WorldWideScience

Sample records for two-dimensional shallow water

  1. Stabilizing local boundary conditions for two-dimensional shallow water equations

    KAUST Repository

    Dia, Ben Mansour

    2018-03-27

    In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary values as a requirement for the energy decrease. Using the Riemann invariant analysis, we build stabilizing local boundary conditions that guarantee the stability of the hydrodynamical state around a given steady state. Numerical results for the controller applied to the nonlinear problem demonstrate the performance of the method.

  2. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

    Energy Technology Data Exchange (ETDEWEB)

    Wintermeyer, Niklas [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Winters, Andrew R., E-mail: awinters@math.uni-koeln.de [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Gassner, Gregor J. [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Kopriva, David A. [Department of Mathematics, The Florida State University, Tallahassee, FL 32306 (United States)

    2017-07-01

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

  3. Sediment transport, light and algal growth in the Markermeer : a two-dimensional water quality model for a shallow lake

    NARCIS (Netherlands)

    Duin, van E.H.S.

    1992-01-01

    This thesis reports on a study of the water quality in the Markermeer, focusing on the relationships between sediment transport, the light field and the growth of Oscillatoria agardhii . The study comprises two aspects: an extensive data collection program with the data

  4. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  5. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...

  6. Two - Dimensional Mathematical Model of Water Flow in Open ...

    African Journals Online (AJOL)

    The irrotational flow condition is used for simplification of the system of the governing shallow water equations and the final nonlinear differential equation is solved for the unknown energy head using the finite element method. A one - dimensional problem was solved with diffusion hydraulic model (DHM), energy diffusion ...

  7. Flow of quasi-two dimensional water in graphene channels

    Science.gov (United States)

    Fang, Chao; Wu, Xihui; Yang, Fengchang; Qiao, Rui

    2018-02-01

    When liquids confined in slit channels approach a monolayer, they become two-dimensional (2D) fluids. Using molecular dynamics simulations, we study the flow of quasi-2D water confined in slit channels featuring pristine graphene walls and graphene walls with hydroxyl groups. We focus on to what extent the flow of quasi-2D water can be described using classical hydrodynamics and what are the effective transport properties of the water and the channel. First, the in-plane shearing of quasi-2D water confined between pristine graphene can be described using the classical hydrodynamic equation, and the viscosity of the water is ˜50% higher than that of the bulk water in the channel studied here. Second, the flow of quasi-2D water around a single hydroxyl group is perturbed at a position of tens of cluster radius from its center, as expected for low Reynolds number flows. Even though water is not pinned at the edge of the hydroxyl group, the hydroxyl group screens the flow greatly, with a single, isolated hydroxyl group rendering drag similar to ˜90 nm2 pristine graphene walls. Finally, the flow of quasi-2D water through graphene channels featuring randomly distributed hydroxyl groups resembles the fluid flow through porous media. The effective friction factor of the channel increases linearly with the hydroxyl groups' area density up to 0.5 nm-2 but increases nonlinearly at higher densities. The effective friction factor of the channel can be fitted to a modified Carman equation at least up to a hydroxyl area density of 2.0 nm-2. These findings help understand the liquid transport in 2D material-based nanochannels for applications including desalination.

  8. Caribbean shallow water Corallimorpharia

    NARCIS (Netherlands)

    Hartog, J.C.den

    1980-01-01

    The present paper comprises a review of the Caribbean shallow water Corallimorpharia. Six species, belonging to four genera and three families are treated, including Pseudocorynactis caribbeorum gen. nov. spec. nov., a species with tentacular acrospheres containing the largest spirocysts ever

  9. Two-Dimensional Crystallography Introduced by the Sprinkler Watering Problem

    Science.gov (United States)

    De Toro, Jose A.; Calvo, Gabriel F.; Muniz, Pablo

    2012-01-01

    The problem of optimizing the number of circular sprinklers watering large fields is used to introduce, from a purely elementary geometrical perspective, some basic concepts in crystallography and comment on a few size effects in condensed matter physics. We examine square and hexagonal lattices to build a function describing the, so-called, dry…

  10. Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Downar, T.J.

    1987-01-01

    A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback

  11. Adsorption of Water on Two-Dimensional Crystals: Water/Graphene and Water/Silicatene

    Directory of Open Access Journals (Sweden)

    Uwe Burghaus

    2016-04-01

    Full Text Available The adsorption of water on solid surfaces is a scientific evergreen which again recently prompted considerable attention in the materials, nano-, and surface science communities, respectively, due to conflicting evidence presented in the most highly regarded scientific journals. This mini review is a brief and personal perspective of the current literature (and our own data about water adsorption for two examples, namely graphene and silicatene, which are both two-dimensional (2D crystals. Silicatene, an inorganic companion of graphene, is intriguing as it presents us with the possibility to synthesize a 2D analog to zeolites by doping this crystalline silicon film. The wettability by water and whether or not support effects of epitaxial 2D crystals are present is of concern. Regarding applications: some 2D crystals appear promising for the hydrogen evolution reaction, i.e., hydrogen generation from water; a functionalization of graphene (by oxygen/water to graphene oxide may be interesting for metal-free catalysis; the latest highlight in this field appears to be “icephobicity”, an application related to the hydrophobicity of surfaces.

  12. Quasi-two-dimensional turbulence in shallow fluid layers: the role of bottom friction and fluid layer depth.

    Science.gov (United States)

    Clercx, H J H; van Heijst, G J F; Zoeteweij, M L

    2003-06-01

    The role of bottom friction and the fluid layer depth in numerical simulations and experiments of freely decaying quasi-two-dimensional turbulence in shallow fluid layers has been investigated. In particular, the power-law behavior of the compensated kinetic energy E0(t)=E(t)e(2lambda t), with E(t) the total kinetic energy of the flow and lambda the bottom-drag coefficient, and the compensated enstrophy Omega(0)(t)=Omega(t)e(2lambda t), with Omega(t) the total enstrophy of the flow, have been studied. We also report on the scaling exponents of the ratio Omega(t)/E(t), which is considered as a measure of the characteristic length scale in the flow, for different values of lambda. The numerical simulations on square bounded domains with no-slip boundaries revealed bottom-friction independent power-law exponents for E0(t), Omega(0)(t), and Omega(t)/E(t). By applying a discrete wavelet packet transform technique to the numerical data, we have been able to compute the power-law exponents of the average number density of vortices rho(t), the average vortex radius a(t), the mean vortex separation r(t), and the averaged normalized vorticity extremum omega(ext)(t)/square root E(t). These decay exponents proved to be independent of the bottom friction as well. In the experiments we have varied the fluid layer depth, and it was found that the decay exponents of E0(t), Omega(0)(t), Omega(t)/E(t), and omega(ext)(t)/square root E(t) are virtually independent of the fluid layer depth. The experimental data for rho(t) and a(t) are less conclusive; power-law exponents obtained for small fluid layer depths agree with those from previously reported experiments, but significantly larger power-law exponents are found for experiments with larger fluid layer depths.

  13. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  14. Chiral amplification of oligopeptides in two-dimensional crystalline self-assemblies on water

    DEFF Research Database (Denmark)

    Zepik, H.; Shavit, E.; Tang, M.

    2002-01-01

    Differences in the two-dimensional packing arrangements of racemic and enantiomeric crystalline self-assemblies on the water surface of amphiphilic activated analogs of lysine and glutamic acid have been used to prepare oligopeptides of homochiral sequence and oligopeptides of single handedness...... from chiral nonracemic mixtures. The crystalline structures on the water surface were determined by grazing incidence x-ray diffraction and the diastereomeric composition of the oligopeptides by matrix-assisted laser desorption time-of-flight mass spectrometry with enantio-labeling. These results...... suggest that reactivity of ordered clusters at interfaces might have played a role in the generation of early homochiral biopolymers....

  15. Two-dimensional neutron scattering in a floating heavy water bridge

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Baroni, Patrick; Noirez, Laurence; Bitschnau, Brigitte

    2010-01-01

    When a high voltage is applied to pure water in two filled beakers kept close to each other, a connection forms spontaneously, giving the impression of a floating water bridge. This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the first two-dimensional structural study of a floating heavy water bridge is presented as a function of the azimuthal angle. A small anisotropy in the angular distribution of the intensity of the first structural peak was observed, indicating a preferred orientation of a part of the D 2 O molecules along the electric field lines without breaking the local tetrahedral symmetry. The experiment is carried out by neutron scattering on a D 2 O bridge.

  16. Two-dimensional neutron scattering in a floating heavy water bridge

    Science.gov (United States)

    Fuchs, Elmar C.; Baroni, Patrick; Bitschnau, Brigitte; Noirez, Laurence

    2010-03-01

    When a high voltage is applied to pure water in two filled beakers kept close to each other, a connection forms spontaneously, giving the impression of a floating water bridge. This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the first two-dimensional structural study of a floating heavy water bridge is presented as a function of the azimuthal angle. A small anisotropy in the angular distribution of the intensity of the first structural peak was observed, indicating a preferred orientation of a part of the D2O molecules along the electric field lines without breaking the local tetrahedral symmetry. The experiment is carried out by neutron scattering on a D2O bridge.

  17. Modeling shallow water flows using the discontinuous Galerkin method

    CERN Document Server

    Khan, Abdul A

    2014-01-01

    Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fie...

  18. Modeling shallow water flows using the discontinuous galerkin method

    CERN Document Server

    Khan, Abdul A

    2014-01-01

    Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fie...

  19. Shallow water tides

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    stream_size 3 stream_content_type text/plain stream_name Trg_Calculat_Water_Depth_Chart_Datum_1991_22.pdf.txt stream_source_info Trg_Calculat_Water_Depth_Chart_Datum_1991_22.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  20. Two-dimensional water acoustic waveguide based on pressure compensation method

    Science.gov (United States)

    Zheng, Mingye; Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2018-02-01

    A two-dimensional (2D) waveguide is a basic facility for experiment measurement due to a much more simplified wave field pattern than that in free space. A waveguide for airborne sound is easily achieved with almost any solid plates. However, the design of a 2D water acoustic waveguide is still challenging because of unavailable solids with a sufficient large impedance difference from water. In this work, a new method of constructing a 2D water acoustic waveguide is proposed based on pressure compensation and has been verified by numerical simulation. A prototype of the water acoustic waveguide is fabricated and complemented by an acoustic pressure scanning system; the measured scattered pressure fields by air and aluminum cylinders both agree quite well with numerical simulations. Most acoustic pressure fields within a frequency range 7 kHz-15 kHz can be measured in this waveguide when the required scanning region is smaller than the aluminum plate area (1800 mm × 800 mm).

  1. Fabrication of two-dimensional nanosheets via water freezing expansion exfoliation

    International Nuclear Information System (INIS)

    Li, Chen; Wang, Tailin; Wu, Yongzhong; Ma, Fukun; Zhao, Gang; Hao, Xiaopeng

    2014-01-01

    Layered materials, if exfoliated effectively, will exhibit several unique properties, offering great potential for diverse applications. To this end, in this study, we develop a novel, universal, and environmentally friendly method named as ‘water freezing expansion exfoliation’ for producing two-dimensional nanosheets. This method exploits the expansion in the volume of water upon freezing. When the water freezing expansion condition is reproduced in layered materials, the layers exfoliate to overcome the van der Waals force between them. The expansion process is performed by repeated cycling between 4 °C and −20 °C to effectively exfoliate layered materials of graphite, hexagonal boron nitride (h-BN), MoS 2 and WS 2 . Systematic characterization of the samples thus obtained using electron microscopy and optical studies substantiate the formation of thin flakes (graphene, h-BN, MoS 2 , and WS 2 nanosheets). The method demonstrated in this study is cost-effective and does not demand sophisticated equipment and stringent high temperature conditions. Given this general applicability, this method holds great promise for exfoliating layered materials that are sensitive to elevated temperature. (paper)

  2. The Response of Rice Root to Time Course Water Deficit Stress-Two Dimensional Electrophoresis Approach

    Directory of Open Access Journals (Sweden)

    Mahmood Toorchi

    2015-11-01

    Full Text Available Rice (Oryza sativa L. is the staple food of more than half of the population worldwide. Water deficit stress is one of the harsh limiting factors for successful production of crops. Rice during its growing period comes a cross different environmental hazards like drought stress. Recent advance in molecular physiology are promising for more progress in increasing rice yield by identification of novel candidate proteins for drought tolerance. To investigate the effect of water deficit on rice root protein expression pattern, an experiment was conducted in completely randomize design with four replications. With holding water for 24, 36 and 48 hours along with control constituted the experimental treatments. The experiment was conducted in growth chamber under controlled condition and root samples, after stress imposition, were harvested for two-dimensional electrophorese (2-DE. Proteome analysis of root tissue by 2-DE indicated that out of 135 protein spots diagnosed by Coomassie blue staining, 14 spots showed significant expression change under water deficit condition, seven of them at 1% and the other seven at 5% probability levels. Differentially changed proteins were taken into account for search in data bank using isoelectric point and molecular weight to identify the most probable responsive proteins. Up- regulation of ferredoxin oxidoreductase at first 24 hour after applying stress indicates the main role of this protein in reducing water deficit stress effects. On the other hand ribosomal proteins, GAP-3 and ATP synthase were down regulated under water deficit stress. Fructose 1,6-bisphosphate aldolase, glucose- 6-phosphate dehydrogenase and chitinase down regulated up to 36 h of stress imposition but, were later up- regulated by prolonging stress up to 48 h. It could be inferred the plant tries to decrease the effect of oxidative stress.

  3. Evaluation of 2D shallow-water model for spillway flow with a complex geometry

    Science.gov (United States)

    Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...

  4. A Study of Two-Dimensional Unsteady Breaking Waves in Finite-Depth Water

    Science.gov (United States)

    2010-01-01

    1880). [8] J. H. Duncan, “An experimental investigation of breaking waves produced by a towed hydrofoil ,” Proc. R. Soc. London, Ser. A 377, 331(1981...measured the drag per unit length due to quasi-steady breaking waves generated with a submerged hydrofoil . His measurements illustrated that the... hydrofoil . Proc. R. Soc. London Ser. A 377, 331-348. DUNCAN, J. H. 1983 The breaking and non-breaking wave resistance of a two- dimensional hydrofoil . J

  5. Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite-water interfaces

    OpenAIRE

    Miyazawa, Keisuke; Watkins, Matthew Benjamin; Shluger, Alexander L.; Fukuma, Takeshi

    2017-01-01

    Recent advancement in liquid-environment atomic force microscopy (AFM) has enabled us to visualize three-dimensional (3D) hydration structures as well as two-dimensional (2D) surface structures with subnanometer-scale resolution at solid-water interfaces. However, the influence of ions present in solution on the 2D- and 3D-AFM measurements has not been well understood. In this study, we perform atomic-scale 2D- and 3D-AFM measurements at fluorite-water interfaces in pure water and a supersatu...

  6. Full molecular dynamics simulations of liquid water and carbon tetrachloride for two-dimensional Raman spectroscopy in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Ju-Yeon, E-mail: ju8879@kuchem.kyoto-u.ac.jp; Ito, Hironobu, E-mail: h.ito@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp

    2016-12-20

    Frequency-domain two-dimensional (2D) Raman signals, which are equivalent to coherent two-dimensional Raman scattering (COTRAS) signals, for liquid water and carbon tetrachloride were calculated using an equilibrium–nonequilibrium hybrid molecular dynamics (MD) simulation algorithm. An appropriate representation of the 2D Raman spectrum obtained from MD simulations provides an easy-to-understand depiction of structural and dynamical properties. We elucidate mechanisms governing the 2D signal profiles involving anharmonic mode–mode coupling and the nonlinearities of the polarizability for the intermolecular and intramolecular vibrational modes. The predicted signal profiles and intensities can be utilized to analyze recently developed single-beam 2D spectra, whose signals are generated from a coherently controlled pulse, allowing the single-beam measurement to be carried out more efficiently. Moreover, the MD simulation results allow us to visualize the molecular structure and dynamics by comparing the accurately calculated spectrum with experimental result.

  7. Diurnal Temperature Cycles in Shallow Water Pools

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Paaijmans, K.P.; Heusinkveld, B.G.

    2006-01-01

    Larvas of malaria mosquito species live close to the water surface in shallow waters, and are exposed to water temperatures which differ considerably from the air or bulk water temperature. The present research aims to obtain a sound physical insight into processes which determine the water

  8. Measurement of two-dimensional thermal neutron flux in a water phantom and evaluation of dose distribution characteristics

    International Nuclear Information System (INIS)

    Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Horiguchi, Yoji

    2001-03-01

    To evaluate nitrogen dose, boron dose and gamma-ray dose occurred by neutron capture reaction of the hydrogen at the medical irradiation, two-dimensional distribution of the thermal neutron flux is very important because these doses are proportional to the thermal neutron distribution. This report describes the measurement of the two-dimensional thermal neutron distribution in a head water phantom by neutron beams of the JRR-4 and evaluation of the dose distribution characteristic. Thermal neutron flux in the phantom was measured by gold wire placed in the spokewise of every 30 degrees in order to avoid the interaction. Distribution of the thermal neutron flux was also calculated using two-dimensional Lagrange's interpolation program (radius, angle direction) developed this time. As a result of the analysis, it was confirmed to become distorted distribution which has annular peak at outside of the void, though improved dose profile of the deep direction was confirmed in the case which the radiation field in the phantom contains void. (author)

  9. Two-dimensional modeling of water and heat fluxes in green roof substrates

    Science.gov (United States)

    Suarez, F. I.; Sandoval, V. P.

    2016-12-01

    Due to public concern towards sustainable development, greenhouse gas emissions and energy efficiency, green roofs have become popular in the last years. Green roofs integrate vegetation into infrastructures to reach additional benefits that minimize negative impacts of the urbanization. A properly designed green roof can reduce environmental pollution, noise levels, energetic requirements or surface runoff. The correct performance of green roofs depends on site-specific conditions and on each component of the roof. The substrate and the vegetation layers strongly influence water and heat fluxes on a green roof. The substrate is an artificial media that has an improved performance compared to natural soils as it provides critical resources for vegetation survival: water, nutrients, and a growing media. Hence, it is important to study the effects of substrate properties on green roof performance. The objective of this work is to investigate how the thermal and hydraulic properties affect the behavior of a green roof through numerical modeling. The substrates that were investigated are composed by: crushed bricks and organic soil (S1); peat with perlite (S2); crushed bricks (S3); mineral soil with tree leaves (S4); and a mixture of topsoil and mineral soil (S5). The numerical model utilizes summer-arid meteorological information to evaluate the performance of each substrate. Results show that the area below the water retention curve helps to define the substrate that retains more water. In addition, the non-linearity of the water retention curve can increment the water needed to irrigate the roof. The heat propagation through the roof depends strongly on the hydraulic behavior, meaning that a combination of a substrate with low thermal conductivity and more porosity can reduce the heat fluxes across the roof. Therefore, it can minimize the energy consumed of an air-conditioner system.

  10. Two-dimensional modeling of water spray cooling in superheated steam

    Directory of Open Access Journals (Sweden)

    Ebrahimian Vahid

    2008-01-01

    Full Text Available Spray cooling of the superheated steam occurs with the interaction of many complex physical processes, such as initial droplet formation, collision, coalescence, secondary break up, evaporation, turbulence generation, and modulation, as well as turbulent mixing, heat, mass and momentum transfer in a highly non-uniform two-phase environment. While it is extremely difficult to systematically study particular effects in this complex interaction in a well defined physical experiment, the interaction is well suited for numerical studies based on advanced detailed models of all the processes involved. This paper presents results of such a numerical experiment. Cooling of the superheated steam can be applied in order to decrease the temperature of superheated steam in power plants. By spraying the cooling water into the superheated steam, the temperature of the superheated steam can be controlled. In this work, water spray cooling was modeled to investigate the influences of the droplet size, injected velocity, the pressure and velocity of the superheated steam on the evaporation of the cooling water. The results show that by increasing the diameter of the droplets, the pressure and velocity of the superheated steam, the amount of evaporation of cooling water increases. .

  11. Crop growth and two dimensional modeling of soil water transport in drip irrigated potatoes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Iversen, Bo Vangsø; Mollerup, Mikkel

    2009-01-01

    Drip irrigation can be an effective way to improve water and nitrogen use efficiency in soil and hence to reduce the environmental pollution. In the EU project SAFIR ( http://www.safir4eu.org/ ) a potato experiment was carried out in lysimeters on three different soil types: coarse sand, loamy sand...... and sandy loam. An automatic roof was used to exclude the lysimeters from natural precipitation. The potatoes were drip irrigated following different strategies: Fully irrigated (FI), deficit irrigation (65% FI), and partial root zone drying (PRD). Gas exchange measurements were carried as well as sampling...... of abscisic acid (ABA). Model outputs from the mechanistic simulation model Daisy, in SAFIR developed to include 2D soil processes and gas exchange processes based on Ball et al. and Farquhar were compared with measured crop dynamics, final DM yield and volumetric water content in the soil measured by TDR...

  12. Water adsorption-desorption isotherms of two-dimensional hexagonal mesoporous silica around freezing point.

    Science.gov (United States)

    Endo, Akira; Yamaura, Toshio; Yamashita, Kyohei; Matsuoka, Fumio; Hihara, Eiji; Daiguji, Hirofumi

    2012-02-01

    Zr-doped mesoporous silica with a diameter of approximately 3.8 nm was synthesized via an evaporation-induced self-assembly process, and the adsorption-desorption isotherms of water vapor were measured in the temperature range of 263-298 K. The measured adsorption-desorption isotherms below 273 K indicated that water confined in the mesopores did not freeze at any relative pressure. All isotherms had a steep curve, resulting from capillary condensation/evaporation, and a pronounced hysteresis. The hysteresis loop, which is associated with a delayed adsorption process, increased with a decrease in temperature. Furthermore, the curvature radius where capillary evaporation/condensation occurs was evaluated by the combined Kelvin and Gibbs-Tolman-Koening-Buff (GTKB) equations for the modification of the interfacial tension due to the interfacial curvature. The thickness of the water adsorption layer for capillary condensation was slightly larger, whereas that for capillary evaporation was slightly smaller than 0.7 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    Science.gov (United States)

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  14. Engineering Two-Dimensional Transition Metal Dichalcogenide Catalysts for Water-Splitting Hydrogen Generation

    DEFF Research Database (Denmark)

    Cao, Xianyi; Tang, Yingying; Duus, Jens Øllgaard

    2017-01-01

    -friendly character and high renewability during its production and combustion processes. The development of green electricity powered H2 production techniques is a highly competitive solution to meet current energy and environmental challenges. Among different industrial approaches for H2 production, platinum...... supported electrocatalytic water splitting via hydrogen evolution reaction (HER) is a rather mature technique. However, it has been increasingly demanded to explore high-performance, earth-abundant and cost-effective HER electrocatalysts that can further improve energy efficiency and bring down production......Development of advanced energy conversion and storage technologies is essential for optimizing the integration of sustainable energy resources into current-running power grid systems. As one of the key energy-storage carriers, hydrogen (H2) possesses ultrahigh gravimetric energy density, eco...

  15. Floating offshore wind turbines for shallow waters

    NARCIS (Netherlands)

    Bulder, B.H.; Henderson, A.; Huijsmans, R.H.M.; Peeringa, J.M.; Pierik, J.T.G.; Snijders, E.J.B.; Hees, M.Th. van; Wijnants, G.H.; Wolf, M.J.

    2003-01-01

    Bottom mounted Offshore wind turbines seem to have a promising future but they are restricted to shallow waters of Northern Europe. Many projects are planned or are in the phase of construction on the North Sea and the Baltic Sea. All projects that are planned have a water depth up to approximately

  16. A two-dimensional fuel loading optimization method for the pressurized water reactor burnup cycle

    International Nuclear Information System (INIS)

    Stillman, J.A.; Chao, Y.A.; Downar, T.J.

    1989-01-01

    A method was developed and reported earlier that determines the optimum fuel and power distributions for a pressurized water reactor (PWR) burnup cycle. The backward diffusion calculation and the corewise Green's function method were used for the core model, which provided analytic derivatives for solving the nonlinear optimization problem using successive linear programming methods. The solution algorithm consisted of a reverse depletion strategy that begins at the end of cycle and solves simultaneously for the optimal fuel and burnable absorber distributions while the core is depleted to the beginning of cycle. These distributions were constrained by a maximum fuel power peaking and by the fuel and burnable absorber depletion characteristics. Additionally, the problem was formulated to consider specific numbers of feed and discharge assemblies by including penalty terms in the objective function. The resulting optimal solutions were shown to minimize the required fissile fuel inventory and burnable absorber lading for several PWR examples. Previously reported solutions were not required to meet some specified fuel batch size; therefore, the optimal solutions did not represent practical PWR problems. The purpose of the work reported in this paper is to investigate the effect of imposing batch size constraints on the optimization problem. Specifically, results are presented here for the case of a core consisting of three equal-sized fuel batches in which an equilibrium condition is imposed on the batch average burnups

  17. Shallow water sound propagation with surface waves.

    Science.gov (United States)

    Tindle, Chris T; Deane, Grant B

    2005-05-01

    The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.

  18. An analysis of infiltration with moisture content distribution in a two-dimensional discretized water content domain

    KAUST Repository

    Yu, Han

    2014-06-11

    On the basis of unsaturated Darcy\\'s law, the Talbot-Ogden method provides a fast unconditional mass conservative algorithm to simulate groundwater infiltration in various unsaturated soil textures. Unlike advanced reservoir modelling methods that compute unsaturated flow in space, it only discretizes the moisture content domain into a suitable number of bins so that the vertical water movement is estimated piecewise in each bin. The dimensionality of the moisture content domain is extended from one dimensional to two dimensional in this study, which allows us to distinguish pore shapes within the same moisture content range. The vertical movement of water in the extended model imitates the infiltration phase in the Talbot-Ogden method. However, the difference in this extension is the directional redistribution, which represents the horizontal inter-bin flow and causes the water content distribution to have an effect on infiltration. Using this extension, we mathematically analyse the general relationship between infiltration and the moisture content distribution associated with wetting front depths in different bins. We show that a more negatively skewed moisture content distribution can produce a longer ponding time, whereas a higher overall flux cannot be guaranteed in this situation. It is proven on the basis of the water content probability distribution independent of soil textures. To illustrate this analysis, we also present numerical examples for both fine and coarse soil textures.

  19. Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite-water interfaces

    Science.gov (United States)

    Miyazawa, K.; Watkins, M.; Shluger, A. L.; Fukuma, T.

    2017-06-01

    Recent advancement in liquid-environment atomic force microscopy (AFM) has enabled us to visualize three-dimensional (3D) hydration structures as well as two-dimensional (2D) surface structures with subnanometer-scale resolution at solid-water interfaces. However, the influence of ions present in solution on the 2D- and 3D-AFM measurements has not been well understood. In this study, we perform atomic-scale 2D- and 3D-AFM measurements at fluorite-water interfaces in pure water and a supersaturated solution of fluorite. The images obtained in these two environments are compared to understand the influence of the ions in solution on these measurements. In the 2D images, we found clear difference in the nanoscale structures but no significant difference in the atomic-scale contrasts. However, the 3D force images show clear difference in the subnanometer-scale contrasts. The force contrasts measured in pure water largely agree with those expected from the molecular dynamics simulation and the solvent tip approximation model. In the supersaturated solution, an additional force peak is observed over the negatively charged fluorine ion site. This location suggests that the observed force peak may originate from cations adsorbed on the fluorite surface. These results demonstrate that the ions can significantly alter the subnanometer-scale force contrasts in the 3D-AFM images.

  20. Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids

    Directory of Open Access Journals (Sweden)

    Sudi Mungkasi

    2016-01-01

    Full Text Available This paper presents a numerical entropy production (NEP scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.

  1. Validation of ANUGA hydraulic model using exact solutions to shallow water wave problems

    International Nuclear Information System (INIS)

    Mungkasi, S; Roberts, S G

    2013-01-01

    ANUGA is an open source and free software developed by the Australian National University (ANU) and Geoscience Australia (GA). This software is a hydraulic numerical model used to solve the two-dimensional shallow water equations. The numerical method underlying it is a finite volume method. This paper presents some validation results of ANUGA with respect to exact solutions to shallow water flow problems. We identify the strengths of ANUGA and comment on future work that may be taken into account for ANUGA development.

  2. State of the water in crosslinked sulfonated poly(ether ether ketone). Two-dimensional differential scanning calorimetry correlation mapping

    Energy Technology Data Exchange (ETDEWEB)

    Al Lafi, Abdul G. [Department of Chemistry, Atomic Energy Commission, Damascus, P.O. Box 6091 (Syrian Arab Republic); Hay, James N., E-mail: cscientific9@aec.org.sy [The School of Metallurgy and Materials, College of Physical Sciences and Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-07-20

    Highlights: • 2D-DSC mapping was applied to analyze the heat flow responses of hydrated crosslinked sPEEK. • Two types of loosely bond water were observed. • The first was bond to the sulfonic acid groups and increased with ion exchange capacity. • The second was attributed to the polar groups introduced by ions irradiation and increased with crosslinking degree. • DSC combined with 2D mapping provides a powerful tool for polymer structural determination. - Abstract: This paper reports the first application of two-dimensional differential scanning calorimetry correlation mapping, 2D-DSC-CM to analyze the heat flow responses of sulphonated poly(ether ether ketone), sPEEK, films having different ion exchange capacity and degrees of crosslinks. With the help of high resolution and high sensitivity of 2D-DSC-CM, it was possible to locate two types of loosely bound water within the structure of crosslinked sPEEK. The first was bound to the sulfonic acid groups and dependent on the ion exchange capacity of the sPEEK. The second was bound to other polar groups, either introduced by irradiation with ions and dependent on the crosslinking degree or present in the polymer such as the carbonyl groups or terminal units. The results suggest that the ability of the sulfonic acid groups in the crosslinked sPEEK membranes to adsorb water molecules is increased by crosslinking, probably due to the better close packing efficiency of the crosslinked samples. DSC combined with 2D correlation mapping provides a fast and powerful tool for polymer structural determination.

  3. Groundwater Recharge in Sandy Shallow Water Aquifers

    Science.gov (United States)

    Jaber, F. H.; Shukla, S.

    2015-12-01

    In shallow table conditions, a disproportionate increase or decrease in water table in response to minor water input or drainage is observed. This increase happens because the capillary fringe of the shallow water table reaches up to or near the surface (Wieringermeer effect). Conventional methods of calculating recharge such as multiplying the actual specific yield with the water table fluctuations cannot be used for Wieringermeer effect situations. A method using water balance data and soil moisture at different depths in the lysimeters was developed to estimate recharge and upflux. The recharge results were used to develop the apparent specific yield (Sya), which could be used to calculate consequent recharge events from water table fluctuations data. The correlations between water table level changes and rainfall, seepage irrigation, drip irrigation, and drainage were analyzed. Correlations with rainfall, seepage irrigation, and drainage were satisfactory (R-square ranged from 0.46 to 0.97). Combining the water tables fluctuations relationships developed with Sya value will allow the prediction of recharge from rainfall and irrigation events without the need for soil moisture equipment.

  4. The solution of the dam-break problem in the Porous Shallow water Equations

    Science.gov (United States)

    Cozzolino, Luca; Pepe, Veronica; Cimorelli, Luigi; D'Aniello, Andrea; Della Morte, Renata; Pianese, Domenico

    2018-04-01

    The Porous Shallow water Equations are commonly used to evaluate the propagation of flooding waves in the urban environment. These equations may exhibit not only classic shocks, rarefactions, and contact discontinuities, as in the ordinary two-dimensional Shallow water Equations, but also special discontinuities at abrupt porosity jumps. In this paper, an appropriate parameterization of the stationary weak solutions of one-dimensional Porous Shallow water Equations supplies the inner structure of the porosity jumps. The exact solution of the corresponding dam-break problem is presented, and six different wave configurations are individuated, proving that the solution exists and it is unique for given initial conditions and geometric characteristics. These results can be used as a benchmark in order to validate one- and two-dimensional numerical models for the solution of the Porous Shallow water Equations. In addition, it is presented a novel Finite Volume scheme where the porosity jumps are taken into account by means of a variables reconstruction approach. The dam-break results supplied by this numerical scheme are compared with the exact dam-break results, showing the promising capabilities of this numerical approach. Finally, the advantages of the novel porosity jump definition are shown by comparison with other definitions available in the literature, demonstrating its advantages, and the issues raising in real world applications are discussed.

  5. Two-dimensional, steady-state model of ground-water flow, Nevada Test Site and vicinity, Nevada-California

    Science.gov (United States)

    Waddell, R.K.

    1982-01-01

    A two-dimensional, steady-state model of ground-water flow beneath the Nevada Test Site and vicinity has been developed using inverse techniques. The area is underlain by clastic and carbonate rocks of Precambrian and Paleozoic age and by volcanic rocks and alluvium of Tertiary and Quaternary age that have been juxtaposed by normal and strike-slip faulting. Aquifers are composed of carbonate and volcanic rocks and alluvium. Characteristics of the flow system are determined by distribution of low-conductivity rocks (barriers); by recharge originating in the Spring Mountains, Pahranagat, Timpahute, and Sheep Ranges, and in Pahute Mesa; and by underflow beneath Pahute Mesa from Gold Flat and Kawich Valley. Discharge areas (Ash Meadows, Oasis Valley, Alkali Flat, and Furnace Creek Ranch) are upgradient from barriers. Sensitivities of simulated hydraulic heads and fluxes to variations in model parameters were calculated to guide field studies and to help estimate errors in predictions from transport modeling. Hydraulic heads and fluxes are very sensitive to variations in the greater magnitude recharge/discharge terms. Transmissivity at a location may not be the most important transmissivity for determining flux there. Transmissivities and geometries of large barriers that impede flow from Pahute Mesa have major effects on fluxes elsewhere; as their transmissivities are decreased, flux beneath western Jackass Flats and Yucca Mountains is increased as water is diverted around the barriers. Fortymile Canyon is underlain by highly transmissive rocks that cause potentiometric contours to vee upgradient; increasing their transmissivity increases flow through them, and decreases it beneath Yucca Mountain. (USGS)

  6. Relaxation schemes for the shallow water equations

    Science.gov (United States)

    Delis, A. I.; Katsaounis, Th.

    2003-03-01

    We present a class of first and second order in space and time relaxation schemes for the shallow water (SW) equations. A new approach of incorporating the geometrical source term in the relaxation model is also presented. The schemes are based on classical relaxation models combined with Runge-Kutta time stepping mechanisms. Numerical results are presented for several benchmark test problems with or without the source term present.

  7. Shallow Water Laser Bathymetry: Accomplishments and Applications

    Science.gov (United States)

    2016-05-12

    Swedish Hydrographic Department, and the Royal Australian Navy’s "LADS" program. The motivation to develop ALB technique to operational status is...small operational windows, or shallow areas unsuited to conventional surveying techniques. ALB also offers, as standard , the benefit of virtually...elapsed time between these two reflection/scattering events and the known speed of light in water, after accounting for the operating geometry and

  8. Implementation and Design of a Shallow Water Imaging System

    National Research Council Canada - National Science Library

    Driscoll, Neal

    1998-01-01

    ... and inadequate shallow water sonar technology. Improved geophysical imaging of the preserved stratigraphy in shallow water regions is critical to determining the transfer functions between high-frequency sedimentary processes and the formation...

  9. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  10. Deep Water, Shallow Water: Marine Animal Homes.

    Science.gov (United States)

    Soltow, Willow

    1984-01-01

    Examines the diversity of life in the oceans and ways in which teachers can explore ocean habitats with their students without leaving the classroom. Topic areas considered include: restricted habitats, people and marine habitats, pollution, incidental kills, and the commercial and recreational uses of marine waters. (JN)

  11. An improved shallow water equation model for water animation

    Science.gov (United States)

    Ai, Mingjing; Du, Anding; Xu, Han; Niu, Jianwei

    2017-03-01

    In this paper, we proposed a new scheme for simulating water flows under shallow water assumption. The method is an extension of traditional shallow water equations. In contrast to traditional methods, we design a dynamic coordinate system for modeling in order to efficiently simulate water flows. Within this system, we derive our specialized shallow water equations directly from the Navier-Stockes equation. At the same time, we develop an implicit mechanism for solving the advection term and a vector projection operator for solving the external forces acting on water. We also present a two-way coupling method for simulating the interaction between water and rigid solid. The experimental results show that the proposed scheme can achieve a more realistic and accurate water model compared with the traditional methods, especially when the solid surfaces are too steep. Also we demonstrate the efficiency of our method in several scenes, all run at least 50 frames per second on average which allows real-time simulation.

  12. AQMAN; linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling

    Science.gov (United States)

    Lefkoff, L.J.; Gorelick, S.M.

    1987-01-01

    A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)

  13. Hydrochemistry of shallow groundwater and surface water in the ...

    African Journals Online (AJOL)

    This study was conducted on the hydrochemistry of shallow groundwater and surface water in the Ndop plain, North West Cameroon. The objectives were to determine the physico-chemical characteristics of water, controls on water chemistry and suitability for drinking and irrigation. Forty-six shallow groundwater and 26 ...

  14. Integrable two dimensional supersystems

    International Nuclear Information System (INIS)

    Tripathy, K.C.; Tripathy, L.K.

    1988-08-01

    The integrability of two dimensional time-dependent classical systems is examined in N=2 superspace using Dirac's second class constraints. The invariants involving quadratic powers in velocities for super harmonic oscillator and super Kepler potentials have been derived. (author). 5 refs

  15. Shallow-water loading tides in Japan from superconducting gravimetry

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Hoyer, J.L.

    2004-01-01

    Gravity observations from superconducting gravimeters are used to observe loading effects from shallow-water tides on the Japanese cast and west coasts. Non-linear third-diurnal and higher-frequency shallow-water tides are identified in the tide-gauge observations from these coastal areas. The mo...

  16. Analysis of the Numerical Solution of the Shallow Water Equations

    National Research Council Canada - National Science Library

    Hamrick, Thomas

    1997-01-01

    .... The two schemes are finite difference method (FDM) and the finite element method (FEM). After presenting the shallow water equations in several formulations, some examples will be presented. The use of the Fourier transform to find the solution of a semidiscrete analog of the shallow water equations is also demonstrated.

  17. Shallow water currents during Hurricane Andrew

    Science.gov (United States)

    Keen, Timothy R.; Glenn, Scott M.

    1999-10-01

    Oceanographic measurements are used in combination with a numerical model to examine the influence of stratification on shallow water currents during the directly forced stage of a tropical cyclone (Hurricane Andrew) on the continental shelf. The following stratification-dependent coastal processes are examined: (1) turbulent mixing, (2) coastally trapped waves, (3) near-inertial oscillations, and (4) upwelling and downwelling. Turbulent mixing was strong within 1 Rw (radius of maximum winds) of the storm track, and stratification was nearly destroyed. Turbulent mixing was weak at distances greater than 2 Rw. The dominant coastal wave was a barotropic Kelvin wave generated as the storm surge relaxed after landfall. Baroclinic near-inertial oscillations were dominant at the shelf break and occurred along with a barotropic response on the middle shelf. Downwelling-favorable flow developed east of the track prior to the storm peak, and upwelling-favorable flow evolved west of the track as the eye crossed the shelf. The idealized storm flow was modified by local barotropic and baroclinic pressure gradients on the shelf. Ocean circulation during Hurricane Andrew was hindcast using both stratified and unstratified three-dimensional numerical models. For areas within 1 Rw of the storm track, the unstratified model matched the observed currents better than the stratified model, partly because of errors in the initial stratification. At distances greater than 2 Rw the influence of stratification increases, and the unstratified model does not reproduce the observed upwelling-favorable flow.

  18. HF Radar Sea-echo from Shallow Water

    Directory of Open Access Journals (Sweden)

    Josh Kohut

    2008-08-01

    Full Text Available HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information far more than first-order (which gives information on current velocities, the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.

  19. Two-Dimensional Layered Double Hydroxide Derived from Vermiculite Waste Water Supported Highly Dispersed Ni Nanoparticles for CO Methanation

    Directory of Open Access Journals (Sweden)

    Panpan Li

    2017-03-01

    Full Text Available Expanded multilayered vermiculite (VMT was successfully used as catalyst support and Ni/VMT synthesized by microwave irradiation assisted synthesis (MIAS exhibited excellent performance in our previous work. We also developed a two-dimensional porous SiO2 nanomesh (2D VMT-SiO2 by mixed-acid etching of VMT. Compared with three-dimensional (3D MCM-41, 2D VMT-SiO2 as a catalyst support provided a superior position for implantation of NiO species and the as-obtained catalyst exhibited excellent performance. In this paper, we successfully synthesized a layered double hydroxide (LDH using the spent liquor after mixed-acid etching of VMT, which mainly contained Mg2+ and Al3+. The as-calcined layered double oxide (LDO was used as a catalyst support for CO methanation. Compared with Ni/MgAl-LDO, Ni/VMT-LDO had smaller active component particles; therefore, in this study, it exhibited excellent catalytic performance over the whole temperature range of 250–500 °C. Ni/VMT-LDO achieved the best activity with 87.88% CO conversion, 89.97% CH4 selectivity, and 12.47 × 10−2·s−1 turn over frequency (TOF at 400 °C under a gas hourly space velocity of 20,000 mL/g/h. This study demonstrated that VMT-LDO as a catalyst support provided an efficient way to develop high-performance catalysts for synthetic natural gas (SNG from syngas.

  20. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  1. On-line dynamic two-dimensional admicelles solvent extraction coupled to electrothermal atomic absorption spectrometry for determination of chromium(VI) in drinking water

    International Nuclear Information System (INIS)

    Nan Jing; Yan Xiuping

    2005-01-01

    An on-line dynamic two-dimensional admicelles solvent extraction system was coupled to electrothermal atomic absorption spectrometry (ETAAS) for determination of Cr(VI) in drinking water. As a two-dimensional solvent, admicelles were on-line-prepared by passing cetyltrimethylammonium bromide (CTAB) through a microcolumn packed with silica gel. The analyte Cr(VI) was on-line-complexed with pyrrolidine dithiocarbamate (PDC), and the resulting Cr(VI)-PDC was effectively adsolubilized in the admicelles of the microcolumn, and then quantitatively eluted with 30 μl of acetonitrile for ETAAS determination. All the procedures including the formation and decomposition of admicelles and ETAAS determination were performed on-line, ensuring automatic determination of Cr(VI) in drinking water with a high precision. With a consumption of 2.1 ml sample solution, a detection limit (3σ) of 3.0 ng l -1 , and an enhancement factor of 32 were obtained at a sample throughput of 31 samples h -1 . The precision (R.S.D.) for 11 replicate measurements of 50 ng l -1 Cr(VI) was 2.5%. The developed methodology was demonstrated to be reliable and sensitive for automatic determination of ultratrace Cr(VI) in bottled drinking water samples

  2. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  3. Shallow-water loading tides in Japan from superconducting gravimetry

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Hoyer, J.L.

    2004-01-01

    energetic constituents in the tide gauge observations are also seen in the gravity observations due to their loading effects on the deformation of the Earth. Even though the shallow-water tides at the Japanese east coast have an amplitude of only a few millimetres. they are still able to Generate a loading...... signal at gravity sites located several hundred kilometres inland. In particular, the S-3, S-4 and S-5 solar tides occur in both gravity and tide gauge observations. It is indicated that in other shelf regions with large shallow water tides, the shallow water loading signals account for a significant...

  4. Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy

    NARCIS (Netherlands)

    Zhang, Z.; Piatkowski, L.; Bakker, H.J.; Bonn, M.

    2011-01-01

    Water is very different from liquids of similar molecular weight, and one of its unique properties is the very efficient transfer of vibrational energy between molecules, which arises as a result of strong dipole-dipole interactions between the O-H oscillators. Although we have a sound understanding

  5. Image analysis method for the measurement of water saturation in a two-dimensional experimental flow tank

    Science.gov (United States)

    Belfort, Benjamin; Weill, Sylvain; Lehmann, François

    2017-07-01

    A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.

  6. Total Shallow-Water Survey Through Airborne Hydrography

    National Research Council Canada - National Science Library

    Wozencraft, Jennifer M; Lillycrop, W. J

    2002-01-01

    Eight years of SHOALS (Scanning Hydrographic Operational Airborne Lidar Survey) operations have proven that airborne bathymetric lidar is an ideal tool for rapidly measuring shallow water depths and nearshore land elevations...

  7. Shallow-Water Benthic Habitats of Southwest Puerto Rico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  8. Shallow-water Benthic Habitats in Jobos Bay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of Jobos Bay, Puerto Rico were mapped and characterized using visual interpretation...

  9. Indicators: Shallow Water Habitat/In-stream Fish Habitat

    Science.gov (United States)

    Shallow water habitat, also referred to as in-stream fish habitat, refers to areas that fish and other aquatic organisms need for concealment, breeding and feeding. This includes large woody snags, boulders, rock ledges, and undercut banks.

  10. Determination of steroids, caffeine and methylparaben in water using solid phase microextraction-comprehensive two dimensional gas chromatography-time of flight mass spectrometry.

