WorldWideScience

Sample records for two-dimensional position vectors

  1. Multi-perspective views of students’ difficulties with one-dimensional vector and two-dimensional vector

    Science.gov (United States)

    Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno

    2017-01-01

    Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.

  2. Two-dimensional gauge model with vector U(1) and axial-vector U(1) symmetries

    International Nuclear Information System (INIS)

    Watabiki, Y.

    1989-01-01

    We have succeeded in constructing a two-dimensional gauge model with both vector U(1) and axial-vector U(1) symmetries. This model is exactly solvable. The Schwinger term vanishes in this model as a consequence of the above symmetries, and negative-norm states appear. However, the norms of physical states are always positive semidefinite due to the gauge symmetries

  3. Vector (two-dimensional) magnetic phenomena

    International Nuclear Information System (INIS)

    Enokizono, Masato

    2002-01-01

    In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)

  4. Vectorized Matlab Codes for Linear Two-Dimensional Elasticity

    Directory of Open Access Journals (Sweden)

    Jonas Koko

    2007-01-01

    Full Text Available A vectorized Matlab implementation for the linear finite element is provided for the two-dimensional linear elasticity with mixed boundary conditions. Vectorization means that there is no loop over triangles. Numerical experiments show that our implementation is more efficient than the standard implementation with a loop over all triangles.

  5. Fast Estimation Method of Space-Time Two-Dimensional Positioning Parameters Based on Hadamard Product

    Directory of Open Access Journals (Sweden)

    Haiwen Li

    2018-01-01

    Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.

  6. Vector current scattering in two dimensional quantum chromodynamics

    International Nuclear Information System (INIS)

    Fleishon, N.L.

    1979-04-01

    The interaction of vector currents with hadrons is considered in a two dimensional SU(N) color gauge theory coupled to fermions in leading order in an N -1 expansion. After giving a detailed review of the model, various transition matrix elements of one and two vector currents between hadronic states were considered. A pattern is established whereby the low mass currents interact via meson dominance and the highly virtual currents interact via bare quark-current couplings. This pattern is especially evident in the hadronic contribution to inelastic Compton scattering, M/sub μν/ = ∫ dx e/sup iq.x/ , which is investigated in various kinematic limits. It is shown that in the dual Regge region of soft processes the currents interact as purely hadronic systems. Modification of dimensional counting rules is indicated by a study of a large angle scattering analog. In several hard inclusive nonlight cone processes, parton model ideas are confirmed. The impulse approximation is valid in a Bjorken--Paschos-like limit with very virtual currents. A Drell--Yan type annihilation mechanism is found in photoproduction of massive lepton pairs, leading to identification of a parton wave function for the current. 56 references

  7. Semilogarithmic Nonuniform Vector Quantization of Two-Dimensional Laplacean Source for Small Variance Dynamics

    Directory of Open Access Journals (Sweden)

    Z. Peric

    2012-04-01

    Full Text Available In this paper high dynamic range nonuniform two-dimensional vector quantization model for Laplacean source was provided. Semilogarithmic A-law compression characteristic was used as radial scalar compression characteristic of two-dimensional vector quantization. Optimal number value of concentric quantization domains (amplitude levels is expressed in the function of parameter A. Exact distortion analysis with obtained closed form expressions is provided. It has been shown that proposed model provides high SQNR values in wide range of variances, and overachieves quality obtained by scalar A-law quantization at same bit rate, so it can be used in various switching and adaptation implementations for realization of high quality signal compression.

  8. An evaluation method of cross-type H-coil angle for accurate two-dimensional vector magnetic measurement

    International Nuclear Information System (INIS)

    Maeda, Yoshitaka; Todaka, Takashi; Shimoji, Hiroyasu; Enokizono, Masato; Sievert, Johanes

    2006-01-01

    Recently, two-dimensional vector magnetic measurement has become popular and many researchers concerned with this field have attracted to develop more accurate measuring systems and standard measurement systems. Because the two-dimensional vector magnetic property is the relationship between the magnetic flux density vector B and the magnetic field strength vector H , the most important parameter is those components. For the accurate measurement of the field strength vector, we have developed an evaluation apparatus, which consists of a standard solenoid coil and a high-precision turntable. Angle errors of a double H-coil (a cross-type H-coil), which is wound one after the other around a former, can be evaluated with this apparatus. The magnetic field strength is compensated with the measured angle error

  9. Static investigation of two fluidic thrust-vectoring concepts on a two-dimensional convergent-divergent nozzle

    Science.gov (United States)

    Wing, David J.

    1994-01-01

    A static investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel of two thrust-vectoring concepts which utilize fluidic mechanisms for deflecting the jet of a two-dimensional convergent-divergent nozzle. One concept involved using the Coanda effect to turn a sheet of injected secondary air along a curved sidewall flap and, through entrainment, draw the primary jet in the same direction to produce yaw thrust vectoring. The other concept involved deflecting the primary jet to produce pitch thrust vectoring by injecting secondary air through a transverse slot in the divergent flap, creating an oblique shock in the divergent channel. Utilizing the Coanda effect to produce yaw thrust vectoring was largely unsuccessful. Small vector angles were produced at low primary nozzle pressure ratios, probably because the momentum of the primary jet was low. Significant pitch thrust vector angles were produced by injecting secondary flow through a slot in the divergent flap. Thrust vector angle decreased with increasing nozzle pressure ratio but moderate levels were maintained at the highest nozzle pressure ratio tested. Thrust performance generally increased at low nozzle pressure ratios and decreased near the design pressure ratio with the addition of secondary flow.

  10. A static investigation of yaw vectoring concepts on two-dimensional convergent-divergent nozzles

    Science.gov (United States)

    Berrier, B. L.; Mason, M. L.

    1983-01-01

    The flow-turning capability and nozzle internal performance of yaw-vectoring nozzle geometries were tested in the NASA Langley 16-ft Transonic wind tunnel. The concept was investigated as a means of enhancing fighter jet performance. Five two-dimensional convergent-divergent nozzles were equipped for yaw-vectoring and examined. The configurations included a translating left sidewall, left and right sidewall flaps downstream of the nozzle throat, left sidewall flaps or port located upstream of the nozzle throat, and a powered rudder. Trials were also run with 20 deg of pitch thrust vectoring added. The feasibility of providing yaw-thrust vectoring was demonstrated, with the largest yaw vector angles being obtained with sidewall flaps downstream of the nozzle primary throat. It was concluded that yaw vector designs that scoop or capture internal nozzle flow provide the largest yaw-vector capability, but decrease the thrust the most.

  11. Two-dimensional position sensitive Si(Li) detector

    International Nuclear Information System (INIS)

    Walton, J.T.; Hubbard, G.S.; Haller, E.E.; Sommer, H.A.

    1978-11-01

    Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n + resisitive layer for one contact and a boron implanted p + resistive layer for the second contact. A position resolution of the order of 100 μm is indicated

  12. String vacuum backgrounds with covariantly constant null Killing vector and two-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Tseytlin, A.A.

    1993-01-01

    We consider a two-dimensional sigma model with a (2+N)-dimensional Minkowski signature target space metric having a covariantly constant null Killing vector. We study solutions of the conformal invariance conditions in 2+N dimensions and find that generic solutions can be represented in terms of the RG flow in N-dimensional 'transverse space' theory. The resulting conformal invariant sigma model is interpreted as a quantum action of the two-dimensional scalar ('dilaton') quantum gravity model coupled to a (non-conformal) 'transverse' sigma model. The conformal factor of the two-dimensional metric is identified with a light-cone coordinate of the (2+N)-dimensional sigma model. We also discuss the case when the transverse theory is conformal (with or without the antisymmetric tensor background) and reproduce in a systematic way the solutions with flat transverse space known before. (orig.)

  13. A TWO-DIMENSIONAL POSITION SENSITIVE SI(LI) DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Jack T.; Hubbard, G. Scott; Haller, Eugene E.; Sommer, Heinrich A.

    1978-11-01

    Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n{sup +} resistive layer for one contact and a boron implanted p{sup +} resistive layer for the second contact. A position resolution of the order of 100 {micro}m is indicated.

  14. Two-dimensional approach to relativistic positioning systems

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out

  15. Inverse Operation of Four-dimensional Vector Matrix

    OpenAIRE

    H J Bao; A J Sang; H X Chen

    2011-01-01

    This is a new series of study to define and prove multidimensional vector matrix mathematics, which includes four-dimensional vector matrix determinant, four-dimensional vector matrix inverse and related properties. There are innovative concepts of multi-dimensional vector matrix mathematics created by authors with numerous applications in engineering, math, video conferencing, 3D TV, and other fields.

  16. Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal

    Science.gov (United States)

    Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie

    2018-03-01

    Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.

  17. The probability of false positives in zero-dimensional analyses of one-dimensional kinematic, force and EMG trajectories.

    Science.gov (United States)

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2016-06-14

    A false positive is the mistake of inferring an effect when none exists, and although α controls the false positive (Type I error) rate in classical hypothesis testing, a given α value is accurate only if the underlying model of randomness appropriately reflects experimentally observed variance. Hypotheses pertaining to one-dimensional (1D) (e.g. time-varying) biomechanical trajectories are most often tested using a traditional zero-dimensional (0D) Gaussian model of randomness, but variance in these datasets is clearly 1D. The purpose of this study was to determine the likelihood that analyzing smooth 1D data with a 0D model of variance will produce false positives. We first used random field theory (RFT) to predict the probability of false positives in 0D analyses. We then validated RFT predictions via numerical simulations of smooth Gaussian 1D trajectories. Results showed that, across a range of public kinematic, force/moment and EMG datasets, the median false positive rate was 0.382 and not the assumed α=0.05, even for a simple two-sample t test involving N=10 trajectories per group. The median false positive rate for experiments involving three-component vector trajectories was p=0.764. This rate increased to p=0.945 for two three-component vector trajectories, and to p=0.999 for six three-component vectors. This implies that experiments involving vector trajectories have a high probability of yielding 0D statistical significance when there is, in fact, no 1D effect. Either (a) explicit a priori identification of 0D variables or (b) adoption of 1D methods can more tightly control α. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Applying dual-laser spot positions measurement technology on a two-dimensional tracking measurement system

    International Nuclear Information System (INIS)

    Lee, Hau-Wei; Chen, Chieh-Li

    2009-01-01

    This paper presents a two-dimensional tracking measurement system with a tracking module, which consists of two stepping motors, two laser diodes and a four separated active areas segmented position sensitive detector (PSD). The PSD was placed on a two-dimensional moving stage and used as a tracking target. The two laser diodes in the tracking module were directly rotated to keep the laser spots on the origin of the PSD. The two-dimensional position of the target PSD on the moving stage is determined from the distance between the two motors and the tracking angles of the two laser diodes, which are rotated by the two stepping motors, respectively. In order to separate the four positional values of the two laser spots on one PSD, the laser diodes were modulated by two distinct frequencies. Multiple-laser spot position measurement technology was used to separate the four positional values of the two laser spots on the PSD. The experimental results show that the steady-state voltage shift rate is about 0.2% and dynamic cross-talk rate is smaller than 2% when the two laser spots are projected on one PSD at the same time. The measurement errors of the x and y axial positions of the two-dimensional tracking system were less than 1% in the measuring range of 20 mm. The results demonstrate that multiple-laser spot position measurement technology can be employed in a two-dimensional tracking measurement system

  19. Two-dimensional position sensitive silicon photodiode as a charged particle detector

    International Nuclear Information System (INIS)

    Kovacevic, K.; Zadro, M.

    1999-01-01

    A two-dimensional position sensitive silicon photodiode has been tested for measurement of position and energy of charged particles. Position nonlinearity and resolution, as well as energy resolution and ballistic deficit were measured for 5.486 MeV α-particles. The results obtained for different pulse shaping time constants are presented

  20. A large area two-dimensional position sensitive multiwire proportional detector

    CERN Document Server

    Moura, M M D; Souza, F A; Alonso, E E; Fujii, R J; Meyknecht, A B; Added, N; Aissaoui, N; Cardenas, W H Z; Ferraretto, M D; Schnitter, U; Szanto, E M; Szanto de Toledo, A; Yamamura, M S; Carlin, N

    1999-01-01

    Large area two-dimensional position sensitive multiwire proportional detectors were developed to be used in the study of light heavy-ion nuclear reactions at the University of Sao Paulo Pelletron Laboratory. Each detector has a 20x20 cm sup 2 active area and consists of three grids (X-position, anode and Y-position) made of 25 mu m diameter gold plated tungsten wires. The position is determined through resistive divider chains. Results for position resolution, linearity and efficiency as a function of energy and position for different elements are reported.

  1. The curvature and the algebra of Killing vectors in five-dimensional space

    International Nuclear Information System (INIS)

    Rcheulishvili, G.

    1990-12-01

    This paper presents the Killing vectors for a five-dimensional space with the line element. The algebras which are formed by these vectors are written down. The curvature two-forms are described. (author). 10 refs

  2. Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression

    International Nuclear Information System (INIS)

    Riaz, Nadeem; Wiersma, Rodney; Mao Weihua; Xing Lei; Shanker, Piyush; Gudmundsson, Olafur; Widrow, Bernard

    2009-01-01

    Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.

  3. Noise-induced drift in two-dimensional anisotropic systems

    Science.gov (United States)

    Farago, Oded

    2017-10-01

    We study the isothermal Brownian dynamics of a particle in a system with spatially varying diffusivity. Due to the heterogeneity of the system, the particle's mean displacement does not vanish even if it does not experience any physical force. This phenomenon has been termed "noise-induced drift," and has been extensively studied for one-dimensional systems. Here, we examine the noise-induced drift in a two-dimensional anisotropic system, characterized by a symmetric diffusion tensor with unequal diagonal elements. A general expression for the mean displacement vector is derived and presented as a sum of two vectors, depicting two distinct drifting effects. The first vector describes the tendency of the particle to drift toward the high diffusivity side in each orthogonal principal diffusion direction. This is a generalization of the well-known expression for the noise-induced drift in one-dimensional systems. The second vector represents a novel drifting effect, not found in one-dimensional systems, originating from the spatial rotation in the directions of the principal axes. The validity of the derived expressions is verified by using Langevin dynamics simulations. As a specific example, we consider the relative diffusion of two transmembrane proteins, and demonstrate that the average distance between them increases at a surprisingly fast rate of several tens of micrometers per second.

  4. Two-Dimensional Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Bo Jia

    2015-01-01

    (BP networks. However, like many other methods, ELM is originally proposed to handle vector pattern while nonvector patterns in real applications need to be explored, such as image data. We propose the two-dimensional extreme learning machine (2DELM based on the very natural idea to deal with matrix data directly. Unlike original ELM which handles vectors, 2DELM take the matrices as input features without vectorization. Empirical studies on several real image datasets show the efficiency and effectiveness of the algorithm.

  5. Fractional Killing-Yano Tensors and Killing Vectors Using the Caputo Derivative in Some One- and Two-Dimensional Curved Space

    Directory of Open Access Journals (Sweden)

    Ehab Malkawi

    2014-01-01

    Full Text Available The classical free Lagrangian admitting a constant of motion, in one- and two-dimensional space, is generalized using the Caputo derivative of fractional calculus. The corresponding metric is obtained and the fractional Christoffel symbols, Killing vectors, and Killing-Yano tensors are derived. Some exact solutions of these quantities are reported.

  6. Vectors and their applications

    CERN Document Server

    Pettofrezzo, Anthony J

    2005-01-01

    Geared toward undergraduate students, this text illustrates the use of vectors as a mathematical tool in plane synthetic geometry, plane and spherical trigonometry, and analytic geometry of two- and three-dimensional space. Its rigorous development includes a complete treatment of the algebra of vectors in the first two chapters.Among the text's outstanding features are numbered definitions and theorems in the development of vector algebra, which appear in italics for easy reference. Most of the theorems include proofs, and coordinate position vectors receive an in-depth treatment. Key concept

  7. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    Science.gov (United States)

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  8. A two-dimensional low energy gamma-ray position sensitive detector

    International Nuclear Information System (INIS)

    Charalambous, P.M.; Dean, A.J.; Drane, M.; Gil, A.; Stephen, J.B.; Young, N.G.S.; Barbareschi, L.; Perotti, F.; Villa, G.; Badiali, M.; La Padula, C.; Polcaro, F.; Ubertini, P.

    1984-01-01

    An array of 1-dimensional position sensitive detectors designed to operate over the photon energy range 0.2-10.0 MeV, so as to form an efficient 2-dimensional position sensitive detection plane is described. A series of experimental tests has been carried out to evaluate and confirm the computed capabilities. (orig.)

  9. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  10. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  11. On the existence of n-dimensional indecomposable vector bundles

    International Nuclear Information System (INIS)

    Tan Xiaojiang.

    1991-09-01

    Let X be an arbitrary smooth irreducible complex projective curve of genus g with g ≥ 4. In this paper we extend the existence theorem of special divisors to high dimensional indecomposable vector bundles. We give a necessary and sufficient condition on the existence of n-dimensional indecomposable vector bundles E with deg(E) = d, dimH 0 (X,E) ≥ h. We also determine under what condition the set of all such vector bundles will be finite and how many elements it contains. (author). 9 refs

  12. Positioning with stationary emitters in a two-dimensional space-time

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D 73, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make relativistic gravimetry. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coordinate system constituted by the electromagnetic signals broadcasting the proper time of the emitters are the so called emission coordinates, and we show that, in such emission coordinates, the trajectories of the emitters in both situations, the absence and presence of a gravitational field, are identical. The interesting point is that, in spite of this fact, particular additional information on the system or on the user allows us not only to distinguish both space-times, but also to complete the dynamical description of emitters and user and even to measure the mass of the gravitational field. The precise information under which these dynamical and gravimetric results may be obtained is carefully pointed out

  13. Exact solutions of the vacuum Einstein's equations allowing for two noncommuting Killing vectors

    International Nuclear Information System (INIS)

    Aliev, V.N.; Leznov, A.N.

    1990-01-01

    Einstein's equations are written in the form of covariant gauge theory in two-dimensional space with binomial solvable gauge group, with respect to two noncommutative of Killing vectors. The theory is exact integrable in one-dimensional case and series of partial exact solutions are constructed in two-dimensional. 5 refs

  14. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  15. Vector supersymmetric multiplets in two dimensions

    International Nuclear Information System (INIS)

    Khattab, Mohammad

    1990-01-01

    Author.The invariance of both, N=1 supersymmetric yang-Mills theory and N-1 supersymmetric off-shell Wess-Zumino model in four dimensions is proved. Dimensional reduction is then applied to obtain super Yang-Mills theory with extended supersymmetry, N=2, in two dimensions. The resulting theory is then truncated to N=1 super Yang-Mills and with further truncation, N=1/2 supersymmetry is shown to be possible. Then, using the duality transformations, we find the off-shell supersymmetry algebra is closed and that the auxiliary fields are replaced by four-rank antisymmetric tensors with Gauge symmetry. Finally, the mechanism of dimensional reduction is then applied to obtain N=2 extended off-shell supersymmetric model with two gauge vector fields

  16. Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations

    Science.gov (United States)

    Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin

    2018-04-01

    In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.

