structures and also in the far-field zone. (U.S.)

  13. The determination of thermal neutron cross section of 81Br

    International Nuclear Information System (INIS)

    Kovacs, Luciana; Zamboni, Cibele B.; Dalaqua Junior, Leonardo

    2009-01-01

    In this investigation several standard materials were used to determine the thermal neutron cross section of 81 Br. This nuclear parameter is an important data to perform several quantitative investigations, mainly in medical area. In other to confirm and to reduce the uncertainty, a new measurement was preformed using thermal neutron at IEA-R1 nuclear reactor of IPEN/CNEN-SP. The result obtained is compatible with the tabulated value and present small uncertainly. (author)

  14. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2003-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122 Te, 124 Te, 125 Te, 126 Te, 128 Te, and 130 Te are reported. These values are based on a combination of newly determined partial γ-ray cross sections obtained from experiments on targets contained natural Te and γ intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  15. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  16. Thermal neutron capture cross sections of tellurium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  17. Study and development of new dosemeters for thermal neutrons

    International Nuclear Information System (INIS)

    Urena N, F.

    1998-01-01

    An alanine-boron compound, alanine hydroborate, was synthesized and chemically characterized to be used for thermal neutrons fluence measurements. The synthesis of the compound was made by reacting the amino acid alanine with boric acid in three different media: acidic, neutral and alkaline. Physicochemical analysis showed that the alkaline medium is favorable for the synthesis of the alanine hydroborate. The compound was evaluated as a thermal neutron fluence detector by the detection of the free radical yield upon neutron thermal irradiation by Electron Paramagnetic Resonance (EPR). The present work also studies the EPR-signal response of the three preparations to thermal neutron irradiation (φ = 5 x 10 7 n/cm 2 -s). The following EPR signal parameters of the samples were investigated: peak-to-peak signal intensity vs. thermal neutron fluence Φ = φ Δt ; where Δt = 1, 5, 10, 20, 40, 60, 80, 90, 100, 110 and 120 h. , peak-to-peak signal intensity vs. microwave power, signal fading; repeatability, batch homogeneity, stability and zero dose response. It is concluded that these new products could be used in thermal neutron fluence estimations. (Author)

  18. Thermal neutron imaging in an active interrogation environment

    International Nuclear Information System (INIS)

    Vanier, P.E.; Forman, L.; Norman, D.R.

    2009-01-01

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of excitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  19. Manufacturing of thermal neutron sensor using pMOS

    International Nuclear Information System (INIS)

    Lee, Nam Ho; Kim, Seung Ho

    2005-05-01

    A pMOSFET sensor having a Gadolinium converter has been invented successfully as a slow neutron sensor that is sensitive to neutron energy down to 0.025 eV. The Gd layer converts low energy neutrons to ionizing radiation of which the amount is proportional to neutron dose. Ionising radiation from neutron reactions changes the charge state of the gate oxide of the pMOSFET. The Gd-pMOSFETs were tested at a neutron beam port of HANARO research reactor and a 60 CO irradiation facility to investigate slow neutron response and gamma response, respectively. The voltage change was proportional to the accumulated slow neutron dose. The results from Gd coupled MOSFET neutron dosemeters shows an excellent sensitivity (15 - 16mV/cGy) and linearity to thermal neutrons with negligible background contamination. The results demonstrate the outstanding performance of the Gd coupled MOSFET neutron dosemeters clearly. The Gd-pMOSFET can also be used in a mixed radiation field by subtracting the voltage change of a pMOSFET without Gd from that of the Gd-pMOSFET

  20. Study of a nTHGEM-based thermal neutron detector

    Science.gov (United States)

    Li, Ke; Zhou, Jian-Rong; Wang, Xiao-Dong; Xiong, Tao; Zhang, Ying; Xie, Yu-Guang; Zhou, Liang; Xu, Hong; Yang, Gui-An; Wang, Yan-Feng; Wang, Yan; Wu, Jin-Jie; Sun, Zhi-Jia; Hu, Bi-Tao

    2016-07-01

    With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in 3He gas supply, research on new types of neutron detector as an alternative to 3He is a research hotspot in the field of particle detection. GEM (Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic nTHGEM (neutron THick GEM) for neutron detection. The performance of the nTHGEM working in different Ar/CO2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single nTHGEM has been tested for 2-D imaging using a 252Cf neutron source. The key parameters of the performance of the nTHGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector. Supported by National Natural Science Foundation of China (11127508, 11175199, 11205253, 11405191), Key Laboratory of Neutron Physics, CAEP (2013DB06, 2013BB04) and CAS (YZ201512)

  1. Two dimensional infinite conformal symmetry

    International Nuclear Information System (INIS)

    Mohanta, N.N.; Tripathy, K.C.

    1993-01-01

    The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs

  2. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    -dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...

  3. Investigation of the dispersion of phonon modes in CdI2 single crystals by a method of inelastic scattering of thermal neutrons

    International Nuclear Information System (INIS)

    Piroga, S.A.

    2001-01-01

    Experimental observation using a method of inelastic scattering of thermal neutrons the longitudinal phonons in the G-Z, G-X and G-L directions in CdI 2 singe crystal has been obtained. The phonon subsystem observed in the case of CdI 2 single crystals is two dimensional. This is because of the fact that interlayer interactions are weak in compare to intra layer interactions

  4. Thermal neutron flux measurements using neutron-electron converters; Mesure de flux de neutrons thermiques avec des convertisseurs neutrons electrons

    Energy Technology Data Exchange (ETDEWEB)

    Le Meur, R; Lecomte, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The operation of neutron-electron converters designed for measuring thermal neutron fluxes is examined. The principle is to produce short lived isotopes emitting beta particles, by activation, and to measure their activity not by extracting them from the reactor, but directly in the reactor using the emitted electrons to deflect the needle of a galvanometer placed outside the flux. After a theoretical study, the results of the measurements are presented; particular attention is paid to a new type of converter characterized by a layer structure. The converters are very useful for obtaining flux distributions with more than 10{sup 7} neutrons cm{sup -2}*sec{sup -1}. They work satisfactorily in pressurized carbon dioxide at 400 Celsius degrees. Some points still have to be cleared up however concerning interfering currents in the detectors and the behaviour of the dielectrics under irradiation. (authors) [French] On examine le fonctionnement de convertisseurs neutrons electrons destines a des mesures de flux de neutrons thermiques. Le principe est de former par activation des isotopes a periodes courtes et a emission beta et de mesurer leur activite non pas en les sortant du reacteur, mais directement en pile, utilisant les electrons emis pour faire devier l'aiguille d'un galvanometre place hors flux. Apres une etude theorique, on indique des resultats de mesures obtenus, en insistant particulierement sur un nouveau type de convertisseur, caracterise par sa structure stratifiee. Les convertisseurs sont tres interessants pour tracer, des cartes de flux a partir de 10{sup 7} neutrons cm{sup -2}*s{sup -1}. Ils sont utilisables pour des flux de 10{sup 14} neutrons cm{sup -2}*s{sup -1}. Ils fonctionnent correctement dans du gaz carbonique sous pression a 400 C. Des points restent cependant a eclaircir concernant les courants parasites dans les detecteurs et le comportement des dielectriques pendant leur irradiation. (auteur)

  5. Experimental characterization of semiconductor-based thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); Bortot, D.; Pola, A.; Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN—Milano, Via Celoria 16, 20133 Milano (Italy); Gómez-Ros, J.M. [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Sacco, D. [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); INAIL—DIT, Via di Fontana Candida 1, 00040 Monteporzio Catone (Italy); Esposito, A.; Gentile, A.; Buonomo, B. [IFNF—LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); Palomba, M.; Grossi, A. [ENEA Triga RC-1C.R. Casaccia, via Anguillarese 301, 00060 S. Maria di Galeria, Roma (Italy)

    2015-04-21

    In the framework of NESCOFI@BTF and NEURAPID projects, active thermal neutron detectors were manufactured by depositing appropriate thickness of {sup 6}LiF on commercially available windowless p–i–n diodes. Detectors with different radiator thickness, ranging from 5 to 62 μm, were manufactured by evaporation-based deposition technique and exposed to known values of thermal neutron fluence in two thermal neutron facilities exhibiting different irradiation geometries. The following properties of the detector response were investigated and presented in this work: thickness dependence, impact of parasitic effects (photons and epithermal neutrons), linearity, isotropy, and radiation damage following exposure to large fluence (in the order of 10{sup 12} cm{sup −2})

  6. Accounting for the thermal neutron flux depression in voluminous samples for instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Overwater, R.M.W.; Hoogenboom, J.E.

    1994-01-01

    At the Delft University of Technology Interfaculty Reactor Institute, a facility has been installed to irradiate cylindrical samples with diameters up to 15 cm and weights up to 50 kg for instrumental neutron activation analysis (INAA) purposes. To be able to do quantitative INAA on voluminous samples, it is necessary to correct for gamma-ray absorption, gamma-ray scattering, neutron absorption, and neutron scattering in the sample. The neutron absorption and the neutron scattering are discussed. An analytical solution is obtained for the diffusion equation in the geometry of the irradiation facility. For samples with known composition, the neutron flux--as a function of position in the sample--can be calculated directly. Those of unknown composition require additional flux measurements on which least-squares fitting must be done to obtain both the thermal neutron diffusion coefficient D s and the diffusion length L s of the sample. Experiments are performed to test the theory

  7. Neutron moderation theory with thermal motion of the moderator nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rusov, V.D.; Tarasov, V.A.; Chernezhenko, S.A.; Kakaev, A.A.; Smolyar, V.P. [Odessa National Polytechnic University, Department of Theoretical and Experimental Nuclear Physics, Odessa (Ukraine)

    2017-09-15

    In this paper we present the analytical expression for the neutron scattering law for an isotropic source of neutrons, obtained within the framework of the gas model with the temperature of the moderating medium as a parameter. The obtained scattering law is based on the solution of the general kinematic problem of elastic scattering of neutrons on nuclei in the L-system. Both the neutron and the nucleus possess arbitrary velocities in the L-system. For the new scattering law we obtain the flux densities and neutron moderation spectra as functions of temperature for the reactor fissile medium. The expressions for the moderating neutrons spectra allow reinterpreting the physical nature of the underlying processes in the thermal region. (orig.)

  8. Transmutation of Minor Actinide in well thermalized neutron field and application of advanced neutron source (ANS)

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko; Hirakawa, Naohiro

    1995-01-01

    Transmutation of Minor Actinide (MA) in a well thermalized neutron field was studied. Since MA nuclides have large effective cross sections in the well thermalized neutron field, the transmutation in the well thermalized neutron field has an advantage of high transmutation rate. However, the transmutation rate largely decreases by accumulation of 246 Cm when MA is transmuted only in the well thermalized neutron field for a long period. An acceleration method of burn-up of 246 Cm was studied. High transmutation rate can be obtained by providing a neutron field with high flux in the energy region between 1 and 100 eV. Two stage transmutation using the well thermalized neutron field and this field can transmute MA rapidly. The applicability of the Advanced Neutron Source (ANS) to the transmutation of MA was examined for a typical MA with the composition in the high-level waste generated in the conventional PWR. If the ANS is applied without changing the fuel inventory, the amount of MA which corresponds to that produced by a conventional 1,175 MWe PWR in one year can be transmuted by the ANS in one year. Furthermore, the amount of the residual can be reduced to about 1g (10 -5 of the initial MA weight) by continuing the transmutation for 5 years owing to the two stage transmutation. (author)

  9. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  10. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  11. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  12. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    Science.gov (United States)

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  13. Feasibility study on using imaging plates to estimate thermal neutron fluence in neutron-gamma mixed fields

    International Nuclear Information System (INIS)

    Fujibuchi, T.; Tanabe, Y.; Sakae, T.; Terunuma, T.; Isobe, T.; Kawamura, H.; Yasuoka, K.; Matsumoto, T.; Harano, H.; Nishiyama, J.; Masuda, A.; Nohtomi, A.

    2011-01-01

    In current radiotherapy, neutrons are produced in a photonuclear reaction when incident photon energy is higher than the threshold. In the present study, a method of discriminating the neutron component was investigated using an imaging plate (IP) in the neutron-gamma-ray mixed field. Two types of IP were used: a conventional IP for beta- and gamma rays, and an IP doped with Gd for detecting neutrons. IPs were irradiated in the mixed field, and the photo-stimulated luminescence (PSL) intensity of the thermal neutron component was discriminated using an expression proposed herein. The PSL intensity of the thermal neutron component was proportional to thermal neutron fluence. When additional irradiation of photons was added to constant neutron irradiation, the PSL intensity of the thermal neutron component was not affected. The uncertainty of PSL intensities was approximately 11.4 %. This method provides a simple and effective means of discriminating the neutron component in a mixed field. (authors)

  14. EL-2 reactor: Thermal neutron flux distribution; EL-2: Repartition du flux de neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A; Genthon, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  15. Neutron Thermalization and Reactor Spectra. Vol. II. Proceedings of the Symposium on Neutron Thermalization and Reactor Spectra

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium organized by the IAEA and held at Ann Arbor, Michigan, USA, 17 - 21 July 1967. The meeting was attended by 143 participants from 24 Member States and one international organization. Contents: (Vol.I) Theory of neutron thermalization (15 papers); Scattering law (20 papers); Angular, space, temperature and time dependence of neutron spectra (9 papers). (Vol.II) Measurement of thermal neutron spectra and spectral indices, and comparison with theory (17 papers); Time-dependent problems in neutron thermalization (12 papers). Each paper is in its original language (61 English, 1 French and 11 Russian) and is preceded by an abstract in English with one in the original language if this is not English. Discussions are in English.

  16. On the use of silicon as thermal neutron filter

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M.

    2003-01-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross-section including the Bragg scattering from different (hkl) planes to the neutron transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy. A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500 μeV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given

  17. On the use of silicon as thermal neutron filter

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M. E-mail: mohamedfathalla@hotmail.com

    2003-12-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross-section including the Bragg scattering from different (hkl) planes to the neutron transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy. A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500 {mu}eV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given.

  18. Chemical warfare agents identification by thermal neutron detection

    International Nuclear Information System (INIS)

    Liu Boxue; Ai Xianyun; Tan Daoyuan; Zhang Dianqin

    2000-01-01

    The hydrogen concentration determination by thermal neutron detection is a non-destructive, fast and effective method to identify chemical warfare agents and TNT that contain different hydrogen fraction. When an isotropic neutron source is used to irradiate chemical ammunition, hydrogen atoms of the agent inside shell act as a moderator and slow down neutrons. The number of induced thermal neutrons depends mainly upon hydrogen content of the agent. Therefore measurement of thermal neutron influence can be used to determine hydrogen atom concentration, thereby to determine the chemical warfare agents. Under a certain geometry three calibration curves of count rate against hydrogen concentration were measured. According to the calibration curves, response of a chemical agent or TNT could be calculated. Differences of count rate among chemical agents and TNT for each kind of shells is greater than five times of standard deviations of count rate for any agent, so chemical agents or TNT could be identified correctly. Meanwhile, blast tube or liquid level of chemical warfare agent could affect the response of thermal neutron count rate, and thereby the result of identification. (author)

  19. Impact of neutron irradiation on thermal helium desorption from iron

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang, E-mail: hux1@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Field, Kevin G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Taller, Stephen [University of Michigan, Ann Arbor, MI 48109 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wirth, Brian D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 10{sup 18} He/m{sup 2}. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  20. Focusing mirrors for enhanced neutron radiography with thermal neutrons and application for irradiated nuclear fuel

    Science.gov (United States)

    Rai, Durgesh K.; Abir, Muhammad; Wu, Huarui; Khaykovich, Boris; Moncton, David E.

    2018-01-01

    Neutron radiography is a powerful method of probing the structure of materials based on attenuation of neutrons. This method is most suitable for materials containing heavy metals, which are not transparent to X-rays, for example irradiated nuclear fuel and other nuclear materials. Neutron radiography is one of the first non-distractive post-irradiated examination methods, which is applied to gain an overview of the integrity of irradiated nuclear fuel and other nuclear materials. However, very powerful gamma radiation emitted by the samples is damaging to the electronics of digital imaging detectors and has so far precluded the use of modern detectors. Here we describe a design of a neutron microscope based on focusing mirrors suitable for thermal neutrons. As in optical microscopes, the sample is separated from the detector, decreasing the effect of gamma radiation. In addition, the application of mirrors would result in a thirty-fold gain in flux and a resolution of better than 40 μm for a field-of-view of about 2.5 cm. Such a thermal neutron microscope can be useful for other applications of neutron radiography, where thermal neutrons are advantageous.

  1. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  2. A design study on hyper-thermal neutron irradiation field for neutron capture therapy at Kyoto University Reactor

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2000-01-01

    A study about the installation of a hyper-thermal neutron converter to a clinical collimator was performed, as a series of the design study on a hyper-thermal neutron irradiation field at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. From the parametric-surveys by Monte Carlo calculation, it was confirmed that the practical irradiation field of hyper-thermal neutrons would be feasible by the modifications of the clinical collimator and the bismuth-layer structure. (author)

  3. Thermal compression modulus of polarized neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.

    1990-05-01

    We applied the equation of state for pure polarized neutron matter at finite temperature, calculated previously, to calculate the compression modulus. The compression modulus of pure neutron matter at zero temperature is very large and reflects the stiffness of the equation of state. It has a little temperature dependence. Introducing the spin excess parameter in the equation of state calculations is important because it has a significant effect on the compression modulus. (author). 25 refs, 2 tabs

  4. Boron neutron capture therapy (BNCT). Recent aspect, a change from thermal neutron to epithermal neutron beam and a new protocol

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu

    1999-01-01

    Since 1968, One-hundred seventy three patients with glioblastoma (n=81), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumor (n=32) were treated by boron-neutron capture therapy (BNCT) using a combination of thermal neutron and BSH in 5 reactors (HTR n=13, JRR-3 n=1, MuITR n=98, KUR n=28, JRR-2 n=33). Out of 101 patients with glioma treated by BNCT under the recent protocol, 33 (10 glioblastoma, 14 anaplastic astrocytoma, 9 low grade astrocytoma) patients lived or have lived longer than 3 years. Nine of these 33 lived or have lived longer than 10 years. According to the retrospective analysis, the important factors related to the clinical results were tumor dose radiation dose and maximum radiation dose in thermal brain cortex. The result was not satisfied as it was expected. Then, we decided to introduce mixed beams which contain thermal neutron and epithermal neutron beams. KUR was reconstructed in 1996 and developed to be available to use mixed beams. Following the shutdown of the JRR-2, JRR-4 was renewed for medical use in 1998. Both reactors have capacity to yield thermal neutron beam, epithermal neutron beam and mixed beams. The development of the neutron source lead us to make a new protocol. (author)

  5. Thermal neutron filter design for the neutron radiography facility at the LVR-15 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Soltes, Jaroslav [Research Centre Rez Ltd., Husinec - Rez 130, 250 68 Rez, (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague, (Czech Republic); Viererbl, Ladislav; Lahodova, Zdena; Koleska, Michal; Vins, Miroslav [Research Centre Rez Ltd., Husinec - Rez 130, 250 68 Rez, (Czech Republic)

    2015-07-01

    In 2011 a decision was made to build a neutron radiography facility at one of the unused horizontal channels of the LVR-15 research reactor in Rez, Czech Republic. One of the key conditions for operating an effective radiography facility is the delivery of a high intensity, homogeneous and collimated thermal neutron beam at the sample location. Additionally the intensity of fast neutrons has to be kept as low as possible as the fast neutrons may damage the detectors used for neutron imaging. As the spectrum in the empty horizontal channel roughly copies the spectrum in the reactor core, which has a high ratio of fast neutrons, neutron filter components have to be installed inside the channel in order to achieve desired beam parameters. As the channel design does not allow the instalment of complex filters and collimators, an optimal solution represent neutron filters made of large single-crystal ingots of proper material composition. Single-crystal silicon was chosen as a favorable filter material for its wide availability in sufficient dimensions. Besides its ability to reasonably lower the ratio of fast neutrons while still keeping high intensities of thermal neutrons, due to its large dimensions, it suits as a shielding against gamma radiation from the reactor core. For designing the necessary filter dimensions the Monte-Carlo MCNP transport code was used. As the code does not provide neutron cross-section libraries for thermal neutron transport through single-crystalline silicon, these had to be created by approximating the theory of thermal neutron scattering and modifying the original cross-section data which are provided with the code. Carrying out a series of calculations the filter thickness of 1 m proved good for gaining a beam with desired parameters and a low gamma background. After mounting the filter inside the channel several measurements of the neutron field were realized at the beam exit. The results have justified the expected calculated values

  6. Contribution to the study of position sensitive detectors with high spatial resolution for thermal neutron detection

    International Nuclear Information System (INIS)

    Idrissi Fakhr-Eddine, Abdellah.

    1978-01-01

    With a view to improving the spatial resolution of the localization of thermal neutrons, the work covers four position sensitive detectors: - 800 cell multi-detectors (1 dimension), - linear 'Jeu de Jacquet' detectors (1 dimension) - Multi-detector XYP 128x128 (2 dimensions), - 'Jeu de Jacquet' detector with 2 dimensions. Mention is made of the various position finding methods known so far, as well as the reasons for selecting BF 3 as detector gas. A study is then made of the parameters of the multiwire chamber whose principle will form the basis of most of the position detecting appliances subsequently dealt with. Finally, a description is given of the detection tests of the thermal neutrons in the multiwire chamber depending on the pressure, a parameter that greatly affects the accuracy of the position finding. The single dimension position tests on two kinds of appliance, the 800 cell multi-detector for the wide angle diffraction studies, and the linear 'Jeu de Jacquet' detector designed for small angle diffraction are mentioned. A description is then given of two position appliances with two dimensions; the multi-detector XYP 128x128 and the two dimensional 'Jeu de Jacquet' detector. In the case of this latter detector, only the hoped for characteristics are indicated [fr

  7. Thermal neutron scattering studies of condensed matter under high pressures

    International Nuclear Information System (INIS)

    Carlile, C.J.; Salter, D.C.

    1978-01-01

    Although temperature has been used as a thermodynamic variable for samples in thermal neutron scattering experiments since the inception of the neutron technique, it is only in the last decade that high pressures have been utilised for this purpose. In the paper the problems particular to this field of work are outlined and a review is made of the types of high-pressure cells used and the scientific results obtained from the experiments. 103 references. (author)

  8. Determination of thermal neutrons diffusion length in graphite

    International Nuclear Information System (INIS)

    Garcia Fite, J.

    1959-01-01

    The diffusion length of thermal neutrons in graphite using the less possible quantity of material has been determined. The proceeding used was the measurement in a graphite pile which has a punctual source of rapid neutrons inside surrounded by a reflector medium (paraffin or water). The measurement was done in the following conditions: a) introducing an aluminium plate between both materials. b) Introducing a cadmium plate between both materials. (Author) 91 refs

  9. Study of two-dimensional interchange turbulence

    International Nuclear Information System (INIS)

    Sugama, Hideo; Wakatani, Masahiro.

    1990-04-01

    An eddy viscosity model describing enstrophy transfer in two-dimensional turbulence is presented. This model is similar to that of Canuto et al. and provides an equation for the energy spectral function F(k) as a function of the energy input rate to the system per unit wavenumber, γ s (k). In the enstrophy-transfer inertial range, F(k)∝ k -3 is predicted by the model. The eddy viscosity model is applied to the interchange turbulence of a plasma in shearless magnetic field. Numerical simulation of the two-dimensional interchange turbulence demonstrates that the energy spectrum in the high wavenumber region is well described by this model. The turbulent transport driven by the interchange turbulence is expressed in terms of the Nusselt number Nu, the Rayleigh number Ra and Prantl number Pr in the same manner as that of thermal convection problem. When we use the linear growth rate for γ s (k), our theoretical model predicts that Nu ∝ (Ra·Pr) 1/2 for a constant background pressure gradient and Nu ∝ (Ra·Pr) 1/3 for a self-consistent background pressure profile with the stress-free slip boundary conditions. The latter agrees with our numerical result showing Nu ∝ Ra 1/3 . (author)

  10. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Directory of Open Access Journals (Sweden)

    Hu J.-P.