    Science.gov (United States)

    Lima Gomes, Paulo C F; Barnes, Brian B; Santos-Neto, Álvaro J; Lancas, Fernando M; Snow, Nicholas H

    2013-07-19

    Analysis of several emerging contaminants (steroids, caffeine and methylparaben) in water using automated solid-phase microextraction with comprehensive two dimensional gas chromatography coupled to time of flight mass spectrometry (SPME-GCxGC-ToF/MS) is presented. Experimental design was used to determine the best SPME extraction conditions and the steroids were not derivatized prior to injection. SPME-GCxGC-ToF/MS provided linear ranges from 0.6 to 1200μgL(-1) and limits of detection and quantitation from 0.02 to 100μgL(-1). A series of river water samples obtained locally were subjected to analysis. SPME-GCxGC-ToF/MS is readily automated, straightforward and competitive with other methods for low level analysis of emerging contaminants. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Irreversible Conversion of a Water-Ethanol Solution into an Organized Two-Dimensional Network of Alternating Supramolecular Units in a Hydrophobic Zeolite under Pressure.

    Science.gov (United States)

    Arletti, Rossella; Fois, Ettore; Gigli, Lara; Vezzalini, Giovanna; Quartieri, Simona; Tabacchi, Gloria

    2017-02-13

    Turning disorder into organization is a key issue in science. By making use of X-ray powder diffraction and modeling studies, we show herein that high pressures in combination with the shape and space constraints of the hydrophobic all-silica zeolite ferrierite separate an ethanol-water liquid mixture into ethanol dimer wires and water tetramer squares. The confined supramolecular blocks alternate in a binary two-dimensional (2D) architecture that remains stable upon complete pressure release. These results support the combined use of high pressures and porous networks as a viable strategy for driving the organization of molecules or nano-objects towards complex, pre-defined patterns relevant for the realization of novel functional nanocomposites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  13. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water

    International Nuclear Information System (INIS)

    Blake, R W

    2009-01-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number (∼0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive

  14. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water.

    Science.gov (United States)

    Blake, R W

    2009-03-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ( approximately 0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid

  15. Design of measuring instrument with whole direct method for bed shear stress under two-dimensional water-flow co-action

    Science.gov (United States)

    Huang, Hai-long; Zuo, Qi-hua; Zhou, Yi-ren; Shen, Yu-sheng; Li, Lan-xi

    2016-12-01

    The present study aims at the design and making of measuring instrument of whole direct method for bed shear stress under two-dimensional water-flow co-action. The instrument combines the traditional strain gauge with a precise pressure gauge, and adopts the method directly measuring the difference between the lateral hydrodynamic pressure and different head pressures on both sides of the force plate. As a result, such an instrument solves a technical puzzle of the past strain gauge, i.e. the difficulty to set apart shear stress and lateral force. Static force test and sink test both prove that the instrument is precise, stable and applicable to the measurement of rough beds with different shear stresses.

  16. Flexible riser global analysis for very shallow water

    OpenAIRE

    Karegar, Sadjad

    2013-01-01

    Master's thesis in Offshore technology Flexible risers are widely used for a range of water depths and can accommodate large floater motions when using a buoyant system. A wide range of buoyancy solutions have been developed for very shallow water (e.g. 30-50 m), shallow water (e.g. 90-110 m) and semi-deep water (e.g. 300-400 m) and in the ranges between these depths. Flexible risers can have different configurations. These different solutions have different characteristics which influe...

  17. Seepage water balance of the mixed tailings site IAA Dresden-Coschuetz/Gittersee by means of the two-dimensional model BOWAHALD

    International Nuclear Information System (INIS)

    Helling, C.; Dunger, V.

    1998-01-01

    Uranium mill tailings were deposited in a section of the Kaitzbach valley which was closed by tow dams. The Kaitzbach creek was cased in the area. After the uranium ore processing was finish the dump was used as a municipal waste deposit. The water balance of the IAA Dresden-Coschuetz/Gittersee was only estimated in former works. In this case a modeling of the water balance is very useful in regard to a process orientated quantification of the contaminant transport within the dump as well as into the underground. Simplified and rough estimating methods such as the runoff coefficient concept or rating curves are less suited because of the complexity of the processes. That's why we tried to get a runoff and seepage water balance by means of a two-dimensional water balance model for waste heaps called BOWAHALD. The tailings site IAA Dresden-Coschuetz/Gittersee was divited into several hydrotopes (areas with similar hydrological characteristics). Different exposition and slopes as well as different soils and vegetation were taken into account. The parameter verification is possible due to comparison with available data such hydrochemical and isotopic analysis of seepage water and groundwater. (orig.)

  18. Turbulence modeling of transverse flow on ship hulls in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsen, Ken-Robert Gjelstad

    2010-09-15

    The hydrodynamic forces acting on a ship that travels in restricted water vary greatly with water depth and the geometry of the ship hull. This will affect the ship maneuverability in terms of various flow effects like for instance squat, when the ship is sucked down towards the seabed due to a pressure drop on the hull at forward speed. It is, thus, important to gain detailed knowledge on these aspects of marine engineering. The problem is in the present work addressed through a numerical investigation of turbulent transverse flow on two-dimensional ship sections in shallow water. The numerical code is validated against traditional flow problems in the literature. Namely, the Backward-facing step (BFS) and the Smoothly-contoured ramp (SCR). 2D and 3D laminar flows and 2D low Reynolds number turbulent flows are calculated, and the results are found to be in good agreement with the previous numerical and experimental comparison data. The turbulence model used in the calculations is the one-equation Spalart-Allmaras model. The overall goal of achieving more efficient and accurate numerical schemes will always be in focus of code development. Adaptive mesh refinement (AMR) is then a very helpful tool to save both time for grid generation prior to the calculations in question and the CPU hours needed to solve the governing equations. The latter is even more evident in a parallel environment. These aspects are included in the present investigation as part of the process to adapt and investigate a CFD tool suitable to handle turbulent flows on a ship hull in shallow water. Several physical and numerical parameters are included in the present study and the Plackett-Burman screening design is utilized to efficiently analyze the results. With the latter method, a simple function for calculating the drag force on a two-dimensional ship section as function of the given parameters has been obtained. (Author)

  19. Two-dimensional LIF measurements of humidity and OH density resulting from evaporated water from a wet surface in plasma for medical use

    International Nuclear Information System (INIS)

    Yagi, Ippei; Ono, Ryo; Oda, Tetsuji; Takaki, Koichi

    2015-01-01

    In plasma medicine, plasma is applied to a wet surface and is often accompanied by dry-gas flow. The dry-gas flow affects water evaporation from the wet surface and influences production of reactive species derived from water vapor, such as OH radicals. In this study, the effect of the dry-gas flow on two-dimensional distributions of humidity and OH radical density are examined by measuring them using laser-induced fluorescence (LIF). First, humidity is measured when nitrogen flows from a quartz tube of 4 mm inner diameter onto distilled water and agar media from 5 mm distance. NO gas is added to the nitrogen as a tracer and humidity is obtained from the quenching rate of NO molecules measured using LIF. This measurement has a spatial resolution of 0.2 mm 3 and a temporal resolution of less than 220 ns. The two-dimensional humidity distribution shows that the dry-gas flow pushes away water vapor evaporating from the wet surface. As a result, a low-humidity region is formed near the quartz tube nozzle and a high-humidity region is formed near the wet surface. The thickness of the low-humidity region reduces with increasing gas flow rate. It is 0.1–0.5 mm for the flow rate of higher than 0.3 l min −1 . Next, the OH density is measured when a nanosecond pulsed streamer discharge is applied to a distilled water surface with dry-air flow. The OH density decreases with increasing gas flow rate due to decreased humidity. When the flow rate is lower than 0.1 l min −1 , the OH distribution is approximately uniform in the plasma region, while the humidity distribution shows a large gradient. The importance of the thin high-humidity region on the flux of reactive species onto the wet surface is discussed. (paper)

  20. PHYSICO-CHEMICAL QUALITY OF SHALLOW WELL-WATERS IN ...

    African Journals Online (AJOL)

    Water quality and the problem of contamination in shallow wells have been assessed in Gboko. Ten wells were sampled and the water analysed for quality parameters and trace metals. Various standard methods were used for anions while trace metals were analysed using atomic absorption spectrophotometer. Results ...

  1. Physico - Chemical Quality of Ground Water from Shallow Wells in ...

    African Journals Online (AJOL)

    A total of fifteen shallow well water samples were randomly collected and analyzed for an assessment of its potability and suitability for domestic purposes. Results obtained indicate that the ground water is slightly acidic to moderately alkaline (5.70< PH <8.10), hard to very hard, (124.7 – 256 mg/l), colourless, and odorless.

  2. Central-Upwind Schemes for Two-Layer Shallow Water Equations

    KAUST Repository

    Kurganov, Alexander

    2009-01-01

    We derive a second-order semidiscrete central-upwind scheme for one- and two-dimensional systems of two-layer shallow water equations. We prove that the presented scheme is well-balanced in the sense that stationary steady-state solutions are exactly preserved by the scheme and positivity preserving; that is, the depth of each fluid layer is guaranteed to be nonnegative. We also propose a new technique for the treatment of the nonconservative products describing the momentum exchange between the layers. The performance of the proposed method is illustrated on a number of numerical examples, in which we successfully capture (quasi) steady-state solutions and propagating interfaces. © 2009 Society for Industrial and Applied Mathematics.

  3. Homochiral oligopeptides by chiral amplification within two-dimensional crystalline self-assemblies at the air-water interface; Relevance to biomolecular handedness

    DEFF Research Database (Denmark)

    Weissbuch, I.; Zepik, H.; Bolbach, G.

    2003-01-01

    -assembled into two-dimensional (2D) ordered crystallites at the air-aqueous solution interface. As model systems we studied NE-stearoyl-lysine thioethyl ester (C-18-TE-Lys), gamma-stearyl-glutamic thioethyl ester (C-18-TE-Glu), N-alpha-carboxyanhydride of gamma-stearyl-glutamic acid (C-18-Glu NCA) and gamma......-stearyl-glutamic thioacid (C-18-thio-Glu). According to insitu grazing incidence X-ray diffraction measurements on the water surface, (R,S)-C-18-TE-Lys, (RA-C-18-TE-Glu, and (R,S)-C-18-Glu-NCA amphiphiles self-assembled into ordered racemic 2D crystallites. Oligopeptides 2-12 units long were obtained at the air......-aqueous solution interface after injection of appropriate catalysts into the water subphase. The experimental relative abundance of oligopeptides with homochiral sequence generated from (R,S)-C-18-TE-Lys and (R,S)-C-18-TE-Glu, as determined by mass spectrometry on enantioselectively deuterium-labeled samples...

  4. Numerical analysis for two-dimensional compressible and two-phase flow fields of air-water in Eulerian grid framework

    International Nuclear Information System (INIS)

    Park, Chan Wook; Lee, Sung Su

    2008-01-01

    Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of ech phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe's approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated

  5. Conditionally invariant solutions of the rotating shallow water wave equations

    Energy Technology Data Exchange (ETDEWEB)

    Huard, Benoit, E-mail: huard@dms.umontreal.c [Departement de mathematiques et de statistique, CP 6128, Succc. Centre-ville, Montreal, (QC) H3C 3J7 (Canada)

    2010-06-11

    This paper is devoted to the extension of the recently proposed conditional symmetry method to first-order nonhomogeneous quasilinear systems which are equivalent to homogeneous systems through a locally invertible point transformation. We perform a systematic analysis of the rank-1 and rank-2 solutions admitted by the shallow water wave equations in (2 + 1) dimensions and construct the corresponding solutions of the rotating shallow water wave equations. These solutions involve in general arbitrary functions depending on Riemann invariants, which allow us to construct new interesting classes of solutions.

  6. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Warneford, Emma S., E-mail: emma.warneford@maths.ox.ac.uk; Dellar, Paul J., E-mail: dellar@maths.ox.ac.uk [OCIAM, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG (United Kingdom)

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  7. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    International Nuclear Information System (INIS)

    Warneford, Emma S.; Dellar, Paul J.

    2014-01-01

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  8. A Weil-Balanced Node-Centered Finite Volume Scheme for Shallow Water Flows with Wetting and Drying

    Science.gov (United States)

    Delis, A. I.; Nikolos, I. K.

    2009-09-01

    We present a conservative, node-centered finite-volume (FV) algorithm for triangular grids in order to simulal unsteady, two-dimensional, shallow-water flows over arbitrary topography with wetting and drying. The algorithm utilize Roe's approximate Riemann solver to compute the numerical fluxes, while second-order spatial accuracy is achieved with MUSCL reconstruction technique. The novel aspects of the algorithm include the extension to second order of the topography source term treatment and the wet/dry front treatment, within the node-centered FV formulation. The numerical scheme is validated against benchmark test cases and experimental data related to propagation and run-up of long waves.

  9. The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations

    Science.gov (United States)

    Dehghan, Mehdi; Abbaszadeh, Mostafa

    2017-12-01

    The main aim of this paper is to develop a fast and efficient local meshless method for solving shallow water equations in one- and two-dimensional cases. The mentioned equation has been classified in category of advection equations. The solutions of advection equations have some shock, thus, especial numerical methods should be employed for example discontinuous Galerkin and finite volume methods. Here, based on the proper orthogonal decomposition approach we want to construct a fast meshless method. To this end, we consider shallow water models and obtain a suitable time-discrete scheme based on the predictor-corrector technique. Then by applying the proper orthogonal decomposition technique a new set of basis functions can be built for the solution space in which the size of new solution space is less than the original problem. Thus, by employing the new bases the CPU time will be reduced. Some examples have been studied to show the efficiency of the present numerical technique.

  10. Modeling of laser-pulse induced water decomposition on two-dimensional materials by simulations based on time-dependent density functional theory

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Zhang, Hong; Cheng, Xinlu; Rubio, Angel

    2017-09-01

    We use time-dependent density functional theory to study laser-pulse induced decomposition of H2O molecules above the two-dimensional (2D) materials graphene, hexagonal boron nitride, and graphitic carbon nitride. We examine femtosecond-laser pulses with a full width at half maximum of 10 or 20 fs for laser-field intensity and wavelengths of 800 or 400 nm by varying the intensity of the laser field from 5 to 9 V/Å, with the corresponding range of fluence per pulse up to 10.7 J /cm2 . For a H2O molecule above the graphitic sheets, the threshold for laser-field H2O decomposition is reduced by more than 20% compared with that of an isolated H2O molecule. We also show that hole doping enhances the water adsorption energy above graphene. The present results indicate that the graphitic materials should support laser-induced chemistry and that other 2D materials that can enhance laser-induced H2O decomposition should be investigated.

  11. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  12. The shallow water equations: conservation laws and symplectic geometry

    OpenAIRE

    Akyildiz, Yilmaz

    1987-01-01

    We consider the system of nonlinear differential equations governing shallow water waves over a uniform or sloping bottom. By using the hodograph method we construct solutions, conservation laws, and Böcklund transformations for these equations. We show that these constructions are canonical relative to a symplectic form introduced by Manin.

  13. sediment distribution and composition on the shallow water ...

    African Journals Online (AJOL)

    ABSTRACT. Sediments of the shallow water carbonate basin in Zanzibar channel were investigated for composition and grain size distribution. The surface sediment composition was dominated by carbonate sands (with CaCO3 > 30%), except in the area adjacent to mainland coastline and a thin lobe which projects from ...

  14. A depth-dependent formula for shallow water propagation

    NARCIS (Netherlands)

    Sertlek, H.O.; Ainslie, M.A.

    2014-01-01

    In shallow water propagation, the sound field depends on the proximity of the receiver to the sea surface, the seabed, the source depth, and the complementary source depth. While normal mode theory can predict this depth dependence, it can be computationally intensive. In this work, an analytical

  15. Stochastic simulation of acoustic communication in turbulent shallow water

    DEFF Research Database (Denmark)

    Bjerrum-Niese, Christian; Lutzen, R.

    2000-01-01

    This paper presents a stochastic model of a turbulent shallow-water acoustic channel. The model utilizes a Monte Carlo realization method to predict signal transmission conditions. The main output from the model are statistical descriptions of the signal-to-multipath ratio (SMR) and signal fading...

  16. Shallow-water spinal injuries – devastating but preventable | Vlok ...

    African Journals Online (AJOL)

    Objective. To evaluate the demographics, clinical features and outcomes of shallow-water diving injuries in an acute spinal cord injury (ASCI) unit. Materials and methods. All patients admitted to the ASCI unit with diving-related injuries were entered into the study. Data regarding demographics, injury profile and subsequent ...

  17. Several Dynamical Properties for a Nonlinear Shallow Water Equation

    Directory of Open Access Journals (Sweden)

    Ls Yong

    2014-01-01

    Full Text Available A nonlinear third order dispersive shallow water equation including the Degasperis-Procesi model is investigated. The existence of weak solutions for the equation is proved in the space L1(R∩BV (R under certain assumptions. The Oleinik type estimate and L2N(R  (N is a natural number estimate for the solution are obtained.

  18. Analysis of humpback whale sounds in shallow waters

    Indian Academy of Sciences (India)

    The primary objective of this work was to present the acoustical identification of humpback whales, detected by using an autonomous ambient noise measurement system, deployed in the shallow waters of the Southeastern Arabian Sea (SEAS) during the period January to May 2011. Seven types of sounds were detected.

  19. A fast-response shallow-water tide gauge

    International Nuclear Information System (INIS)

    Cavaleri, L.; Curiotto, S.

    1979-01-01

    The authors describe the characteristics of a fast-response tide gauge suitable for shallow-water conditions. Its time constant is of the order of minutes. Wind waves are filtered better than 99% in the (0/10) s interval. The tide gauge has now been operative for three years on an oceanographic tower in the open sea. (author)

  20. Sediment distribution and composition on the shallow water ...

    African Journals Online (AJOL)

    Sediments of the shallow water carbonate basin in Zanzibar channel were investigated for composition and grain size distribution. The surface sediment composition was dominated by carbonate sands (with CaCO3 > 30%), except in the area adjacent to mainland coastline and a thin lobe which projects from Ruvu River to ...

  1. Computing two dimensional flood wave propagation using unstructured finite volume method: Application to the Ourika valley

    OpenAIRE

    Belhadj, H; Taik, A; Ouazar, D

    2006-01-01

    International audience; This study is devoted to the flood wave propagation modelling corresponding to a realistic situation. The equations that governs the propagation of a flood wave, in natural rivers, corresponds to the free surface flow equations in the Shallow Water case. The obtained two dimensional system, known as Saint Venant's system, is derived from the three-dimensional incompressible Navier Stokes equations by depth-averaging of the state variables. This system is written in a c...

  2. What now for shallow water. [Off Louisiana and Texas

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, R.C.

    1976-11-01

    Improved prices and technological advances in well productivity prompt a fresh appraisal of bypassed reserves in some 20,000 sq miles of tidelands lying under 20--80 ft of water off the coasts of Louisiana and Texas. The resulting shallow-water drilling could bring new life to the ''obsolete'' submersible rig. The 25 existing drill rigs could drill an average of 175 exploratory wells per year if they were all available. Furthermore, well-designed submersible rigs and jackups can be built economically and are economical to operate and maintain. The new tradeoffs available with shallow-water operations should encourage operators to reevaluate the worked areas and explore the areas still open in water depths to 80 ft.

  3. DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting

    Science.gov (United States)

    Ju, Lin; Dai, Ying; Wei, Wei; Li, Mengmeng; Huang, Baibiao

    2018-03-01

    Recently, extensive attention has been paid to the direct Z-scheme systems for photocatalytic water splitting where carriers migrate directly between the two semiconductors without a redox mediator. In the present work, the electronic structure and related properties of two-dimensional (2D) van de Waals (vdW) GeS/WX2 (X = O, S, Se, Te) heterojunction are systematically investigated by first-principles calculations. Our results demonstrate that, the GeS/WS2 heterojunction could form a direct Z-scheme system for photocatalytic water splitting, whereas the GeS/WX2 (X = O, Se, Te) can't, because of their respective unsuitable electronic structures. For the GeS/WS2 heterojunction, the GeS and WS2 monolayers serve as photocatalysts for the hydrogen evolution reactionand oxygen evolution reaction, respectively. The internal electric field induced by the electron transfer at the interface can promote the separation of photo-generated charge carriers and formation of the interface Z-scheme electron transfer. Remarkably, the designed GeS/WS2 heterojunction not only enhances the hydrogen production activity of GeS and the oxygen production ability of WS2 but also improves the light absorption of the two monolayers by reducing the band gaps. Moreover, it is found that narrowing the interlayer distance could enhance the internal electric field, improving the photocatalytic ability of the vdW heterojunction. This work provides fundamental insights for further design and preparation of emergent metal dichalcogenide catalysts, beneficial for the development in clean energy.

  4. A Discontinuous Galerkin Method for Two-Dimensional Shock Wave Modeling

    Directory of Open Access Journals (Sweden)

    W. Lai

    2011-01-01

    Full Text Available A numerical scheme based on discontinuous Galerkin method is proposed for the two-dimensional shallow water flows. The scheme is applied to model flows with shock waves. The form of shallow water equations that can eliminate numerical imbalance between flux term and source term and simplify computation is adopted here. The HLL approximate Riemann solver is employed to calculate the mass and momentum flux. A slope limiting procedure that is suitable for incompressible two-dimensional flows is presented. A simple method is adapted for flow over initially dry bed. A new formulation is introduced for modeling the net pressure force and gravity terms in discontinuous Galerkin method. To validate the scheme, numerical tests are performed to model steady and unsteady shock waves. Applications include circular dam break with shock, shock waves in channel contraction, and dam break in channel with 45∘ bend. Numerical results show that the scheme is accurate and efficient to model two-dimensional shallow water flows with shock waves.

  5. Tracking changes in composition and amount of dissolved organic matter throughout drinking water treatment plants by comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry.

    Science.gov (United States)

    Li, Chunmei; Wang, Donghong; Xu, Xiong; Xu, Meijia; Wang, Zijian; Xiao, Ruiyang

    2017-12-31

    Dissolved organic matter (DOM) can affect the performance of water treatment processes and produce undesirable disinfection by-products during disinfection. Several studies have been undertaken on the structural characterization of DOM, but its fate during drinking water treatment processes is still not fully understood. In this work, the nontargeted screening method of comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC×GC-qMS) was used to reveal the detailed changes of different chemical classes of compounds in DOM during conventional and advanced drinking water treatment processes at three drinking water treatment plants in China. The results showed that when the dissolved organic carbon removal was low, shifts in the DOM composition could not be detected with the specific ultraviolet absorbance at 254nm, but the changes were clear in the three-dimensional fluorescence excitation-emission matrix or GC×GC-qMS analyses. Coagulation-sedimentation processes selectively removed 37-59% of the nitrogenous compounds, alcohols and aromatic hydrocarbons but increased the concentrations of halogen-containing compounds by 17-26% because of the contact time with chlorine in this step. Filtration was less efficient at removing DOM but preferentially removed 21-60% of the acids. However, other organic matter would be released from the filter (e.g., nitrogenous compounds, acids, and aromatic hydrocarbons). Biological activated carbon (BAC) treatment removed most of the compounds produced from ozonation, particularly ketones, alcohols, halogen-containing compounds and acids. However, it should be noted that certain highly polar or high molecular weight compounds not identified in this study might be released from the BAC bed. After the whole treatment processes, the concentrations of nitrogenous compounds, alcohols, alkenes, aromatic hydrocarbons and ketones were decreased more by the advanced treatment processes than by the conventional treatment

  6. Bottom Backscattering Strengths Measured in Shallow and Deep Water

    Science.gov (United States)

    2017-01-18

    to the MF results. 18-01-2017 Memorandum Report Bottom scattering Bottom scattering strength Reverberation Underwater acoustics Active sonar August...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/7160--17-9701 Bottom Backscattering Strengths Measured in Shallow and Deep Water January...18, 2017 Approved for public release; distribution is unlimited. RogeR C. gauss edwaRd L. Kunz Joseph M. FiaLKowsKi RiChaRd Menis Acoustic Signal

  7. Conservation laws for shallow water waves on a sloping beach

    OpenAIRE

    Akyildiz, Yilmaz

    1986-01-01

    Shallow water waves are governed by a pair of non-linear partial differential equations. We transfer the associated homogeneous and non-homogeneous systems, (corresponding to constant and sloping depth, respectively), to the hodograph plane where we find all the non-simple wave solutions and construct infinitely many polynomial conservation laws. We also establish correspondence between conservation laws and hodograph solutions as well as Bäcklund transformations by using the linear nature of...

  8. Shallow water equations: viscous solutions and inviscid limit

    Science.gov (United States)

    Chen, Gui-Qiang; Perepelitsa, Mikhail

    2012-12-01

    We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.

  9. Nonlinear shallow water waves: A fractional order approach

    Directory of Open Access Journals (Sweden)

    Sarmad Arshad

    2016-03-01

    Full Text Available Nonlinear partial differential equations governing the obscure phenomena of shallow water waves are discussed in this article. Time fractional model is considered to understand the upcoming solutions on the basis of all historical states of the solution. A semi-analytic technique, Homotopy Perturbation Transform Method (HPTM is used in conjunction with a numerical technique to validate the approximate solutions. With the aid of graphical interpretation, the favorable wave parameters, to avoid wave breaking are estimated.

  10. Liquid Water in the Extremely Shallow Martian Subsurface

    Science.gov (United States)

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  11. Theoretical Model of Acoustic Wave Propagation in Shallow Water

    Directory of Open Access Journals (Sweden)

    Kozaczka Eugeniusz

    2017-06-01

    Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.

  12. Vortex Stability In Two -layer Rotating Shallow-water Flows

    Science.gov (United States)

    Carton, Xavier; Baey, Jean-Michel

    The stability of circular vortices subject to an initial normal-mode perturbation is studied in a two-layer shallow-water fluid with rigid lid, flat bottom and constant background rotation. Considerable similarity with quasi-geostrophic dynamics is found for linear (barotropic or baroclinic) instability, except in the frontal and nonlinear barotropic limits. This discrepancy is explained by asymptotic models. In many cases, the elliptical mode of deformation is the most unstable one. The ability of these perturbed circular vortices to stabilize nonlinearly as long-lived multipoles is then investigated. For elliptical perturbations, steady tripoles form from moderately unstable vortices as in the quasi-geostrophic limit. These tripoles, which exhibit various 3D structures, are robust when perturbed by non coherent disturbances. More unstable circular vortices break as two dipoles, propagating in opposite directions. Triangular perturbations can also lead to stationary quadrupoles or to dipolar breaking. The similarity with quasi-geostrophic dynamics, which ext ends to these nonlinear regimes, is related to the weakness of the divergent circulation, as shown by the analysis of the Lighthill equation. J.M. Baey &X. Carton, 2001: "Piecewise-constant vortices in a two-layer shallow - water flow". Advances in mathematical modelling of atmosphere and ocean dynamics, Kluwer Acad. Publ., 61, p.87-92. J.M. Baey &X. Carton, 2002: "Vortex multipoles in two-layer rotating shallow -water flows". To appear in J. Fluid Mech.

  13. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  14. An Oil Fate Model for Shallow-Waters

    Directory of Open Access Journals (Sweden)

    Juan M. Restrepo

    2015-12-01

    Full Text Available We introduce a model for the dynamics of oil in suspension, appropriate for shallow waters, including the nearshore environment. This model is capable of oil mass conservation and does so by evolving the oil on the sea surface as well as the oil in the subsurface. The shallower portion of the continental shelf poses compounding unique modeling challenges. Many of these relate to the complex nature of advection and dispersion of oil in an environment in which wind, waves, as well as currents all play a role, as does the complex bathymetry and the nearshore geography. In this study we present an overview of the model as well as derive the most fundamental of processes, namely, the shallow water advectiion and dispersion processes. With regard to this basic transport, we superate several fundamental challenges associated with creating a transport model for oil and other buoyant pollutants, capable of capturing the dynamics at the large spatio-temporal scales demanded by environmental and hazard mitigation studies. Some of the strategies are related to dimension reduction and upscaling, and leave discussion of these to companion papers. Here we focus on wave-filtering, ensemble and depth-averaging. Integral to the model is the proposal of an ocean dynamics model that is consistent with the transport. This ocean dynamics model is detailed here. The ocean/oil transport model is applied to a couple of physically-inspired oil-spill problems in demonstrate its specialized capabilities.

  15. Fracturing Pressure of Shallow Sediment in Deep Water Drilling

    Directory of Open Access Journals (Sweden)

    Chuanliang Yan

    2013-01-01

    Full Text Available The shallow sediment in deep water has weak strength and easily gets into plastic state under stress concentration induced by oil and gas drilling. During drilling, the formation around a wellbore can be divided into elastic zone and plastic zone. The unified strength theory was used after yielding. The radius of the plastic zone and the theoretical solution of the stress distribution in these two zones were derived in undrained condition. The calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel’s excess pore pressure theory. Combined with hydraulic fracturing theory, the fracturing mechanism of shallow sediment was analyzed and the theoretical formula of fracturing pressure was given. Furthermore, the influence of the parameters of unified strength theory on fracturing pressure was analyzed. The theoretical calculation results agreed with measured results approximately, which preliminary verifies the reliability of this theory.

  16. Two dimensional plasma simulation code

    International Nuclear Information System (INIS)

    Hazak, G.; Boneh, Y.; Goshen, Sh.; Oreg, J.

    1977-03-01

    An electrostatic two-dimensional particle code for plasma simulation is described. Boundary conditions which take into account the finiteness of the system are presented. An analytic solution for the case of crossed fields plasma acceleration is derived. This solution serves as a check on a computer test run

  17. The Virginia Beach shallow ground-water study

    Science.gov (United States)

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  18. Assessing Tsunami Vulnerabilities of Geographies with Shallow Water Equations

    Science.gov (United States)

    Aras, Rifat; Shen, Yuzhong

    2012-01-01

    Tsunami preparedness is crucial for saving human lives in case of disasters that involve massive water movement. In this work, we develop a framework for visual assessment of tsunami preparedness of geographies. Shallow water equations (also called Saint Venant equations) are a set of hyperbolic partial differential equations that are derived by depth-integrating the Navier-Stokes equations and provide a great abstraction of water masses that have lower depths compared to their free surface area. Our specific contribution in this study is to use Microsoft's XNA Game Studio to import underwater and shore line geographies, create different tsunami scenarios, and visualize the propagation of the waves and their impact on the shore line geography. Most importantly, we utilized the computational power of graphical processing units (GPUs) as HLSL based shader files and delegated all of the heavy computations to the GPU. Finally, we also conducted a validation study, in which we have tested our model against a controlled shallow water experiment. We believe that such a framework with an easy to use interface that is based on readily available software libraries, which are widely available and easily distributable, would encourage not only researchers, but also educators to showcase ideas.

  19. Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline

    Science.gov (United States)

    Zaqarashvili, Teimuraz

    2018-03-01

    The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.

  20. Nonlinear dynamics of rotating shallow water methods and advances

    CERN Document Server

    Zeitlin, Vladimir

    2007-01-01

    The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa

  1. Preliminary results from a shallow water benthic grazing study

    Science.gov (United States)

    Jones, N.L.; Monismith, Stephen G.; Thompson, Janet K.

    2005-01-01

    The nutrient-rich, shallow waters of San Francisco Bay support high rates of primary production, limited not by nutrients but by light availability and benthic grazing (Alpine and others 1992; Cloern 1982). Phytoplankton blooms are an important food source for upper trophic levels. Consequently animal populations, such as fish, may suffer under conditions of high benthic bivalve grazing. It has been hypothesized that several species of fish are suffering as a result of severe decreases in available phytoplankton since the introduction of Potamocorbula amurensis into San Francisco Bay (Feyrer 2003).

  2. Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach

    KAUST Repository

    Collier, Nathan

    2011-05-14

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, in the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation.

  3. Immersed Boundary Method for Shallow-Water Flow Solvers

    Science.gov (United States)

    Zhang, Ning

    2017-11-01

    The immersed boundary method (IBM) has been widely applied with Navier-Stoke equation solvers for flows over moving objects or objects with complex shapes. However, the IBM has not been often used with shallow-water flow solvers for estuary modeling applications. In regional scale hydrodynamic simulations, man-made or natural land structures such as levees, floodgates and small rivers/streams often have smaller scales than the grid resolutions in the simulations. Therefore, IBM could be a good candidate to realize the small shapes/forms of those structures on coarser simulation grids. In this study, IBM formulations have been developed to realize the floodgates and small rivers for several 2D depth-averaged shallow-water equation solvers. The research targets coastal areas in southwest Louisiana, particularly, the Calcasieu Lake and the surrounding coastal wetlands. The wetlands are protected by levees to avoid direct floods through the lake shore. The wetland water comes from the frequent floods through many small streams connecting the wetlands with the lake. It is very expensive to have grid resolutions smaller than the sizes of the streams. It is thus a good candidate for an IBM approach.

  4. Non-dispersive traveling waves in inclined shallow water channels

    International Nuclear Information System (INIS)

    Didenkulova, Ira; Pelinovsky, Efim

    2009-01-01

    Existence of traveling waves propagating without internal reflection in inclined water channels of arbitrary slope is demonstrated. It is shown that traveling non-monochromatic waves exist in both linear and nonlinear shallow water theories in the case of a uniformly inclined channel with a parabolic cross-section. The properties of these waves are studied. It is shown that linear traveling waves should have a sign-variable shape. The amplitude of linear traveling waves in a channel satisfies the same Green's law, which is usually derived from the energy flux conservation for smoothly inhomogeneous media. Amplitudes of nonlinear traveling waves deviate from the linear Green's law, and the behavior of positive and negative amplitudes are different. Negative amplitude grows faster than positive amplitude in shallow water. The phase of nonlinear waves (travel time) is described well by the linear WKB approach. It is shown that nonlinear traveling waves of any amplitude always break near the shoreline if the boundary condition of the full absorption is applied.

  5. Two dimensional image correlation processor

    Science.gov (United States)

    Yao, Shi-Kai

    1992-06-01

    Two dimensional images are converted into a very long 1-dimensional data stream by means of raster scan. It is shown that the 1-dimensional correlation function of such long data streams is equivalent to the raster scan converted data of 2-dimensional correlation function of images. Real time correlation of high resolution two-dimensional images has been demonstrated using commercially available components. The advantages of this approach includes programmable electronics reference images, easy interface to objects of interest using conventional image collection optics, real time operation with high resolution images using off-the shelf components, and usefulness in the form of either black and white or full colored images. Such system would be versatile enough for robotics vision, optical inspection, and other pattern recognition and identification applications.

  6. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  7. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  8. Nitrate pollution of shallow ground water in chaj doab

    International Nuclear Information System (INIS)

    Hussain, S. D.; Akram, W.; Ahmad, M.; Rafiq, M.

    2000-01-01

    Chaj Doab is an interfluvial tract of land bounded by the rivers Chenab and Jhelum. Agriculture is the main economic activity in the area. In order to increase crop production,. natural and industrial fertilizers are excessively used. Shallow groundwater is the main source of water for domestic and agricultural usage. Nitrate in the soil is carried to the groundwater by precolating water. Concentration of nitrate in groundwater which used to be less than 3 mg/l has crossed the WHO limit of 45 mg/l at several places principally due to the excessive use of fertilizers. In order to avoid serious consequences of nitrate pollution of groundwater, application of fertilizers will have to be judiciously practiced. (author)

  9. Finite-volume component-wise TVD schemes for 2D shallow water equations

    Science.gov (United States)

    Lin, Gwo-Fong; Lai, Jihn-Sung; Guo, Wen-Dar

    Four finite-volume component-wise total variation diminishing (TVD) schemes are proposed for solving the two-dimensional shallow water equations. In the framework of the finite volume method, a proposed algorithm using the flux-splitting technique is established by modifying the MacCormack scheme to preserve second-order accuracy in both space and time. Based on this algorithm, four component-wise TVD schemes, including the Liou-Steffen splitting (LSS), van Leer splitting, Steger-Warming splitting and local Lax-Friedrichs splitting schemes, are developed. These schemes are verified through the simulations of the 1D dam-break, the oblique hydraulic jump, the partial dam-break and circular dam-break problems. It is demonstrated that the proposed schemes are accurate, efficient and robust to capture the discontinuous shock waves without any spurious oscillations in the complex flow domains with dry-bed situation, bottom slope or friction. The simulated results also show that the LSS scheme has the best numerical accuracy among the schemes tested.

  10. Recent studies of acoustic wave propagation in shallow water waveguides with variable water column properties

    Science.gov (United States)

    Badiey, M.; Lynch, J. F.

    2012-11-01

    In the past half-century numerous scientific research programs have been conducted which have advanced our understanding of shallow water acoustics far beyond the original and pioneering work by Ewing, Worzel, and Pekeris (1948). In particular, during the last three decades several major initiatives have focused on both observation and modeling of acoustic waves in shallow water region with extremely variable environmental properties. We now realize that the shallow water acoustic wave propagation problem is a complicated study of wave propagation in a 4D partially random media with anisotropic, time and space dependent physical properties. The nonlinear internal wave field, the shelf break front, and coastal eddies are good examples of oceanographic processes that cause this type of variability. A review of our progress, which focuses on the effects of the water column, is presented, as well as an assessment of what future questions will be of interest and importance.

  11. Non-linear two-dimensional model of melt flows and interface instability in aluminum reduction cells

    Science.gov (United States)

    Sun, Haijun; Zikanov, Oleg; Ziegler, Donald P.

    2004-10-01

    We derive a new two-dimensional model for the melt flows and interface instability in aluminum reduction cells. The model is based on the de St. Venant shallow water equations and incorporates the essential features of the system such as the magnetohydrodynamic instability mechanism and non-linear coupling between the flows and interfacial waves. The model is applied to investigate the impact of background melt flows and magnetic field perturbations on the instability.

  12. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  13. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  14. Holocene Lake and Shallow Water Sediments at Mograt Island, Sudan

    Directory of Open Access Journals (Sweden)

    Dittrich Annett

    2017-06-01

    Full Text Available This paper presents the results of stratigraphic excavation and soil studies carried out at Mograt Island, the largest of the Nilotic islands in Sudan. Due to its restricted insular environments, Holocene alluvial deposits were observed to be interlocked with archaeological remains of different periods, allowing for a combined chronostratigraphic approach to study both cultural and climatic events. To better understand the environmental context through soil components and pedological features at a microscopic scale, soil block samples were accordingly collected and studied by the application of soil micromorphology. This approach provides insights into the history of Nile terrace aggradation through the suspension of Nile sediment loads under stillwater conditions as well as of the periodical establishment of shallow water pools at the islands′ plateaus by the surface run-off from local rains. Since these patterns vary significantly from the present situation, they offer a key to the scenario in which specific early agricultural and animal herding practices evolved.

  15. Instrumentation Suite for Acoustic Propagation Measurements in Complex Shallow Water Environments

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Obtain at-sea measurements to test theoretical and modeling predictions of acoustic propagation in dynamic, inhomogeneous, and nonisotropic shallow water...

  16. Two-dimensional numerical experiments with DRIX-2D on two-phase-water-flows referring to the HDR-blowdown-experiments

    International Nuclear Information System (INIS)

    Moesinger, H.

    1979-08-01

    The computer program DRIX-2D has been developed from SOLA-DF. The essential elements of the program structure are described. In order to verify DRIX-2D an Edwards-Blowdown-Experiment is calculated and other numerical results are compared with steady state experiments and models. Numerical experiments on transient two-phase flow, occurring in the broken pipe of a PWR in the case of a hypothetic LOCA, are performed. The essential results of the two-dimensional calculations are: 1. The appearance of a radial profile of void-fraction, velocity, sound speed and mass flow-rate inside the blowdown nozzle. The reason for this is the flow contraction at the nozzle inlet leading to more vapour production in the vicinity of the pipe wall. 2. A comparison between modelling in axisymmetric and Cartesian coordinates and calculations with and without the core barrel show the following: a) The three-dimensional flow pattern at the nozzle inlet is poorly described using Cartesian coordinates. In consequence a considerable difference in pressure history results. b) The core barrel alters the reflection behaviour of the pressure waves oscillating in the blowdown-nozzle. Therefore, the core barrel should be modelled as a wall normal to the nozzle axis. (orig./HP) [de

  17. Two-dimensional model of flows and interface instability in aluminum reduction cells

    Science.gov (United States)

    Zikanov, Oleg; Sun, Haijun; Ziegler, Donald

    2003-11-01

    We derive a two-dimensional model for the melt flows and interface instability in aluminum reduction cells. The model is based on the de St. Venant shallow water equations and incorporates the essential features of the system such as the magnetohydrodynamic instability mechanism and nonlinear coupling between the flows and interfacial waves. The model is applied to verify a recently proposed theory that explains the instability through the interaction between perturbations of horizontal electric currents in the aluminum layer and the imposed vertical magnetic field. We investigate the role of other factors, in particular, background melt flows and magnetic field perturbations.

  18. Detection in shallow water using broadband-DORT

    Science.gov (United States)

    Fromm, David M.; Gaumond, Charles F.; Lingevitch, Joseph F.; Gauss, Roger C.; Menis, Richard

    2003-10-01

    The decomposition of the time-reversal operator (DORT) [Prada et al., J. Acoust. Soc. Am. 99, 2067-2076 (1996)] has been extended into a coherent, broadband method. Broadband DORT has also been shown to isolate resolvable scatterers at various depths and ranges in a bistatic, active sonar in shallow water. Results are shown from the application of DORT to sea data taken in an area south of Hudson Canyon off the New Jersey coast during Geoclutter II. The vertical source/receiver array with 56 hydrophones spanning the water column was operated between 3.0 and 3.5 kHz. The elements were divided into four groups, with each group acting as a coherent, broadside source. Two methods were used for exciting the separate channels. One method was the use of subsequent LFMs and the other was the use of simultaneous transmission of four pseudorandom-noise signals. The target was a midwater column echo-repeater. Results are compared with modeling based on in situ environmental measurements during the experiment. [The authors acknowledge signal-processing expertise from Dr. Ning Xiang, University of Mississippi, and ENS Alan Meyer, LLNL, support from Dr. Jeff Simmen, ONR, and assistance from Dr. Charles Holland, ARL/PSU. Work supported by ONR.

  19. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    Directory of Open Access Journals (Sweden)

    Jacob Sharvit

    2007-09-01

    Full Text Available The purpose of this paper is to present a system developed for detection andaccurate mapping of ferro-metallic objects buried below the seabed in shallow waters. Thesystem comprises a precise magnetic gradiometer and navigation subsystem, both installedon a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition wepresent the results of a marine survey of a near-shore area in the vicinity of Atlit, a townsituated on the Mediterranean coast of Israel, about 15 km south of Haifa. The primarypurpose of the survey was to search for a Harvard airplane that crashed into the sea in 1960.A magnetic map of the survey area (3.5 km2 on a 0.5 m grid was created revealing theanomalies at sub-meter accuracy. For each investigated target location a correspondingferro-metallic item was dug out, one of which turned to be very similar to a part of thecrashed airplane. The accuracy of location was confirmed by matching the position of theactual dug artifacts with the magnetic map within a range of ± 1 m, in a water depth of 9 m.

  20. Two-dimensional Quantum Gravity

    Science.gov (United States)

    Rolf, Juri

    1998-10-01

    This Ph.D. thesis pursues two goals: The study of the geometrical structure of two-dimensional quantum gravity and in particular its fractal nature. To address these questions we review the continuum formalism of quantum gravity with special focus on the scaling properties of the theory. We discuss several concepts of fractal dimensions which characterize the extrinsic and intrinsic geometry of quantum gravity. This work is partly based on work done in collaboration with Jan Ambjørn, Dimitrij Boulatov, Jakob L. Nielsen and Yoshiyuki Watabiki (1997). The other goal is the discussion of the discretization of quantum gravity and to address the so called quantum failure of Regge calculus. We review dynamical triangulations and show that it agrees with the continuum theory in two dimensions. Then we discuss Regge calculus and prove that a continuum limit cannot be taken in a sensible way and that it does not reproduce continuum results. This work is partly based on work done in collaboration with Jan Ambjørn, Jakob L. Nielsen and George Savvidy (1997).

  1. Littoral zones in shallow lakes. Contribution to water quality in relation to water level regime

    NARCIS (Netherlands)

    Sollie, S.

    2007-01-01

    Littoral zones with emergent vegetation are very narrow or even lacking in Dutch shallow lakes due to a combination of changed water level regime and unfavorable shore morphometry. These zones are important as a habitat for plants and animals, increasing species diversity. It has also been

  2. 3D RANS simulations of shallow water effects on rudder hydrodynamic characteristics

    NARCIS (Netherlands)

    Liu, J.; Hekkenberg, R.G.

    2016-01-01

    An accurate estimation of the rudder forces and moments is essential for manoeuvrability prediction. Previous research has shown that ships have different manoeuvring performance in deep and shallow water. Before considering the rudder’s contribution to shallow water manoeuvring, it is meaningful to

  3. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Let ω ⊂ R2 be a bounded domain with a Lipschitz continuous boundary γ and let ω lie locally ... We assume that for each ϵ, we are given a function θϵ. : ω → R of .... spondences that associate with every element ˆvϵ ∈ ˆV ϵ. , the vector. vϵ = ˆvϵ · ϵ. : ϵ → R3 and with every element ˆψϵ ∈ ˆ ϵ. , the function. ψϵ = ˆψϵ · ϵ.