  17. A measurement system for two-dimensional DC-biased properties of magnetic materials

    International Nuclear Information System (INIS)

    Enokizono, M.; Matsuo, H.

    2003-01-01

    So far, the DC-biased magnetic properties have been measured in one dimension (scalar). However, these scalar magnetic properties are not enough to clarify the DC-biased magnetic properties because the scalar magnetic properties cannot exactly take into account the phase difference between the magnetic flux density B vector and the magnetic filed strength H vector. Thus, the magnetic field strength H and magnetic flux density B in magnetic materials must be measured as vector quantities (two-dimensional), directly. We showed the measurement system using a single-sheet tester (SST) to clarify the two-dimensional DC-biased magnetic properties. This system excited AC in Y-direction and DC in X-direction. This paper shows the measurement system using an SST and presents the measurement results of two-dimensional DC-biased magnetic properties when changing the DC exciting voltage and the iron loss

  18. Vector calculus in non-integer dimensional space and its applications to fractal media

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  19. A structural modification of the two dimensional fuel behaviour analysis code FEMAXI-III with high-speed vectorized operation

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Ishiguro, Misako; Yamazaki, Takashi; Tokunaga, Yasuo.

    1985-02-01

    Though the two-dimensional fuel behaviour analysis code FEMAXI-III has been developed by JAERI in form of optimized scalar computer code, the call for more efficient code usage generally arized from the recent trends like high burn-up and load follow operation asks the code into further modification stage. A principal aim of the modification is to transform the already implemented scalar type subroutines into vectorized forms to make the programme structure efficiently run on high-speed vector computers. The effort of such structural modification has been finished on a fair way to success. The benchmarking two tests subsequently performed to examine the effect of the modification led us the following concluding remarks: (1) In the first benchmark test, comparatively high-burned three fuel rods that have been irradiated in HBWR, BWR, and PWR condition are prepared. With respect to all cases, a net computing time consumed in the vectorized FEMAXI is approximately 50 % less than that consumed in the original one. (2) In the second benchmark test, a total of 26 PWR fuel rods that have been irradiated in the burn-up ranges of 13-30 MWd/kgU and subsequently power ramped in R2 reactor, Sweden is prepared. In this case the code is purposed to be used for making an envelop of PCI-failure threshold through 26 times code runs. Before coming to the same conclusion, the vectorized FEMAXI-III consumed a net computing time 18 min., while the original FEMAXI-III consumed a computing time 36 min. respectively. (3) The effects obtained from such structural modification are found to be significantly attributed to saving a net computing time in a mechanical calculation in the vectorized FEMAXI-III code. (author)

  20. Two-dimensional PCA-based human gait identification

    Science.gov (United States)

    Chen, Jinyan; Wu, Rongteng

    2012-11-01

    It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.

  1. Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner

    Science.gov (United States)

    Miyazaki, Daisuke; Kawanishi, Tsuyoshi; Nishimura, Yasuhiro; Matsushita, Kenji

    2001-11-01

    A new three-dimensional display system based on a volume-scanning method is demonstrated. To form a three-dimensional real image, an inclined two-dimensional image is rapidly moved with a mirror scanner while the cross-section patterns of a three-dimensional object are displayed sequentially. A vector-scan CRT display unit is used to obtain a high-resolution image. An optical scanning system is constructed with concave mirrors and a galvanometer mirror. It is confirmed that three-dimensional images, formed by the experimental system, satisfy all the criteria for human stereoscopic vision.

  2. Vector Casimir effect for a D-dimensional sphere

    International Nuclear Information System (INIS)

    Milton, K.A.

    1997-01-01

    The Casimir energy or stress due to modes in a D-dimensional volume subject to TM (mixed) boundary conditions on a bounding spherical surface is calculated. Both interior and exterior modes are included. Together with earlier results found for scalar modes (TE modes), this gives the Casimir effect for fluctuating open-quotes electromagneticclose quotes (vector) fields inside and outside a spherical shell. Known results for three dimensions, first found by Boyer, are reproduced. Qualitatively, the results for TM modes are similar to those for scalar modes: Poles occur in the stress at positive even dimensions, and cusps (logarithmic singularities) occur for integer dimensions D≤1. Particular attention is given the interesting case of D=2. copyright 1997 The American Physical Society

  3. Vectorization of three-dimensional neutron diffusion code CITATION

    International Nuclear Information System (INIS)

    Harada, Hiroo; Ishiguro, Misako

    1985-01-01

    Three-dimensional multi-group neutron diffusion code CITATION has been widely used for reactor criticality calculations. The code is expected to be run at a high speed by using recent vector supercomputers, when it is appropriately vectorized. In this paper, vectorization methods and their effects are described for the CITATION code. Especially, calculation algorithms suited for vectorization of the inner-outer iterative calculations which spend most of the computing time are discussed. The SLOR method, which is used in the original CITATION code, and the SOR method, which is adopted in the revised code, are vectorized by odd-even mesh ordering. The vectorized CITATION code is executed on the FACOM VP-100 and VP-200 computers, and is found to run over six times faster than the original code for a practical-scale problem. The initial value of the relaxation factor and the number of inner-iterations given as input data are also investigated since the computing time depends on these values. (author)

  4. A method for real-time three-dimensional vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav

    2003-01-01

    The paper presents an approach for making real-time three-dimensional vector flow imaging. Synthetic aperture data acquisition is used, and the data is beamformed along the flow direction to yield signals usable for flow estimation. The signals are cross-related to determine the shift in position...... are done using 16 × 16 = 256 elements at a time and the received signals from the same elements are sampled. Access to the individual elements is done through 16-to-1 multiplexing, so that only a 256 channels transmitting and receiving system are needed. The method has been investigated using Field II...

  5. Toward two-dimensional search engines

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L; Chepelianskii, A D

    2012-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)

  6. On the density of the sum of two independent Student t-random vectors

    DEFF Research Database (Denmark)

    Berg, Christian; Vignat, Christophe

    2010-01-01

    -vector. In both cases the density is given as an infinite series $\\sum_{n=0}^\\infty c_nf_n$ where f_n is a sequence of probability densities on R^d and c_n is a sequence of positive numbers of sum 1, i.e. the distribution of a non-negative integer-valued random variable C, which turns out to be infinitely......In this paper, we find an expression for the density of the sum of two independent d-dimensional Student t-random vectors X and Y with arbitrary degrees of freedom. As a byproduct we also obtain an expression for the density of the sum N+X, where N is normal and X is an independent Student t...... divisible for d=1 and d=2.  When d=1 and the degrees of freedom of the Student variables are equal, we recover an old result of Ruben.  ...

  7. Suggested Courseware for the Non-Calculus Physics Student: Measurement, Vectors, and One-Dimensional Motion.

    Science.gov (United States)

    Mahoney, Joyce; And Others

    1988-01-01

    Evaluates 16 commercially available courseware packages covering topics for introductory physics. Discusses the price, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each program. Recommends two packages in measurement and vectors, and one-dimensional motion respectively. (YP)

  8. IWKNN: An Effective Bluetooth Positioning Method Based on Isomap and WKNN

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2016-01-01

    Full Text Available Recently, Bluetooth-based indoor positioning has become a hot research topic. However, the instability of Bluetooth RSSI (Received Signal Strength Indicator promotes a huge challenge in localization accuracy. To improve the localization accuracy, this paper measures the distance of RSSI vectors on their low-dimensional manifold and proposes a novel positioning method IWKNN (Isomap-based Weighted K-Nearest Neighbor. The proposed method firstly uses Isomap to generate low-dimensional embedding for RSSI vectors. Then, the distance of two given RSSI vectors is measured by Euclidean distance of their low-dimensional embeddings. Finally, the position is calculated by WKNN. Experiment indicates that the proposed approach is more robust and accurate.

  9. Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass

    International Nuclear Information System (INIS)

    Schmidt, Alexandre G.M.; Azeredo, Abel D.; Gusso, A.

    2008-01-01

    We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r)∝r w with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them

  10. Desingularization strategies for three-dimensional vector fields

    CERN Document Server

    Torres, Felipe Cano

    1987-01-01

    For a vector field #3, where Ai are series in X, the algebraic multiplicity measures the singularity at the origin. In this research monograph several strategies are given to make the algebraic multiplicity of a three-dimensional vector field decrease, by means of permissible blowing-ups of the ambient space, i.e. transformations of the type xi=x'ix1, 2s. A logarithmic point of view is taken, marking the exceptional divisor of each blowing-up and by considering only the vector fields which are tangent to this divisor, instead of the whole tangent sheaf. The first part of the book is devoted to the logarithmic background and to the permissible blowing-ups. The main part corresponds to the control of the algorithms for the desingularization strategies by means of numerical invariants inspired by Hironaka's characteristic polygon. Only basic knowledge of local algebra and algebraic geometry is assumed of the reader. The pathologies we find in the reduction of vector fields are analogous to pathologies in the pro...

  11. Many electron variational ground state of the two dimensional Anderson lattice

    International Nuclear Information System (INIS)

    Zhou, Y.; Bowen, S.P.; Mancini, J.D.

    1991-02-01

    A variational upper bound of the ground state energy of two dimensional finite Anderson lattices is determined as a function of lattice size (up to 16 x 16). Two different sets of many-electron basis vectors are used to determine the ground state for all values of the coulomb integral U. This variational scheme has been successfully tested for one dimensional models and should give good estimates in two dimensions

  12. Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Alexandre G.M. [Departamento de Ciencias Exatas, Polo Universitario de Volta Redonda-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com; Azeredo, Abel D. [Departamento de Fisica-Universidade Federal de Roraima, Av. Cap. Ene Garcez 2413, Boa Vista RR, CEP 69304-000 (Brazil)], E-mail: aazeredo@gmail.com; Gusso, A. [Departamento de Ciencias Exatas e Tecnologicas-Universidade Estadual de Santa Cruz, km 16 Rodovia Ilheus-Itabuna, Ilheus BA, CEP 45662-000 (Brazil)], E-mail: agusso@uesc.br

    2008-04-14

    We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r){proportional_to}r{sup w} with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them.

  13. Intertwined Hamiltonians in two-dimensional curved spaces

    International Nuclear Information System (INIS)

    Aghababaei Samani, Keivan; Zarei, Mina

    2005-01-01

    The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincare half plane (AdS 2 ), de Sitter plane (dS 2 ), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle

  14. Positioning in a flat two-dimensional space-time: The delay master equation

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales-Lladosa, Juan Antonio

    2010-01-01

    The basic theory on relativistic positioning systems in a two-dimensional space-time has been presented in two previous papers [B. Coll, J. J. Ferrando, and J. A. Morales, Phys. Rev. D 73, 084017 (2006); ibid.74, 104003 (2006)], where the possibility of making relativistic gravimetry with these systems has been analyzed by considering specific examples. Here, generic relativistic positioning systems in the Minkowski plane are studied. The information that can be obtained from the data received by a user of the positioning system is analyzed in detail. In particular, it is shown that the accelerations of the emitters and of the user along their trajectories are determined by the sole knowledge of the emitter positioning data and of the acceleration of only one of the emitters. Moreover, as a consequence of the so-called master delay equation, the knowledge of this acceleration is only required during an echo interval, i.e., the interval between the emission time of a signal by an emitter and its reception time after being reflected by the other emitter. These results are illustrated with the obtention of the dynamics of the emitters and of the user from specific sets of data received by the user.

  15. General Dimensional Multiple-Output Support Vector Regressions and Their Multiple Kernel Learning.

    Science.gov (United States)

    Chung, Wooyong; Kim, Jisu; Lee, Heejin; Kim, Euntai

    2015-11-01

    Support vector regression has been considered as one of the most important regression or function approximation methodologies in a variety of fields. In this paper, two new general dimensional multiple output support vector regressions (MSVRs) named SOCPL1 and SOCPL2 are proposed. The proposed methods are formulated in the dual space and their relationship with the previous works is clearly investigated. Further, the proposed MSVRs are extended into the multiple kernel learning and their training is implemented by the off-the-shelf convex optimization tools. The proposed MSVRs are applied to benchmark problems and their performances are compared with those of the previous methods in the experimental section.

  16. Two-dimensional electroacoustic waves in silicene

    Science.gov (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.

    2018-01-01

    In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.

  17. Two-host, two-vector basic reproduction ratio (R(0 for bluetongue.

    Directory of Open Access Journals (Sweden)

    Joanne Turner

    Full Text Available Mathematical formulations for the basic reproduction ratio (R(0 exist for several vector-borne diseases. Generally, these are based on models of one-host, one-vector systems or two-host, one-vector systems. For many vector borne diseases, however, two or more vector species often co-occur and, therefore, there is a need for more complex formulations. Here we derive a two-host, two-vector formulation for the R(0 of bluetongue, a vector-borne infection of ruminants that can have serious economic consequences; since 1998 for example, it has led to the deaths of well over 1 million sheep in Europe alone. We illustrate our results by considering the situation in South Africa, where there are two major hosts (sheep, cattle and two vector species with differing ecologies and competencies as vectors, for which good data exist. We investigate the effects on R(0 of differences in vector abundance, vector competence and vector host preference between vector species. Our results indicate that R(0 can be underestimated if we assume that there is only one vector transmitting the infection (when there are in fact two or more and/or vector host preferences are overlooked (unless the preferred host is less beneficial or more abundant. The two-host, one-vector formula provides a good approximation when the level of cross-infection between vector species is very small. As this approaches the level of intraspecies infection, a combination of the two-host, one-vector R(0 for each vector species becomes a better estimate. Otherwise, particularly when the level of cross-infection is high, the two-host, two-vector formula is required for accurate estimation of R(0. Our results are equally relevant to Europe, where at least two vector species, which co-occur in parts of the south, have been implicated in the recent epizootic of bluetongue.

  18. Absolute continuity of autophage measures on finite-dimensional vector spaces

    Energy Technology Data Exchange (ETDEWEB)

    Raja, C R.E. [Stat-Math Unit, Indian Statistical Institute, Bangalore (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: creraja@isibang.ac.in

    2002-06-01

    We consider a class of measures called autophage which was introduced and studied by Szekely for measures on the real line. We show that the autophage measures on finite-dimensional vector spaces over real or Q{sub p} are infinitely divisible without idempotent factors and are absolutely continuous with bounded continuous density. We also show that certain semistable measures on such vector spaces are absolutely continuous. (author)

  19. Mode selection in two-dimensional Bragg resonators based on planar dielectric waveguides

    International Nuclear Information System (INIS)

    Baryshev, V R; Ginzburg, N S; Zaslavskii, V Yu; Malkin, A M; Sergeev, A S; Thumm, M

    2009-01-01

    Two-dimensional Bragg resonators based on planar dielectric waveguides are analysed. It is shown that the doubly periodic corrugation deposited on the dielectric surface in the form of two gratings with translational vectors directed perpendicular to each other ensures effective selection of modes along two coordinates at large Fresnel parameters. This result is obtained both by the method of coupled waves (geometrical optics approximation) and by the direct numerical simulations. Two-dimensional Bragg resonators make it possible to fabricate two-dimensional distributed feedback lasers and to provide generation of spatially coherent radiation in large-volume active media. (waveguides)

  20. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  1. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Science.gov (United States)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  2. Anisotropic fractal media by vector calculus in non-integer dimensional space

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2014-01-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media

  3. A position-sensitive scintillation detector for two-dimensional angular correlation of annihilation radiation using metal-package position-sensitive photomultiplier tubes

    International Nuclear Information System (INIS)

    Inoue, Koji; Nagai, Yasuyoshi; Saito, Haruo; Nagashima, Yasuyuki; Hyodo, Toshio; Muramatsu, Shinichi; Nagai, Shota

    1999-01-01

    We have constructed and tested a prototype of a new position sensitive γ-ray detector which consists of an array of 2.6x2.6x18 mm 3 BGO scintillator blocks, a light guide, and four metal-package position-sensitive photomultiplier tubes (R5900-00-C8) recently developed by Hamamatsu Photonics Co. Ltd. Scalability of the detector of this type makes it possible to construct a larger detector using many PS-PMTs, which will be useful for the two-dimensional angular correlation of annihilation radiation apparatus

  4. A Two-Layer Least Squares Support Vector Machine Approach to Credit Risk Assessment

    Science.gov (United States)

    Liu, Jingli; Li, Jianping; Xu, Weixuan; Shi, Yong

    Least squares support vector machine (LS-SVM) is a revised version of support vector machine (SVM) and has been proved to be a useful tool for pattern recognition. LS-SVM had excellent generalization performance and low computational cost. In this paper, we propose a new method called two-layer least squares support vector machine which combines kernel principle component analysis (KPCA) and linear programming form of least square support vector machine. With this method sparseness and robustness is obtained while solving large dimensional and large scale database. A U.S. commercial credit card database is used to test the efficiency of our method and the result proved to be a satisfactory one.

  5. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  6. Conservation laws and two-dimensional black holes in dilaton gravity

    Science.gov (United States)

    Mann, R. B.

    1993-05-01

    A very general class of Lagrangians which couple scalar fields to gravitation and matter in two spacetime dimensions is investigated. It is shown that a vector field exists along whose flow lines the stress-energy tensor is conserved, regardless of whether or not the equations of motion are satisfied or if any Killing vectors exist. Conditions necessary for the existence of Killing vectors are derived. A new set of two-dimensional (2D) black-hole solutions is obtained for one particular member within this class of Lagrangians, which couples a Liouville field to 2D gravity in a novel way. One solution of this theory bears an interesting resemblance to the 2D string-theoretic black hole, yet contains markedly different thermodynamic properties.

  7. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    Science.gov (United States)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  8. Kochen-Specker vectors

    International Nuclear Information System (INIS)

    Pavicic, Mladen; Merlet, Jean-Pierre; McKay, Brendan; Megill, Norman D

    2005-01-01

    We give a constructive and exhaustive definition of Kochen-Specker (KS) vectors in a Hilbert space of any dimension as well as of all the remaining vectors of the space. KS vectors are elements of any set of orthonormal states, i.e., vectors in an n-dimensional Hilbert space, H n , n≥3, to which it is impossible to assign 1s and 0s in such a way that no two mutually orthogonal vectors from the set are both assigned 1 and that not all mutually orthogonal vectors are assigned 0. Our constructive definition of such KS vectors is based on algorithms that generate MMP diagrams corresponding to blocks of orthogonal vectors in R n , on algorithms that single out those diagrams on which algebraic (0)-(1) states cannot be defined, and on algorithms that solve nonlinear equations describing the orthogonalities of the vectors by means of statistically polynomially complex interval analysis and self-teaching programs. The algorithms are limited neither by the number of dimensions nor by the number of vectors. To demonstrate the power of the algorithms, all four-dimensional KS vector systems containing up to 24 vectors were generated and described, all three-dimensional vector systems containing up to 30 vectors were scanned, and several general properties of KS vectors were found

  9. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  10. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    International Nuclear Information System (INIS)

    Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.