    2016-01-01

    Full Text Available Radiation dosimetry for Neutron Capture Therapy (NCT has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR. In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1 in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2 out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3 beam shutter upgrade to reduce strayed neutrons and gamma dose, (4 beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5 beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates to reduce prompt gamma and fast neutron doses, (6 sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7 holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4–7

  11. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  12. Method and apparatus for measuring thermal neutron characteristics

    International Nuclear Information System (INIS)

    Johnstone, C.W.

    1983-01-01

    The thermal neutron decay characteristics of an earth formation are measured by detecting indications of the thermal neutron concentration in the formation during a selected set of two measurement intervals following irradiation of the formation with a burst of fast neutrons. These measurement intervals may comprise a sequence of time gates following a delay after the neutron burst. The duration of the neutron bursts, of the delay between the burst and the start of the sequence, and of the individual time gates, may all be adjusted by a common, selected one of a finite number of scale factor values. The set of two measurement intervals is selected from among a number of possible sets as a function of a previously measured value of the decay characteristic. Each measurement interval set is used over only a specific range of decay characteristic values for which it has been determined, in accordance with a previously established relationship between the decay characteristic value and a function of the thermal neutron concentration measurements for the set, to afford enhanced statistical accuracy in the measured value of the decay characteristic. (author)

  13. Introduction to the theory of thermal neutron scattering

    CERN Document Server

    Squires, G L

    2012-01-01

    Since the advent of the nuclear reactor, thermal neutron scattering has proved a valuable tool for studying many properties of solids and liquids, and research workers are active in the field at reactor centres and universities throughout the world. This classic text provides the basic quantum theory of thermal neutron scattering and applies the concepts to scattering by crystals, liquids and magnetic systems. Other topics discussed are the relation of the scattering to correlation functions in the scattering system, the dynamical theory of scattering and polarisation analysis. No previous knowledge of the theory of thermal neutron scattering is assumed, but basic knowledge of quantum mechanics and solid state physics is required. The book is intended for experimenters rather than theoreticians, and the discussion is kept as informal as possible. A number of examples, with worked solutions, are included as an aid to the understanding of the text.

  14. Targets for bulk hydrogen analysis using thermal neutrons

    CERN Document Server

    Csikai, J; Buczko, C M

    2002-01-01

    The reflection property of substances can be characterized by the reflection cross-section of thermal neutrons, sigma subbeta. A combination of the targets with thin polyethylene foils allowed an estimation of the flux depression of thermal neutrons caused by a bulk sample containing highly absorbing elements or compounds. Some new and more accurate sigma subbeta values were determined by using the combined target arrangement. For the ratio, R of the reflection and the elastic scattering cross-sections of thermal neutrons, R=sigma subbeta/sigma sub E sub L a value of 0.60+-0.02 was found on the basis of the data obtained for a number of elements from H to Pb. Using this correlation factor, and the sigma sub E sub L values, the unknown sigma subbeta data can be deduced. The equivalent thicknesses, to polyethylene or hydrogen, of the different target materials were determined from the sigma subbeta values.

  15. Thermal neutron dose calculation in synovium membrane for BNCS

    International Nuclear Information System (INIS)

    Abdalla, Khalid; Naqvi, A.A.; Maalej, N.; El-Shahat, B.

    2006-01-01

    A D(d,n) reaction based setup has been optimized for Boron Neutron Capture Synovectomy (BNCS). The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield. The neutron dose was calculated at various depths in a knee phantom loaded with boron to determine therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values. (author)

  16. Improvement of neutron collimator design for thermal neutron radiography using Monte Carlo N-particle transport code version 5

    International Nuclear Information System (INIS)

    Thiagu Supramaniam

    2007-01-01

    The aim of this research was to propose a new neutron collimator design for thermal neutron radiography facility using tangential beam port of PUSPATI TRIGA Mark II reactor, Malaysia Institute of Nuclear Technology Research (MINT). Best geometry and materials for neutron collimator were chosen in order to obtain a uniform beam with maximum thermal neutron flux, high L/ D ratio, high neutron to gamma ratio and low beam divergence with high resolution. Monte Carlo N-particle Transport Code version 5 (MCNP 5) was used to optimize six neutron collimator components such as beam port medium, neutron scatterer, neutron moderator, gamma filter, aperture and collimator wall. The reactor and tangential beam port setup in MCNP5 was plotted according to its actual sizes. A homogeneous reactor core was assumed and population control method of variance reduction technique was applied by using cell importance. The comparison between experimental results and simulated results of the thermal neutron flux measurement of the bare tangential beam port, shows that both graph obtained had similar pattern. This directly suggests the reliability of MCNP5 in order to obtained optimal neutron collimator parameters. The simulated results of the optimal neutron medium, shows that vacuum was the best medium to transport neutrons followed by helium gas and air. The optimized aperture component was boral with 3 cm thickness. The optimal aperture center hole diameter was 2 cm which produces 88 L/ D ratio. Simulation also shows that graphite neutron scatterer improves thermal neutron flux while reducing fast neutron flux. Neutron moderator was used to moderate fast and epithermal neutrons in the beam port. Paraffin wax with 90 cm thick was bound to be the best neutron moderator material which produces the highest thermal neutron flux at the image plane. Cylindrical shape high density polyethylene neutron collimator produces the highest thermal neutron flux at the image plane rather than divergent

  17. Status of thermal neutron scattering data for graphite

    International Nuclear Information System (INIS)

    Mattes, M.; Keinert, J.

    2005-07-01

    At thermal neutron energies, the binding of the scattering nucleus in a solid, liquid, or gas affects the cross sections and the angular and energy distributions of the scattered neutrons. These effects are described in the thermal sub-library of evaluated files in File 7 of the ENDF-6 format. A re-evaluation of thermal neutron scattering data for carbon bound in graphite has been performed to investigate the impact of models (e.g., generalised frequency distributions) based on different experimental and theoretical data for the generation of scattering law data files S(α,β,T) and coherent elastic scattering data. Two phonon frequency distributions of graphite published in 2002 and 2004 were considered and the results compared with those based on the phonon spectra from Koppel et al. (published in 1968), on which the evaluations of ENDF/B-VI and JEFF-3.1 are based. The new frequency distributions were partly derived from ab initio simulations. Detailed comparisons with measurements of differential and integral neutron cross sections and other relevant data are reported. In addition, thermal MCNP data sets for use in the continuous Monte Carlo codes MCNP and MCNPX were generated from these evaluations for different temperatures. Calculated neutron spectra were found to be in good agreement with the measurements. (author)

  18. Optical and Hall conductivities of a thermally disordered two-dimensional spin-density wave: two-particle response in the pseudogap regime of electron-doped high-Tc superconductors

    International Nuclear Information System (INIS)

    Lin, J.; Millis, A.J.

    2011-01-01

    We calculate the frequency-dependent longitudinal (σ xx ) and Hall (σ xy ) conductivities for two-dimensional metals with thermally disordered antiferromagnetism using a generalization of a theoretical model, involving a one-loop quasistatic fluctuation approximation, which was previously used to calculate the electron self-energy. The conductivities are calculated from the Kubo formula, with current vertex function treated in a conserving approximation satisfying the Ward identity. In order to obtain a finite dc limit, we introduce phenomenologically impurity scattering, characterized by a relaxation time τ. σ xx ((Omega)) satisfies the f-sum rule. For the infinitely peaked spin-correlation function, χ(q)∝(delta)(q-Q), we recover the expressions for the conductivities in the mean-field theory of the ordered state. When the spin-correlation length ζ is large but finite, both σ xx and σ xy show behaviors characteristic of the state with long-range order. The calculation runs into difficulty for (Omega) ∼ xx ((Omega)) and σ xy ((Omega)) are qualitatively consistent with data on electron-doped cuprates when (Omega) > 1/τ.

  19. Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry.

    Science.gov (United States)

    Agapiou, A; Zorba, E; Mikedi, K; McGregor, L; Spiliopoulou, C; Statheropoulos, M

    2015-07-09

    Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel. The current work focuses only on the results of the laboratory method using thermal desorption coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (TD-GC×GC-TOF MS). The flow-modulated TD-GC×GC-TOF MS provided enhanced separation of the VOC profile and served as a reference method for the evaluation of the on-site analytical methods in the current experimental campaign. Bespoke software was used to deconvolve the VOC profile to extract as much information as possible into peak lists. In total, 288 unique VOCs were identified (i.e., not found in blank samples). The majority were aliphatics (172), aromatics (25) and nitrogen compounds (19), followed by ketones (17), esters (13), alcohols (12), aldehydes (11), sulfur (9), miscellaneous (8) and acid compounds (2). The TD-GC×GC-TOF MS proved to be a sensitive and powerful system for resolving the chemical puzzle of above-ground "scent of death". Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California, Berkeley, CA 94720 (United States); Vogel, S.C.; Mocko, M.; Bourke, M.A.M.; Yuan, V.; Nelson, R.O.; Brown, D.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2013-09-15

    Many isotopes in nuclear materials exhibit strong peaks in neutron absorption cross sections in the epithermal energy range (1–1000 eV). These peaks (often referred to as resonances) occur at energies specific to particular isotopes, providing a means of isotope identification and concentration measurements. The high penetration of epithermal neutrons through most materials is very useful for studies where samples consist of heavy-Z elements opaque to X-rays and sometimes to thermal neutrons as well. The characterization of nuclear fuel elements in their cladding can benefit from the development of high resolution neutron resonance absorption imaging (NRAI), enabled by recently developed spatially-resolved neutron time-of-flight detectors. In this technique the neutron transmission of the sample is measured as a function of spatial location and of neutron energy. In the region of the spectra that borders the resonance energy for a particular isotope, the reduction in transmission can be used to acquire an image revealing the 2-dimensional distribution of that isotope within the sample. Provided that the energy of each transmitted neutron is measured by the neutron detector used and the irradiated sample possesses neutron absorption resonances, then isotope-specific location maps can be acquired simultaneously for several isotopes. This can be done even in the case where samples are opaque or have very similar transmission for thermal neutrons and X-rays or where only low concentrations of particular isotopes are present (<0.1 atom% in some cases). Ultimately, such radiographs of isotope location can be utilized to measure isotope concentration, and can even be combined to produce three-dimensional distributions using tomographic methods. In this paper we present the proof-of-principle of NRAI and transmission Bragg edge imaging performed at Flight Path 5 (FP5) at the LANSCE pulsed, moderated neutron source of Los Alamos National Laboratory. A set of urania mockup

  1. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  2. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield

    International Nuclear Information System (INIS)

    Kany, A.M.I.; El-Gohary, M.I.; Kamal, S.M.

    1994-01-01

    Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barriers of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure. (Author)

  3. Equilibrium: two-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7

  4. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    International Nuclear Information System (INIS)

    Quan, Xu; Qiang, Tian

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi–Pasta–Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather. (condensed matter: structure, thermal and mechanical properties)

  5. Transmission of Thermal Neutrons through Boral

    Energy Technology Data Exchange (ETDEWEB)

    Aakerhielm, F

    1960-06-15

    Transmission measurements have been performed using Maxwellian distributed neutrons from the R1 reactor perpendicularly incident upon a boral absorption plate. American, English, German, Swedish and Swiss samples have been investigated and the results are compared to calculated values. The influence of the absorber grain size is discussed.

  6. Transmission of Thermal Neutrons through Boral

    International Nuclear Information System (INIS)

    Aakerhielm, F.

    1960-06-01

    Transmission measurements have been performed using Maxwellian distributed neutrons from the R1 reactor perpendicularly incident upon a boral absorption plate. American, English, German, Swedish and Swiss samples have been investigated and the results are compared to calculated values. The influence of the absorber grain size is discussed

  7. Thermal neutron equivalent doses assessment around KFUPM neutron source storage area using NTDs

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Fazal-ur-Rehman; Al-Haddad, M.N.; Al-Jarrallah, M.I.; Nassar, R

    2002-07-01

    Area passive neutron dosemeters based on nuclear track detectors (NTDs) have been used for 13 days to assess accumulated low doses of thermal neutrons around neutron source storage area of the King Fahd University of Petroleum and Minerals (KFUPM). Moreover, the aim of this study is to check the effectiveness of shielding of the storage area. NTDs were mounted with the boron converter on their surface as one compressed unit. The converter is a lithium tetraborate (Li{sub 2}B{sub 4}O{sub 7}) layer for thermal neutron detection via {sup 10}B(N,{alpha}){sup 7}Li and {sup 6}Li(n,{alpha}){sup 3}H nuclear reactions. The area passive dosemeters were installed on 26 different locations around the source storage area and adjacent rooms. The calibration factor for NTD-based area passive neutron dosemeters was found to be 8.3 alpha tracks.cm{sup -2}.{mu}Sv{sup -1} using active snoopy neutron dosemeters in the KFUPM neutron irradiation facility. The results show the variation of accumulated dose with locations around the storage area. The range of dose rates varied from as low as 40 nSv.h{sup -1} up to 11 {mu}Sv.h{sup -1}. The study indicates that the area passive neutron dosemeter was able to detect accumulated doses as low as 40 nSv.h{sup -1}, which could not be detected with the available active neutron dosemeters. The results of the study also indicate that an additional shielding is required to bring the dose rates down to background level. The present investigation suggests extending this study to find the contribution of doses from fast neutrons around the neutron source storage area using NTDs through proton recoil. The significance of this passive technique is that it is highly sensitive and does not require any electronics or power supplies, as is the case in active systems. (author)

  8. Thermal neutron calibration channel at LNMRI/IRD

    International Nuclear Information System (INIS)

    Astuto, A.; Salgado, A.P.; Lopes, R.T.; Leite, S.P.; Patrao, K.C.S.; Fonseca, E.S.; Pereira, W.W.

    2014-01-01

    The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four 241 Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units. The pile construction form using blocks allows distinct arrangements for new studies and possibilities of other LNMRI reference fields. The results can be predicted by the simulation used in this work. Different number of each type of blocks and sources can be used. The main difference observed between the final measurement and simulation results might be due to the difference in composition of paraffin blocks used in assembling the pile. In order to confirm the thermal neutron field and fluence rate in the central chamber (inside the channel) that will be used to irradiate small neutron detectors, it is necessary to use another quantification method such as the gold foils activation with measurement traceability. It will be performed in a future stage. (authors)

  9. System and plastic scintillator for discrimination of thermal neutron, fast neutron, and gamma radiation

    Science.gov (United States)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.

    2017-05-16

    A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.

  10. VHTR core modeling: coupling between neutronic and thermal-hydraulics

    International Nuclear Information System (INIS)

    Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.

    2005-01-01

    Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)

  11. Parameters measurement for the thermal neutron beam in the thermal column hole of Xi’an pulse reactor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The distribution of the neutron spectra in the thermal column hole of Xi’an pulse reactor was measured with the time-of-flight method.Compared with the thermal Maxwellian theory neutron spectra,the thermal neutron spectra measured is a little softer,and the average neutron energy of the experimental spectra is about 0.042±0.01 eV.The thermal neutron fluence rate at the front end of thermal column hole,measured with gold foil activation techniques,is about 1.18×105 cm-2 s-1.The standard uncertainty of the measured thermal neutron fluence is about 3%.The spectra-averaged cross section of 197Au(n,γ) determined by the experimental thermal neutron spectra is(92.8±0.93) ×10-24 cm2.

  12. Microscopic cross-section measurements by thermal neutron activation

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-08-01

    Microscopic cross sections measured by thermal neutron activation using RP-0 reactor at the Peruvian Nuclear Energy Institute. The method consists in measuring microscopic cross section ratios through activated samples, requiring being corrected in thermal and epithermal energetic range by Westcott formalism. Furthermore, the comptage ratios measured for each photopeak to its decay fraction should be normalized from interrelation between both processes above, activation microscopic cross sections are obtained

  13. Thermal hydraulic and neutronic interaction in the rotating bed reactor

    International Nuclear Information System (INIS)

    Lee, C.C.

    1986-01-01

    Power transient characteristics in a rotating fluidized bed reactor (RBR) are investigated theoretically. A propellant flow perturbation is assumed to occur in an initially equilibrium state of the core. Transfer functions representing quasi-one-dimensional mutual feedback between thermal hydraulics and neutronics are developed and analyzed in the frequency domain. Neutronic responses are determined by Fermi-age theory for slowing down of fast neutrons and diffusion theory for thermal neutron distribution. Neutron leakage through the exhaust nozzle is accounted for by applying diffuse view factors similar to those applied in radiative heat transfer. The bed expansion behavior is described by a kinematic wave equation derived from the continuity of the gas phase. The drift flux approach is used to determine the yield fractions in the equilibrium bed. Thermal responses of fuel are evaluated by dividing it into several volume-averaged zones to better account for the transient effects over single zone models. Sample calculations are undertaken for the various operation conditions and design parameters of the RBR based on 250 MW/sub t/, 1000 MW/sub t/, and 5000 MW/sub t/ power reactors. The results show that power transients are dependent on the parametric changes of optical thickness and view factors

  14. Specimen environments in thermal neutron scattering experiments

    International Nuclear Information System (INIS)

    Cebula, D.J.

    1980-11-01

    This report is an attempt to collect into one place outline information concerning the techniques used and basic design of sample environment apparatus employed in neutron scattering experiments. Preliminary recommendations for the specimen environment programme of the SNS are presented. The general conclusion reached is that effort should be devoted towards improving reliability and efficiency of operation of specimen environment apparatus and developing systems which are robust and easy to use, rather than achieving performance at the limits of technology. (author)

  15. Physics with Ultracold and Thermal Neutron Beams

    International Nuclear Information System (INIS)

    None

    2004-01-01

    The final report is broken into 5 segments, reflecting research conclusions reached during specific time periods: 1991-1997, 1997-1999, 1999-2000, 2000-2001, and 2001-2002. The first part of the work reported was carried out at the 2 Mw research reactor of the Rhode Island Nuclaer Science Center (RJNSC). Chosen for study was the slow phase separation in mixtures of oil and water in the presence of a surfactant, and the structural features of an oil layer during the slow build-up from the gas phase. The results of these measurements, as well as studies of the capillary wave properties of oil/surfactant/water interfaces are described. The second part of the work was performed at the neutron reflection facilities of the Intennse Pulsed Neutron Source at Argonne and of the NBSR reactor at NIST. At Argonne, the uniaxial magnetic order of an Fe/CR superlattice was investigated, while the experiments at NIST studied the swelling behavior of ordered thin films of diblock copolymers when they were exposed to solvent vapors. The third part of the work was concerned with the storage properties of ultracold neturons in a trap. New experiments on spectral evolution during storage, using the UCN source of the Institut Laue-Langevin were able to be run. Subsequent periods focussed on the ultracold neutrons work, spin valve multilayer systems, and pseudo-partial wetting

  16. Set of thermal neutron-scattering experiments for the Weapons Neutron Research Facility

    International Nuclear Information System (INIS)

    Brugger, R.M.

    1975-12-01

    Six classes of experiments form the base of a program of thermal neutron scattering at the Weapons Neutron Research (WNR) Facility. Three classes are to determine the average microscopic positions of atoms in materials and three are to determine the microscopic vibrations of these atoms. The first three classes concern (a) powder sample neutron diffraction, (b) small angle scattering, and (c) single crystal Laue diffraction. The second three concern (d) small kappa inelastic scattering, (e) scattering surface phonon measurements, and (f) line widths. An instrument to couple with the WNR pulsed source is briefly outlined for each experiment

  17. Thermal Neutron Capture and Thermal Neutron Burn-up of K isomeric state of 177mLu: a way to the Neutron Super-Elastic Scattering cross section

    International Nuclear Information System (INIS)

    Roig, O.; Belier, G.; Meot, V.; Daugas, J.-M.; Romain, P.; Aupiais, J.; Jutier, Ch.; Le Petit, G.; Letourneau, A.; Marie, F.; Veyssiere, Ch.

    2006-01-01

    Thermal neutron radiative capture and burn-up measurements of the K isomeric state in 177Lu form part of an original method to indirectly obtain the neutron super-elastic scattering cross section at thermal energy. Neutron super-elastic scattering, also called neutron inelastic acceleration, occurs during the neutron collisions with an excited nuclear level. In this reaction, the nucleus could partly transfer its excitation energy to the scattered neutron

  18. Need for nuclear data for thermal neutron reactors

    International Nuclear Information System (INIS)

    Bouchard, J.; Golinelli, C.; Tellier, H.

    1983-01-01

    The need for nuclear data for thermal neutron reactors is conditioned by the persisting lack of agreement between the calculation and measurement of certain parameters, by the benefit that can be drawn from reduction of the marginal areas and by envisaged modifications. Three particular fields are delineated. Reduction of the deviation in temperature coefficients by modification of the shape of the effective capture cross sections of uranium-238 and -235 in the thermal range. The increase in precision of kinetic measurements by a better knowledge of data connected to slowed-down neutrons. Improvement in predicting the neutron activity of the fuels used in measuring the effective capture cross sections of plutonium-242 and americium-243. (Auth.)

  19. Measurement of the diffusion length of thermal neutrons inside graphite

    International Nuclear Information System (INIS)

    Ertaud, A.; Beauge, R.; Fauquez, H.; De Laboulay, H.; Mercier, C.; Vautrey, L.

    1948-11-01

    The diffusion length of thermal neutrons inside a given industrial graphite is determined by measuring the neutron density inside a parallelepipedal piling up of graphite bricks (2.10 x 2.10 x 2.442 m). A 3.8 curies (Ra α → Be) source is placed inside the parallelepipedal block of graphite and thin manganese detectors are used. Corrections are added to the unweighted measurements to take into account the effects of the damping of supra-thermal neutrons in the measurement area. These corrections are experimentally deduced from the differential measurements made with a cadmium screen interposed between the source and the first plane of measurement. An error analysis completes the report. The diffusion length obtained is: L = 45.7 cm ± 0.3. The average density of the graphite used is 1.76 and the average apparent density of the piling up is 1.71. (J.S.)

  20. High temperature ductility of austenitic alloys exposed to thermal neutrons

    International Nuclear Information System (INIS)

    Watanabe, K.; Kondo, T.; Ogawa, Y.

    1982-01-01

    Loss of high temperature ductility due to thermal neutron irradiation was examined by slow strain rate test in vacuum up to 1000 0 C. The results on two heats of Hastelloy alloy X with different boron contents were analyzed with respect to the influence of the temperatures of irradiation and tensile tests, neutron fluence and the associated helium production due to nuclear transmutation reaction. The loss of ductility was enhanced by increasing either temperature or neutron fluence. Simple extrapolations yielded the estimated threshold fluence and the end-of-life ductility values at 900 and 1000 0 C in case where the materials were used in near-core regions of VHTR. The observed relationship between Ni content and the ductility loss has suggested a potential utilization of Fe-based alloys for seathing of the neutron absorber materials

  1. Equipment for thermal neutron flux measurements in reactor R2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E; Nilsson, T; Claeson, S

    1960-04-15

    For most of the thermal neutron flux measurements in reactor R2 cobalt wires will be used. The loading and removal of these wires from the reactor core will be performed by means of a long aluminium tube and electromagnets. After irradiation the wires will be scanned in a semi-automatic device.

  2. Parallel diffusion length on thermal neutrons in rod type lattices

    International Nuclear Information System (INIS)

    Ahmed, T.; Siddiqui, S.A.M.M.; Khan, A.M.

    1981-11-01

    Calculation of diffusion lengths of thermal neutrons in lead-water and aluminum water lattices in direction parallel to the rods are performed using one group diffusion equation together with Shevelev transport correction. The formalism is then applied to two practical cases, the Kawasaki (Hitachi) and the Douglas point (Candu) reactor lattices. Our results are in good agreement with the observed values. (author)

  3. Response of neutron-irradiated RPV steels to thermal annealing

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels

  4. A two-medium thermal neutron spectrum programme

    International Nuclear Information System (INIS)

    Bindon, D.C.

    1960-07-01

    A computer programme is described for computing the thermal neutron spectra and effective cross-sections in a reactor system of two media by the method of H. Takahashi. The programme has been prepared and tested for use with the Ferranti Mercury computer. (author)

  5. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Tzika, F.; Stamatelatos, I.E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample

  6. Thermal expansion study of simulated DUPIC fuel using neutron diffraction

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Bae, J. H.; Kim, H. S.; Song, K. C.; Yang, M. S.; Choi, Y. N.; Han, Y. S.; Oh, H. S.