  4. Two-dimensional analysis of shallow sandwich panels

    DEFF Research Database (Denmark)

    Skvortsov, V; Bozhevolnaya, Elena

    2001-01-01

    condition is ensured via an introduction of the Airy's function and two potentials including a potential of the vortex-type. The technique of the numerical solution is based on a combination of the solutions by Navier and Levy. Numerical analysis is carried out for the panel that is simply supported along...

  5. Multiple time-reversed guide-sources in shallow water

    Science.gov (United States)

    Gaumond, Charles F.; Fromm, David M.; Lingevitch, Joseph F.; Gauss, Roger C.; Menis, Richard

    2003-10-01

    Detection in a monostatic, broadband, active sonar system in shallow water is degraded by propagation-induced spreading. The detection improvement from multiple spatially separated guide sources (GSs) is presented as a method to mitigate this degradation. The improvement of detection by using information in a set of one-way transmissions from a variety of positions is shown using sea data. The experimental area is south of the Hudson Canyon off the coast of New Jersey. The data were taken using five elements of a time-reversing VLA. The five elements were contiguous and at midwater depth. The target and guide source was an echo repeater positioned at various ranges and at middepth. The transmitted signals were 3.0- to 3.5-kHz LFMs. The data are analyzed to show the amount of information present in the collection, a baseline probability of detection (PD) not using the collection of GS signals, the improvement in PD from the use of various sets of GS signals. The dependence of the improvement as a function of range is also shown. [The authors acknowledge support from Dr. Jeffrey Simmen, ONR321OS, and the chief scientist Dr. Charles Holland. Work supported by ONR.

  6. Soliton turbulence in shallow water ocean surface waves.

    Science.gov (United States)

    Costa, Andrea; Osborne, Alfred R; Resio, Donald T; Alessio, Silvia; Chrivì, Elisabetta; Saggese, Enrica; Bellomo, Katinka; Long, Chuck E

    2014-09-05

    We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm, for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described theoretically by the soliton limit of the Korteweg-deVries equation, a completely integrable soliton system: Hence the phrase "soliton turbulence" is synonymous with "integrable soliton turbulence." For periodic-quasiperiodic boundary conditions the ergodic solutions of Korteweg-deVries are exactly solvable by finite gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the energetic peak of a storm have low frequency power spectra that behave as ∼ω-1. We use the linear Fourier transform to estimate this power law from the power spectrum and to filter densely packed soliton wave trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ∼ω-1 region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation, which supports our interpretation of the data as soliton turbulence. From the probability density of the solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.

  7. Water quality assessment in a shallow lake used for tourism

    Directory of Open Access Journals (Sweden)

    Dembowska Ewa A.

    2015-12-01

    Full Text Available The routine evaluation of water quality is limited to lakes with the largest area. In Poland, only lakes with an area exceeding 50 hectares are monitored by the State Environmental Monitoring System. For many local communities, however, small lakes are more important. This applies mainly to areas with a small number of lakes, where even the smallest lakes are used for various purposes. This paper presents the results of phytoplankton analysis in a small and shallow lake used for recreation. The study was conducted at three sites located in different parts of the lake. A total of 122 algae taxa were identified in the phytoplankton, mainly diatoms and green algae. The most constant taxa in the lake were: Stephanodiscus hantzschii, Desmodesmus communis, Pediastrum tetras and Crucigenia tetrapedia. The average phytoplankton biomass was 37 mg l−1. The maximum biomass, almost 140 mg dm−3, was recorded in late July at the site located near the beach. At that time, there was a massive cyanobacterial bloom composed of Microcystis wesenbergii and Aphanizomenon issatschenkoi. Based on these studies, the lake should be classified as hypertrophic with bad ecological status. This lake should not be used for recreational purposes in the current state.

  8. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  9. Insights into Europa's Shallow Water Mobility from Thrace and Thera Macula

    Science.gov (United States)

    Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.

    2012-03-01

    Comparison of Thera and Thrace Macula shows evidence for shallow water mobility within Europa’s crust and places constraints on the timescales and direction of hydraulic water flow, as well as the material properties of the ice.

  10. Diffuse X-ray scattering near a two-dimensional solid–liquid phase transition at the n-hexane–water interface

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonov, A. M. [Russian Academy of Sciences (RAS), Moscow (Russian Federation). Kapitza Inst. for Physical Problems

    2016-09-01

    According to experimental data on X-ray scattering and reflectometry with synchrotron radiation, a twodimensional crystallization phase transition in a monolayer of melissic acid at the n-hexane–water interface with a decrease in the temperature occurs after a wetting transition.

  11. Diffuse X-ray scattering near a two-dimensional liquid-vapor phase transition at the n-hexane-water interface

    Science.gov (United States)

    Tikhonov, A. M.

    2017-11-01

    The molecular structure of neutral n-triacontanol mesophases at the n-hexane-water interface has been studied by diffuse X-ray scattering using synchrotron radiation. According to the experimental data, a transition to the multilayer adsorption of alkanol occurs at a temperature below the transition from a gas phase to a liquid Gibbs monolayer.

  12. Spatial variation in vegetation structure coupled to plant available water determined by two-dimensional soil resistivity profiling in a Brazilian savanna.

    Science.gov (United States)

    Ferreira, Joice N; Bustamante, Mercedes; Garcia-Montiel, Diana C; Caylor, Kelly K; Davidson, Eric A

    2007-08-01

    Tropical savannas commonly exhibit large spatial heterogeneity in vegetation structure. Fine-scale patterns of soil moisture, particularly in the deeper soil layers, have not been well investigated as factors possibly influencing vegetation patterns in savannas. Here we investigate the role of soil water availability and heterogeneity related to vegetation structure in an area of the Brazilian savanna (Cerrado). Our objective was to determine whether horizontal spatial variations of soil water are coupled with patterns of vegetation structure across tens of meters. We applied a novel methodological approach to convert soil electrical resistivity measurements along three 275-m transects to volumetric water content and then to estimates of plant available water (PAW). Structural attributes of the woody vegetation, including plant position, height, basal circumference, crown dimensions, and leaf area index, were surveyed within twenty-two 100-m(2) plots along the same transects, where no obvious vegetation gradients had been apparent. Spatial heterogeneity was evaluated through measurements of spatial autocorrelation in both PAW and vegetation structure. Comparisons with null models suggest that plants were randomly distributed over the transect with the greatest mean PAW and lowest PAW heterogeneity, and clustered in the driest and most heterogeneous transect. Plant density was positively related with PAW in the top 4 m of soil. The density-dependent vegetation attributes that are related to plot biomass, such as sum of tree heights per plot, exhibited spatial variation patterns that were remarkably similar to spatial variation of PAW in the top 4 m of soil. For PAW below 4 m depth, mean vegetation attributes, such as mean height, were negatively correlated with PAW, suggesting greater water uptake from the deep soil by plants of larger stature. These results are consistent with PAW heterogeneity being an important structuring factor in the plant distribution at the

  13. Cardiovascular responses during deep water running versus shallow water running in school children

    Directory of Open Access Journals (Sweden)

    Anerao Urja M, Shinde Nisha K, Khatri SM

    2014-03-01

    Full Text Available Overview: As the school going children especially the adolescents’ need workout routine; it is advisable that the routine is imbibed in the school’s class time table. In India as growing number of schools provide swimming as one of the recreational activities; school staff often fails to notice the boredom that is caused by the same activity. Deep as well as shallow water running can be one of the best alternatives to swimming. Hence the present study was conducted to find out the cardiovascular response in these individuals. Methods: This was a Prospective Cross-Sectional Comparative Study done in 72 healthy school going students (males grouped into 2 according to the interventions (Deep water running and Shallow water running. Cardiovascular parameters such as Heart rate (HR, Saturation of oxygen (SpO2, Maximal oxygen consumption (VO2max and Rate of Perceived Exertion (RPE were assessed. Results: Significant improvements in cardiovascular parameters were seen in both the groups i.e. by both the interventions. Conclusion: Deep water running and Shallow water running can be used to improve cardiac function in terms of various outcome measures used in the study.

  14. Coordinating perception and action with an underwater robot in a shallow water environment

    Science.gov (United States)

    Bonasso, R. P.

    1992-04-01

    It is usually difficult to use underwater robots for mapping, reconnaissance, and mine-clearing tasks in shallow water (10 to 80 foot depth) ocean environments. The shallow water environment is characterized by strong, intermittent wave surge which requires robot behaviors that are capable of riding out the surge and then repositioning the platform and re- acquiring the objects being sensed. The shallow water area is also characterized by water that is murky, making optical sensors useless for long range search, and which produces multiple paths for sonar returns, giving errant range readings. Teleoperation from a remote surface platform is not effective due to the rapid changes in the environment. A more promising approach would place reactive intelligence on-board the robot. This paper describes such an approach which uses high frequency acoustic and vision sensing and a situated reasoning software architecture to provide task-achieving capability to an underwater robot in a shallow water environment. The approach is demonstrated in the context of a shallow water marking task wherein a robot must locate and navigate to a moored object in shallow water depths, attach a buoyant marker, and then return to a destination location. The approach seeks to integrate selective perception with robust transit and hovering behaviors to overcome the natural problems associated with shallow water environments.

  15. An error frequently made in the evaluation of advective transport in two dimensional Lagrangian models of advection-diffusion in coral reef waters

    OpenAIRE

    Spagnol, S.; Wolanski, E.; Deleersnijder, E.; Brinkman, R.; McAllister, F.; Cushman-Roisin, B.; Hanert, E.

    2002-01-01

    The flushing time of reef lagoons estimated over recent years by 2-dimensional Lagrangian algorithms may have been significantly overestimated. This is due to a numerical artefact, leading to spurious accumulation of particles in regions where the water depth or the diffusivity is smallest. The nature of this numerical problem has remained largely unknown in the coral reef modelling community, although it was described, along with an efficient remedy, in several studies which are about a deca...

  16. A study of the effects of grid non-orthogonality on the solution of shallow water equations in boundary-fitted coordinate systems

    CERN Document Server

    Sankaranarayanan, S

    2003-01-01

    In the present study, an existing two-dimensional boundary-fitted model [J. Hydraul. Eng.-ASCE 122 (9) (1996) 512] is used to study the effect of grid non-orthogonality on the solution of shallow water equations using boundary-fitted grids. The linearized two-dimensional shallow water equations are expressed in terms of the grid angle and aspect ratio. The truncation errors of the finite difference approximations used in the solution of the governing equations are shown to be dependent on the grid angle and the aspect ratio. The coefficient of the truncation error was shown to increase, with the decrease in the grid angle. The RMS errors in model predicted surface elevations and velocities for the case of seiching in a rectangular basin are found to increase gradually, as the grid resolution decreases from 174 to 80 gridpoints per wavelength or as the grid angle decreases from 90 deg. to 50 deg. and increases rather sharply for a grid angle of 30 deg. at grid resolutions less than 80 gridpoints per wavelength...

  17. Efficient scheme for the shallow water equations on unstructured grids with application to the Continental Shelf

    NARCIS (Netherlands)

    Kernkamp, H.W.J.; Van Dam, A.; Stelling, G.S.; De Goede, E.D.

    2011-01-01

    In this paper, a shallow-water flow solver is presented, based on the finite-volume method on unstructured grids The method is suitable for flows that occur in rivers, channels, sewer systems (1D), shallow seas, rivers, overland flow (2D), and estuaries, lakes and shelf breaks (3D). We present an

  18. Secondary structure in solution of two anti-HIV-1 hammerhead ribozymes as investigated by two-dimensional 1H 500 MHz NMR spectroscopy in water

    Science.gov (United States)

    Sarma, R. H.; Sarma, M. H.; Rein, R.; Shibata, M.; Setlik, R. S.; Ornstein, R. L.; Kazim, A. L.; Cairo, A.; Tomasi, T. B.

    1995-01-01

    Two hammerhead chimeric RNA/DNA ribozymes (HRz) were synthesized in pure form. Both were 30 nucleotides long, and the sequences were such that they could be targeted to cleave the HIV-1 gag RNA. Named HRz-W and HRz-M, the former had its invariable core region conserved, the latter had a uridine in the invariable region replaced by a guanine. Their secodary structures were determined by 2D NOESY 1H 500 MHz NMR spectroscopy in 90% water and 10% D2(0), following the imino protons. The data show that both HRz-M and HRz-W form identical secondary structures with stem regions consisting of continuous stacks of AT and GT pairs. An energy minimized computer model of this stem region is provided. The results suggest that the loss of catalytic activity that is known to result when an invariant core residue is replaced is not related to the secondary structure of the ribozymes in the absence of substrate.

  19. Gas transfer through the air-water interface in LES of Langmuir circulation in shallow water

    Science.gov (United States)

    Akan, Cigdem; Tejada-Martínez, Andrés E.

    2008-11-01

    Over the past century the study of gas exchange rates between the atmosphere and the ocean has received increased attention because of concern about the fate of slightly soluble, greenhouse gases such as CO2 released into the atmosphere. Of recent interest is the oceanic uptake of CO2 along US shallow water coastal regions (e.g. see http://www.nacarbon.org). We present surface gas transfer results from large-eddy simulation (LES) of wind-driven shallow water flow with and without wave effects. Wave effects, parameterized by the well-known Craik-Leibovich vortex force, lead to the generation of Langmuir circulation (LC), serving as a mechanism for surface renewal of low concentration fluid. Our computations are motivated by the infrared imagery of Marmorino et al. (2004) suggesting that LC can affect gas transfer across the surface through straining and stretching of the gas concentration boundary layer. Preliminary LES shows that shallow water LC can increase the surface gas transfer rate by about 30 percent. Here we will focus on the accuracy of surface renewal models in predicting gas transfer velocity, a measure of gas transfer efficiency, in the presence of LC. Gas transfer velocity predicted by the surface renewal models will be compared to the prediction obtained directly from the LES.

  20. Gisplana two dimensional flow model

    International Nuclear Information System (INIS)

    Payeras Socias, J.; Montero Ramos, M.; Pablo Sanmartin, M.A. de; Diaz Teijeiro, M.

    1996-01-01

    The Environmental Radiological Monitoring Network (R.V.R.A.) includes a set of 90 sampling points chosen from the major spanish river basins. The R.V.R.A.'s database is an structured system providing quantitative radiological information of radioactivity levels in spanish continental waters. (Author)

  1. Shallow-water, nearshore current dynamics in Algoa Bay, South ...

    African Journals Online (AJOL)

    Nearshore currents play a vital role in the transport of eggs and larval stages of fish. However, little is known about their complexity and the implications for dispersal of fish larvae. The study describes the complexity of the shallow nearshore environment in eastern Algoa Bay, on the south-east coast of South Africa, and its ...

  2. Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_0100092_PS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  3. Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_0900172_PS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  4. Shallow-Water Benthic Habitats of Southwest Puerto Rico: Ground Validation Site Locations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  5. Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_0072610_PS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  6. Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_1700252_PS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  7. Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_502736_PS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  8. Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_483895_PS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  9. Model Based Predictive Control of AUVs for Station Keeping in a Shallow Water Wave Environment

    National Research Council Canada - National Science Library

    Riedel, Jeffery s; Healey, Anthony J

    2005-01-01

    .... In shallow water AUV operations, where large hydrodynamic forces are developed due to waves, knowledge of the sea is critical to allow for the design of a control system that will enable the vehicle...

  10. Shallow-Water Benthic Habitats of Southwest Puerto Rico: Accuracy Assessment Site Locations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  11. Anti-Diffusive Finite Difference WENO Methods for Shallow Water with Transport of Pollutant

    National Research Council Canada - National Science Library

    Xu, Zhengfu; Shu, Chi-Wang

    2006-01-01

    In this paper, we further explore and apply our recent anti-diffusive flux corrected high order finite difference WENO schemes for conservation laws to compute the Saint-Venant system of shallow water...

  12. Directionality and spread of shallow water waves along the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Anoop, T.R.

    The directional characteristics of shallow water waves are described based on measured data during 2011 at two locations spaced at 350 km along the eastern Arabian Sea. Study shows that, for high swells (significant wave height > 1 m) approaching...

  13. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  14. Symmetries and Similarity Reductions of a New (2+1)-Dimensional Shallow Water Wave System

    Science.gov (United States)

    Liu, Ping

    2008-03-01

    The symmetries of a (2+1)-dimensional shallow water wave system, which is newly constructed through applying variation principle of analytic mechanics, are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. The (1+1) dimensional displacement shallow water wave equation can be derived from the reductions when special symmetry parameters are chosen.

  15. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes

    Science.gov (United States)

    Suzanne Peyer; John C. Hermanson; Carol Eunmi Lee

    2010-01-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such...

  16. A Framework to Simulate Small Shallow Inland Water Bodies in Semi-arid Regions

    NARCIS (Netherlands)

    Abbasi, A.; Annor, F.O.; van de Giesen, N.C.

    2017-01-01

    In this study, a framework for simulating the flow field and heat transfer processes in small shallow inland water bodies has been developed. As the dynamics and thermal structure of these water bodies are crucial in studying the quality of stored water , and in assessing the heat fluxes from their

  17. Chemical Quality of Ground Water from Shallow Wells in Galambi a

    African Journals Online (AJOL)

    HP USER

    the 2nd annual symposium/conference of the Nigerian water and sanitation association, pp 171-173 (1987). 18. Hem, J. D., Study and interpretation of the chemical characteristics of natural waters 2nd edition, US Geological. Survey, Water supply paper, 1473. (1970). 19. Egboka, B.C.E., Hydrogeochemistry of. Shallow Well ...

  18. Effects of shallow water table, salinity and frequency of irrigation water on the date palm water use

    Science.gov (United States)

    Askri, Brahim; Ahmed, Abdelkader T.; Abichou, Tarek; Bouhlila, Rachida

    2014-05-01

    In southern Tunisia oases, waterlogging, salinity, and water shortage represent serious threats to the sustainability of irrigated agriculture. Understanding the interaction between these problems and their effects on root water uptake is fundamental for suggesting possible options of improving land and water productivity. In this study, HYDRUS-1D model was used in a plot of farmland located in the Fatnassa oasis to investigate the effects of waterlogging, salinity, and water shortage on the date palm water use. The model was calibrated and validated using experimental data of sap flow density of a date palm, soil hydraulic properties, water table depth, and amount of irrigation water. The comparison between predicted and observed data for date palm transpiration rates was acceptable indicating that the model could well estimate water consumption of this tree crop. Scenario simulations were performed with different water table depths, and salinities and frequencies of irrigation water. The results show that the impacts of water table depth and irrigation frequency vary according to the season. In summer, high irrigation frequency and shallow groundwater are needed to maintain high water content and low salinity of the root-zone and therefore to increase the date palm transpiration rates. However, these factors have no significant effect in winter. The results also reveal that irrigation water salinity has no significant effect under shallow saline groundwater.

  19. Water and salt balances of two shallow groundwater cropping ...

    African Journals Online (AJOL)

    , groundwater table depth, artificial drainage volumes, and electrical conductivity of irrigation water, groundwater and drainage water. Simulations of evaporation and transpiration were done with the SWAMP model. Based on soil water and ...

  20. The "shallow-waterness" of the wave climate in European coastal regions

    Science.gov (United States)

    Håkon Christensen, Kai; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind

    2017-07-01

    In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.

  1. Part-per-trillion determination of pharmaceuticals, pesticides, and related organic contaminants in river water by solid-phase extraction followed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.

    Science.gov (United States)

    Matamoros, Víctor; Jover, Eric; Bayona, Josep M

    2010-01-15

    An analytical procedure based on comprehensive two-dimensional gas chromatography (GC x GC) coupled with time-of-flight mass spectrometry (TOF-MS) for the simultaneous determination of 97 organic contaminants at trace concentration in river water is presented. The target analytes included 13 pharmaceuticals, 18 plasticizers, 8 personal care products, 9 acid herbicides, 8 triazines, 10 organophosphorous compounds, 5 phenylureas, 12 organochlorine biocides, 9 polycyclic aromatic hydrocarbons (PAHs), and 5 benzothiazoles and benzotriazoles. The best resolution of the target analytes in the contour plots was obtained when a nonpolar stationary phase was used in the first dimension and polar one in the second. However, in the opposite configuration, polar-nonpolar, the retention time in the second dimension exhibited a strong correlation with the log Kow (p identification criteria. The developed methodology is based on a polymeric solid-phase extraction followed by in GC-port methylation and GC x GC/TOF-MS determination. Moreover, limits of detection (LODs) and quantification (LOQs) ranged from 0.5 to 100 ng/L and from 2 to 185 ng/L, respectively. Repeatability was always lower than 20%. Finally, the developed method has been successfully applied to the determination of incurred target analytes in four river waters subjected to a different anthropogenic pressure.

  2. Analysis of organic compounds of water-in-crude oil emulsions separated by microwave heating using comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry.

    Science.gov (United States)

    Freitas, Lisiane S; Von Mühlen, Carin; Bortoluzzi, Janaína H; Zini, Claudia A; Fortuny, Montserrat; Dariva, Claudio; Coutinho, Raquel C C; Santos, Alexandre F; Caramão, Elina B

    2009-04-03

    In this work the higher peak capacity and resolution of comprehensive two-dimensional gas chromatography (GCxGC) has been successfully applied, for the first time, to tentatively identify several polar organic compounds of organic extracts of aqueous phases resulting from microwave demulsification process of water-in-crude oil emulsions. Results have shown that higher temperatures and longer exposure time to microwave irradiation produced water phases with a wider variety of polar organic compounds. The microwave process showed to be suitable for the extraction of several polar compounds classes of petroleum. The proposed microwave extraction method and GCxGC identification of polar compounds of petroleum samples are of practical interest for the petrochemical industry due to corrosion and related problems associated with these polar compounds in refinery equipments. The GCxGC/time-of-flight MS technique shows to be very important in the total separation of different classes of compounds and allows the identification of many compounds in these classes.

  3. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  4. Conoscopic holography: two-dimensional numerical reconstructions.

    Science.gov (United States)

    Mugnier, L M; Sirat, G Y; Charlot, D

    1993-01-01

    Conoscopic holography is an incoherent light holographic technique based on the properties of crystal optics. We present experimental results of the numerical reconstruction of a two-dimensional object from its conoscopic hologram.

  5. Hydrochemistry of shallow groundwater and surface water in the ...

    African Journals Online (AJOL)

    judevom

    The analysed water was suitable for irrigation. Key words: Water chemistry, hydrochemical controls, drinking-irrigation quality, Ndop plain, Cameroon. INTRODUCTION. Groundwater and surface water geochemical studies can provide a better understanding of potential water quality variations due to geology and land use ...

  6. Features of the energy structure of acoustic fields in the ocean with two-dimensional random inhomogeneities

    Science.gov (United States)

    Gulin, O. E.; Yaroshchuk, I. O.

    2017-03-01

    The paper is devoted to the analytic study and numerical simulation of mid-frequency acoustic signal propagation in a two-dimensional inhomogeneous random shallow-water medium. The study was carried out by the cross section method (local modes). We present original theoretical estimates for the behavior of the average acoustic field intensity and show that at different distances, the features of propagation loss behavior are determined by the intensity of fluctuations and their horizontal scale and depend on the initial regular parameters, such as the emission frequency and size of sound losses in the bottom. We establish analytically that for the considered waveguide and sound frequency parameters, mode coupling effect has a local character and weakly influences the statistics. We establish that the specific form of the spatial spectrum of sound velocity inhomogeneities for the statistical patterns of the field intensity is insignificant during observations in the range of shallow-water distances of practical interest.

  7. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables

    Science.gov (United States)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.

    2018-01-01

    Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with

  8. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer

  9. Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer

  10. Water management of humid area shallow land burial sites

    International Nuclear Information System (INIS)

    Schulz, R.K.

    1984-01-01

    During the seasonal year 1983-1984, the first year of a lysimeter based water balance study was carried out at the Maxey Flats low level waste disposal site. The water input to the system, rainfall, and the fate of that water: runoff, deep percolation, and evapotranspiration was measured. About 20% of the water input (rainfall) was disposed of as surface runoff. About one-half of the input water was removed by evapotranspiration. Approximately 30% of the rainfall ended up as deep percolation water. Varying management procedures of the fescue crop and substitution of an alfalfa crop had little effect on deep water percolation. In about one-half of the months (winter-spring), excess water was present in the profile so that deep percolation occurred. As a result, a technique of bio-engineering management was formulated to increase run-off while maintaining evapo-transpiration so as to minimize (or eliminate) deep percolation. Demonstration of that technique is now underway. In other investigations at the Maxey Flats site, the 3 H concentration in the transpiration stream of fescue grass grown on trench caps has been measured monthly for the past year and one-half. 3 H concentrations in the transpiration stream were up to 1000 times higher in the dry periods compared to winter, although the trench water remained fairly constant at about 15 feet below the surface, indicating plant water uptake from that depth

  11. Geostatistical investigation into the temporal evolution of spatial structure in a shallow water table

    Directory of Open Access Journals (Sweden)

    S. W. Lyon

    2006-01-01

    Full Text Available Shallow water tables near-streams often lead to saturated, overland flow generating areas in catchments in humid climates. While these saturated areas are assumed to be principal biogeochemical hot-spots and important for issues such as non-point pollution sources, the spatial and temporal behavior of shallow water tables, and associated saturated areas, is not completely understood. This study demonstrates how geostatistical methods can be used to characterize the spatial and temporal variation of the shallow water table for the near-stream region. Event-based and seasonal changes in the spatial structure of the shallow water table, which influences the spatial pattern of surface saturation and related runoff generation, can be identified and used in conjunction to characterize the hydrology of an area. This is accomplished through semivariogram analysis and indicator kriging to produce maps combining soft data (i.e., proxy information to the variable of interest representing general shallow water table patterns with hard data (i.e., actual measurements that represent variation in the spatial structure of the shallow water table per rainfall event. The area used was a hillslope in the Catskill Mountains region of New York State. The shallow water table was monitored for a 120 m×180 m near-stream region at 44 sampling locations on 15-min intervals. Outflow of the area was measured at the same time interval. These data were analyzed at a short time interval (15 min and at a long time interval (months to characterize the changes in the hydrologic behavior of the hillslope. Indicator semivariograms based on binary-transformed ground water table data (i.e., 1 if exceeding the time-variable median depth to water table and 0 if not were created for both short and long time intervals. For the short time interval, the indicator semivariograms showed a high degree of spatial structure in the shallow water table for the spring, with increased range

  12. Some aspects of water quality characteristics in small shallow ...

    African Journals Online (AJOL)

    The water quality in eight small reservoirs (0.065-0.249 km2) in both the rugged escarpment landscape above the rift valley floor and the stepped plateau above them were studied between 1998 and 2000. Water transparency was measured using a 20cm Secchi visibility disk. Total dissolved solids (TDS) and electrical ...

  13. Dynamics of two-dimensional bubbles

    Science.gov (United States)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  14. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    International Nuclear Information System (INIS)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Park, Changbom; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array

  15. Dirac cones in two-dimensional borane

    Science.gov (United States)

    Martinez-Canales, Miguel; Galeev, Timur R.; Boldyrev, Alexander I.; Pickard, Chris J.

    2017-11-01

    We introduce two-dimensional borane, a single-layered material of BH stoichiometry, with promising electronic properties. We show that, according to density functional theory calculations, two-dimensional borane is semimetallic, with two symmetry-related Dirac cones meeting right at the Fermi energy Ef. The curvature of the cones is lower than in graphene, thus closer to the ideal linear dispersion. Its structure, formed by a puckered trigonal boron network with hydrogen atoms connected to each boron atom, can be understood as distorted, hydrogenated borophene [Mannix et al., Science 350, 1513 (2015), 10.1126/science.aad1080]. Chemical bonding analysis reveals the boron layer in the network being bound by delocalized four-center two-electron σ bonds. Finally, we suggest high pressure could be a feasible route to synthesize two-dimensional borane.

  16. Environmental isotope profiles and evaporation in shallow water table soils

    International Nuclear Information System (INIS)

    Hussein, M.F.; Froehlich, K.; Nada, A.

    2001-01-01

    Environmental isotope methods have been employed to evaluate the processes of evaporation and soil salinisation in the Nile Delta. Stable isotope profiles (δ 18 O and δ 2 H) from three sites were analysed using a published isothermal model that analyses the steady-state isotopic profile in the unsaturated zone and provides an estimate of the evaporation rate. Evaporation rates estimated by this method at the three sites range between 60 and 98 mm y -1 which translates to an estimate of net water loss of one billion cubic meters per year from fallow soils on the Nile delta. Capillary rise of water through the root zone during the crop growing season is estimated to be three times greater than evaporation rate estimate and a modified water management strategy could be adopted in order to optimize water use and its management on the regional scale. (author)

  17. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  18. Spatial attenuation of different sound field components in a water layer and shallow-water sediments

    Science.gov (United States)

    Belov, A. I.; Kuznetsov, G. N.

    2017-11-01

    The paper presents the results of an experimental study of spatial attenuation of low-frequency vector-scalar sound fields in shallow water. The experiments employed a towed pneumatic cannon and spatially separated four-component vector-scalar receiver modules. Narrowband analysis of received signals made it possible to estimate the attenuation coefficients of the first three modes in the frequency of range of 26-182 Hz and calculate the frequency dependences of the sound absorption coefficients in the upper part of bottom sediments. We analyze the experimental and calculated (using acoustic calibration of the waveguide) laws of the drop in sound pressure and orthogonal vector projections of the oscillation velocity. It is shown that the vertical projection of the oscillation velocity vector decreases significantly faster than the sound pressure field.

  19. The Shallow-water Octocorallia of the West Indian Region

    NARCIS (Netherlands)

    Bayer, Frederick M.

    1961-01-01

    The alcyonarian fauna of the West Indies is prolific and conspicuous and has been known for many years, with the natural result that a great many more species have been described than actually exist. The deep-water fauna, which received little attention prior to the work of VERRILL, was thoroughly

  20. Dipolar vortices in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Hesthaven, J.S.; Lynov, Jens-Peter

    1996-01-01

    The dynamics of dipolar vortex solutions to the two-dimensional Euler equations is studied. A new type of nonlinear dipole is found and its dynamics in a slightly viscous system is compared with the dynamics of the Lamb dipole. The evolution of dipolar structures from an initial turbulent patch...

  1. Analytical simulation of two dimensional advection dispersion ...

    African Journals Online (AJOL)

    The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...

  2. Analytical Simulation of Two Dimensional Advection Dispersion ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...

  3. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons.

  4. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  5. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.

    2018-01-01

    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  6. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    We study countable sums of two dimensional modules for the continuous complex functions on a compact metric space and show that it is possible to construct a spectral triple which gives the original metric back. This spectral triple will be finitely summable for any positive parameter. We also co...

  8. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, O.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to

  9. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  10. Mapping Baltic Sea shallow water environments with airborne remote sensing

    Science.gov (United States)

    Vahtmäe, Ele; Kutser, Tiit; Kotta, Jonne; Pärnoja, Merli; Möller, Tiia; Lennuk, Lennart

    2012-11-01

    It is known that the structure of benthic macrophyte and invertebrate habitats indicate the quality of coastal water. Thus, a large-scale analysis of the spatial patterns of coastal marine habitats makes it possible to adequately estimate the status of valuable coastal marine habitats, provide better evidence for environmental changes, and describe the processes behind the changes. Knowing the spatial distribution of benthic habitats is also important from the coastal management point of view. Our previous results clearly demonstrated that remote sensing methods can be used to map water depth and distribution of taxonomic groups of benthic algae (e.g., red, green, and brown algae) in the optically complex coastal waters of the Baltic Sea. We have as well shown that benthic habitat mapping should be done at high spatial resolution owing to the small-scale heterogeneity of such habitats in Estonian coastal waters. Here we tested the capability of high spatial resolution hyperspectral airborne image in its application for mapping benthic habitats. A big challenge is to define appropriate mapping classes that are also meaningful from the ecological point of view. In this study two benthic habitat classification schemes—broader level and finer level—were defined for the study area. The broader level classes were relatively well classified, but discrimination among the units of the finer classification scheme posed a considerable challenge and required a careful approach. Benthic habitat classification provided the highest accuracy in the case of the Spectral Angle Mapper classification method applied to a radiometrically corrected image. Further processing levels, such as spatial filtering and glint correction, decreased the classification accuracy.

  11. Low Frequency Acoustic Intensity Propagation Modeling in Shallow Water Waveguides

    Science.gov (United States)

    2016-06-01

    the formulation of Clay and Medwin [20] was coded into Matlab [21]. This formulation allows for the interaction of the water column with a second...Figure 7. Comparison of COMSOL and Normal Modes: Acoustic Magnitude Code predicted magnitude of acoustic pressure over the 0–600 m range from source ... source location. Figure 8. Comparison of COMSOL and Normal Modes: Imaginary Component Code predicted imaginary component of the total acoustic

  12. Importance of shallow-water bay biotopes as nurseries for Caribbean reef fishes

    NARCIS (Netherlands)

    Nagelkerken, I.A.

    2000-01-01

    Mangroves and seagrass beds can harbour high densities of mostly juvenile fishes. It has therefore long been assumed that these habitats function as nursery areas. In the present thesis the nursery function of mangroves, seagrass beds and other shallow-water biotopes, located in sheltered inland

  13. Nutritional value of sediments for macroinvertebrate communities in shallow eutrophic waters

    NARCIS (Netherlands)

    Vos, de J.H.; Peeters, E.T.H.M.; Gylstra, R.; Kraak, M.H.S.; Admiraal, W.

    2004-01-01

    The role of the nutritional quality of non-polluted soft-bottom sediments as a factor structuring in situ macroinvertebrate communities was studied in shallow eutrophic waters in The Netherlands. Sediments from clean sites were collected and analyzed for general characteristics (e.g. grain-size

  14. Experiments With an Adapative Multigrid Shallow-Water Tropical Cyclone Model

    Science.gov (United States)

    2000-05-01

    multigrid methods also achieve nonuniform resolution by superimposing uni- form grids of different mesh sizes, but they combine this idea with multigrid... multigrid methods in the context of a nondivergent barotropic model. We now consider the extension of these techniques to the next level of dynamical complexity, i.e., the shallow-water equations.

  15. Gas-charged sediments in shallow waters off Redi along the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Subbaraju, L.V.; Wagle, B.G.

    This study reports the occurrence of gas-charged sediments in the nearshore areas of the west coast of India. High resolution shallow seismic reflection profiles on the nearshore area along central west coast of India, at water depths of 11-18 m...

  16. Preliminary Evidence for the Amplification of Global Warming in Shallow, Intertidal Estuarine Waters

    Science.gov (United States)

    Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. We hypothesize that this warming may be amplified in the shallow (<2m), nearshore portions ...

  17. Soliton interaction as a possible model for extreme waves in shallow water

    NARCIS (Netherlands)

    Peterson, P.; Soomere, T.; Engelbrecht, J.; van Groesen, Embrecht W.C.

    2003-01-01

    Interaction of two long-crested shallow water waves is analysed in the framework of the two-soliton solution of the Kadomtsev-Petviashvili equation. The wave system is decomposed into the incoming waves and the interaction soliton that represents the particularly high wave hump in the crossing area

  18. Assemblage characteristics and diet of fish in the shallow coastal waters of James Ross Island, Antarctica

    Czech Academy of Sciences Publication Activity Database

    Jurajda, Pavel; Roche, Kevin Francis; Sedláček, I.; Všetičková, Lucie

    2016-01-01

    Roč. 39, č. 12 (2016), s. 2299-2309 ISSN 0722-4060 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:68081766 Keywords : Antarctic Peninsula * Fish assemblage structure * Notothenioidei * Shallow coastal waters * Ice pack * Czech Antarctic Station Subject RIV: EH - Ecology, Behaviour Impact factor: 1.949, year: 2016

  19. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover

    NARCIS (Netherlands)

    Declerck, S.A.J.; Vandekerkhove, J.; Johansson, L.; Muylaert, K.; Conde-Porcuna, J-M.; van der Gucht, K.; Pérez-Martínez, C.; Lauridsen, T.; Schwenk, K.; Zwart, G.; Rommens, W.; López-Ramos, J.; Jeppesen, E.; Vyverman, W.; Brendonck, L.; De Meester, L.

    2005-01-01

    This study aimed at unraveling the structure underlying the taxon-richness matrix of shallow lakes. We assessed taxon richness of a large variety of food-web components at different trophic levels (bacteria, ciliates, phytoplankton, zooplankton, fish, macro-invertebrates, and water plants) in 98

  20. A three-dimensional fixed grid model for shallow-water flow

    NARCIS (Netherlands)

    Bijvelds, M.D.J.P.

    1998-01-01

    In this report the implementation and testing of a numerical model that is based on a Cartesian fixed grid in vertical direction is described. The model uses the shallow-water equations and accounts for effects of stratification. In stratified environments, the terrain-following 0-transformation,

  1. Vitellibacter nionensis sp. nov., isolated from shallow water hydrothermal vent of Espalamaca, Azores.

    Digital Repository Service at National Institute of Oceanography (India)

    Rajasabapathy, R.; Mohandass, C.; Yoon, J.-H.; Dastager, S.G.; Liu, Q.; Khieu, T.-N.; Son, C.K.; Li, W.-J.; Colaco, A.

    A novel, Gram-negative, non-motile, rod-shaped yellow pigmented bacterium, designated VBW088T was isolated from shallow water hydrothermal vent of Espalamaca, Azores. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain VBW088...

  2. The effect of sound speed profile on shallow water shipping sound maps

    NARCIS (Netherlands)

    Sertlek, H.Ö.; Binnerts, B.; Ainslie, M.A.

    2016-01-01

    Sound mapping over large areas can be computationally expensive because of the large number of sources and large source-receiver separations involved. In order to facilitate computation, a simplifying assumption sometimes made is to neglect the sound speed gradient in shallow water. The accuracy of

  3. Metabolic and Cardiovascular Response to Shallow Water Exercise in Young and Older Women.

    Science.gov (United States)

    Campbell, Jennifer A.; D'Acquisto, Leo J.; D'Acquisto, Debra M.; Cline, Michael G.

    2003-01-01

    Compared the metabolic and cardiovascular responses of young and older women while performing shallow water exercise (SWE). Overall, SWE elicited metabolic and cardiovascular responses that met American College of Sports Medicine's guidelines for establishing health benefits. Older females self-selected a greater relative exercise intensity during…

  4. Spatial and temporal variation of surface waves in shallow waters along the eastern Arabian Sea.

    Digital Repository Service at National Institute of Oceanography (India)

    Anoop, T.R.; SanilKumar, V.; Shanas, P.R.

    We studied the spatial and temporal variation of surface waves along the eastern Arabian Sea during 2011 and 2012. Measured directional wave data at two shallow water locations and re-analysis datasets (ERA-Interim) at 0.751 intervals at four...

  5. Exact travelling wave solutions for the generalized shallow water wave equation

    International Nuclear Information System (INIS)

    Elwakil, S.A.; El-labany, S.K.; Zahran, M.A.; Sabry, R.

    2003-01-01

    Using homogeneous balance method an auto-Baecklund transformation for the generalized shallow water wave equation is obtained. Then solitary wave solutions are found. Also, modified extended tanh-function method is applied and new exact travelling wave solutions are obtained. The obtained solutions include rational, periodical, singular and solitary wave solutions

  6. Exact travelling wave solutions for the generalized shallow water wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Elwakil, S.A.; El-labany, S.K.; Zahran, M.A.; Sabry, R

    2003-07-01

    Using homogeneous balance method an auto-Baecklund transformation for the generalized shallow water wave equation is obtained. Then solitary wave solutions are found. Also, modified extended tanh-function method is applied and new exact travelling wave solutions are obtained. The obtained solutions include rational, periodical, singular and solitary wave solutions.

  7. Advances in the ROBLINKS project on long-range shallow-water robust acoustic communciation links

    NARCIS (Netherlands)

    Gijzen, M.B. van; Walree, P.A. van; Cano, D.; Passerieux, J-M.; Waldhorst, A.; Weber, R.

    2000-01-01

    Within the ROBLINKS project waveforms and algorithms have been developed to establish robust underwater acoustic communication links with high data rates in shallow water. To evaluate the signalling schemes, a wide range of experiments has been performed during a sea trial that has been held in May

  8. Remote sensing of euphotic depth in shallow tropical inland waters of Lake Naivasha using MERIS data

    NARCIS (Netherlands)

    Majozi, N.P.; Salama, M.S.; Bernard, S.; Harper, D.M.; Habte, M.G.

    2014-01-01

    Freshwater resources are deteriorating rapidly due to human activities and climate change. Remote sensing techniques have shown potential for monitoring water quality in shallow inland lakes, especially in data-scarce areas. The purpose of this study was to determine the spectral diffuse attenuation

  9. A Framework to Simulate Small Shallow Inland Water Bodies in Semi-arid Regions

    OpenAIRE

    Abbasi, A.; Annor, F.O.; van de Giesen, N.C.

    2017-01-01

    In this study, a framework for simulating the flow field and heat transfer processes in small shallow inland water bodies has been developed. As the dynamics and thermal structure of these water bodies are crucial in studying the quality of stored water , and in assessing the heat fluxes from their surfaces as well, the heat transfer and temperature simulations were modeled. The proposed model is able to simulate the full 3-D water flow and heat transfer in the water body by applying complex ...

  10. High-resolution geophysical characterization of shallow-water wetlands

    DEFF Research Database (Denmark)

    Mansoor, N; Slater, L; Artigas, F

    2006-01-01

    as lithologiclogs from across the wetland, to constrain interpretation ofthe geophysical data. The inverted sediment conductivity describesa pattern of contamination probably attributable toleachates from adjacent landfills and/or to saltwater ingressfrom a partial tidal connection that is not obvious...... in the surface-water data. Magnetic-gradiometry values and the inphasecomponent of an EM31 response both reflect primarilythe distribution of junk metal associated with a legacy of illegaldumping. Historic aerial photographs suggest that thisdistribution reflects land-use history and defines the maximumprevious...... extent of an adjacent landfill and a pattern ofdumping correlated with historic roadways....

  11. Shallow ground-water quality beneath a major urban center: Denver, Colorado, USA

    Science.gov (United States)

    Bruce, B.W.; McMahon, P.B.

    1996-01-01

    A survey of the chemical quality of ground water in the unconsolidated alluvial aquifer beneath a major urban center (Denver, Colorado, USA) was performed in 1993 with the objective of characterizing the quality of shallow ground-water in the urban area and relating water quality to land use. Thirty randomly selected alluvial wells were each sampled once for a broad range of dissolved constituents. The urban land use at each well site was sub- classified into one of three land-use settings: residential, commercial, and industrial. Shallow ground-water quality was highly variable in the urban area and the variability could be related to these land-use setting classifications. Sulfate (SO4) was the predominant anion in most samples from the residential and commercial land-use settings, whereas bicarbonate (HCO3) was the predominant anion in samples from the industrial land-use setting, indicating a possible shift in redox conditions associated with land use. Only three of 30 samples had nitrate concentrations that exceeded the US national drinking-water standard of 10 mg l-1 as nitrogen, indicating that nitrate contamination of shallow ground water may not be a serious problem in this urban area. However, the highest median nitrate concentration (4.2 mg l-1) was in samples from the residential setting, where fertilizer application is assumed to be most intense. Twenty-seven of 30 samples had detectable pesticides and nine of 82 analyzed pesticide compounds were detected at low concentrations, indicating that pesticides are widely distributed in shallow ground water in this urban area. Although the highest median total pesticide concentration (0.17 ??g l-1) was in the commercial setting, the herbicides prometon and atrazine were found in each land-use setting. Similarly, 25 of 29 samples analyzed had detectable volatile organic compounds (VOCs) indicating these compounds are also widely distributed in this urban area. The total VOC concentrations in sampled wells

  12. Analysis of shallow-groundwater dynamic responses to water supply change in the Haihe River plain

    Directory of Open Access Journals (Sweden)

    Z. Lin

    2015-05-01

    Full Text Available When the middle route of the South-to-North Water Diversion Project is completed, the water supply pattern of the Haihe River plain in North China will change significantly due to the replenishment of water sources and groundwater-exploitation control. The water-cycle-simulation model – MODCYCLE, has been used in simulating the groundwater dynamic balance for 2001–2010. Then different schemes of water supply in 2020 and 2030 were set up to quantitatively simulate the shallow-groundwater dynamic responses in the future. The results show that the total shallow-groundwater recharge is mainly raised by the increases in precipitation infiltration and surface-water irrigation infiltration. Meanwhile, the decrease of groundwater withdrawal contributes to reduce the total discharge. The recharge–discharge structure of local groundwater was still in a negative balance but improved gradually. The shallow-groundwater level in most parts was still falling before 2030, but more slowly. This study can benefit the rational exploitation of water resources in the Haihe River plain.