    2003-01-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring

  11. Experimental observation of both negative and positive phase velocities in a two-dimensional sonic crystal

    International Nuclear Information System (INIS)

    Lu, Ming-Hui; Feng, Liang; Liu, Xiao-Ping; Liu, Xiao-Kang; Chen, Yan-Feng; Zhu, Yong-Yuan; Mao, Yi-Wei; Zi, Jian

    2007-01-01

    Both negative and positive phase velocities for acoustic waves have been experimentally established in a two-dimensional triangular sonic crystal (SC) consisting of steel cylinders embedded in air at first. With the increase of the SCs thickness layer by layer in the experiments, phase shifts decrease in the second band but increase in the first band, showing the negative and the positive phase velocities, respectively. Moreover, the dispersion relation of the SC is constructed by the phase information, which is consistent well with the theoretical results. These abundant characteristics of acoustic wave propagation in the SC might be useful for the device applications

  12. Two-dimensional flexible nanoelectronics

    Science.gov (United States)

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-01

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  13. Two-dimensional mapping of three-dimensional SPECT data: a preliminary step to the quantitation of thallium myocardial perfusion single photon emission tomography

    International Nuclear Information System (INIS)

    Goris, M.L.; Boudier, S.; Briandet, P.A.

    1987-01-01

    A method is presented by which tomographic myocardial perfusion data are prepared for quantitative analysis. The method is characterized by an interrogation of the original data, which results in a size and shape normalization. The method is analogous to the circumferential profile methods used in planar scintigraphy but requires a polar-to-cartesian transformation from three to two dimensions. As was the case in the planar situation, centering and reorientation are explicit. The degree of data reduction is evaluated by reconstructing idealized three-dimensional data from the two-dimensional sampling vectors. The method differs from previously described approaches by the absence in the resulting vector of a coordinate reflecting cartesian coordinate in the original data (slice number)

  14. Variance inflation in high dimensional Support Vector Machines

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2013-01-01

    Many important machine learning models, supervised and unsupervised, are based on simple Euclidean distance or orthogonal projection in a high dimensional feature space. When estimating such models from small training sets we face the problem that the span of the training data set input vectors...... the case of Support Vector Machines (SVMS) and we propose a non-parametric scheme to restore proper generalizability. We illustrate the algorithm and its ability to restore performance on a wide range of benchmark data sets....... follow a different probability law with less variance. While the problem and basic means to reconstruct and deflate are well understood in unsupervised learning, the case of supervised learning is less well understood. We here investigate the effect of variance inflation in supervised learning including...

  15. A GIS tool for two-dimensional glacier-terminus change tracking

    Science.gov (United States)

    Urbanski, Jacek Andrzej

    2018-02-01

    This paper presents a Glacier Termini Tracking (GTT) toolbox for the two-dimensional analysis of glacier-terminus position changes. The input consists of a vector layer with several termini lines relating to the same glacier at different times. The output layers allow analyses to be conducted of glacier-terminus retreats, changes in retreats over time and along the ice face, and glacier-terminus fluctuations over time. The application of three tools from the toolbox is demonstrated via the analysis of eight glacier-terminus retreats and fluctuations at the Hornsund fjord in south Svalbard. It is proposed that this toolbox may also be useful in the study of other line features that change over time, like coastlines and rivers. The toolbox has been coded in Python and runs via ArcGIS.

  16. Projection correlation between two random vectors.

    Science.gov (United States)

    Zhu, Liping; Xu, Kai; Li, Runze; Zhong, Wei

    2017-12-01

    We propose the use of projection correlation to characterize dependence between two random vectors. Projection correlation has several appealing properties. It equals zero if and only if the two random vectors are independent, it is not sensitive to the dimensions of the two random vectors, it is invariant with respect to the group of orthogonal transformations, and its estimation is free of tuning parameters and does not require moment conditions on the random vectors. We show that the sample estimate of the projection correction is [Formula: see text]-consistent if the two random vectors are independent and root-[Formula: see text]-consistent otherwise. Monte Carlo simulation studies indicate that the projection correlation has higher power than the distance correlation and the ranks of distances in tests of independence, especially when the dimensions are relatively large or the moment conditions required by the distance correlation are violated.

  17. An Evaluation of Two Internal Surrogates for Determining the Three-Dimensional Position of Peripheral Lung Tumors

    NARCIS (Netherlands)

    Spoelstra, F.O.B.; Sornsen de Koste, van J.R.; Vincent, A.D.; Cuijpers, J.P.; Slotman, B.J.; Senan, S.

    2009-01-01

    Purpose: Both carina and diaphragm positions have been used as surrogates during respiratory-gated radiotherapy. We studied the correlation of both surrogates with three-dimensional (3D) tumor position. Methods and Materials: A total of 59 repeat artifact-free four-dimensional (4D) computed

  18. Eruptive Massive Vector Particles of 5-Dimensional Kerr-Gödel Spacetime

    Science.gov (United States)

    Övgün, A.; Sakalli, I.

    2018-02-01

    In this paper, we investigate Hawking radiation of massive spin-1 particles from 5-dimensional Kerr-Gödel spacetime. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the relativistic Proca equation, we obtain the quantum tunneling rate of the massive vector particles. Using the obtained tunneling rate, we show how one impeccably computes the Hawking temperature of the 5-dimensional Kerr-Gödel spacetime.

  19. Properties of the center of gravity as an algorithm for position measurements: Two-dimensional geometry

    CERN Document Server

    Landi, Gregorio

    2003-01-01

    The center of gravity as an algorithm for position measurements is analyzed for a two-dimensional geometry. Several mathematical consequences of discretization for various types of detector arrays are extracted. Arrays with rectangular, hexagonal, and triangular detectors are analytically studied, and tools are given to simulate their discretization properties. Special signal distributions free of discretized error are isolated. It is proved that some crosstalk spreads are able to eliminate the center of gravity discretization error for any signal distribution. Simulations, adapted to the CMS em-calorimeter and to a triangular detector array, are provided for energy and position reconstruction algorithms with a finite number of detectors.

  20. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  1. A Two-Dimensional Solar Tracking Stationary Guidance Method Based on Feature-Based Time Series

    Directory of Open Access Journals (Sweden)

    Keke Zhang

    2018-01-01

    Full Text Available The amount of satellite energy acquired has a direct impact on operational capacities of the satellite. As for practical high functional density microsatellites, solar tracking guidance design of solar panels plays an extremely important role. Targeted at stationary tracking problems incurred in a new system that utilizes panels mounted in the two-dimensional turntable to acquire energies to the greatest extent, a two-dimensional solar tracking stationary guidance method based on feature-based time series was proposed under the constraint of limited satellite attitude coupling control capability. By analyzing solar vector variation characteristics within an orbit period and solar vector changes within the whole life cycle, such a method could be adopted to establish a two-dimensional solar tracking guidance model based on the feature-based time series to realize automatic switching of feature-based time series and stationary guidance under the circumstance of different β angles and the maximum angular velocity control, which was applicable to near-earth orbits of all orbital inclination. It was employed to design a two-dimensional solar tracking stationary guidance system, and a mathematical simulation for guidance performance was carried out in diverse conditions under the background of in-orbit application. The simulation results show that the solar tracking accuracy of two-dimensional stationary guidance reaches 10∘ and below under the integrated constraints, which meet engineering application requirements.

  2. Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale

    Science.gov (United States)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan

    2018-04-01

    This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.

  3. Visualizing vector field topology in fluid flows

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  4. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya [College of Science, Air Force Engineering University, Xi' an, Shaanxi 710051 (China); Zhang, Jieqiu [College of Science, Air Force Engineering University, Xi' an, Shaanxi 710051 (China); Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xu, Zhuo [Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Zhang, Anxue [School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  5. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    International Nuclear Information System (INIS)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Zhang, Jieqiu; Xu, Zhuo; Zhang, Anxue

    2014-01-01

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  6. Reliability of tunnel angle in ACL reconstruction: two-dimensional versus three-dimensional guide technique.

    Science.gov (United States)

    Leiter, Jeff R S; de Korompay, Nevin; Macdonald, Lindsey; McRae, Sheila; Froese, Warren; Macdonald, Peter B

    2011-08-01

    To compare the reliability of tibial tunnel position and angle produced with a standard ACL guide (two-dimensional guide) or Howell 65° Guide (three-dimensional guide) in the coronal and sagittal planes. In the sagittal plane, the dependent variables were the angle of the tibial tunnel relative to the tibial plateau and the position of the tibial tunnel with respect to the most posterior aspect of the tibia. In the coronal plane, the dependent variables were the angle of the tunnel with respect to the medial joint line of the tibia and the medial and lateral placement of the tibial tunnel relative to the most medial aspect of the tibia. The position and angle of the tibial tunnel in the coronal and sagittal planes were determined from anteroposterior and lateral radiographs, respectively, taken 2-6 months postoperatively. The two-dimensional and three-dimensional guide groups included 28 and 24 sets of radiographs, respectively. Tibial tunnel position was identified, and tunnel angle measurements were completed. Multiple investigators measured the position and angle of the tunnel 3 times, at least 7 days apart. The angle of the tibial tunnel in the coronal plane using a two-dimensional guide (61.3 ± 4.8°) was more horizontal (P guide (64.7 ± 6.2°). The position of the tibial tunnel in the sagittal plane was more anterior (P guide group compared to the three-dimensional guide group (43.3 ± 2.9%). The Howell Tibial Guide allows for reliable placement of the tibial tunnel in the coronal plane at an angle of 65°. Tibial tunnels were within the anatomical footprint of the ACL with either technique. Future studies should investigate the effects of tibial tunnel angle on knee function and patient quality of life. Case-control retrospective comparative study, Level III.

  7. X-ray imaging device for one-dimensional and two-dimensional radioscopy

    International Nuclear Information System (INIS)

    1978-01-01

    The X-ray imaging device for the selectable one-dimensional or two-dimensional pictures of objects illuminated by X-rays, comprising an X-ray source, an X-ray screen, and an opto-electrical picture development device placed behind the screen, is characterized by an anamorphotic optical system, which is positioned with a one-dimensional illumination between the X-ray screen and the opto-electrical device and that a two-dimensional illumination will be developed, and that in view of the lens system which forms part of the opto-electrical device, there is placed an X-ray screen in a specified beam direction so that a magnified image may be formed by equalisation of the distance between the X-ray screen and the lens system. (G.C.)

  8. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  9. Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval.

    Science.gov (United States)

    Zhang, Yu; Wu, Jianxin; Cai, Jianfei

    2016-05-01

    In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.

  10. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    Science.gov (United States)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  11. A Novel Medical Freehand Sketch 3D Model Retrieval Method by Dimensionality Reduction and Feature Vector Transformation

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2016-01-01

    Full Text Available To assist physicians to quickly find the required 3D model from the mass medical model, we propose a novel retrieval method, called DRFVT, which combines the characteristics of dimensionality reduction (DR and feature vector transformation (FVT method. The DR method reduces the dimensionality of feature vector; only the top M low frequency Discrete Fourier Transform coefficients are retained. The FVT method does the transformation of the original feature vector and generates a new feature vector to solve the problem of noise sensitivity. The experiment results demonstrate that the DRFVT method achieves more effective and efficient retrieval results than other proposed methods.

  12. Canonical Groups for Quantization on the Two-Dimensional Sphere and One-Dimensional Complex Projective Space

    International Nuclear Information System (INIS)

    Sumadi A H A; H, Zainuddin

    2014-01-01

    Using Isham's group-theoretic quantization scheme, we construct the canonical groups of the systems on the two-dimensional sphere and one-dimensional complex projective space, which are homeomorphic. In the first case, we take SO(3) as the natural canonical Lie group of rotations of the two-sphere and find all the possible Hamiltonian vector fields, and followed by verifying the commutator and Poisson bracket algebra correspondences with the Lie algebra of the group. In the second case, the same technique is resumed to define the Lie group, in this case SU (2), of CP'.We show that one can simply use a coordinate transformation from S 2 to CP 1 to obtain all the Hamiltonian vector fields of CP 1 . We explicitly show that the Lie algebra structures of both canonical groups are locally homomorphic. On the other hand, globally their corresponding canonical groups are acting on different geometries, the latter of which is almost complex. Thus the canonical group for CP 1 is the double-covering group of SO(3), namely SU(2). The relevance of the proposed formalism is to understand the idea of CP 1 as a space of where the qubit lives which is known as a Bloch sphere

  13. Equivalent Vectors

    Science.gov (United States)

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  14. Observation of hidden Fermi surface nesting in a two dimensional conductor

    International Nuclear Information System (INIS)

    Breuer, K.; Stagerescu, C.; Smith, K.E.; Greenblatt, M.; Ramanujachary, K.

    1996-01-01

    We report the first direct measurement of hidden Fermi surface nesting in a two dimensional conductor. The system studied was Na 0.9 Mo 6 O 17 , and the measured Fermi surface consists of electron and hole pockets that can be combined to form sets of pseudo-one-dimensional Fermi surfaces, exhibiting the nesting necessary to drive a Peierls transition to a charge density wave state. The observed nesting vector is shown to be in excellent agreement with theory. copyright 1996 The American Physical Society

  15. Music Signal Processing Using Vector Product Neural Networks

    Science.gov (United States)

    Fan, Z. C.; Chan, T. S.; Yang, Y. H.; Jang, J. S. R.

    2017-05-01

    We propose a novel neural network model for music signal processing using vector product neurons and dimensionality transformations. Here, the inputs are first mapped from real values into three-dimensional vectors then fed into a three-dimensional vector product neural network where the inputs, outputs, and weights are all three-dimensional values. Next, the final outputs are mapped back to the reals. Two methods for dimensionality transformation are proposed, one via context windows and the other via spectral coloring. Experimental results on the iKala dataset for blind singing voice separation confirm the efficacy of our model.

  16. Self-organized defect strings in two-dimensional crystals.

    Science.gov (United States)

    Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph

    2013-12-01

    Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.

  17. Two-dimensional quantum electrodynamics as a model in the constructive quantum field theory

    International Nuclear Information System (INIS)

    Ito, K.R.

    1976-01-01

    We investigate two-dimensional quantum electrodynamics((QED) 2 ) type models on the basis of the Hamiltonian formalism of a vector field. The transformation into a sine-Gordon equation is clarified as a generalized mass-shift transformation through canonical linear transformations. (auth.)

  18. Multi-robot task allocation based on two dimensional artificial fish swarm algorithm

    Science.gov (United States)

    Zheng, Taixiong; Li, Xueqin; Yang, Liangyi

    2007-12-01

    The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.

  19. Dynamical symmetries of two-dimensional systems in relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Zhang Fulin; Song Ci; Chen Jingling

    2009-01-01

    The two-dimensional Dirac Hamiltonian with equal scalar and vector potentials has been proved commuting with the deformed orbital angular momentum L. When the potential takes the Coulomb form, the system has an SO(3) symmetry, and similarly the harmonic oscillator potential possesses an SU(2) symmetry. The generators of the symmetric groups are derived for these two systems separately. The corresponding energy spectra are yielded naturally from the Casimir operators. Their non-relativistic limits are also discussed

  20. Two-dimensional atom localization via Raman-driven coherence

    Energy Technology Data Exchange (ETDEWEB)

    Rahmatullah,; Qamar, Sajid, E-mail: sajid_qamar@comsats.edu.pk

    2014-02-07

    A scheme for two-dimensional (2D) atom localization via Raman-driven coherence in a four-level diamond-configuration system is suggested. The atom interacts with two orthogonal standing-wave fields where each standing-wave field is constructed from the superposition of the two-standing wave fields along the corresponding directions. Due to the position-dependent atom–field interaction, the frequency of the spontaneously emitted photon carries the position information about the atom. We investigate the effect of the detunings and phase shifts associated with standing-wave fields. Unique position information of the single atom is obtained by properly adjusting the system parameters. This is an extension of our previous proposal for one-dimensional atom localization via Raman-driven coherence.

  1. Oscillations of the positive column plasma due to ionization wave propagation and two-dimensional structure of striations

    International Nuclear Information System (INIS)

    Golubovskii, Yu B; Kozakov, R V; Wilke, C; Behnke, J; Nekutchaev, V O

    2004-01-01

    Time and space resolved measurements of the plasma potential in axial and radial directions in S- and P-striations in neon are performed. The measurements in different radial positions were carried out with high spatial resolution by means of simultaneous displacement of electrodes relative to the stationary probe. The plasma potential was found to be a superposition of the potentials of ionization wave and plasma oscillations relative to the electrodes. A method of decomposition of the measured spatio-temporal structure of the potential in components associated with the plasma oscillations and ionization wave propagation is proposed. A biorthogonal decomposition of the spatio-temporal structure of the potential is performed. A comparison of the decomposition results obtained by the two methods is made. The experiments revealed a two-dimensional structure of the potential field in an ionization wave. Qualitative discussions of the reasons for the occurrence of this two-dimensional structure are presented based on the analysis of the kinetic equation and the equation for the potential

  2. Rotation vectors for homeomorphisms of non-positively curved manifolds

    International Nuclear Information System (INIS)

    Lessa, Pablo

    2011-01-01

    Rotation vectors, as defined for homeomorphisms of the torus that are isotopic to the identity, are generalized to such homeomorphisms of any complete Riemannian manifold with non-positive sectional curvature. These generalized rotation vectors are shown to exist for almost every orbit of such a dynamical system with respect to any invariant measure with compact support. The concept is then extended to flows and, as an application, it is shown how non-null rotation vectors can be used to construct a measurable semi-conjugacy between a given flow and the geodesic flow of a manifold

  3. MOSRA-Light; high speed three-dimensional nodal diffusion code for vector computers

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Keisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    MOSRA-Light is a three-dimensional neutron diffusion calculation code for X-Y-Z geometry. It is based on the 4th order polynomial nodal expansion method (NEM). As the 4th order NEM is not sensitive to mesh sizes, accurate calculation is possible by the use of coarse meshes of about 20 cm. The drastic decrease of number of unknowns in a 3-dimensional problem results in very fast computation. Furthermore, it employs newly developed computation algorithm `boundary separated checkerboard sweep method` appropriate to vector computers. This method is very efficient because the speedup factor by vectorization increases, as a scale of problem becomes larger. Speed-up factor compared to the scalar calculation is from 20 to 40 in the case of PWR core calculation. Considering the both effects by the vectorization and the coarse mesh method, total speedup factor is more than 1000 as compared with conventional scalar code with the finite difference method. MOSRA-Light can be available on most of vector or scalar computers with the UNIX or it`s similar operating systems (e.g. freeware like Linux). Users can easily install it by the help of the conversation style installer. This report contains the general theory of NEM, the fast computation algorithm, benchmark calculation results and detailed information for usage of this code including input data instructions and sample input data. (author)

  4. MOSRA-Light; high speed three-dimensional nodal diffusion code for vector computers

    International Nuclear Information System (INIS)

    Okumura, Keisuke

    1998-10-01

    MOSRA-Light is a three-dimensional neutron diffusion calculation code for X-Y-Z geometry. It is based on the 4th order polynomial nodal expansion method (NEM). As the 4th order NEM is not sensitive to mesh sizes, accurate calculation is possible by the use of coarse meshes of about 20 cm. The drastic decrease of number of unknowns in a 3-dimensional problem results in very fast computation. Furthermore, it employs newly developed computation algorithm 'boundary separated checkerboard sweep method' appropriate to vector computers. This method is very efficient because the speedup factor by vectorization increases, as a scale of problem becomes larger. Speed-up factor compared to the scalar calculation is from 20 to 40 in the case of PWR core calculation. Considering the both effects by the vectorization and the coarse mesh method, total speedup factor is more than 1000 as compared with conventional scalar code with the finite difference method. MOSRA-Light can be available on most of vector or scalar computers with the UNIX or it's similar operating systems (e.g. freeware like Linux). Users can easily install it by the help of the conversation style installer. This report contains the general theory of NEM, the fast computation algorithm, benchmark calculation results and detailed information for usage of this code including input data instructions and sample input data. (author)

  5. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    Science.gov (United States)

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  6. Applying Clustering to Statistical Analysis of Student Reasoning about Two-Dimensional Kinematics

    Science.gov (United States)

    Springuel, R. Padraic; Wittman, Michael C.; Thompson, John R.