    2001-07-01

    The lattice parameters of simulated DUPIC fuel and UO2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO2 and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO2. For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO2 and simulated DUPIC fuel are 10.471 ''10-6 and 10.751 ''10-6 K-1, respectively

  7. Detection of land mines using fast and thermal neutron analysis

    International Nuclear Information System (INIS)

    Bach, P.

    1998-01-01

    The detection of land mines is made possible by using nuclear sensor based on neutron interrogation. Neutron interrogation allows to detect the sensitive elements (C, H, O, N) of the explosives in land mines or in unexploded shells: the evaluation of characteristic ratio N/O and C/O in a volume element gives a signature of high explosives. Fast neutron interrogation has been qualified in our laboratories as a powerful close distance method for identifying the presence of a mine or explosive. This method could be implemented together with a multisensor detection system - for instance IR or microwave - to reduce the false alarm rate by addressing the suspected area. Principle of operation is based on the measurement of gamma rays induced by neutron interaction with irradiated nuclei from the soil and from a possible mine. Specific energy of these gamma rays allows to recognise the elements at the origin of neutron interaction. Several detection methods can be used, depending on nuclei to be identified. Analysis of physical data, computations by simulation codes, and experimentations performed in our laboratory have shown the interest of Fast Neutron Analysis (FNA) combined with Thermal Neutron Analysis (TNA) techniques, especially for detection of nitrogen 14 N, carbon 12 C and oxygen 16 O. The FNA technique can be implemented using a 14 MeV sealed neutron tube, and a set of detectors. The mines detection has been demonstrated from our investigations, using a low power neutron generator working in the 10 8 n/s range, which is reasonable when considering safety rules. A fieldable demonstrator would be made with a detection head including tube and detectors, and with remote electronics, power supplies and computer installed in a vehicle. (author)

  8. Boron thermal/epithermal neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.

    1982-01-01

    The development of various particle beams for radiotherapy represents an attempt to improve dose distribution, and to provide high LET radiations which are less sensitive to ambient physical and radiobiological factors such as oxygen tension, cell cycle, and dose rate. In general, a compromise is necessary as effective RBE is reduced in order to spread the dose distribution over the anticipated tumor volume. The approach of delivering stable non-toxic isotopes to tumor, and then activating these atoms subsequently via an external radiation beam has mator advantages; problems associated with high uptake of these isotopes in competing cell pools are obviated, and the general tumor volume can be included in the treatment field of the activating beam. As long as the normal tissues supporting tumor show a low uptake of the isotope to be activated, and as long as the range of the reaction products is short, dose will be restricted to tumor, with a consequent high therapeutic ratio. Neutron Capture Therapy (NCT) is generally carried out by activating boron-10 with low energy neutrons. The range of the high LET, low OER particles from the 10 B(n, α) 7 Li reaction is approx. 10μ, or one cell diameter, a situation that is optimal for cell killing. Significant advantages may be gained by using the NCT procedure in conjunction with improved tissue penetration provided with epithermal or filtered beams, and new compounds showing physiological binding to tumor

  9. Effects of high thermal neutron fluences on Type 6061 aluminum

    International Nuclear Information System (INIS)

    Weeks, J.R.; Czajkowski, C.J.; Farrell, K.

    1992-01-01

    The control rod drive follower tubes of the High Flux Beam Reactor are contructed from precipitation-hardened 6061-T6 aluminum alloy and they operate in the high thermal neutron flux regions of the core. It is shown that large thermal neutron fluences up to ∼4 x 10 23 n/cm 2 at 333K cause large increases in tensile strength and relatively modest decreases in tensile elongation while significantly reducing the notch impact toughness at room temperature. These changes are attributed to the development of a fine distribution of precipitates of amorphous silicon of which about 8% is produced radiogenically. A proposed role of thermal-to-fast flux ratio is discussed

  10. Scattering of thermal neutron by the water molecule

    International Nuclear Information System (INIS)

    Rosa, L.P.

    The calculation of the differenctial cross section for scattering of thermal neutrons by water, taking into account the translational, rotational and vibrational motions of the water molecule, is presented according to Nelkin' model. Some modifications are presented which have been introduced in the original method to improve the results and an application has been made to reactor physics, by calculating the thermal neutron flux in a homogenous medium containing water and absorver. Thirty thermal energy groups have been used to compute the spectra. Within the limits of error, better agreement has been obtained between theory and experiments by using a modified Nelkin kernel consisting of substituting the asymptotic formulae for the rotational and vibrational motions by more exact expressions, similar to the Buttler model for heavy water

  11. Experimental investigation of thermal neutron analysis based landmine detection technology

    International Nuclear Information System (INIS)

    Zeng Jun; Chu Chengsheng; Ding Ge; Xiang Qingpei; Hao Fanhua; Luo Xiaobing

    2013-01-01

    Background: Recently, the prompt gamma-rays neutron activation analysis method is wildly used in coal analysis and explosive detection, however there were less application about landmine detection using neutron method especially in the domestic research. Purpose: In order to verify the feasibility of Thermal Neutron Analysis (TNA) method used in landmine detection, and explore the characteristic of this technology. Methods: An experimental system of TNA landmine detection was built based on LaBr 3 (Ce) fast scintillator detector and 252 Cf isotope neutron source. The system is comprised of the thermal neutron transition system, the shield system, and the detector system. Results: On the basis of the TNA, the wide energy area calibration method especially to the high energy area was investigated, and the least detection time for a typical mine was defined. In this study, the 72-type anti-tank mine, the 500 g TNT sample and several interferential objects are tested in loess, red soil, magnetic soil and sand respectively. Conclusions: The experimental results indicate that TNA is a reliable demining method, and it can be used to confirm the existence of Anti-Tank Mines (ATM) and large Anti-Personnel Mines (APM) in complicated condition. (authors)

  12. Neutron irradiation effect of thermally-sensitized stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hide, Kouitiro [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) susceptibility of irradiated thermally-sensitized Type 304 Stainless Steels (SSs) was studied as a function of neutron fluence and correlated with mechanical responses of the materials. Neutron irradiation was carried out to neutron fluences up to 1.1 x 10{sup 24} n/m{sup 2} (E > 1MeV) at the light water reactor temperature in the Japan Material Test Reactor. The irradiated specimens were examined by slow strain rate stress corrosion cracking tests in 290degC pure water of 0.2 ppm dissolved oxygen concentration and microhardness measurements. The IGSCC susceptibility of the irradiated specimens increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}. From an attempt to correlate the IGSCC susceptibility with the mechanical properties, an excellent correlation was identified between the susceptibility and microhardness increments at the grain boundary relative to the grain center. While intergranular corrosion rate of thermally sensitized SS increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}, that of solution annealed SS did not change. The incremental grain boundary hardening and degradation of intergranular corrosion resistance may presumably be the major factors affecting IGSCC performance. (author)

  13. New thermal neutron calibration channel at LNMRI/IRD

    Energy Technology Data Exchange (ETDEWEB)

    Astuto, A.; Lopes, R.T., E-mail: achillesbr@gmail.com [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Patrao, K.C.S.; Fonseca, E.S.; Pereira, W.W. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ/LNMRI), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes

    2015-07-01

    A new standard thermal neutron flux unit was designed in the National Ionizing Radiation Metrology Laboratory (LNMRI) for calibration of neutron detectors. Fluence is achieved by moderation of four {sup 241}Am-Be sources with 596 GBq each, in a facility built with graphite and paraffin blocks. The study was divided into two stages. First, simulations were performed using MCNPX code in different geometric arrangements, seeking the best performance in terms of fluence and their uncertainties. Last, the system was assembled based on the results obtained on the simulations. The simulation results indicate quasi-homogeneous fluence (less than 1%) in the central chamber. (author)

  14. New thermal neutron calibration channel at LNMRI/IRD

    International Nuclear Information System (INIS)

    Astuto, A.; Lopes, R.T.; Patrao, K.C.S.; Fonseca, E.S.; Pereira, W.W.

    2015-01-01

    A new standard thermal neutron flux unit was designed in the National Ionizing Radiation Metrology Laboratory (LNMRI) for calibration of neutron detectors. Fluence is achieved by moderation of four 241 Am-Be sources with 596 GBq each, in a facility built with graphite and paraffin blocks. The study was divided into two stages. First, simulations were performed using MCNPX code in different geometric arrangements, seeking the best performance in terms of fluence and their uncertainties. Last, the system was assembled based on the results obtained on the simulations. The simulation results indicate quasi-homogeneous fluence (less than 1%) in the central chamber. (author)

  15. Thermal neutron absorption cross section of small samples

    International Nuclear Information System (INIS)

    Nghiep, T.D.; Vinh, T.T.; Son, N.N.; Vuong, T.V.; Hung, N.T.

    1989-01-01

    A modified steady method for determining the macroscopic thermal neutron absorption cross section of small samples 500 cm 3 in volume is described. The method uses a moderating block of paraffin, Pu-Be neutron source emitting 1.1x10 6 n.s. -1 , SNM-14 counter and ordinary counting equipment. The interval of cross section from 2.6 to 1.3x10 4 (10 -3 cm 2 g -1 ) was measured. The experimental data are described by calculation formulae. 7 refs.; 4 figs

  16. Thermal neutron scattering cross sections of beryllium and magnesium oxides

    International Nuclear Information System (INIS)

    Al-Qasir, Iyad; Jisrawi, Najeh; Gillette, Victor; Qteish, Abdallah

    2016-01-01

    Highlights: • Neutron thermalization in BeO and MgO was studied using Ab initio lattice dynamics. • The BeO phonon density of states used to generate the current ENDF library has issues. • The BeO cross sections can provide a more accurate ENDF library than the current one. • For MgO an ENDF library is lacking: a new accurate one can be built from our results. • BeO is a better filter than MgO, especially when cooled down to 77 K. - Abstract: Alkaline-earth beryllium and magnesium oxides are fundamental materials in nuclear industry and thermal neutron scattering applications. The calculation of the thermal neutron scattering cross sections requires a detailed knowledge of the lattice dynamics of the scattering medium. The vibrational properties of BeO and MgO are studied using first-principles calculations within the frame work of the density functional perturbation theory. Excellent agreement between the calculated phonon dispersion relations and the experimental data have been obtained. The phonon densities of states are utilized to calculate the scattering laws using the incoherent approximation. For BeO, there are concerns about the accuracy of the phonon density of states used to generate the current ENDF/B-VII.1 libraries. These concerns are identified, and their influences on the scattering law and inelastic scattering cross section are analyzed. For MgO, no up to date thermal neutron scattering cross section ENDF library is available, and our results represent a potential one for use in different applications. Moreover, the BeO and MgO efficiencies as neutron filters at different temperatures are investigated. BeO is found to be a better filter than MgO, especially when cooled down, and cooling MgO below 77 K does not significantly improve the filter’s efficiency.

  17. Computed tomography with thermal neutrons and gaseous position sensitive detector

    International Nuclear Information System (INIS)

    Souza, Maria Ines Silvani

    2001-12-01

    A third generation tomographic system using a parallel thermal neutron beam and gaseous position sensitive detector has been developed along three discrete phases. At the first one, X-ray tomographic images of several objects, using a position sensitive detector designed and constructed for this purpose have been obtained. The second phase involved the conversion of that detector for thermal neutron detection, by using materials capable to convert neutrons into detectable charged particles, testing afterwards its performance in a tomographic system by evaluation the quality of the image arising from several test-objects containing materials applicable in the engineering field. High enriched 3 He, replacing the argon-methane otherwise used as filling gas for the X-ray detection, as well as, a gadolinium foil, have been utilized as converters. Besides the pure enriched 3 He, its mixture with argon-methane and later on with propane, have been also tested, in order to evaluate the detector efficiency and resolution. After each gas change, the overall performance of the tomographic system using the modified detector, has been analyzed through measurements of the related parameters. This was done by analyzing the images produced by test-objects containing several materials having well known attenuation coefficients for both thermal neutrons and X-rays. In order to compare the performance of the position sensitive detector as modified to detect thermal neutrons, with that of a conventional BF 3 detector, additional tomographs have been conducted using the last one. The results have been compared in terms of advantages, handicaps and complementary aspects for different kinds of radiation and materials. (author)

  18. Multigroup or multipoint thermal neutron data preparation. Programme SIGMA

    International Nuclear Information System (INIS)

    Matausek, M.V.; Kunc, M.

    1974-01-01

    When calculating the space energy distribution of thermal neutrons in reactor lattices, in either the multigroup or the multipoint approximation, it is convenient to divide the problem into two independent parts. Firstly, for all material regions of the given reactor lattice cell, the group or the point values of cross sections, scattering kernel and the outer source of thermal neutrons are calculated by a data preparation programme. These quantities are then used as input, by the programme which solves multigroup or multipoint transport equations, to generate the space energy neutron spectra in the cell considered and to determine the related integral quantities, namely the different reaction rates. The present report deals with the first part of the problem. An algorithm for constructing a set of thermal neutron input data, to be used with the multigroup or multipoint version of the code MULTI /1,2,3/, is presented and the new version of the programme SIGMA /4/, written in FORTRAN IV for the CDC-3600 computer, is described. For a given reactor cell material, composed of a number of different isotopes, this programme calculates the group or the point values of the scattering macroscopic absorption cross section, macroscopic scattering cross section, kernel and the outer source of thermal neutrons. Numerous options are foreseen in the programme, concerning the energy variation of cross sections and a scattering kernel, concerning the weighting spectrum in multigroup scheme or the procedure for constructing the scattering matrix in the multipoint scheme and, finally, concerning the organization of output. The details of the calculational algorithm are presented in Section 2 of the paper. Section 3 contains the description of the programme and the instructions for its use (author)

  19. Analytical modeling of thin film neutron converters and its application to thermal neutron gas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, F; Esch, P Van, E-mail: piscitelli@ill.fr [Institut Laue-Langevin (ILL), 6, Jules Horowitz, 38042 Grenoble (France)

    2013-04-15

    A simple model is explored mainly analytically to calculate and understand the PHS of single and multi-layer thermal neutron detectors and to help optimize the design in different circumstances. Several theorems are deduced that can help guide the design.

  20. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    Science.gov (United States)

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  1. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and

  2. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    International Nuclear Information System (INIS)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-01-01

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  3. Thermal neutron scattering kernels for sapphire and silicon single crystals

    International Nuclear Information System (INIS)

    Cantargi, F.; Granada, J.R.; Mayer, R.E.

    2015-01-01

    Highlights: • Thermal cross section libraries for sapphire and silicon single crystals were generated. • Debye model was used to represent the vibrational frequency spectra to feed the NJOY code. • Sapphire total cross section was measured at Centro Atómico Bariloche. • Cross section libraries were validated with experimental data available. - Abstract: Sapphire and silicon are materials usually employed as filters in facilities with thermal neutron beams. Due to the lack of the corresponding thermal cross section libraries for those materials, necessary in calculations performed in order to optimize beams for specific applications, here we present the generation of new thermal neutron scattering kernels for those materials. The Debye model was used in both cases to represent the vibrational frequency spectra required to feed the NJOY nuclear data processing system in order to produce the corresponding libraries in ENDF and ACE format. These libraries were validated with available experimental data, some from the literature and others obtained at the pulsed neutron source at Centro Atómico Bariloche

  4. Neutron scattering study of unstable magnetic long-range order in the random two-dimensional Ising antiferromagnets Rb/sub 2/Cosub(c)Mgsub(1-c)F/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, H; Suzuki, M [Ochanomizu Univ., Tokyo (Japan). Dept. of Physics; Hutchings, M T [UKAEA Atomic Energy Research Establishment, Harwell. Materials Physics Div.

    1979-01-01

    The spin correlation between two-dimensionally (2D) ordered antiferromagnetic layers in the random antiferromagnets Rb/sub 2/Cosub(c)Mgsub(1-c)F/sub 4/ depends strongly on the rate at which the sample is cooled through the Neel point Tsub(N) and decreases markedly with decreasing Co/sup 2 +/ ion concentration c. Preliminary data are presented which indicate that the order below sub(N) is metastable and relaxes to a fully correlated 3D ordered state on a finite, measurable, time-scale.

  5. Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to his particular situation the fundamental procedures of the following techniques. 1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy. 1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and 1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy. 1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-...

  6. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).

    Science.gov (United States)

    Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro

    2017-12-01

    The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.

  7. Study of thermal neutron capture in 58 Ni

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Pecequilo, B.R.S.

    1988-08-01

    The energies and intensities of the primary gamma-rays from 58 Ni (n, γ) 59 Ni reaction have been measured with a Ge(li) pair-spectrometer in the region of 3.7 to 9.3 MeV. The thermal neutron capture cross section of 58 Ni was determined to be 4.52 +- 0.10 by summing the primary transition intensities. The neutron separation energy was found to be 8999.93 +- 0.34 KeV. It is shown that the decay of the capture state is non-statistical and that there is a strong correlation between the strengths of excitation of levels by the (n, γ) and (d,p) reactions. These results are discussed in terms of a direct neutron capture reaction mechanism. (author) [pt

  8. Structure and thermal evolution of spinning-down neutron stars

    International Nuclear Information System (INIS)

    Negreiros, R.; Schramm, S.; Weber, F.

    2011-01-01

    In this paper we address the effects of spin-down on the cooling of neutron stars. During its evolution, stellar composition and structure might be substantially altered, as a result of spin-down and the consequent density increase. Since the timescale of cooling might be comparable to to that of the spin-evolution, the modifications to the structure/composition might have important effects on the thermal evolution of the object. We show that the direct Urca process might be delayed or supressed, when spin-down is taken into account. This leads to neutron stars with slow cooling, as opposed to enhanced cooling as would be the case if a "froze-in" structure and composition were considered. In conclusion we demonstrate that the inclusion of spin-down effects on the cooling of neutron stars have far-reaching implications for the interpretation of pulsars. (author)

  9. Methods and apparatus for environmental correction of thermal neutron logs

    International Nuclear Information System (INIS)

    Preeg, W.E.; Scott, H.D.

    1983-01-01

    An on-line environmentally-corrected measurement of the thermal neutron decay time (tau) of an earth formation traversed by a borehole is provided in a two-detector, pulsed neutron logging tool, by measuring tau at each detector and combining the two tau measurements in accordance with a previously established empirical relationship of the general form: tau = tausub(F) +A(tausub(F) + tausub(N)B) + C, where tausub(F) and tausub(N) are the tau measurements at the far-spaced and near-spaced detectors, respectively, A is a correction coefficient for borehole capture cross section effects, B is a correction coefficient for neutron diffusion effects, and C is a constant related to parameters of the logging tool. Preferred numerical values of A, B and C are disclosed, and a relationship for more accurately approximating the A term to specific borehole conditions. (author)

  10. Thermal diffuse scattering in angular-dispersive neutron diffraction

    International Nuclear Information System (INIS)

    Popa, N.C.; Willis, B.T.M.

    1998-01-01

    The theoretical treatment of one-phonon thermal diffuse scattering (TDS) in single-crystal neutron diffraction at fixed incident wavelength is reanalysed in the light of the analysis given by Popa and Willis [Acta Cryst. (1994), (1997)] for the time-of-flight method. Isotropic propagation of sound with different velocities for the longitudinal and transverse modes is assumed. As in time-of-flight diffraction, there exists, for certain scanning variables, a forbidden range in the one-phonon TDS of slower-than-sound neutrons, and this permits the determination of the sound velocity in the crystal. A fast algorithm is given for the TDS correction of neutron diffraction data collected at a fixed wavelength: this algorithm is similar to that reported earlier for the time-of-flight case. (orig.)

  11. Trial production of hyper-thermal neutron generator for Neutron Capture Therapy (NCT) and its radiation properties

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Toru

    1999-01-01

    In NCT, it was at first important to give a cancer portion to radiation dose required for its recovery. By finding out that whole cross-section of water comprising of a living body decreased monotonously with increase of neutron energy from about 100 barn against thermal neutron, became about 40 barn at about 0.5 eV and kept constant to 40 barn till at about 100 eV, application of thermal neutron shifted to higher temperature side, called Hyper thermal neutron, to NCT is proposed. The Hyper thermal neutron radiation can be expected to have similar controllability to that of the thermal neutron radiation. In 1977 fiscal year, a trial Hyper thermal neutron generator was produced on a base of up-to-date investigation results. As a part of property evaluation of the generator, evaluation of energy spectra in the Hyper thermal neutron generated at LINAC by TOF was conducted to confirm shift of the spectra to high temperature side. And, a Fantom experiment at KUR heavy water neutron radiation facility was also conducted to confirm effect of improvement in deep portion dose distribution. (G.K.)

  12. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  13. The PTB thermal neutron reference field at GeNF

    International Nuclear Information System (INIS)

    Boettger, R.; Friedrich, H.; Janssen, H.

    2004-01-01

    The experimental setup and procedure for the characterization of the thermal neutron reference field established at the Geesthacht neutron facility (GeNF) of the GKSS is described. The neutron beam, free in air, with a maximum flux of 10 6 s -1 , can easily be reduced to less than 10 4 s -1 by using a diaphragm variable in size and without changing the beam divergence. Also, the spectral distribution with a mean energy of 45 meV, measured by time-of-flight over a 6.6 m long flight path, is independent of the beam current chosen. In the 2002/2003 experiments reported here, a 6 Li glass detector was employed to determine the absolute beam current and to calibrate the 3 He transmission beam monitor. In addition, activation measurements of gold foils were carried out at a reduced beam divergence. The results agree within ±2%. Furthermore, the beam is characterized by a low gamma background intensity and a negligible fraction of epithermal neutrons. Irradiations in combination with a scanner device to achieve a homogeneously illuminated scan field have shown that the thermal beam is well suited for dosemeter development and for the calibration of radiation protection instruments. (orig.)

  14. The PTB thermal neutron reference field at GeNF

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, R.; Friedrich, H.; Janssen, H.

    2004-07-01

    The experimental setup and procedure for the characterization of the thermal neutron reference field established at the Geesthacht neutron facility (GeNF) of the GKSS is described. The neutron beam, free in air, with a maximum flux of 10{sup 6} s{sup -1}, can easily be reduced to less than 10{sup 4} s{sup -1} by using a diaphragm variable in size and without changing the beam divergence. Also, the spectral distribution with a mean energy of 45 meV, measured by time-of-flight over a 6.6 m long flight path, is independent of the beam current chosen. In the 2002/2003 experiments reported here, a {sup 6}Li glass detector was employed to determine the absolute beam current and to calibrate the {sup 3}He transmission beam monitor. In addition, activation measurements of gold foils were carried out at a reduced beam divergence. The results agree within {+-}2%. Furthermore, the beam is characterized by a low gamma background intensity and a negligible fraction of epithermal neutrons. Irradiations in combination with a scanner device to achieve a homogeneously illuminated scan field have shown that the thermal beam is well suited for dosemeter development and for the calibration of radiation protection instruments. (orig.)

  15. Finite volume thermal-hydraulics and neutronics coupled calculations - 15300

    International Nuclear Information System (INIS)

    Araujo Silva, V.; Campagnole dos Santos, A.A.; Mesquit, A.Z.; Bernal, A.; Miro, R.; Verdu, G.; Pereira, C.

    2015-01-01

    The computational power available nowadays allows the coupling of neutronics and thermal-hydraulics codes for reactor studies. The present methodology foresees at least one constraint to the separated codes in order to perform coupled calculations: both codes must use the same geometry, however, meshes can be different for each code as long as the internal surfaces stays the same. Using the finite volume technique, a 3D diffusion nodal code was implemented to deal with neutron transport. This code can handle non-structured meshes which allows for complicated geometries calculations and therefore more flexibility. A computational fluid dynamics (CFD) code was used in order to obtain the same level of details for the thermal hydraulics calculations. The chosen code is OpenFOAM, an open-source CFD tool. Changes in OpenFOAM allow simple coupled calculations of a PWR fuel rod with neutron transport code. OpenFOAM sends coolant density information and fuel temperature to the neutron transport code that sends back power information. A mapping function is used to average values when one node in one side corresponds to many nodes in the other side. Data is exchanged between codes by library calls. As the results of a fuel rod calculations progress, more complicated and processing demanding geometries will be simulated, aiming to the simulation of a real scale PWR fuel assembly

  16. Shape Isomer in 236U Populated by Thermal Neutron Capture

    DEFF Research Database (Denmark)

    Andersen, Verner; Christensen, Carl Jørgen; Borggreen, J.