  13. Bottom depth and type for shallow waters: Hyperspectral observations from a blimp

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ZhongPing; Carder, K.; Steward, R. [Univ. of South Florida, St. Petersburg, FL (United States)] [and others

    1997-08-01

    In a study of a blimp transect over Tampa Bay (Florida), hyperspectral upwelling radiance over the sand and seagrass bottoms was measured. These measurements were converted to hyperspectral remote-sensing reflectances. Using a shallow-water remote-sensing-reflectance model, in-water optical properties, bottom depths and bottom albedos were derived analytically and simultaneously by an optimization procedure. In the process, curvatures of sand and seagrass albedos were used. Also used was a model of absorption spectrum of phytoplankton pigments. The derived bottom depths were compared with bathymetry charts and found to agree well. This study suggests that a low-flying blimp is a useful platform for the study and mapping of coastal water environments. The optical model as well as the data-reduction procedure used are practical for the retrieval of shallow water optical properties.

  14. Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations

    Energy Technology Data Exchange (ETDEWEB)

    Ringler, Todd D.; Jacobsen, Doug; Gunzburger, Max; Ju, Lili; Duda, Michael; Skamarock, William

    2011-11-01

    The ability to solve the global shallow-water equations with a conforming, variable-resolution mesh is evaluated using standard shallow-water test cases. While the long-term motivation for this study is the creation of a global climate modeling framework capable of resolving different spatial and temporal scales in different regions, the process begins with an analysis of the shallow-water system in order to better understand the strengths and weaknesses of the approach developed herein. The multiresolution meshes are spherical centroidal Voronoi tessellations where a single, user-supplied density function determines the region(s) of fine- and coarsemesh resolution. The shallow-water system is explored with a suite of meshes ranging from quasi-uniform resolution meshes, where the grid spacing is globally uniform, to highly variable resolution meshes, where the grid spacing varies by a factor of 16 between the fine and coarse regions. The potential vorticity is found to be conserved to within machine precision and the total available energy is conserved to within a time-truncation error. This result holds for the full suite of meshes, ranging from quasi-uniform resolution and highly variable resolution meshes. Based on shallow-water test cases 2 and 5, the primary conclusion of this study is that solution error is controlled primarily by the grid resolution in the coarsest part of the model domain. This conclusion is consistent with results obtained by others.When these variable-resolution meshes are used for the simulation of an unstable zonal jet, the core features of the growing instability are found to be largely unchanged as the variation in the mesh resolution increases. The main differences between the simulations occur outside the region of mesh refinement and these differences are attributed to the additional truncation error that accompanies increases in grid spacing. Overall, the results demonstrate support for this approach as a path toward

  15. Evaluation of shallow ground water use in command area of Dhoro Naro minor, Nawabshah

    International Nuclear Information System (INIS)

    Lashari, B.K.

    2002-01-01

    Water supply data shows that the average supply of canal water to minor has been reduced to 30.9 cusecs (1.5 mm/day), which is about 41% (1.19mm/day) short of design supply due to water shortage in the system. To deal with water-short period and increase cultivation, the farmers (water users) have installed around 100 tube wells (from which 90 are functioning) to extract shallow ground water up to a depth of 40-50 feet (12.2-15.24m) having average discharge of tube well is 0.78 cusees (22 litres/sec). The water quality measured of these tube wells ranges between 371-8,858 PPM (0.58-13.9 dS/m). On average 3 hours/acre/week running of private tube wells contributes 0.5 mm/day to over come the shortage of water, which has resulted in 32% cropping intensity against 38% of design cropping intensity in spite of 41% short of designed supply of surface water. Moreover, the water table depth has gone down to an average depth of about 9.5 feet from the ground surface. Study has suggested that the pumping of these tube wells needs to be optimized to keep to water table depth up to 6 feet so as deterioration of shallow ground water be minimized and land be protected from secondary soil salinization. (author)

  16. The use of comprehensive two-dimensional gas chromatography and structure-activity modeling for screening and preliminary risk assessment of organic contaminants in soil, sediment, and surface water

    Energy Technology Data Exchange (ETDEWEB)

    Moreira Bastos, Patricia; Haglund, Peter [Umeaa Univ. (Sweden). Dept. of Chemistry

    2012-08-15

    Purpose: This article aims to investigate the use and benefits of using comprehensive two-dimensional gas chromatography (GC x GC) and structure-activity relationship modeling for screening and prioritization of organic contaminants in complex matrices. The benefit of applying comprehensive screening techniques to samples with high organic contaminant content is primarily that compounds with diverse physicochemical properties can be analyzed simultaneously. Here, a heavily contaminated industrial area was surveyed for organic pollutants by analyzing soil, sediment, and surface water samples. The hazard of the pollutants were ranked using SARs. Material and methods: The water samples were liquid-liquid extracted using dichloromethane and directly analyzed by GC x GC-time-of-flight mass spectrometry (GC x GC-TofMS). Soil and sediment samples were extracted with dichloromethane in an ultrasonic bath and subjected to gel permeation chromatography to eliminate lipids and humic matter. The low molecular weight fraction was then analyzed with GC x GC-TofMS. Results and discussion: More than 10,000 components were found in each sample, of which ca. 300 individual compounds were unambiguously identified using the National Institute of Standards and Technology mass spectra library and authentic reference standards. Alkanes, polycyclic aromatic hydrocarbons, and phthalates were generally the most abundant and were found in all matrices. In contrast, chlorinated compounds such as chlorophenols, biphenyls, and chlorinated pesticides were only detected in samples from a few hotspot regions. The toxicities of the most frequently detected compounds and of the compounds detected at the highest concentrations in samples from hotspot regions were estimated by ecological structure-activity relationships. The ratio of the measured concentration to the predicted toxicity level was then calculated for each compound and used for an initial risk assessment in order to prioritize compounds

  17. Species Diversity of Shallow Water Zoanthids (Cnidaria: Anthozoa: Hexacorallia) in Florida

    OpenAIRE

    Reimer, James Davis; Foord, Colin; Irei, Yuka

    2012-01-01

    Shallow water zooxanthellate zoanthids are a common component of the coral reef ecosystems of the Caribbean. Despite this, their species diversity remains poorly understood. In this study, collected Palythoa, Zoanthus, Isaurus, and Terrazoanthus specimens from the waters of Florida were phylogenetically examined to obtain a better understanding of zoanthid species diversity in the Caribbean. Surprisingly, the results from analyses utilizing three DNA markers (mitochondrial 16S ribosomal DNA, ...

  18. Snorkelling and trampling in shallow-water fringing reefs: risk assessment and proposed management strategy.

    Science.gov (United States)

    Hannak, Judith S; Kompatscher, Sarah; Stachowitsch, Michael; Herler, Jürgen

    2011-10-01

    Shallow reefs (reef flats SCUBA-diving and interest in visiting a prospective snorkelling trail. Experiencing nature (97%) was by far the strongest motivation, and interest in further education about reef ecology and skill training was high. Less experienced snorkellers and divers--the target group for further education and skill training--were those most prepared to financially support such a trail. We therefore recommend a guided underwater snorkelling trail and restricting recreational use to a less sensitive 'ecotourism zone' while protecting the shallow reef flat. Artificial structures can complete the trail and offer the opportunity to snorkel over deeper areas at unfavourable tide or wind conditions. This approach provides a strategy for the management and conservation of shallow-water reefs, which are facing increasing human impact here and elsewhere. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Estimate of Passive Time Reversal Communication Performance in Shallow Water

    Directory of Open Access Journals (Sweden)

    Sunhyo Kim

    2017-12-01

    Full Text Available Time reversal processes have been used to improve communication performance in the severe underwater communication environment characterized by significant multipath channels by reducing inter-symbol interference and increasing signal-to-noise ratio. In general, the performance of the time reversal is strongly related to the behavior of the q -function, which is estimated by a sum of the autocorrelation of the channel impulse response for each channel in the receiver array. The q -function depends on the complexity of the communication channel, the number of channel elements and their spacing. A q -function with a high side-lobe level and a main-lobe width wider than the symbol duration creates a residual ISI (inter-symbol interference, which makes communication difficult even after time reversal is applied. In this paper, we propose a new parameter, E q , to describe the performance of time reversal communication. E q is an estimate of how much of the q -function lies within one symbol duration. The values of E q were estimated using communication data acquired at two different sites: one in which the sound speed ratio of sediment to water was less than unity and one where the ratio was higher than unity. Finally, the parameter E q was compared to the bit error rate and the output signal-to-noise ratio obtained after the time reversal operation. The results show that these parameters are strongly correlated to the parameter E q .

  20. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  1. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  2. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  3. Toward two-dimensional search engines

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L; Chepelianskii, A D

    2012-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)

  4. Plasmonics with two-dimensional conductors

    Science.gov (United States)

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee

    2014-01-01

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  5. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  6. Superintegrability on the two dimensional hyperboloid

    International Nuclear Information System (INIS)

    Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr

    1998-01-01

    This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out

  7. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications.

    Science.gov (United States)

    Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R

    2018-03-14

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  8. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications

    Science.gov (United States)

    Fuentes, Hector R.

    2018-01-01

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability. PMID:29538335

  9. Numerical Modeling of Water Circulation and Pollutant Transport in a Shallow Basin

    Science.gov (United States)

    Charafi, My. M.; Sadok, A.; Kamal, A.; Menai, A.

    A two-dimensional numerical model was developed1-3 to simulate the sediment and pollutant transport in a shallow basin. The developed model consist of two modules: Hydrodynamic module and sediment/pollutant transport module. A numerical hydrodynamic module based on the Saint-Venant equations, is resolved by a MacCormack numerical scheme and is used to simulate the circulation pattern in the basin. The obtained flow circulation is used as an input to the sediment/pollutant transport module to simulate the transport and dispersion of a pollutant emitted into the basin. To calibrate the numerical model, the distorted scale model of the Windermere Basin4 was used. In this physical model, the flow visualization and pollutant transport experiments provide a good calibration. The simulated results were found to be in good agreement with the experimental measurements and the results in Ref. 4. With the aid of the validated model, the influence of the construction of dikes on the residence time distributions in the basin was examined.

  10. A high-performance model for shallow-water simulations in distributed and heterogeneous architectures

    Science.gov (United States)

    Conde, Daniel; Canelas, Ricardo B.; Ferreira, Rui M. L.

    2017-04-01

    unstructured nature of the mesh topology with the corresponding employed solution, based on space-filling curves, being analyzed and discussed. Intra-node parallelism is achieved through OpenMP for CPUs and CUDA for GPUs, depending on which kind of device the process is running. Here the main difficulty is associated with the Object-Oriented approach, where the presence of complex data structures can degrade model performance considerably. STAV-2D now supports fully distributed and heterogeneous simulations where multiple different devices can be used to accelerate computation time. The advantages, short-comings and specific solutions for the employed unified Object-Oriented approach, where the source code for CPU and GPU has the same compilation units (no device specific branches like seen in available models), are discussed and quantified with a thorough scalability and performance analysis. The assembled parallel model is expected to achieve faster than real-time simulations for high resolutions (from meters to sub-meter) in large scaled problems (from cities to watersheds), effectively bridging the gap between detailed and timely simulation results. Acknowledgements This research as partially supported by Portuguese and European funds, within programs COMPETE2020 and PORL-FEDER, through project PTDC/ECM-HID/6387/2014 and Doctoral Grant SFRH/BD/97933/2013 granted by the National Foundation for Science and Technology (FCT). References Canelas, R.; Murillo, J. & Ferreira, R.M.L. (2013), Two-dimensional depth-averaged modelling of dam-break flows over mobile beds. Journal of Hydraulic Research, 51(4), 392-407. Conde, D. A. S.; Baptista, M. A. V.; Sousa Oliveira, C. & Ferreira, R. M. L. (2013), A shallow-flow model for the propagation of tsunamis over complex geometries and mobile beds, Nat. Hazards and Earth Syst. Sci., 13, 2533-2542. Conde, D. A. S.; Telhado, M. J.; Viana Baptista, M. A. & Ferreira, R. M. L. (2015) Severity and exposure associated with tsunami actions in

  11. Conditional short-crested waves in shallow water and with superimposed current

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2002-01-01

    wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected linear short-crested wave riding on a uniform current is given. The analysis is based on the conventional shallow water Airy wave theory and the direction of the main wind...... direction can make any direction with the current. A consistent derivation of the wave spectrum taking into account current and finite water depth is used. The numerical results show a significant effect of the water depth, the directional spreading and the current on the conditional mean wave profile...

  12. High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.

    2010-01-01

    In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2...

  13. Numerical simulation of water and sand blowouts when penetrating through shallow water flow formations in deep water drilling

    Science.gov (United States)

    Ren, Shaoran; Liu, Yanmin; Gong, Zhiwu; Yuan, Yujie; Yu, Lu; Wang, Yanyong; Xu, Yan; Deng, Junyu

    2018-02-01

    In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow (SWF) formations during deepwater drilling. We define `sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed (penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.

  14. Weighted interior penalty discretization of fully nonlinear and weakly dispersive free surface shallow water flows

    Science.gov (United States)

    Di Pietro, Daniele A.; Marche, Fabien

    2018-02-01

    In this paper, we further investigate the use of a fully discontinuous Finite Element discrete formulation for the study of shallow water free surface flows in the fully nonlinear and weakly dispersive flow regime. We consider a decoupling strategy in which we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects. This source term can be computed through the resolution of elliptic second-order linear sub-problems, which only involve second order partial derivatives in space. We then introduce an associated Symmetric Weighted Internal Penalty discrete bilinear form, allowing to deal with the discontinuous nature of the elliptic problem's coefficients in a stable and consistent way. Similar discrete formulations are also introduced for several recent optimized fully nonlinear and weakly dispersive models. These formulations are validated again several benchmarks involving h-convergence, p-convergence and comparisons with experimental data, showing optimal convergence properties.

  15. The shallow-water Asellota (Crustacea: Isopoda from the Beagle Channel: Preliminary taxonomic and zoogeographical results

    Directory of Open Access Journals (Sweden)

    Brenda Lía Doti

    2005-12-01

    Full Text Available The shallow-water Asellota from the Beagle Channel were investigated, based on material collected at four localities in 2001-2002. A total of 3,124 asellotes were sorted, and three new species and 12 new records of distribution were reported. The Paramunnidae showed the highest species diversity and abundance (11 species and 1,463 specimens. The present research raises the number of species known from the Beagle Channel to 23; of these, 16 were previously reported from the Magellan Straits, representing 69% of similarity. Based on the present results and published data, the faunistic affinities for the shallow-water Asellota was 30% between the Magellan region and the Scotia Arc, and 26% between the Magellan region and the Antarctic Peninsula.

  16. Gyroscope with two-dimensional optomechanical mirror

    Science.gov (United States)

    Davuluri, Sankar; Li, Kai; Li, Yong

    2017-11-01

    We propose an application of two-dimensional optomechanical oscillator as a gyroscope by detecting the Coriolis force which is modulated at the natural frequency of the optomechanical oscillator. Dependence of gyroscope's sensitivity on shot noise, back-action noise, thermal noise, and input laser power is studied. At optimal input laser power, the gyroscope's sensitivity can be improved by increasing the mass or by decreasing the temperature and decay rate of the mechanical oscillator. When the mechanical oscillator's thermal occupation number, n th, is zero, sensitivity improves with decrease in frequency of the mechanical oscillator. For {n}{{th}}\\gg 1, the sensitivity is independent of the mechanical oscillator's frequency.

  17. Versatile two-dimensional transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max

    Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...... vacancies. We have found that the absorption spectra of the MoS2 films exhibit distinct excitonic peaks at ~1.8 and ~2 eV when grown in the presence of a sulfur evaporation beam as compared to those deposited in vacuum. The structure of the PLD-grown MoS2 films will be further discussed based Raman...

  18. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  19. Potential of using plant extracts for purification of shallow well water in Malawi

    Science.gov (United States)

    Pritchard, M.; Mkandawire, T.; Edmondson, A.; O'Neill, J. G.; Kululanga, G.

    There has been very little scientific research work into the use of plant extracts to purify groundwater. Research studies on the purification of groundwater have mainly been carried out in developed countries and have focused on water purification systems using aluminium sulphate (a coagulant) and chlorine (a disinfectant). Such systems are expensive and not viable for rural communities due to abject poverty. Shallow well water, which is commonly available throughout Africa, is often grossly contaminated and usually consumed untreated. As a result, water-related diseases kill more than 5 million people every year worldwide. This research was aimed at examining natural plant extracts in order to develop inexpensive ways for rural communities to purify their groundwater. The study involved creating an inventory of plant extracts that have been used for water and wastewater purification. A prioritisation system was derived to select the most suitable extracts, which took into account criteria such as availability, purification potential, yield and cost of extraction. Laboratory trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were added to water samples obtained from five shallow wells in Malawi. The trials consisted of jar tests to assess the coagulation potential and the resulting effect on physico-chemical and microbiological parameters such as temperature, pH, turbidity and coliforms. The results showed that the addition of M. oleifera, J. curcas and Guar gum can considerably improve the quality of shallow well water. Turbidity reduction was higher for more turbid water. A reduction efficiency exceeding 90% was achieved by all three extracts on shallow well water that had a turbidity of 49 NTU. A reduction in coliforms was about 80% for all extracts. The pH of the water samples increased with dosage, but remained within acceptable levels for drinking water for all the extracts

  20. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes.

    Science.gov (United States)

    Peyer, Suzanne M; Hermanson, John C; Lee, Carol Eunmi

    2010-08-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such difference are unknown. We examined whether quagga mussel shell morphology could be induced by three environmental variables through developmental plasticity. We predicted that shallow-water conditions (high temperature, food quantity, water motion) would yield a morphotype typical of wild quagga mussels from shallow habitats, while deep-water conditions (low temperature, food quantity, water motion) would yield a morphotype present in deep habitats. We tested this prediction by examining shell morphology and growth rate of quagga mussels collected from shallow and deep habitats and reared under common-garden treatments that manipulated the three variables. Shell morphology was quantified using the polar moment of inertia. Of the variables tested, temperature had the greatest effect on shell morphology. Higher temperature (approximately 18-20 degrees C) yielded a morphotype typical of wild shallow mussels regardless of the levels of food quantity or water motion. In contrast, lower temperature (approximately 6-8 degrees C) yielded a morphotype approaching that of wild deep mussels. If shell morphology has functional consequences in particular habitats, a plastic response might confer quagga mussels with a greater ability than zebra mussels to colonize a wider range of habitats within the Great Lakes.

  1. Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments

    Science.gov (United States)

    2016-12-06

    great success. Our acoustics research groups, the Ocean Acoustics and Signals Laboratory and the Acoustic Communications Group, in the Applied Ocean...field efforts in shallow-water acoustics and underwater acoustic communications. We have plans to upgrade our existing hydrophone arrays and sound...Hydrophone Receiver Unit) arrays. The immedate objective was to improve our fieldwork capibility and to enhance the quality of our underwater acoustic

  2. Study on low intensity aeration oxygenation model and optimization for shallow water

    Science.gov (United States)

    Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi

    2018-02-01

    Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.

  3. New species and new records of bryozoans from shallow waters of Madeira Island.

    Science.gov (United States)

    Souto, Javier; Kaufmann, Manfred J; Canning-Clode, João

    2015-03-03

    Two new species of bryozoans encrusting subtidal rocks are described from the shallow waters of Madeira Island. We describe one cyclostome, Favosipora purpurea sp. nov., which represents the first record of this genus in the Atlantic Ocean, and one cheilostome, Rhynchozoon papuliferum sp. nov. In addition, one species, Beania maxilladentata, is recorded for the first time outside of Rio de Janeiro, Brazil. Six other species previously recorded in Madeira are redescribed to provide new data and SEM images.

  4. Effects of internal waves on sound propagation in the shallow waters of the continental shelves

    OpenAIRE

    Ong, Ming Yi

    2016-01-01

    Approved for public release; distribution is unlimited Sound waves propagating through the oceans are refracted by internal waves. In the shallow waters of the continental shelves, an additional downward refraction of sound waves due to internal waves can cause them to interact more often with the seabed, resulting in additional energy from the sound waves being dissipated into the seabed. This study investigates how internal waves affect sound propagation on the continental shelves. It fi...

  5. Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework

    KAUST Repository

    Neumann, Philipp

    2015-09-01

    © 2014 Elsevier Inc. All rights reserved. We present a dynamically adaptive Lattice Boltzmann (LB) implementation for solving the shallow water equations (SWEs). Our implementation extends an existing LB component of the Peano framework. We revise the modular design with respect to the incorporation of new simulation aspects and LB models. The basic SWE-LB implementation is validated in different breaking dam scenarios. We further provide a numerical study on stability of the MRT collision operator used in our simulations.

  6. Modeling and Simulation of Motion of an Underwater Robot Glider for Shallow-water Ocean Applications

    OpenAIRE

    Chen Wang; Amir Anvar

    2012-01-01

    This paper describes the modeling and simulation of an underwater robot glider used in the shallow-water environment. We followed the Equations of motion derived by [2] and simplified dynamic Equations of motion of an underwater glider according to our underwater glider. A simulation code is built and operated in the MATLAB Simulink environment so that we can make improvements to our testing glider design. It may be also used to validate a robot glider design.

  7. Generalized energy and potential enstrophy conserving finite difference schemes for the shallow water equations

    Science.gov (United States)

    Abramopoulos, Frank

    1988-01-01

    The conditions under which finite difference schemes for the shallow water equations can conserve both total energy and potential enstrophy are considered. A method of deriving such schemes using operator formalism is developed. Several such schemes are derived for the A-, B- and C-grids. The derived schemes include second-order schemes and pseudo-fourth-order schemes. The simplest B-grid pseudo-fourth-order schemes are presented.

  8. New records for the shallow-water chiton fauna (Mollusca, Polyplacophora of the Azores (NE Atlantic

    Directory of Open Access Journals (Sweden)

    Sérgio Ávila

    2013-06-01

    Full Text Available Published records, original data from recent field work on all of the islands of the Azores (NE Atlantic, and a revision of the entire mollusc collection deposited in the Department of Biology of the University of the Azores (DBUA were used to compile a checklist of the shallow-water Polyplacophora of the Azores. Lepidochitona cf. canariensis and Tonicella rubra are reported for the first time for this archipelago, increasing the recorded Azorean fauna to seven species.

  9. Bathymetry Prediction in Shallow Water by the Satellite Altimetry-Derived Gravity Anomalies

    Science.gov (United States)

    Kim, Kwang Bae; Yun, Hong Sik

    2017-04-01

    The satellite altimetry-derived free-air gravity anomalies (SAFAGAs) are correlated with undulations of crustal density variations under the seafloor. In this study, shipborne bathymetry from the Korea Rural Community Corporation (KRC) and the SAFAGAs from Scripps Institution of Oceanography were combined to predict bathymetry in shallow water. Density contrast of 5.0 g/cm3 estimated by the check points method of the gravity-geologic method (GGM) between seawater and the seafloor topographic mass was applied to predict bathymetry in shallow water areas outside of the Saemangeum Seawall located on the southwest coast of the Korean peninsula. Bathymetry predicted by the GGM was compared with depth measurements on the shipborne locations to analyze the bathymetry accuracy. The root mean square error (RMSE) of the differences of bathymetry between GGM and KRC on the KRC shipborne tracks in shallow water around the Saemangeum Seawall is 0.55 m. The topographic effects in off-tracks extracted from SAFAGAs in the GGM can be effectively utilized to predict bathymetry by combining with shipborne depth data in shallow water where shipborne depth data are limited. In addition, bathymetry and the SAFAGAs have a linear correlation in the 20 160 km wavelength. The coherency analysis was performed by computing the cross-spectral coherence between satellite altimetry derived bathymetry and the SAFAGAs. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A3A11931032).

  10. Modelling techniques for underwater noise generated by tidal turbines in shallow water

    OpenAIRE

    Lloyd, Thomas P.; Turnock, Stephen R.; Humphrey, Victor F.

    2011-01-01

    The modelling of underwater noise sources and their potential impact on the marine environment is considered, focusing on tidal turbines in shallow water. The requirement for device noise prediction as part of environmental impact assessment is outlined and the limited amount of measurement data and modelling research identified. Following the identification of potential noise sources, the dominant flowgenerated sources are modelled using empirical techniques. The predicted sound pressure lev...

  11. NUMERICAL ENTROPY PRODUCTION OF THE ONE-AND-A-HALF-DIMENSIONAL SHALLOW WATER EQUATIONS WITH TOPOGRAPHY

    Directory of Open Access Journals (Sweden)

    Sudi Mungkasi

    2015-05-01

    Full Text Available Numerical entropy production can be used as a smoothness indicator of solutions to conservation laws. By definition the entropy production is non-positive. However some authors, using a finite volume method framework, showed that positive overshoots of the numerical entropy production were possible for conservation laws (no source terms involved. Note that the one-and-a-half-dimensional shallow water equations without source terms are conservation laws. A report has been published regarding the behaviour of the numerical entropy production of the one-and-a-half-dimensional shallow water equations without source terms. The main result of that report was that positive overshoots of the numerical entropy production were avoided by use of a modified entropy flux which satisfies a discrete numerical entropy inequality. In the present article we consider an extension problem of the previous report. We take the one-and-a-half-dimensional shallow water equations involving topography. The topography is a source term in the considered system of equations. Our results confirm that a modified entropy flux which satisfies a discrete numerical entropy inequality is indeed required to have no positive overshoots of the entropy production.

  12. Study of reverberation pattern and its cancellation method in shallow water

    Directory of Open Access Journals (Sweden)

    Yang Shiuh-Kuang

    2007-01-01

    Full Text Available In shallow water, the primary limitation of the performance of active sonar is the reverberation that originates from volume and boundaries scattering as well as multi-path propagation. There­fore, reverberation cancelation is an important research topic for increasing the performance of active sonar in shallow water. In this research, the reverberation pattern is simulated using MAT­LAB software. The simulated frequency is 30-kHz in the research. There are two main aims of this work. The first is to create the signals that include the reverberation and the target. The second is to perform the reverberation cancelation for the active sonar in shallow water. The analysis of the reverberation for the spherical target is based on the propagation theory of image source, surface scattering of Rayleigh criterion of roughness, bottom scattering of Lambert’s Law, and multiple scattering. The signal containing the reverberation and the target is then compressed or enhanced by AGC (Automatic Gain Control. The echo of the target is then distinguished through the method of cross correlation. The follow­ing phenomena can be found: (a AGC can compress the signal in a specific dynamic range. (b cross correlation can be used to locate and distinguish the echoes of the target in a high reverberation environment.

  13. AIRBORNE LASER BATHYMETRY FOR DOCUMENTATION OF SUBMERGED ARCHAEOLOGICAL SITES IN SHALLOW WATER

    Directory of Open Access Journals (Sweden)

    M. Doneus

    2015-04-01

    Full Text Available Knowledge of underwater topography is essential to the understanding of the organisation and distribution of archaeological sites along and in water bodies. Special attention has to be paid to intertidal and inshore zones where, due to sea-level rise, coastlines have changed and many former coastal sites are now submerged in shallow water. Mapping the detailed inshore topography is therefore important to reconstruct former coastlines, identify sunken archaeological structures and locate potential former harbour sites. However, until recently archaeology has lacked suitable methods to provide the required topographical data of shallow underwater bodies. Our research shows that airborne topo-bathymetric laser scanner systems are able to measure surfaces above and below the water table over large areas in high detail using very short and narrow green laser pulses, even revealing sunken archaeological structures in shallow water. Using an airborne laser scanner operating at a wavelength in the green visible spectrum (532 nm two case study areas in different environmental settings (Kolone, Croatia, with clear sea water; Lake Keutschach, Austria, with turbid water were scanned. In both cases, a digital model of the underwater topography with a planimetric resolution of a few decimeters was measured. While in the clear waters of Kolone penetration depth was up to 11 meters, turbid Lake Keutschach allowed only to document the upper 1.6 meters of its underwater topography. Our results demonstrate the potential of this technique to map submerged archaeological structures over large areas in high detail providing the possibility for systematic, large scale archaeological investigation of this environment.

  14. Parallel comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Yan, DanDan; Tedone, Laura; Koutoulis, Anthony; Whittock, Simon P; Shellie, Robert A

    2017-11-17

    We introduce an information rich analytical approach called parallel comprehensive two-dimensional gas chromatography (2GC×2GC). This parallel chromatography approach splits injected samples into two independent two-dimensional column ensembles and provides two GC×GC separations by using contra-directional thermal modulation. The first-dimension ( 1 D) and second-dimension ( 2 D) columns are connected using planar three-port microchannel devices, which are supplied with supplementary flow via two pressure controller modules. Precise carrier gas flow control at the junction of the 1 D and 2 D columns permits independent control of flow conditions in each separation column. The 2GC×2GC approach provides two entirely independent GC×GC separations for each injection. Analysis of hop (Humulus lupulus L.) essential oils is used to demonstrate the capability of the approach. The analytical performance of each GC×GC separation in the 2GC×2GC experiment is comparable to individual GC×GC separation with matching column configurations. The peak capacity of 2GC×2GC is about 2 times than that of single GC×GC system. The dual 2D chromatograms produced by this single detector system provide complementary separations and additional identification information by harnessing different selectivity provided by the four separation columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Flow transitions in two-dimensional foams.

    Science.gov (United States)

    Gilbreth, Christopher; Sullivan, Scott; Dennin, Michael

    2006-11-01

    For sufficiently slow rates of strain, flowing foam can exhibit inhomogeneous flows. The nature of these flows is an area of active study in both two-dimensional model foams and three dimensional foam. Recent work in three-dimensional foam has identified three distinct regimes of flow [S. Rodts, J. C. Baudez, and P. Coussot, Europhys. Lett. 69, 636 (2005)]. Two of these regimes are identified with continuum behavior (full flow and shear banding), and the third regime is identified as a discrete regime exhibiting extreme localization. In this paper, the discrete regime is studied in more detail using a model two-dimensional foam: a bubble raft. We characterize the behavior of the bubble raft subjected to a constant rate of strain as a function of time, system size, and applied rate of strain. We observe localized flow that is consistent with the coexistence of a power-law fluid with rigid-body rotation. As a function of applied rate of strain, there is a transition from a continuum description of the flow to discrete flow when the thickness of the flow region is approximately ten bubbles. This occurs at an applied rotation rate of approximately 0.07 s-1.

  16. Correlating Mediterranean shallow water deposits with global Oligocene–Miocene stratigraphy and oceanic events☆

    Science.gov (United States)

    Reuter, Markus; Piller, Werner E.; Brandano, Marco; Harzhauser, Mathias

    2013-01-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene–Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene–Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene–late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale. PMID:25844021

  17. Correlating Mediterranean shallow water deposits with global Oligocene-Miocene stratigraphy and oceanic events.

    Science.gov (United States)

    Reuter, Markus; Piller, Werner E; Brandano, Marco; Harzhauser, Mathias

    2013-12-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene-Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene-Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene-late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO 3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale.

  18. A framework to simulate small shallow inland water bodies in semi-arid regions

    Science.gov (United States)

    Abbasi, Ali; Ohene Annor, Frank; van de Giesen, Nick

    2017-12-01

    In this study, a framework for simulating the flow field and heat transfer processes in small shallow inland water bodies has been developed. As the dynamics and thermal structure of these water bodies are crucial in studying the quality of stored water , and in assessing the heat fluxes from their surfaces as well, the heat transfer and temperature simulations were modeled. The proposed model is able to simulate the full 3-D water flow and heat transfer in the water body by applying complex and time varying boundary conditions. In this model, the continuity, momentum and temperature equations together with the turbulence equations, which comprise the buoyancy effect, have been solved. This model is built on the Reynolds Averaged Navier Stokes (RANS) equations with the widely used Boussinesq approach to solve the turbulence issues of the flow field. Micrometeorological data were obtained from an Automatic Weather Station (AWS) installed on the site and combined with field bathymetric measurements for the model. In the framework developed, a simple, applicable and generalizable approach is proposed for preparing the geometry of small shallow water bodies using coarsely measured bathymetry. All parts of the framework are based on open-source tools, which is essential for developing countries.

  19. Shallow transient liquid water environments on present-day mars, and their implications for life

    Science.gov (United States)

    Jones, Eriita G.

    2018-05-01

    The identification and characterisation of subsurface liquid water environments on Mars are of high scientific interest. Such environments have the potential to support microbial life, and, more broadly, to develop our understanding of the habitability of planets and moons beyond Earth. Given our current state of knowledge of life on Earth, three pre-requisites are necessary for an environment to be considered 'habitable' and therefore capable of supporting terrestrial-like life: energy, biogenic elements, and liquid water with a sufficiently high water activity. The surface of Mars today is predominately cold and dry, and any liquid water exposed to the atmosphere will vaporise or freeze on timescales of hours to days. These conditions have likely persisted for much of the last 10 million years, and perhaps longer. Despite this, briny liquid water flows (Recurrent Slope Linea) have been observed in a number of locations in the present-day. This review examines evidence from the Phoenix Lander (2008) and the Mars Science Laboratory (2012-current), to assess the occurrence of habitable conditions in the shallow Martian regolith. It will be argued that shallow, transient, liquid water brines are potentially habitable by microbial life, are likely a widespread occurrence on Mars, and that future exploration aimed at finding present-day habitable conditions and potential biology should 'follow the salt'.

  20. Preliminary Computational Fluid Dynamics (CFD) Simulation of EIIB Push Barge in Shallow Water

    Science.gov (United States)

    Beneš, Petr; Kollárik, Róbert

    2011-12-01

    This study presents preliminary CFD simulation of EIIb push barge in inland conditions using CFD software Ansys Fluent. The RANSE (Reynolds Averaged Navier-Stokes Equation) methods are used for the viscosity solution of turbulent flow around the ship hull. Different RANSE methods are used for the comparison of their results in ship resistance calculations, for selecting the appropriate and removing inappropriate methods. This study further familiarizes on the creation of geometrical model which considers exact water depth to vessel draft ratio in shallow water conditions, grid generation, setting mathematical model in Fluent and evaluation of the simulations results.

  1. A three-dimensional radiative transfer model for shallow water environments.

    Science.gov (United States)

    Hedley, John

    2008-12-22

    A geometric optical model for three-dimensional radiative transfer capable of handling arbitrary arrangements of surfaces within anisotropic scattering media is described. The model operates by discretizing surfaces and volumes into patches and voxels and establishing the radiative transfer relationship between every pair of elements. In a plane-parallel configuration results for directional radiance agree closely with the numerical integration invariant imbedded method. Model accuracy for two examples incorporating surface water waves and complex benthic structures were assessed by conservation of energy, errors were less than 1%. Potential applications in remote sensing or photobiological studies of structurally complex benthos in shallow water environments are illustrated.

  2. Effect of shallow-water venting in Azores on a few marine biota

    Digital Repository Service at National Institute of Oceanography (India)

    Colaco, A; Raghukumar, C.; Mohandass, C.; Cardigos, F.; Santos, R.S.

    production by the thraustochytrid isolate # 2a. Figure 2. Effet des éléments traces sur l’activité protéase de l’isolat n° 2a de thraustochytridae. Isolation of micro organisms Bacteria and thraustochytrid protists from yellow and white zones, water samples... 9 5 8 9 9 4 362 SHALLOW WATER VENTING Figure 1. Effect of elements on growth of the thraustochytrid isolate #2a. Figure 1. Effet des éléments traces sur la croissance de l’isolat n° 2a de thraustochytridae. Figure 2. Effect of elements on protease...

  3. Assessment of shallow ground-water quality in recently urbanized areas of Sacramento, California, 1998

    Science.gov (United States)

    Shelton, Jennifer L.

    2005-01-01

    Evidence for anthropogenic impact on shallow ground-water quality beneath recently developed urban areas of Sacramento, California, has been observed in the sampling results from 19 monitoring wells in 1998. Eight volatile organic compounds (VOCs), four pesticides, and one pesticide transformation product were detected in low concentrations, and nitrate, as nitrogen, was detected in elevated concentrations; all of these concentrations were below National and State primary and secondary maximum contaminant levels. VOC results from this study are more consistent with the results from urban areas nationwide than from agricultural areas in the Central Valley, indicating that shallow ground-water quality has been impacted by urbanization. VOCs detected may be attributed to either the chlorination of drinking water, such as trichloromethane (chloroform) detected in 16 samples, or to the use of gasoline additives, such as methyl tert-butyl ether (MTBE), detected in 2 samples. Pesticides detected may be attributed to use on household lawns and gardens and rights-of-way, such as atrazine detected in three samples, or to past agricultural practices, and potentially to ground-water/surface-water interactions, such as bentazon detected in one sample from a well adjacent to the Sacramento River and downstream from where bentazon historically was used on rice. Concentrations of nitrate may be attributed to natural sources, animal waste, old septic tanks, and fertilizers used on lawns and gardens or previously used on agricultural crops. Seven sample concentrations of nitrate, as nitrogen, exceeded 3.0 milligrams per liter, a level that may indicate impact from human activities. Ground-water recharge from rainfall or surface-water runoff also may contribute to the concentrations of VOCs and pesticides observed in ground water. Most VOCs and pesticides detected in ground-water samples also were detected in air and surface-water samples collected at sites within or adjacent to the

  4. A mathematical procedure to estimate solar absorptance of shallow water ponds

    International Nuclear Information System (INIS)

    Wu Hongbo; Tang Runsheng; Li Zhimin; Zhong Hao

    2009-01-01

    In this article, a mathematical procedure is developed for estimating solar absorption of shallow water ponds with different pond floor based on the fact that the solar radiation trapped inside the water layer undergoes multiplicative reflection and absorption and on that the solar absorption of water is selective. Theoretical model indicates that the solar absorption of a water pond is related to the reflectivity of the pond floor, the solar spectrum and the water depth. To validate the mathematical model, a concrete water pond measuring 3 x 3 x 0.24 m was constructed. Experimental results indicate that solar reflectivity calculated based on the mathematical model proposed in this work were in good agreement with those measured. For water ponds with a water-permeable floor, such as concrete floor, theoretical calculations of the solar absorptance of a water pond should be done based on the reflectivity of full wet floor, whereas for water ponds with a non-water-permeable floor, theoretical calculations should be done based on the fact that solar reflection on the floor is neither perfect specular reflection nor prefect isotropic diffuse reflection. Results of numerical calculation show that theoretical calculations of solar absorption of a water pond by dividing solar spectrum into six bands were pretty agreement with those by dividing solar spectrum into 20 bands.

  5. Two-dimensional Lagrangian simulation of suspended sediment

    Science.gov (United States)

    Schoellhamer, David H.

    1988-01-01

    A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.

  6. Simulation of upward flux from shallow water-table using UPFLOW model

    Directory of Open Access Journals (Sweden)

    M. H. Ali

    2013-11-01

    Full Text Available The upward movement of water by capillary rise from shallow water-table to the root zone is an important incoming flux. For determining exact amount of irrigation requirement, estimation of capillary flux or upward flux is essential. Simulation model can provide a reliable estimate of upward flux under variable soil and climatic conditions. In this study, the performance of model UPFLOW to estimate upward flux was evaluated. Evaluation of model performance was performed with both graphical display and statistical criteria. In distribution of simulated capillary rise values against observed field data, maximum data points lie around the 1:1 line, which means that the model output is reliable and reasonable. The coefficient of determination between observed and simulated values was 0.806 (r = 0.93, which indicates a good inter-relation between observed and simulated values. The relative error, model efficiency, and index of agreement were found as 27.91%, 85.93% and 0.96, respectively. Considering the graphical display of observed and simulated upward flux and statistical indicators, it can be concluded that the overall performance of the UPFLOW model in simulating actual upward flux from a crop field under variable water-table condition is satisfactory. Thus, the model can be used to estimate capillary rise from shallow water-table for proper estimation of irrigation requirement, which would save valuable water from over-irrigation.

  7. Effects of once-weekly shallow water aerobic exercise on functional performance in elderly women

    Directory of Open Access Journals (Sweden)

    Veronika Kramperová

    2016-12-01

    Full Text Available The purpose of this study was to examine the effects of 24-week shallow-water aerobic exercise on functional performance in postmenopausal women. Thirty-seven women aged 60+ (mean age 67.2 ± 4.8 years were self-selected to a water exercise group (n = 21 or to a comparison group (n = 16. The training consisted of a 24-week (60 min.day−1, 1 d.wk−1 supervised and guided exercise programme that included aerobic and strength training using an aquatic noodle in shallow water (1.2 m. Outcome measures were 30-s chair stand and 30-s arm curl tests, assessed at baseline and 24 weeks. Significant differences between groups were analyzed using Fisher’s exact test. At 24 weeks there was a significantly (p < 0.05 greater improvement in measure of upper-body strength in the water exercise group. Arm curling improved by 15.8 versus 14.3% in the water exercise and comparison groups, respectively.

  8. Two dimensional NMR studies of polysaccharides

    International Nuclear Information System (INIS)

    Byrd, R.A.; Egan, W.; Summers, M.F.

    1987-01-01

    Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides

  9. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  10. Two-dimensional materials for ultrafast lasers

    International Nuclear Information System (INIS)

    Wang Fengqiu

    2017-01-01

    As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)

  11. Two dimensional generalizations of the Newcomb equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Pletzer, A.

    1989-11-01

    The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs

  12. Ward identities in two-dimensional gravity

    International Nuclear Information System (INIS)

    Polchinski, J.

    1991-01-01

    We study the decoupling of null states in two-dimensional gravity, using methods of critical string theory. We identify a family of null states which fail to decouple due to curvature and boundary terms. This gives relations involving amplitudes at different genus. At genus zero, these determine certain operator product coefficients. At genus one, they determine the partition function. At higher genus, we obtain a relation similar in form to the Painleve equation, but due to an incomplete understanding of a certain ghost/curvature term we do not have a closed relation for the partition function. Our results appear to correspond to the L 0 and L 1 equations in the topological and matrix model approaches. (orig.)

  13. Two dimensional compass model with Heisenberg interactions

    Science.gov (United States)

    Pires, A. S. T.

    2018-04-01

    We consider a two dimensional compass model with a next and a next near Heisenberg term. The interactions are of two types: frustrated near neighbor compass interactions of amplitudes Jx and Jy, and next and next near neighbor Heisenberg interactions with exchanges J1 and J2 respectively. The Heisenberg interactions are isotropic in spin space, but the compass interactions depend on the bond direction. The ground state of the pure compass model is degenerated with a complex phase diagram. This degeneracy is removed by the Heisenberg terms leading to the arising of a magnetically ordered phase with a preferred direction. We calculate the phase diagrams at zero temperature for the case where, for J2 = 0, we have an antiferromagnetic ground state. We show that varying the value of J2, a magnetically disordered phase can be reached for small values of the compass interactions. We also calculate the critical temperature for a specified value of parameters.

  14. Strategies for Interpreting Two Dimensional Microwave Spectra

    Science.gov (United States)

    Martin-Drumel, Marie-Aline; Crabtree, Kyle N.; Buchanan, Zachary

    2017-06-01

    Microwave spectroscopy can uniquely identify molecules because their rotational energy levels are sensitive to the three principal moments of inertia. However, a priori predictions of a molecule's structure have traditionally been required to enable efficient assignment of the rotational spectrum. Recently, automated microwave double resonance spectroscopy (AMDOR) has been employed to rapidly generate two dimensional spectra based on transitions that share a common rotational level, which may enable automated extraction of rotational constants without any prior estimates of molecular structure. Algorithms used to date for AMDOR have relied on making several initial assumptions about the nature of a subset of the linked transitions, followed by testing possible assignments by "brute force." In this talk, we will discuss new strategies for interpreting AMDOR spectra, using eugenol as a test case, as well as prospects for library-free, automated identification of the molecules in a volatile mixture.

  15. Modified black holes in two dimensional gravity

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1991-11-01

    The SL(2,R)/U(1) gauged WZWN model is modified by a topological term and the accompanying change in the geometry of the two dimensional target space is determined. The possibility of this additional term arises from a symmetry in the general formalism of gauging an isometry subgroup of a non-linear sigma model with an antisymmetric tensor. It is shown, in particular, that the space-time exhibits some general singularities for which the recently found black hole is just a special case. From a conformal field theory point of view and for special values of the unitary representation of SL(2,R), this topological term can be interpreted as a small perturbation by a (1,1) conformal operator of the gauged WZWN action. (author). 26 refs

  16. Thermal properties of two-dimensional materials

    International Nuclear Information System (INIS)

    Zhang Gang; Zhang Yong-Wei

    2017-01-01

    Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS 2 and WS 2 ), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS 2 and the new strategy for thermal management of MoS 2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator. (topical reviews)

  17. Two-dimensional heterostructures for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)

    2017-06-12

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  18. Two-dimensional electroacoustic waves in silicene

    Science.gov (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.

    2018-01-01

    In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.

  19. Equivalency of two-dimensional algebras

    International Nuclear Information System (INIS)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.