    2007-01-01

    We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and…

  7. Resonance fluorescence based two- and three-dimensional atom localization

    Science.gov (United States)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  8. Bandgap optimization of two-dimensional photonic crystals using semidefinite programming and subspace methods

    International Nuclear Information System (INIS)

    Men, H.; Nguyen, N.C.; Freund, R.M.; Parrilo, P.A.; Peraire, J.

    2010-01-01

    In this paper, we consider the optimal design of photonic crystal structures for two-dimensional square lattices. The mathematical formulation of the bandgap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several frequency bands. The optimized structures exhibit patterns which go far beyond typical physical intuition on periodic media design.

  9. A Synthesizable VHDL Model of the Exact Solution for Three-dimensional Hyperbolic Positioning System

    Directory of Open Access Journals (Sweden)

    Ralph Bucher

    2002-01-01

    Full Text Available This paper presents a synthesizable VHDL model of a three-dimensional hyperbolic positioning system algorithm. The algorithm obtains an exact solution for the three-dimensional location of a mobile given the locations of four fixed stations (like a global positioning system [GPS] satellite or a base station in a cell and the signal time of arrival (TOA from the mobile to each station. The detailed derivation of the steps required in the algorithm is presented. A VHDL model of the algorithm was implemented and simulated using the IEEE numeric_std package. Signals were described by a 32-bit vector. Simulation results predict location of the mobile is off by 1 m for best case and off by 36 m for worst case. A C + + program using real numbers was used as a benchmark for the accuracy and precision of the VHDL model. The model can be easily synthesized for low power hardware implementation.

  10. Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions

    Science.gov (United States)

    2016-12-01

    Award Number: W81XWH-11-2-0175 TITLE: Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions PRINCIPAL...Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions 5b. GRANT NUMBER W81XWH-11-2-0175 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...genetic diversity in the population, in hospitalized children with severe dengue illness and cluster investigation of their neighborhoods, and by using

  11. Seasonal changes in the apparent position of the Sun as elementary applications of vector operations

    International Nuclear Information System (INIS)

    Levine, Jonathan

    2014-01-01

    Many introductory courses in physics face an unpleasant chicken-and-egg problem. One might choose to introduce students to physical quantities such as velocity, acceleration, and momentum in over-simplified one-dimensional applications before introducing vectors and their manipulation; or one might first introduce vectors as mathematical objects and defer demonstration of their physical utility. This paper offers a solution to this pedagogical problem: elementary vector operations can be used without mechanics concepts to understand variations in the solar latitude, duration of daylight, and orientation of the rising and setting Sun. I show how sunrise and sunset phenomena lend themselves to exercises with scalar products, vector products, unit vectors, and vector projections that can be useful for introducing vector analysis in the context of physics. (paper)

  12. Driving performance of a two-dimensional homopolar linear DC motor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Yamaguchi, M.; Kano, Y. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1998-05-01

    This paper presents a novel two-dimensional homopolar linear de motor (LDM) which can realize two-dimensional (2-D) motion. For position control purposes, two kinds of position detecting methods are proposed. The position in one position is detected by means of a capacitive sensor which makes the output of the sensor partially immune to the variation of the gap between electrodes. The position in the other direction is achieved by exploiting the position dependent property of the driving coil inductance, instead of using an independent sensor. The position control is implemented on the motor and 2-D tracking performance is analyzed. Experiments show that the motor demonstrates satisfactory driving performance, 2-D tracking error being within 5.5% when the angular frequency of reference signal is 3.14 rad./s. 7 refs., 17 figs., 2 tabs.

  13. Equivalency of two-dimensional algebras

    International Nuclear Information System (INIS)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.

    2011-01-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  14. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...

  15. TimesVector: a vectorized clustering approach to the analysis of time series transcriptome data from multiple phenotypes.

    Science.gov (United States)

    Jung, Inuk; Jo, Kyuri; Kang, Hyejin; Ahn, Hongryul; Yu, Youngjae; Kim, Sun

    2017-12-01

    Identifying biologically meaningful gene expression patterns from time series gene expression data is important to understand the underlying biological mechanisms. To identify significantly perturbed gene sets between different phenotypes, analysis of time series transcriptome data requires consideration of time and sample dimensions. Thus, the analysis of such time series data seeks to search gene sets that exhibit similar or different expression patterns between two or more sample conditions, constituting the three-dimensional data, i.e. gene-time-condition. Computational complexity for analyzing such data is very high, compared to the already difficult NP-hard two dimensional biclustering algorithms. Because of this challenge, traditional time series clustering algorithms are designed to capture co-expressed genes with similar expression pattern in two sample conditions. We present a triclustering algorithm, TimesVector, specifically designed for clustering three-dimensional time series data to capture distinctively similar or different gene expression patterns between two or more sample conditions. TimesVector identifies clusters with distinctive expression patterns in three steps: (i) dimension reduction and clustering of time-condition concatenated vectors, (ii) post-processing clusters for detecting similar and distinct expression patterns and (iii) rescuing genes from unclassified clusters. Using four sets of time series gene expression data, generated by both microarray and high throughput sequencing platforms, we demonstrated that TimesVector successfully detected biologically meaningful clusters of high quality. TimesVector improved the clustering quality compared to existing triclustering tools and only TimesVector detected clusters with differential expression patterns across conditions successfully. The TimesVector software is available at http://biohealth.snu.ac.kr/software/TimesVector/. sunkim.bioinfo@snu.ac.kr. Supplementary data are available at

  16. Spin-orbit coupling and transport in strongly correlated two-dimensional systems

    Science.gov (United States)

    Huang, Jian; Pfeiffer, L. N.; West, K. W.

    2017-05-01

    Measuring the magnetoresistance (MR) of ultraclean GaAs two-dimensional holes for a large rs range of 20-50, two striking behaviors in relation to the spin-orbit coupling (SOC) emerge in response to strong electron-electron interaction. First, in exact correspondence to the zero-field metal-to-insulator transition (MIT), the sign of the MR switches from being positive in the metallic regime to being negative in the insulating regime when the carrier density crosses the critical density pc of MIT (rs˜39 ). Second, as the SOC-driven correction Δ ρ to the MR decreases with reducing carrier density (or the in-plane wave vector), it exhibits an upturn in the close proximity just above pc where rs is beyond 30, indicating a substantially enhanced SOC effect. This peculiar behavior echoes with a trend of delocalization long suspected for the SOC-interaction interplay. Meanwhile, for p 40 , in contrast to the common belief that a magnet field enhances Wigner crystallization, the negative MR is likely linked to enhanced interaction.

  17. Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting

    Energy Technology Data Exchange (ETDEWEB)

    Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)

    1995-09-01

    This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.

  18. Design of Position Estimation Strategy of Sensorless Interior PMSM at Standstill Using Minimum Voltage Vector Injection Method

    DEFF Research Database (Denmark)

    Wu, Xuan; Huang, Shoudao; Liu, Xiao

    2017-01-01

    This paper presents a new initial rotor position estimation method for an interior permanent magnet synchronous motor. The proposed method includes two steps: firstly, the minimum voltage vectors are injected to estimate the rotor position. Secondly, in order to identify the magnet polarity...

  19. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  20. Two-hadron saturation for the pseudoscalar-vector-vector correlator and phenomenological applications

    Energy Technology Data Exchange (ETDEWEB)

    Husek, Tomas [Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague 8 (Czech Republic); Leupold, Stefan [Uppsala Universitet, Institutionen foer Fysik och Astronomi, Box 516, Uppsala (Sweden)

    2015-12-15

    The pseudoscalar-vector-vector correlator is constructed using two meson multiplets in the vector and two in the pseudoscalar channel. The parameters are constrained by the operator product expansion at leading order where two or all three momenta are considered as large. Demanding in addition the Brodsky-Lepage limit one obtains (in the chiral limit) pion-vector-vector (πVV) correlator with only one free parameter. The singly virtual pion transition form factor F{sub π{sup 0}γγ*} and the decay width of ω → π{sup 0}γ are independent of this parameter and can serve as cross-checks of the results. The free parameter is determined from a fit of the ω-π transition form factor F{sub π{sup 0}ωγ*}. The resulting πVV correlator is used to calculate the decay widths ω → π{sup 0}e{sup +}e{sup -} and ω → π{sup 0}μ{sup +}μ{sup -} and finally the widths of the rare decay π{sup 0} → e{sup +}e{sup -} and of the Dalitz decay π{sup 0} → e{sup +}e{sup -}γ. Incorporating radiative QED corrections the calculations of π{sup 0} decays are compared to the KTeV results. We find a deviation of 2 σ or less for the rare pion decay. (orig.)

  1. Clinical validation of coronal and sagittal spinal curve measurements based on three-dimensional vertebra vector parameters.

    Science.gov (United States)

    Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás

    2012-10-01

    For many decades, visualization and evaluation of three-dimensional (3D) spinal deformities have only been possible by two-dimensional (2D) radiodiagnostic methods, and as a result, characterization and classification were based on 2D terminologies. Recent developments in medical digital imaging and 3D visualization techniques including surface 3D reconstructions opened a chance for a long-sought change in this field. Supported by a 3D Terminology on Spinal Deformities of the Scoliosis Research Society, an approach for 3D measurements and a new 3D classification of scoliosis yielded several compelling concepts on 3D visualization and new proposals for 3D classification in recent years. More recently, a new proposal for visualization and complete 3D evaluation of the spine by 3D vertebra vectors has been introduced by our workgroup, a concept, based on EOS 2D/3D, a groundbreaking new ultralow radiation dose integrated orthopedic imaging device with sterEOS 3D spine reconstruction software. Comparison of accuracy, correlation of measurement values, intraobserver and interrater reliability of methods by conventional manual 2D and vertebra vector-based 3D measurements in a routine clinical setting. Retrospective, nonrandomized study of diagnostic X-ray images created as part of a routine clinical protocol of eligible patients examined at our clinic during a 30-month period between July 2007 and December 2009. In total, 201 individuals (170 females, 31 males; mean age, 19.88 years) including 10 healthy athletes with normal spine and patients with adolescent idiopathic scoliosis (175 cases), adult degenerative scoliosis (11 cases), and Scheuermann hyperkyphosis (5 cases). Overall range of coronal curves was between 2.4 and 117.5°. Analysis of accuracy and reliability of measurements was carried out on a group of all patients and in subgroups based on coronal plane deviation: 0 to 10° (Group 1; n=36), 10 to 25° (Group 2; n=25), 25 to 50° (Group 3; n=69), 50 to 75

  2. Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Belić, Milivoj [Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, P.O. Box 57, 11001 Belgrade (Serbia)

    2014-12-15

    We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number, and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.

  3. Gravity, two times, tractors, Weyl invariance, and six-dimensional quantum mechanics

    International Nuclear Information System (INIS)

    Bonezzi, R.; Latini, E.; Waldron, A.

    2010-01-01

    Fefferman and Graham showed some time ago that four-dimensional conformal geometries could be analyzed in terms of six-dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently, it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein's equations are then equivalent to the existence of a parallel scale tractor (a six-component vector subject to a certain first order covariant constancy condition at every point in four-dimensional spacetime). These results suggest a six-dimensional description of four-dimensional physics, a viewpoint promulgated by the 2 times physics program of Bars. The Fefferman-Graham construction relies on a triplet of operators corresponding, respectively, to a curved six-dimensional light cone, the dilation generator and the Laplacian. These form an sp(2) algebra which Bars employs as a first class algebra of constraints in a six-dimensional gauge theory. In this article four-dimensional gravity is recast in terms of six-dimensional quantum mechanics by melding the 2 times and tractor approaches. This parent formulation of gravity is built from an infinite set of six-dimensional fields. Successively integrating out these fields yields various novel descriptions of gravity including a new four-dimensional one built from a scalar doublet, a tractor-vector multiplet and a conformal class of metrics.

  4. A New Three-Dimensional Indoor Positioning Mechanism Based on Wireless LAN

    Directory of Open Access Journals (Sweden)

    Jiujun Cheng

    2014-01-01

    Full Text Available The researches on two-dimensional indoor positioning based on wireless LAN and the location fingerprint methods have become mature, but in the actual indoor positioning situation, users are also concerned about the height where they stand. Due to the expansion of the range of three-dimensional indoor positioning, more features must be needed to describe the location fingerprint. Directly using a machine learning algorithm will result in the reduced ability of classification. To solve this problem, in this paper, a “divide and conquer” strategy is adopted; that is, first through k-medoids algorithm the three-dimensional location space is clustered into a number of service areas, and then a multicategory SVM with less features is created for each service area for further positioning. Our experiment shows that the error distance resolution of the approach with k-medoids algorithm and multicategory SVM is higher than that of the approach only with SVM, and the former can effectively decrease the “crazy prediction.”

  5. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  6. Autocorrelation based reconstruction of two-dimensional binary objects

    International Nuclear Information System (INIS)

    Mejia-Barbosa, Y.; Castaneda, R.

    2005-10-01

    A method for reconstructing two-dimensional binary objects from its autocorrelation function is discussed. The objects consist of a finite set of identical elements. The reconstruction algorithm is based on the concept of class of element pairs, defined as the set of element pairs with the same separation vector. This concept allows to solve the redundancy introduced by the element pairs of each class. It is also shown that different objects, consisting of an equal number of elements and the same classes of pairs, provide Fraunhofer diffraction patterns with identical intensity distributions. However, the method predicts all the possible objects that produce the same Fraunhofer pattern. (author)

  7. Migration transformation of two-dimensional magnetic vector and tensor fields

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn

    2012-01-01

    We introduce a new method of rapid interpretation of magnetic vector and tensor field data, based on ideas of potential field migration which extends the general principles of seismic and electromagnetic migration to potential fields. 2-D potential field migration represents a direct integral...... to the downward continuation of a well-behaved analytical function. We present case studies for imaging of SQUID-based magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from magnetic tensor field migration agree very well with both Euler deconvolution and the known...

  8. Quantitative optical mapping of two-dimensional materials

    DEFF Research Database (Denmark)

    Jessen, Bjarke S.; Whelan, Patrick R.; Mackenzie, David M. A.

    2018-01-01

    The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image...

  9. Engineering topological edge states in two dimensional magnetic photonic crystal

    Science.gov (United States)

    Yang, Bing; Wu, Tong; Zhang, Xiangdong

    2017-01-01

    Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."

  10. Device for measuring the two-dimensional distribution of a radioactive substance on a surface

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A device is described by which, using a one-dimensional measuring proportional counter tube depending on position, one can measure the two-dimensionally distributed radioactivity of a surface and can plot this to scale two-dimensionally, after computer processing, or can show it two-dimensionally on a monitor. (orig.) [de

  11. Generalized synthetic aperture radar automatic target recognition by convolutional neural network with joint use of two-dimensional principal component analysis and support vector machine

    Science.gov (United States)

    Zheng, Ce; Jiang, Xue; Liu, Xingzhao

    2017-10-01

    Convolutional neural network (CNN), as a vital part of the deep learning research field, has shown powerful potential for automatic target recognition (ATR) of synthetic aperture radar (SAR). However, the high complexity caused by the deep structure of CNN makes it difficult to generalize. An improved form of CNN with higher generalization capability and less probability of overfitting, which further improves the efficiency and robustness of the SAR ATR system, is proposed. The convolution layers of CNN are combined with a two-dimensional principal component analysis algorithm. Correspondingly, the kernel support vector machine is utilized as the classifier layer instead of the multilayer perceptron. The verification experiments are implemented using the moving and stationary target acquisition and recognition database, and the results validate the efficiency of the proposed method.

  12. Codimension-one tangency bifurcations of global Poincare maps of four-dimensional vector fields

    NARCIS (Netherlands)

    Krauskopf, B.; Lee, C.M.; Osinga, H.M.

    2009-01-01

    When one considers a Poincarreturn map on a general unbounded (n - 1)-dimensional section for a vector field in R-n there are typically points where the flow is tangent to the section. The only notable exception is when the system is (equivalent to) a periodically forced system. The tangencies can

  13. A terrestrial lidar-based workflow for determining three-dimensional slip vectors and associated uncertainties

    Science.gov (United States)

    Gold, Peter O.; Cowgill, Eric; Kreylos, Oliver; Gold, Ryan D.

    2012-01-01

    Three-dimensional (3D) slip vectors recorded by displaced landforms are difficult to constrain across complex fault zones, and the uncertainties associated with such measurements become increasingly challenging to assess as landforms degrade over time. We approach this problem from a remote sensing perspective by using terrestrial laser scanning (TLS) and 3D structural analysis. We have developed an integrated TLS data collection and point-based analysis workflow that incorporates accurate assessments of aleatoric and epistemic uncertainties using experimental surveys, Monte Carlo simulations, and iterative site reconstructions. Our scanning workflow and equipment requirements are optimized for single-operator surveying, and our data analysis process is largely completed using new point-based computing tools in an immersive 3D virtual reality environment. In a case study, we measured slip vector orientations at two sites along the rupture trace of the 1954 Dixie Valley earthquake (central Nevada, United States), yielding measurements that are the first direct constraints on the 3D slip vector for this event. These observations are consistent with a previous approximation of net extension direction for this event. We find that errors introduced by variables in our survey method result in <2.5 cm of variability in components of displacement, and are eclipsed by the 10–60 cm epistemic errors introduced by reconstructing the field sites to their pre-erosion geometries. Although the higher resolution TLS data sets enabled visualization and data interactivity critical for reconstructing the 3D slip vector and for assessing uncertainties, dense topographic constraints alone were not sufficient to significantly narrow the wide (<26°) range of allowable slip vector orientations that resulted from accounting for epistemic uncertainties.

  14. Approximating second-order vector differential operators on distorted meshes in two space dimensions

    International Nuclear Information System (INIS)

    Hermeline, F.