    1976-01-01

    The 116 ns shape isomer in 236U was populated by thermal neutron capture. Conversion electrons and X-rays were detected simultaneously in delayed coincidence with fission. The ratio of delayed to prompt fission was measured with the result, σIIf/σf = (1.0±0.2) × 10−5. A branching of the isomeric ...... decay σIIγ/σIIf = 7±2 was deduced from this number. No definite electron line structure was observed....

  17. An analytical method for neutron thermalization calculations in heterogenous reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1965-07-01

    It is well known that the use of the diffusion approximation for stuneutron thermalization in . heterogeneous reactors may result in considerable errors. On the other hand, more exact numerical methods are rather laborious and require the use of large digital computers. In this paper, the use of the diffusion approximation in absorbing media has been avoided, but the treatment remained analytical, thus simplifying practical calculations.

  18. Activation experiment for concrete blocks using thermal neutrons

    Science.gov (United States)

    Okuno, Koichi; Tanaka, Seiichiro

    2017-09-01

    Activation experiments for ordinary concrete, colemanite-peridotite concrete, B4C-loaded concrete, and limestone concrete are carried out using thermal neutrons. The results reveal that the effective dose for gamma rays from activated nuclides of colemanite-peridotite concrete is lower than that for the other types of concrete. Therefore, colemanite-peridotite concrete is useful for reducing radiation exposure for workers.

  19. An analytical method for neutron thermalization calculations in heterogenous reactors

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1965-01-01

    It is well known that the use of the diffusion approximation for studying neutron thermalization in heterogeneous reactors may result in considerable errors. On the other hand, more exact numerical methods are rather laborious and require the use of large digital computers. In this paper, the use of the diffusion approximation in absorbing media has been avoided, but the treatment remained analytical, thus simplifying practical calculations

  20. Attenuation of thermal neutrons by an imperfect single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Adib, M. [National Research Centre, Cairo (Egypt). Reactor and Neutron Physics Dept.

    1996-06-14

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3-40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range. (author).

  1. Attenuation of thermal neutrons by an imperfect single crystal

    Science.gov (United States)

    Naguib, K.; Adib, M.

    1996-06-01

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.

  2. distributions for the thermal neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2016-01-01

    In addition, the analysis of thermal neutron induced fission of 234U(n,f will be discussed. Currently analysis of data is ongoing, originally taken at the ILL reactor. The experiment is of particular interest since no measurement exist of the mass and energy distributions for this system at thermal energies. One main problem encountered during analysis was the huge background of 235U(nth,f. Despite the negligible isotopic traces in the sample, the cross section difference is enormous. Solution to this parasitic background will be highlighted.

  3. LANSCE steady state unperturbed thermal neutron fluxes at 100 μA

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    The ''maximum'' unperturbed, steady state thermal neutron flux for LANSCE is calculated to be 2 /times/ 10 13 n/cm 2 -s for 100 μA of 800-MeV protons. This LANSCE neutron flux is a comparable entity to a steady state reactor thermal neutron flux. LANSCE perturbed steady state thermal neutron fluxes have also been calculated. Because LANSCE is a pulsed neutron source, much higher ''peak'' (in time) neutron fluxes can be generated than at a steady state reactor source. 5 refs., 5 figs

  4. Two-dimensional transport of tokamak plasmas

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Jardin, S.C.

    1979-01-01

    A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape

  5. Neutron spectral modulation as a new thermal neutron scattering technique. Pt. 1

    International Nuclear Information System (INIS)

    Ito, Y.; Nishi, M.; Motoya, K.

    1982-01-01

    A thermal neutron scattering technique is presented based on a new idea of labelling each neutron in its spectral position as well as in time through the scattering process. The method makes possible the simultaneous determination of both the accurate dispersion relation and its broadening by utilizing the resolution cancellation property of zero-crossing points in the cross-correlated time spectrum together with the Fourier transform scheme of the neutron spin echo without resorting to the echoing. The channel Fourier transform applied to the present method also makes possible the determination of the accurate direct energy scan profile of the scattering function with a rather broad incident neutron wavelength distribution. Therefore the intensity sacrifice for attaining high accurarcy is minimized. The technique is used with either a polarized or unpolarized beam at the sample position with no precautions against beam depolarization at the sample for the latter case. Relative time accurarcy of the order of 10 -3 to 10 -4 may be obtained for the general dispersion relation and for the quasi-elastic energy transfers using correspondingly the relative incident neutron wavelength spread of 10 to 1% around an incident neutron energy of a few meV. (orig.)

  6. The determination of self-powered neutron detector sensitivity on thermal and epithermal neutron flux densities

    International Nuclear Information System (INIS)

    Erben, O.

    1980-01-01

    The coefficients of thermal and epithermal neutron flux density depression and self-shielding for the SPN detectors with vanadium, rhodium, silver and cobalt emitters are presented, (for cobalt SPN detectors the functions describing the absorbtion of neutrons along the emitter cross-section are also shown). Using these coefficients and previously published beta particle escape efficiencies, sensitivities are determined for the principal types of detectors produced by Les Cables de Lyon and SODERN companies. The experiments and their results verifying the validity of the theoretical work are described. (author)

  7. Transparent lithiated polymer films for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Mabe, Andrew N., E-mail: andrew.n.mabe@gmail.com [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Auxier, John D. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Urffer, Matthew J. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Penumadu, Dayakar [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Schweitzer, George K. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Miller, Laurence F. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-09-11

    Novel water-soluble {sup 6}Li loaded copolymer scintillation films have been designed and fabricated to detect thermal neutrons. Styrene and maleic anhydride were copolymerized to form an alternating copolymer, then the anhydride functionality was hydrolyzed using {sup 6}Li hydroxide. The resulting poly(styrene-co-lithium maleate) was mixed with salicylic acid as a fluor and cast as a thin film from water. The maximum {sup 6}Li loading obtained that resulted in a transparent film was 4.36% by mass ({sup 6}Li to polymer). The optimum fluorescence output was obtained for 11.7% salicylic acid by mass, presumably in the form of lithium salicylate, resulting in an optimum film containing 3.85% by mass of {sup 6}Li. A facile and robust synthesis method, film fabrication protocol, photoluminescence results, and scintillation responses are reported herein. -- Highlights: • A transparent polymer scintillator containing 3.85 wt% {sup 6}Li has been synthesized. • This class of polymeric thermal neutron scintillation detector is water-soluble. • Salicylic acid, presumably in the form of lithium salicylate, is used as a fluor. • The material emits 373 photons/α ({sup 241}Am) and an average of 139 photons/β ({sup 36}Cl). • The material emits 360 photons per thermal neutron capture event.

  8. A two-dimensional, semi-analytic expansion method for nodal calculations

    International Nuclear Information System (INIS)

    Palmtag, S.P.

    1995-08-01

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure

  9. The single-collision thermalization approximation for application to cold neutron moderation problems

    International Nuclear Information System (INIS)

    Ritenour, R.L.

    1989-01-01

    The single collision thermalization (SCT) approximation models the thermalization process by assuming that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of the neutron's incident energy. The physical intuition on which this approximation is based is that the salient properties of neutron thermalization are accounted for in the first collision, and the effects of subsequent collisions tend to average out statistically. The independence of the neutron incident and outscattering energy leads to variable separability in the scattering kernel and, thus, significant simplification of the neutron thermalization problem. The approximation also addresses detailed balance and neutron conservation concerns. All of the tests performed on the SCT approximation yielded excellent results. The significance of the SCT approximation is that it greatly simplifies thermalization calculations for CNS design. Preliminary investigations with cases involving strong absorbers also indicates that this approximation may have broader applicability, as in the upgrading of the thermalization codes

  10. Approximate solutions for the two-dimensional integral transport equation. Solution of complex two-dimensional transport problems

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr

  11. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.

    2007-01-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required

  12. Thermal neutron imaging with rare-earth-ion-doped LiCaAlF{sub 6} scintillators and a sealed {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Noriaki, E-mail: famicom@mail.tagen.tohoku.ac.jp [Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Fukuda, Kentaro; Suyama, Toshihisa [Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Watanabe, Kenichi; Yamazaki, Atsushi [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Chani, Valery [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2011-10-01

    Thermal neutron imaging with Ce-doped LiCaAlF{sub 6} crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF{sub 6} scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF{sub 6} single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50x2 mm{sup 2} was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The {sup 252}Cf source (<1 MBq) was sealed with 43 mm of polyethylene for neutron thermalization. Alphabet-shaped Cd pieces with a thickness of 2 mm were used as a mask for the thermal neutrons. After corrections for the pedestals and gain of each pixel, we successfully obtained two-dimensional neutron images using Ce-doped LiCaAlF{sub 6}.

  13. Integral Parameters of the Thermal Neutron Scattering Law

    International Nuclear Information System (INIS)

    Purohit, S.N.

    1964-09-01

    Integral parameters of the thermal neutron scattering law - the thermalization binding parameter (M 2 ), the Placzek's moments of the generalized frequency spectrum of dynamical modes and the energy transfer moments of the scattering law - are theoretically discussed. A detailed study of the variation of M 2 , the thermalization time constant and the effective temperature of the vibrating atoms, with the relative weight between intra-molecular vibrations and hindered rotations for H 2 O, is presented. Theoretical results for different scattering models of H 2 O are compared with the measurements of integral experiments. A set of integral parameters for D 2 O, using Butler's model, have been obtained. Importance of the structure of hindered rotations of H 2 O and D 2 O in the study of integral parameters has also been discussed

  14. Integral Parameters of the Thermal Neutron Scattering Law

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, S N

    1964-09-15

    Integral parameters of the thermal neutron scattering law - the thermalization binding parameter (M{sub 2}), the Placzek's moments of the generalized frequency spectrum of dynamical modes and the energy transfer moments of the scattering law - are theoretically discussed. A detailed study of the variation of M{sub 2}, the thermalization time constant and the effective temperature of the vibrating atoms, with the relative weight between intra-molecular vibrations and hindered rotations for H{sub 2}O, is presented. Theoretical results for different scattering models of H{sub 2}O are compared with the measurements of integral experiments. A set of integral parameters for D{sub 2}O, using Butler's model, have been obtained. Importance of the structure of hindered rotations of H{sub 2}O and D{sub 2}O in the study of integral parameters has also been discussed.

  15. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Cester, D., E-mail: davide.cester@gmail.com [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Pino, F. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Sajo-Bohus, L. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Apartado 89000, 1080 A Caracas (Venezuela, Bolivarian Republic of); Stevanato, L.; Bonesso, I.; Turato, F. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2016-09-11

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  16. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    International Nuclear Information System (INIS)

    Cester, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pino, F.; Sajo-Bohus, L.; Stevanato, L.; Bonesso, I.; Turato, F.

    2016-01-01

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  17. Evaluation of thermal margin during BWR neutron flux oscillation

    International Nuclear Information System (INIS)

    Takeuchi, Yutaka; Takigawa, Yukio; Chuman, Kazuto; Ebata, Shigeo

    1992-01-01

    Fuel integrity is very important, from the view point of nuclear power plant safety. Recently, neutron flux oscillations were observed at several BWR plants. The present paper describes the evaluations of the thermal margin during BWR neutron flux oscillations, using a three-dimensional transient code. The thermal margin is evaluated as MCPR (minimum critical power ratio). The LaSalle-2 event was simulated and the MCPR during the event was evaluated. It was a core-wide oscillation, at which a large neutron flux oscillation amplitude was observed. The results indicate that the MCPR had a sufficient margin with regard to the design limit. A regional oscillation mode, which is different from a core-wide oscillation, was simulated and the MCPR response was compared with that for the LaSalle-2 event. The MCPR decrement is greater in the regional oscillation, than in the core wide -oscillation, because of the sensitivity difference in a flow-to-power gain. A study was carried out about regional oscillation detectability, from the MCPR response view point. Even in a hypothetically severe case, the regional oscillation is detectable by LPRM signals. (author)

  18. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao; Zhang, Hua

    2015-01-01

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards

  19. Construction of two-dimensional quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, S.; Kondracki, W.

    1987-12-01

    We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.

  20. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  1. About possibilities of obtaining focused beams of thermal neutrons of radionuclide source

    International Nuclear Information System (INIS)

    Aripov, G.A.; Kurbanov, B.I.; Sulaymanov, N.T.; Ergashev, A.

    2004-01-01

    Full text: In the last years significant progress is achieved in development of neutron focusing methods (concentrating neutrons in a given direction and a small area). In this, main attention is given to focusing of neutron beams of reactor, particularly cold neutrons and their applications. [1,2]. However, isotope sources also let obtain intensive neutron beams and solve quite important (tasks) problems (e.g. neutron capture therapy for malignant tumors) [3], and an actual problems is focusing of neutrons. We developed a device on the basis of californium source of neutrons, allowing to obtain focused (preliminarily) beam of thermal neutrons with the aid of respective choice of moderators, reflectors and geometry of their disposition. Here, fast neutrons and gamma rays in the beam are minimized. With the aid of the model we developed on the basis of Monte-Carlo method, it is possible to modify aforementioned device and dynamics of output neutrons in wide energy range and analyze ways of optimization of neutron beams of isotope sources with different neutron outputs. Device of preliminary focusing of thermal neutrons can serve as a basis for further focus of neutrons using micro- and nano-capillar systems. It is known that, capillary systems performed with certain technology can form beam of thermal neutrons increasing its density by more than two orders of magnitude and effectively divert beams up to 20 o with length of system 15 cm

  2. About possibilities of obtaining focused beams of thermal neutrons of radionuclide source

    International Nuclear Information System (INIS)

    Aripov, G.A.; Kurbanov, B.I.; Sulaymanov, N.T.; Ergashev, A.

    2004-01-01

    In the last years significant progress is achieved in development of neutron focusing methods (concentrating neutrons in a given direction and a small area). In this, main attention is given to focusing of neutron beams of reactor, particularly cold neutrons and their applications. [1,2]. However, isotope sources also let obtain intensive neutron beams and solve quite important (tasks) problems (e.g. neutron capture therapy for malignant tumors) [3], and an actual problems is focusing of neutrons. We developed a device on the basis of californium source of neutrons, allowing to obtain focused (preliminarily) beam of thermal neutrons with the aid of respective choice of moderators, reflectors and geometry of their disposition. Here, fast neutrons and gamma rays in the beam are minimized. With the aid of the model we developed on the basis of Monte-Carlo method, it is possible to modify aforementioned device and dynamics of output neutrons in wide energy range and analyze ways of optimization of neutron beams of isotope sources with different neutron outputs. Device of preliminary focusing of thermal neutrons can serve as a basis for further focus of neutrons using micro- and nano-capillary systems. It is known that, capillary systems performed with certain technology can form beam of thermal neutrons increasing its density by more than two orders of magnitude and effectively divert beams up to 20 o with length of system 15 cm. (author)

  3. Phase transitions in two-dimensional systems

    International Nuclear Information System (INIS)

    Salinas, S.R.A.

    1983-01-01

    Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt

  4. Seed irradiation with continuously increasing doses of thermal neutrons

    International Nuclear Information System (INIS)

    Uhlik, J.; Pfeifer, M.; Pittermann, P.

    1977-01-01

    In the 'Raman' pea cv. the biological activity of thermal neutrons was investigated after irradiation of a 780 mm column of seeds for 3000 and 4167 seconds with a flux of 5.607 x 10 9 n.cm -2 per second. For different fractions of the seed column the average density of the neutron flux was calculated. It was proved that for the described method of seed irradiation it was sufficient to determine only the dose approaching the lethal dose. If a sufficiently high column of seeds is used part of the column of seeds will be irradiated with the optimum range of doses. The advantages of the suggested method of irradiation are not only smaller time and technological requirements resulting from the need for the determination of only the critical lethal dose of radiation by means of inhibition tests performed with seedlings, but also a simpler irradiation procedure. The suggested method of irradiation is at least nine times cheaper. (author)

  5. Thermal neutron group constants in monoatomic-gas approximation

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M V; Bosevski, T [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-12-15

    To solve the problem of space-energy neutron distribution in an elementary reactor cell, a combination of the multigroup procedure and the P{sub 3} approximation of the spherical harmonics method was chosen. The calculation was divided into two independent parts: the first part was to provide multigroup constants which serve as input data for the second part - the determination of the slow neutron spectra. In the present report only the first part of the problem will be discussed. The velocity dependence of cross-sections and scattering function in thermal range was interpreted by the monoatomic-gas model. A digital computer program was developed for the evaluation of the group values for these quantities (author00.

  6. Measurement of thermal neutron spectra using LINAC in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1982-01-01

    The exact grasp of thermal neutron spectra in a core region is very important for obtaining accurate thermal neutron group constants in the calculation for the nuclear design of a reactor core. For the accurate grasp of thermal neutron spectra, the capability of thermal neutron spectra to describe the moderator cross-sections for thermal neutron scattering is a key factor. Accordingly, 0 deg angular thermal neutron spectra were measured by the time of flight (TOF) method using the JAERI LINAC as a pulsed neutron source, for light water system added with Cd and In, high temperature graphite system added with boron, and light water-natural uranium heterogeneous multiplication system among the reactor moderators of light water or graphite systems. First, the equations to give the time of flight and neutron flux by TOF method were analyzed, and several corrections were investigated, such as those for detector efficiency, background, the transmission coefficient of air and the Al window of a flight tube, mean emission time of neutrons, and the distortion effect of re-entrant hole on thermal neutron spectra. Then, the experimental system, results and calculation were reported for the experiments on the above three moderator systems. Finally, the measurement of fast neutron spectra in natural uranium system and that of the efficiency of a 6 Li glass scintillator detector are described. (Wakatsuki, Y.)

  7. A thermal neutron scattering law for yttrium hydride

    Science.gov (United States)

    Zerkle, Michael; Holmes, Jesse

    2017-09-01

    Yttrium hydride (YH2) is of interest as a high temperature moderator material because of its superior ability to retain hydrogen at elevated temperatures. Thermal neutron scattering laws for hydrogen bound in yttrium hydride (H-YH2) and yttrium bound in yttrium hydride (Y-YH2) prepared using the ab initio approach are presented. Density functional theory, incorporating the generalized gradient approximation (GGA) for the exchange-correlation energy, is used to simulate the face-centered cubic structure of YH2 and calculate the interatomic Hellmann-Feynman forces for a 2 × 2 × 2 supercell containing 96 atoms. Lattice dynamics calculations using PHONON are then used to determine the phonon dispersion relations and density of states. The calculated phonon density of states for H and Y in YH2 are used to prepare H-YH2 and Y-YH2 thermal scattering laws using the LEAPR module of NJOY2012. Analysis of the resulting integral and differential scattering cross sections demonstrates adequate resolution of the S(α,β) function. Comparison of experimental lattice constant, heat capacity, inelastic neutron scattering spectra and total scattering cross section measurements to calculated values are used to validate the thermal scattering laws.

  8. Comparison of Thermal Neutron Flux Measured by Uranium 235 Fission Chamber and Rhodium Self-Powered Neutron Detector in MTR

    International Nuclear Information System (INIS)

    Fourmentel, D.; Filliatre, P.; Barbot, L.; Villard, J.-F.; Lyoussi, A.; Geslot, B.; Malo, J.-Y.; Carcreff, H.; Reynard-Carette, C.

    2013-06-01

    Thermal neutron flux is one of the most important nuclear parameter to be measured on-line in Material Testing Reactors (MTRs). In particular two types of sensors with different physical operating principles are commonly used: self-powered neutron detectors (SPND) and fission chambers with uranium 235 coating. This work aims to compare on one hand the thermal neutron flux evaluation given by these two types of sensors and on the other hand to compare these evaluations with activation dosimeter measurements, which are considered as the reference for absolute neutron flux assessment. This study was conducted in an irradiation experiment, called CARMEN-1, performed during 2012 in OSIRIS reactor (CEA Saclay - France). The CARMEN-1 experiment aims to improve the neutron and photon flux and nuclear heating measurements in MTRs. In this paper we focus on the thermal neutron flux measurements performed in CARMEN-1 experiment. The use of fission chambers to measure the absolute thermal neutron flux in MTRs is not very usual. An innovative calibration method for fission chambers operated in Campbell mode has been developed at the CEA Cadarache (France) and tested for the first time in the CARMEN-1 experiment. The results of these measurements are discussed, with the objective to measure with the best accuracy the thermal neutron flux in the future Jules Horowitz Reactor. (authors)

  9. Radiography and partial tomography of wood with thermal neutrons

    Science.gov (United States)

    Osterloh, K.; Fratzscher, D.; Schwabe, A.; Schillinger, B.; Zscherpel, U.; Ewert, U.

    2011-09-01

    The effective high neutron scattering absorption coefficient of hydrogen (48.5 cm 2/g) due to the scattering allows neutrons to reveal hydrocarbon structures with more contrast than X-rays, but at the same time limits the sample size and thickness that can be investigated. Many planar shaped objects, particularly wood samples, are sufficiently thin to allow thermal neutrons to transmit through the sample in a direction perpendicular to the planar face but not in a parallel direction, due to increased thickness. Often, this is an obstacle that prevents some tomographic reconstruction algorithms from obtaining desired results because of inadequate information or presence of distracting artifacts due to missing projections. This can be true for samples such as the distribution of glue in glulam (boards of wooden layers glued together), or the course of partially visible annual rings in trees where the features of interest are parallel to the planar surface of the sample. However, it should be possible to study these features by rotating the specimen within a limited angular range. In principle, this approach has been shown previously in a study with fast neutrons [2]. A study of this kind was performed at the Antares facility of FRM II in Garching with a 2.6×10 7/cm 2 s thermal neutron beam. The limit of penetration was determined for a wooden step wedge carved from a 2 cm×4 cm block of wood in comparison to other materials such as heavy metals and Lucite as specimens rich in hydrogen. The depth of the steps was 1 cm, the height 0.5 cm. The annual ring structures were clearly detectable up to 2 cm thickness. Wooden specimens, i.e. shivers, from a sunken old ship have been subjected to tomography. Not visible from the outside, clear radial structures have been found that are typical for certain kinds of wood. This insight was impaired in a case where the specimen had been soaked with ethylene glycol. In another large sample study, a planar board made of glulam has

  10. Radiography and partial tomography of wood with thermal neutrons

    International Nuclear Information System (INIS)

    Osterloh, K.; Fratzscher, D.; Schwabe, A.; Schillinger, B.; Zscherpel, U.; Ewert, U.

    2011-01-01

    The effective high neutron scattering absorption coefficient of hydrogen (48.5 cm 2 /g) due to the scattering allows neutrons to reveal hydrocarbon structures with more contrast than X-rays, but at the same time limits the sample size and thickness that can be investigated. Many planar shaped objects, particularly wood samples, are sufficiently thin to allow thermal neutrons to transmit through the sample in a direction perpendicular to the planar face but not in a parallel direction, due to increased thickness. Often, this is an obstacle that prevents some tomographic reconstruction algorithms from obtaining desired results because of inadequate information or presence of distracting artifacts due to missing projections. This can be true for samples such as the distribution of glue in glulam (boards of wooden layers glued together), or the course of partially visible annual rings in trees where the features of interest are parallel to the planar surface of the sample. However, it should be possible to study these features by rotating the specimen within a limited angular range. In principle, this approach has been shown previously in a study with fast neutrons . A study of this kind was performed at the Antares facility of FRM II in Garching with a 2.6x10 7 /cm 2 s thermal neutron beam. The limit of penetration was determined for a wooden step wedge carved from a 2 cmx4 cm block of wood in comparison to other materials such as heavy metals and Lucite as specimens rich in hydrogen. The depth of the steps was 1 cm, the height 0.5 cm. The annual ring structures were clearly detectable up to 2 cm thickness. Wooden specimens, i.e. shivers, from a sunken old ship have been subjected to tomography. Not visible from the outside, clear radial structures have been found that are typical for certain kinds of wood. This insight was impaired in a case where the specimen had been soaked with ethylene glycol. In another large sample study, a planar board made of glulam has been

  11. Lethal Effect of Thermal Neutrons on Hypoxic Elirlich Ascites Tumour Cells in vitro

    OpenAIRE

    MITSUHIKO, AKABOSHI; KENICHI, KAWAI; HIROTOSHI, MAKI; Research Reactor Institute, Kyoto University; Research Reactor Institute, Kyoto University; Research Reactor Institute, Kyoto University

    1985-01-01

    Ehrlich ascites tumour cells were irradiated in vitro with thermal neutrons under aerobic and hypoxic conditions, and the survival of their reproductive capacity was assayed in vivo. Only a slight hypoxic protection was observed for thermal neutron irradiation with an oxygen enhancement ratio (OER) of 1.2, as compared with OER of 3.3 for ^Co-γ-rays. Absorbed dose of thermal neutrons was calculated by assuming that the energies of recoiled nuclei were completely absorbed within a cell nucleus....