    2011-01-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  20. How propeller suction is the dominant factor for ship accidents at shallow water conditions

    Science.gov (United States)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan

    2017-04-01

    The laminar flow comes to the fore with the disappearance of the several other directions in the internal displacements in the water current. Due to the dominant speed direction during the straightforward motion of the ship, the underwater hull is associated with the continuous flow of laminar currents. The open marine environment acts as a compressible liquid medium because of the presence of many variables about water volume overflow boundaries where the ship is associated. Layers of water rising over the sea surface due to ship's body and the propeller's water push provides loss of liquid lifting force for the ship. These situations change the well-known sea-floor morphology and reliable depth limits, and lead to probable accidents. If the ship block coefficient for the front side is 0.7 or higher, the "squat" will be more on the bow, because the associated factor "displacement volume" causes to the low-pressure environment due to large and rapid turbulence. Thus, the bow sinks further, which faced with liquid's weaker lift force. The vessels Gerardus Mercator, Queen Elizabeth and Costa Concordia had accidents because of unified reasons of squat, fast water mass displacement by hull push and propeller suction interaction. In the case of water mass displacement from the bow side away, that accident occurred in 2005 by the vessel Gerardus Mercator with excessive longitudinal trim angularity in the shallow water. The vessel Costa Concordia (2012), voluminous water displaced from the rear left side was an important factor because of the sharp manoeuvre of that the captain made before the accident. Observations before the accident indicate that full-speed sharp turn provided listed position for the ship from left (port side) in the direction of travel before colliding and then strike a rock on the sloping side of the seabed. The reason why the ship drifted to the left depends mainly the water discharge occurred at the left side of the hull during left-hand rudder

  1. Maps of Shallow-water Banks in the Northwestern Hawaiian Islands Derived from Moderate Resolution Landsat Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (generally, less than 30 meters) bank areas in the Northwestern Hawaiian Islands were identified using semi-automated image analysis of Landsat 7 ETM+...

  2. Role of soil characteristics on analysis of water flow in shallow land

    International Nuclear Information System (INIS)

    Tohaya, Takayuki; Wakabayashi, Noriaki; Wadachi, Yoshiki.

    1987-09-01

    Analysis of water flow on posutulated model grounds has been carried out by using 2-dimensional finite element analytical model, to clarify the effects of soil characteristics (hydroulic conductivities in saturated and unsaturated zones, moisture content - water head relationship, porosity, etc.) of a shallow land layer on variations in water tables and water flow rates. Results thus obtained indicate that hydroulic conductivities in saturated and unsaturated zones play an important role in governing the development of a water table, especially the hydroulic conductivity of the top layer and of the layers near the water table give significant effect on the water table development. It was found through multiple regression analyses of the variation of the water table that among soil characteristics following parameters give pronounced effect on the development of the water table in the order; the relationship between moisture content of the unsaturated zone and pressure head, the distance between the water table and ground surface, and the saturated hydroulic conductivity of the layer immediately above the water table. (author)

  3. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    Science.gov (United States)

    Welch, A.H.; Lico, M.S.

    1998-01-01

    Unusually high As and U concentrations (> 100 ??g/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 ??g/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge. Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination. Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert. Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and

  4. Shallow water bathymetry correction using sea bottom classification with multispectral satellite imagery

    Science.gov (United States)

    Kazama, Yoriko; Yamamoto, Tomonori

    2017-10-01

    Bathymetry at shallow water especially shallower than 15m is an important area for environmental monitoring and national defense. Because the depth of shallow water is changeable by the sediment deposition and the ocean waves, the periodic monitoring at shoe area is needed. Utilization of satellite images are well matched for widely and repeatedly monitoring at sea area. Sea bottom terrain model using by remote sensing data have been developed and these methods based on the radiative transfer model of the sun irradiance which is affected by the atmosphere, water, and sea bottom. We adopted that general method of the sea depth extraction to the satellite imagery, WorldView-2; which has very fine spatial resolution (50cm/pix) and eight bands at visible to near-infrared wavelengths. From high-spatial resolution satellite images, there is possibility to know the coral reefs and the rock area's detail terrain model which offers important information for the amphibious landing. In addition, the WorldView-2 satellite sensor has the band at near the ultraviolet wavelength that is transmitted through the water. On the other hand, the previous study showed that the estimation error by the satellite imagery was related to the sea bottom materials such as sand, coral reef, sea alga, and rocks. Therefore, in this study, we focused on sea bottom materials, and tried to improve the depth estimation accuracy. First, we classified the sea bottom materials by the SVM method, which used the depth data acquired by multi-beam sonar as supervised data. Then correction values in the depth estimation equation were calculated applying the classification results. As a result, the classification accuracy of sea bottom materials was 93%, and the depth estimation error using the correction by the classification result was within 1.2m.

  5. Photosynthetic performance of Arctic macroalgae after transplantation from deep to shallow waters.

    Science.gov (United States)

    Karsten, U; Bischof, K; Wiencke, C

    2001-03-01

    Transplantation experiments conducted in the Arctic Kongsfjord (Spitsbergen) in summer 1997 investigated the effects of various types of filtered natural radiation (solar, solar without UV-B, solar without UV-A/B) on photosynthesis of various macroalgae. Two brown algal species (Laminaria solidungula, Saccorhiza dermatodea) and four red algal species (Palmaria palmata, Phycodrys rubens, Phyllophora truncata, Ptilota plumosa) were collected from deeper waters, kept in UV-transparent plexiglass tubes wrapped with different spectral cut-off filter foils and positioned at fixed depths in shallow waters for 7-9 days. At regular intervals, chlorophyll fluorescence of photosystem II (optimum quantum yield, F v /F m ) was determined, as an indicator of photosynthetic performance. The data demonstrate that shallow-water species such as P. palmata are much less affected by natural photosynthetically active radiation (PAR) and UV radiation near the surface than extremely sensitive deep-water species such as Phyc. rubens which exhibited strong decreases in photosynthetic performance, as well as photobleaching of part of the thallus. The other species showed intermediate response patterns. In most species investigated inhibition of photosynthesis was mainly caused by the UV-B wavelengths. Interpretation of the data clearly indicates species-specific tolerances of photosynthesis to ambient solar radiation which can be explained by broad physiological acclimation potentials and/or genetic adaptation to certain (low or high) irradiances. The species-specific photosynthetic performance under radiation stress is in good accordance with the vertical distribution of the macroalgae on the shore.

  6. The diversity and distribution of Holothuroidea in shallow waters of Baluran National Park, Indonesia

    Directory of Open Access Journals (Sweden)

    ARIF MOHAMMAD SIDDIQ

    2016-04-01

    Full Text Available Abstract. Siddiq AM, Atmowidi T, Qayim I. 2015. The diversity and distribution of Holothuroidea in shallow waters of Baluran National Park, Indonesia. Biodiversitas 17: 55-60. A study of the diversity and distribution of sea cucumber (Holothuroidea in shallow waters at Baluran National Park, East Java, Indonesia was carried out from July until September 2015. The method used in this study was systematic transect in low tide condition. Samples were collected by hands at intertidal sites. Identification of sea cucumber species based on morphological ossicles. Twenty one species of Holothuroidea belonging two orders and four families were found in this study. The most dominant family found was Holothuriidae (16 species, followed by Stichopodidae (2 species, Synaptidae (2 species, and Chiridotidae (1 spesies. Four species (Holothuria olivacea, H. verrucosa, Labidodemas rugosum, and Chiridota smirnovi are new record for Java waters and one species (H. papillifera is a new record for Indonesian waters. Two morphospecies (H. aff. macroperona and Stichopus cf. monotuberculatus need reconfirmation to species level. The highest abundance species of Holothuroidea was found at under rock with 15 species. Whereas, the highest number of individuals was found in seagrass areas with 5457 individuals. H. atra has extensive habitat distribution, such as seagrass, macroalgae, coral reef, dead coral, sand, and under rock.

  7. Community Structure of Macrobiota and Environmental Parameters in Shallow Water Hydrothermal Vents off Kueishan Island, Taiwan.

    Directory of Open Access Journals (Sweden)

    Benny Kwok Kan Chan

    Full Text Available Hydrothermal vents represent a unique habitat in the marine ecosystem characterized with high water temperature and toxic acidic chemistry. Vents are distributed at depths ranging from a few meters to several thousand meters. The biological communities of shallow-water vents have, however, been insufficiently studied in most biogeographic areas. We attempted to characterize the macrofauna and macroflora community inhabiting the shallow-water vents off Kueishan Island, Taiwan, to identify the main abiotic factors shaping the community structure and the species distribution. We determined that positively buoyant vent fluid exhibits a more pronounced negative impact to species on the surface water than on the bottom layer. Species richness increased with horizontal distance from the vent, and continuing for a distance of 2000 m, indicating that the vent fluid may exert a negative impact over several kilometers. The community structure off Kueishan Island displayed numerous transitions along the horizontal gradient, which were broadly congruent with changes in environmental conditions. Combination of variation in Ca2+, Cl-, temperature, pH and depth were revealed to show the strongest correlation with the change in benthic community structure, suggesting multiple factors of vent fluid were influencing the associated fauna. Only the vent crabs of Kueishan Island may have an obligated relationship with vents and inhabit the vent mouths because other fauna found nearby are opportunistic taxa that are more tolerant to acidic and toxic environments.

  8. Erosion and Accretion on a Mudflat: The Importance of Very Shallow-Water Effects

    Science.gov (United States)

    Shi, Benwei; Cooper, James R.; Pratolongo, Paula D.; Gao, Shu; Bouma, T. J.; Li, Gaocong; Li, Chunyan; Yang, S. L.; Wang, Ya Ping

    2017-12-01

    Understanding erosion and accretion dynamics during an entire tidal cycle is important for assessing their impacts on the habitats of biological communities and the long-term morphological evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very shallow-water stages (VSWS, water depths erosion and accretion dynamics are likely to differ from those during deeper flows. In this study, we examine the contribution of very shallow-water effects to erosion and accretion of the entire tidal cycle, based on measured and modeled time-series of bed-level changes. Our field experiments revealed that the VSWS accounted for only 11% of the duration of the entire tidal cycle, but erosion and accretion during these stages accounted for 35% of the bed-level changes of the entire tidal cycle. Predicted cumulative bed-level changes agree much better with measured results when the entire tidal cycle is modeled than when only the conditions at water depths of >0.2 m (i.e., probe submerged) are considered. These findings suggest that the magnitude of bed-level changes during VSWS should not be neglected when modeling morphodynamic processes. Our results are useful in understanding the mechanisms of micro-topography formation and destruction that often occur at VSWS, and also improve our understanding and modeling ability of coastal morphological changes.

  9. A study of electric field components in shallow water and water half-space models in seabed logging

    Science.gov (United States)

    Rostami, Amir; Soleimani, Hassan; Yahya, Noorhana; Nyamasvisva, Tadiwa Elisha; Rauf, Muhammad

    2016-11-01

    Seabed logging (SBL) is an electromagnetic (EM) method to detect hydrocarbon (HC) laid beneath the seafloor, which is a development of marine controlled source electromagnetic (CSEM) method. CSEM is a method to show resistivity log of geological layers, transmitting ultra-low frequency EM wave. In SBL a net of receivers, placed on the seafloor, detect reflected and refracted EM wave by layers with different resistivity. Contrast of electrical resistivity of layers impacts on amplitude and phase of the EM wave response. The most indispensable concern in SBL is to detect guided wave via high resistive layer under the seafloor that can be an HC reservoir. Guided wave by HC creates a remarkable difference in received signal when HC reservoir does not exist. While the major contribution of received EM wave in large offset, especially in shallow water environment, is airwave, which is refracted by sea surface due to extremely high resistivity of atmosphere, airwave can affect received guided wave, dramatically. Our objective for this work is to compare HC delineation of tangential and normal components of electric field in shallow water area, using finite element method simulation. Will be reported that, in shallow water environment, minor contribution of air wave in normal component of E field (Ey) versus its major contribution in the tangential component (Ex), causes a considerable contrast on HC delineation of Ey for deeply buried reservoirs (more than 3000 m), while Ex is unable to show different contrasts of received data for with and without HC media at the same condition.

  10. A plausible two-dimensional vertical model of the East Mesa Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, K. P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Kassoy, D. R. [Univ. of Colorado, Boulder, CO (United States). Mechanical Engineering Dept.

    1981-11-10

    For this study, a two-dimensional conceptual model of the East Mesa Geothermal system is developed on the basis of existing geological, geophysical, geochemical, heat flux, and borehole logging data. Hot water rising in a set of faults is assumed to charge the reservoir, which is overlaid by a clay-rich cap. The temperature-depth distribution observed at the site implies that the liquid is converting at a high Rayleigh number. In this approximation, liquid rises up the fault and spreads isothermally into the nearby sections of the reservoir. The cooling effect of the surface on the flow in the reservoir is confined to a thin layer adjacent to the cap-reservoir interface near the fault. This layer grows with the distance from the fault. Eventually, the entire depth of the reservoir is cooled by the surface. The mathematical model is based on the flow of liquid water in a saturated porous medium. Results are obtained for the velocities, pressures, and temperatures in the entire system consisting of fault zone, aquifer, and clay cap. Finally we compare the predicted surface heat flux to that measured at the site in shallow wells. We conclude that the model represents a plausible description of fault zone controlled systems like that at East Mesa.

  11. Shallow-water habitats as sources of fallback foods for hominins.

    Science.gov (United States)

    Wrangham, Richard; Cheney, Dorothy; Seyfarth, Robert; Sarmiento, Esteban

    2009-12-01

    Underground storage organs (USOs) have been proposed as critical fallback foods for early hominins in savanna, but there has been little discussion as to which habitats would have been important sources of USOs. USOs consumed by hominins could have included both underwater and underground storage organs, i.e., from both aquatic and terrestrial habitats. Shallow aquatic habitats tend to offer high plant growth rates, high USO densities, and relatively continuous USO availability throughout the year. Baboons in the Okavango delta use aquatic USOs as a fallback food, and aquatic or semiaquatic USOs support high-density human populations in various parts of the world. As expected given fossilization requisites, the African early- to mid-Pleistocene shows an association of Homo and Paranthropus fossils with shallow-water and flooded habitats where high densities of plant-bearing USOs are likely to have occurred. Given that early hominins in the tropics lived in relatively dry habitats, while others occupied temperate latitudes, ripe, fleshy fruits of the type preferred by African apes would not normally have been available year round. We therefore suggest that water-associated USOs were likely to have been key fallback foods, and that dry-season access to aquatic habitats would have been an important predictor of hominin home range quality. This study differs from traditional savanna chimpanzee models of hominin origins by proposing that access to aquatic habitats was a necessary condition for adaptation to savanna habitats. It also raises the possibility that harvesting efficiency in shallow water promoted adaptations for habitual bipedality in early hominins.

  12. Wave propagation speeds and source term influences in single and integral porosity shallow water equations

    Directory of Open Access Journals (Sweden)

    Ilhan Özgen

    2017-10-01

    Full Text Available In urban flood modeling, so-called porosity shallow water equations (PSWEs, which conceptually account for unresolved structures, e.g., buildings, are a promising approach to addressing high CPU times associated with state-of-the-art explicit numerical methods. The PSWE can be formulated with a single porosity term, referred to as the single porosity shallow water model (SP model, which accounts for both the reduced storage in the cell and the reduced conveyance, or with two porosity terms: one accounting for the reduced storage in the cell and another accounting for the reduced conveyance. The latter form is referred to as an integral or anisotropic porosity shallow water model (AP model. The aim of this study was to analyze the differences in wave propagation speeds of the SP model and the AP model and the implications of numerical model results. First, augmented Roe-type solutions were used to assess the influence of the source terms appearing in both models. It is shown that different source terms have different influences on the stability of the models. Second, four computational test cases were presented and the numerical models were compared. It is observed in the eigenvalue-based analysis as well as in the computational test cases that the models converge if the conveyance porosity in the AP model is close to the storage porosity. If the porosity values differ significantly, the AP model yields different wave propagation speeds and numerical fluxes from those of the BP model. In this study, the ratio between the conveyance and storage porosities was determined to be the most significant parameter.

  13. Carbonate clumped isotope variability in shallow water corals: Temperature dependence and growth-related vital effects

    Science.gov (United States)

    Saenger, Casey; Affek, Hagit P.; Felis, Thomas; Thiagarajan, Nivedita; Lough, Janice M.; Holcomb, Michael

    2012-12-01

    Geochemical variations in shallow water corals provide a valuable archive of paleoclimatic information. However, biological effects can complicate the interpretation of these proxies, forcing their application to rely on empirical calibrations. Carbonate clumped isotope thermometry (Δ47) is a novel paleotemperature proxy based on the temperature dependent "clumping" of 13C-18O bonds. Similar Δ47-temperature relationships in inorganically precipitated calcite and a suite of biogenic carbonates provide evidence that carbonate clumped isotope variability may record absolute temperature without a biological influence. However, large departures from expected values in the winter growth of a hermatypic coral provided early evidence for possible Δ47 vital effects. Here, we present the first systematic survey of Δ47 in shallow water corals. Sub-annual Red Sea Δ47 in two Porites corals shows a temperature dependence similar to inorganic precipitation experiments, but with a systematic offset toward higher Δ47 values that consistently underestimate temperature by ˜8 °C. Additional analyses of Porites, Siderastrea, Astrangia and Caryophyllia corals argue against a number of potential mechanisms as the leading cause for this apparent Δ47 vital effect including: salinity, organic matter contamination, alteration during sampling, the presence or absence of symbionts, and interlaboratory differences in analytical protocols. However, intra- and inter-coral comparisons suggest that the deviation from expected Δ47 increases with calcification rate. Theoretical calculations suggest this apparent link with calcification rate is inconsistent with pH-dependent changes in dissolved inorganic carbon speciation and with kinetic effects associated with CO2 diffusion into the calcifying space. However, the link with calcification rate may be related to fractionation during the hydration/hydroxylation of CO2 within the calcifying space. Although the vital effects we describe will

  14. Range-Dependent Acoustic Propagation in Shallow Water with Elastic Bottom Effects

    Science.gov (United States)

    2013-09-30

    Acoustic Propagation in Shallow Water with Elastic Bottom Effects 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...This is the final version. The range-dependence models a seamount of approximately 400m in heigth and about 20km in range extent. The seamount is 2...The range-dependence models a seamount of approximately 400m in heighth and about 20km in range extent. The seamount is 2-dimensional. This is a

  15. The shallow water equations on the sphere and their Lagrange- Galerkin-solution

    CERN Document Server

    Heinze, T

    2002-01-01

    The shallow water equations are formulated on the sphere in a three- dimensional coordinate system with the aid of tangential velocity components and differential operators. We introduce a modified semi- Lagrangian scheme for the discretization in time. The discretization in space is solved by linear finite elements. The grids we use are regular refinements of a macro triangulation which itself is derived from a highly symmetric polyeder also known as a bucky or soccer ball. The good numerical results show that this combination is a promising approach. The numerical algorithm is stable and its strength is the conservation of mass and energy. (16 refs).

  16. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments

    Science.gov (United States)

    Higgins, J. A.; Blättler, C. L.; Lundstrom, E. A.; Santiago-Ramos, D. P.; Akhtar, A. A.; Crüger Ahm, A.-S.; Bialik, O.; Holmden, C.; Bradbury, H.; Murray, S. T.; Swart, P. K.

    2018-01-01

    Shallow-water carbonate sediments constitute the bulk of sedimentary carbonates in the geologic record and are widely used archives of Earth's chemical and climatic history. One of the main limitations in interpreting the geochemistry of ancient carbonate sediments is the potential for post-depositional diagenetic alteration. In this study, we use paired measurements of calcium (44Ca/40Ca or δ44Ca) and magnesium (26Mg/24Mg or δ26Mg) isotope ratios in sedimentary carbonates and associated pore-fluids as a tool to understand the mineralogical and diagenetic history of Neogene shallow-water carbonate sediments from the Bahamas and southwest Australia. We find that the Ca and Mg isotopic composition of bulk carbonate sediments at these sites exhibits systematic stratigraphic variability that is related to both mineralogy and early marine diagenesis. The observed variability in bulk sediment Ca isotopes is best explained by changes in the extent and style of early marine diagenesis from one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the fluid (fluid-buffered) to one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the precursor sediment (sediment-buffered). Our results indicate that this process, together with variations in carbonate mineralogy (aragonite, calcite, and dolomite), plays a fundamental and underappreciated role in determining the regional and global stratigraphic expressions of geochemical tracers (δ13C, δ18O, major, minor, and trace elements) in shallow-water carbonate sediments in the geologic record. Our results also provide evidence that a large shallow-water carbonate sink that is enriched in 44Ca can explain the mismatch between the δ44/40Ca value of rivers and deep-sea carbonate sediments and call into question the hypothesis that the δ44/40Ca value of seawater depends on the mineralogy of primary carbonate precipitations (e.g. 'aragonite seas' and

  17. Using Hough harmonics to validate and assess nonlinear shallow-water models

    Science.gov (United States)

    Dee, Dick P.; Moraes Da Silva, Arlindo

    1986-01-01

    The implementation of a technique for locating programming errors in shallow-water codes, establishing the correctness of the code, and assessing the performance of the numerical model under various flow conditions is described. The right-hand side of the differential equations is modified in such a way that the exact solution of the nonlinear initial-value problem is known, so that the truncation errors of the numerical scheme can be studied in detail. The exact solution is prescribed to be any linear combination of Hough harmonics which propagate in time according to their natural frequencies.

  18. Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations

    Science.gov (United States)

    Arakawa, Akio; Hsu, Yueh-Jiuan G.

    1990-01-01

    To incorporate potential enstrophy dissipation into discrete shallow water equations with no or arbitrarily small energy dissipation, a family of finite-difference schemes have been derived with which potential enstrophy is guaranteed to decrease while energy is conserved (when the mass flux is nondivergent and time is continuous). Among this family of schemes, there is a member that minimizes the spurious impact of infinite potential vorticities associated with infinitesimal fluid depth. The scheme is, therefore, useful for problems in which the free surface may intersect with the lower boundary.

  19. Exact Interaction Solutions of an Extended (2+1)-Dimensional Shallow Water Wave Equation

    Science.gov (United States)

    Wang, Yun-Hu; Wang, Hui; Zhang, Hong-Sheng; Chaolu, TEMUER

    2017-08-01

    Applying the consistent Riccati expansion method, the extended (2+1)-dimensional shallow water wave equation is proved consistent Riccati solvable and the exact interaction solutions including soliton-cnoidal wave solutions, solitoff-typed solutions are obtained. With the help of the truncated Painlevé expansion, the corresponding nonlocal symmetry is also given, and furthermore, the nonlocal symmetry is localized by prolonging the related enlarged system. Supported by the National Natural Science Foundation of China under Grant Nos. 11405103, 11571008, 51679132, 11601321, and 11526137

  20. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2017-01-15

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  1. Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler equations)

    Science.gov (United States)

    Clamond, Didier; Dutykh, Denys

    2018-02-01

    A new regularisation of the shallow water (and isentropic Euler) equations is proposed. The regularised equations are non-dissipative, non-dispersive and posses a variational structure; thus, the mass, the momentum and the energy are conserved. Hence, for instance, regularised hydraulic jumps are smooth and non-oscillatory. Another particularly interesting feature of this regularisation is that smoothed 'shocks' propagates at exactly the same speed as the original discontinuous ones. The performance of the new model is illustrated numerically on some dam-break test cases, which are classical in the hyperbolic realm.

  2. An Annotated Description of Shallow Water Holothurians (Echinodermata: Holothuroidea from Cayos Cochinos, Honduras

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Hasbún

    2002-06-01

    Full Text Available Taxonomic and biological aspects are presented on five species of shallow water holothurians from the Cayos Cochinos Biological Reserve-CCBR located on the northern Honduran shelf, western Caribbean at 16º N, 86º W. This article provides a taxonomic key of the recorded holothurians and morphometric/morphologic descriptions of their corresponding spicules. These five species belong to a single order (Aspidochirotida and two families: Stichopodidae (Isostichopus badionotus and Holothuriidae (Holothuria mexicana, H. thomasi, H. arenicola and Actinopyga agassizi. In addition, the commensal pearlfish, Carapus bermudensis is recorded from H. mexicana and A. agassizi

  3. Time adaptivity in the diffusive wave approximation to the shallow water equations

    KAUST Repository

    Collier, Nathan

    2013-05-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.

  4. Species Diversity of Shallow Water Zoanthids (Cnidaria: Anthozoa: Hexacorallia in Florida

    Directory of Open Access Journals (Sweden)

    James Davis Reimer

    2012-01-01

    Full Text Available Shallow water zooxanthellate zoanthids are a common component of the coral reef ecosystems of the Caribbean. Despite this, their species diversity remains poorly understood. In this study, collected Palythoa, Zoanthus, Isaurus, and Terrazoanthus specimens from the waters of Florida were phylogenetically examined to obtain a better understanding of zoanthid species diversity in the Caribbean. Surprisingly, the results from analyses utilizing three DNA markers (mitochondrial 16S ribosomal DNA, cytochrome oxidase subunit I, and the internal transcribed spacer of ribosomal DNA showed the presence of at least eleven species, of which up to four appear undescribed. Additionally, the presence of the genus Terrazoanthus in the Caribbean was confirmed for the first time. Attempts to match phylogenetic species or clades with original literature were hampered by vague and short original descriptions, and it is clear that for Atlantic Palythoa and Zoanthus species an in-depth and multidisciplinary investigation is needed to reconcile recent phylogenetic results such as in this study with traditional taxonomy. Furthermore, most shallow water zoanthid species from Florida were observed to have close, sister-species relationships with previously investigated species in the Pacific Ocean. These results indicate that many brachycnemic zoanthid species likely had a Caribbean-Pacific distribution until the formation of the Isthmus of Panama. However, due to inadvertent redescriptions, overall species diversity in these two common genera is likely much lower than literature indicates.

  5. Preliminary Evidence for the Amplification of Global Warming in Shallow, Intertidal Estuarine Waters.

    Science.gov (United States)

    Oczkowski, Autumn; McKinney, Richard; Ayvazian, Suzanne; Hanson, Alana; Wigand, Cathleen; Markham, Erin

    2015-01-01

    Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. A recent survey and synthesis of data from four locations in Southern Rhode Island has led us to hypothesize that this warming may be amplified in the shallow (<1 m), nearshore portions of these estuaries. While intertidal areas are not typically selected as locations for long-term monitoring, we compiled data from published literature, theses, and reports that suggest that enhanced warming may be occurring, perhaps at rates three times higher than deeper estuarine waters. Warmer spring waters may be one of the factors influencing biota residing in intertidal regions both in general as well as at our specific sites. We observed greater abundance of fish, and size of Menidia sp., in recent (2010-2012) seine surveys compared to similar collections in 1962. While any linkages are speculative and data are preliminary, taken together they suggest that shallow intertidal portions of estuaries may be important places to look for the effects of climate change.

  6. Preliminary Evidence for the Amplification of Global Warming in Shallow, Intertidal Estuarine Waters.

    Directory of Open Access Journals (Sweden)

    Autumn Oczkowski

    Full Text Available Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. A recent survey and synthesis of data from four locations in Southern Rhode Island has led us to hypothesize that this warming may be amplified in the shallow (<1 m, nearshore portions of these estuaries. While intertidal areas are not typically selected as locations for long-term monitoring, we compiled data from published literature, theses, and reports that suggest that enhanced warming may be occurring, perhaps at rates three times higher than deeper estuarine waters. Warmer spring waters may be one of the factors influencing biota residing in intertidal regions both in general as well as at our specific sites. We observed greater abundance of fish, and size of Menidia sp., in recent (2010-2012 seine surveys compared to similar collections in 1962. While any linkages are speculative and data are preliminary, taken together they suggest that shallow intertidal portions of estuaries may be important places to look for the effects of climate change.

  7. High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.

    2010-01-01

    In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...

  8. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Photodetectors based on two dimensional materials

    Science.gov (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  10. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  11. Two-dimensional atomic crystals beyond graphene

    Science.gov (United States)

    Kaul, Anupama B.

    2014-06-01

    Carbon-based nanostructures have been the center of intense research and development for more than two decades now. Of these materials, graphene, a two-dimensional (2D) layered material system, has had a significant impact on science and technology over the past decade after monolayers of this material were experimentally isolated in 2004. The recent emergence of other classes of 2D graphene-like layered materials has added yet more exciting dimensions for research in exploring the diverse properties and applications arising from these 2D material systems. For example, hexagonal-BN, a layered material closest in structure to graphene, is an insulator, while NbSe2, a transition metal di-chalcogenide, is metallic and monolayers of other transition metal di-chalcogenides such as MoS2 are direct band-gap semiconductors. The rich spectrum of properties that 2D layered material systems offer can potentially be engineered ondemand, and creates exciting prospects for using such materials in applications ranging from electronics, sensing, photonics, energy harvesting and flexible electronics over the coming years.

  12. Seismic isolation of two dimensional periodic foundations

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.; Mo, Y. L., E-mail: yilungmo@central.uh.edu [University of Houston, Houston, Texas 77004 (United States); Laskar, A. [Indian Institute of Technology Bombay, Powai, Mumbai (India); Cheng, Z.; Shi, Z. [Beijing Jiaotong University, Beijing (China); Menq, F. [University of Texas, Austin, Texas 78712 (United States); Tang, Y. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-07-28

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  13. Comparative Two-Dimensional Fluorescence Gel Electrophoresis.

    Science.gov (United States)

    Ackermann, Doreen; König, Simone

    2018-01-01

    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  14. Stress distribution in two-dimensional silos

    Science.gov (United States)

    Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel

    2018-01-01

    Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.

  15. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  16. Two-dimensional bipolar junction transistors

    Science.gov (United States)

    Gharekhanlou, Behnaz; Khorasani, Sina; Sarvari, Reza

    2014-03-01

    Recent development in fabrication technology of planar two-dimensional (2D) materials has introduced the possibility of numerous novel applications. Our recent analysis has revealed that by definition of p-n junctions through appropriate patterned doping of 2D semiconductors, ideal exponential I-V characteristics may be expected. However, the theory of 2D junctions turns out to be very different to that of standard bulk junctions. Based on this theory of 2D diodes, we construct for the first time a model to describe 2D bipolar junction transistors (2D-BJTs). We derive the small-signal equivalent model, and estimate the performance of a 2D-BJT device based on graphone as the example material. A current gain of about 138 and maximum threshold frequency of 77 GHz, together with a power-delay product of only 4 fJ per 1 μm lateral width is expected at an operating voltage of 5 V. In addition, we derive the necessary formulae and a new approximate solution for the continuity equation in the 2D configuration, which have been verified against numerical solutions.

  17. Characteristics and Correlation Analysis for nitrogen and phosphorus in surface water and shallow underground water of Coal Mining Subsidence Water Area

    Science.gov (United States)

    Fan, T.; Wang, S.; Zhan, H.

    2017-12-01

    Based on the nine monitoring data from November 2012 to September 2013,the temporal distribution characteristics of nitrogen and phosphorus in surface water and shallow underground water of open and closed subsidence area in Panji of Huainan were analyzed. It revealed the various response relationship and migration characteristics between nitrogen and phosphorus in each water body through the correlation analysis. The limiting nutrient status was analyzed through the ratio of each form nitrogen and phosphorus. Results showed there existed certain differences in the time distribution of nitrogen and phosphorus between the two types of subsidence area, the main influential factors were precipitation, non-point source, recharge and discharge of river, etc. There were different levels of response between nitrogen and phosphorus in all kinds of water bodies which is stronger in the surface water and shallow underground water of closed subsidence area, these two types of subsidence area were all phosphorus restricted water.

  18. Measurement of water potential in low-level waste management. [Shallow Land Burial

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. L.; Gee, G. W.; Kirkham, R. R.; Gibson, D. D.

    1982-08-01

    The measurement of soil water is important to the shallow land burial of low-level waste. Soil water flow is the principle mechanism of radionuclide transport, allows the establishment of stabilizing vegetation and also governs the dissolution and release rates of the waste. This report focuses on the measurement of soil water potential and provides an evaluation of several field instruments that are available for use to monitor waste burial sites located in arid region soils. The theoretical concept of water potential is introduced and its relationship to water content and soil water flow is discussed. Next, four major areas of soils research are presented in terms of their dependence on the water potential concept. There are four basic types of sensors used to measure soil water potential. These are: (1) tensiometers; (2) soil psychrometers; (3) electrical resistance blocks; and (4) heat dissipation probes. Tensiometers are designed to measure the soil water potential directly by measuring the soil water pressure. Monitoring efforts at burial sites require measurements of soil water over long time periods. They also require measurements at key locations such as waste-soil interfaces and within any barrier system installed. Electrical resistance blocks are well suited for these types of measurements. The measurement of soil water potential can be a difficult task. There are several sensors commercially available; however, each has its own limitations. It is important to carefully select the appropriate sensor for the job. The accuracy, range, calibration, and stability of the sensor must be carefully considered. This study suggests that for waste management activities, the choice of sensor will be the tensiometer for precise soil characterization studies and the electrical resistance block for long term monitoring programs. (DMC)

  19. Fluid dynamics of two-dimensional pollination in Ruppia maritima

    Science.gov (United States)

    Musunuri, Naga; Bunker, Daniel; Pell, Susan; Pell, Fischer; Singh, Pushpendra

    2016-11-01

    The aim of this work is to understand the physics underlying the mechanisms of two-dimensional aquatic pollen dispersal, known as hydrophily. We observed two mechanisms by which the pollen released from male inflorescences of Ruppia maritima is adsorbed on a water surface: (i) inflorescences rise above the surface and after they mature their pollen mass falls onto the surface as clumps and disperses on the surface; (ii) inflorescences remain below the surface and produce air bubbles which carry their pollen mass to the surface where it disperses. In both cases dispersed pollen masses combined under the action of capillary forces to form pollen rafts. This increases the probability of pollination since the capillary force on a pollen raft towards a stigma is much larger than on a single pollen grain. The presence of a trace amount of surfactant can disrupt the pollination process so that the pollen is not transported or captured on the water surface. National Science Foundation.

  20. Shallow-water habitat use by Bering Sea flatfishes along the central Alaska Peninsula

    Science.gov (United States)

    Hurst, Thomas P.

    2016-05-01

    Flatfishes support a number of important fisheries in Alaskan waters and represent major pathways of energy flow through the ecosystem. Despite their economic and ecological importance, little is known about the use of habitat by juvenile flatfishes in the eastern Bering Sea. This study describes the habitat characteristics of juvenile flatfishes in coastal waters along the Alaska Peninsula and within the Port Moller-Herendeen Bay system, the largest marine embayment in the southern Bering Sea. The two most abundant species, northern rock sole and yellowfin sole, differed slightly in habitat use with the latter occupying slightly muddier substrates. Both were more common along the open coastline than they were within the bay, whereas juvenile Alaska plaice were more abundant within the bay than along the coast and used shallow waters with muddy, high organic content sediments. Juvenile Pacific halibut showed the greatest shift in distribution between age classes: age-0 fish were found in deeper waters (~ 30 m) along the coast, whereas older juveniles were found in the warmer, shallow waters within the bay, possibly due to increased thermal opportunities for growth in this temperature-sensitive species. Three other species, starry flounder, flathead sole, and arrowtooth flounder, were also present, but at much lower densities. In addition, the habitat use patterns of spring-spawning flatfishes (northern rock sole, Pacific halibut, and Alaska plaice) in this region appear to be strongly influenced by oceanographic processes that influence delivery of larvae to coastal habitats. Overall, use of the coastal embayment habitats appears to be less important to juvenile flatfishes in the Bering Sea than in the Gulf of Alaska.

  1. The potential for lithoautotrophic life on Mars: application to shallow interfacial water environments.

    Science.gov (United States)

    Jepsen, Steven M; Priscu, John C; Grimm, Robert E; Bullock, Mark A

    2007-04-01

    We developed a numerical model to assess the lithoautotrophic habitability of Mars based on metabolic energy, nutrients, water availability, and temperature. Available metabolic energy and nutrient sources were based on a laboratory-produced Mars-analog inorganic chemistry. For this specific reference chemistry, the most efficient lithoautotrophic microorganisms would use Fe(2+) as a primary metabolic electron donor and NO(3)(-) or gaseous O(2) as a terminal electron acceptor. In a closed model system, biomass production was limited by the electron donor Fe(2+) and metabolically required P, and typically amounted to approximately 800 pg of dry biomass/ml ( approximately 8,500 cells/ml). Continued growth requires propagation of microbes to new fecund environments, delivery of fresh pore fluid, or continued reaction with the host material. Within the shallow cryosphere--where oxygen can be accessed by microbes and microbes can be accessed by exploration-lithoautotrophs can function within as little as three monolayers of interfacial water formed either by adsorption from the atmosphere or in regions of ice stability where temperatures are within some tens of degrees of the ice melting point. For the selected reference host material (shergottite analog) and associated inorganic fluid chemistry, complete local reaction of the host material potentially yields a time-integrated biomass of approximately 0.1 mg of dry biomass/g of host material ( approximately 10(9) cells/g). Biomass could also be sustained where solutes can be delivered by advection (cryosuction) or diffusion in interfacial water; however, both of these processes are relatively inefficient. Lithoautotrophs in near-surface thin films of water, therefore, would optimize their metabolism by deriving energy and nutrients locally. Although the selected chemistry and associated model output indicate that lithoautotrophic microbial biomass could accrue within shallow interfacial water on Mars, it is likely that

  2. Interaction of two-dimensional magnetoexcitons

    Science.gov (United States)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  3. Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations

    Science.gov (United States)

    Walters, R.A.; Carey, G.F.

    1983-01-01

    The origin and nature of spurious oscillation modes that appear in mixed finite element methods are examined. In particular, the shallow water equations are considered and a modal analysis for the one-dimensional problem is developed. From the resulting dispersion relations we find that the spurious modes in elevation are associated with zero frequency and large wave number (wavelengths of the order of the nodal spacing) and consequently are zero-velocity modes. The spurious modal behavior is the result of the finite spatial discretization. By means of an artificial compressibility and limiting argument we are able to resolve the similar problem for the Navier-Stokes equations. The relationship of this simpler analysis to alternative consistency arguments is explained. This modal approach provides an explanation of the phenomenon in question and permits us to deduce the cause of the very complex behavior of spurious modes observed in numerical experiments with the shallow water equations and Navier-Stokes equations. Furthermore, this analysis is not limited to finite element formulations, but is also applicable to finite difference formulations. ?? 1983.

  4. A standard test set for numerical approximations to the shallow water equations in spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, D.L.; Hack, J.J.; Jakob, R.; Swarztrauber, P.N. (National Center for Atmospheric Research, Boulder, CO (United States)); Drake, J.B. (Oak Ridge National Lab., TN (United States))

    1991-08-01

    A suite of seven test cases is proposed for the evaluation of numerical methods intended for the solution of the shallow water equations in spherical geometry. The shallow water equations exhibit the major difficulties associated with the horizontal dynamical aspects of atmospheric modeling on the spherical earth. These cases are designed for use in the evaluation of numerical methods proposed for climate modeling and to identify the potential trade-offs which must always be made in numerical modeling. Before a proposed scheme is applied to a full baroclinic atmospheric model it must perform well on these problems in comparison with other currently accepted numerical methods. The cases are presented in order of complexity. They consist of advection across the poles, steady state geostrophically balanced flow of both global and local scales, forced nonlinear advection of an isolated low, zonal flow impinging on an isolated mountain, Rossby-Haurwitz waves and observed atmospheric states. One of the cases is also identified as a computer performance/algorithm efficiency benchmark for assessing the performance of algorithms adapted to massively parallel computers. 31 refs.

  5. Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed

    Directory of Open Access Journals (Sweden)

    Loïca Avanthey

    2016-05-01

    Full Text Available Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results.

  6. Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed ‡

    Science.gov (United States)

    Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel

    2016-01-01

    Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results. PMID:27196913

  7. Normal modes of the shallow water system on the cubed sphere

    Science.gov (United States)

    Kang, H. G.; Cheong, H. B.; Lee, C. H.

    2017-12-01

    Spherical harmonics expressed as the Rossby-Haurwitz waves are the normal modes of non-divergent barotropic model. Among the normal modes in the numerical models, the most unstable mode will contaminate the numerical results, and therefore the investigation of normal mode for a given grid system and a discretiztaion method is important. The cubed-sphere grid which consists of six identical faces has been widely adopted in many atmospheric models. This grid system is non-orthogonal grid so that calculation of the normal mode is quiet challenge problem. In the present study, the normal modes of the shallow water system on the cubed sphere discretized by the spectral element method employing the Gauss-Lobatto Lagrange interpolating polynomials as orthogonal basis functions is investigated. The algebraic equations for the shallow water equation on the cubed sphere are derived, and the huge global matrix is constructed. The linear system representing the eigenvalue-eigenvector relations is solved by numerical libraries. The normal mode calculated for the several horizontal resolution and lamb parameters will be discussed and compared to the normal mode from the spherical harmonics spectral method.

  8. Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed.

    Science.gov (United States)

    Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel

    2016-05-17

    Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results.

  9. Two dimensional hydrodynamic modeling of a high latitude braided river

    Science.gov (United States)

    Humphries, E.; Pavelsky, T.; Bates, P. D.

    2014-12-01

    Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.

  10. Potential of a novel airborne hydrographic laser scanner for capturing shallow water bodies

    Science.gov (United States)

    Mandlburger, G.; Pfennigbauer, M.; Steinbacher, F.; Pfeifer, N.

    2012-04-01

    In this paper, we present the general design of a hydrographic laser scanner (prototype instrument) manufactured by the company Riegl Laser Measurement Systems in cooperation with the University of Innsbruck, Unit of Hydraulic Engineering. The instrument utilizes very short laser pulses (1 ns) in the green wavelength domain (λ=532 nm) capable of penetrating the water column. The backscattered signal is digitized in a waveform recorder at high frequency enabling sophisticated waveform processing, both, online during the flight and in post processing. In combination with a traditional topographic airborne laser scanner (λ=1500 nm) mounted on the same platform a complete hydrographic and topographic survey of the riparian foreland, the water surface and river bed can be carried out in a single campaign. In contrast to existing bathymetric LiDAR systems, the presented system uses only medium pulse energy but a high pulse repetition rate of up to 250 kHz and, thus, focuses on a detailed description of shallow water bodies under clear water conditions. Different potential fields of applications of the instrument (hydraulic modelling, hydro-morphology, hydro-biology, ecology, river restoration and monitoring) are discussed and the results of first real-world test flights in Austria and Germany are presented. It is shown that: (i) the high pulse repetition rate enables a point density on the ground of the water body of 10-20 pts/m2, (ii) the short laser pulses together with waveform processing enable a discrimination between water and ground reflections at a water depth of less than 25 cm, (iii) the combination of a topographic and hydrographic laser scanner enable the acquisition of the geometry data for hydraulic modeling in a single survey, thus, providing a much more homogeneous data basis compared to traditional techniques, and (iv) the high point density and the ranging accuracy of less than 10 cm enable a detailed and precise description of the river bed

  11. Method based on the Laplace equations to reconstruct the river terrain for two-dimensional hydrodynamic numerical modeling

    Science.gov (United States)

    Lai, Ruixun; Wang, Min; Yang, Ming; Zhang, Chao

    2018-02-01

    The accuracy of the widely-used two-dimensional hydrodynamic numerical model depends on the quality of the river terrain model, particularly in the main channel. However, in most cases, the bathymetry of the river channel is difficult or expensive to obtain in the field, and there is a lack of available data to describe the geometry of the river channel. We introduce a method that originates from the grid generation with the elliptic equation to generate streamlines of the river channel. The streamlines are numerically solved with the Laplace equations. In the process, streamlines in the physical domain are first computed in a computational domain, and then transformed back to the physical domain. The interpolated streamlines are integrated with the surrounding topography to reconstruct the entire river terrain model. The approach was applied to a meandering reach in the Qinhe River, which is a tributary in the middle of the Yellow River, China. Cross-sectional validation and the two-dimensional shallow-water equations are used to test the performance of the river terrain generated. The results show that the approach can reconstruct the river terrain using the data from measured cross-sections. Furthermore, the created river terrain can maintain a geometrical shape consistent with the measurements, while generating a smooth main channel. Finally, several limitations and opportunities for future research are discussed.

  12. Classification of bottom composition and bathymetry of shallow waters by passive remote sensing

    Science.gov (United States)

    Spitzer, D.; Dirks, R. W. J.

    The use of remote sensing data in the development of algorithms to remove the influence of the watercolumn on upwelling optical signals when mapping the bottom depth and composition in shallow waters. Calculations relating the reflectance spectra to the parameters of the watercolumn and the diverse bottom types are performed and measurements of the underwater reflection coefficient of sandy, mud, and vegetation-type seabottoms are taken. The two-flow radiative transfer model is used. Reflectances within the spectral bands of the Landsat MSS, the Landsat TM, SPOT HVR, and the TIROS-N series AVHRR were computed in order to develop appropriate algorithms suitable for the bottom depth and type mapping. Bottom depth and features appear to be observable down to 3-20 m depending on the water composition and bottom type.

  13. PARALLEL SMAC ALGORITHMS TO SOLVE SHALLOW WATER EQUATION WITH UNSTRUCTURED COLLOCATED GRID SYSTEM

    Science.gov (United States)

    Yamashita, Haruka; Ushijima, Satoru

    A computational method to solve shallow water equations has been investigated with an SMAC method which is usually employed in the simulation for incompressible fluids. In particular, this numerical method is implemented in the unstructured collocated grid system with the distributed memory system to increase the parallel efficiency. The developed computational method was applied to the 1D dam-break problem and the free-surface flows in a meandering open channel. As a result of the 1D dam-break simulations, it was confirmed that this method improve the numerical stability. While, in the case of the meandering open channel, it was confirmed that the predicted water depth and depth-averaged velocity distributions are qualitatively in good agreement with the experimental results and that the reasonable parallel efficiencies are attained by parallel computations.