    2008-01-01

    A new finite volume method is presented for approximating second-order vector differential operators in two space dimensions. This method allows distorted triangle or quadrilateral meshes to be used without the numerical results being too much altered. The matrices that need to be inverted are symmetric positive definite therefore, the most powerful linear solvers can be applied. The method has been tested on a few second-order vector partial differential equations coming from elasticity and fluids mechanics areas. These numerical experiments show that it is second-order accurate and locking-free. (authors)

  15. Multiple scattering of elliptically polarized light in two-dimensional medium with large inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Gorodnichev, E. E., E-mail: gorodn@theor.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    For elliptically polarized light incident on a two-dimensional medium with large inhomogeneities, the Stokes parameters of scattered waves are calculated. Multiple scattering is assumed to be sharply anisotropic. The degree of polarization of scattered radiation is shown to be a nonmonotonic function of depth when the incident wave is circularly polarized or its polarization vector is not parallel to the symmetry axis of the inhomogeneities.

  16. Construction of gateway-compatible yeast two-hybrid vectors for ...

    African Journals Online (AJOL)

    Yeast two-hybrid system combined with the gateway technology will greatly facilitate the cloning of interested DNA fragment into yeast two-hybrid vectors and therefore increase the efficiency of yeast two-hybrid analysis. In this study, we constructed a pair of Gateway-compatible yeast two-hybrid vectors pBTM116GW and ...

  17. Applying clustering to statistical analysis of student reasoning about two-dimensional kinematics

    Directory of Open Access Journals (Sweden)

    R. Padraic Springuel

    2007-12-01

    Full Text Available We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and written elements. The primary goal of this paper is to describe the methodology itself; we include a brief overview of relevant results.

  18. An Evaluation of Two Internal Surrogates for Determining the Three-Dimensional Position of Peripheral Lung Tumors

    International Nuclear Information System (INIS)

    Spoelstra, Femke; Soernsen de Koste, John R. van; Vincent, Andrew; Cuijpers, Johan P.; Slotman, Ben J.; Senan, Suresh

    2009-01-01

    Purpose: Both carina and diaphragm positions have been used as surrogates during respiratory-gated radiotherapy. We studied the correlation of both surrogates with three-dimensional (3D) tumor position. Methods and Materials: A total of 59 repeat artifact-free four-dimensional (4D) computed tomography (CT) scans, acquired during uncoached breathing, were identified in 23 patients with Stage I lung cancer. Repeat scans were co-registered to the initial 4D CT scan, and tumor, carina, and ipsilateral diaphragm were manually contoured in all phases of each 4D CT data set. Correlation between positions of carina and diaphragm with 3D tumor position was studied by use of log-likelihood ratio statistics. Models to predict 3D tumor position from internal surrogates at end inspiration (EI) and end expiration (EE) were developed, and model accuracy was tested by calculating SDs of differences between predicted and actual tumor positions. Results: Motion of both the carina and diaphragm significantly correlated with tumor motion, but log-likelihood ratios indicated that the carina was more predictive for tumor position. When craniocaudal tumor position was predicted by use of craniocaudal carina positions, the SDs of the differences between the predicted and observed positions were 2.2 mm and 2.4 mm at EI and EE, respectively. The corresponding SDs derived with the diaphragm positions were 3.7 mm and 3.9 mm at EI and EE, respectively. Prediction errors in the other directions were comparable. Prediction accuracy was similar at EI and EE. Conclusions: The carina is a better surrogate of 3D tumor position than diaphragm position. Because residual prediction errors were observed in this analysis, additional studies will be performed using audio-coached scans.

  19. Higher-dimensional generalizations of the Watanabe–Strogatz transform for vector models of synchronization

    Science.gov (United States)

    Lohe, M. A.

    2018-06-01

    We generalize the Watanabe–Strogatz (WS) transform, which acts on the Kuramoto model in d  =  2 dimensions, to a higher-dimensional vector transform which operates on vector oscillator models of synchronization in any dimension , for the case of identical frequency matrices. These models have conserved quantities constructed from the cross ratios of inner products of the vector variables, which are invariant under the vector transform, and have trajectories which lie on the unit sphere S d‑1. Application of the vector transform leads to a partial integration of the equations of motion, leaving independent equations to be solved, for any number of nodes N. We discuss properties of complete synchronization and use the reduced equations to derive a stability condition for completely synchronized trajectories on S d‑1. We further generalize the vector transform to a mapping which acts in and in particular preserves the unit ball , and leaves invariant the cross ratios constructed from inner products of vectors in . This mapping can be used to partially integrate a system of vector oscillators with trajectories in , and for d  =  2 leads to an extension of the Kuramoto system to a system of oscillators with time-dependent amplitudes and trajectories in the unit disk. We find an inequivalent generalization of the Möbius map which also preserves but leaves invariant a different set of cross ratios, this time constructed from the vector norms. This leads to a different extension of the Kuramoto model with trajectories in the complex plane that can be partially integrated by means of fractional linear transformations.

  20. Two-dimensional atom localization via two standing-wave fields in a four-level atomic system

    International Nuclear Information System (INIS)

    Zhang Hongtao; Wang Hui; Wang Zhiping

    2011-01-01

    We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.

  1. ESPRIT-Like Two-Dimensional DOA Estimation for Monostatic MIMO Radar with Electromagnetic Vector Received Sensors under the Condition of Gain and Phase Uncertainties and Mutual Coupling.

    Science.gov (United States)

    Zhang, Dong; Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun

    2017-10-26

    In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result.

  2. ESPRIT-Like Two-Dimensional DOA Estimation for Monostatic MIMO Radar with Electromagnetic Vector Received Sensors under the Condition of Gain and Phase Uncertainties and Mutual Coupling

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    2017-10-01

    Full Text Available In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs under the condition of gain and phase uncertainties (GPU and mutual coupling (MC. GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA based on the instrumental sensors method (ISM. The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result.

  3. Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations

    Science.gov (United States)

    Abdulwahhab, Muhammad Alim

    2016-10-01

    Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.

  4. Three dimensional variability in patient positioning using bite block immobilization in 3D-conformal radiation treatment for ENT-tumors

    International Nuclear Information System (INIS)

    Willner, Jochen; Haedinger, Ulrich; Neumann, Michael; Schwab, Franz J.; Bratengeier, Klaus; Flentje, Michael

    1997-01-01

    Background and purpose: The aim of this prospective study was to analyze the three-dimensional (3D) reproducibility of the isocenter position and of patient positioning with the use of bite block immobilization by means of a simple verification procedure for a complex beam arrangement applied for ENT-tumors. Materials and methods: We analyzed the positioning data of 29 consecutive patients treated for ENT-tumors at the Department of Radiotherapy and Oncology of the University of Wuerzburg. A total of 136 treatment sessions were analyzed. Patients were positioned and immobilized using an individualized bite block system and a head and neck support. A complex beam arrangement was applied combining two offset rotational and two oblique wedge fields on a 5 MV linear accelerator. Orthogonal verification films were taken once weekly. Four to six film pairs per patient were obtained (during 4-6 weeks) with a mean number of 4.7 film pairs per patient. These were compared to the corresponding orthogonal simulator films taken during primary simulation. Deviations of the verified isocenter from isocenter on the simulator film were measured and analyzed in three dimensions in terms of overall, systematic and random categories. A 3D-deviation vector was calculated from these 3D data as well as a 2D-deviation vector (for comparison with literature data) from the lateral verification films. Results: The overall setup deviation showed standard deviations (SD) of 2.5, 2.7 and 3.1 mm along the cranio-caudal, anterior-posterior and medio-lateral axes, respectively. The random component ranged from SD 1.9 to 2.1 mm and the systematic component ranged from SD 1.8 to 2.2 mm. The mean length of the 3D-vector was 3.1 mm for the systematic as well as the random component. Ninety percent of 3D systematic and random deviations were less than 5 mm. The mean length of the 2D-vector was 2.4 mm for the random component and 2.2 mm for the systematic component. Ninety percent of 2D-random and

  5. Two numerical methods for the solution of two-dimensional eddy current problems

    International Nuclear Information System (INIS)

    Biddlecombe, C.S.

    1978-07-01

    A general method for the solution of eddy current problems in two dimensions - one component of current density and two of magnetic field, is reported. After examining analytical methods two numerical methods are presented. Both solve the two dimensional, low frequency limit of Maxwell's equations for transient eddy currents in conducting material, which may be permeable, in the presence of other non-conducting permeable material. Both solutions are expressed in terms of the magnetic vector potential. The first is an integral equation method, using zero order elements in the discretisation of the unknown source regions. The other is a differential equation method, using a first order finite element mesh, and the Galerkin weighted residual procedure. The resulting equations are solved as initial-value problems. Results from programs based on each method are presented showing the power and limitations of the methods and the range of problems solvable. The methods are compared and recommendations are made for choosing between them. Suggestions are made for improving both methods, involving boundary integral techniques. (author)

  6. Effect of impurities on the two-dimensional electron gas polarizability

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1980-06-01

    The polarizability for a two-dimensional electron gas is calculated in the presence of impurities by a Green function formalism. This leads to a system with finite mean free path due to electrons scattering off impurities. The calculated polarizability is found to be strongly dependent on the mean free path. The main feature is the suppression of the sharp corner at wave vector 2ksub(F) for finite mean free paths, and the pure metal result is recovered for the infinite mean free path. A possible application of the results to the transport properties of semiconductor inversion layers is discussed. (author)

  7. Magnon damping in two-dimensional Heisenberg ferromagnetic system

    International Nuclear Information System (INIS)

    Cheng, T.-M.; Li Lin; Ze Xianyu

    2006-01-01

    A magnon-phonon interaction model is set up for a two-dimensional insulating ferromagnetic system. By using Matsubara function theory we have studied the magnon damping -I m Σ* (1) (k->) and calculated the magnon damping -I m Σ* (1) (k->) curve on the main symmetric point and line in the Brillouin zone for various parameters in the system. It is concluded that at the boundary of Brillouin zone there is a strong magnon damping. However, the magnon damping is very weak on the zone of small wave vector and the magnon damping reaches maximal value at very low temperature. The contributions of longitudinal phonon and transverse phonon on the magnon damping are compared and the influences of various parameters are also discussed

  8. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  9. Signed zeros of Gaussian vector fields - density, correlation functions and curvature

    CERN Document Server

    Foltin, G

    2003-01-01

    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.

  10. A model of the two-dimensional quantum harmonic oscillator in an AdS{sub 3} background

    Energy Technology Data Exchange (ETDEWEB)

    Frick, R. [Universitaet zu Koeln, Institut fuer Theoretische Physik, Cologne (Germany)

    2016-10-15

    In this paper we study a model of the two-dimensional quantum harmonic oscillator in a three-dimensional anti-de Sitter background. We use a generalized Schroedinger picture in which the analogs of the Schroedinger operators of the particle are independent of both the time and the space coordinates in different representations. The spacetime independent operators of the particle induce the Lie algebra of Killing vector fields of the AdS{sub 3} spacetime. In this picture, we have a metamorphosis of the Heisenberg uncertainty relations. (orig.)

  11. Digital position sensitive discrimination for 2-dimensional scintillation detectors

    International Nuclear Information System (INIS)

    Engels, R.; Reinartz, R.; Reinhart, P.

    1996-01-01

    The energy sensitivity of a two-dimensional scintillation gamma detector based on position sensitive photomultipliers has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by 50%, a discrimination unit has been developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. Depending on the spatial resolution there can be up to 65.536 position-sensitive discriminator levels defining energy windows. By this method, narrow discriminator windows can be used for reducing the low and high energy quanta without effecting the sensitivity of the detector. The new discrimination method, its performance and test measurements with gamma rays will be described. Furthermore experimental results are presented

  12. Diagonal Likelihood Ratio Test for Equality of Mean Vectors in High-Dimensional Data

    KAUST Repository

    Hu, Zongliang

    2017-10-27

    We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assumption that the covariance matrices follow a diagonal matrix structure. In comparison with the diagonal Hotelling\\'s tests, our proposed test statistics display some interesting characteristics. In particular, they are a summation of the log-transformed squared t-statistics rather than a direct summation of those components. More importantly, to derive the asymptotic normality of our test statistics under the null and local alternative hypotheses, we do not require the assumption that the covariance matrix follows a diagonal matrix structure. As a consequence, our proposed test methods are very flexible and can be widely applied in practice. Finally, simulation studies and a real data analysis are also conducted to demonstrate the advantages of our likelihood ratio test method.

  13. Diagonal Likelihood Ratio Test for Equality of Mean Vectors in High-Dimensional Data

    KAUST Repository

    Hu, Zongliang; Tong, Tiejun; Genton, Marc G.

    2017-01-01

    We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assumption that the covariance matrices follow a diagonal matrix structure. In comparison with the diagonal Hotelling's tests, our proposed test statistics display some interesting characteristics. In particular, they are a summation of the log-transformed squared t-statistics rather than a direct summation of those components. More importantly, to derive the asymptotic normality of our test statistics under the null and local alternative hypotheses, we do not require the assumption that the covariance matrix follows a diagonal matrix structure. As a consequence, our proposed test methods are very flexible and can be widely applied in practice. Finally, simulation studies and a real data analysis are also conducted to demonstrate the advantages of our likelihood ratio test method.

  14. Large area two dimensional position sensitive detectors

    International Nuclear Information System (INIS)

    Sann, H.; Olmi, A.; Lynen, U.; Stelzer, H.; Gobbi, A.; Bock, R.

    1979-02-01

    After an introduction, a position-sensitive ionization chamber, a parallel-plate detector, and a multiwire position-sensitive chamber are described. Then the data acquisition and analysis methods are considered. Furthermore, the experimental methods for a multi-parameter experiment are described. Finally, the measurement of gamma-ray and neutron multiplicities and sequential fission is considered, and the results are presented. (HSI) [de

  15. An Eoetvoes versus a Galileo experiment: A study in two versus three-dimensional physics

    International Nuclear Information System (INIS)

    Hughes, R.J.; Nieto, M.M.; Goldman, T.

    1988-01-01

    We show how the net effect of two new approximately cancelling (vector and scalar) gravitational forces could produce a measureable effect from a horizontal thin slab in an Eoetvoes experiment, yet yield a null result at the same level for a Galileo experiment. The resolution is an example of two-versus three-dimensional physics and the cancelling nature of the two forces. Using two different earth models, we apply this result to the Australian mine gravity data of Stacey et al., the Brookhaven Eoetvoes experiment of Thieberger, and the Colorado Galileo experiment of Niebauer et al. (orig.)

  16. Additional neutral vector boson in the 7-dimensional theory of gravy-electro-weak interactions

    International Nuclear Information System (INIS)

    Gavrilov, V.R.

    1988-01-01

    Possibilities of manifestation of an additional neutron vector boson, the existence of which is predicted by the 7-dimensional theory of gravy-electro-weak interactions, are analyzed. A particular case of muon neutrino scattering on a muon is considered. In this case additional neutral current manifests both at high and at relatively low energies of particle collisions

  17. The Cross Product of Two Vectors Is Not Just Another Vector--A Major Misconception Being Perpetuated in Calculus and Vector Analysis Textbooks.

    Science.gov (United States)

    Elk, Seymour B.

    1997-01-01

    Suggests that the cross product of two vectors can be more easily and accurately explained by starting from the perspective of dyadics because then the concept of vector multiplication has a simple geometrical picture that encompasses both the dot and cross products in any number of dimensions in terms of orthogonal unit vector components. (AIM)

  18. Two-Dimensional Electron Density Measurement of Positive Streamer Discharge in Atmospheric-Pressure Air

    Science.gov (United States)

    Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki

    2016-09-01

    The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.

  19. One-dimensional position readout from microchannel plates

    International Nuclear Information System (INIS)

    Connell, K.A.; Przybylski, M.M.

    1982-01-01

    The development of a one-dimensional position readout system with microchannel plates, is described, for heavy ion detectors for use in a particle time-of-flight telescope and as a position sensitive device in front of an ionisation counter at the Nuclear Structure Facility. (U.K.)

  20. Two dimension position sensitive multi-plate PPAC

    International Nuclear Information System (INIS)

    Mao Ruishi; Guo Zhongyan; Xiao Guoqing; Zhan Wenlong; Xu Hushan; Hu Zhengguo; Wang Meng; Sun Zhiyu; Chen Zhiqiang; Chen Lixin; Li Chen; Bai Jie; Zhang Jinxia; Li Cunfan

    2003-01-01

    A two-dimensional positional sensitive multi-plate PPAC with resistance chain readout has been developed for Radioactive Ion Beam Line in Lanzhou (RIBLL). The PPAC has an active area of 100 mm x 100 mm. It consists of an anode plane, a x wire plane, a y wire plane and two cathode planes. The gaps between anode and wire planes are 3 mm. And the gaps between cathodes and wire planes also are 3 mm. When filled with iso-butane at a pressure of 6.5 mb, the 0.58 mm (FWHM) position resolution and >99.2% detection efficiencies and <±50 μm linearity of the PPAC was estimated for 3 components α source

  1. Vectors and Rotations in 3-Dimensions: Vector Algebra for the C++ Programmer

    Science.gov (United States)

    2016-12-01

    release; distribution is unlimited. 1. Introduction This report describes 2 C++ classes: a Vector class for performing vector algebra in 3-dimensional...ARL-TR-7894•DEC 2016 US Army Research Laboratory Vectors and Rotations in 3-Dimensions:Vector Algebra for the C++ Programmer by Richard Saucier...Army Research Laboratory Vectors and Rotations in 3-Dimensions:Vector Algebra for the C++ Programmer by Richard Saucier Survivability/Lethality

  2. Vectoring of parallel synthetic jets: A parametric study

    Science.gov (United States)

    Berk, Tim; Gomit, Guillaume; Ganapathisubramani, Bharathram

    2016-11-01

    The vectoring of a pair of parallel synthetic jets can be described using five dimensionless parameters: the aspect ratio of the slots, the Strouhal number, the Reynolds number, the phase difference between the jets and the spacing between the slots. In the present study, the influence of the latter four on the vectoring behaviour of the jets is examined experimentally using particle image velocimetry. Time-averaged velocity maps are used to study the variations in vectoring behaviour for a parametric sweep of each of the four parameters independently. A topological map is constructed for the full four-dimensional parameter space. The vectoring behaviour is described both qualitatively and quantitatively. A vectoring mechanism is proposed, based on measured vortex positions. We acknowledge the financial support from the European Research Council (ERC Grant Agreement No. 277472).

  3. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  4. Vectorized and multitasked solution of the few-group neutron diffusion equations

    International Nuclear Information System (INIS)

    Zee, S.K.; Turinsky, P.J.; Shayer, Z.