  12. Carbon filter property detection with thermal neutron technique

    International Nuclear Information System (INIS)

    Deng Zhongbo; Han Jun; Li Wenjie

    2003-01-01

    The paper discussed the mechanism that the antigas property of the carbon filter will decrease because of its carbon bed absorbing water from the air while the carbon filter is being stored, and introduced the principle and method of detection the amount of water absorption with thermal neutron technique. Because some certain relation between the antigas property of the carbon filter and the amount of water absorption exists, the decrease degree of the carbon filter antigas property can be estimated through the amount of water absorption, offering a practicable facility technical pathway to quickly non-destructively detect the carbon filter antigas property

  13. Gas loop - continuous measurement of thermal and fast neutron fluxes

    International Nuclear Information System (INIS)

    Droulers, Y.; Pleyber, G.; Sciers, P.; Maurin, G.

    1964-01-01

    The measurement method described in this report can be applied both to thermal and fast neutron fluxes. A description is given of two practical applications in each of these two domains. This method is particularly suitable for measurements carried out on 'loop' type equipment. The measurement of the relative flux variations are carried out with an accuracy of 5 per cent. The choice of the shape of the gas circuit leaves a considerable amount of liberty for the adaptation of the measurement circuit to the experimental conditions. (authors) [fr

  14. Non-destructive characterization using pulsed fast-thermal neutrons

    International Nuclear Information System (INIS)

    Womble, P.C.

    1995-01-01

    Explosives, illicit drugs, and other contraband materials contain various chemical elements in quantities and ratios that differentiate them from each other and from innocuous substances. Furthermore, the major chemical elements in coal can provide information about various parameters of importance to the coal industry. In both examples, the non-destructive identification of chemical elements can be performed using pulsed fast-thermal neutrons that, through nuclear reactions, excite the nuclei of the various elements. This technique is being currently developed for the dismantling of nuclear weapons classified as trainers, and for the on-line coal bulk analysis. (orig.)

  15. An extension of diffusion theory for thermal neutrons near boundaries

    International Nuclear Information System (INIS)

    Alvarez Rivas, J. L.

    1963-01-01

    The distribution of thermal neutron flux has been measured inside and outside copper rods of several diameters, immersed in water. It has been found that these distributions can be calculated by means of elemental diffusion theory if the value of the coefficient of diffusion is changed. this parameter is truly a diffusion coefficient, which now also depends on the diameter of the rod. Through a model an expression of this coefficient is introduced which takes account of the measurements of the author and of those reported in PIGC P/928 (1995), ANL-5872 (1959), DEGR 319 (D) (1961). This model could be extended also to plane geometry. (Author) 19 refs

  16. A test-type hyper-thermal neutron generator for neutron capture therapy - estimation of neutron energy spectrum by simulation calculations and TOF experiments

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kobayashi, Katsuhei

    1999-01-01

    In order to clarify the irradiation characteristics of hyper-thermal neutrons and the feasibility of a hyper-thermal neutron irradiation field for neutron capture therapy, a 'test-type' hyper-thermal neutron generator was designed and made. Graphite of 6 cm thickness and 21 cm diameter was selected as the high temperature scatterer. The scatterer is heated up to 1200 deg. C maximum using molybdenum heaters. The radiation heat is shielded by reflectors of molybdenum and stainless steel. The temperature is measured using three R-type thermo-couples and controlled by a program controller. The total thickness of the generator is designed to be as thin as possible, 20 cm in maximum, in the standing point of the neutron beam intensity. The thermal stability, controllability and safety of the generator at high temperature employment were confirmed by the heating tests. As one of the experiments for the characteristics estimation, the neutron energy spectrum dependent on the scatterer temperature was measured by the TOF (time of flight) method using the LINAC neutron generator. The estimations by simulation calculations were also performed. From the experiment and calculation results, it was confirmed that the neutron temperature shifted higher as the scatterer temperature was higher. The prospect of the feasibility of the 'hyper-thermal neutron irradiation field for NCT' was opened from the estimation results of the generator characteristics by the simulation calculations and experiments

  17. Imaging of Rabbit VX-2 Hepatic Cancer by Cold and Thermal Neutron Radiography

    Science.gov (United States)

    Tsuchiya, Yoshinori; Matsubayashi, Masahito; Takeda, Tohoru; Lwin, Thet Thet; Wu, Jin; Yoneyama, Akio; Matsumura, Akira; Hori, Tomiei; Itai, Yuji

    2003-11-01

    Neutron radiography is based on differences in neutron mass attenuation coefficients among the elements and is a non-destructive imaging method. To investigate biomedical applications of neutron radiography, imaging of rabbit VX-2 liver cancer was performed using thermal and cold neutron radiography with a neutron imaging plate. Hepatic vessels and VX-2 tumor were clearly observed by neutron radiography, especially by cold neutron imaging. The image contrast of this modality was better than that of absorption-contrast X-ray radiography.

  18. Development of a hybrid MSGC detector for thermal neutron imaging with a MHz data acquisition and histogramming system

    CERN Document Server

    Gebauer, B; Richter, G; Levchanovsky, F V; Nikiforov, A

    2001-01-01

    For thermal neutron imaging at the next generation of high-flux pulsed neutron sources a large area and fourfold segmented, hybrid, low-pressure, two-dimensional position sensitive, microstrip gas chamber detector, fabricated in a multilayer technology on glass substrates, is presently being developed, which utilizes a thin composite sup 1 sup 5 sup 7 Gd/CsI neutron converter. The present article focusses on the readout scheme and the data acquisition (DAQ) system. For position encoding, interpolating and fast multihit delay line based electronics is applied with up to eightfold sub-segmentation per geometrical detector segment. All signals, i.e. position, time-of-flight and pulse-height signals, are fed into deadtime-less 8-channel multihit TDC chips with 120 ps LSB via constant fraction and time-over-threshold discriminators, respectively. The multihit capability is utilized to raise the count rate limit in combination with a sum check algorithm for disentangling pulses from different events. The first vers...

  19. Two-dimensional beam profiles and one-dimensional projections

    Science.gov (United States)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  20. Statistical approach to thermal evolution of neutron stars

    International Nuclear Information System (INIS)

    Beznogov, M V; Yakovlev, D G

    2015-01-01

    Studying thermal evolution of neutron stars (NSs) is one of a few ways to investigate the properties of superdense matter in their cores. We study the cooling of isolated NSs (INSs) and deep crustal heating of transiently accreting NSs in X-ray transients (XRTs, binary systems with low-mass companions). Currently, nearly 50 of such NSs are observed, and one can apply statistical methods to analyze the whole dataset. We propose a method for such analysis based on thermal evolution theory for individual stars and on averaging the results over NS mass distributions. We calculate the distributions of INSs and accreting NSs (ANSs) in XRTs over cooling and heating diagrams respectively. Comparing theoretical and observational distributions one can infer information on physical properties of superdense matter and on mass distributions of INSs and ANSs. (paper)

  1. 6Li-doped silicate glass for thermal neutron shielding

    International Nuclear Information System (INIS)

    Stone, C.A.; Blackburn, D.H.; Kauffman, D.A.; Cranmer, D.C.; Olmez, I.

    1994-01-01

    Glass formulations are described that contain high concentrations of 6 Li and are suitable for use as thermal neutron shielding. One formulation contained 31 mol% of 6 Li 2 O and 69 mol% of SiO 2 . Studies were performed on a second formulation that contained as much as 37 mol% of 6 Li 2 O and 59 mol% of SiO 2 , with 4 mol% Al 2 O 3 added to prevent crystallization at such high 6 Li 2 O concentrations. These lithium silicate glasses can be formed into a variety of shapes using conventional glass fabrication techniques. Examples include flat plates, disks, hollow cylinders, and other more complex geometries. Both in-beam and in-core experiments have been performed to study the use and durability of Li silicate glasses. In-core experiments show the glass can withstand the intense radiation fields near the core of a reactor. The neutron attenuation of the glasses used in these studies was 90%/mm. In-beam studies show that the glass is effective for reducing the gamma-ray and neutron fields near experiments. ((orig.))

  2. Characterization of thermal neutron fields for calibration of neutron monitors in accordance with great equivalent dose environment H⁎(10)

    International Nuclear Information System (INIS)

    Silva, Larissa P. S. da; Silva, Felipe S.; Fonseca, Evaldo S.; Patrao, Karla C.S.; Pereira, Walsan W.

    2017-01-01

    The Laboratório Brasileiro de Nêutrons do Instituto de Radioproteção e Dosimetria (IRD/CNEN) has developed and built a thermal neutron flux facility to provide neutron fluence for dosimeters (Astuto, 2014). This fluency is obtained by four 16 Ci sources 241 AmBe (α, n) positioned around the channel positioned in the center of the Thermal Flow Unit (UFT). The UFT was built with blocks of paraffin with graphite addition and graphite blocks of high purity to obtain a central field with a homogeneous thermal neutron fluence for calibration purposes with the following measurements: 1.2 x 1.2 x 1.2 m 3 . The objective of this work is to characterize several points, in the thermal energy range, in terms of the equivalent ambient dose quantity H⁎(10) for calibration and irradiation of monitors neutrons

  3. Two-dimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Bax, A.; Lerner, L.

    1986-01-01

    Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures

  4. ESR-dosimetry in thermal and epithermal neutron fields for application in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Tobias

    2016-01-22

    Dosimetry is essential for every form of radiotherapy. In Boron Neutron Capture Therapy (BNCT) mixed neutron and gamma fields have to be considered. Dose is deposited in different neutron interactions with elements in the penetrated tissue and by gamma particles, which are always part of a neutron field. The therapeutic dose in BNCT is deposited by densely ionising particles, originating from the fragmentation of the isotope boron-10 after capture of a thermal neutron. Despite being investigated for decades, dosimetry in neutron beams or fields for BNCT remains complex, due to the variety in type and energy of the secondary particles. Today usually ionisation chambers combined with metal foils are used. The applied techniques require extensive effort and are time consuming, while the resulting uncertainties remain high. Consequently, the investigation of more effective techniques or alternative dosimeters is an important field of research. In this work the possibilities of ESR-dosimeters in those fields have been investigated. Certain materials, such as alanine, generate stable radicals upon irradiation. Using Electron Spin Resonance (ESR) spectrometry the amount of radicals, which is proportional to absorbed dose, can be quantified. Different ESR detector materials have been irradiated in the thermal neutron field of the research reactor TRIGA research reactor in Mainz, Germany, with five setups, generating different secondary particle spectra. Further irradiations have been conducted in two epithermal neutron beams. The detector response, however, strongly depends on the dose depositing particle type and energy. It is hence necessary to accompany measurements by computational modelling and simulation. In this work the Monte Carlo code FLUKA was used to calculate absorbed doses and dose components. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using amorphous track models. For the simulation, detailed models of

  5. Assessment of fast and thermal neutron ambient dose equivalents around the KFUPM neutron source storage area using nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abu-Jarad, F. [Radiation Protection Unit, Environmental Protection Department, Saudi Aramco, P. O. Box 13027, Dhahran 31311 (Saudi Arabia); Qureshi, M.A. [Center for Applied Physical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    A set of five {sup 241}Am-Be neutron sources are utilized in research and teaching at King Fahd University of Petroleum and Minerals (KFUPM). Three of these sources have an activity of 16Ci each and the other two are of 5Ci each. A well-shielded storage area was designed for these sources. The aim of the study is to check the effectiveness of shielding of the KFUPM neutron source storage area. Poly allyl diglycol carbonate (PADC) Nuclear track detectors (NTDs) based fast and thermal neutron area passive dosimeters have been utilized side by side for 33 days to assess accumulated low ambient dose equivalents of fast and thermal neutrons at 30 different locations around the source storage area and adjacent rooms. Fast neutron measurements have been carried out using bare NTDs, which register fast neutrons through recoils of protons, in the detector material. NTDs were mounted with lithium tetra borate (Li{sub 2}B{sub 4}O{sub 7}) converters on their surfaces for thermal neutron detection via B10(n,{alpha})Li6 and Li6(n,{alpha})H3 nuclear reactions. The calibration factors of NTD both for fast and thermal neutron area passive dosimeters were determined using thermoluminescent dosimeters (TLD) with and without a polyethylene moderator. The calibration factors for fast and thermal neutron area passive dosimeters were found to be 1.33 proton tracks cm{sup -2}{mu}Sv{sup -1} and 31.5 alpha tracks cm{sup -2}{mu}Sv{sup -1}, respectively. The results show variations of accumulated dose with the locations around the storage area. The fast neutron dose equivalents rates varied from as low as 182nSvh{sup -1} up to 10.4{mu}Svh{sup -1} whereas those for thermal neutron ranged from as low as 7nSvh{sup -1} up to 9.3{mu}Svh{sup -1}. The study indicates that the area passive neutron dosimeter was able to detect dose rates as low as 7 and 182nSvh{sup -1} from accumulated dose for thermal and fast neutrons, respectively, which were not possible to detect with the available active neutron

  6. Evaluation of RBE of thermal neutron capture reaction

    International Nuclear Information System (INIS)

    Fukuda, Hiroshi; Matsuzawa, Taiju; Kobayashi, Toru; Kanda, Keiji.

    1985-01-01

    B16 melanoma cells were grown in a flask (Falcon 3031). When the cells reached the latter stage of logarithmic phase, B-boric acid (92 % concentrated 10 B) was added to the flask until 5 μg/ml medium was attained (Medium I). The other medium did not contain 10 B (Medium II). After both media were exposed to thermal neutrons, survival curves were obtained from the colony method and the absorbed dose of the cells were obtained from the mathematical models. Survival curves from the colony method had no shoulders, showing that Do was 0.95 x 10 12 n/cm 2 in Medium I and 3.2 x 10 12 n/cm 2 in Medium II. Do calculated by mathematical models was 0.507 Gy in Medium I and 0.604 Gy in Medium II. REB of thermal neutrons was 3.04 in Medium I and 2.55 in Medium II. REB of 10 B (n, α) 7 Li reaction was 3.30. (Namekawa, K.)

  7. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  8. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  9. Study and development of new dosemeters for thermal neutrons; Estudio y desarrollo de nuevos dosimetros para neutrones termicos

    Energy Technology Data Exchange (ETDEWEB)

    Urena N, F

    1998-12-31

    An alanine-boron compound, alanine hydroborate, was synthesized and chemically characterized to be used for thermal neutrons fluence measurements. The synthesis of the compound was made by reacting the amino acid alanine with boric acid in three different media: acidic, neutral and alkaline. Physicochemical analysis showed that the alkaline medium is favorable for the synthesis of the alanine hydroborate. The compound was evaluated as a thermal neutron fluence detector by the detection of the free radical yield upon neutron thermal irradiation by Electron Paramagnetic Resonance (EPR). The present work also studies the EPR-signal response of the three preparations to thermal neutron irradiation ({phi} = 5 x 10{sup 7} n/cm{sup 2} -s). The following EPR signal parameters of the samples were investigated: peak-to-peak signal intensity vs. thermal neutron fluence {Phi} = {phi} {Delta}t ; where {Delta}t = 1, 5, 10, 20, 40, 60, 80, 90, 100, 110 and 120 h. , peak-to-peak signal intensity vs. microwave power, signal fading; repeatability, batch homogeneity, stability and zero dose response. It is concluded that these new products could be used in thermal neutron fluence estimations. (Author)

  10. Determination of the thermal and epithermal neutron sensitivities of an LBO chamber

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Satoru; Kotani, Kei; Kajimoto, Tsuyoshi; Tanaka, Kenichi [Hiroshima University, Quantum Energy Applications, Graduate School of Engineering, Higashi-Hiroshima (Japan); Sato, Hitoshi; Nakajima, Erika [Ibaraki Prefectural University of Health Science, Radiological Sciences, Ibaraki (Japan); Shimazaki, Takuto [Hiroshima University, Quantum Energy Applications, Graduate School of Engineering, Higashi-Hiroshima (Japan); Delta Kogyo Co., Ltd., Hiroshima (Japan); Suda, Mitsuru; Hamano, Tsuyoshi [National Institute of Radiological Sciences, Chiba-Shi, Chiba (Japan); Hoshi, Masaharu [Hiroshima University, Institute for Peace Science, Hiroshima (Japan)

    2017-08-15

    An LBO (Li{sub 2}B{sub 4}O{sub 7}) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the {sup 9}Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm{sup 2}, i.e., from the chamber response divided by neutron fluence (cm{sup -2}). The measured LBO chamber sensitivities were 2.23 x 10{sup -7} ± 0.34 x 10{sup -7} (pC cm{sup 2}) for thermal neutrons and 2.00 x 10{sup -5} ± 0.12 x 10{sup -5} (pC cm{sup 2}) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation. (orig.)

  11. Miniature neutron sources: Thermal neutron sources and their users in the academic field

    International Nuclear Information System (INIS)

    Egelstaff, P.A.

    1992-01-01

    The three levels of thermal neutron sources are introduced - University laboratory sources infrastructure sources and world-class sources - and the needs for each kind and their inter-dependence will be emphasized. A description of the possibilities for University sources based on α-Be reactions or spontaneous fission emission is given, and current experience with them is described. A new generation of infrastructure sources is needed to continue the regional programs based on small reactors. Some possibilities for accelerator sources that could meet this need are considered

  12. Calculation of the thermal neutron flux depression in the loop VISA-1

    International Nuclear Information System (INIS)

    Martinc, R.

    1961-01-01

    Among other applications, the VISA-1 loop is to be used for thermal load testing of materials. For this type of testing one should know the maximum power generated in the loop. This power is determined from the maximum thermal neutron flux in the VK-5 channel and mean flux depression in the fissile component of the loop. Thermal neutron flux depression is caused by neutron absorption in the components of the loop, shape of the components and neutron leaking through gaps as well as properties of the surrounding medium of the core. All these parameters were taken into account for calculating the depression of thermal neutron flux in the VISA-1 loop. Two group diffusion theory was used. Fast neutron from the fission in the loop and slowed down were taken into account. Depression of the thermal neutron flux is expressed by depression factor which represents the ratio of the mean thermal neutron flux in the fissile loop component and the thermal neutron flux in the VK-5 without the loop. Calculation error was estimated and it was recommended to determine the depression factor experimentally as well [sr

  13. Histological and Physiological Alterations Induced by Thermal Neutron Fluxes in Male Swiss Albino Mice

    International Nuclear Information System (INIS)

    Alzergy, A.A.; Emara, N.M.; Abd El-Latif, A.A.; El-Saady, S.M.M.; Emara, N.M.; Abd El-Latif, A.A.

    2010-01-01

    This work was performed to investigate the biological effects of different thermal neutron fluxes (0.27x10 8 , 0.52X10 8 , 1.089X10 8 , 2.16X10 8 and 4.32X10 8 ) on liver and kidney of male mice using neutron irradiation cell with Ra-Be(α,n) 3 mCi neutron source Leybold (55930). Exposed to various fluxes of thermal neutron induced a dramatic alterations in hepatic and renal functions as indicated by biochemical estimation of several parameters (bilirubin, SGT, and alkaline phosphate .Urea , total protein, and albumin) and confirmed by histological examinations Thermal neutron exposure induces marked increase in the serum activities of total bilirubin, alanine amino transaminase (ALT or GPT), and alkaline phosphate, whereas, urea, total protein and albumin showed marked decline as compared to control group. The physiological changes induced in thermal neutron fluxes dependent manner. Histopathological results revealed mild to severe type of necrosis, and degenerative changes in liver and kidney of male mice exposed to thermal neutron fluxes. Also it was found that the histopathological alterations induced in thermal neutron fluxes dependent manner. It was found that exposed to thermal neutron fluxes irradiation plays prominent role in the development of the physiological alterations in male Swiss albino mice. The Former up normalities as a result of the sequence events followed interaction of radiation with the former biological mater (liver and kidney) of male Swiss albino mice, which are, physical, physicochemical, chemical, and biological stages.

  14. Online In-Core Thermal Neutron Flux Measurement for the Validation of Computational Methods

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Muhammad Rawi Mohamed Zin; Yahya Ismail

    2016-01-01

    In order to verify and validate the computational methods for neutron flux calculation in RTP calculations, a series of thermal neutron flux measurement has been performed. The Self Powered Neutron Detector (SPND) was used to measure thermal neutron flux to verify the calculated neutron flux distribution in the TRIGA reactor. Measurements results obtained online for different power level of the reactor. The experimental results were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor. The calculated and measured thermal neutron flux in the core are in very good agreement indicating that the material and geometrical properties of the reactor core are modelled well. In conclusion one can state that our computational model describes very well the neutron flux distribution in the reactor core. Since the computational model properly describes the reactor core it can be used for calculations of reactor core parameters and for optimization of RTP utilization. (author)

  15. Filtered thermal neutron captured cross sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Pham Ngoc Son; Vuong Huu Tan

    2015-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R ed ) of 420 and neutron flux (Φ th ) of 1.6*10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross sections for nuclide of 51 V, by the activation method relative to the standard reaction 197 Au(n,γ) 198 Au. In addition to the activities of neutron capture cross sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U are introduced in this report. (author)

  16. Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Downar, T.J.

    1987-01-01

    A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback

  17. Analytical simulation of two dimensional advection dispersion ...

    African Journals Online (AJOL)

    The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...

  18. Analytical Simulation of Two Dimensional Advection Dispersion ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...

  19. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly...

  20. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  1. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  2. Conformal invariance and two-dimensional physics

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1993-01-01

    Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness

  3. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...

  4. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.

    2018-01-01

    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  5. Extended Polymorphism of Two-Dimensional Material

    NARCIS (Netherlands)

    Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro

    When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from

  6. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  8. Cross-section of single-crystal materials used as thermal neutron filters

    International Nuclear Information System (INIS)

    Adib, M.

    2005-01-01

    Transmission properties of several single crystal materials important for neutron scattering instrumentation are presented. A computer codes are developed which permit the calculation of thermal diffuse and Bragg-scattering cross-sections of silicon., and sapphire as a function of material's constants, temperature and neutron energy, E, in the range 0.1 MeV .A discussion of the use of their single-crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons is given

  9. Thermal neutron detection by means of an organic solid-state track detector

    International Nuclear Information System (INIS)

    Doerschel, B.; Streubel, G.

    1979-01-01

    Thermal neutrons can be detected by means of organic solid-state track detectors if they are combined with radiators in which charged secondary particles are produced in neutron interaction processes. The secondary particles can produce etchable tracks in the detector material. For thermal neutron fluence determination from the track densities, the thermal neutron sensitivity was calculated for cellulose triacetate detectors with LiF radiators, taking into account energy and angular distribution of the alpha particles produced in the LiF radiator. This value is in good agreement with the sensitivity measured during irradiation in different neutron fields if corrections are considered the production of etchable or visuable tracks. Measuring range and measuring accuracy meet the requirements of thermal neutron detection in personnel dosimetry. Possibilities of extending the measuring range are discussed. (author)

  10. Using MCNP-4C code for design of the thermal neutron beam for neutron radiography at the MNSR

    International Nuclear Information System (INIS)

    Shaaban, I.