  14. On shallow water waves in a medium with time-dependent

    Directory of Open Access Journals (Sweden)

    Hamdy I. Abdel-Gawad

    2015-07-01

    Full Text Available In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg–de Vries (vcKdV equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE’s.

  15. Trophic State of a Shallow Lake with Reduced Inflow of Surface Water

    Directory of Open Access Journals (Sweden)

    Ejankowski Wojciech

    2014-12-01

    Full Text Available According to the general classification of shallow eutrophic lakes, two alternative types are distinguished: phytoplankton-dominated and macrophyte-dominated lakes. The latter type is rare and currently endangered by human activity. In order to determine the effect of reduced inflow of surface water by an earth dyke on the lake trophic state, certain biological and physico-chemical parameters were evaluated. This work focuses on two lakes of similar morphometric characteristics situated in the agricultural landscape. The effect of the earth dyke on the trophic state was positively verified. The lake situated in the catchment basin, in which the inflow of surface water was reduced, was defined as meso-eutrophic, with a small amount of phytoplankton and high water transparency. The reference lake was highly eutrophic, with low water transparency and a large amount of phytoplankton. The water body surrounded by the earth dyke was macrophytes dominated (65% of the lake area, whereas the reference lake was a phytoplankton-macrophyte type (42% of the lake area. The trophic evaluation of a lake can be underestimated because of a significant amount of biogenic compounds accumulated in plant tissues. Thus, the values of Carlson’s indices in macrophyte-dominated lakes may not account for the total amount of nutrients in the water body.

  16. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China.

    Directory of Open Access Journals (Sweden)

    Ziliang Liu

    Full Text Available A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km. The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a "small plain, big front

  17. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China

    Science.gov (United States)

    Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi

    2015-01-01

    A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a “small plain, big front” character. PMID

  18. Shallow soil moisture - ground thaw interactions and controls - Part 2: Influences of water and energy fluxes

    Science.gov (United States)

    Guan, X. J.; Spence, C.; Westbrook, C. J.

    2010-07-01

    The companion paper (Guan et al., 2010) demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  19. Functioning of a Shallow-Water Sediment System during Experimental Warming and Nutrient Enrichment

    Science.gov (United States)

    Alsterberg, Christian; Sundbäck, Kristina; Hulth, Stefan

    2012-01-01

    Effects of warming and nutrient enrichment on intact unvegetated shallow-water sediment were investigated for 5 weeks in the autumn under simulated natural field conditions, with a main focus on trophic state and benthic nitrogen cycling. In a flow-through system, sediment was exposed to either seawater at ambient temperature or seawater heated 4°C above ambient, with either natural or nutrient enriched water. Sediment–water fluxes of oxygen and inorganic nutrients, nitrogen mineralization, and denitrification were measured. Warming resulted in an earlier shift to net heterotrophy due to increased community respiration; primary production was not affected by temperature but (slightly) by nutrient enrichment. The heterotrophic state was, however, not further strengthened by warming, but was rather weakened, probably because increased mineralization induced a shortage of labile organic matter. Climate-related warming of seawater during autumn could therefore, in contrast to previous predictions, induce shorter but more intensive heterotrophic periods in shallow-water sediments, followed by longer autotrophic periods. Increased nitrogen mineralization and subsequent effluxes of ammonium during warming suggested a preferential response of organisms driving nitrogen mineralization when compared to sinks of ammonium such as nitrification and algal assimilation. Warming and nutrient enrichment resulted in non-additive effects on nitrogen mineralization and denitrification (synergism), as well as on benthic fluxes of phosphate (antagonism). The mode of interaction appears to be related to the trophic level of the organisms that are the main drivers of the affected processes. Despite the weak response of benthic microalgae to both warming and nutrient enrichment, the assimilation of nitrogen by microalgae was similar in magnitude to rates of nitrogen mineralization. This implies a sustained filter function and retention capacity of nutrients by the sediment. PMID

  20. A new approach to macroalgal bloom control in eutrophic, shallow-water, coastal areas.

    Science.gov (United States)

    Lenzi, Mauro; Salvaterra, Giulia; Gennaro, Paola; Mercatali, Isabel; Persia, Emma; Porrello, Salvatore; Sorce, Carlo

    2015-03-01

    In summer 2012, an experiment was conducted in a shallow eutrophic lagoon with poor water exchange to determine the consequences of harvesting algae on the algal mat itself, which was traversed and repeatedly disturbed by large harvester boats. Four areas with high macroalgal density, measuring half a hectare each, were selected. Two were subjected to frequent disturbance of the algal mat and sediment (12 two-hour operations over a 38-day period) and the other two were left undisturbed as control. The following variables were determined: 1) water column physical chemistry and nutrients; 2) redox potential, nutrients and organic load in sediments; 3) C, N and P content of algal thalli; 4) macroalgal biomass. In 2013, a further experiment was conducted on a larger scale. Biomass was estimated in a high-density mat measuring 235 ha, where macroalgae were harvested and stirred up by four harvesting boats, and in two high-density mats measuring 150 and 120 ha, left undisturbed as control (9.15, 9.92 and 3.68 kg/m(2), respectively). In the first experiment, no significant changes were observed in the water column. In sediment the main variation was a significant reduction in labile organic matter in the disturbed areas and a significant increase mainly in refractory organic matter in the undisturbed areas. Biomass showed a significant drastic reduction in disturbed areas and substantial stability in undisturbed areas. In the large-scale experiment, the biomass of the disturbed mat declined by about 63%, only 6.5% of which was due to harvesting. On the other hand, the undisturbed mat with higher density underwent a natural decline in biomass of about 23% and the other increased by about 50%. These results demonstrate that disturbance of high-density mat in shallow water by boats can cause decay of the mat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat

    Science.gov (United States)

    Kukulka, Tobias; Jay, David A.

    2003-09-01

    This is the second part of an investigation that analyzes human alteration of shallow-water habitat (SWH) available to juvenile salmonids in the tidal Lower Columbia River. Part 2 develops a one-dimensional, subtidal river stage model that explains ˜90% of the stage variance in the tidal river. This model and the tidal model developed in part 1 [, 2003] uncouple the nonlinear interaction of river tides and river stage by referring both to external forcing by river discharge, ocean tides, and atmospheric pressure. Applying the two models, daily high-water levels were predicted for a reach from rkm-50 to rkm-90 during 1974 to 1998, the period of contemporary management. Predicted water levels were related to the bathymetry and topography to determine the changes in shallow-water habitat area (SWHA) caused by flood control dikes and altered flow management. Model results suggest that diking and a >40% reduction of peak flows have reduced SWHA by ˜62% during the crucial spring freshet period during which juvenile salmon use of SWHA is maximal. Taken individually, diking and flow cycle alteration reduced spring freshet SWHA by 52% and 29%, respectively. SWHA has been both displaced to lower elevations and modified in its character because tidal range has increased. Our models of these processes are economical for the very long simulations (seasons to centuries) needed to understand historic changes and climate impacts on SWH. Through analysis of the nonlinear processes controlling surface elevation in a tidal river, we have identified some of the mechanisms that link freshwater discharge to SWH and salmonid survival.

  2. Toxicological assessment of aquatic ecosystems: application to watercraft contaminants in shallow water environments

    Science.gov (United States)

    Winger, P.V.; Kemmish, Michael J.

    2002-01-01

    Recreational boating and personal watercraft use have the potential to adversely impact shallow water systems through contaminant release and physical disturbance of bottom sediments. These nearshore areas are often already degraded by surface runoff, municipal and industrial effluents, and other anthropogenic activities. For proper management, information is needed on the level of contamination and environmental quality of these systems. A number of field and laboratory procedures can be used to provide this much needed information. Contaminants, such as metals, pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, entering aquatic environments generally attach to particulate matter that eventually settles and becomes incorporated into the bottom sediments. Because bottom sediments serve as a sink and as a source for contaminants, environmental assessments generally focus on this matrix. While contaminant residues in sediments and sediment pore waters can reflect environmental quality, characteristics of sediment (redox potential, sediment/pore-water chemistry, acid volatile sulfides, percent organic matter, and sediment particle size) influence their bioavailability and make interpretation of environmental significance difficult. Comparisons of contaminant concentrations in pore water (interstitial water) and sediment with water quality criteria and sediment quality guidelines, respectively, can provide insight into potential biological effects. Laboratory bioaccumulation studies and residue concentrations in resident or caged biota also yield information on potential biological impacts. The usefulness of these measurements may increase as data are developed relating in-situ concentrations, tissue residue levels, and biological responses. Exposure of test organisms in situ or to field-collected sediment and pore water are additional procedures that can be used to assess the biological effects of contaminants. A battery of tests using multi

  3. Two-dimensional silica opens new perspectives

    Science.gov (United States)

    Büchner, Christin; Heyde, Markus

    2017-12-01

    In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science

  4. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  5. Artificial sweeteners as waste water markers in a shallow unconfined aquifer

    Science.gov (United States)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2013-04-01

    One key factor in groundwater quality management is the knowledge of flow paths and recharge. In coupled ground- and surface water systems the understanding of infiltration processes is therefore of paramount importance. Recent studies show that artificial sweeteners - which are used as sugar substitutes in food and beverages - are suitable tracers for domestic wastewater in the aquatic environment. As most rivers receive sewage discharges, artificial sweeteners might be used for tracking surface waters in groundwater. In this study artificial sweeteners are used in combination with conventional tracers (inert anions Cl-, SO42-, stable water isotopes δ18O, δ2H) to identify river water infiltration and the influence of waste water on a shallow unconfined aquifer used for drinking water production. The investigation area is situated in a mesoscale alpine head water catchment. The alluvial aquifer consists of quaternary gravel deposits and is characterized by high hydraulic permeability (kfmax 5 x 10-2 ms-1), high flow velocities (vmax 250 md-1) and a considerable productivity (2,5 m3s-1). A losing stream follows the aquifer in close proximity and is susceptible to infiltrate substantial volumes of water into the alluvial sediments. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners (Acesulfam ACE, Sucralose SUC, Saccharin SAC and Cyclamat CYC) at the investigated site. The local sewage treatment plant was identified as point source of artificial sweeteners in the river water, with ACE concentrations up to 0,6 μgL-1. ACE concentrations in groundwater where approximately of one order of magnitude lower: ACE was present in 33 out of 40 sampled groundwater wells with concentrations up to 0,07 μgL-1, thus indicating considerable influence of sewage water loaded surface water throughout the aquifer. Elevated concentrations of ACE and SAC in single observation wells denote other sources of locally limited contamination

  6. How to react to shallow water hydrodynamics: The larger benthic foraminifera solution.

    Science.gov (United States)

    Briguglio, Antonino; Hohenegger, Johann

    2011-11-01

    Symbiont-bearing larger benthic foraminifera inhabit the photic zone to provide their endosymbiotic algae with light. Because of the hydrodynamic conditions of shallow water environments, tests of larger foraminifera can be entrained and transported by water motion. To resist water motion, these foraminifera have to build a test able to avoid transport or have to develop special mechanisms to attach themselves to substrate or to hide their test below sediment grains. For those species which resist transport by the construction of hydrodynamic convenient shapes, the calculation of hydrodynamic parameters of their test defines the energetic input they can resist and therefore the scenario where they can live in. Measuring the density, size and shape of every test, combined with experimental data, helps to define the best mathematical approach for the settling velocity and Reynolds number of every shell. The comparison between water motion at the sediment-water interface and the specimen-specific settling velocity helps to calculate the water depths at which, for a certain test type, transport, deposition and accumulation may occur. The results obtained for the investigated taxa show that the mathematical approach gives reliable results and can discriminate the hydrodynamic behaviour of different shapes. Furthermore, the study of the settling velocities, calculated for all the investigated taxa, shows that several species are capable to resist water motion and therefore they appear to be functionally adapted to the hydrodynamic condition of its specific environment. The same study is not recommended on species which resist water motion by adopting hiding or anchoring strategies to avoid the effect of water motion.

  7. Shallow circulation groundwater – the main type of water containing hazardous radon concentration

    Directory of Open Access Journals (Sweden)

    T. A. Przylibski

    2011-06-01

    Full Text Available The main factors affecting the value of 222Rn activity concentration in groundwater are the emanation coefficient of reservoir rocks (Kem, the content of parent 226Ra in these rocks (q, changes in the volume and flow velocity as well as the mixing of various groundwater components in the circulation system. The highest values of 222Rn activity concentration are recorded in groundwaters flowing towards an intake through strongly cracked reservoir rocks undergoing weathering processes. Because of these facts, waters with hazardous radon concentration levels, i.e. containing more than 100 Bq dm−3 222Rn, could be characterised in the way that follows. They are classified as radon waters, high-radon waters and extreme-radon waters. They belong to shallow circulation systems (at less than a few dozen metres below ground level and are contemporary infiltration waters, i.e. their underground flow time ranges from several fortnights to a few decades. Because of this, these are usually poorly mineralised waters (often below 0.2–0.5 g dm−3. Their resources are renewable, but also vulnerable to contamination.

    Waters of this type are usually drawn from private intakes, supplying water to one or at most a few households. Due to an increased risk of developing lung tumours, radon should be removed from such waters when still in the intake. To achieve this aim, appropriate legislation should be introduced in many countries.

  8. Cheilopallene ogasawarensis, a New Species of Shallow-Water Pycnogonid (Arthropoda: Pycnogonida) from the Ogasawara (Bonin) Islands, Japan, Northwest Pacific.

    Science.gov (United States)

    Nakamura, Koichiro; Akiyama, Tadashi

    2015-08-05

    A new species of pycnogonid recorded from the shallow waters of Ogasawara (Bonin) Island, Japan, Cheilopallene ogasawarensis n. sp. is described, illustrated and compared with similar species. Cheilopallene ogasawarensis is only the third pycnogonid species recorded from these islands. Morphological characters clearly distinguish the new species from its geographically closest congener C. nodulosa Hong and Kim, 1987, also recorded from Japanese waters.

  9. Fossil and recent shallow water corals from the Atlantic Islands off Western Africa CANCAP-contribution no. 56

    NARCIS (Netherlands)

    Boekschoten, G.J.; Borel Best, M.

    1988-01-01

    Miocene hermatypic corals are listed from Madeira and Porto Santo. Pleistocene and recent shallow water corals are described from the Cape Verde archipelago. The Miocene fauna was part of the Western Tethyan reef association, which went nearly completely extinct by the development of a cool water

  10. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques

    Directory of Open Access Journals (Sweden)

    Francisco Eugenio

    2017-11-01

    Full Text Available Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2, can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.

  11. A subaqueous eruption model for shallow-water, small volume eruptions: Evidence from two Precambrian examples

    Science.gov (United States)

    Mueller, Wulf U.

    Ancient, shallow-water, pyroclastic deposits are identified in the Paleoproterozoic Ketilidian Mobile belt, southeast Greenland at Kangerluluk and in the Neoproterozoic Gariep belt of Namibia in the Schakalsberg Mountains. The 1-30 m-thick tuff and lapilli tuff deposits are interpreted as eruption-fed density current deposits emanating from tephra jets that collapsed under subaqueous conditions due to water ingress. The presence of 1-10 mm diameter armoured lapilli, with a central vesicular lapillus or shard, suggests the existence of high velocity, gas, water vapour, and particle-rich tephra jets. A transition from a gas-steam supported tephra jet to a cold water-laden density current without an intermediate stage of storage and remobilization is inferred. Interpretation of a 5-15 m-thick lapilli tuff breccia further supports explosive subaqueous mechanisms. Pyroclasts in the lapilli tuff breccia are interpreted as bombs emplaced ballistically. Multiple bomb sags produced by the impact of rounded juvenile crystal-rich pyroclasts required a water-exclusion zone formed either by a continuous magma uprush or multiple jet activity occurring concurrently, rather than as isolated tephra jets. Intercalated density current deposits indicate uprush events of limited duration and their recurrence with rapid collapse after each pulse. A new subaqueous Surtseyan-type eruption model is proposed based on observations from these two Precambrian study areas.

  12. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques.

    Science.gov (United States)

    Eugenio, Francisco; Marcello, Javier; Martin, Javier; Rodríguez-Esparragón, Dionisio

    2017-11-16

    Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2), can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain) but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.

  13. Shallow Water Habitat Mapping in Cape Cod National Seashore: A Post-Hurricane Sandy Study

    Science.gov (United States)

    Borrelli, M.; Smith, T.; Legare, B.; Mittermayr, A.

    2017-12-01

    Hurricane Sandy had a dramatic impact along coastal areas in proximity to landfall in late October 2012, and those impacts have been well-documented in terrestrial coastal settings. However, due to the lack of data on submerged marine habitats, similar subtidal impact studies have been limited. This study, one of four contemporaneous studies commissioned by the US National Park Service, developed maps of submerged shallow water marine habitats in and around Cape Cod National Seashore, Massachusetts. All four studies used similar methods of data collection, processing and analysis for the production of habitat maps. One of the motivations for the larger study conducted in the four coastal parks was to provide park managers with a baseline inventory of submerged marine habitats, against which to measure change after future storm events and other natural and anthropogenic phenomena. In this study data from a phase-measuring sidescan sonar, bottom grab samples, seismic reflection profiling, and sediment coring were all used to develop submerged marine habitat maps using the Coastal and Marine Ecological Classification Standard (CMECS). Vessel-based acoustic surveys (n = 76) were conducted in extreme shallow water across four embayments from 2014-2016. Sidescan sonar imagery covering 83.37 km2 was collected, and within that area, 49.53 km2 of co-located bathymetric data were collected with a mean depth of 4.00 m. Bottom grab samples (n = 476) to sample macroinvertebrates and sediments (along with other water column and habitat data) were collected, and these data were used along with the geophysical and coring data to develop final habitat maps using the CMECS framework.

  14. Mechanisms of SAR Imaging of Shallow Water Topography of the Subei Bank

    Directory of Open Access Journals (Sweden)

    Shuangshang Zhang

    2017-11-01

    Full Text Available In this study, the C-band radar backscatter features of the shallow water topography of Subei Bank in the Southern Yellow Sea are statistically investigated using 25 ENVISAT (Environmental Satellite ASAR (advanced synthetic aperture radar and ERS-2 (European Remote-Sensing Satellite-2 SAR images acquired between 2006 and 2010. Different bathymetric features are found on SAR imagery under different sea states. Under low to moderate wind speeds (3.1~6.3 m/s, the wide bright patterns with an average width of 6 km are shown and correspond to sea surface imprints of tidal channels formed by two adjacent sand ridges, while the sand ridges appear as narrower (only 1 km wide, fingerlike, quasi-linear features on SAR imagery in high winds (5.4~13.9 m/s. Two possible SAR imaging mechanisms of coastal bathymetry are proposed in the case where the flow is parallel to the major axes of tidal channels or sand ridges. When the surface Ekman current is opposite to the mean tidal flow, two vortexes will converge at the central line of the tidal channel in the upper layer and form a convergent zone over the sea surface. Thus, the tidal channels are shown as wide and bright stripes on SAR imagery. For the SAR imaging of sand ridges, all the SAR images were acquired at low tidal levels. In this case, the ocean surface waves are possibly broken up under strong winds when propagating from deep water to the shallower water, which leads to an increase of surface roughness over the sand ridges.

  15. A Direct Solution Approach to the Inverse Shallow-Water Problem

    Directory of Open Access Journals (Sweden)

    Alelign Gessese

    2012-01-01

    Full Text Available The study of open channel flow modelling often requires an accurate representation of the channel bed topography to accurately predict the flow hydrodynamics. Experimental techniques are the most widely used approaches to measure the bed topographic elevation of open channels. However, they are usually cost and time consuming. Free surface measurement is, on the other hand, relatively easy to obtain using airborne photographic techniques. We present in this work an easy to implement and fast to solve numerical technique to identify the underlying bedrock topography from given free surface elevation data in shallow open channel flows. The main underlying idea is to derive explicit partial differential equations which govern this inverse reconstruction problem. The technique described here is a “one-shot technique” in the sense that the solution of the partial differential equation provides the solution to the inverse problem directly. The idea is tested on a set of artificial data obtained by first solving the forward problem governed by the shallow-water equations. Numerical results show that the channel bed topographic elevation can be reconstructed with a level of accuracy less than 3%. The method is also shown to be robust when noise is present in the input data.

  16. Brine contamination of shallow ground water and streams in the Brookhaven Oil Field, Lincoln County, Mississippi

    Science.gov (United States)

    Kalkhoff, S.J.

    1986-01-01

    A hydrologic investigation to define areas of brine contamination in shallow freshwater aquifers commonly used for streams that drain the Brookhaven Oil Field, was conducted from October 1983 to September 1984. The Brookhaven Oil Field covers approximately 15 sq mi in northwestern Lincoln County, Mississippi. Since 1943, disposal of approximately 544.2 million barrels of brine pumped from the oil producing zone (lower part of the Tuscaloosa Formation) has contaminated the Citronelle aquifer, the Hattiesburg aquifers, and streams that drain the oil field. Approximately 5 sq mi of the shallow Citronelle aquifer contain water with chloride concentrations higher than normal for this area ( > 20 mg/L). Brine contamination has moved from the source laterally through the Citronelle aquifer to discharge into nearby streams and vertically into the underlying Hattiesburg aquifers. Contamination is most noticeable in Shaws Creek when streamflow originates primarily from groundwater inflow (approximately 87% of the time during the study). Additional study is required to define contaminant plumes, rates of groundwater movement and geohydrochemical reactions between the contaminant and aquifer materials. These data would allow accurate predictions of location, extent and degree of contamination in the study area. (Author 's abstract)

  17. Ecological values of shallow-water habitats: Implications for the restoration of disturbed ecosystems

    Science.gov (United States)

    Lopez, C.B.; Cloern, J.E.; Schraga, T.S.; Little, A.J.; Lucas, L.V.; Thompson, J.K.; Burau, J.R.

    2006-01-01

    A presumed value of shallow-habitat enhanced pelagic productivity derives from the principle that in nutrient-rich aquatic systems phytoplankton growth rate is controlled by light availability, which varies inversely with habitat depth. We measured a set of biological indicators across the gradient of habitat depth within the Sacramento-San Joaquin River Delta (California) to test the hypothesis that plankton biomass, production, and pelagic energy flow also vary systematically with habitat depth. Results showed that phytoplankton biomass and production were only weakly related to phytoplankton growth rates whereas other processes (transport, consumption) were important controls. Distribution of the invasive clam Corbicula fluminea was patchy, and heavily colonized habitats all supported low phytoplankton biomass and production and functioned as food sinks. Surplus primary production in shallow, uncolonized habitats provided potential subsidies to neighboring recipient habitats. Zooplankton in deeper habitats, where grazing exceeded phytoplankton production, were likely supported by significant fluxes of phytoplankton biomass from connected donor habitats. Our results provide three important lessons for ecosystem science: (a) in the absence of process measurements, derived indices provide valuable information to improve our mechanistic understanding of ecosystem function and to benefit adaptive management strategies; (b) the benefits of some ecosystem functions are displaced by water movements, so the value of individual habitat types can only be revealed through a regional perspective that includes connectedness among habitats; and (c) invasive species can act as overriding controls of habitat function, adding to the uncertainty of management outcomes. ?? 2006 Springer Science+Business Media, Inc.

  18. Reef Development on Artificial Patch Reefs in Shallow Water of Panjang Island, Central Java

    Science.gov (United States)

    Munasik; Sugiyanto; Sugianto, Denny N.; Sabdono, Agus

    2018-02-01

    Reef restoration methods are generally developed by propagation of coral fragments, coral recruits and provide substrate for coral attachment using artificial reefs (ARs). ARs have been widely applied as a tool for reef restoration in degraded natural reefs. Successful of coral restoration is determined by reef development such as increasing coral biomass, natural of coral recruits and fauna associated. Artificial Patch Reefs (APRs) is designed by combined of artificial reefs and coral transplantation and constructed by modular circular structures in shape, were deployed from small boats by scuba divers, and are suitable near natural reefs for shallow water with low visibility of Panjang Island, Central Java. Branching corals of Acropora aspera, Montipora digitata and Porites cylindrica fragments were transplanted on to each module of two units of artificial patch reefs in different periods. Coral fragments of Acropora evolved high survival and high growth, Porites fragments have moderate survival and low growth, while fragment of Montipora show in low survival and moderate growth. Within 19 to 22 months of APRs deployment, scleractinian corals were recruited on the surface of artificial patch reef substrates. The most recruits abundant was Montastrea, followed by Poritids, Pocilloporids, and Acroporids. We conclude that artificial patch reefs with developed by coral fragments and natural coral recruitment is one of an alternative rehabilitation method in shallow reef with low visibility.

  19. Nonlinear theory of magnetohydrodynamic flows of a compressible fluid in the shallow water approximation

    International Nuclear Information System (INIS)

    Klimachkov, D. A.; Petrosyan, A. S.

    2016-01-01

    Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describes static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the

  20. Shallow-Water Piscivore-Prey Dynamics in California's Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Matthew L. Nobriga

    2007-05-01

    Full Text Available Predation is one mechanism that could lead to low native fish abundance in macrophyte dominated shallow-water habitats in the Sacramento-San Joaquin Delta. We used beach seine and gill net sampling to identify and compare the distribution and feeding ecology of three piscivores (striped bass, Morone saxatilis, largemouth bass, Micropterus salmoides, and Sacramento pikeminnow, Ptychocheilus grandis at five nearshore sites in the Sacramento-San Joaquin Delta. Sampling was conducted March-October 2001 and 2003. We addressed the following questions. What are the spatial and temporal distributions of age-1 and older striped bass, largemouth bass, and Sacramento pikeminnow? What prey are eaten by these predators? What is the relative importance of predator size versus seasonal prey availability on incidence of piscivory for these predators? What is the likely per capita impact of each piscivore on prey fishes, particularly native fishes? All 76 of our individual station visits yielded at least one of the three species, suggesting that piscivorous fishes frequently occur in Delta shallow-water habitats. All three piscivores had diverse diets.There were noticeable seasonal shifts in prey fish for each of the three piscivores. In general, most native fish were consumed during spring (March-May and the highest prey species richness occurred during summer (June-August. Largemouth bass likely have the highest per capita impact on nearshore fishes, including native fishes. Largemouth bass preyed on a greater diversity of native fishes than the other two piscivores and consumed native fishes farther into the season (July versus May. Based on binomial generalized additive models, incidence of piscivory was predominantly a function of size for largemouth bass and Sacramento pikeminnow. Largemouth bass became predominantly piscivorous at smaller sizes than Sacramento pikeminnow; about 115 mm versus about 190 mm respectively. In contrast, incidence of piscivory

  1. Energy expenditure, cardiorespiratory, and perceptual responses to shallow-water aquatic exercise in young adult women.

    Science.gov (United States)

    Nagle, Elizabeth F; Sanders, Mary E; Shafer, Alex; Barone Gibbs, Bethany; Nagle, Jacquelyn A; Deldin, Anthony R; Franklin, Barry A; Robertson, Robert J

    2013-09-01

    Aquatic exercise (AE) is a popular form of physical activity, yet few studies have assessed the individual's energy expenditure (EE) associated with a continuous bout of AE. Studies using indirect calorimetry to measure EE have reported limitations associated with test methodology and the ability to control individual's exercise intensity or tempo. To evaluate EE and cardiorespiratory (CR) responses during a 40-minute shallow-water AE session in young adult women. Twenty-one healthy women (aged 21.7 ± 3.4 years) completed an orientation practice session and a 40-minute shallow-water AE session using a traditional exercise class format and the SWEAT video-based instructional cuing program. The high-intensity interval format included the following segments: 1) warm-up (3 minutes); 2) CR segment ( 22 minutes); 3) muscular endurance segment (ME; 10 minutes); and 4) cool-down (5 minutes). Subject oxygen consumption (VO2; mL/kg/min), heart rate (HR) and OMNI overall ratings of perceived exertion (RPE-O) were assessed each minute. Average kcal/min1, metabolic equivalents (METs; 1 MET = 3.5 mL/kg/min), and total kcals per segment and for the overall session were calculated. The total subject EE throughout the 40-minute trial (including warm-up and cool-down segments) was 264 kcals, with an overall average of 6.3 kcals/min (5.6 METs).The average kcals/min expended throughout CR segments 2 through 6 was 8.05 (7.1 METs), with the Hoverjog segment producing the greatest average kcals/min at 8.3 (7.3 METs). The CR portion (22 min) contributed 65% of the total EE (171 kcals) of the 40-minute AE trial. For the overall AE trial, the highest and average subject VO2 achieved were 33.3 and 19.7 mL/kg/min, respectively. The average highest subject heart rate achieved was 177 beats per minute (bpm), equivalent to 90% of the participant's age-predicted HRmax. Energy expenditure during a 40-minute AE session met national recommendations for a daily moderate-to-vigorous bout of physical

  2. Two-dimensional void reconstruction by neutron transmission

    International Nuclear Information System (INIS)

    Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.

    1978-01-01

    Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data

  3. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    International Nuclear Information System (INIS)

    Fan Weili; Dong Lifang; Zhang Xinchun

    2010-01-01

    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  4. Does longwall mining have a detrimental effect on shallow ground water sources?

    International Nuclear Information System (INIS)

    Matetic, R.J.; Trevits, M.A.

    1992-01-01

    Longwall mining typically affects the entire overburden rock mass from the unit immediately above the coalbed being mined to the ground surface. It is natural to assume that any water-bearing zones contained within this interval may be influenced to some degree. In some cases, a complete loss of water may be experienced and in others an increase in the hydrologic properties may occur. To address this apparent dichotomy, the US Bureau of Mines is conducting a comprehensive program of subsidence research in select mining areas of the United States. One such site was located in Vinton County, Ohio where two contiguous longwall panels were designated as a study area. The two longwall panels measured approximately 900 ft wide and 9,000 ft long. The thickness of the extracted coal was about 55 inches. The longwall panels were separated by five entries or approximately 350 ft. Overburden thickness in the study area varied from 200 to 350 ft. To evaluate the effects of mining, seven, 8 5/8-inch diameter observation wells were drilled at critical positions above the longwall panels. Water level fluctuations, surface subsidence and hydrologic properties were measured as mining progressed through the study area. Results of this study show mining of both longwall panels did not interrupt the hydrologic regime. This paper provides a detailed case study delineating the timing and effects of mining on local shallow ground water sources

  5. Meshless simulation of dam break using MLPG-RBF and shallow water equations

    Directory of Open Access Journals (Sweden)

    Mužík Juraj

    2017-01-01

    Full Text Available This article focuses on the application of the meshless local Petrov-Galerkin (MLPG method to solve the shallow water equations (SWE. This localized approach is based on the meshless weak formulation with the use of radial-basis functions (RBF as the trial functions. Comparing with mesh-based methods, the present method is more efficient for large-scale problems with complex geometries. In this work, the numerical model is applied to simulate a dam-break problem as one of most descriptive benchmark problems for SWE. As a result, the adopted meshless method not only shows its algorithm applicability for class of problems described by SWE, but also brings more efficiency than several conventional mesh-based methods.

  6. The shallow water equation and the vorticity equation for a change in height of the topography.

    Science.gov (United States)

    Da, ChaoJiu; Shen, BingLu; Yan, PengCheng; Ma, DeShan; Song, Jian

    2017-01-01

    We consider the shallow water equation and the vorticity equations for a variable height of topography. On the assumptions that the atmosphere is incompressible and a constant density, we simplify the coupled dynamic equations. The change in topographic height is handled as the sum of the inherent and changing topography using the perturbation method, together with appropriate boundary conditions of the atmosphere, to obtain the relationship between the relative height of the flow, the inherent topography and the changing topography. We generalize the conservation of the function of relative position, and quantify the relationship between the height of the topography and the relative position of a fluid element. If the height of the topography increases (decreases), the relative position of a fluid element descends (ascends). On this basis, we also study the relationship between the vorticity and the topography to find the vorticity decreasing (increasing) for an increasing (decreasing) height of the topography.

  7. Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method

    Science.gov (United States)

    Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan

    2018-01-01

    Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.

  8. Cell-vertex discretization of shallow water equations on mixed unstructured meshes

    Science.gov (United States)

    Danilov, Sergey; Androsov, Alexey

    2015-04-01

    Finite-volume discretizations can be formulated on unstructured meshes composed of different polygons. A staggered cell-vertex finite-volume discretization, keeping the velocity degrees of freedom on cell centroids and scalar degrees of freedom on vertices, presents one possible choice. Its performance is analyzed on mixed meshes composed of triangles and quads. Although triangular meshes are most flexible geometrically, quads are more efficient numerically and do not support spurious inertial modes of the triangular cell-vertex discretization. Mixed meshes composed of triangles and quads combine benefits of both. In particular, triangular transitional zones can be used to join quadrilateral meshes of differing resolution, i. e., to provide smooth nesting of a fine mesh into a coarse one. Based on a set of examples involving shallow water equations it is shown that mixed meshes offer a viable approach provided some background biharmonic viscosity (or the biharmonic filter) is used to stabilize the triangular part of the mesh.

  9. A potential enstrophy and energy conserving scheme for the shallow water equations

    Science.gov (United States)

    Arakawa, A.; Lamb, V. R.

    1981-01-01

    To improve the simulation of nonlinear aspects of the flow over steep topography, a potential enstrophy and energy conserving scheme for the shallow water equations is derived. It is pointed out that a family of schemes can conserve total energy for general flow and potential enstrophy for flow with no mass flux divergence. The newly derived scheme is a unique member of this family, that conserves both potential enstrophy and energy for general flow. Comparison by means of numerical experiment with a scheme that conserves (potential) enstrophy for purely horizontal nondivergent flow demonstrated the considerable superiority of the newly derived potential enstrophy and energy conserving scheme, not only in suppressing a spurious energy cascade but also in determining the overall flow regime. The potential enstrophy and energy conserving scheme for a spherical grid is also presented.

  10. A local time stepping algorithm for GPU-accelerated 2D shallow water models

    Science.gov (United States)

    Dazzi, Susanna; Vacondio, Renato; Dal Palù, Alessandro; Mignosa, Paolo

    2018-01-01

    In the simulation of flooding events, mesh refinement is often required to capture local bathymetric features and/or to detail areas of interest; however, if an explicit finite volume scheme is adopted, the presence of small cells in the domain can restrict the allowable time step due to the stability condition, thus reducing the computational efficiency. With the aim of overcoming this problem, the paper proposes the application of a Local Time Stepping (LTS) strategy to a GPU-accelerated 2D shallow water numerical model able to handle non-uniform structured meshes. The algorithm is specifically designed to exploit the computational capability of GPUs, minimizing the overheads associated with the LTS implementation. The results of theoretical and field-scale test cases show that the LTS model guarantees appreciable reductions in the execution time compared to the traditional Global Time Stepping strategy, without compromising the solution accuracy.

  11. Multispeed Lattice Boltzmann Model with Space-Filling Lattice for Transcritical Shallow Water Flows

    Directory of Open Access Journals (Sweden)

    Y. Peng

    2017-01-01

    Full Text Available Inspired by the recent success of applying multispeed lattice Boltzmann models with a non-space-filling lattice for simulating transcritical shallow water flows, the capabilities of their space-filling counterpart are investigated in this work. Firstly, two lattice models with five integer discrete velocities are derived by using the method of matching hydrodynamics moments and then tested with two typical 1D problems including the dam-break flow over flat bed and the steady flow over bump. In simulations, the derived space-filling multispeed models, together with the stream-collision scheme, demonstrate better capability in simulating flows with finite Froude number. However, the performance is worse than the non-space-filling model solved by finite difference scheme. The stream-collision scheme with second-order accuracy may be the reason since a numerical scheme with second-order accuracy is prone to numerical oscillations at discontinuities, which is worthwhile for further study.

  12. Multiquadric and Compactly Supported Radial Basis Functions for Shallow Water Equations

    Science.gov (United States)

    Alhuri, Y.; Taik, A.; Naji, A.

    2009-04-01

    Meshfree methods have gained much attention in recent years, not only in the mathematics but also in the engineering community. The computer and numerical methods are powerful tools of analysing wide rang of engineering and industrial application. For long time researchers recognised problems when using a mesh-based method. Developing the meshless methods overcome these problems. In the present paper, we present the application of both the global and the compactly supported radial basis functions (CSRBFs) for solving a system of shallow water hydrodynamic model for marine environments. As the technique is based on the collocation formulation and does not require the generation of a grid and any integral evaluation, the technique is considered as purely meshless method. The Computational efficiency and accuracy of both used functions are verified by comparing the analytic and observed solution.

  13. Stability Analysis of Numerical Methods for a 1.5-Layer Shallow-Water Ocean Model

    Directory of Open Access Journals (Sweden)

    Guang-an Zou

    2013-01-01

    Full Text Available A 1.5-layer reduced-gravity shallow-water ocean model in spherical coordinates is described and discretized in a staggered grid (standard Arakawa C-grid with the forward-time central-space (FTCS method and the Leap-frog finite difference scheme. The discrete Fourier analysis method combined with the Gershgorin circle theorem is used to study the stability of these two finite difference numerical models. A series of necessary conditions of selection criteria for the time-space step sizes and model parameters are obtained. It is showed that these stability conditions are more accurate than the Courant-Friedrichs-Lewy (CFL condition and other two criterions (Blumberg and Mellor, 1987; Casulli, 1990, 1992. Numerical experiments are proposed to test our stability results, and numerical model that is designed is also used to simulate the ocean current.

  14. Mapping nonlinear shallow-water tides: a look at the past and future

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Egbert, G.D.; Erofeeva, S.Y.

    2006-01-01

    Overtides and compound tides are generated by nonlinear mechanisms operative primarily in shallow waters. Their presence complicates tidal analysis owing to the multitude of new constituents and their possible frequency overlap with astronomical tides. The science of nonlinear tides was greatly...... advanced by the pioneering researches of Christian Le Provost who employed analytical theory, physical modeling, and numerical modeling in many extensive studies, especially of the tides of the English Channel. Le Provost's complementary work with satellite altimetry motivates our attempts to merge...... these two interests. After a brief review, we describe initial steps toward the assimilation of altimetry into models of nonlinear tides via generalized inverse methods. A series of barotropic inverse solutions is computed for the M-4 tide over the northwest European Shelf. Future applications of altimetry...

  15. Multimission empirical ocean tide modeling for shallow waters and polar seas

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar

    2011-01-01

    A new global ocean tide model named DTU10 (developed at Technical University of Denmark) representing all major diurnal and semidiurnal tidal constituents is proposed based on an empirical correction to the global tide model FES2004 (Finite Element Solutions), with residual tides determined using...... to recover twice the spatial variations of the tidal signal which is particularly important in shallow waters where the spatial scale of the tidal signal is scaled down. Outside the +/- 66 degrees parallel combined Envisat, GEOSAT Follow-On, and ERS-2, data sets have been included to solve for the tides up...... to the +/- 82 degrees parallel. A new approach to removing the annual sea level variations prior to estimating the residual tides significantly improved tidal determination of diurnal constituents from the Sun-synchronous satellites (e. g., ERS-2 and Envisat) in the polar seas. Extensive evaluations with six...

  16. A note on relative equilibria in a rotating shallow water layer

    KAUST Repository

    Ait Abderrahmane, Hamid

    2013-05-08

    Relative equilibria of two and three satellite vortices in a rotating shallow water layer have been recorded via particle image velocimetry (PIV) and their autorotation speed was estimated. This study shows that these equilibria retain the fundamental characteristics of Kelvin\\'s equilibria, and could be adequately described by the classical idealized point vortex theory. The same conclusion can also be inferred using the experimental dataset of Bergmann et al. (J. Fluid Mech., vol. 679, 2011, pp. 415-431; J. Fluid Mech., vol. 691, 2012, pp. 605-606) if the assigned field\\'s contribution to pattern rotation is included. © 2013 Cambridge University Press.

  17. Evaluation of the Utility of Static and Adaptive Mesh Refinement for Idealized Tropical Cyclone Problems in a Spectral Element Shallow Water Model

    Science.gov (United States)

    2015-04-09

    Refinement for Idealized Tropical Cyclone Problems in a Spectral Element Shallow Water Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...amined for idealized tropical cyclone (TC) simulations in a spectral element f-plane shallow water model. The SMR simulations have varying sizes of...adaptive mesh refinement1 for idealized tropical cyclone problems in a spectral element2 shallow water model3 Eric A. Hendricks ∗ Marine Meteorology Division

  18. Lie algebra contractions on two-dimensional hyperboloid

    International Nuclear Information System (INIS)

    Pogosyan, G. S.; Yakhno, A.

    2010-01-01

    The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.

  19. Competing turbulent cascades and eddy-wave interactions in shallow water equilibria

    Science.gov (United States)

    Weichman, Peter B.

    2017-03-01

    In recent work, Renaud, Venaille, and Bouchet (RVB) [Renaud et al., J. Stat. Phys. 163, 784 (2016), 10.1007/s10955-016-1496-x] revisit the equilibrium statistical mechanics theory of the shallow water equations, within a microcanonical approach, focusing on a more careful treatment of the energy partition between inertial gravity wave and eddy motions in the equilibrium state and deriving joint probability distributions for the corresponding dynamical degrees of freedom. The authors derive a Liouville theorem that determines the underlying phase space statistical measure, but then, through some physical arguments, actually compute the equilibrium statistics using a measure that violates this theorem, choosing equal volume vs equal area fluid parcels. Here, using a more convenient, but essentially equivalent, grand canonical approach, the full statistical theory consistent with the Liouville theorem is derived. The results reveal several significant differences from the previous results (1) The microscale wave motions lead to a strongly fluctuating thermodynamics, including long-range correlations, in contrast to the mean-field-like behavior found by RVB. The final effective model is equivalent to that of an elastic membrane with a nonlinear wave-renormalized surface tension. (2) Even when a mean-field approximation is made, a rather more complex joint probability distribution is revealed. Alternative physical arguments fully support the consistency of the results. Of course, the true fluid final steady state relies on dissipative processes not included in the shallow water equations, such as wave breaking and viscous effects, but it is argued that the current theory provides a more mathematically consistent starting point for future work aimed at assessing their impacts.

  20. Stability analysis of Eulerian-Lagrangian methods for the one-dimensional shallow-water equations

    Science.gov (United States)

    Casulli, V.; Cheng, R.T.

    1990-01-01

    In this paper stability and error analyses are discussed for some finite difference methods when applied to the one-dimensional shallow-water equations. Two finite difference formulations, which are based on a combined Eulerian-Lagrangian approach, are discussed. In the first part of this paper the results of numerical analyses for an explicit Eulerian-Lagrangian method (ELM) have shown that the method is unconditionally stable. This method, which is a generalized fixed grid method of characteristics, covers the Courant-Isaacson-Rees method as a special case. Some artificial viscosity is introduced by this scheme. However, because the method is unconditionally stable, the artificial viscosity can be brought under control either by reducing the spatial increment or by increasing the size of time step. The second part of the paper discusses a class of semi-implicit finite difference methods for the one-dimensional shallow-water equations. This method, when the Eulerian-Lagrangian approach is used for the convective terms, is also unconditionally stable and highly accurate for small space increments or large time steps. The semi-implicit methods seem to be more computationally efficient than the explicit ELM; at each time step a single tridiagonal system of linear equations is solved. The combined explicit and implicit ELM is best used in formulating a solution strategy for solving a network of interconnected channels. The explicit ELM is used at channel junctions for each time step. The semi-implicit method is then applied to the interior points in each channel segment. Following this solution strategy, the channel network problem can be reduced to a set of independent one-dimensional open-channel flow problems. Numerical results support properties given by the stability and error analyses. ?? 1990.

  1. Berezinskii–Kosterlitz–Thouless transition and two-dimensional melting

    Science.gov (United States)

    Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu D.; Tsiok, E. N.