    1989-01-01

    A numerical algorithm with parallelism was used to solve the two-group, multidimensional neutron diffusion equations on computers characterized by shared memory, vector pipeline, and multi-CPU architecture features. Specifically, solutions were obtained on the Cray X/MP-48, the IBM-3090 with vector facilities, and the FPS-164. The material-centered mesh finite difference method approximation and outer-inner iteration method were employed. Parallelism was introduced in the inner iterations using the cyclic line successive overrelaxation iterative method and solving in parallel across lines. The outer iterations were completed using the Chebyshev semi-iterative method that allows parallelism to be introduced in both space and energy groups. For the three-dimensional model, power, soluble boron, and transient fission product feedbacks were included. Concentrating on the pressurized water reactor (PWR), the thermal-hydraulic calculation of moderator density assumed single-phase flow and a closed flow channel, allowing parallelism to be introduced in the solution across the radial plane. Using a pinwise detail, quarter-core model of a typical PWR in cycle 1, for the two-dimensional model without feedback the measured million floating point operations per second (MFLOPS)/vector speedups were 83/11.7. 18/2.2, and 2.4/5.6 on the Cray, IBM, and FPS without multitasking, respectively. Lower performance was observed with a coarser mesh, i.e., shorter vector length, due to vector pipeline start-up. For an 18 x 18 x 30 (x-y-z) three-dimensional model with feedback of the same core, MFLOPS/vector speedups of --61/6.7 and an execution time of 0.8 CPU seconds on the Cray without multitasking were measured. Finally, using two CPUs and the vector pipelines of the Cray, a multitasking efficiency of 81% was noted for the three-dimensional model

  5. Two-dimensional metamaterial optics

    International Nuclear Information System (INIS)

    Smolyaninov, I I

    2010-01-01

    While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes

  6. Two dimensional spatial distortion correction algorithm for scintillation GAMMA cameras

    International Nuclear Information System (INIS)

    Chaney, R.; Gray, E.; Jih, F.; King, S.E.; Lim, C.B.

    1985-01-01

    Spatial distortion in an Anger gamma camera originates fundamentally from the discrete nature of scintillation light sampling with an array of PMT's. Historically digital distortion correction started with the method based on the distortion measurement by using 1-D slit pattern and the subsequent on-line bi-linear approximation with 64 x 64 look-up tables for X and Y. However, the X, Y distortions are inherently two-dimensional in nature, and thus the validity of this 1-D calibration method becomes questionable with the increasing distortion amplitude in association with the effort to get better spatial and energy resolutions. The authors have developed a new accurate 2-D correction algorithm. This method involves the steps of; data collection from 2-D orthogonal hole pattern, 2-D distortion vector measurement, 2-D Lagrangian polynomial interpolation, and transformation to X, Y ADC frame. The impact of numerical precision used in correction and the accuracy of bilinear approximation with varying look-up table size have been carefully examined through computer simulation by using measured single PMT light response function together with Anger positioning logic. Also the accuracy level of different order Lagrangian polynomial interpolations for correction table expansion from hole centroids were investigated. Detailed algorithm and computer simulation are presented along with camera test results

  7. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active ...

  8. Three-dimensional tori and Arnold tongues

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  9. Vectorization, parallelization and porting of nuclear codes on the VPP500 system (vectorization). Progress report fiscal 1996

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Toshiyuki; Kawai, Wataru [Fujitsu Ltd., Tokyo (Japan); Kawasaki, Nobuo [and others

    1997-12-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. These results are reported in 3 parts, i.e., the vectorization part, the parallelization part and the porting part. In this report, we describe the vectorization. In this vectorization part, the vectorization of two and three dimensional discrete ordinates simulation code DORT-TORT, gas dynamics analysis code FLOWGR and relativistic Boltzmann-Uehling-Uhlenbeck simulation code RBUU are described. In the parallelization part, the parallelization of 2-Dimensional relativistic electromagnetic particle code EM2D, Cylindrical Direct Numerical Simulation code CYLDNS and molecular dynamics code for simulating radiation damages in diamond crystals DGR are described. And then, in the porting part, the porting of reactor safety analysis code RELAP5/MOD3.2 and RELAP5/MOD3.2.1.2, nuclear data processing system NJOY and 2-D multigroup discrete ordinate transport code TWOTRAN-II are described. And also, a survey for the porting of command-driven interactive data analysis plotting program IPLOT are described. (author)

  10. Vector boson excitations near deconfined quantum critical points.

    Science.gov (United States)

    Huh, Yejin; Strack, Philipp; Sachdev, Subir

    2013-10-18

    We show that the Néel states of two-dimensional antiferromagnets have low energy vector boson excitations in the vicinity of deconfined quantum critical points. We compute the universal damping of these excitations arising from spin-wave emission. Detection of such a vector boson will demonstrate the existence of emergent topological gauge excitations in a quantum spin system.

  11. New techniques for the scientific visualization of three-dimensional multi-variate and vector fields

    Energy Technology Data Exchange (ETDEWEB)

    Crawfis, Roger A. [Univ. of California, Davis, CA (United States)

    1995-10-01

    Volume rendering allows us to represent a density cloud with ideal properties (single scattering, no self-shadowing, etc.). Scientific visualization utilizes this technique by mapping an abstract variable or property in a computer simulation to a synthetic density cloud. This thesis extends volume rendering from its limitation of isotropic density clouds to anisotropic and/or noisy density clouds. Design aspects of these techniques are discussed that aid in the comprehension of scientific information. Anisotropic volume rendering is used to represent vector based quantities in scientific visualization. Velocity and vorticity in a fluid flow, electric and magnetic waves in an electromagnetic simulation, and blood flow within the body are examples of vector based information within a computer simulation or gathered from instrumentation. Understand these fields can be crucial to understanding the overall physics or physiology. Three techniques for representing three-dimensional vector fields are presented: Line Bundles, Textured Splats and Hair Splats. These techniques are aimed at providing a high-level (qualitative) overview of the flows, offering the user a substantial amount of information with a single image or animation. Non-homogenous volume rendering is used to represent multiple variables. Computer simulations can typically have over thirty variables, which describe properties whose understanding are useful to the scientist. Trying to understand each of these separately can be time consuming. Trying to understand any cause and effect relationships between different variables can be impossible. NoiseSplats is introduced to represent two or more properties in a single volume rendering of the data. This technique is also aimed at providing a qualitative overview of the flows.

  12. Warranty menu design for a two-dimensional warranty

    International Nuclear Information System (INIS)

    Ye, Zhi-Sheng; Murthy, D.N. Pra

    2016-01-01

    Fierce competitions in the commercial product market have forced manufacturers to provide customer-friendly warranties with a view to achieving higher customer satisfaction and increasing the market share. This study proposes a strategy that offers customers a two-dimensional warranty menu with a number of warranty choices, called a flexible warranty policy. We investigate the design of a flexible two-dimensional warranty policy that contains a number of rectangular regions. This warranty policy is obtained by dividing customers into several groups according to their use rates and providing each group a germane warranty region. Consumers choose a favorable one from the menu according to their usage behaviors. Evidently, this flexible warranty policy is attractive to users of different usage behaviors, and thus, it gives the manufacturer a good position in advertising the product. When consumers are unaware about their use rates upon purchase, we consider a fixed two-dimensional warranty policy with a stair-case warranty region and show that it is equivalent to the flexible policy. Such an equivalence reveals the inherent relationship between the rectangular warranty policy, the L-shape warranty policy, the step-stair warranty policy and the iso-probability of failure warranty policy that were extensively discussed in the literature. - Highlights: • We design a two-dimensional warranty menu with a number of warranty choices. • Consumers can choose a favorable one from the menu as per their usage behavior. • We further consider a fixed 2D warranty policy with a stair-case warranty region. • We show the equivalence of the two warranty policies.

  13. A binary motor imagery tasks based brain-computer interface for two-dimensional movement control

    Science.gov (United States)

    Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels

    2017-12-01

    Objective. Two-dimensional movement control is a popular issue in brain-computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.

  14. Vectorization, parallelization and porting of nuclear codes. Vectorization and parallelization. Progress report fiscal 1999

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Masaaki; Ogasawara, Shinobu; Kume, Etsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishizuki, Shigeru; Nemoto, Toshiyuki; Kawasaki, Nobuo; Kawai, Wataru [Fujitsu Ltd., Tokyo (Japan); Yatake, Yo-ichi [Hitachi Ltd., Tokyo (Japan)

    2001-02-01

    Several computer codes in the nuclear field have been vectorized, parallelized and trans-ported on the FUJITSU VPP500 system, the AP3000 system, the SX-4 system and the Paragon system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 18 codes in fiscal 1999. These results are reported in 3 parts, i.e., the vectorization and the parallelization part on vector processors, the parallelization part on scalar processors and the porting part. In this report, we describe the vectorization and parallelization on vector processors. In this vectorization and parallelization on vector processors part, the vectorization of Relativistic Molecular Orbital Calculation code RSCAT, a microscopic transport code for high energy nuclear collisions code JAM, three-dimensional non-steady thermal-fluid analysis code STREAM, Relativistic Density Functional Theory code RDFT and High Speed Three-Dimensional Nodal Diffusion code MOSRA-Light on the VPP500 system and the SX-4 system are described. (author)

  15. Topology as fluid geometry two-dimensional spaces, volume 2

    CERN Document Server

    Cannon, James W

    2017-01-01

    This is the second of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. The second volume deals with the topology of 2-dimensional spaces. The attempts encountered in Volume 1 to understand length and area in the plane lead to examples most easily described by the methods of topology (fluid geometry): finite curves of infinite length, 1-dimensional curves of positive area, space-filling curves (Peano curves), 0-dimensional subsets of the plane through which no straight path can pass (Cantor sets), etc. Volume 2 describes such sets. All of the standard topological results about 2-dimensional spaces are then proved, such as the Fundamental Theorem of Algebra (two...

  16. Conformal symmetry in two-dimensional space: recursion representation of conformal block

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1988-01-01

    The four-point conformal block plays an important part in the analysis of the conformally invariant operator algebra in two-dimensional space. The behavior of the conformal block is calculated in the present paper in the limit in which the dimension Δ of the intermediate operator tends to infinity. This makes it possible to construct a recursion relation for this function that connects the conformal block at arbitrary Δ to the blocks corresponding to the dimensions of the zero vectors in the degenerate representations of the Virasoro algebra. The relation is convenient for calculating the expansion of the conformal block in powers of the uniformizing parameters q = i π tau

  17. The CPT-theorem in two-dimensional theories of local observables

    International Nuclear Information System (INIS)

    Borchers, H.J.

    1992-01-01

    Let M be a von Neumann algebra with cyclic and separating vector Ω, and let U(a) be a continuous unitary representation of R with positive generator and Ω as fixed point. If these unitaries induce for positive arguments endomorphisms of M then the modular group act as dilatations on the group of unitaries. Using this it will be shown that every theory of local observables in two dimensions, which is covariant under translations only, can be imbedded into a theory of local observables covariant under the whole Poincare group. This theory is also covariant under the CPT-transformation. (orig.)

  18. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping

    International Nuclear Information System (INIS)

    Castellanos-Gomez, Andres; Buscema, Michele; Molenaar, Rianda; Singh, Vibhor; Janssen, Laurens; Van der Zant, Herre S J; Steele, Gary A

    2014-01-01

    The deterministic transfer of two-dimensional crystals constitutes a crucial step towards the fabrication of heterostructures based on the artificial stacking of two-dimensional materials. Moreover, controlling the positioning of two-dimensional crystals facilitates their integration in complex devices, which enables the exploration of novel applications and the discovery of new phenomena in these materials. To date, deterministic transfer methods rely on the use of sacrificial polymer layers and wet chemistry to some extent. Here, we develop an all-dry transfer method that relies on viscoelastic stamps and does not employ any wet chemistry step. This is found to be very advantageous to freely suspend these materials as there are no capillary forces involved in the process. Moreover, the whole fabrication process is quick, efficient, clean and it can be performed with high yield. (letter)

  19. Fast algorithm for two-dimensional data table use in hydrodynamic and radiative-transfer codes

    International Nuclear Information System (INIS)

    Slattery, W.L.; Spangenberg, W.H.

    1982-01-01

    A fast algorithm for finding interpolated atomic data in irregular two-dimensional tables with differing materials is described. The algorithm is tested in a hydrodynamic/radiative transfer code and shown to be of comparable speed to interpolation in regularly spaced tables, which require no table search. The concepts presented are expected to have application in any situation with irregular vector lengths. Also, the procedures that were rejected either because they were too slow or because they involved too much assembly coding are described

  20. On the two-dimensional Saigo-Maeda fractional calculus asociated with two-dimensional Aleph TRANSFORM

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2013-11-01

    Full Text Available This paper deals with the study of two-dimensional Saigo-Maeda operators of Weyl type associated with Aleph function defined in this paper. Two theorems on these defined operators are established. Some interesting results associated with the H-functions and generalized Mittag-Leffler functions are deduced from the derived results. One dimensional analog of the derived results is also obtained.

  1. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive three-dimensional molecular shape overlay with known inhibitors.

    Science.gov (United States)

    Sato, Tomohiro; Yuki, Hitomi; Takaya, Daisuke; Sasaki, Shunta; Tanaka, Akiko; Honma, Teruki

    2012-04-23

    In this study, machine learning using support vector machine was combined with three-dimensional (3D) molecular shape overlay, to improve the screening efficiency. Since the 3D molecular shape overlay does not use fingerprints or descriptors to compare two compounds, unlike 2D similarity methods, the application of machine learning to a 3D shape-based method has not been extensively investigated. The 3D similarity profile of a compound is defined as the array of 3D shape similarities with multiple known active compounds of the target protein and is used as the explanatory variable of support vector machine. As the measures of 3D shape similarity for our new prediction models, the prediction performances of the 3D shape similarity metrics implemented in ROCS, such as ShapeTanimoto and ScaledColor, were validated, using the known inhibitors of 15 target proteins derived from the ChEMBL database. The learning models based on the 3D similarity profiles stably outperformed the original ROCS when more than 10 known inhibitors were available as the queries. The results demonstrated the advantages of combining machine learning with the 3D similarity profile to process the 3D shape information of plural active compounds.

  2. Vectorization, parallelization and porting of nuclear codes on the VPP500 system (vectorization). Progress report fiscal 1997

    International Nuclear Information System (INIS)

    Kawasaki, Nobuo; Ogasawara, Shinobu; Adachi, Masaaki; Kume, Etsuo; Ishizuki, Shigeru; Tanabe, Hidenobu; Nemoto, Toshiyuki; Kawai, Wataru; Watanabe, Hideo

    1999-05-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system and/or the AP3000 system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 14 codes in fiscal 1997. These results are reported in 3 parts, i.e., the vectorization part, the parallelization part and the porting part. In this report, we describe the vectorization. In this vectorization part, the vectorization of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations, statistical decay code SD and three-dimensional thermal analysis code for in-core test section (T2) of HENDEL SSPHEAT are described. In the parallelization part, the parallelization of cylindrical direct numerical simulation code CYLDNS44N, worldwide version of system for prediction of environmental emergency dose information code WSPEEDI, extension of quantum molecular dynamics code EQMD and three-dimensional non-steady compressible fluid dynamics code STREAM are described. In the porting part, the porting of transient reactor analysis code TRAC-BF1 and Monte Carlo radiation transport code MCNP4A on the AP3000 are described. In addition, a modification of program libraries for command-driven interactive data analysis plotting program IPLOT is described. (author)

  3. Two-dimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Bax, A.; Lerner, L.

    1986-01-01

    Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures

  4. Three-dimensional rail-current distribution near the armature of simple, square-bore, two-rail railguns

    International Nuclear Information System (INIS)

    Beno, J.H.

    1991-01-01

    In this paper vector potential is solved as a three dimensional, boundary value problem for a conductor geometry consisting of square-bore railgun rails and a stationary armature. Conductors are infinitely conducting and perfect contact is assumed between rails and the armature. From the vector potential solution, surface current distribution is inferred

  5. The algebra of Killing vectors in five-dimensional space

    International Nuclear Information System (INIS)

    Rcheulishvili, G.L.

    1990-01-01

    This paper presents algebras which are formed by the found earlier Killing vectors in the space with linear element ds. Under some conditions, an explicit dependence of r is given for the functions entering in linear element ds. The curvature two-forms are described. 7 refs

  6. Coplanar-grid CdZnTe detector with three-dimensional position sensitivity

    International Nuclear Information System (INIS)

    Luke, P.N.; Amman, M.; Lee, J.S.; Yaver, H.

    1998-06-01

    A 3-dimensional position-sensitive coplanar-grid detector design for use with compound semiconductors is described. This detector design maintains the advantage of a coplanar-grid detector in which good energy resolution can be obtained from materials with poor charge transport. Position readout in two dimensions is accomplished using proximity-sensing electrodes adjacent to the electron-collecting grid electrode of the detector. Additionally, depth information is obtained by taking the ratio of the amplitudes of the collecting grid signal and the cathode signal. Experimental results from a prototype CdZnTe detector are presented

  7. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    International Nuclear Information System (INIS)

    Quan, Xu; Qiang, Tian

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi–Pasta–Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather. (condensed matter: structure, thermal and mechanical properties)

  8. Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis.

    Science.gov (United States)

    Tranchida, Peter Q; Purcaro, Giorgia; Maimone, Mariarosa; Mondello, Luigi

    2016-01-01

    Comprehensive two-dimensional gas chromatography with mass spectrometry has been on the separation-science scene for about 15 years. This three-dimensional method has made a great positive impact on various fields of research, and among these that related to food analysis is certainly at the forefront. The present critical review is based on the use of comprehensive two-dimensional gas chromatography with mass spectrometry in the untargeted (general qualitative profiling and fingerprinting) and targeted analysis of food volatiles; attention is focused not only on its potential in such applications, but also on how recent advances in comprehensive two-dimensional gas chromatography with mass spectrometry will potentially be important for food analysis. Additionally, emphasis is devoted to the many instances in which straightforward gas chromatography with mass spectrometry is a sufficiently-powerful analytical tool. Finally, possible future scenarios in the comprehensive two-dimensional gas chromatography with mass spectrometry food analysis field are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Two-dimensional models

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2005-02-01

    It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)

  10. Wave propagation inside one-dimensional photonic crystals with single-negative materials

    International Nuclear Information System (INIS)

    Wang Ligang; Chen Hong; Zhu Shiyao

    2006-01-01

    The propagation of light waves in one-dimensional photonic crystals (1DPCs) composed of alternating layers of two kinds of single-negative materials is investigated theoretically. The phase velocity is negative when the frequency of the light wave is smaller than the certain critical frequency ω cr , while the Poynting vector is always positive. At normal incidence, such 1DPCs may act as equivalent left-handed materials. At the inclined incidence, the effective wave vectors inside such 1DPCs do refract negatively, while the effective energy flows do not refract negatively. Therefore, at the inclined incidence, the 1DPCs are not equivalent to the left-handed materials

  11. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  12. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields.

    Science.gov (United States)

    Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen

    2017-06-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.

  13. A Vector Printing Method for High-Speed Electrohydrodynamic (EHD Jet Printing Based on Encoder Position Sensors

    Directory of Open Access Journals (Sweden)

    Thanh Huy Phung

    2018-02-01

    Full Text Available Electrohyrodynamic (EHD jet printing has been widely used in the field of direct micro-nano patterning applications, due to its high resolution printing capability. So far, vector line printing using a single nozzle has been widely used for most EHD printing applications. However, the application has been limited to low-speed printing, to avoid non-uniform line width near the end points where line printing starts and ends. At end points of line vector printing, the deposited drop amount is likely to be significantly large compared to the rest of the printed lines, due to unavoidable acceleration and deceleration. In this study, we proposed a method to solve the printing quality problems by producing droplets at an equally spaced distance, irrespective of the printing speed. For this purpose, an encoder processing unit (EPU was developed, so that the jetting trigger could be generated according to user-defined spacing by using encoder position signals, which are used for the positioning control of the two linear stages.