    2009-11-01

    Studies were carried out for determination of the parameters of a thermal neutron beam at the MNSR reactor (MNSR-30 kW) for neutron radiography in the vertical beam port by using the MCNP-4C (Monte Carlo Neutron - Photon transport). Thermal, epithermal and fast neutron energy ranges were selected as 10 keV respectively. To produce a good neutron beam in terms of intensity and quality, several materials Lead (Pb), Bismuth (Bi), Borated polyethelyene and Alumina Oxide (Al 2 O 3 ) were used as neutron and photon filters. Based on the current design, the L/D of the facility ranges between 125, 110 and 90. The thermal neutron flux at the beam exit is 1.436x10 5 n/cm2 .s ,1.843x10 5 n/cm2 .s and 2.845x10 5 n/cm2 .s respectively, middots with a Cd-ratio of ∼ 2.829, 2.766, 3.191 for the L/D = 125, 110, 90 respectively. The estimated values for gamma doses are 6.705x10 -2 Rem/h and 1.275x10 -1 Rem/h and 2.678x10 -1 Rem/ h with bismuth. The divergent angle of the collimator is 1.348 degree - 2.021 degree. Such neutron beams, if built into the Syrian MNSR reactor, could support the application of NRG in Syria. (author)

  11. A Study on the Thermal Neutron Filter for the Irradiation of Electronic Materials at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Kim, Sung Ryul; Park, Seung Jae; Shin, Yoon Taeg; Cho, Man Soon; Cho, Kee Nam [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The representative example is a technique of making the semiconductor with the transmutation using the pure Si. This NTD (Neutron Transmutation Doping) Si is used as a high-quality semiconductor because it has a uniform resistance. Likewise, the electronic materials are being investigated to improve the performance of material using the neutron irradiation method. The mechanism for reaction between the electronic materials and the neutrons depends on the energy of the neutron. Capturing reaction by thermal neutrons causes the transmutation and a lot of defects are made by fast neutrons. The study for the effect by such neutron energy is necessary to understand the performance improvement of the irradiated electronic materials. The thermal neutron filter was investigated to be used for the irradiation of electronic materials at HANARO. IP irradiation hole was selected and the irradiation device was designed. The analysis was conducted considering four candidate materials.

  12. Calculation of neutron flux distribution of thermal neutrons from microtron converter in a graphite moderator with water reflector

    International Nuclear Information System (INIS)

    Andrejsek, K.

    1977-01-01

    The calculation is made of the thermal neutron flux in the moderator and reflector by solving the neutron diffusion equation using the four-group theory. The correction for neutron absorption in the moderator was carried out using the perturbation theory. The calculation was carried out for four groups with the following energy ranges: the first group 2 MeV to 3 keV, the second group 3 keV to 5 eV, the third group 5 eV to 0.025 eV and the fourth group 0.025 eV. The values of the macroscopic cross section of capture and scattering, of the diffusion coefficient, the macroscopic cross section of the moderator, of the neutron age and the extrapolation length for the water-graphite moderator used in the calculations are given. The spatial distribution of the thermal neutron flux is graphically represented for graphite of a 30, 40, and 50 cm radius and for graphite of a 30 and 40 cm radius with a 10 cm water reflector; a graphic comparison is made of the distribution of the thermal neutron flux in water and in graphite, both 40 cm in radius. The system of graphite with reflector proved to be the best and most efficient system for raising the flux density of thermal neutrons. (J.P.)

  13. Test and application of thermal neutron radiography facility at Xi'an pulsed reactor

    CERN Document Server

    Yang Jun; Zhao Xiang Feng; Wang Dao Hua

    2002-01-01

    A thermal neutron radiography facility at Xi'an Pulsed Reactor is described as well as its characteristics and application. The experiment results show the inherent unsharpness of BAS ND is 0.15 mm. The efficient thermal neutron n/gamma ratio is lower in not only steady state configuration but also pulsing state configuration and it is improved using Pb filter

  14. Investigation of coupling scheme for neutronic and thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Wang Guoli; Yu Jianfeng; Pen Muzhang; Zhang Yuman.

    1988-01-01

    Recently, a number of coupled neutronics/thermal-hydraulics codes have been used in reaction design and safty analysis, which have been obtained by coupling previous neutronic and thermal-hydraulic codes. The different coupling schemes affect computer time and accuracy of calculation results. Numberical experiments of several different coupling schemes and some heuristic results are described

  15. Analysis of the Photoneutron Yield and Thermal Neutron Flux in an Unreflected Electron Accelerator-Driven Neutron Source

    International Nuclear Information System (INIS)

    Dale, Gregory E.; Gahl, John M.

    2005-01-01

    There are several potential uses for a high-flux thermal neutron source in both industrial and clinical applications. The viable commercial implementation of these applications requires a low-cost, high-flux thermal neutron generator suitable for installation in industrial and clinical environments. This paper describes the Monte Carlo for N-Particle modeling results of a high-flux thermal neutron source driven with an electron accelerator. An electron linear accelerator (linac), fitted with a standard X-ray converter, can produce high neutron yields in materials with low photonuclear threshold energies, such as D and 9 Be. Results indicate that a 10-MeV, 10-kW electron linac can produce on the order of 10 12 n/s in a heavy water photoneutron target. The thermal neutron flux in an unreflected heavy water target is calculated to be on the order of 10 10 n.cm -2 .s. The sensitivity of these answers to heavy water purity is also investigated, specifically the dilution of heavy water with light water. It is shown that the peak thermal neutron flux is not adversely effected by dilution up to a light water weight fraction of 35%

  16. Flux distribution in phantom for biomedical use of beam-type thermal neutrons

    International Nuclear Information System (INIS)

    Aoki, Kazuhiko; Kobayashi, Tooru; Kanda, Keiji; Kimura, Itsuro

    1985-01-01

    For boron neutron capture therapy, the thermal neutron beam is worth using as therapeutic neutron irradiation without useless and unfavorable exposure of normal tissues around tumor and for microanalysis system to measure ppm-order 10 B concentrations in tissue and to search for the location of the metastasis of tumor. In the present study, the thermal neutron flux distribution in a phantom, when beam-type thermal neutrons were incident on it, was measured at the KUR Neutron Guide Tube. The measurements were carried out by two different methods using indium foil. The one is an ordinary foil activation technique by using the 115 In(n, γ) 116m 1 In reactions, while the other is to detect γ-rays from the 115 In(n, γ) 116m 2 In reactions during neutron irradiations with a handy-type Ge detector. The calculations with DOT 3.5 were performed to examine thermal neutron flux in the phantom for various beam size and phantom size. The experimental and calculated results are in good agreement and it is shown that the second type measurement has a potential for practical application as a new monitoring system of the thermal neutron flux in a living body for boron neutron capture therapy. (author)

  17. Visualization and measurement by image processing of thermal hydraulic phenomena by neutron radiography

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki

    1996-01-01

    Neutron Radiography was applied to visualization of thermal hydraulic phenomena and measurement was carried out by image processing the visualized images. Since attenuation of thermal neutron rays is high in ordinary liquids like water and organic fluid while it is low in most of metals, liquid flow behaviors can be visualized through a metallic wall by neutron radiography. Measurement of void fraction and flow vector field which is important to study thermal hydraulic phenomena can be carried out by image processing the images obtained by the visualization. Various two-phase and liquid metal flows were visualized by a JRR-3M thermal neutron radiography system in the present study. Multi-dimensional void fraction distributions in two-phase flows and flow vector fields in liquid metals, which are difficult to measure by the other methods, were successfully measured by image processing. It was shown that neutron radiography was efficiently applicable to study thermal hydraulic phenomena. (author)

  18. A time-of-flight detector for thermal neutrons from radiotherapy Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Conti, V. [Universita degli Studi di Milano and INFN di Milano (Italy)], E-mail: conti.Valentina@gmail.com; Bartesaghi, G. [Universita degli Studi di Milano and INFN di Milano (Italy); Bolognini, D.; Mascagna, V.; Perboni, C.; Prest, M.; Scazzi, S. [Universita dell' Insubria, Como and INFN di Milano (Italy); Mozzanica, A. [Universita degli Studi di Brescia and INFN sezione di Pavia (Italy); Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A. [Fisica Sanitaria, Ospedale S. Anna di Como (Italy); Giannini, G.; Vallazza, E. [INFN, sezione di Trieste and Universita degli Studi di Trieste (Italy)

    2007-10-21

    Boron Neutron Capture Therapy (BNCT) is a therapeutic technique exploiting the release of dose inside the tumour cell after a fission of a {sup 10}B nucleus following the capture of a thermal neutron. BNCT could be the treatment for extended tumors (liver, stomach, lung), radio-resistant ones (melanoma) or tumours surrounded by vital organs (brain). The application of BNCT requires a high thermal neutron flux (>5x10{sup 8}ncm{sup -2}s{sup -1}) with the correct energy spectrum (neutron energy <10keV), two requirements that for the moment are fulfilled only by nuclear reactors. The INFN PhoNeS (Photo Neutron Source) project is trying to produce such a neutron beam with standard radiotherapy Linacs, maximizing with a dedicated photo-neutron converter the neutrons produced by Giant Dipole Resonance by a high energy (>8MeV) photon beam. In this framework, we have developed a real-time detector to measure the thermal neutron time-of -flight to compute the flux and the energy spectrum. Given the pulsed nature of Linac beams, the detector is a single neutron counting system made of a scintillator detecting the photon emitted after the neutron capture by the hydrogen nuclei. The scintillator signal is sampled by a dedicated FPGA clock thus obtaining the exact arrival time of the neutron itself. The paper will present the detector and its electronics, the feasibility measurements with a Varian Clinac 1800/2100CD and comparison with a Monte Carlo simulation.

  19. Stereographic images acquired with gamma rays and thermal neutron radiography

    International Nuclear Information System (INIS)

    Souza, Maria Ines Silvani; Almeida, Gevaldo L. de; Furieri, Rosanne C.; Lopes, Ricardo T.

    2011-01-01

    Full text: The inner structure of an object, which should not be submitted to an invasive assay, can only be perceived by using a suitable technique in order to render it transparent. A widely employed technique for this purpose involves the using of a radiation capable to pass through the object, collecting the transmitted radiation by a proper device, which furnishes a radiographic attenuation map of the object. This map, however, does not display the spatial distribution of the inner components of the object, but a convoluted view for each specific attitude of the object with regard to the set beam-detector. A 3D tomographic approach would show that distribution but it would demand a large number of projections requiring special equipment and software, not always available or affordable. In some circumstances however, a 3D tomography can be replaced by a stereographic view of the object under inspection, as done in this work, where instead of tens of radiographic projections, only two of them taken at suitable object attitudes are employed. Once acquired, these projections are properly processed and observed through a red and green eyeglass. For monochromatic images, this methodology requires the transformation of the black and white radiographs into red and white and green and white ones, which are afterwards merged to yield a single image. All the process is carried out with the software Image J . In this work, the Argonauta reactor at the Instituto de Engenharia Nuclear in Rio de Janeiro has been used as a source of thermal neutrons to acquire the neutron radiographic images, as well as to produce 198 Au sources employed in the acquisition of gamma-ray radiographic ones. X-ray or neutron-sensitive imaging plates have been used as detector, which after exposure were developed by a reader using a 0.5μm-diameter laser beam. (author)

  20. The CLYC-6 and CLYC-7 response to γ-rays, fast and thermal neutrons

    International Nuclear Information System (INIS)

    Giaz, A.; Pellegri, L.; Camera, F.; Blasi, N.; Brambilla, S.; Ceruti, S.; Million, B.; Riboldi, S.; Cazzaniga, C.; Gorini, G.; Nocente, M.; Pietropaolo, A.; Pillon, M.; Rebai, M.; Tardocchi, M.

    2016-01-01

    The crystal Cs 2 LiYCl 6 :Ce (CLYC) is a very interesting scintillator material because of its good energy resolution and its capability to identify γ-rays and fast/thermal neutrons. The crystal Cs 2 LiYCl 6 :Ce contains 6 Li and 35 Cl isotopes, therefore, it is possible to detect thermal neutrons through the reaction 6 Li(n, α)t while 35 Cl ions allow to measure fast neutrons through the reactions 35 Cl(n, p) 35 S and 35 Cl(n, α) 32 P. In this work two CLYC 1″×1″ crystals were used: the first crystal, enriched with 6 Li at 95% (CLYC-6) is ideal for thermal neutron measurements while the second one, enriched with 7 Li at >99% (CLYC-7) is suitable for fast neutron measurements. The response of CLYC scintillators was measured with different PMT models: timing or spectroscopic, with borosilicate glass or quartz window. The energy resolution, the neutron-γ discrimination and the internal activity are discussed. The capability of CLYC scintillators to discriminate γ rays from neutrons was tested with both thermal and fast neutrons. The thermal neutrons were measured with both detectors, using an AmBe source. The measurements of fast neutrons were performed at the Frascati Neutron Generator facility (Italy) where a deuterium beam was accelerated on a deuterium or on a tritium target, providing neutrons of 2.5 MeV or 14.1 MeV, respectively. The different sensitivity to thermal and fast neutrons of a CLYC-6 and of a CLYC-7 was additionally studied.

  1. Thermal-neutron multiple scattering: critical double scattering

    International Nuclear Information System (INIS)

    Holm, W.A.

    1976-01-01

    A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer

  2. Effective thermal neutron absorption cross section for heterogeneous mixture

    International Nuclear Information System (INIS)

    Gabanska, B.; Igielski, A.; Krynicka-Drozdowicz, E.; Woznicka, U.

    1989-01-01

    The first estimations (basing on Umiastowski's theory) of the influence of the sample heterogeneity of the effective thermal neutron absorption cross section were compared with the results obtained for the homogeneous mixture which components and concentration were the same as those of the heterogeneous sample. An experiment was prepared to determine how good this estimate is. Three artificial heterogeneous cylindrical samples (2R = H = 9 cm) were manufactured from pure silver cylinders embedded in plexiglass, keeping the Ag content and varying the size of cylinders (2R = H = 1.0 cm, 0.6 cm and 0.4 cm). Calculations performed show that the experimental effect of the sample heterogeneity can be significant. 5 figs., 5 tabs, 11 refs. (author)

  3. Stability of thermally induced copper precipitates under neutron irradiation

    International Nuclear Information System (INIS)

    Phythian, W.J.; Dumbill, S.; Brown, P.; Sinclair, R.

    1993-01-01

    Model Fe 1.3%Cu and Fe 1.3%Cu 1.1%Ni alloys have been thermally aged at 550 C for 2 hours (peak) and 10 hours prior to irradiation at 288 C to a dose of 5.10 22 n/m 2 . Results of a microstructural investigation using dedicated field emission gun scanning transmission electron microscopy (FEGSTEM) and small angle neutron scattering (SANS) to assess precipitate stability in the binary alloy, are presented. These data are then used to predict a hardness change as a result of copper precipitation for comparison with the measured values obtained using standard 5 kg Vickers hardness tests on the SANS samples. Implications of these data to the re-embrittlement of the RPV by subsequent copper precipitation is discussed. (authors). 16 refs., 5 figs., 5 tabs

  4. Stability of thermally induced copper precipitates under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Phythian, W J; Dumbill, S; Brown, P; Sinclair, R [AEA Technology, Harwell (United Kingdom)

    1994-12-31

    Model Fe 1.3%Cu and Fe 1.3%Cu 1.1%Ni alloys have been thermally aged at 550 C for 2 hours (peak) and 10 hours prior to irradiation at 288 C to a dose of 5.10{sup 22} n/m{sup 2}. Results of a microstructural investigation using dedicated field emission gun scanning transmission electron microscopy (FEGSTEM) and small angle neutron scattering (SANS) to assess precipitate stability in the binary alloy, are presented. These data are then used to predict a hardness change as a result of copper precipitation for comparison with the measured values obtained using standard 5 kg Vickers hardness tests on the SANS samples. Implications of these data to the re-embrittlement of the RPV by subsequent copper precipitation is discussed. (authors). 16 refs., 5 figs., 5 tabs.

  5. Neutronic evolution of SENA reactor during the first and second cycles. Comparison between the experimental power distributions obtained from the in-core instrumentation evaluation code CIRCE and the theoretical power values computed with the two-dimensional diffusion-evolution code EVOE

    International Nuclear Information System (INIS)

    Andrieux, Chantal

    1976-03-01

    The neutronic evolution of the reacteur Sena during the first and second cycles is presented. The experimental power distributions, obtained from the in-core instrumentation evaluation code CIRCE are compared with the theoretical powers calculated with the two-dimensional diffusion-evolution code EVOE. The CIRCE code allows: the study of the evolution of the principal parameters of the core, the comparison of the results of measured and theoretical estimates. Therefore this study has a great interest for the knowledge of the neutronic evolution of the core, as well as the validation of the refinement of theoretical estimation methods. The core calculation methods and requisite data for the evaluation of the measurements are presented after a brief description of the SENA core and its inner instrumentation. The principle of the in-core instrumentation evaluation code CIRCE, and calculation of the experimental power distributions and nuclear core parameters are then exposed. The results of the evaluation are discussed, with a comparison of the theoretical and experimental results. Taking account of the approximations used, these results, as far as the first and second cycles at SENA are concerned, are satisfactory, the deviations between theoretical and experimental power distributions being lower than 3% at the middle of the reactor and 9% at the periphery [fr

  6. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  7. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  8. Toward two-dimensional search engines

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L; Chepelianskii, A D

    2012-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)

  9. Acoustic phonon emission by two dimensional plasmons

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-06-01

    Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig

  10. Confined catalysis under two-dimensional materials

    OpenAIRE

    Li, Haobo; Xiao, Jianping; Fu, Qiang; Bao, Xinhe

    2017-01-01

    Small spaces in nanoreactors may have big implications in chemistry, because the chemical nature of molecules and reactions within the nanospaces can be changed significantly due to the nanoconfinement effect. Two-dimensional (2D) nanoreactor formed under 2D materials can provide a well-defined model system to explore the confined catalysis. We demonstrate a general tendency for weakened surface adsorption under the confinement of graphene overlayer, illustrating the feasible modulation of su...

  11. Two-Dimensional Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Bo Jia

    2015-01-01

    (BP networks. However, like many other methods, ELM is originally proposed to handle vector pattern while nonvector patterns in real applications need to be explored, such as image data. We propose the two-dimensional extreme learning machine (2DELM based on the very natural idea to deal with matrix data directly. Unlike original ELM which handles vectors, 2DELM take the matrices as input features without vectorization. Empirical studies on several real image datasets show the efficiency and effectiveness of the algorithm.

  12. Superintegrability on the two dimensional hyperboloid

    International Nuclear Information System (INIS)

    Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr

    1998-01-01

    This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out

  13. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  14. Mechanical exfoliation of two-dimensional materials

    Science.gov (United States)

    Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping

    2018-06-01

    Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.

  15. THERMAL: A routine designed to calculate neutron thermal scattering. Revision 1

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1995-01-01

    THERMAL is designed to calculate neutron thermal scattering that is elastic and isotropic in the center of mass system. At low energy thermal motion will be included. At high energies the target nuclei are assumed to be stationary. The point of transition between low and high energies has been defined to insure a smooth transition. It is assumed that at low energy the elastic cross section is constant in the relative system. At high energy the cross section can be of any form. You can use this routine for all energies where the elastic scattering is isotropic in the center of mass system. In most materials this will be a fairly high energy, e.g., the keV energy range. The THERMAL method is simple, clean, easy to understand, and most important very efficient; on a SUN SPARC-10 workstation, at low energies with thermal scattering it can do almost 6 million scatters a minute and at high energy over 13 million. Warning: This version of THERMAL completely supersedes the original version described in the same report number, dated February 24, 1995. The method used in the original code is incorrect, as explained in this report

  16. Critical Behaviour of Pure and Site-Random Two Dimensional Antiferromagnets

    DEFF Research Database (Denmark)

    Birgenau, R. J.; Als-Nielsen, Jens Aage; Shirane, G.

    1977-01-01

    Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T......Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T...

  17. A numerical method for two-dimensional anisotropic transport problem in cylindrical geometry

    International Nuclear Information System (INIS)

    Du Mingsheng; Feng Tiekai; Fu Lianxiang; Cao Changshu; Liu Yulan

    1988-01-01

    The authors deal with the triangular mesh-discontinuous finite element method for solving the time-dependent anisotropic neutron transport problem in two-dimensional cylindrical geometry. A prior estimate of the numerical solution is given. Stability is proved. The authors have computed a two dimensional anisotropic neutron transport problem and a Tungsten-Carbide critical assembly problem by using the numerical method. In comparision with DSN method and the experimental results obtained by others both at home and abroad, the method is satisfactory

  18. Use of pulsed neutron-neutron logging, thermal neutron-neutron logging, and gamma logging methods in classification for sand-clay sediments of Lower Cretaceous in Prikumsk oil-and-gas region according to filtration-capacitance characteristics

    International Nuclear Information System (INIS)

    Maksimenko, A.N.; Basin, Ya.N.; Novgorodov, V.A.

    1974-01-01

    To isolate reservoirs, the formation and deformation penetration zone parameters are used. They are estimated according to the false oil saturation factor and the time of the penetration zone deformation which are determined from the complex exploration of cased wells using the pulse neutron logging, thermal neutron-neutron logging and gamma logging techniques

  19. Characterization of the internal background for thermal and fast neutron detection with CLLB

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Richard S., E-mail: richard.woolf@nrl.navy.mil; Phlips, Bernard F.; Wulf, Eric A.

    2016-12-01

    We report on a set of experiments conducted to determine what effects, if any, the internal background in the CLLB scintillation detector has on the thermal neutron detection performance. We conducted source measurements using an unmoderated and moderated {sup 252}Cf neutron/γ-ray source and long (48-h), unshielded and shielded, background measurements to characterize the internal background with and without a source present. These measurements allowed us to determine the 2-d event selections needed to isolate the thermal neutron peak observed in pulse shape vs. energy space and apply those selections to our background measurements. Our results indicate that the thermal neutron detection capabilities of the CLLB are marginally affected by the presence of internal background. An unmoderated 113-µCi {sup 252}Cf source at 15 cm from the detector yields a thermal neutron rate of 8×10{sup −2}/s cm{sup 3}, while moderating the source with 5 cm of polyethylene yields a thermal neutron rate of 5.5×10{sup −1}/s cm{sup 3}. The measured background rate for events that fall within the selected thermal neutron region is 1.2×10{sup −3}/s cm{sup 3}. Lastly, the potential for CLLB for detecting fast neutrons was investigated.

  20. Heat generation and temperature-rise in ordinary concrete due to capture of thermal neutrons

    International Nuclear Information System (INIS)

    Abdo, E.A.; Amin, E.

    1997-01-01

    The aim of this work is the evaluation of the heat generation and temperature-rise in local ordinary concrete as a biological shield due to capture of total thermal and reactor thermal neutrons. The total thermal neutron fluxes were measured and calculated. The channel number 2 of the ETRR-1 reactor was used in the measurements as a neutron source. Computer code ANISN (VAX version) and neutron multigroup cross-section library EURLiB-4 was used in the calculations. The heat generation and temperature-rise in local ordinary concrete were evaluated and calculated. The results were displayed in curves to show the distribution of thermal neutron fluxes and heat generation as well as temperature-rise with the shield thickness. The results showed that, the heat generation as well as the temperature-rise have their maximum values in the first layers of the shield thickness. 4 figs., 12 refs

  1. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  2. Thermal neutron cross section measurements for technetium-99

    International Nuclear Information System (INIS)

    Yates, M.A.; Schroeder, N.C.; Fowler, M.M.

    1993-01-01

    Technetium, because of its long half-like (213,000 years) and ability to migrate in the environment, is a primary contributor to the long-term radioactivity related risk associated with geologic nuclear waste disposal. One proposal for converting technetium to an environmentally benign element investigating transmutation with an accelerator-based system, (i.e., Accelerator Transmutation of Waste, ATW). Planning for efficient processing of technetium through the transmuter will require knowledge of the thermal neutron cross section for the 99 Tc (n,γ) 100 Tc reaction. The authors have recently remeasured this cross section. Weighed aliquots (19-205 μg) of a NIST traceable 99 Tc standard were irradiated for 30-150 sec using the pneumatic open-quotes rabbitclose quotes system of LANL's Omega West Reactor. The two gamma rays from the 15.7-sec half-life product were measured immediately after irradiation on a high-resolution Ge detector. Thermal fluxes were measured using gold foils and Cd wrapped gold foils. The observation cross section is 19 ± 1 b. This agrees well with the 1977 value but has half the uncertainty

  3. The chemical consequences of thermal neutron capture in alkali selenates

    International Nuclear Information System (INIS)

    Duplatre, G.; Vargas, J.I.