    2017-12-01

    The main aspects of the theory of phase transitions in two-dimensional degenerate systems (Berezinskii–Kosterlitz–Thouless, or BKT, transitions) are reviewed in detail, including the transition mechanism, the renormalization group as a tool for describing the transition, and how the transition scenario can possibly depend on the core energy of topological defects (in particular, in thin superconducting films). Various melting scenarios in two-dimensional systems are analyzed, and the current status of actual experiments and computer simulations in the field is examined. Whereas in three dimensions melting always occurs as a single first-order transition, in two dimensions, as shown by Halperin, Nelson, and Young, melting via two continuous BKT transitions with an intermediate hexatic phase characterized by quasi-long-range orientational order is possible. But there is also a possibility for a first-order phase transition to occur. Recently, one further melting scenario, different from that occurring in the Berezinskii–Kosterlitz–Thouless–Halperin–Nelson–Young theory, has been proposed, according to which a solid can melt in two stages: a continuous BKT-type solid–hexatic transition and then a first-order hexatic-phase–isotropic-liquid phase transition. Particular attention is given to the melting scenario as a function of the potential shape and to the random pinning effect on two-dimensional melting. In particular, it is shown that random pinning can alter the melting scenario fundamentally in the case of a first-order transition. Also considered is the melting of systems with potentials having a negative curvature in the repulsion region–potentials that are successfully used in describing the anomalous properties of water in two dimensions. This review is an extended version of the report “Old and new in the physics of phase transitions” presented at the scientific session of the Physical Sciences Division of the Russian Academy of

  2. Hydrogeochemical and stable isotope geochemical characterization of shallow ground waters and submarine ground water discharge in North-Eastern Germany

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Böttcher, Gerd; Schwerdtfeger, Beate; Lipka, Marko; Westphal, Julia

    2017-04-01

    The evolution and hydrochemical composition of ground waters in Mecklenburg-Western Pommerania (North-Eastern Germany) is controlled by different natural and anthropogenic factors. In the present study, the hydrogeochemistry and stable isotope geochemistry (H, C, O, S) of shallow ground waters was investigated in 2014 and 2015. A mass balance approach is combined with physico-chemical modeling to define the mineral dissolution/precipitation potential as well as the processes taking place during the ground water development. The dissolved inorganic carbon system of the ground waters is controlled by the dissolution of biogenic carbon dioxide, the dissolution of (marine) carbonates and the oxidation of anthropogenically introduced DOC and at a few sites biogenic methane. The sulfur isotope composition of dissolved sulfate indicates the substantial impact from the oxidation of sedimentary pyrite using oxygen or nitrate as electron acceptor. The combined results are the base for a quantitative reaction path analysis. The composition of ground water is discussed with respect to its role as a source for fresh waters forming SGD and in a re-wetting wetland area (Hütelmoor) at the southern Baltic Sea coast line. Acknowledgements: The SGD/Hütelmoor part of this study is supported by German Science Foundation during DFG research training group BALTIC TRANSCOAST.

  3. Methods for Quantifying Shallow-Water Habitat Availability in the Missouri River

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Larson, Kyle B.

    2012-04-09

    As part of regulatory requirements for shallow-water habitat (SWH) restoration, the U.S. Army Corps of Engineers (USACE) completes periodic estimates of the quantity of SWH available throughout the lower 752 mi of the Missouri River. To date, these estimates have been made by various methods that consider only the water depth criterion for SWH. The USACE has completed estimates of SWH availability based on both depth and velocity criteria at four river bends (hereafter called reference bends), encompassing approximately 8 river miles within the lower 752 mi of the Missouri River. These estimates were made from the results of hydraulic modeling of water depth and velocity throughout each bend. Hydraulic modeling of additional river bends is not expected to be completed for deriving estimates of available SWH. Instead, future estimates of SWH will be based on the water depth criterion. The objective of this project, conducted by the Pacific Northwest National Laboratory for the USACE Omaha District, was to develop geographic information system methods for estimating the quantity of available SWH based on water depth only. Knowing that only a limited amount of water depth and channel geometry data would be available for all the remaining bends within the lower 752 mi of the Missouri River, the intent was to determine what information, if any, from the four reference bends could be used to develop methods for estimating SWH at the remaining bends. Specifically, we examined the relationship between cross-section channel morphology and relative differences between SWH estimates based on combined depth and velocity criteria and the depth-only criterion to determine if a correction factor could be applied to estimates of SWH based on the depth-only criterion. In developing these methods, we also explored the applicability of two commonly used geographic information system interpolation methods (TIN and ANUDEM) for estimating SWH using four different elevation data

  4. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals.

    Directory of Open Access Journals (Sweden)

    Line Hermannsen

    Full Text Available Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3 at six ranges (6, 120, 200, 400, 800 and 1300 m in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration, and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters.

  5. Shallow ground water in the Powder River Bbasin, northeastern Wyoming: Description of selected publications, 1950-91, and indications for further study. Water Resources Investigation

    International Nuclear Information System (INIS)

    Lindner-Lunsford, J.B.; Wilson, J.F.

    1992-01-01

    The report describes the conclusions and contributions to knowledge of shallow ground water in publications resulting from previous ground-water investigations in the Powder River Basin and describes indications for further study. For the report, shallow ground water is defined as water in geologic formations overlying the Upper Cretaceous Pierre Shale and equivalents. The 76 publications described were produced from 1950-91 by the U.S. Geological Survey, other government agencies, and academic and private organizations, including mining companies and engineering consultants. Only those parts of the publications that are relevant to thee quantity or quality of shallow ground water in the Powder River Basin are described. Mine plans for coal and uranium mines (many of which contain detailed, local hydrologic information) and publications containing pertinent geologic information, but no hydrologic information, are not included

  6. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  7. Optimizing separations in online comprehensive two-dimensional liquid chromatography

    NARCIS (Netherlands)

    Pirok, Bob W.J.; Gargano, Andrea F.G.; Schoenmakers, Peter J.

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular

  8. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  9. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  10. Landscape-level variation in disease susceptibility related to shallow-water hypoxia.

    Directory of Open Access Journals (Sweden)

    Denise L Breitburg

    Full Text Available Diel-cycling hypoxia is widespread in shallow portions of estuaries and lagoons, especially in systems with high nutrient loads resulting from human activities. Far less is known about the effects of this form of hypoxia than deeper-water seasonal or persistent low dissolved oxygen. We examined field patterns of diel-cycling hypoxia and used field and laboratory experiments to test its effects on acquisition and progression of Perkinsus marinus infections in the eastern oyster, Crassostrea virginica, as well as on oyster growth and filtration. P. marinus infections cause the disease known as Dermo, have been responsible for declines in oyster populations, and have limited success of oyster restoration efforts. The severity of diel-cycling hypoxia varied among shallow monitored sites in Chesapeake Bay, and average daily minimum dissolved oxygen was positively correlated with average daily minimum pH. In both field and laboratory experiments, diel-cycling hypoxia increased acquisition and progression of infections, with stronger results found for younger (1-year-old than older (2-3-year-old oysters, and more pronounced effects on both infections and growth found in the field than in the laboratory. Filtration by oysters was reduced during brief periods of exposure to severe hypoxia. This should have reduced exposure to waterborne P. marinus, and contributed to the negative relationship found between hypoxia frequency and oyster growth. Negative effects of hypoxia on the host immune response is, therefore, the likely mechanism leading to elevated infections in oysters exposed to hypoxia relative to control treatments. Because there is considerable spatial variation in the frequency and severity of hypoxia, diel-cycling hypoxia may contribute to landscape-level spatial variation in disease dynamics within and among estuarine systems.

  11. Evidence for debris flow gully formation initiated by shallow subsurface water on Mars

    Science.gov (United States)

    Lanza, N.L.; Meyer, G.A.; Okubo, C.H.; Newsom, Horton E.; Wiens, R.C.

    2010-01-01

    The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice. ?? 2009 Elsevier Inc.

  12. Shallow water mud-mounds of the Early Devonian Buchan Group, East Gippsland, Australia

    Science.gov (United States)

    Tosolini, A.-M. P.; Wallace, M. W.; Gallagher, S. J.

    2012-12-01

    The Lower Devonian Rocky Camp Member of the Murrindal Limestone, Buchan Group of southeastern Australia consists of a series of carbonate mud-mounds and smaller lagoonal bioherms. The Rocky Camp mound is the best exposed of the mud-mounds and has many characteristics in common with Waulsortian (Carboniferous) mounds. Detailed paleoecological and sedimentological studies indicate that the mound initially accumulated in the photic zone, in contrast to most of the previously recorded mud-mounds. Five facies are present in the mud-mound: a Dasycladacean Wackestone Facies at the base of the mound represents a moderate energy, shallow water bank environment within the photic zone. A Crinioidal Wackestone Facies was deposited in a laterally equivalent foreslope setting. A Poriferan-Crinoidal Mudstone Facies developed in a quiet, deeper water, lee-side mound setting associated with a minor relative sea-level rise. A Stromatoporoid-Coralline Packstone Facies in the upper part of the mound deposited in a high-energy, fair-weather wave base, mound-front environment. The crest of the mound is represented by a Crinoidal-Receptaculitid Packstone Facies indicative of a moderate-energy mound-top environment in the photic zone, sheltered by the mound-front stromatoporoid-coral communities. A mound flank facies is present on the southern side of the mound and this consists of high-energy crinoidal grainstones. Mud-mound deposition was terminated by a transgression that deposited dark gray, fossil-poor marl of the overlying Taravale Formation. The Rocky Camp mound appears to have originated in shallow water photic zone conditions and grew into a high-energy environment, with the mound being eventually colonized by corals and stromatoporoids. The indications of a high-energy environment during later mound growth (growth form of colonial metazoans and grainstones of the flanking facies) suggest that the micrite in the mound was autochthonous and implies the presence of an energy

  13. Water and sediment temperature dynamics in shallow tidal environments: The role of the heat flux at the sediment-water interface

    Science.gov (United States)

    Pivato, M.; Carniello, L.; Gardner, J.; Silvestri, S.; Marani, M.

    2018-03-01

    In the present study, we investigate the energy flux at the sediment-water interface and the relevance of the heat exchanged between water and sediment for the water temperature dynamics in shallow coastal environments. Water and sediment temperature data collected in the Venice lagoon show that, in shallow, temperate lagoons, temperature is uniform within the water column, and enabled us to estimate the net heat flux at the sediment-water interface. We modeled this flux as the sum of a conductive component and of the solar radiation reaching the bottom, finding the latter being negligible. We developed a "point" model to describe the temperature dynamics of the sediment-water continuum driven by vertical energy transfer. We applied the model considering conditions characterized by negligible advection, obtaining satisfactory results. We found that the heat exchange between water and sediment is crucial for describing sediment temperature but plays a minor role on the water temperature.

  14. Small Rov Marine Boat for Bathymetry Surveys of Shallow Waters - Potential Implementation in Malaysia

    Science.gov (United States)

    Suhari, K. T.; Karim, H.; Gunawan, P. H.; Purwanto, H.

    2017-10-01

    Current practices in bathymetry survey (available method) are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products - economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian' bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling) since it is mostly similar to Malaysia's river characteristics and suggests some improvement for Malaysia best practice.

  15. SMALL ROV MARINE BOAT FOR BATHYMETRY SURVEYS OF SHALLOW WATERS – POTENTIAL IMPLEMENTATION IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    K. T. Suhari

    2017-10-01

    Full Text Available Current practices in bathymetry survey (available method are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products – economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian’ bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling since it is mostly similar to Malaysia’s river characteristics and suggests some improvement for Malaysia best practice.

  16. Monitoring and modeling water temperature and trophic status of a shallow Mediterranean lake

    Science.gov (United States)

    Giadrossich, Filippo; Bueche, Thomas; Pulina, Silvia; Marrosu, Roberto; Padedda, Bachisio Mario; Mariani, Maria Antonietta; Vetter, Mark; Cohen, Denis; Pirastru, Mario; Niedda, Marcello; Lugliè, Antonella

    2017-04-01

    Lakes are sensitive to changes in climate and human activities. Over the last few decades, Mediterranean lakes have experienced various problems due to the current climate change (drought, flood, warming, salt accumulation, water quality changes, etc.), often amplified by water use, intensification of land use activities, and pollution. The overall impact of these changes on water resources is still an open question. In this study we monitor the trophic status and the dynamics of water temperature of Lake Baratz, the only natural lake in Sardinia, Italy, characterized by high salinity and shallow depth. We extend the research carried out in the past 8 years by integrating new physical, chemical and biological data using a multidisciplinary approach that combines hydrological and biological dynamics. In particular, the lake water balance and the thermal and hydrochemical regime are studied with a lake dynamic model (the General Lake Model or GLM) which combine the energy budget method for estimating lake evaporation, and a physically-based rainfall-runoff simulator for estimating lake inflow, calibrated with measurements at the cross section of the main inlet stream. The trophic state of the lake was evaluated applying the OCDE Probability Distribution Diagrams method, which requires nutrient concentrations in the lake (total phosphorus), phytoplankton chlorophyll a and Secchi disk transparency data. We collected field data from a raft station and a land station, measuring net solar radiation, air temperature and relative humidity, precipitation, wind velocity, atmospheric pressure, and temperature from thermistors submerged in the uppermost three centimeters of water and beneath the lake surface at depths of 1, 2, 3, 4, 5, 6, and 8 m. Samples for nutrients and chlorophyll a analyses were collected at the same above mentioned depths close to the raft station using a Niskin bottle. Temperature, salinity, pH, and dissolved oxygen were measured using a multi

  17. Differences in the exploitation of bream in three shallow lake systems and their relation to water quality

    NARCIS (Netherlands)

    Lammens, E.H.R.R.; Nes, van E.H.; Mooij, W.M.

    2002-01-01

    1. The development of bream populations, water transparency, chlorophyll-a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer, the

  18. Differences in the exploitation of bream in three shallow lake systems and their relation to water quality

    NARCIS (Netherlands)

    Lammens, E.H.R.R.; Van Nes, E.H.; Mooij, W.M.

    2002-01-01

    SUMMARY1. The development of bream populations, water transparency, chlorophyll-a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer,

  19. GENOTOXICITY OF SHALLOW WATERS NEAR THE BRAZILIAN ANTARCTIC STATION "COMANDANTE FERRAZ" (EACF, ADMIRALTY BAY, KING GEORGE ISLAND, ANTARCTICA

    Directory of Open Access Journals (Sweden)

    Arthur José da Silva Rocha

    2015-03-01

    Full Text Available Series of biomonitoring surveys were undertaken weekly in February 2012 to investigate the genotoxicity of the shallow waters around the Brazilian Antarctic Station "Comandante Ferraz" (EACF. The comet assay was applied to assess the damage to the DNA of hemocytes of the crustacean amphipods Gondogeneia antarctica collected from shallow waters near the Fuel Tanks (FT and Sewage Treatment Outflow (STO of the research station, and compare it to the DNA damage of animals from Punta Plaza (PPL and Yellow Point (YP, natural sites far from the EACF defined as experimental controls. The damage to the DNA of hemocytes of G. antarctica was not significantly different between sites in the biomonitoring surveys I and II. In survey III, the damage to the DNA of animals captured in shallow waters near the Fuel Tanks (FT and Sewage Treatment Outflow (STO was significantly higher than that of the control site of Punta Plaza (PPL. In biomonitoring survey IV, a significant difference was detected only between the FT and PPL sites. Results demonstrated that the shallow waters in front of the station may be genotoxic and that the comet assay and hemocytes of G. antarctica are useful tools for assessing genotoxicity in biomonitoring studies of Antarctic marine coastal habitats.

  20. An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Devendra; Tomar, Vikas, E-mail: tomar@purdue.edu

    2014-11-01

    The present investigation focuses on understanding the influence of change from wet to dry environment on nanomechanical properties of shallow water shrimp exoskeleton. Scanning Electron Microscopy (SEM) based measurements suggest that the shrimp exoskeleton has Bouligand structure, a key characteristic of the crustaceans. As expected, wet samples are found to be softer than dry samples. Reduced modulus values of dry samples are found to be 24.90 ± 1.14 GPa as compared to the corresponding values of 3.79 ± 0.69 GPa in the case of wet samples. Hardness values are found to be 0.86 ± 0.06 GPa in the case of dry samples as compared to the corresponding values of 0.17 ± 0.02 GPa in the case of wet samples. In order to simulate the influence of underwater pressure on the exoskeleton strength, constant load creep experiments as a function of wet and dry environments are performed. The switch in deformation mechanism as a function of environment is explained based on the role played by water molecules in assisting interface slip and increased ductility of matrix material in wet environment in comparison to the dry environment. - Highlights: • Environment dependent (dry-wet) properties of shrimp exoskeleton are analyzed. • Mechanical properties are correlated with the structure and composition. • Presence of water leads to lower reduced modulus and hardness. • SEM images shows the Bouligand pattern based structure. • Creep-relaxation of polymer chains, interface slip is high in presence of water.

  1. Simulation of Irregular Waves and Wave Induced Loads on Wind Power Plants in Shallow Water

    Energy Technology Data Exchange (ETDEWEB)

    Trumars, Jenny [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Water Environment Transport

    2004-05-01

    The essay gives a short introduction to waves and discusses the problem with non-linear waves in shallow water and how they effect an offshore wind energy converter. The focus is on the realisation of non-linear waves in the time domain from short-term statistics in the form of a variance density spectrum of the wave elevation. For this purpose the wave transformation from deep water to the near to shore site of a wind energy farm at Bockstigen has been calculated with the use of SWAN (Simulating Waves Near Shore). The result is a wave spectrum, which can be used as input to the realisation. The realisation of waves is done by perturbation theory to the first and second-order. The properties calculated are the wave elevation, water particle velocity and acceleration. The wave heights from the second order perturbation equations are higher than those from the first order perturbation equations. This is also the case for the water particle kinematics. The increase of variance is significant between the first order and the second order realisation. The calculated wave elevation exhibits non-linear features as the peaks become sharper and the troughs flatter. The resulting forces are calculated using Morison's equation. For second order force and base moment there is an increase in the maximum values. The force and base moment are largest approximately at the zero up and down crossing of the wave elevation. This indicates an inertia dominated wave load. So far the flexibility and the response of the structure have not been taken into account. They are, however, of vital importance. For verification of the wave model the results will later on be compared with measurements at Bockstigen off the coast of Gotland in the Baltic Sea.

  2. The importance of atmospheric correction for airborne hyperspectral remote sensing of shallow waters: application to depth estimation

    Science.gov (United States)

    Castillo-López, Elena; Dominguez, Jose Antonio; Pereda, Raúl; de Luis, Julio Manuel; Pérez, Ruben; Piña, Felipe

    2017-10-01

    Accurate determination of water depth is indispensable in multiple aspects of civil engineering (dock construction, dikes, submarines outfalls, trench control, etc.). To determine the type of atmospheric correction most appropriate for the depth estimation, different accuracies are required. Accuracy in bathymetric information is highly dependent on the atmospheric correction made to the imagery. The reduction of effects such as glint and cross-track illumination in homogeneous shallow-water areas improves the results of the depth estimations. The aim of this work is to assess the best atmospheric correction method for the estimation of depth in shallow waters, considering that reflectance values cannot be greater than 1.5 % because otherwise the background would not be seen. This paper addresses the use of hyperspectral imagery to quantitative bathymetric mapping and explores one of the most common problems when attempting to extract depth information in conditions of variable water types and bottom reflectances. The current work assesses the accuracy of some classical bathymetric algorithms (Polcyn-Lyzenga, Philpot, Benny-Dawson, Hamilton, principal component analysis) when four different atmospheric correction methods are applied and water depth is derived. No atmospheric correction is valid for all type of coastal waters, but in heterogeneous shallow water the model of atmospheric correction 6S offers good results.

  3. Hyperspectral Distinction of Two Caribbean Shallow-Water Corals Based on Their Pigments and Corresponding Reflectance

    Directory of Open Access Journals (Sweden)

    Juan L. Torres-Pérez

    2012-11-01

    Full Text Available The coloration of tropical reef corals is mainly due to their association with photosynthetic dinoflagellates commonly known as zooxanthellae. Combining High Performance Liquid Chromatography (HPLC, spectroscopy and derivative analysis we provide a novel approach to discriminate between the Caribbean shallow-water corals Acropora cervicornis and Porites porites based on their associated pigments. To the best of our knowledge, this is the first time that the total array of pigments found within the coral holobiont is reported. A total of 20 different pigments were identified including chlorophylls, carotenes and xanthophylls. Of these, eleven pigments were common to both species, eight were present only in A. cervicornis, and three were present only in P. porites. Given that these corals are living in similar physical conditions, we hypothesize that this pigment composition difference is likely a consequence of harboring different zooxanthellae clades with a possible influence of endolithic green or brown algae. We tested the effect of this difference in pigments on the reflectance spectra of both species. An important outcome was the correlation of total pigment concentration with coral reflectance spectra up to a 97% confidence level. Derivative analysis of the reflectance curves showed particular differences between species at wavelengths where several chlorophylls, carotenes and xanthophylls absorb. Within species variability of spectral features was not significant while interspecies variability was highly significant. We recognize that the detection of such differences with actual airborne or satellite remote sensors is extremely difficult. Nonetheless, based on our results, the combination of these techniques (HPLC, spectroscopy and derivative analysis can be used as a robust approach for the development of a site specific spectral library for the identification of shallow-water coral species. Studies (Torres-Pérez, NASA Postdoctoral

  4. A New Microbial Player on the Iron Redox Court of Shallow-Water Hydrothermal Vents

    Science.gov (United States)

    Perez-Rodriguez, I. M.; Rawls, M.; Coykendall, D. K.; Foustoukos, D.

    2015-12-01

    The Fe(III)/Fe(II) couple is thought to have been a significant early energy metabolism involved in some of the first biogeochemical processes on Earth (Weber et al., 2006). The early evolving and metal-rich nature of modern hydrothermal systems remain particularly significant for Fe-based activities (Vargas et al., 1998). Documented evidence from such systems show a variety of yet unknown microbial lineages potentially linked to the history of Fe (i.e., Meyer-Dombard and Amend, 2014). Here we describe a novel microbe that reduces Fe(III) at shallow-water hydrothermal vents in Milos Island, Greece. Our laboratory experiments show this strain, MAG-PB1T, to reduce Fe(III) between 30 - 70 °C, 0 - 50 g NaCl l-1 and pH 5.5 - 8.0. Shortest generation time occurred under optimal conditions (60 °C, ~1.8 g NaCl l-1, pH 6.0) with H2 as the energy source, CO2 as the carbon source and Fe(III) as electron acceptor. Its metabolic characteristics are, however, not limited to this pathway. Strain MAG-PB1T can also reduce Mn(IV), arsenate and selenate. Its use of at least 9 organic substrates as energy or carbon sources also demonstrates its mixotrophy. Phylogenetic 16S rRNA gene analyses place strain MAG-PB1T within the Deltaproteobacteria, with the closest match (99%) being an uncultured microbe from hydrothermal springs in Ambitle Island, Papua New Guinea (Meyer-Dombard and Amend, 2014). Its next closest match (97%) is Deferrisoma camini, isolated from a deep-sea vent in the Eastern Lau Spreading Center (Slobodkina et al. 2012). Our strain represents a novel species, which we named Deferrisoma paleochoriense. The occurrence of D. paleochoriense in the shallow-water vents of Milos and Ambitle islands coincides with high arsenic, iron and sulfide contents (Akerman et al., 2011; Price et al., 2013; Yücel et al., 2013). Consequently, our study provides important physiological and metabolic evidence of the feedback between metal chemistry and life in hydrothermal sytems rich in

  5. Multimission empirical ocean tide modeling for shallow waters and polar seas

    Science.gov (United States)

    Cheng, Yongcun; Andersen, Ole Baltazar

    2011-11-01

    A new global ocean tide model named DTU10 (developed at Technical University of Denmark) representing all major diurnal and semidiurnal tidal constituents is proposed based on an empirical correction to the global tide model FES2004 (Finite Element Solutions), with residual tides determined using the response method. The improvements are achieved by introducing 4 years of TOPEX-Jason 1 interleaved mission into existing 18 years (1993-2010) of primary joint TOPEX, Jason 1, and Jason 2 mission time series. Hereby the spatial distribution of observations are doubled and satellite altimetry should be able to recover twice the spatial variations of the tidal signal which is particularly important in shallow waters where the spatial scale of the tidal signal is scaled down. Outside the ±66° parallel combined Envisat, GEOSAT Follow-On, and ERS-2, data sets have been included to solve for the tides up to the ±82° parallel. A new approach to removing the annual sea level variations prior to estimating the residual tides significantly improved tidal determination of diurnal constituents from the Sun-synchronous satellites (e.g., ERS-2 and Envisat) in the polar seas. Extensive evaluations with six tide gauge sets show that the new tide model fits the tide gauge measurements favorably to other state of the art global ocean tide models in both the deep and shallow waters, especially in the Arctic Ocean and the Southern Ocean. One example is a comparison with 207 tide gauge data in the East Asian marginal seas where the root-mean-square agreement improved by 35.12%, 22.61%, 27.07%, and 22.65% (M2, S2, K1, and O1) for the DTU10 tide model compared with the FES2004 tide model. A similar comparison in the Arctic Ocean with 151 gauge data improved by 9.93%, 0.34%, 7.46%, and 9.52% for the M2, S2, K1, and O1 constituents, respectively.

  6. Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants.

    Science.gov (United States)

    Zhang, Wenling; Cao, Yanlin; Tian, Pengyi; Guo, Fei; Tian, Yu; Zheng, Wen; Ji, Xuqiang; Liu, Jingquan

    2016-11-30

    Dispersion in water of two-dimensional (2D) nanosheets is conducive to their practical applications in fundamental science communities due to their abundance, low cost, and ecofriendliness. However, it is difficult to achieve stable aqueous 2D material suspensions because of the intrinsic hydrophobic properties of the layered materials. Here, we report an effective and economic way of producing various 2D nanosheets (h-BN, MoS 2 , MoSe 2 , WS 2 , and graphene) as aqueous dispersions using carbon quantum dots (CQDs) as exfoliation agents and stabilizers. The dispersion was prepared through a liquid phase exfoliation. The as-synthesized stable 2D nanosheets based dispersions were characterized by UV-vis, HRTEM, AFM, Raman, XPS, and XRD. The solutions based on CQD decorated 2D nanosheets were utilized as aqueous lubricants, which realized a friction coefficient as low as 0.02 and even achieved a superlubricity under certain working conditions. The excellent lubricating properties were attributed to the synergetic effects of the 2D nanosheets and CQDs, such as good dispersion stability and easy-sliding interlayer structure. This work thus proposes a novel strategy for the design and preparation of high-performance water based green lubricants.

  7. Mysids (Crustacea) from the shallow waters off Maharashtra and south Gujarat, India, with description of a new species

    Digital Repository Service at National Institute of Oceanography (India)

    Abraham, B.; Panampunnayil, S.U.

    note Pillai (1957) stated that this species was fairly common along the Kerala coast during March to October, appearing in swarms in June and July. In the present collection, it occurred in moderate numbers at Bassein creek. Part of the broods..., 1973). The present record extends its distribution northwardly. Ecological note This is a littoral form living close to the coast in shallow waters. Though this species had been found to occur in swarms in the inshore waters of Kerala...

  8. Optimizing separations in online comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.

  9. a New Technique Based on Mini-Uas for Estimating Water and Bottom Radiance Contributions in Optically Shallow Waters

    Science.gov (United States)

    Montes-Hugo, M. A.; Barrado, C.; Pastor, E.

    2015-08-01

    The mapping of nearshore bathymetry based on spaceborne radiometers is commonly used for QC ocean colour products in littoral waters. However, the accuracy of these estimates is relatively poor with respect to those derived from Lidar systems due in part to the large uncertainties of bottom depth retrievals caused by changes on bottom reflectivity. Here, we present a method based on mini unmanned aerial vehicles (UAS) images for discriminating bottom-reflected and water radiance components by taking advantage of shadows created by different structures sitting on the bottom boundary. Aerial surveys were done with a drone Draganfly X4P during October 1 2013 in optically shallow waters of the Saint Lawrence Estuary, and during low tide. Colour images with a spatial resolution of 3 mm were obtained with an Olympus EPM-1 camera at 10 m height. Preliminary results showed an increase of the relative difference between bright and dark pixels (dP) toward the red wavelengths of the camera's receiver. This is suggesting that dP values can be potentially used as a quantitative proxy of bottom reflectivity after removing artefacts related to Fresnel reflection and bottom adjacency effects.

  10. Quality of Shallow Ground Water in Three Areas of Unsewered Low-Density Development in Wyoming and Montana, 2001

    Science.gov (United States)

    Bartos, Timothy T.; Quinn, Thomas L.; Hallberg, Laura L.; Eddy-Miller, Cheryl A.

    2008-01-01

    The quality of shallow ground water underlying unsewered low-density development outside of Sheridan and Lander, Wyo., and Red Lodge, Mont., was evaluated. In 2001, 29 wells (10 each in Sheridan and Lander and 9 in Red Lodge) were installed at or near the water table and sampled for a wide variety of constituents to identify potential effects of human activities on shallow ground-water quality resulting from development on the land surface. All wells were completed in unconfined aquifers in unconsolidated deposits of Quaternary age with shallow water tables (less than 50 feet below land surface). Land use and land cover was mapped in detail within a 500-meter radius surrounding each well, and potential contaminant sources were inventoried within the radii to identify human activities that may affect shallow ground-water quality. This U.S. Geological Survey National Water-Quality Assessment ground-water study was conducted to examine the effects of unsewered low-density development that often surrounds cities and towns of many different sizes in the western United States?a type of development that often is informally referred to as ?exurban? or ?rural ranchette? development. This type of development has both urban and rural characteristics. Residents in these developments typically rely on a private ground-water well for domestic water supply and a private septic system for sanitary waste disposal. Although the quality of shallow ground water generally was suitable for domestic or other uses without treatment, some inorganic constituents were detected infrequently in ground water in the three study areas at concentrations larger than U.S. Environmental Protection Agency drinking-water standards or proposed standards. Natural factors such as geology, aquifer properties, and ground-water recharge rates likely influence most concentrations of these constituents. These inorganic constituents generally occur naturally in the study areas and were more likely to limit

  11. Third sound in one and two dimensional modulated structures

    International Nuclear Information System (INIS)

    Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.

    1996-01-01

    An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction

  12. Stability analysis of two-dimensional digital recursive filters

    Science.gov (United States)

    Alexander, W. E.; Pruess, S. A.

    1980-01-01

    A new approach to the stability problem for the two-dimensional digital recursive filter is presented. The bivariate difference equation representation of the two-dimensional recursive digital filter is converted to a multiinput-multioutput (MIMO) system similar to the state-space representation of the one-dimensional digital recursive filter. In this paper, a pseudo-state representation is used and three coefficient matrices are obtained. A general theorem for stability of two-dimensional digital recursive filters is derived and a very useful theorem is presented which expresses sufficient requirements for instability in terms of the spectral radii of these matrices.

  13. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  14. Numerical evaluation of two-dimensional harmonic polylogarithms

    CERN Document Server

    Gehrmann, T

    2002-01-01

    The two-dimensional harmonic polylogarithms $\\G(\\vec{a}(z);y)$, a generalization of the harmonic polylogarithms, themselves a generalization of Nielsen's polylogarithms, appear in analytic calculations of multi-loop radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of two-dimensional harmonic polylogarithms, with the two arguments $y,z$ varying in the triangle $0\\le y \\le 1$, $ 0\\le z \\le 1$, $\\ 0\\le (y+z) \\le 1$. This algorithm is implemented into a {\\tt FORTRAN} subroutine {\\tt tdhpl} to compute two-dimensional harmonic polylogarithms up to weight 4.

  15. Natural and anthropogenic factors affecting the shallow groundwater quality in a typical irrigation area with reclaimed water, North China Plain.

    Science.gov (United States)

    Gu, Xiaomin; Xiao, Yong; Yin, Shiyang; Pan, Xingyao; Niu, Yong; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Hao, Qichen

    2017-09-22

    In this study, the hydrochemical characteristics of shallow groundwater were analyzed to get insight into the factors affecting groundwater quality in a typical agricultural dominated area of the North China Plain. Forty-four shallow groundwater samples were collected for chemical analysis. The water type changes from Ca·Na-HCO 3 type in grass land to Ca·Na-Cl (+NO 3 ) type and Na (Ca)-Cl (+NO 3 +SO 4 ) type in construction and facility agricultural land, indicating the influence of human activities. The factor analysis and geostatistical analysis revealed that the two major factors contributing to the groundwater hydrochemical compositions were the water-rock interaction and contamination from sewage discharge and agricultural fertilizers. The major ions (F, HCO 3 ) and trace element (As) in the shallow groundwater represented the natural origin, while the nitrate and sulfate concentrations were related to the application of fertilizer and sewage discharge in the facility agricultural area, which was mainly affected by the human activities. The values of pH, total dissolved solids, electric conductivity, and conventional component (K, Ca, Na, Mg, Cl) in shallow groundwater increased from grass land and cultivated land, to construction land and to facility agriculture which were originated from the combination sources of natural processes (e.g., water-rock interaction) and human activities (e.g., domestic effluents). The study indicated that both natural processes and human activities had influences on the groundwater hydrochemical compositions in shallow groundwater, while anthropogenic processes had more contribution, especially in the reclaimed water irrigation area.

  16. Research on characteristics of radiated noise of large cargo ship in shallow water

    Science.gov (United States)

    Liu, Yongdong; Zhang, Liang

    2017-01-01

    With the rapid development of the shipping industry, the number of the world's ship is gradually increasing. The characteristics of the radiated noise of the ship are also of concern. Since the noise source characteristics of multichannel interference, the surface wave and the sea temperature microstructure and other reasons, the sound signal received in the time-frequency domain has varying characteristics. The signal of the radiated noise of the large cargo ship JOCHOH from horizontal hydrophone array in some shallow water of China is processed and analyzed in the summer of 2015, and the results show that a large cargo ship JOCHOH has a number of noise sources in the direction of the ship's bow and stern lines, such as host, auxiliary and propellers. The radiating sound waves generated by these sources do not meet the spherical wave law at lower frequency in the ocean, and its radiated noise has inherent spatial distribution, the variation characteristics of the radiated noise the large cargo ship in time and frequency domain are given. The research method and results are of particular importance.

  17. Energy-preserving H1-Galerkin schemes for shallow water wave equations with peakon solutions

    International Nuclear Information System (INIS)

    Miyatake, Yuto; Matsuo, Takayasu

    2012-01-01

    New energy-preserving Galerkin schemes for the Camassa–Holm and the Degasperis–Procesi equations which model shallow water waves are presented. The schemes can be implemented only with cheap H 1 elements, which is expected to be sufficient to catch the characteristic peakon solutions. The keys of the derivation are the Hamiltonian structures of the equations and an L 2 -projection technique newly employed in the present Letter to mimic the Hamiltonian structures in a discrete setting, so that the desired energy-preserving property rightly follows. Numerical examples confirm the effectiveness of the schemes. -- Highlights: ► Numerical integration of the Camassa–Holm and Degasperis–Procesi equation. ► New energy-preserving Galerkin schemes for these equations are proposed. ► They can be implemented only with P1 elements. ► They well capture the characteristic peakon solutions over long time. ► The keys are the Hamiltonian structures and L 2 -projection technique.

  18. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters.

    Science.gov (United States)

    Giordano, Francesco; Mattei, Gaia; Parente, Claudio; Peluso, Francesco; Santamaria, Raffaele

    2015-12-29

    This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples) characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments' performance and survey accuracy.

  19. Block Fusion on Dynamically Adaptive Spacetree Grids for Shallow Water Waves

    KAUST Repository

    Weinzierl, Tobias

    2014-09-01

    © 2014 World Scientific Publishing Company. Spacetrees are a popular formalism to describe dynamically adaptive Cartesian grids. Even though they directly yield a mesh, it is often computationally reasonable to embed regular Cartesian blocks into their leaves. This promotes stencils working on homogeneous data chunks. The choice of a proper block size is sensitive. While large block sizes foster loop parallelism and vectorisation, they restrict the adaptivity\\'s granularity and hence increase the memory footprint and lower the numerical accuracy per byte. In the present paper, we therefore use a multiscale spacetree-block coupling admitting blocks on all spacetree nodes. We propose to find sets of blocks on the finest scale throughout the simulation and to replace them by fused big blocks. Such a replacement strategy can pick up hardware characteristics, i.e. which block size yields the highest throughput, while the dynamic adaptivity of the fine grid mesh is not constrained - applications can work with fine granular blocks. We study the fusion with a state-of-the-art shallow water solver at hands of an Intel Sandy Bridge and a Xeon Phi processor where we anticipate their reaction to selected block optimisation and vectorisation.

  20. Satellite-Derived Bathymetry: Accuracy Assessment on Depths Derivation Algorithm for Shallow Water Area

    Science.gov (United States)

    Said, N. M.; Mahmud, M. R.; Hasan, R. C.

    2017-10-01

    Over the years, the acquisition technique of bathymetric data has evolved from a shipborne platform to airborne and presently, utilising space-borne acquisition. The extensive development of remote sensing technology has brought in the new revolution to the hydrographic surveying. Satellite-Derived Bathymetry (SDB), a space-borne acquisition technique which derives bathymetric data from high-resolution multispectral satellite imagery for various purposes recently considered as a new promising technology in the hydrographic surveying industry. Inspiring by this latest developments, a comprehensive study was initiated by National Hydrographic Centre (NHC) and Universiti Teknologi Malaysia (UTM) to analyse SDB as a means for shallow water area acquisition. By adopting additional adjustment in calibration stage, a marginal improvement discovered on the outcomes from both Stumpf and Lyzenga algorithms where the RMSE values for the derived (predicted) depths were 1.432 meters and 1.728 meters respectively. This paper would deliberate in detail the findings from the study especially on the accuracy level and practicality of SDB over the tropical environmental setting in Malaysia.

  1. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    Science.gov (United States)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-03-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.

  2. A robust probabilistic approach for variational inversion in shallow water acoustic tomography

    International Nuclear Information System (INIS)

    Berrada, M; Badran, F; Crépon, M; Thiria, S; Hermand, J-P

    2009-01-01

    This paper presents a variational methodology for inverting shallow water acoustic tomography (SWAT) measurements. The aim is to determine the vertical profile of the speed of sound c(z), knowing the acoustic pressures generated by a frequency source and collected by a sparse vertical hydrophone array (VRA). A variational approach that minimizes a cost function measuring the distance between observations and their modeled equivalents is used. A regularization term in the form of a quadratic restoring term to a background is also added. To avoid inverting the variance–covariance matrix associated with the above-weighted quadratic background, this work proposes to model the sound speed vector using probabilistic principal component analysis (PPCA). The PPCA introduces an optimum reduced number of non-correlated latent variables η, which determine a new control vector and a new regularization term, expressed as η T η. The PPCA represents a rigorous formalism for the use of a priori information and allows an efficient implementation of the variational inverse method

  3. HYDROACOUSTIC OBSERVATIONS OF WEAK EARTHQUAKES IN SHALLOW WATERS OF THE SOUTHERN KURIL ISLANDS

    Directory of Open Access Journals (Sweden)

    Alexander S. Borisov

    2012-01-01

    Full Text Available Results of hydroacoustic observations of signals from weak earthquakes in natural conditions in the region of the Southern Kuril Islands are presented. Some earthquakes were registered by the the Yuzhno-Kurilsk Seismic Station, other were only recorded by hydrophone stations. The observations were specific as seismic signals were recorded in shallow waters, i.e. in high noise level conditions. Hydrophones were installed in Lake Lagunnoe (Kunashir and Khromovaya Bay (Shikotan. Our analysis of hydroacoustic records received from the hydrophone stations revealed no evident precursory response of the geological medium to weak distant events. This means that neither before the period of earthquake preparation nor during the earthquake preparation period, any geoacoustic emission was not detected. It is shown that despite the unfavourable noise level conditions, even distant weak earthquakes can be confidently registered by hydrophone stations, and pending application of proper signal processing techniques, it can be possible to determine arrival times of seismic waves and to measure parameters of seismic waves. It is also established that the frequency spectrum of acoustic signals from the weak earthquakes recordable by the hydrophone stations is continuous and of noise type in the frequency range up to 90–100 Hz. It is revealed that in some cases, weak earthquakes and microearthquakes may be forerun by low frequency signals.

  4. High-Resolution Wave Energy Assessment in Shallow Water Accounting for Tides

    Directory of Open Access Journals (Sweden)

    Dina Silva

    2016-09-01

    Full Text Available The wave energy in a shallow water location is evaluated considering the influence of the local tide and wind on the wave propagation. The target is the coastal area just north of the Portuguese city of Peniche, where a wave energy converter operates on the sea bottom. A wave modelling system based on SWAN has been implemented and focused on this coastal environment in a multilevel computational scheme. The first three SWAN computational belonging to this wave prediction system were defined using the spherical coordinates. In the highest resolution computational domain, Cartesian coordinates have been considered, with a resolution of 25 m in both directions. An in-depth analysis of the main characteristics of the environmental matrix has been performed. This is based on the results of eight-year model system simulations (2005–2012. New simulations have been carried out in the last two computational domains with the most relevant wave and wind patterns, considering also the tide effect. The results show that the tide level, together with the wind intensity and direction, may influence to a significant degree the wave characteristics. This especially concerns the wave power in the location where the wave converter operates.

  5. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters

    Science.gov (United States)

    Giordano, Francesco; Mattei, Gaia; Parente, Claudio; Peluso, Francesco; Santamaria, Raffaele

    2015-01-01

    This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples) characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments’ performance and survey accuracy. PMID:26729117

  6. Flow structure from a horizontal cylinder coincident with a free surface in shallow water flow

    Directory of Open Access Journals (Sweden)

    Kahraman Ali

    2012-01-01

    Full Text Available Vortex formation from a horizontal cylinder coincident with a free surface of a shallow water flow having a depth of 25.4 [mm] was experimentally investigated using the PIV technique. Instantaneous and time-averaged flow patterns in the wake region of the cylinder were examined for three different cylinder diameter values under the fully developed turbulent boundary layer condition. Reynolds numbers were in the range of 1124£ Re£ 3374 and Froude numbers were in the range of 0.41 £ Fr £ 0.71 based on the cylinder diameter. It was found that a jet-like flow giving rise to increasing the flow entrainment between the core and wake regions depending on the cylinder diameter was formed between the lower surface of the cylinder and bottom surface of the channel. Vorticity intensity, Reynolds stress correlations and the primary recirculating bubble lengths were grown to higher values with increasing the cylinder diameter. On the other hand, in the case of the lowest level of the jet-like flow emanating from the beneath of the smallest cylinder, the variation of flow characteristics were attenuated significantly in a shorter distance. The variation of the reattachment location of the separated flow to the free-surface is a strong function of the cylinder diameter and the Froude number.

  7. Compressional effects in nonneutral plasmas, a shallow water analogy and m=1 instability

    International Nuclear Information System (INIS)

    Finn, J.M.; Del-Castillo-Negrete, D.; Barnes, D.C.

    1999-01-01

    Diocotron instabilities form an important class of ExB shear flow instabilities which occur in nonneutral plasmas. The case of a single-species plasma confined in a cylindrical Penning trap, with an axisymmetric, hollow (nonmonotonic) density profile is studied. According to the standard linear theory, the m=1, k z =0 diocotron mode is always stable. On the other hand, experiments by Driscoll [Phys. Rev. Lett. 64, 645 (1990)] show a robust exponential growth of m=1 diocotron perturbations in hollow density profiles. The apparent contradiction between these experimental results and linear theory has been an outstanding problem in the theory of nonneutral plasmas. A new instability mechanism due to the radial variation of the equilibrium plasma length is proposed in this paper. This mechanism involves the compression of the plasma parallel to the magnetic field and implies the conservation of the line integrated density. The predicted growth rate, frequency, and mode structure are in reasonable agreement with the experiment. The effect of a linear perturbation of the plasma length is also shown to give instability with a comparable growth rate. The conservation of the line integrated density in the plasma is analogous to the conservation of the potential vorticity in the shallow water equations used in geophysical fluid dynamics. In particular, there is an analog of Rossby waves in nonneutral plasmas. copyright 1999 American Institute of Physics

  8. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply.