  14. Saddle-points of a two dimensional random lattice theory

    International Nuclear Information System (INIS)

    Pertermann, D.

    1985-07-01

    A two dimensional random lattice theory with a free massless scalar field is considered. We analyse the field theoretic generating functional for any given choice of positions of the lattice sites. Asking for saddle-points of this generating functional with respect to the positions we find the hexagonal lattice and a triangulated version of the hypercubic lattice as candidates. The investigation of the neighbourhood of a single lattice site yields triangulated rectangles and regular polygons extremizing the above generating functional on the local level. (author)

  15. Nonlinear Decay of Alfvén Waves Driven by Interplaying Two- and Three-dimensional Nonlinear Interactions

    Science.gov (United States)

    Zhao, J. S.; Voitenko, Y.; De Keyser, J.; Wu, D. J.

    2018-04-01

    We study the decay of Alfvén waves in the solar wind, accounting for the joint operation of two-dimensional (2D) scalar and three-dimensional (3D) vector nonlinear interactions between Alfvén and slow waves. These interactions have previously been studied separately in long- and short-wavelength limits where they lead to 2D scalar and 3D vector decays, correspondingly. The joined action of the scalar and vector interactions shifts the transition between 2D and 3D decays to significantly smaller wavenumbers than was predicted by Zhao et al. who compared separate scalar and vector decays. In application to the broadband Alfvén waves in the solar wind, this means that the vector nonlinear coupling dominates in the extended wavenumber range 5 × 10‑4 ≲ ρ i k 0⊥ ≲ 1, where the decay is essentially 3D and nonlocal, generating product Alfvén and slow waves around the ion gyroscale. Here ρ i is the ion gyroradius, and k 0⊥ is the pump Alfvén wavenumber. It appears that, except for the smallest wavenumbers at and below {ρ }i{k}0\\perp ∼ {10}-4 in Channel I, the nonlinear decay of magnetohydrodynamic Alfvén waves propagating from the Sun is nonlocal and cannot generate counter-propagating Alfvén waves with similar scales needed for the turbulent cascade. Evaluation of the nonlinear frequency shift shows that product Alfvén waves can still be approximately described as normal Alfvénic eigenmodes. On the contrary, nonlinearly driven slow waves deviate considerably from normal modes and are therefore difficult to identify on the basis of their phase velocities and/or polarization.

  16. Two-dimensional beam profiles and one-dimensional projections

    Science.gov (United States)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  17. BRST quantization of Polyakov's two-dimensional gravity

    International Nuclear Information System (INIS)

    Itoh, Katsumi

    1990-01-01

    Two-dimensional gravity coupled to minimal models is quantized in the chiral gauge by the BRST method. By using the Wakimoto construction for the gravity sector, we show how the quartet mechanism of Kugo and Ojima works and solve the physical state condition. As a result the positive semi-definiteness of the physical subspace is shown. The formula of Knizhnik et al. for gravitational scaling dimensions is rederived from the physical state condition. We also observe a relation between the chiral gauge and the conformal gauge. (orig.)

  18. Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence

    Directory of Open Access Journals (Sweden)

    Ashton S. Bradley

    2012-10-01

    Full Text Available We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ. We show that, for the divergence-free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be decomposed into an ultraviolet regime (k≫ξ^{-1} having a universal k^{-3} scaling arising from the vortex core structure, and an infrared regime (k≪ξ^{-1} with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov k^{-5/3} power law, which is consistent with the existence of an inertial range. The presence of these k^{-3} and k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale k≈ξ^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.

  19. FPGA Implementation of one-dimensional and two-dimensional cellular automata

    International Nuclear Information System (INIS)

    D'Antone, I.

    1999-01-01

    This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA)

  20. Boundary value problems of holomorphic vector functions in 1D QCs

    International Nuclear Information System (INIS)

    Gao Yang; Zhao Yingtao; Zhao Baosheng

    2007-01-01

    By means of the generalized Stroh formalism, two-dimensional (2D) problems of one-dimensional (1D) quasicrystals (QCs) elasticity are turned into the boundary value problems of holomorphic vector functions in a given region. If the conformal mapping from an ellipse to a circle is known, a general method for solving the boundary value problems of holomorphic vector functions can be presented. To illustrate its utility, by using the necessary and sufficient condition of boundary value problems of holomorphic vector functions, we consider two basic 2D problems in 1D QCs, that is, an elliptic hole and a rigid line inclusion subjected to uniform loading at infinity. For the crack problem, the intensity factors of phonon and phason fields are determined, and the physical sense of the results relative to phason and the difference between mechanical behaviors of the crack problem in crystals and QCs are figured out. Moreover, the same procedure can be used to deal with the elastic problems for 2D and three-dimensional (3D) QCs

  1. Lie algebra contractions on two-dimensional hyperboloid

    International Nuclear Information System (INIS)

    Pogosyan, G. S.; Yakhno, A.

    2010-01-01

    The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.

  2. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  3. All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector

    Science.gov (United States)

    Chudecki, Adam

    2016-12-01

    Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.

  4. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  5. Traditional Semiconductors in the Two-Dimensional Limit.

    Science.gov (United States)

    Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B

    2018-02-23

    Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.

  6. Two-dimensional neutron scintillation detector with optimal gamma discrimination

    International Nuclear Information System (INIS)

    Kanyo, M.; Reinartz, R.; Schelten, J.; Mueller, K.D.

    1993-01-01

    The gamma sensitivity of a two-dimensional scintillation neutron detector based on position sensitive photomultipliers (Hamamatsu R2387 PM) has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by ±25% a discrimination unit was developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. By this method narrow discriminator windows can be used to reduce the gamma background drastically without effecting the neutron sensitivity of the detector. The new discrimination method and its performance tested by neutron measurements will be described. Experimental results concerning spatial resolution and γ-sensitivity are presented

  7. The discrete cones method for two-dimensional neutron transport calculations

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1986-01-01

    A novel method, the discrete cones method (DC/sub N/), is proposed as an alternative to the discrete ordinates method (S/sub N/) for solutions of the two-dimensional neutron transport equation. The new method utilizes a new concept, discrete cones, which are made by partitioning a unit spherical surface that the direction vector of particles covers. In this method particles in a cone are simultaneously traced instead of those in discrete directions so that an anomaly of the S/sub N/ method, the ray effects, can be eliminated. The DC/sub N/ method has been formulated for X-Y geometry and a program has been creaed by modifying the standard S/sub N/ program TWOTRAN-II. Our sample calculations demonstrate a strong mitigation of the ray effects without a computing cost penalty

  8. Some reliability issues for incomplete two-dimensional warranty claims data

    International Nuclear Information System (INIS)

    Kumar Gupta, Sanjib; De, Soumen; Chatterjee, Aditya

    2017-01-01

    Bivariate reliability and vector bivariate hazard rate or hazard gradient functions are expected to have a role for meaningful assessment of the field performance for items under two-dimensional warranty coverage. In this paper a usage rate based simple class of bivariate reliability function is proposed and various bivariate reliability characteristics are studied for warranty claims data. The utilities of such study are explored with the help of a real life synthetic data. - Highlights: • Independence between age and usage rate is established. • Conditional reliability and hazard gradient along age and usage are determined. • The change point of the hazard gradients is estimated. • The concepts of layered renewal process and NHPP are introduced. • Expected number of renewals and failures at different age-usage cut-offs are obtained.

  9. The Hydrodynamic Study of the Swimming Gliding: a Two-Dimensional Computational Fluid Dynamics (CFD) Analysis.

    Science.gov (United States)

    Marinho, Daniel A; Barbosa, Tiago M; Rouboa, Abel I; Silva, António J

    2011-09-01

    Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent(®) analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns.

  10. Symmetries, holography, and quantum phase transition in two-dimensional dilaton AdS gravity

    Science.gov (United States)

    Cadoni, Mariano; Ciulu, Matteo; Tuveri, Matteo

    2018-05-01

    We revisit the Almheiri-Polchinski dilaton gravity model from a two-dimensional (2D) bulk perspective. We describe a peculiar feature of the model, namely the pattern of conformal symmetry breaking using bulk Killing vectors, a covariant definition of mass and the flow between different vacua of the theory. We show that the effect of the symmetry breaking is both the generation of an infrared scale (a mass gap) and to make local the Goldstone modes associated with the asymptotic symmetries of the 2D spacetime. In this way a nonvanishing central charge is generated in the dual conformal theory, which accounts for the microscopic entropy of the 2D black hole. The use of covariant mass allows to compare energetically the two different vacua of the theory and to show that at zero temperature the vacuum with a constant dilaton is energetically preferred. We also translate in the bulk language several features of the dual CFT discussed by Maldacena et al. The uplifting of the 2D model to (d +2 )-dimensional theories exhibiting hyperscaling violation is briefly discussed.

  11. A lower dimensional feature vector for identification of partial discharges of different origin using time measurements

    International Nuclear Information System (INIS)

    Evagorou, Demetres; Kyprianou, Andreas; Georghiou, George E; Lewin, Paul L; Stavrou, Andreas

    2012-01-01

    Partial discharge (PD) classification into sources of different origin is essential in evaluating the severity of the damage caused by its activity on the insulation of power cables and their accessories. More specifically, some types of PD can be classified as having a detrimental effect on the integrity of the insulation while others can be deemed relatively harmless, rendering the correct classification of different PD types of vital importance to electrical utilities. In this work, a feature vector was proposed based on higher order statistics on selected nodes of the wavelet packet transform (WPT) coefficients of time domain measurements, which can compactly represent the characteristics of different PD sources. To assess its performance, experimental data acquired under laboratory conditions for four different PD sources encountered in power systems were used. The two learning machine methods, namely the support vector machine and the probabilistic neural network, employed as the classification algorithms, achieved overall classification rates of around 98%. In comparison, the utilization of the scaled, raw WPT coefficients as a feature vector resulted in classification accuracy of around 99%, but with a significantly higher number of dimensions (1304 to 16), validating the PD identification ability of the proposed feature. Dimensionality reduction becomes a key factor in online, real-time data collection and processing of PD measurements, reducing the classification effort and the data-storage requirements. Therefore, the proposed method can constitute a potential tool for such online measurements, after addressing issues related to on-site measurements such as the rejection of interference. (paper)

  12. Dynamical Symmetries of Two-Dimensional Dirac Equation with Screened Coulomb and Isotropic Harmonic Oscillator Potentials

    International Nuclear Information System (INIS)

    Wang Qing; Hou Yu-Long; Jing Jian; Long Zheng-Wen

    2014-01-01

    In this paper, we study symmetrical properties of two-dimensional (2D) screened Dirac Hydrogen atom and isotropic harmonic oscillator with scalar and vector potentials of equal magnitude (SVPEM). We find that it is possible for both cases to preserve so(3) and su(2) dynamical symmetries provided certain conditions are satisfied. Interestingly, the conditions for preserving these dynamical symmetries are exactly the same as non-relativistic screened Hydrogen atom and screened isotropic oscillator preserving their dynamical symmetries. Some intuitive explanations are proposed. (general)

  13. Vector meson pair production in two-photon collisions at ARGUS

    International Nuclear Information System (INIS)

    Patel, P.M.

    1989-01-01

    New ARGUS results on exclusive final states produced in two-photon interactions are presented. Measurements of the vector meson pairs ρ + ρ - , ωρ 0 , ωω, K* + K* - and K* 0 bar K* 0 , as well as a search for φρ 0 , φω and φφ, are described. The results are compared with theoretical models. It is concluded that none of the models tells the full story when one considers the ARGUS data on all the possible vector meson pairs constructed from the 1 - vector nonet. 17 references, 5 figures, 1 table

  14. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  15. Two-dimensional model of a freely expanding plasma

    International Nuclear Information System (INIS)

    Khalid, Q.

    1975-01-01

    The free expansion of an initially confined plasma is studied by the computer experiment technique. The research is an extension to two dimensions of earlier work on the free expansion of a collisionless plasma in one dimension. In the two-dimensional rod model, developed in this research, the plasma particles, electrons and ions are modeled as infinitely long line charges or rods. The line charges move freely in two dimensions normal to their parallel axes, subject only to a self-consistent electric field. Two approximations, the grid approximation and the periodic boundary condition are made in order to reduce the computation time. In the grid approximation, the space occupied by the plasma at a given time is divided into boxes. The particles are subject to an average electric field calculated for that box assuming that the total charge within each box is located at the center of the box. However, the motion of each particle is exactly followed. The periodic boundary condition allows us to consider only one-fourth of the total number of particles of the plasma, representing the remaining three-fourths of the particles as symmetrically placed images of those whose positions are calculated. This approximation follows from the expected azimuthal symmetry of the plasma. The dynamics of the expansion are analyzed in terms of average ion and electron positions, average velocities, oscillation frequencies and relative distribution of energy between thermal, flow and electric field energies. Comparison is made with previous calculations of one-dimensional models which employed plane, spherical or cylindrical sheets as charged particles. In order to analyze the effect of the grid approximation, the model is solved for two different grid sizes and for each grid size the plasma dynamics is determined. For the initial phase of expansion, the agreement for the two grid sizes is found to be good

  16. Approximate solutions for the two-dimensional integral transport equation. Solution of complex two-dimensional transport problems

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr

  17. Three-dimensional versus two-dimensional sonography of the temporomandibular joint in comparison to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Landes, Constantin A. [Oral, Maxillofacial and Plastic Facial Surgery, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: c.landes@lycos.com; Goral, Wojciech A. [Oral, Maxillofacial and Plastic Facial Surgery, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: w.goral@gmx.de; Sader, Robert [Oral, Maxillofacial and Plastic Facial Surgery, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: r.sader@em.uni-frankfurt.de; Mack, Martin G. [Department of Diagnostic and Interventional Radiology, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: martinmack@arcor.de

    2007-02-15

    Aim: To compare clinical feasibility of static two-dimensional (2D) to three-dimensional (3D) sonography of the temporomandibular joint (TMJ) in assessment of disk dislocation and joint degeneration compared to magnetic resonance imaging (MRI). Method: Thirty-three patients, 66 TMJ were prospectively sonographed 2D and 3D (8-12.5 MHz step motor scan), in occlusion and maximum opening with a probe position parallel inferior to the zygomatic arch. Axial 2D images were judged independent from the 3D scans; 3D volumes were cut axial, sagittal, frontal and rotated in real-time. Disk position and joint degeneration were assessed and compared to a subsequent MRI examination. Results: The specific appearance of the disk was hypoechogenic overlying a hyperechogenic condyle in axial (2D) or sagittal and frontal (3D) viewing. Specificity of 2D sonography for disk dislocation was 63%, sensitivity 58%, accuracy 64%, positive predictive value 46%, negative predictive value 73%; for joint degeneration synonymously 59/68/61/38/83%. 3D sonography for disk displacement reached synonymously 68/60/69/51/76%, for joint degeneration 75/65/73/48/86%. 2D sonographic diagnoses of disk dislocation in the closed mouth position and of joint degeneration showed significantly different results from the expected values (MRI) in {chi} {sup 2} testing; 3D diagnoses of disk dislocation in closed mouth position, of joint degeneration, 2D and 3D diagnoses in open mouth position were nonsignificant. Conclusions: Acceptable was the overall negative predictive value, as specificity and accuracy for joint degeneration in 3D. 3D appears superior diagnosing disk dislocation in closed mouth position as for overall joint degeneration. Sensitivity, accuracy and positive predictive value will have to ameliorate with future equipment of higher resolution in real-time 2D and 3D, if sonographic screening shall be clinically applied prior to MRI.

  18. Two-dimensional topological field theories coupled to four-dimensional BF theory

    International Nuclear Information System (INIS)

    Montesinos, Merced; Perez, Alejandro

    2008-01-01

    Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level

  19. A solution of two-dimensional magnetohydrodynamic flow using the finite volume method

    Directory of Open Access Journals (Sweden)

    Naceur Sonia

    2014-01-01

    Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.

  20. A dynamic counterpart of Lamb vector in viscous compressible aerodynamics

    International Nuclear Information System (INIS)

    Liu, L Q; Wu, J Z; Shi, Y P; Zhu, J Y

    2014-01-01

    The Lamb vector is known to play a key role in incompressible fluid dynamics and vortex dynamics. In particular, in low-speed steady aerodynamics it is solely responsible for the total force acting on a moving body, known as the vortex force, with the classic two-dimensional (exact) Kutta–Joukowski theorem and three-dimensional (linearized) lifting-line theory as the most famous special applications. In this paper we identify an innovative dynamic counterpart of the Lamb vector in viscous compressible aerodynamics, which we call the compressible Lamb vector. Mathematically, we present a theorem on the dynamic far-field decay law of the vorticity and dilatation fields, and thereby prove that the generalized Lamb vector enjoys exactly the same integral properties as the Lamb vector does in incompressible flow, and hence the vortex-force theory can be generalized to compressible flow with exactly the same general formulation. Moreover, for steady flow of polytropic gas, we show that physically the force exerted on a moving body by the gas consists of a transverse force produced by the original Lamb vector and a new longitudinal force that reflects the effects of compression and irreversible thermodynamics. (paper)

  1. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  2. Two-dimensional thermofield bosonization

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2005-01-01

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized

  3. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  4. Sistem Deteksi Retinopati Diabetik Menggunakan Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Wahyudi Setiawan

    2014-02-01

    Full Text Available Diabetic Retinopathy is a complication of Diabetes Melitus. It can be a blindness if untreated settled as early as possible. System created in this thesis is the detection of diabetic retinopathy level of the image obtained from fundus photographs. There are three main steps to resolve the problems, preprocessing, feature extraction and classification. Preprocessing methods that used in this system are Grayscale Green Channel, Gaussian Filter, Contrast Limited Adaptive Histogram Equalization and Masking. Two Dimensional Linear Discriminant Analysis (2DLDA is used for feature extraction. Support Vector Machine (SVM is used for classification. The test result performed by taking a dataset of MESSIDOR with number of images that vary for the training phase, otherwise is used for the testing phase. Test result show the optimal accuracy are 84% .   Keywords : Diabetic Retinopathy, Support Vector Machine, Two Dimensional Linear Discriminant Analysis, MESSIDOR

  5. Energy Efficient Position-Based Three Dimensional Routing for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jeongdae Kim

    2008-04-01

    Full Text Available In this paper, we focus on an energy efficient position-based three dimensional (3D routing algorithm using distance information, which affects transmission power consumption between nodes as a metric. In wireless sensor networks, energy efficiency is one of the primary objectives of research. In addition, recent interest in sensor networks is extended to the need to understand how to design networks in a 3D space. Generally, most wireless sensor networks are based on two dimensional (2D designs. However, in reality, such networks operate in a 3D space. Since 2D designs are simpler and easier to implement than 3D designs for routing algorithms in wireless sensor networks, the 2D assumption is somewhat justified and usually does not lead to major inaccuracies. However, in some applications such as an airborne to terrestrial sensor networks or sensor networks, which are deployed in mountains, taking 3D designs into consideration is reasonable. In this paper, we propose the Minimum Sum of Square distance (MSoS algorithm as an energy efficient position-based three dimensional routing algorithm. In addition, we evaluate and compare the performance of the proposed routing algorithm with other algorithms through simulation. Finally, the results of the simulation show that the proposed routing algorithm is more energy efficient than other algorithms in a 3D space.