    1977-01-01

    The initial retention of the SeO 4 2- ion after thermal neutron capture has been studied in various matrices by chemical analysis. A comparison between the thermal behaviour of the chemically analyzed Sesup(IV) and the disappearance of the E.P.R. species SeO 3 - and SeO 4 3- showed that the retention fraction would include all species with oxidation state higher or equal to VI. The retentions observed in the different matrices show the existence of four families with respective retentions of: 2.6%[K 2 SeO 4 diluted in (NH 4 ) 2 SO 4 ], 9.2% [anhydrous and hydrated Li and Ca selenates; K 2 SeO 4 diluted in NaIO 3 ; Se + implanted in K 2 SeO 4 ; Triglycine selenate], 21.5% [K 2 SeO 4 diluted in KNO 3 , K 2 SO 4 , Na 2 WO 4 and Na 2 WO 4 .2H 2 O] and 32.0% [Na,K and Cs selenates]. Whereas chemical considerations may be invoked for the (NH 4 ) 2 SO 4 matrix, a mechanical model is proposed for the three other groups. (author)

  4. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    Science.gov (United States)

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Pilot experimental study on continual spectrum thermal neutron in-line phase contrast radiography

    International Nuclear Information System (INIS)

    Tang Bin; Huo Heyong; Wu Yang

    2009-01-01

    The in-line phase contrast radiography is one of phase contrast imaging methods. The neutron in-line phase contrast is developed with X-rays phase contrast radiography. In the paper, the principle of in-line phase contrast is introduced briefly and the experimental result of thermal neutron in-line contrast at SPRR-300 is analysed. It shows that thermal neutron can be used as in-line phase contrast radiography and enhances the edge of some sample in radiography and complements the disadvantage of conventional neutron radiography. (authors)

  6. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A. [Adelphi Technology, Inc., 2003 East Bayshore Rd., Redwood City, California 94063 (United States); Pantell, R. H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B. [Davis McClellan Nuclear Radiation Center, University of California, McClellan, California 95652 (United States)

    2010-01-15

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  7. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    Science.gov (United States)

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  8. Development of the variety for resistance against bacterial leaf-blight in rice with thermal neutrons

    International Nuclear Information System (INIS)

    Nakai, Hirokazu

    1990-01-01

    In search for the development of genes for resistance against bacterial leaf-blight in rice, thermal neutrons generated from the Research Reactor at the Kyoto University have been applied to the breeding. In this paper, the developmental outcome is described, and a potential application of thermal neutrons for breeding the variety of resistance against bacterial leaf-blight in rice is reviewed. When thermal neutrons were delivered to the rice, the ratio of absorbed doses by B-10, which is contained in a small quantity in the plant, was found to be larger than expected. This implies characteristic effects of thermal neutrons on the plant. When boric acid was incorporated into the plant before irradiation, the effect of thermal neutrons per irradiation time was considered to become great. The frequency of mutations for resistance was significantly higher by thermal neutron, as compared with that induced by other mutagens, such as gamma radiation, ethylene-imine, ethyl-methane-sulfonate, and nitroso-methyl-urea. Genetic analysis of mutants for resistance revealed recessive genes and polygenes. Finally, the application of thermal neutrons and other radiations would contribute greatly to a resolution of serious pollution problems in global food and environment. (N.K.)

  9. Applications for coupled core neutronics and thermal-hydraulic models

    International Nuclear Information System (INIS)

    Eller, J.

    1996-01-01

    The unprecedented increases in computing capacity that have occurred during the last decade have affected our sciences, and thus our lives, to an extent that is difficult to overstate. All indications are that this trend will continue for years to come. Nuclear reactor systems analysis is one of many areas of engineering that has changed dramatically as a result of this evolution. Our ability to model the various mechanical and physical systems in greater and greater detail has allowed significant improvements in operational efficiency in spite of increasing regulatory requirements. Many of these efficiencies result from the use of more complex and geometrically detailed computer modeling, which is used to justify a reduction or elimination of some of the conservatisms required by earlier, less sophisticated analyses. And more recently, as our industries open-quotes downsize,close quotes efforts are being made to find ways to use the ever-increasing computing capacity to design systems that accomplish more work, in less time, and with fewer people. The balance of this paper discusses some of the visions that Duke Power Company feels would most benefit their particular methodologies. One of the concepts receiving a lot of attention involves an automated coupling of a thermal-hydraulic plant systems analysis model to a three-dimensional core neutronics program. The thermal-hydraulic analysis of several postulated system transients incorporates large conservatisms because of limited ability to model complex time-dependent asymmetric heat sources in adequate geometric detail. For these transients, the core behavior is closely coupled with the thermal-hydraulic behavior of the total plant system and vice versa. Steam-line break, uncontrolled rod withdrawal, and rod drop anayses are likely to benefit most from this type of linked process

  10. Determination of thermal neutrons diffusion length in graphite; Determinacion de la Longitud de Difusion de los Neutrones Termicos en Grafito

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Fite, J

    1959-07-01

    The diffusion length of thermal neutrons in graphite using the less possible quantity of material has been determined. The proceeding used was the measurement in a graphite pile which has a punctual source of rapid neutrons inside surrounded by a reflector medium (paraffin or water). The measurement was done in the following conditions: a) introducing an aluminium plate between both materials. b) Introducing a cadmium plate between both materials. (Author) 91 refs.

  11. Neutron polarizing Fe-Al supermirror on a Si crystal substrate and its applications for thermal and cold neutrons

    International Nuclear Information System (INIS)

    Syromyatnikov, V.G.; Shchebetov, A.F.; Soroko, Z.N.

    1994-01-01

    Experimental data are presented for an Fe-Al neutron polarizing supermirror on a Si crystal substrate with an antireflecting Cd layer. The polarizing efficiency of this supermirror is P≥qslant0.8 for the range of glancing angles θ/λ=0.25-1.7 /nm and P≥qslant0.95 for θ/λ=0.34-1.7 /nm. Some applications of this supermirror for thermal and cold neutrons are considered. ((orig.))

  12. IMPROVED COMPUTATIONAL CHARACTERIZATION OF THE THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    Energy Technology Data Exchange (ETDEWEB)

    Stuart R. Slattery; David W. Nigg; John D. Brockman; M. Frederick Hawthorne

    2010-05-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. This is essential for detailed dosimetric studies required for the anticipated research program.

  13. Neutronics of rectangular parallelepiped polyethylene moderator in wing geometry for accelerator based thermal neutron source

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    1984-01-01

    Numerical and experimental studies of the wing geometry moderator are performed in order to examine (a) the effects of the target position and the moderator thickness on the beam intensity and on the pulse shapes emitted from a polyethylene thermal moderator, and (b) the optimum thickness of the moderator. The beam intensity emitted from the moderator is expressed by an integration of the product of the source neutron distribution and the beam intensity produced by a unit intensity point source in the moderator. By applying this expression mechanism is analyzed for the optimum target position and the saturation phenomena of the intensity and the pulse width emitted from the moderator. The optimum target position is at about 2cm from the neutron emission surface for moderators thicker than 4cm and at about half of the moderator thickness for thinner ones. The intensity and the pulse shapes emitted from the moderator vary little if the target distance is varied around the optimum one and become close to the saturated ones at about 8cm thickness. It is indicated by the analysis of figures of merit that a moderator of 4--6cm thickness is optimum. (author)

  14. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei

    2015-01-01

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  15. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)

    2015-02-15

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.

  16. Influence of orientation averaging on the anisotropy of thermal neutrons scattering on water molecules

    International Nuclear Information System (INIS)

    Markovic, M. I.; Radunovic, J. B.

    1976-01-01

    Determination of spatial distribution of neutron flux in water, most frequently used moderator in thermal reactors, demands microscopic scattering kernels dependence on cosine of thermal neutrons scattering angle when solving the Boltzmann equation. Since spatial orientation of water molecules influences this dependence it is necessary to perform orientation averaging or rotation-vibrational intermediate scattering function for water molecules. The calculations described in this paper and the obtained results showed that methods of orientation averaging do not influence the anisotropy of thermal neutrons scattering on water molecules, but do influence the inelastic scattering

  17. Vector (two-dimensional) magnetic phenomena

    International Nuclear Information System (INIS)

    Enokizono, Masato

    2002-01-01

    In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)

  18. Two-dimensional Semiconductor-Superconductor Hybrids

    DEFF Research Database (Denmark)

    Suominen, Henri Juhani

    This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...

  19. Optimized two-dimensional Sn transport (BISTRO)

    International Nuclear Information System (INIS)

    Palmiotti, G.; Salvatores, M.; Gho, C.

    1990-01-01

    This paper reports on an S n two-dimensional transport module developed for the French fast reactor code system CCRR to optimize algorithms in order to obtain the best performance in terms of computational time. A form of diffusion synthetic acceleration was adopted, and a special effort was made to solve the associated diffusion equation efficiently. The improvements in the algorithms, along with the use of an efficient programming language, led to a significant gain in computational time with respect to the DOT code

  20. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  1. Airy beams on two dimensional materials

    Science.gov (United States)

    Imran, Muhammad; Li, Rujiang; Jiang, Yuyu; Lin, Xiao; Zheng, Bin; Dehdashti, Shahram; Xu, Zhiwei; Wang, Huaping

    2018-05-01

    We propose that quasi-transverse-magnetic (quasi-TM) Airy beams can be supported on two dimensional (2D) materials. By taking graphene as a typical example, the solution of quasi-TM Airy beams is studied under the paraxial approximation. The analytical field intensity in a bilayer graphene-based planar plasmonic waveguide is confirmed by the simulation results. Due to the tunability of the chemical potential of graphene, the self-accelerating behavior of the quasi-TM Airy beam can be steered effectively. 2D materials thus provide a good platform to investigate the propagation of Airy beams.

  2. Two-dimensional heat flow apparatus

    Science.gov (United States)

    McDougall, Patrick; Ayars, Eric

    2014-06-01

    We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.

  3. Factors affecting neutron measurements and calculations. Part C. Trace element concentrations in granite and their impact on thermal neutron activation

    International Nuclear Information System (INIS)

    Ruehm, Werner; Huber, Thomas; Nolte, Eckehart; Kato, Kazuo; Imanaka, Tetsuji; Egbert, Stephen D.

    2005-01-01

    Trace elements such as Li, B, Sm, and Gd can, despite their low elemental concentration in mineral materials, influence thermal neutron activation in Hiroshima and Nagasaki samples, due to their high thermal neutron absorption cross sections. This was demonstrated for a granite core, where the addition of those trace elements to the elemental composition of granite reduces the production of 152 Eu by some 25% at a depth of 25 cm from the surface. If typical concentrations of those trace elements are added to DS02 reference soil, however, the production of 152 Eu one meter above ground is not changed significantly, because of the high water content of the soil. This indicates that DS02 soil represents a reasonable reference material for the air-over-ground transport calculations. It must be kept in mind, however, that the local environment of any sample investigated for thermal neutron activation might be characterized by other elemental compositions. In particular, trace element and hydrogen concentrations could be considerably different from those used for DS02 reference soil. As an example it was demonstrated that in a granite gravestone thermal neutron activation of 36 Cl close to the surface might be, in the worst case, reduced by some 30%, due to increased local granite concentration in this type of environment. Beside other parameters such as, for example, individual sample geometry, the variability of trace elements in soil might be one reason for the variability that is observed in the individual thermal neutron activation measurements (Gold 1995). It is necessary, therefore, to carefully model the exposure geometry of the exposed material, its chemical composition, and the surrounding interface materials in order to obtain the best possible agreement in comparisons between calculated and measured data for thermal neutrons. (author)

  4. Evidence for two-dimensional ising structure in atomic nuclei

    International Nuclear Information System (INIS)

    MacGregor, M.H.

    1976-01-01

    Although the unpaired nucleons in an atomic nucleus exhibit pronounced shell-model-like behavior, the situation with respect to the paired-off ''core region'' nucleons is considerably more obscure. Several recent ''multi-alpha knockout'' and ''quasi-fission'' experiments indicate that nucleon clustering is prevalent throughout the core region of the nucleus; this same conclusion is suggested by nuclear-binding-energy systematics, by the evidence for a ''neutron halo'' in heavy nuclei and by the magnetic-moment systematics of low-mass odd-A nuclei. A number of arguments suggests, in turn, that this nucleon clustering is not spherical or spheroidal in shape, as has generally been assumed, but instead is in the form of two-dimensional Ising-like layers, with the layers arrayed perpendicular to the symmetry axis of the nucleus. The effects of this two-dimensional layering are observed most clearly in low-energy-induced fission, where nuclei with an even (odd) number of Ising layers fission symmetrically (asymmetrically). This picture of the nucleus gives an immediate quantitative explanation for the observed asymmetry in the fission of uranium, and also for the transition from symmetric to asymmetric and back to symmetric fission as the atomic number of the fissioning nuclues increase from A = 197 up to A = 258. These results suggest that, in the shell model formulation of the atomic nucleus, the basis states for the paired-off nucleon core region should be modified so as to contain laminar nucleon cluster correlations

  5. Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites

    International Nuclear Information System (INIS)

    Kim, Jaewoo; Lee, Byung-Chul; Uhm, Young Rang; Miller, William H.

    2014-01-01

    Highlights: • Preparation of B 4 C and BN nanopowders using a simple ball milling process. • Homogeneous dispersion and strong adhesion of nano-B 4 C and -BN with polymer matrix. • Enhancement of mechanical properties of the nanocomposites compared to their micro counterparts. • Enhancement of thermal neutron attenuation of the nanocomposites. - Abstract: Nano-sized boron carbide (B 4 C) and boron nitride (BN) powder were prepared using ball milling. Micro- and milled nano-powders were melt blended with high density polyethylene (HDPE) using a polymer mixer followed by hot pressing to fabricate sheet composites. The tensile and flexural strengths of HDPE nanocomposites were ∼20% higher than their micro counterparts, while those for latter decreased compared to neat HDPE. Thermal neutrons attenuation of the prepared HDPE nanocomposites was evaluated using a monochromatic ∼0.025 eV neutron beam. Thermal neutron attenuation of the HDPE nanocomposites was greatly enhanced compared to their micro counterparts at the same B-10 areal densities. Monte Carlo n-Particles (MCNP) simulations based on the lattice structure modeling also shows the similar filler size dependent thermal neutron absorption

  6. Intercomparison of personnel dosimetry for thermal neutron dose equivalent in neutron and gamma-ray mixed fields

    International Nuclear Information System (INIS)

    Ogawa, Yoshihiro

    1985-01-01

    In order to consider the problems concerned with personnel dosimetry using film badges and TLDs, an intercomparison of personnel dosimetry, especially dose equivalent responses of personnel dosimeters to thermal neutron, was carried out in five different neutron and gamma-ray mixed fields at KUR and UTR-KINKI from the practical point of view. For the estimation of thermal neutron dose equivalent, it may be concluded that each personnel dosimeter has good performances in the precision, that is, the standard deviations in the measured values by individual dosimeter were within 24 %, and the dose equivalent responses to thermal neutron were almost independent on cadmium ratio and gamma-ray contamination. However, the relative thermal neutron dose equivalent of individual dosimeter normalized to the ICRP recommended value varied considerably and a difference of about 4 times was observed among the dosimeters. From the results obtained, it is suggested that the standardization of calibration factors and procedures is required from the practical point of radiation protection and safety. (author)

  7. Enhancement of thermal neutron attenuation of nano-B{sub 4}C, -BN dispersed neutron shielding polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaewoo, E-mail: kimj@kaeri.re.kr [Nuclear Materials Research Division, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); Missouri University Research Reactor, University of Missouri-Columbia, Columbia, MO 65211 (United States); Lee, Byung-Chul [Nuclear Reactor Core Design Division, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); Uhm, Young Rang [Radioisotopes Research Division, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); Miller, William H. [Missouri University Research Reactor, University of Missouri-Columbia, Columbia, MO 65211 (United States)

    2014-10-15

    Highlights: • Preparation of B{sub 4}C and BN nanopowders using a simple ball milling process. • Homogeneous dispersion and strong adhesion of nano-B{sub 4}C and -BN with polymer matrix. • Enhancement of mechanical properties of the nanocomposites compared to their micro counterparts. • Enhancement of thermal neutron attenuation of the nanocomposites. - Abstract: Nano-sized boron carbide (B{sub 4}C) and boron nitride (BN) powder were prepared using ball milling. Micro- and milled nano-powders were melt blended with high density polyethylene (HDPE) using a polymer mixer followed by hot pressing to fabricate sheet composites. The tensile and flexural strengths of HDPE nanocomposites were ∼20% higher than their micro counterparts, while those for latter decreased compared to neat HDPE. Thermal neutrons attenuation of the prepared HDPE nanocomposites was evaluated using a monochromatic ∼0.025 eV neutron beam. Thermal neutron attenuation of the HDPE nanocomposites was greatly enhanced compared to their micro counterparts at the same B-10 areal densities. Monte Carlo n-Particles (MCNP) simulations based on the lattice structure modeling also shows the similar filler size dependent thermal neutron absorption.

  8. Using TRIGA Mark II research reactor for irradiation with thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kolšek, Aljaž, E-mail: aljaz.kolsek@gmail.com; Radulović, Vladimir, E-mail: vladimir.radulovic@ijs.si; Trkov, Andrej, E-mail: andrej.trkov@ijs.si; Snoj, Luka, E-mail: luka.snoj@ijs.si

    2015-03-15

    Highlights: • Monte Carlo N-Particle Transport Code was used to design and perform calculations. • Characterization of the TRIGA Mark II ex-core irradiation facilities was performed. • The irradiation device was designed in the TRIGA irradiation channel. • The use of the device improves the fraction of thermal neutron flux by 390%. - Abstract: Recently a series of test irradiations was performed at the JSI TRIGA Mark II reactor for the Fission Track-Thermoionization Mass Spectrometry (FT-TIMS) method, which requires a well thermalized neutron spectrum for sample irradiation. For this purpose the Monte Carlo N-Particle Transport Code (MCNP5) was used to computationally support the design of an irradiation device inside the TRIGA model and to support the actual measurements by calculating the neutron fluxes inside the major ex-core irradiation facilities. The irradiation device, filled with heavy water, was designed and optimized inside the Thermal Column and the additional moderation was placed inside the Elevated Piercing Port. The use of the device improves the ratio of thermal neutron flux to the sum of epithermal and fast neutron flux inside the Thermal Column Port by 390% and achieves the desired thermal neutron fluence of 10{sup 15} neutrons/cm{sup 2} in irradiation time of 20 h.

  9. Decoherence in two-dimensional quantum walks

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Portugal, R.; Donangelo, R.

    2006-01-01

    We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk

  10. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  11. Strain-engineered growth of two-dimensional materials.

    Science.gov (United States)

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali

    2017-09-20

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.

  12. Thickness optimization of various moderator materials for maximization of thermal neutron fluence

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    Plasma focus device is widely being used as pulsed neutron source for variety of applications. Measurements of neutron yield by largely preferred Helium-3 proportional counter and Silver activation counter are mainly sensitive to thermal neutrons and are typically used with a neutron moderator. Thermalization of neutron is based on scattering reaction and hydrogenous materials are the best thermalizing medium. The efficiency of aforementioned neutron detectors is considerably affected by physical and geometrical properties of thermalizing medium i.e. moderator material, its thickness and shape. In view of the same, simulations have been performed to explore the effective utilization of Polyethylene, Perspex and Light water as moderating mediums for cylindrical and spherical geometry. In this study, estimated thermal fluence value up to 0.5 eV has been considered as the benchmark factor for comparing efficient thermalization by specific material, its thickness and shape. In either of the shapes being cylindrical or spherical, use of Polyethylene as moderating medium has resulted in minimum optimum thickness along with highest thermal fluence. (author)

  13. Geometrical bucklings for two-dimensional regular polygonal regions using the finite Fourier transformation

    International Nuclear Information System (INIS)

    Mori, N.; Kobayashi, K.

    1996-01-01

    A two-dimensional neutron diffusion equation is solved for regular polygonal regions by the finite Fourier transformation, and geometrical bucklings are calculated for regular 3-10 polygonal regions. In the case of the regular triangular region, it is found that a simple and rigorous analytic solution is obtained for the geometrical buckling and the distribution of the neutron current along the outer boundary. (author)

  14. Apparatus and process for continuous measurement of moisture in moving coal by neutron thermalization

    International Nuclear Information System (INIS)

    Stewart, R.F.

    1967-01-01

    The invention relates to an apparatus and process for the measurement of moisture contents in solid materials. More particularly, the invention makes available a continuous moisture analysis of a moving mass of material, such as coal, by penetrating such material with neutrons emitted from a source of fast neutrons and detecting, counting, and recording slowed or thermalized neutrons reflected from the internal structure of the material. (U.S.)

  15. Two-Dimensional Tellurene as Excellent Thermoelectric Material

    KAUST Repository

    Sharma, Sitansh

    2018-04-20

    We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high room temperature Seebeck coefficient (Sxx = 0.38 mV/K, Syy = 0.36 mV/K) is combined with anisotropic lattice thermal conductivity (κxxl = 0.43 W/m K, κyyl = 1.29 W/m K). Phonon band structures demonstrate a key role of optical phonons in the record low thermal conductivity that leads to excellent thermoelectric performance of tellurene. At room temperature and moderate hole doping of 1.2 × 10–11 cm–2, for example, a figure of merit of ZTxx = 0.8 is achieved.

  16. Tables for simplifying calculations of activities produced by thermal neutrons

    Science.gov (United States)

    Senftle, F.E.; Champion, W.R.

    1954-01-01

    The method of calculation described is useful for the types of work of which examples are given. It is also useful in making rapid comparison of the activities that might be expected from several different elements. For instance, suppose it is desired to know which of the three elements, cobalt, nickel, or vanadium is, under similar conditions, activated to the greatest extent by thermal neutrons. If reference is made to a cross-section table only, the values may be misleading unless properly interpreted by a suitable comparison of half-lives and abundances. In this table all the variables have been combined and the desired information can be obtained directly from the values of A 3??, the activity produced per gram per second of irradiation, under the stated conditions. Hence, it is easily seen that, under similar circumstances of irradiation, vanadium is most easily activated even though the cross section of one of the cobalt isotopes is nearly five times that of vanadium and the cross section of one of the nickel isotopes is three times that of vanadium. ?? 1954 Societa?? Italiana di Fisica.

  17. Thermal structure of accreting neutron stars and strange stars

    International Nuclear Information System (INIS)

    Miralda-Escude, J.; Paczynski, B.; Haensel, P.

    1990-01-01

    Steady-state models of accreting neutron stars and strange stars are presented, and their properties as a function of accretion rate are analyzed. The models have steady-state envelopes, with stationary hydrogen burning taken into account, the helium shell flashes artificially suppressed, and the crust with a large number of secondary heat sources. The deep interiors are almost isothermal and are close to thermal equilibrium. A large number of models were calculated for many values of the accretion rates, with ordinary, pion-condensed, and strange cores, with and without secondary heat sources in the crust, and with the heavy element content of the accreting matter in the range Z = 0.0002-0.02. All models show a similar pattern of changes as the accretion rate is varied. For low accretion rates, the hydrogen burning shell is unstable; for intermediate rates, the hydrogen burning shell is stable, but helium burning is not; for high rates, the two shell sources burn together and are unstable. 60 refs

  18. Describing function theory as applied to thermal and neutronic problems

    International Nuclear Information System (INIS)

    Nassersharif, B.

    1983-01-01

    Describing functions have traditionally been used to obtain the solutions of systems of ordinary differential equations. In this work the describing function concept has been extended to include nonlinear, distributed parameter partial differential equations. A three-stage solution algorithm is presented which can be applied to any nonlinear partial differential equation. Two generalized integral transforms were developed as the T-transform for the time domain and the B-transform for the spatial domain. The thermal diffusion describing function (TDDF) is developed for conduction of heat in solids and a general iterative solution along with convergence criteria is presented. The proposed solution method is used to solve the problem of heat transfer in nuclear fuel rods with annular fuel pellets. As a special instance the solid cylindrical fuel pellet is examined. A computer program is written which uses the describing function concept for computing fuel pin temperatures in the radial direction during reactor transients. The second problem investigated was the neutron diffusion equation which is intrinsically different from the first case. Although, for most situations, it can be treated as a linear differential equation, the describing function method is still applicable. A describing function solution is derived for two possible cases: constant diffusion coefficient and variable diffusion coefficient. Two classes of describing functions are defined for each case which portray the leakage and absorption phenomena. For the specific case of a slab reactor criticality problem the comparison between analytical and describing function solutions revealed an excellent agreement

  19. Thermal neutron detection by activation of CaSO4:Dy + KBr thermoluminescent phosphors

    International Nuclear Information System (INIS)

    Gordon, A.M.P.L.; Muccillo, R.