    Science.gov (United States)

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Mörth, Carl-Magnus; Jacks, Gunnar

    2012-08-01

    Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska's oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009

  10. A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea

    KAUST Repository

    DiBattista, Joseph

    2015-11-03

    Aim The Red Sea is characterised by a unique fauna and historical periods of desiccation, hypersalinity and intermittent isolation. The origin and contemporary composition of reef-associated taxa in this region can illuminate biogeographical principles about vicariance and the establishment (or local extirpation) of existing species. Here we aim to: (1) outline the distribution of shallow water fauna between the Red Sea and adjacent regions, (2) explore mechanisms for maintaining these distributions and (3) propose hypotheses to test these mechanisms. Location Red Sea, Gulf of Aden, Arabian Sea, Arabian Gulf and Indian Ocean. Methods Updated checklists for scleractinian corals, fishes and non-coral invertebrates were used to determine species richness in the Red Sea and the rest of the Arabian Peninsula and assess levels of endemism. Fine-scale diversity and abundance of reef fishes within the Red Sea were explored using ecological survey data. Results Within the Red Sea, we recorded 346 zooxanthellate and azooxanthellate scleractinian coral species of which 19 are endemic (5.5%). Currently 635 species of polychaetes, 211 echinoderms and 79 ascidians have been documented, with endemism rates of 12.6%, 8.1% and 16.5% respectively. A preliminary compilation of 231 species of crustaceans and 137 species of molluscs include 10.0% and 6.6% endemism respectively. We documented 1071 shallow fish species, with 12.9% endemic in the entire Red Sea and 14.1% endemic in the Red Sea and Gulf of Aden. Based on ecological survey data of endemic fishes, there were no major changes in species richness or abundance across 1100 km of Saudi Arabian coastline. Main conclusions The Red Sea biota appears resilient to major environmental fluctuations and is characterized by high rates of endemism with variable degrees of incursion into the Gulf of Aden. The nearby Omani and Arabian Gulfs also have variable environments and high levels of endemism, but these are not consistently distinct

  11. Shallow water radio-magnetotelluric (RMT) measurements in urban environment: A case study from Stockholm city

    Science.gov (United States)

    Mehta, Suman; Bastani, Mehrdad; Malehmir, Alireza; Wang, Shunguo; Pedersen, Laust

    2014-05-01

    The Radio-MagnetoTelluric (RMT) method uses the electromagnetic signal from distant radio transmitters in the frequency range 15 to 250 kHz. RMT applications in near-surface studies have already been well established. Two components of electric field and three components of magnetic field are measured. These measured components are related to each other via transfer functions which contain detailed information about the variation of electrical resistivity of the subsurface. The present study is carried out in the frame of TRUST (TRansparent Underground STructure) project supported by several research and public organizations as well as industry. The study area is located close to central Stockholm in Sweden where the Swedish traffic authority has planned to construct a 21-km long motorway to bypass the city. In order to reduce the impact on natural and cultural environments, 18 km of the motorway will be located in tunnels. The main objective of this study is thus to identify potential fracture zones and faults as well as the general geological settings. The proposed path of the tunnel partly passes under the Lake Mälaren at a depth of about 60 m. Thus a challenge was posed on the applicability of RMT method in shallow water environments. Successful applications of RMT measurements using the Uppsala University's EnviroMT system on land encouraged us to modify the system to acquire data over lake water especially in urban areas. Pioneered by the Geological Survey of Sweden (SGU), RMT data were collected over the Lake Mälaren in spring 2012. The prototype acquisition system did not only turn out to be appropriate for such a challenging environment, but it was also much more efficient as compared with land surveys. Fifty two lines including 1160 stations with an average spacing of 15 m were covered in three days. Cultural noise associated with the city-related environment had to be identified and filtered out before inversion could be carried out. Reliable estimates

  12. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mopelikan, Norrtaelje (Sweden)); Soederbaeck, Bjoern; Kalinowski, Birgitta (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-10-15

    elevated areas, meteoric recharge has a great influence on the observed hydrochemistry, which is usually characterised by dilute fresh waters of low ionic strength. In lower areas close to the coast, there are indications of ongoing flushing of marine relicts since the area was covered by sea water. At most locations in the Laxemar-Simpevarp area, this flushing is more or less completed and concentrations of marine ions may be explained by deposition and anthropogenic sources. As much as 2/3 of the Cl input to the surface system has been estimated to originate from anthropogenic sources as road salt. One important question in the hydrochemical evaluation is whether there are any indications of deep groundwater discharge in the surface system. It can be concluded from observations in shallow groundwater that deep groundwater signatures are present in the Quaternary deposits in potential deep discharge areas beneath lakes and brackish bays. On land, no deep signatures have been detected neither in surface water nor in groundwater, which indicates that shallow meteoric recharge/discharge patterns dominate and that potential regional deep discharge is too dilute to be detected in surface water

  13. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Troejbom, Mats; Soederbaeck, Bjoern; Kalinowski, Birgitta

    2008-10-01

    elevated areas, meteoric recharge has a great influence on the observed hydrochemistry, which is usually characterised by dilute fresh waters of low ionic strength. In lower areas close to the coast, there are indications of ongoing flushing of marine relicts since the area was covered by sea water. At most locations in the Laxemar-Simpevarp area, this flushing is more or less completed and concentrations of marine ions may be explained by deposition and anthropogenic sources. As much as 2/3 of the Cl input to the surface system has been estimated to originate from anthropogenic sources as road salt. One important question in the hydrochemical evaluation is whether there are any indications of deep groundwater discharge in the surface system. It can be concluded from observations in shallow groundwater that deep groundwater signatures are present in the Quaternary deposits in potential deep discharge areas beneath lakes and brackish bays. On land, no deep signatures have been detected neither in surface water nor in groundwater, which indicates that shallow meteoric recharge/discharge patterns dominate and that potential regional deep discharge is too dilute to be detected in surface water

  14. Effects of wave energy, topographic relief and sediment transport on the distribution of shallow-water gorgonians of Puerto Rico

    Science.gov (United States)

    Yoshioka, Paul M.; Yoshioka, Beverly Buchanan

    1989-12-01

    Environmental factors controlling the distribution of shallow-water gorgonians of Puerto Rico were inferred from a Reciprocal Averaging ordination analysis. The data set included several samples taken before and after the passage of Hurricane David and the mass mortality of the sea urchin Diadema antillarum. We could infer only a single environmental gradient associated with the distribution of gorgonians. Stations at opposite extremes of this gradient were characterized by combinations of high wave action with low topographic relief, or low wave action with high topographic relief. This gradient was also associated with sediment transport across the bottom (bedload). A detailed examination of ordination results in relation to Hurricane David and the Diadema mortality indicated that sediment transport, rather than water movement and topographic relief, is more directly related to the distribution of shallow-water gorgonians.

  15. Prawn landings and their relationship with the extent of mangroves and shallow waters in western peninsular Malaysia

    Science.gov (United States)

    Loneragan, N. R.; Ahmad Adnan, N.; Connolly, R. M.; Manson, F. J.

    2005-04-01

    This study investigated changes in landings of all prawns, white prawns (mainly Penaeus merguiensis), mangrove extent, rainfall and the area of shallow water in western peninsular Malaysia. The most important state for both the landings of all prawns and white prawns was Perak where about 50% of all prawns and 35% of white prawns were landed. This is also the state with the largest, and most stable, extent of mangrove forest reserve (40 000 ha) and the largest area of shallow water (Johor, where large losses of mangrove forest reserve have been recorded, appear to have been maintained or increased in the 1990s. The lack of a clear relationship between mangrove loss and prawn landings may be due to the migration of prawns from adjacent areas or that other attributes of mangroves, such as the length of mangrove-water interface, may be more important for the growth and survival of prawn populations than total area of mangroves.

  16. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    DEFF Research Database (Denmark)

    Plampin, Michael R.; Lassen, Rune Nørbæk; Sakaki, Toshihiro

    2014-01-01

    A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is import......A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage...... concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than...

  17. Drilling of Submarine Shallow-water Hydrothermal Systems in Volcanic Arcs of the Tyrrhenian Sea, Italy

    Science.gov (United States)

    Petersen, S.; Augustin, N.; de Benedetti, A.; Esposito, A.; Gaertner, A.; Gemmell, B.; Gibson, H.; He, G.; Huegler, M.; Kleeberg, R.; Kuever, J.; Kummer, N. A.; Lackschewitz, K.; Lappe, F.; Monecke, T.; Perrin, K.; Peters, M.; Sharpe, R.; Simpson, K.; Smith, D.; Wan, B.

    2007-12-01

    Seafloor hydrothermal systems related to volcanic arcs are known from several localities in the Tyrrhenian Sea in water depths ranging from 650 m (Palinuro Seamount) to less than 50 m (Panarea). At Palinuro Seamount 13 holes (holes ended in mineralization. Metal enrichment at the top of the deposit is evident in some cores with polymetallic (Zn, Pb, Ag) sulfides overlying more massive and dense pyritic ore. The massive sulfide mineralization at Palinuro Seamount contains a number of unusual minerals, including enargite, tennantite, luzonite, and Ag-sulfosalts, that are not commonly encountered in mid-ocean ridge massive sulfides. In analogy to epithermal deposits forming on land, the occurrence of these minerals suggests a high sulfidation state of the hydrothermal fluids during deposition implying that the mineralizing fluids were acidic and oxidizing rather than near-neutral and reducing as those forming typical base metal rich massive sulfides along mid-ocean ridges. Oxidizing conditions during sulfide deposition can probably be related to the presence of magmatic volatiles in the mineralizing fluids that may be derived from a degassing magma chamber. Elevated temperatures within sediment cores and TV-grab stations (up to 60°C) indicate present day hydrothermal fluid flow. This is also indicated by the presence of small tube-worm bushes present on top the sediment. A number of drill holes were placed around the known phreatic gas-rich vents of Panarea and recovered intense clay-alteration in some holes as well as abundant massive anhydrite/gypsum with only trace sulfides along a structural depression suggesting the presence of an anhydrite seal to a larger hydrothermal system at depth. The aim of this study is to understand the role that magmatic volatiles and phase separation play in the formation of these precious and trace element-rich shallow water (<750m) hydrothermal systems in the volcanic arcs of the Tyrrhenian Sea.

  18. Micromachined two dimensional resistor arrays for determination of gas parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of

  19. Proteome research : two-dimensional gel electrophoresis and identification methods

    National Research Council Canada - National Science Library

    Rabilloud, Thierry, 1961

    2000-01-01

    "Two-dimensional electrophoresis is the central methodology in proteome research, and the state of the art is described in detail in this text, together with extensive coverage of the detection methods available...

  20. 1/f noise in two-dimensional fluids

    International Nuclear Information System (INIS)

    Cable, S.B.; Tajima, T.

    1994-10-01

    We derive an exact result on the velocity fluctuation power spectrum of an incompressible two-dimensional fluid. Employing the fluctuation-dissipation relationship and the enstrophy conversation, we obtain the frequency spectrum of a 1/f form

  1. Partition function of the two-dimensional nearest neighbour Ising ...

    Indian Academy of Sciences (India)

    Abstract. The partition function for two-dimensional nearest neighbour Ising model in a non-zero magnetic field have been derived for a finite square lattice of 16, 25, 36 and 64 sites with the help of ...

  2. Multisoliton formula for completely integrable two-dimensional systems

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1979-01-01

    For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations

  3. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    KAUST Repository

    Mei, Jun

    2016-09-02

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î

  4. Purification of 3H-dihydroalprenolol by two dimensional thin layer chromatography

    International Nuclear Information System (INIS)

    Smisterova, J.; Soltes, L.; Kallay, Z.

    1989-01-01

    A two dimensional thin-layer chromatographic method was developed for the purification and analysis of (-)-[ 3 H]dihydroalprenolol by using an acidic mobile phase (butanol/water/acetic acid 25:10:4, v/v) in one direction and a basic eluent (chloroform/acetone/triethylamine 50:40:10, v/v) in another direction. (author)

  5. Coherent Response of Two Dimensional Electron Gas probed by Two Dimensional Fourier Transform Spectroscopy

    Science.gov (United States)

    Paul, Jagannath

    Advent of ultrashort lasers made it possible to probe various scattering phenomena in materials that occur in a time scale on the order of few femtoseconds to several tens of picoseconds. Nonlinear optical spectroscopy techniques, such as pump-probe, transient four wave mixing (TFWM), etc., are very common to study the carrier dynamics in various material systems. In time domain, the transient FWM uses several ultrashort pulses separated by time delays to obtain the information of dephasing and population relaxation times, which are very important parameters that govern the carrier dynamics of materials. A recently developed multidimensional nonlinear optical spectroscopy is an enhanced version of TFWM which keeps track of two time delays simultaneously and correlate them in the frequency domain with the aid of Fourier transform in a two dimensional map. Using this technique, the nonlinear complex signal field is characterized both in amplitude and phase. Furthermore, this technique allows us to identify the coupling between resonances which are rather difficult to interpret from time domain measurements. This work focuses on the study of the coherent response of a two dimensional electron gas formed in a modulation doped GaAs/AlGaAs quantum well both at zero and at high magnetic fields. In modulation doped quantum wells, the excitons are formed as a result of the inter- actions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the formation of Mahan excitons, which is also referred to as Fermi edge singularity (FES). Polarization and temperature dependent rephasing 2DFT spectra in combination with TI-FWM measurements, provides insight into the dephasing mechanism of the heavy hole (HH) Mahan exciton. In addition to that strong quantum coherence between the HH and LH Mahan excitons is observed, which is rather surprising at this high doping concentration. The binding energy of Mahan excitons is expected to be greatly

  6. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  7. The Two-Dimensional Analogue of General Relativity

    OpenAIRE

    Lemos, José P. S.; Sá, Paulo M.

    1993-01-01

    General Relativity in three or more dimensions can be obtained by taking the limit $\\omega\\rightarrow\\infty$ in the Brans-Dicke theory. In two dimensions General Relativity is an unacceptable theory. We show that the two-dimensional closest analogue of General Relativity is a theory that also arises in the limit $\\omega\\rightarrow\\infty$ of the two-dimensional Brans-Dicke theory.

  8. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.

    1979-01-01

    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern.......The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  9. Two-dimensional steady unsaturated flow through embedded elliptical layers

    Science.gov (United States)

    Bakker, Mark; Nieber, John L.

    2004-12-01

    New analytic element solutions are presented for unsaturated, two-dimensional steady flow in vertical planes that include nonoverlapping impermeable elliptical layers and elliptical inhomogeneities. The hydraulic conductivity, which is represented by an exponential function of the pressure head, differs between the inside and outside of an elliptical inhomogeneity; both the saturated hydraulic conductivity and water retention parameters are allowed to differ between the inside and outside. The Richards equation is transformed, through the Kirchhoff transformation and a second standard transformation, into the modified Helmholtz equation. Analytic element solutions are obtained through separation of variables in elliptical coordinates. The resulting equations for the Kirchhoff potential consist of infinite sums of products of exponentials and modified Mathieu functions. In practical applications the series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately but up to machine accuracy, provided that enough terms are used. The pressure head, saturation, and flow may be computed analytically at any point in the vadose zone. Examples are given of the shadowing effect of an impermeable elliptical layer in a uniform flow field and funnel-type flow between two elliptical inhomogeneities. The presented solutions may be applied to study transport processes in vadose zones containing many impermeable elliptical layers or elliptical inhomogeneities.

  10. Magnetic Properties of a Two-dimensional Iron-Nickel Cyanide-bridged Network.

    Science.gov (United States)

    Park, J.-H.; Meisel, M. W.; Culp, J. T.; Talham, D. R.

    2002-03-01

    Reaction of a Langmuir monolayer of an amphiphilic pentacyanoferrate (3+) complex with Ni^2+ ions from the subphase results in the formation of a two-dimensional iron-nickel cyanide-bridged network which has a face-centered square grid structure at the air-water interface. The network is transferred to a substrate by the Langmuir-Blodgett (LB) technique for the purpose of magnetic and structural studies. Standard SQUID measurements on this network film indicate the presence of ferromagnetic-like exchange interactions in the monolayer networks between the Fe^3+(S = 1/2) and Ni^2+(S = 1) centers, consistent with cyanide bridging the metal ions to form the two-dimensional network. The possibility of long-range order in this unique two-dimensional mixed-spin system of (S = 1/2) and (S = 1) will be discussed as a competition between the magnetic and structural coherence lengths.

  11. Groundwater thermal-effective injection systems in shallow aquifers: possible alternatives to vertical water wells

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2014-05-01

    Urbanized areas have environmental features that may influence the development of low-enthalpy geothermal systems and the choice of the most suitable among the available (roughly earth-coupled closed-loop and groundwater open-loop type). In particular, if compared to less anthropized areas, some characteristic urban elements require particular attention: underground extensive use, contamination of groundwater, interference between the systems, authorization procedures and planning restrictions, the competition with cogeneration systems and the impact on emissions of pollutants. In this general context, the increasing implementation in several areas of the world of the open-loop groundwater heat pumps technology which discharge into the aquifer for cooling and heating buildings, could potentially cause, even in the short term, a significant environmental impact associated with thermal interference with groundwater, particularly in the shallow aquifers. The discharge of water at different temperatures compared to baseline (warmer in summer and colder in winter) poses a number of problems in relation to the potential functionality of many existing situations of use of the groundwater (drinking water wells, agricultural, industrial, etc.). In addition, there may be cases of interference between systems, especially in the more densely urbanized areas. Appropriate hydrogeological investigations should be performed for the characterization of the main hydrogeological parameters of the subsoil at the considered site in order to minimize the environmental impact of discharges into aquifers. The current Italian legislation related to withdrawals and discharges into aquifers designs a framework suitable for the protection of groundwater and induce deciding the best configuration of the plant with a case by case approach. An increased contact area between the dispersant system and the ground makes it possible to affect a greater volume of aquifer and, consequently, reduce the

  12. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  13. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  14. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  15. On the physics of frequency-domain controlled source electromagnetics in shallow water. 1: isotropic conductivity

    Science.gov (United States)

    Chave, Alan D.; Everett, Mark E.; Mattsson, Johan; Boon, James; Midgley, Jonathan

    2017-02-01

    fully reverse the direction of energy flux in the reservoir layer toward rather than away from the source, resulting in a stronger and slower response. The Fréchet derivatives are dominated by preferential sensitivity to the reservoir layer conductivity for all water depths except at high frequencies, but also display a shift with offset from the galvanic to the inductive mode in the underburden and overburden due to the interplay of guided energy flow and the air interaction. This means that the sensitivity to the horizontal conductivity is almost as strong as to the vertical component in the shallow parts of the subsurface, and in fact is stronger than the vertical sensitivity deeper down. However, the sensitivity to horizontal conductivity is still weak compared to the vertical component within thin resistive regions. The horizontal sensitivity is gradually decreased when the water becomes deep. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field.

  16. Differential changes in production measures for an estuarine-resident sparid in deep and shallow waters following increases in hypoxia

    Science.gov (United States)

    Cottingham, Alan; Hall, Norman G.; Hesp, S. Alex; Potter, Ian C.

    2018-03-01

    This study determined how productivity measures for a fish species in different water depths of an estuary changed in response to the increase in hypoxia in deep waters, which had previously been shown to occur between 1993-95 and 2007-11. Annual data on length and age compositions, body mass, growth, abundance, biomass, production and production to biomass ratio (P/B) were thus determined for the estuarine-resident Acanthopagrus butcheri in nearshore shallow (fish typically reside. Annual densities, biomass and production in shallow waters of fish m-2, 2-4 g m-2 and ∼2 g m-2 y-1 in the earlier period were far lower than the 0.1-0.2 fish m-2, 8-15 g m-2 and 5-10 g m-2 y-1 in the later period, whereas the reverse trend occurred in deep waters, with values of 6-9 fish net-1, 2000-3900 g net-1, 900-1700 g net-1 y-1 in the earlier period vs fish net-1, ∼110 g net-1 and 27-45 g net-1 y-1 in the later period. Within the later period, and in contrast to the trends with annual abundance and biomass, the production in shallow waters was least during 2008/09, rather than greatest, reflecting the slow growth in that particularly cool year. The presence of substantial aggregations of both small and large fish in shallow waters accounts for the abundance, biomass and production in those waters increasing between those periods and thus, through a density-dependent effect, provide a basis for the overall reduction in growth. In marked contrast to the trends with the other three production measures, annual production to biomass ratios (P/B) in shallow waters in the two years in the earlier period, and in three of the four years of the later period, fell within the same range, i.e. 0.6-0.9 y-1, but was only 0.2 y-1 in 2008/09, reflecting the poor growth in that year. This emphasises the need to obtain data on P/B for a number of years when considering the implications of the typical P/B for a species in an estuary, in which environmental conditions and the growth of a species

  17. Bone-Eating Worms Spread: Insights into Shallow-Water Osedax (Annelida, Siboglinidae from Antarctic, Subantarctic, and Mediterranean Waters.

    Directory of Open Access Journals (Sweden)

    Sergi Taboada

    Full Text Available Osedax, commonly known as bone-eating worms, are unusual marine annelids belonging to Siboglinidae and represent a remarkable example of evolutionary adaptation to a specialized habitat, namely sunken vertebrate bones. Usually, females of these animals live anchored inside bone owing to a ramified root system from an ovisac, and obtain nutrition via symbiosis with Oceanospirillales gamma-proteobacteria. Since their discovery, 26 Osedax operational taxonomic units (OTUs have been reported from a wide bathymetric range in the Pacific, the North Atlantic, and the Southern Ocean. Using experimentally deployed and naturally occurring bones we report here the presence of Osedax deceptionensis at very shallow-waters in Deception Island (type locality; Antarctica and at moderate depths near South Georgia Island (Subantarctic. We present molecular evidence in a new phylogenetic analysis based on five concatenated genes (28S rDNA, Histone H3, 18S rDNA, 16S rDNA, and cytochrome c oxidase I-COI-, using Maximum Likelihood and Bayesian inference, supporting the placement of O. deceptionensis as a separate lineage (Clade VI although its position still remains uncertain. This phylogenetic analysis includes a new unnamed species (O. 'mediterranea' recently discovered in the shallow-water Mediterranean Sea belonging to Osedax Clade I. A timeframe of the diversification of Osedax inferred using a Bayesian framework further suggests that Osedax diverged from other siboglinids during the Middle Cretaceous (ca. 108 Ma and also indicates that the most recent common ancestor of Osedax extant lineages dates to the Late Cretaceous (ca. 74.8 Ma concomitantly with large marine reptiles and teleost fishes. We also provide a phylogenetic framework that assigns newly-sequenced Osedax endosymbionts of O. deceptionensis and O. 'mediterranea' to ribospecies Rs1. Molecular analysis for O. deceptionensis also includes a COI-based haplotype network indicating that individuals from

  18. Process-oriented tests for validation of baroclinic shallow water models: The lock-exchange problem

    Science.gov (United States)

    Kolar, R. L.; Kibbey, T. C. G.; Szpilka, C. M.; Dresback, K. M.; Tromble, E. M.; Toohey, I. P.; Hoggan, J. L.; Atkinson, J. H.

    A first step often taken to validate prognostic baroclinic codes is a series of process-oriented tests, as those suggested by Haidvogel and Beckmann [Haidvogel, D., Beckmann, A., 1999. Numerical Ocean Circulation Modeling. Imperial College Press, London], among others. One of these tests is the so-called "lock-exchange" test or "dam break" problem, wherein water of different densities is separated by a vertical barrier, which is removed at time zero. Validation against these tests has primarily consisted of comparing the propagation speed of the wave front, as predicted by various theoretical and experimental results, to model output. In addition, inter-model comparisons of the lock-exchange test have been used to validate codes. Herein, we present a high resolution data set, taken from a laboratory-scale model, for direct and quantitative comparison of experimental and numerical results throughout the domain, not just the wave front. Data is captured every 0.2 s using high resolution digital photography, with salt concentration extracted by comparing pixel intensity of the dyed fluid against calibration standards. Two scenarios are discussed in this paper, symmetric and asymmetric mixing, depending on the proportion of dense/light water (17.5 ppt/0.0 ppt) in the experiment; the Boussinesq approximation applies to both. Front speeds, cast in terms of the dimensionless Froude number, show excellent agreement with literature-reported values. Data are also used to quantify the degree of mixing, as measured by the front thickness, which also provides an error band on the front speed. Finally, experimental results are used to validate baroclinic enhancements to the barotropic shallow water ADvanced CIRCulation (ADCIRC) model, including the effect of the vertical mixing scheme on simulation results. Based on salinity data, the model provides an average root-mean-square (rms) error of 3.43 ppt for the symmetric case and 3.74 ppt for the asymmetric case, most of which can

  19. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mopelikan, Norrtaelje (SE)); Soederbaeck, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (SE))

    2007-10-15

    mineral has a central role in the forming of today's hydrochemistry in surface systems, and probably also on the composition of the dilute, non-brackish, groundwater in the upper parts of the fractured bedrock. The rich supply of calcium and the high alkalinity affects the structure of the whole ecosystem, for example by forming the oligotrophic hardwater lakes which are characteristic for the area. One major issue in the report is if there can be found any indications on deep groundwater discharge in the surface system. According to observations in surface water and shallow groundwater, and to the hydrological/hydrochemical conceptual model, there is probably no ongoing deep discharge into the freshwater surface system. In restricted areas there are, however, indications that relict marine remnants, which also includes deep saline signatures, prevail in the groundwater at relatively shallow depths in the Quaternary deposits, but not reach the surface due to the downwards directed groundwater flow pattern that generally prevail in the area. This hydrochemical pattern could according to the conceptual model probably be explained by influence from marine remnants formed under a previous hydrological regime and these signatures are preserved because of stagnant conditions in some areas

  20. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Troejbom, Mats; Soederbaeck, Bjoern; Johansson, Per-Olof

    2007-10-01

    mineral has a central role in the forming of today's hydrochemistry in surface systems, and probably also on the composition of the dilute, non-brackish, groundwater in the upper parts of the fractured bedrock. The rich supply of calcium and the high alkalinity affects the structure of the whole ecosystem, for example by forming the oligotrophic hardwater lakes which are characteristic for the area. One major issue in the report is if there can be found any indications on deep groundwater discharge in the surface system. According to observations in surface water and shallow groundwater, and to the hydrological/hydrochemical conceptual model, there is probably no ongoing deep discharge into the freshwater surface system. In restricted areas there are, however, indications that relict marine remnants, which also includes deep saline signatures, prevail in the groundwater at relatively shallow depths in the Quaternary deposits, but not reach the surface due to the downwards directed groundwater flow pattern that generally prevail in the area. This hydrochemical pattern could according to the conceptual model probably be explained by influence from marine remnants formed under a previous hydrological regime and these signatures are preserved because of stagnant conditions in some areas

  1. A new mini box corer for sampling muddy bottoms in antarctic shallow waters

    Directory of Open Access Journals (Sweden)

    Carlos Alejandro Echeverría

    2009-06-01

    Full Text Available A new Mini Box Corer (MBC-GEAMB was developed for bottom sampling in Antarctic shallow waters down to 100 m depth from a small vessel. It consists of a detachable stainless steel box with a total sampling area of 0.0625 m², and a closing arm with a detachable blade without an external frame. MBC allowed stratified bottom sampling and good quality samples comparable to those obtained through diving. A comparison between the MBC-GEAMB and a 0.056 m²van Veen grab (VV was undertaken for the benthic macrofaunal composition in Admiralty Bay, King George Island (Antarctica. MBC and VV samples were taken from three depths (20, 30 and 60m in two sites. Total densities sampled with the MBC were up to 10 times higher than those obtained with van Veen grab. VV samples might lead to faunistic abundance underestimation compared to the MBC samples. Besides, MBC showed a higher performance on discriminating different sites as regards total macrofaunal density. It is suggested that MBC could be employed as an efficient remote sampling device for shallow-waters where direct sampling by SCUBA was not advisable.Um novo Mini Box Corer (MBC-GEAMB foi desenvolvido para amostragens de fundo em águas rasas antárticas até 100 metros de profundidade, a partir de embarcações pequenas. Consiste em uma caixa de aço inox destacável com uma área total de amostragem de 0,0625 m², e um braço de fechamento com uma lâmina destacável, sem um suporte externo. MBC permite a amostragem estratificada do sedimento de fundo com amostras de qualidade comparáveis àquelas obtidas através de mergulho autônomo. Uma comparação entre o MBC-GEAMB e um van Veen de área 0,056 m²(VV foi realizada utilizando a composição da macrofauna bentônica na Baía do Almirantado, (Ilha Rei George, Antarctica. Amostragens com MBC e VV foram realizadas em três profundidades (20, 30 e 60m em dois locais. As densidades totais obtidas com o MBC foram até 10 vezes maiores que as obtidas

  2. Inland-coastal water interaction: Remote sensing application for shallow-water quality and algal blooms modeling

    Science.gov (United States)

    Melesse, Assefa; Hajigholizadeh, Mohammad; Blakey, Tara

    2017-04-01

    In this study, Landsat 8 and Sea-Viewing Wide Field-of-View Sensor (SeaWIFS) sensors were used to model the spatiotemporal changes of four water quality parameters: Landsat 8 (turbidity, chlorophyll-a (chl-a), total phosphate, and total nitrogen) and Sea-Viewing Wide Field-of-View Sensor (SeaWIFS) (algal blooms). The study was conducted in Florda bay, south Florida and model outputs were compared with in-situ observed data. The Landsat 8 based study found that, the predictive models to estimate chl-a and turbidity concentrations, developed through the use of stepwise multiple linear regression (MLR), gave high coefficients of determination in dry season (wet season) (R2 = 0.86(0.66) for chl-a and R2 = 0.84(0.63) for turbidity). Total phosphate and TN were estimated using best-fit multiple linear regression models as a function of Landsat TM and OLI,127 and ground data and showed a high coefficient of determination in dry season (wet season) (R2 = 0.74(0.69) for total phosphate and R2 = 0.82(0.82) for TN). Similarly, the ability of SeaWIFS for chl-a retrieval from optically shallow coastal waters by applying algorithms specific to the pixels' benthic class was evaluated. Benthic class was determined through satellite image-based classification methods. It was found that benthic class based chl-a modeling algorithm was better than the existing regionally-tuned approach. Evaluation of the residuals indicated the potential for further improvement to chl-a estimation through finer characterization of benthic environments. Key words: Landsat, SeaWIFS, water quality, Florida bay, Chl-a, turbidity

  3. The Thermal Phase Curve Offset on Tidally and Nontidally Locked Exoplanets: A Shallow Water Model

    Energy Technology Data Exchange (ETDEWEB)

    Penn, James; Vallis, Geoffrey K, E-mail: jp492@exeter.ac.uk, E-mail: g.vallis@exeter.ac.uk [University of Exeter, Exeter, Devon (United Kingdom)

    2017-06-20

    Using a shallow water model with time-dependent forcing, we show that the peak of an exoplanet thermal phase curve is, in general, offset from the secondary eclipse when the planet is rotating. That is, the planetary hot spot is offset from the point of maximal heating (the substellar point) and may lead or lag the forcing; the extent and sign of the offset are functions of both the rotation rate and orbital period of the planet. We also find that the system reaches a steady state in the reference frame of the moving forcing. The model is an extension of the well-studied Matsuno–Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planet’s surface) exceeds that of the gravity waves, then the hot spot will lag the substellar point, as might be expected by consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the internal wave speed of the system, the hottest point may lead the passage of the forcing. We provide an interpretation of this result by consideration of the Rossby and Kelvin wave dynamics, as well as, in the very slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse problem of constraining planetary rotation rate from an observed phase curve.

  4. Hybrid ensemble 4DVar assimilation of stratospheric ozone using a global shallow water model

    Directory of Open Access Journals (Sweden)

    D. R. Allen

    2016-07-01

    Full Text Available Wind extraction from stratospheric ozone (O3 assimilation is examined using a hybrid ensemble 4-D variational assimilation (4DVar shallow water model (SWM system coupled to the tracer advection equation. Stratospheric radiance observations are simulated using global observations of the SWM fluid height (Z, while O3 observations represent sampling by a typical polar-orbiting satellite. Four ensemble sizes were examined (25, 50, 100, and 1518 members, with the largest ensemble equal to the number of dynamical state variables. The optimal length scale for ensemble localization was found by tuning an ensemble Kalman filter (EnKF. This scale was then used for localizing the ensemble covariances that were blended with conventional covariances in the hybrid 4DVar experiments. Both optimal length scale and optimal blending coefficient increase with ensemble size, with optimal blending coefficients varying from 0.2–0.5 for small ensembles to 0.5–1.0 for large ensembles. The hybrid system outperforms conventional 4DVar for all ensemble sizes, while for large ensembles the hybrid produces similar results to the offline EnKF. Assimilating O3 in addition to Z benefits the winds in the hybrid system, with the fractional improvement in global vector wind increasing from  ∼  35 % with 25 and 50 members to  ∼  50 % with 1518 members. For the smallest ensembles (25 and 50 members, the hybrid 4DVar assimilation improves the zonal wind analysis over conventional 4DVar in the Northern Hemisphere (winter-like region and also at the Equator, where Z observations alone have difficulty constraining winds due to lack of geostrophy. For larger ensembles (100 and 1518 members, the hybrid system results in both zonal and meridional wind error reductions, relative to 4DVar, across the globe.

  5. Bottom attenuation estimation using sound intensity fluctuations due to mode coupling by nonlinear internal waves in shallow water.

    Science.gov (United States)

    Grigorev, Valery A; Katsnelson, Boris G; Lynch, James F

    2016-11-01

    Analyses of fluctuations of low frequency signals (300 ± 30 Hz) propagating in shallow water in the presence of nonlinear internal waves (NIWs) in the Shallow Water 2006 experiment are carried out. Signals were received by a vertical line array at a distance of ∼20 km from the source. A NIW train was moving totally inside of the acoustic track, and the angle between the wave front of the NIW and the acoustic track in the horizontal plane was ∼10°. It is shown that the spectrum of the sound intensity fluctuations contains peaks corresponding to the coupling of pairs of propagating modes. Analysis of spectra at different hydrophone depths, and also summed over depth allows the authors to estimate attenuation in the bottom sediments.

  6. Biological, chemical and physical drinking water quality from shallow wells in Malawi: Case study of Blantyre, Chiradzulu and Mulanje

    Science.gov (United States)

    Pritchard, M.; Mkandawire, T.; O'Neill, J. G.

    A study was conducted in Blantyre, Chiradzulu and Mulanje districts in Malawi to determine the biological, chemical and physical drinking water quality from shallow wells. An in situ membrane filtration test kit (Paqualab 50) was used to determine the microbiological quality of water and a photometer was used for the chemical analyses. Water samples were collected from 21 covered/protected and five open/unprotected shallow wells at four different times in a year to determine the change in quality with different seasons. The results of microbiological analysis show that the drinking water quality is very poor, i.e. grossly polluted with faecal matter. Total coliform (TC) and faecal coliform (FC) values in the wet season (February and April, 2006) were much higher than those in the dry season (August and October, 2005). In terms of total coliform, the results show that approximately 80% of the shallow wells tested in the dry season and 100% of the wells in the wet season did not meet the drinking water quality temporary guidelines, set by the Ministry of Water Development - MoWD (2003) [Ministry of Water Development - MoWD, 2003. Government of Malawi, Devolution of functions of assemblies, Guidelines and standards], of a maximum of 50 TC/100 ml for untreated water. Approximately 50% of the wells failed to meet the faecal coliform drinking water guideline of 50 FC/100 ml in the dry season while this figure had increased to 94% of the wells failing to meet the standard in the wet season. Covered wells were not as grossly contaminated as open wells but all of the wells tested failed the MoWD standards in at least one sample. Chemical analyses results were within the drinking water guideline and variations during seasons were insignificant. pH values were within the guidelines in the dry season except for Mulanje district where on average 45% of the wells had pH values below the lower limit of 6.0. In the wet season 50% of the samples had pH values below 6.0. Turbidity

  7. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses.

    Science.gov (United States)

    Brown, Alastair; Wright, Roseanna; Mevenkamp, Lisa; Hauton, Chris

    2017-10-01

    Exploration of deep-sea mineral resources is burgeoning, raising concerns regarding ecotoxicological impacts on deep-sea fauna. Assessing toxicity in deep-sea species is technologically challenging, which promotes interest in establishing shallow-water ecotoxicological proxy species. However, the effects of temperature and hydrostatic pressure on toxicity, and how adaptation to deep-sea environmental conditions might moderate these effects, are unknown. To address these uncertainties we assessed behavioural and physiological (antioxidant enzyme activity) responses to exposure to copper-spiked artificial sediments in a laboratory experiment using a shallow-water holothurian (Holothuria forskali), and in an in situ experiment using a deep-sea holothurian (Amperima sp.). Both species demonstrated sustained avoidance behaviour, evading contact with contaminated artificial sediment. However, A. sp. demonstrated sustained avoidance of 5mgl -1 copper-contaminated artificial sediment whereas H. forskali demonstrated only temporary avoidance of 5mgl -1 copper-contaminated artificial sediment, suggesting that H. forskali may be more tolerant of metal exposure over 96h. Nonetheless, the acute behavioural response appears consistent between the shallow-water species and the deep-sea species, suggesting that H. forskali may be a suitable ecotoxicological proxy for A. sp. in acute (≤24h) exposures, which may be representative of deep-sea mining impacts. No antioxidant response was observed in either species, which was interpreted to be the consequence of avoiding copper exposure. Although these data suggest that shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa, differences in methodological and analytical approaches, and in sex and reproductive stage of experimental subjects, require caution in assessing the suitability of H. forskali as an ecotoxicological proxy for A. sp. Nonetheless, avoidance behaviour may have bioenergetic consequences that

  8. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations

    OpenAIRE

    Hamroun , Boussad; Dimofte , Alexandru; Lefevre , Laurent; Mendes , Eduardo

    2010-01-01

    International audience; — In this paper a control algorithm for the reduced port-Controlled Hamiltonian model (PCH) of the shallow water equations (PDEs) is developed. This control is developed using the Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) method on the reduced PCH model without the natural dissipation. It allows to assign desired structure and energy function to the closed loop system. The same control law is then derived using an energy shaping method ba...

  9. two - dimensional mathematical model of water flow in open

    African Journals Online (AJOL)

    ES Obe

    1996-09-01

    Sep 1, 1996 ... n - coefficient of roughness, number of nodes in the finite element. N. (e) ... and y directions, respectively; h is the elevation head above reference level, g is the acceleration due to gravity and C is the Chezy velocity coefficient. The system of .... is reduced by a relaxation parameter within the range (0, 1).

  10. Estimation of air-water gas exchange coefficient in a shallow lagoon based on 222Rn mass balance.

    Science.gov (United States)

    Cockenpot, S; Claude, C; Radakovitch, O

    2015-05-01

    The radon-222 mass balance is now commonly used to quantify water fluxes due to Submarine Groundwater Discharge (SGD) in coastal areas. One of the main loss terms of this mass balance, the radon evasion to the atmosphere, is based on empirical equations. This term is generally estimated using one among the many empirical equations describing the gas transfer velocity as a function of wind speed that have been proposed in the literature. These equations were, however, mainly obtained from areas of deep water and may be less appropriate for shallow areas. Here, we calculate the radon mass balance for a windy shallow coastal lagoon (mean depth of 6m and surface area of 1.55*10(8) m(2)) and use these data to estimate the radon loss to the atmosphere and the corresponding gas transfer velocity. We present new equations, adapted to our shallow water body, to express the gas transfer velocity as a function of wind speed at 10 m height (wind range from 2 to 12.5 m/s). When compared with those from the literature, these equations fit particularly well with the one of Kremer et al. (2003). Finally, we emphasize that some gas transfer exchange may always occur, even for conditions without wind. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A study on the influence of tides on the water table conditions of the shallow coastal aquifers

    Science.gov (United States)

    Singaraja, C.; Chidambaram, S.; Jacob, Noble

    2018-03-01

    Tidal variation and water level in aquifer is an important function in the coastal environment, this study attempts to find the relationship between water table fluctuation and tides in the shallow coastal aquifers. The study was conducted by selecting three coastal sites and by monitoring the water level for every 2-h interval in 24 h of observation. The study was done during two periods of full moon and new moon along the Cuddalore coastal region of southern part of Tamil Nadu, India. The study shows the relationship between tidal variation, water table fluctuations, dissolved oxygen, and electrical conductivity. An attempt has also been made in this study to approximate the rate of flow of water. Anyhow, the differences are site specific and the angle of inclination of the water table shows a significant relation to the mean sea level, with respect to the distance of the point of observation from the sea and elevation above mean sea level.

  12. Traditional Semiconductors in the Two-Dimensional Limit

    Science.gov (United States)

    Lucking, Michael C.; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S. B.

    2018-02-01

    Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.

  13. Analysis of P and Pdiff Coda Arrivals for Water Reverberations to Evaluate Shallow Slip Extent in Large Megathrust Earthquakes

    Science.gov (United States)

    Rhode, A.; Lay, T.

    2017-12-01

    Determining the up-dip rupture extent of large megathrust ruptures is important for understanding their tsunami excitation, frictional properties of the shallow megathrust, and potential for separate tsunami earthquake occurrence. On land geodetic data have almost no resolution of the up-dip extent of faulting and teleseismic observations have limited resolution that is strongly influenced by typically poorly known shallow seismic velocity structure near the toe of the accretionary prism. The increase in ocean depth as slip on the megathrust approaches the trench has significant influence on the strength and azimuthal distribution of water reverberations in the far-field P wave coda. For broadband P waves from large earthquakes with dominant signal periods of about 10 s, water reverberations generated by shallow fault slip under deep water may persist for over a minute after the direct P phases have passed, giving a clear signal of slip near the trench. As the coda waves can be quickly evaluated following the P signal, recognition of slip extending to the trench and associated enhanced tsunamigenic potential could be achieved within a few minutes after the P arrival, potentially contributing to rapid tsunami hazard assessment. We examine the broadband P wave coda at distances from 80 to 120° for a large number of recent major and great earthquakes with independently determined slip distributions and known tsunami excitation to evaluate the prospect for rapidly constraining up-dip rupture extent of large megathrust earthquakes. Events known to have significant shallow slip, at least locally extending to the trench (e.g., 2016 Illapel, Chile; 2010 Maule, 2010 Mentawai) do have relatively enhanced coda levels at all azimuths, whereas events that do not rupture the shallow megathrust (e.g., 2007 Sumatra, 2014 Iquique, 2003 Hokkaido) do not. Some events with slip models lacking shallow slip show strong coda generation, raising questions about the up-dip resolution of

  14. Bacterial contamination of tile drainage water and shallow groundwater under different application methods of liquid swine manure.

    Science.gov (United States)

    Samarajeewa, A D; Glasauer, S M; Lauzon, J D; O'Halloran, I P; Parkin, Gary W; Dunfield, K E

    2012-05-01

    A 2 year field experiment evaluated liquid manure application methods on the movement of manure-borne pathogens (Salmonella sp.) and indicator bacteria (Escherichia coli and Clostridium perfringens) to subsurface water. A combination of application methods including surface application, pre-application tillage, and post-application incorporation were applied in a randomized complete block design on an instrumented field site in spring 2007 and 2008. Tile and shallow groundwater were sampled immediately after manure application and after rainfall events. Bacterial enumeration from water samples showed that the surface-applied manure resulted in the highest concentration of E. coli in tile drainage water. Pre-tillage significantly (p tile water and to shallow groundwater within 3 days after manure application (DAM) in 2008 and within 10 DAM in 2007. Pre-tillage also decreased the occurrence of Salmonella sp. in tile water samples. Indicator bacteria and pathogens reached nondetectable levels within 50 DAM. The results suggest that tillage before application of liquid swine manure can minimize the movement of bacteria to tile and groundwater, but is effective only for the drainage events immediately after manure application or initial rainfall-associated drainage flows. Furthermore, the study highlights the strong association between bacterial concentrations in subsurface waters and rainfall timing and volume after manure application.

  15. Integrated Assessment of Shallow-Aquifer Vulnerability to Multiple Contaminants and Drinking-Water Exposure Pathways in Holliston, Massachusetts

    Directory of Open Access Journals (Sweden)

    Birgit Claus Henn

    2017-12-01

    Full Text Available Half of U.S. drinking water comes from aquifers, and very shallow ones (<20 feet to water table are especially vulnerable to anthropogenic contamination. We present the case of Holliston, a Boston, Massachusetts suburb that draws its drinking water from very shallow aquifers, and where metals and solvents have been reported in groundwater. Community concerns focus on water discolored by naturally occurring manganese (Mn, despite reports stating regulatory aesthetic compliance. Epidemiologic studies suggest Mn is a potentially toxic element (PTE for children exposed by the drinking-water pathway at levels near the regulatory aesthetic level. We designed an integrated, community-based project: five sites were profiled for contaminant releases; service areas for wells were modeled; and the capture zone for one vulnerable well was estimated. Manganese, mercury, and trichloroethylene are among 20 contaminants of interest. Findings show that past and/or current exposures to multiple contaminants in drinking water are plausible, satisfying the criteria for complete exposure pathways. This case questions the adequacy of aquifer protection and monitoring regulations, and highlights the need for integrated assessment of multiple contaminants, associated exposures and health risks. It posits that community-researcher partnerships are essential for understanding and solving complex problems.

  16. Two dimensional convolute integers for machine vision and image recognition

    Science.gov (United States)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  17. Two-Dimensional Superfluidity of Exciton Polaritons Requires Strong Anisotropy

    Directory of Open Access Journals (Sweden)

    Ehud Altman

    2015-02-01

    Full Text Available Fluids of exciton polaritons, excitations of two-dimensional quantum wells in optical cavities, show collective phenomena akin to Bose condensation. However, a fundamental difference from standard condensates stems from the finite lifetime of these excitations, which necessitates continuous driving to maintain a steady state. A basic question is whether a two-dimensional condensate with long-range algebraic correlations can exist under these nonequilibrium conditions. Here, we show that such driven two-dimensional Bose systems cannot exhibit algebraic superfluid order except in low-symmetry, strongly anisotropic systems. Our result implies, in particular, that recent apparent evidence for Bose condensation of exciton polaritons must be an intermediate-scale crossover phenomenon, while the true long-distance correlations fall off exponentially. We obtain these results through a mapping of the long-wavelength condensate dynamics onto the anisotropic Kardar-Parisi-Zhang equation.

  18. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  19. A nonperturbative treatment of two-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Gross, D.J.; Migdal, A.A.

    1990-01-01

    We propose a nonperturbative definition of two-dimensional quantum gravity, based on a double scaling limit of the random matrix model. We develop an operator formalism for utilizing the method of orthogonal polynomials that allows us to solve the matrix models to all orders in the genus expansion. Using this formalism we derive an exact differential equation for the partition function of two-dimensional gravity as a function of the string coupling constant that governs the genus expansion of two-dimensional surfaces, and discuss its properties and consequences. We construct and discuss the correlation functions of an infinite set of pointlike and loop operators to all orders in the genus expansion. (orig.)

  20. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.