    1979-01-01

    Thermoluminescence (TL) studies to detect thermal neutrons were performed in cold-pressed CaSO 4 :0,1%Dy + KBr samples. The detection is based on the self-irradiation of the CaSO 4 :Dy TL phosphor by the Br isotopes activated by exposure to a mixed neutron-gamma field. (Author) [pt

  20. Measurement and simulation of thermal neutron flux distribution in the RTP core

    Science.gov (United States)

    Rabir, Mohamad Hairie B.; Jalal Bayar, Abi Muttaqin B.; Hamzah, Na'im Syauqi B.; Mustafa, Muhammad Khairul Ariff B.; Karim, Julia Bt. Abdul; Zin, Muhammad Rawi B. Mohamed; Ismail, Yahya B.; Hussain, Mohd Huzair B.; Mat Husin, Mat Zin B.; Dan, Roslan B. Md; Ismail, Ahmad Razali B.; Husain, Nurfazila Bt.; Jalil Khan, Zareen Khan B. Abdul; Yakin, Shaiful Rizaide B. Mohd; Saad, Mohamad Fauzi B.; Masood, Zarina Bt.

    2018-01-01

    The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian’s PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.

  1. Thermal neutron cross sections and resonance integrals for the 1994 handbook of chemistry and physics

    International Nuclear Information System (INIS)

    Holden, N.E.

    1994-01-01

    A re-evaluation of all thermal neutron cross sections and neutron resonance integrals has been performed, utilizing the previous database of the ''Barn Book'' and all of the more recently published experiments. Only significant changes or previously undetermined values are recorded in this report. The source for each value is also recorded in the accompanying table

  2. Measurements of thermal and fast neutron fluxes at the TRIGA reactor

    International Nuclear Information System (INIS)

    Zerdin, F.; Grabovsek, Z.; Klinc, T.; Solinc, H.

    1966-01-01

    Gold foils were placed at different positions in the TRIGA reactor core and in the experimental devices. Absolute values of the thermal neutron flux at these positions were obtained by coincidence method. Preliminary fast neutron spectrum was measured by threshold detector and by 'Li 6 sandwich' detector. A short description of the applied method and obtained measurements results are included [sl

  3. Parity non-conserving effects in thermal neutron-deuteron radiative capture

    International Nuclear Information System (INIS)

    Desplanques, B.

    1985-01-01

    Predictions of parity non-conserving effects in thermal neutron-deuteron radiative capture are presented. The sensitivity of the results to models of the strong interaction as well as the validity of approximations made in previous calculations are discussed

  4. Impact of thermal and intermediate energy neutrons on the semiconductor memories for the CERN accelerators

    CERN Document Server

    Cecchetto, Matteo; Gerardin, Simone

    A wide quantity of SRAM memories are employed along the Large Hadron Collider (LHC), the main CERN accelerator, and they are subjected to high levels of ionizing radiations which compromise the reliability of these devices. The Single Event Effect (SEE) qualification for components to be used in the complex high-energy accelerator at CERN relies on the characterization of two cross sections: 200-MeV protons and thermal neutrons. However, due to cost and time constraints, it is not always possible to characterize the SEE response of components to thermal neutrons, which is often regarded as negligible for components without borophosphosilicate glass (BPSG). Nevertheless, as recent studies show, the sensitivity of deep sub-micron technologies to thermal neutrons has increased owing to the presence of Boron 10 as a dopant and contact contaminant. The very large thermal neutron fluxes relative to high-energy hadron fluxes in some of the heavily shielded accelerator areas imply that even comparatively small therm...

  5. Computational features of the MELT-III neutronics, thermal-hydraulics computer code system

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Waltar, A.E.

    1976-01-01

    A multichannel, thermal-hydraulics, neutronic accident analysis program for simulating fast reactor behavior from a hypothetical accident inception to the start of core disassembly or to reactor shutdown is described

  6. Identification of the fast and thermal neutron characteristics of transuranic waste drums

    Energy Technology Data Exchange (ETDEWEB)

    Storm, B.H. Jr.; Bramblett, R.L. [Lockheed Martin Specialty Components, Largo, FL (United States); Hensley, C. [Oak Ridge National Lab., TN (United States)

    1997-11-01

    Fissile and spontaneously fissioning material in transuranic waste drums can be most sensitively assayed using an active and passive neutron assay system such as the Active Passive Neutron Examination and Assay. Both the active and the passive assays are distorted by the presence of the waste matrix and containerization. For accurate assaying, this distortion must be characterized and accounted for. An External Matrix Probe technique has been developed that accomplishes this task. Correlations between in-drum neutron flux measurements and monitors in the Active Passive Neutron Examination and Assay chamber with various matrix materials provide a non-invasive means of predicting the thermal neutron flux in waste drums. Similarly, measures of the transmission of fast neutrons emitted from sources in the drum. Results obtained using the Lockheed Martin Specialty Components Active Passive Neutron Examination and Assay system are discussed. 12 figs., 1 tab.

  7. Determination of cadmium in zinc ores by thermal neutron absorption analysis

    International Nuclear Information System (INIS)

    De Norre, L.; Op de Beeck, J.; Hoste, J.

    1983-01-01

    A method has been developed for routine determination of cadmium in zinc ores by thermal neutron absorption analysis, based on the attenuation of a thermal neutron flux passing through a neutron absorbing material. The thermal neutron flux in related to the 52 V activity induced in a vanadium detector, surrounded by pellets pressed from a mixture of powdered material with graphite. Besides cadmium, also the major constituents zinc, iron and sulfur contribute significantly to the total attenuation of the thermal neutron flux. Calibration lines for these elements are worked out. All irradiations are carried out for 200 s in the partially thermalized neutron flux of a 5 Ci 227 Ac-Be isotope neutron source. After a decay of 30 s, the 52 V activity of the vanadium detector is measured for 400 s with a NaI(Tl) scintillation detector. The analysis sequence, including the computation of the results from the counting data, is automated by means of a LSI-11 Microprocessor with 12Kx16 bit memory. Zinc ores, containing 0.02 to 1.45% cadmium, have been analyzed with a precision ranging from 12.6% to 0.54%, resp. As a test for the reliability of the method, two NBS standard reference materials were analyzed in the same way as the zinc ore samples. (author)

  8. Design of 6 Mev linear accelerator based pulsed thermal neutron source: FLUKA simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T.; Pethe, S.N.; Krishnan, R. [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2012-01-15

    The 6 MeV LINAC based pulsed thermal neutron source has been designed for bulk materials analysis. The design was optimized by varying different parameters of the target and materials for each region using FLUKA code. The optimized design of thermal neutron source gives flux of 3 Multiplication-Sign 10{sup 6}ncm{sup -2}s{sup -1} with more than 80% of thermal neutrons and neutron to gamma ratio was 1 Multiplication-Sign 10{sup 4}ncm{sup -2}mR{sup -1}. The results of prototype experiment and simulation are found to be in good agreement with each other. - Highlights: Black-Right-Pointing-Pointer The optimized 6 eV linear accelerator based thermal neutron source using FLUKA simulation. Black-Right-Pointing-Pointer Beryllium as a photonuclear target and reflector, polyethylene as a filter and shield, graphite as a moderator. Black-Right-Pointing-Pointer Optimized pulsed thermal neutron source gives neutron flux of 3 Multiplication-Sign 10{sup 6} n cm{sup -2} s{sup -1}. Black-Right-Pointing-Pointer Results of the prototype experiment were compared with simulations and are found to be in good agreement. Black-Right-Pointing-Pointer This source can effectively be used for the study of bulk material analysis and activation products.

  9. Thermal neutron inelastic scattering and it's application to the material science

    International Nuclear Information System (INIS)

    Li Zhuqi

    1986-01-01

    A brief description of the elementary scattering theory of the interaction between the thermal neutrons and the condensed matter is given and the characteristics related to the experimental method of the thermal neutrons inelastic scattering is described. Expressions of the phonons dispersion, density of the phonon state and the self-diffusion coefficient at the some conditions are also introduced. Some examples of describing diagram of the phonon dispersion, density of the phonons state and selfdiffusion coefficient measured by different authors are given

  10. TEMPEST-2, Thermalization Program for Neutron Spectra and Multigroup Cross-Sections

    International Nuclear Information System (INIS)

    Gowins, G.

    1984-01-01

    Description of problem or function: TEMPEST2 is a neutron thermalization program based upon the Wigner-Wilkins approximation for light moderators and the Wilkins approximation for heavy moderators. A Maxwellian distribution may also be used. The model used may be selected as a function of energy. The second-order differential equations are integrated directly rather than transformed to the Riccati equation. The program provides microscopic and macroscopic cross-section averages over the thermal neutron spectrum

  11. Thermal states of coldest and hottest neutron stars in soft X-ray transients

    OpenAIRE

    Yakovlev, D. G.; Levenfish, K. P.; Potekhin, A. Y.; Gnedin, O. Y.; Chabrier, G.

    2003-01-01

    We calculate the thermal structure and quiescent thermal luminosity of accreting neutron stars (warmed by deep crustal heating in accreted matter) in soft X-ray transients (SXTs). We consider neutron stars with nucleon and hyperon cores and with accreted envelopes. It is assumed that an envelope has an outer helium layer (of variable depth) and deeper layers of heavier elements, either with iron or with much heavier nuclei (of atomic weight A > 100) on the top (Haensel & Zdunik 1990, 2003, as...

  12. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. (ENEA, Frascati (Italy). Centro Ricerche Energia); Marcus, F.B.; Conroy, S.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); Adams, J.M.; Watkins, N. (AEA Industrial Technology, Harwell (United Kingdom))

    1993-10-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T[sub i], and ion thermal diffusivity, [chi][sub i], are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author).

  13. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Esposito, B.

    1993-01-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T i , and ion thermal diffusivity, χ i , are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author)

  14. Two-dimensional simulation of sintering process

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.

    1996-01-01

    The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)

  15. Two dimensional generalizations of the Newcomb equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Pletzer, A.

    1989-11-01

    The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs

  16. Pressure of two-dimensional Yukawa liquids

    International Nuclear Information System (INIS)

    Feng, Yan; Wang, Lei; Tian, Wen-de; Goree, J; Liu, Bin

    2016-01-01

    A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas. (paper)

  17. Two dimensional nanomaterials for flexible supercapacitors.

    Science.gov (United States)

    Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi

    2014-05-21

    Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.

  18. Geometrical aspects of solvable two dimensional models

    International Nuclear Information System (INIS)

    Tanaka, K.

    1989-01-01

    It was noted that there is a connection between the non-linear two-dimensional (2D) models and the scalar curvature r, i.e., when r = -2 the equations of motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggests that these models are closely related. This relation is explored further in the classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra. 21 refs

  19. Two-dimensional materials for ultrafast lasers

    International Nuclear Information System (INIS)

    Wang Fengqiu

    2017-01-01

    As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)

  20. Two-dimensional phase fraction charts

    International Nuclear Information System (INIS)

    Morral, J.E.

    1984-01-01

    A phase fraction chart is a graphical representation of the amount of each phase present in a system as a function of temperature, composition or other variable. Examples are phase fraction versus temperature charts used to characterize specific alloys and as a teaching tool in elementary texts, and Schaeffler diagrams used to predict the amount of ferrite in stainless steel welds. Isothermal-transformation diagrams (TTT diagrams) are examples that give phase (or microconstituent) amount versus temperature and time. The purpose of this communication is to discuss the properties of two-dimensional phase fraction charts in more general terms than have been reported before. It is shown that they can represent multi-component, multiphase equilibria in a way which is easier to read and which contains more information than the isotherms and isopleths of multi-component phase diagrams

  1. Two-dimensional motions of rockets

    International Nuclear Information System (INIS)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights

  2. Two dimensional NMR studies of polysaccharides

    International Nuclear Information System (INIS)

    Byrd, R.A.; Egan, W.; Summers, M.F.

    1987-01-01

    Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides

  3. Two-Dimensional Homogeneous Fermi Gases

    Science.gov (United States)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  4. Two-dimensional electroacoustic waves in silicene

    Science.gov (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.

    2018-01-01

    In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.

  5. Versatile two-dimensional transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max

    ), a strategy for the fabrication of 2D heterostructures must be developed. Here we demonstrate a novel approach for the bottom-up synthesis of TMDC monolayers, namely Pulsed Laser Deposition (PLD) combined with a sulfur evaporation beam. PLD relies on the use of a pulsed laser (ns pulse duration) to induce...... material transfer from a solid source (such as a sintered target of MoS2) to a substrate (such as Si or sapphire). The deposition rate in PLD is typically much less than a monolayer per pulse, meaning that the number of MLs can be controlled by a careful selection of the number of laser pulses......Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...

  6. Two-dimensional heterostructures for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)

    2017-06-12

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  7. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  8. Experimental characterization of HOTNES: A new thermal neutron facility with large homogeneity area

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN–LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); Sperduti, A. [INFN–LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); ENEA C.R. Frascati, via E. Fermi n. 45, 00044 Frascati, Roma (Italy); Pietropaolo, A.; Pillon, M. [ENEA C.R. Frascati, via E. Fermi n. 45, 00044 Frascati, Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN–Milano, Via Celoria 16, 20133 Milano (Italy); Gómez-Ros, J.M. [INFN–LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2017-01-21

    A new thermal neutron irradiation facility, called HOTNES (HOmogeneous Thermal NEutron Source), was established in the framework of a collaboration between INFN-LNF and ENEA-Frascati. HOTNES is a polyethylene assembly, with about 70 cmx70 cm square section and 100 cm height, including a large, cylindrical cavity with diameter 30 cm and height 70 cm. The facility is supplied by a {sup 241}Am-B source located at the bottom of this cavity. The facility was designed in such a way that the iso-thermal-fluence surfaces, characterizing the irradiation volume, coincide with planes parallel to the cavity bottom. The thermal fluence rate across a given isofluence plane is as uniform as 1% on a disk with 30 cm diameter. Thermal fluence rate values from about 700 cm{sup −2} s{sup −1} to 1000 cm{sup −2} s{sup −1} can be achieved. The facility design, previously optimized by Monte Carlo simulation, was experimentally verified. The following techniques were used: gold activation foils to assess the thermal fluence rate, semiconductor-based active detector for mapping the irradiation volume, and Bonner Sphere Spectrometer to determine the complete neutron spectrum. HOTNES is expected to be attractive for the scientific community involved in neutron metrology, neutron dosimetry and neutron detector testing.

  9. Equivalency of two-dimensional algebras

    International Nuclear Information System (INIS)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.

    2011-01-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  10. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.; Murphy, J.W. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Kim, J. [Korean Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Rozhdestvenskyy, S.; Mejia, I. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Park, H. [Korean Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Allee, D.R. [Flexible Display Center, Arizona State University, Phoenix, AZ 85284 (United States); Quevedo-Lopez, M. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Gnade, B., E-mail: beg031000@utdallas.edu [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States)

    2016-12-01

    Solid-state neutron detectors offer an alternative to {sup 3}He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10{sup −6} gamma-ray efficiency.

  11. Simultaneous measurement of fission fragments and prompt neutrons for thermal neutron-induced fission of U-235

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)

    1997-03-01

    Simultaneous measurement of fission fragments and prompt neutrons following the thermal neutron induced fission of U-235 has been performed in order to obtain the neutron multiplicity (v) and its emission energy ({eta}) against the specified mass (m{sup *}) and the total kinetic energy (TKE). The obtained value of -dv/dTKE(m{sup *}) showed a saw-tooth distribution. The average neutron energy <{eta}>(m{sup *}) had a distribution with a reflection symmetry around the half mass division. The measurement also gave the level density parameters of the specified fragment, a(m{sup *}), and this parameters showed a saw-tooth trend too. The analysis by a phenomenological description of this parameters including the shell and collective effects suggested the existence of a collective motion of the fission fragments. (author)

  12. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    Directory of Open Access Journals (Sweden)

    Neudecker D.

    2016-01-01

    Full Text Available We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  13. A comparison of neutron resonance absorption in thermal reactor lattices in the AUS neutronics code system with Monte Carlo calculations

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1985-08-01

    The calculation of resonance shielding by the subgroup method, as incorporated in the MIRANDA module of the AUS neutronics code system, is compared with Monte Carlo calculatons for a number of thermal reactor lattices. For the large range of single rod and rod cluster lattices considered, AUS results for resonance absorption were high by up to two per cent

  14. Indirect and direct measurement of thermal neutron acceleration by inelastic scattering on the 177Lu isomer

    International Nuclear Information System (INIS)

    Belier, G.; Roig, O.; Meot, V.; Daugas, J.M.; Aupiais, J.; Jutier, Ch.; Le Petit, G.; Veyssiere, Ch.

    2008-01-01

    When neutrons interact with isomers, these isomers can de-excite and in such a reaction the outgoing neutron has an energy greater than the in-going one. This process is referred as Inelastic Neutron Acceleration or Super-elastic Scattering. Up to now this process was observed for only two nucleus, 152m Eu and 180m Hf by measuring the number of fast neutrons produced by isomeric targets irradiated with thermal neutrons. In these experiments the energies of the accelerated neutrons were not measured. This report presents an indirect measurement of inelastic neutron acceleration on 177m Lu, based on the burn-up and the radiative capture cross sections measurements. Since at thermal energies the inelastic scattering and the radiative capture are the only processes that contribute to the isomer burn-up, the inelastic cross section can be deduced from the difference between the two measured quantities. Applying this method for the 177 Lu isomer with different neutron fluxes we obtained a value of (257 ± 50) barns (for a temperature of 323 K) and determined that there is no integral resonance for this process. In addition the radiative capture cross section on 177g Lu was measured with a much better accuracy than the accepted value. Since the acceleration cross section is quite high, a direct measurement of this process was undertaken, sending thermal neutrons and measuring the fast neutrons. The main goal now is to measure the outgoing neutron energies in order to identify the neutron transitions in the exit channel. In particular the K conservation question can be addressed by such a measurement. (author)

  15. Determination of Thermal Neutron Capture Cross Sections Using Cold Neutron Beams at the Budapest PGAA-NIPS Facilities

    International Nuclear Information System (INIS)

    Belgya, T.

    2006-01-01

    A complete elemental gamma-ray library was measured with our guided thermal beam at the Budapest PGAA facility in the period of 1995-2000. Using this data library in an IAEA CRP on PGAA it was managed to re-normalize the ENSDF intensity data with the Budapest intensities. Based on this renormalization thermal neutron cross sections were deduced for several isotopes. Most of these calculations were done by Richard B. Firestone. The Budapest PGAA-NIPS facilities have been used for routine prompt gamma activation analysis with cold neutrons since the year of 2000. The advantage of the cold neutron beam is that the neutron guide has much higher neutron transmission. This resulted in a gain factor about 20 relative to our thermal guide. For the analytical works a precise comparator technique was developed that is routinely used to determine partial gamma-ray production cross sections. An additional development of our methodology was necessary to be worked out to determine thermal neutron capture cross sections based on the partial gamma-ray production cross sections. In this talk our methodology of radiative capture cross section determination will be presented, including our latest results on 129 I, 204,206,207 Pb and 209 Bi. Most of these works were done in cooperation with people from EU-JRC-IRMM, Geel, Belgium and CEA Cadarache, France. Many partial cross sections of short lived nuclei have been re-measured with our new chopper technique. The uncertainty calculations of the radiative capture cross section determination procedures will be also shown. (authors)

  16. Thermal neutron diffusion parameters dependent on the flux energy distribution in finite hydrogenous media

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1999-01-01

    Macroscopic parameters for a description of the thermal neutron transport in finite volumes are considered. A very good correspondence between the theoretical and experimental parameters of hydrogenous media is attained. Thermal neutrons in the medium possess an energy distribution, which is dependent on the size (characterized by the geometric buckling) and on the neutron transport properties of the medium. In a hydrogenous material the thermal neutron transport is dominated by the scattering cross section which is strongly dependent on energy. A monoenergetic treatment of the thermal neutron group (admissible for other materials) leads in this case to a discrepancy between theoretical and experimental results. In the present paper the theoretical definitions of the pulsed thermal neutron parameters (the absorption rate, the diffusion coefficient, and the diffusion cooling coefficient) are based on Nelkin's analysis of the decay of a neutron pulse. Problems of the experimental determination of these parameters for a hydrogenous medium are discussed. A theoretical calculation of the pulsed parameters requires knowledge of the scattering kernel. For thermal neutrons it is individual for each hydrogenous material because neutron scattering on hydrogen nuclei bound in a molecule is affected by the molecular dynamics (characterized with internal energy modes which are comparable to the incident neutron energy). Granada's synthetic model for slow-neutron scattering is used. The complete up-dated formalism of calculation of the energy transfer scattering kernel after this model is presented in the paper. An influence of some minor variants within the model on the calculated differential and integral neutron parameters is shown. The theoretical energy-dependent scattering cross section (of Plexiglas) is compared to experimental results. A particular attention is paid to the calculation of the diffusion cooling coefficient. A solution of an equation, which determines the

  17. Dosimeter incorporating radiophotoluminescent detectors for thermal neutrons and γ-rays in n-γ fields

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Y.O. [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/IN2P3, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France); Nachab, A., E-mail: a.nachab@uca.ma [Département de physique, Faculté Poly-disciplinaire, Université Cadi Ayyad, Route Sidi Bouzid BP 4162, 46000 Safi (Morocco); Roy, C.; Nourreddine, A. [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/IN2P3, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France)

    2016-10-15

    We have developed a dosimeter associating different neutron converters with two radiophotoluminescent detectors to measure thermal neutrons and γ-rays in a mixed n-γ field. Tests show that the H{sup ∗}(10) and H{sub p}(10) responses to thermal neutrons and γ-rays are linear with detection limits lower than 0.4 mSv. The angular dependence of the dosimeter response is satisfactory and the influence of a phantom on the results is examined.

  18. Detection mechanisms in silicon diodes used as α-particle and thermal neutron detectors

    International Nuclear Information System (INIS)

    Cerofolini, G.F.; Ferla, G.; Foglio Para, A.

    1981-01-01

    Some common silicon devices (diodes, RAMs etc.) can be used as α and thermal neutron detectors. An α resolution of approx. equal to 3% can be obtained utilizing p + /n or n + /p diodes with no external bias. Thermal neutrons are detected by means of the reaction 10 B(n,α) 7 Li on the 10 B present in the devices. Neutron efficiency has been substantially improved by implantation of 10 B ions in the p + region of the diodes. Experimental results allow us to clarify the carrier collection mechanisms throughout the device. Some current opinions in the field are contradicted. (orig.)

  19. Studies on thermal neutron perturbation factor needed for bulk sample activation analysis

    CERN Document Server

    Csikai, J; Sanami, T; Michikawa, T

    2002-01-01

    The spatial distribution of thermal neutrons produced by an Am-Be source in a graphite pile was measured via the activation foil method. The results obtained agree well with calculated data using the MCNP-4B code. A previous method used for the determination of the average neutron flux within thin absorbing samples has been improved and extended for a graphite moderator. A procedure developed for the determination of the flux perturbation factor renders the thermal neutron activation analysis of bulky samples of unknown composition possible both in hydrogenous and graphite moderators.

  20. Measurement of the diffusion length of thermal neutrons in the beryllium oxide

    International Nuclear Information System (INIS)

    Koechlin, J.C.; Martelly, J.; Duggal, V.P.

    1955-01-01

    The diffusion length of thermal neutrons in the beryllium oxide has been obtained while studying the spatial distribution of the neutrons in a massive parallelepiped of this matter placed before the thermal column of the reactor core of Saclay. The mean density of the beryllium oxide (BeO) is 2,95 gr/cm 3 , the mean density of the massif is 2,92 gr/cm 3 . The value of the diffusion length, deducted of the done measures, is: L = 32,7 ± 0,5 cm (likely gap). Some remarks are formulated about the influence of the spectral distribution of the neutrons flux used. (authors) [fr