  6. Sums and Gaussian vectors

    CERN Document Server

    Yurinsky, Vadim Vladimirovich

    1995-01-01

    Surveys the methods currently applied to study sums of infinite-dimensional independent random vectors in situations where their distributions resemble Gaussian laws. Covers probabilities of large deviations, Chebyshev-type inequalities for seminorms of sums, a method of constructing Edgeworth-type expansions, estimates of characteristic functions for random vectors obtained by smooth mappings of infinite-dimensional sums to Euclidean spaces. A self-contained exposition of the modern research apparatus around CLT, the book is accessible to new graduate students, and can be a useful reference for researchers and teachers of the subject.

  7. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Monte Carlo simulation of the three-state vector Potts model on a three-dimensional random lattice

    International Nuclear Information System (INIS)

    Jianbo Zhang; Heping Ying

    1991-09-01

    We have performed a numerical simulation of the three-state vector Potts model on a three-dimensional random lattice. The averages of energy density, magnetization, specific heat and susceptibility of the system in the N 3 (N=8,10,12) lattices were calculated. The results show that a first order nature of the Z(3) symmetry breaking transition appears, as characterized by a thermal hysterisis in the energy density as well as an abrupt drop of magnetization being sharper and discontinuous with increasing of volume in the cross-over region. The results obtained on the random lattice were consistent with those obtained on the three-dimensional cubic lattice. (author). 12 refs, 4 figs

  9. Accuracy of Cup Positioning With the Computed Tomography-Based Two-dimensional to Three-Dimensional Matched Navigation System: A Prospective, Randomized Controlled Study.

    Science.gov (United States)

    Yamada, Kazuki; Endo, Hirosuke; Tetsunaga, Tomonori; Miyake, Takamasa; Sanki, Tomoaki; Ozaki, Toshifumi

    2018-01-01

    The accuracy of various navigation systems used for total hip arthroplasty has been described, but no publications reported the accuracy of cup orientation in computed tomography (CT)-based 2D-3D (two-dimensional to three-dimensional) matched navigation. In a prospective, randomized controlled study, 80 hips including 44 with developmental dysplasia of the hips were divided into a CT-based 2D-3D matched navigation group (2D-3D group) and a paired-point matched navigation group (PPM group). The accuracy of cup orientation (absolute difference between the intraoperative record and the postoperative measurement) was compared between groups. Additionally, multiple logistic regression analysis was performed to evaluate patient factors affecting the accuracy of cup orientation in each navigation. The accuracy of cup inclination was 2.5° ± 2.2° in the 2D-3D group and 4.6° ± 3.3° in the PPM group (P = .0016). The accuracy of cup anteversion was 2.3° ± 1.7° in the 2D-3D group and 4.4° ± 3.3° in the PPM group (P = .0009). In the PPM group, the presence of roof osteophytes decreased the accuracy of cup inclination (odds ratio 8.27, P = .0140) and the absolute value of pelvic tilt had a negative influence on the accuracy of cup anteversion (odds ratio 1.27, P = .0222). In the 2D-3D group, patient factors had no effect on the accuracy of cup orientation. The accuracy of cup positioning in CT-based 2D-3D matched navigation was better than in paired-point matched navigation, and was not affected by patient factors. It is a useful system for even severely deformed pelvises such as developmental dysplasia of the hips. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Temporal aggregation in first order cointegrated vector autoregressive

    DEFF Research Database (Denmark)

    la Cour, Lisbeth Funding; Milhøj, Anders

    2006-01-01

    We study aggregation - or sample frequencies - of time series, e.g. aggregation from weekly to monthly or quarterly time series. Aggregation usually gives shorter time series but spurious phenomena, in e.g. daily observations, can on the other hand be avoided. An important issue is the effect of ...... of aggregation on the adjustment coefficient in cointegrated systems. We study only first order vector autoregressive processes for n dimensional time series Xt, and we illustrate the theory by a two dimensional and a four dimensional model for prices of various grades of gasoline....

  11. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  12. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  13. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  14. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera

    Science.gov (United States)

    Kachach, Redouane; Cañas, José María

    2016-05-01

    Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.

  15. Orbital order and effective mass enhancement in t2 g two-dimensional electron gases

    Science.gov (United States)

    Tolsma, John; Principi, Alessandro; Polini, Marco; MacDonald, Allan

    2015-03-01

    It is now possible to prepare d-electron two-dimensional electron gas systems that are confined near oxide heterojunctions and contain t2 g electrons with a density much smaller than one electron per metal atom. I will discuss a generic model that captures all qualitative features of electron-electron interaction physics in t2 g two-dimensional electron gas systems, and the use of a GW approximation to explore t2 g quasiparticle properties in this new context. t2 g electron gases contain a high density isotropic light mass xy component and low-density xz and yz anisotropic components with light and heavy masses in orthogonal directions. The high density light mass band screens interactions within the heavy bands. As a result the wave vector dependence of the self-energy is reduced and the effective mass is increased. When the density in the heavy bands is low, the difference in anisotropy between the two heavy bands favors orbital order. When orbital order does not occur, interactions still reshape the heavy-band Fermi surfaces. I will discuss these results in the context of recently reported magnetotransport experiments.

  16. Application of fast Fourier transforms to the direct solution of a class of two-dimensional separable elliptic equations on the sphere

    Science.gov (United States)

    Moorthi, Shrinivas; Higgins, R. W.

    1993-01-01

    An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  17. Brane vector phenomenology

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.; Nitta, Muneto; Veldhuis, T. ter; Xiong, C.

    2009-01-01

    Local oscillations of the brane world are manifested as massive vector fields. Their coupling to the Standard Model can be obtained using the method of nonlinear realizations of the spontaneously broken higher-dimensional space-time symmetries, and to an extent, are model independent. Phenomenological limits on these vector field parameters are obtained using LEP collider data and dark matter constraints

  18. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  19. Novel target design algorithm for two-dimensional optical storage (TwoDOS)

    NARCIS (Netherlands)

    Huang, Li; Chong, T.C.; Vijaya Kumar, B.V.K.; Kobori, H.

    2004-01-01

    In this paper we introduce the Hankel transform based channel model of Two-Dimensional Optical Storage (TwoDOS) system. Based on this model, the two-dimensional (2D) minimum mean-square error (MMSE) equalizer has been derived and applied to some simple but common cases. The performance of the 2D

  20. Vacuum energy is non-positive for (2 + 1)-dimensional holographic CFTs

    International Nuclear Information System (INIS)

    Hickling, Andrew; Wiseman, Toby

    2016-01-01

    We consider a (2 + 1)-dimensional holographic CFT on a static spacetime with globally timelike Killing vector. Taking the spatial geometry to be closed but otherwise general we expect a non-trivial vacuum energy at zero temperature due to the Casimir effect. We assume a thermal state has an AdS/CFT dual description as a static smooth solution to gravity with a negative cosmological constant, which ends only on the conformal boundary or horizons. A bulk geometric argument then provides an upper bound on the ratio of CFT free energy to temperature. Considering the zero temperature limit of this bound implies the vacuum energy of the CFT is non-positive. Furthermore the vacuum energy must be negative unless the boundary metric is locally conformal to a product of time with a constant curvature space. We emphasise the argument does not require the zero temperature bulk geometry to be smooth, but only that singularities are ‘good’ so are hidden by horizons at finite temperature. (paper)

  1. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  2. Low Dimensional Representation of Fisher Vectors for Microscopy Image Classification.

    Science.gov (United States)

    Song, Yang; Li, Qing; Huang, Heng; Feng, Dagan; Chen, Mei; Cai, Weidong

    2017-08-01

    Microscopy image classification is important in various biomedical applications, such as cancer subtype identification, and protein localization for high content screening. To achieve automated and effective microscopy image classification, the representative and discriminative capability of image feature descriptors is essential. To this end, in this paper, we propose a new feature representation algorithm to facilitate automated microscopy image classification. In particular, we incorporate Fisher vector (FV) encoding with multiple types of local features that are handcrafted or learned, and we design a separation-guided dimension reduction method to reduce the descriptor dimension while increasing its discriminative capability. Our method is evaluated on four publicly available microscopy image data sets of different imaging types and applications, including the UCSB breast cancer data set, MICCAI 2015 CBTC challenge data set, and IICBU malignant lymphoma, and RNAi data sets. Our experimental results demonstrate the advantage of the proposed low-dimensional FV representation, showing consistent performance improvement over the existing state of the art and the commonly used dimension reduction techniques.

  3. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  4. Application of kinetic flux vector splitting scheme for solving multi-dimensional hydrodynamical models of semiconductor devices

    Science.gov (United States)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    In this article, one and two-dimensional hydrodynamical models of semiconductor devices are numerically investigated. The models treat the propagation of electrons in a semiconductor device as the flow of a charged compressible fluid. It plays an important role in predicting the behavior of electron flow in semiconductor devices. Mathematically, the governing equations form a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the kinetic flux-vector splitting (KFVS) method for the hyperbolic step, and a semi-implicit Runge-Kutta method for the relaxation step. The KFVS method is based on the direct splitting of macroscopic flux functions of the system on the cell interfaces. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Several case studies are considered. For validation, the results of current scheme are compared with those obtained from the splitting scheme based on the NT central scheme. The effects of various parameters such as low field mobility, device length, lattice temperature and voltage are analyzed. The accuracy, efficiency and simplicity of the proposed KFVS scheme validates its generic applicability to the given model equations. A two dimensional simulation is also performed by KFVS method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  5. Image quality assessment using two-dimensional complex mel-cepstrum

    Science.gov (United States)

    Cakir, Serdar; Cetin, A. Enis

    2016-11-01

    Assessment of visual quality plays a crucial role in modeling, implementation, and optimization of image- and video-processing applications. The image quality assessment (IQA) techniques basically extract features from the images to generate objective scores. Feature-based IQA methods generally consist of two complementary phases: (1) feature extraction and (2) feature pooling. For feature extraction in the IQA framework, various algorithms have been used and recently, the two-dimensional (2-D) mel-cepstrum (2-DMC) feature extraction scheme has provided promising results in a feature-based IQA framework. However, the 2-DMC feature extraction scheme completely loses image-phase information that may contain high-frequency characteristics and important structural components of the image. In this work, "2-D complex mel-cepstrum" is proposed for feature extraction in an IQA framework. The method tries to integrate Fourier transform phase information into the 2-DMC, which was shown to be an efficient feature extraction scheme for assessment of image quality. Support vector regression is used for feature pooling that provides mapping between the proposed features and the subjective scores. Experimental results show that the proposed technique obtains promising results for the IQA problem by making use of the image-phase information.

  6. A correlation study on position and volume variation of primary lung cancer during respiration by four-dimensional CT

    International Nuclear Information System (INIS)

    Zhang Yingjie; Li Jianbin; Tian Shiyu; Li Fengxiang; Fan Tingyong; Shao Qian; Xu Min; Lu Jie

    2011-01-01

    Objective: To investigate the correlation of position movement of primary tumor with interested organs and skin markers, and to investigate the correlation of volume variation of primary tumors and lungs during different respiration phases for patients with lung cancer at free breath condition scanned by four-dimensional CT (4DCT) simulation. Methods: 16 patients with lung cancer were scanned at free breath condition by simulation 4DCT which connected to a respiration-monitoring system. A coordinate system was created based on image of T 5 phase,gross tumor volume (GTV) and normal tissue structures of 10 phases were contoured. The three dimensional position variation of them were measured and their correlation were analyzed, and the same for the volume variation of GTV and lungs of 10 respiratory phases. Results: Movement range of lung cancer in different lobe differed extinct: 0.8 - 5.0 mm in upper lobe, 5.7 -5.9 mm in middle lobe and 10.2 - 13.7 mm in lower lobe, respectively. Movement range of lung cancer in three dimensional direction was different: z-axis 4.3 mm ± 4.3 mm > y-axis 2.2 mm ± 1.0 mm > x-axis 1.7 mm ± 1.5 mm (χ 2 =16.22, P =0.000), respectively. There was no statistical significant correlation for movement vector of GTV and interested structures (r =-0.50 - -0.01, P =0.058 - -0.961), nor for volume variation of tumor and lung (r =0.23, P =0.520). Conclusions: Based on 4DCT, statistically significant differences of GTV centroid movement are observed at different pulmonary lobes and in three dimensional directions. So individual 4DCT measurement is necessary for definition of internal target volume margin for lung cancer. (authors)

  7. Reliable Fault Classification of Induction Motors Using Texture Feature Extraction and a Multiclass Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Jia Uddin

    2014-01-01

    Full Text Available This paper proposes a method for the reliable fault detection and classification of induction motors using two-dimensional (2D texture features and a multiclass support vector machine (MCSVM. The proposed model first converts time-domain vibration signals to 2D gray images, resulting in texture patterns (or repetitive patterns, and extracts these texture features by generating the dominant neighborhood structure (DNS map. The principal component analysis (PCA is then used for the purpose of dimensionality reduction of the high-dimensional feature vector including the extracted texture features due to the fact that the high-dimensional feature vector can degrade classification performance, and this paper configures an effective feature vector including discriminative fault features for diagnosis. Finally, the proposed approach utilizes the one-against-all (OAA multiclass support vector machines (MCSVMs to identify induction motor failures. In this study, the Gaussian radial basis function kernel cooperates with OAA MCSVMs to deal with nonlinear fault features. Experimental results demonstrate that the proposed approach outperforms three state-of-the-art fault diagnosis algorithms in terms of fault classification accuracy, yielding an average classification accuracy of 100% even in noisy environments.

  8. Five-dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio

    International Nuclear Information System (INIS)

    Aliev, A.N.; Frolov, Valeri P.

    2004-01-01

    In four-dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a test Maxwell field provides one with an elegant way of describing the behavior of electromagnetic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach to examine the case of a five-dimensional rotating black hole placed in a uniform magnetic field of configuration with biazimuthal symmetry that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming that the black hole may also possess a small electric charge we construct the five-vector potential of the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show that, like its four-dimensional counterparts, the five-dimensional Myers-Perry black hole rotating in a uniform magnetic field produces an inductive potential difference between the event horizon and an infinitely distant surface. This potential difference is determined by a superposition of two independent Coulomb fields consistent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field. We also show that a weakly charged rotating black hole in five dimensions possesses two independent magnetic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We prove that a five-dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic ratio g=3

  9. Phase transitions in two-dimensional systems

    International Nuclear Information System (INIS)

    Salinas, S.R.A.

    1983-01-01

    Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt

  10. Positive solutions for a nonlocal boundary-value problem with vector-valued response

    Directory of Open Access Journals (Sweden)

    Andrzej Nowakowski

    2002-05-01

    Full Text Available Using variational methods, we study the existence of positive solutions for a nonlocal boundary-value problem with vector-valued response. We develop duality and variational principles for this problem and present a numerical version which enables the approximation of solutions and gives a measure of a duality gap between primal and dual functional for approximate solutions for this problem.

  11. Collision of bright vector solitons in two-component Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Ramesh Kumar, V.; Radha, R.; Wadati, Miki

    2010-01-01

    We investigate the coupled Gross-Pitaevskii equation describing the dynamics of two hyperfine states of Bose-Einstein condensates and deduce the integrability condition for the propagation of bright vector solitons. We show how the transient trap and scattering length can be suitably tailored to bring about fascinating collisional dynamics of vector solitons.

  12. Three-dimensional liver motion tracking using real-time two-dimensional MRI.

    Science.gov (United States)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-04-01

    Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Axial, sagittal, and coronal 2D MRI series

  13. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Brix, Lau, E-mail: lau.brix@stab.rm.dk [Department of Procurement and Clinical Engineering, Region Midt, Olof Palmes Allé 15, 8200 Aarhus N, Denmark and MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Ringgaard, Steffen [MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Sørensen, Thomas Sangild [Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Poulsen, Per Rugaard [Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark and Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark)

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  14. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    International Nuclear Information System (INIS)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-01-01

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  15. Two-dimensional readout in a liquid xenon ionisation chamber

    CERN Document Server

    Solovov, V; Ferreira-Marques, R; Lopes, M I; Pereira, A; Policarpo, Armando

    2002-01-01

    A two-dimensional readout with metal strips deposited on both sides of a glass plate is investigated aiming to assess the possibility of its use in a liquid xenon ionisation chamber for positron emission tomography. Here, we present results obtained with an alpha-source. It is shown that position resolution of <=1 mm, fwhm, can be achieved for free charge depositions equivalent to those due to gamma-rays with energy from 220 down to 110 keV.

  16. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  17. Completeness of the System of Root Vectors of 2 × 2 Upper Triangular Infinite-Dimensional Hamiltonian Operators in Symplectic Spaces and Applications

    Institute of Scientific and Technical Information of China (English)

    Hua WANG; ALATANCANG; Junjie HUANG

    2011-01-01

    The authors investigate the completeness of the system of eigen or root vectors of the 2 x 2 upper triangular infinite-dimensional Hamiltonian operator H0.First,the geometrical multiplicity and the algebraic index of the eigenvalue of H0 are considered.Next,some necessary and sufficient conditions for the completeness of the system of eigen or root vectors of H0 are obtained. Finally,the obtained results are tested in several examples.

  18. Chromosome preference of disease genes and vectorization for the prediction of non-coding disease genes.

    Science.gov (United States)

    Peng, Hui; Lan, Chaowang; Liu, Yuansheng; Liu, Tao; Blumenstein, Michael; Li, Jinyan

    2017-10-03

    Disease-related protein-coding genes have been widely studied, but disease-related non-coding genes remain largely unknown. This work introduces a new vector to represent diseases, and applies the newly vectorized data for a positive-unlabeled learning algorithm to predict and rank disease-related long non-coding RNA (lncRNA) genes. This novel vector representation for diseases consists of two sub-vectors, one is composed of 45 elements, characterizing the information entropies of the disease genes distribution over 45 chromosome substructures. This idea is supported by our observation that some substructures (e.g., the chromosome 6 p-arm) are highly preferred by disease-related protein coding genes, while some (e.g., the 21 p-arm) are not favored at all. The second sub-vector is 30-dimensional, characterizing the distribution of disease gene enriched KEGG pathways in comparison with our manually created pathway groups. The second sub-vector complements with the first one to differentiate between various diseases. Our prediction method outperforms the state-of-the-art methods on benchmark datasets for prioritizing disease related lncRNA genes. The method also works well when only the sequence information of an lncRNA gene is known, or even when a given disease has no currently recognized long non-coding genes.

  19. The Poynting vector of a charged magnetic dipole: two limiting cases

    Energy Technology Data Exchange (ETDEWEB)

    Sod-Hoffs, J; Manko, V S [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del I.P.N., A.P. 14-740, 07000 Mexico D.F. (Mexico)

    2007-11-15

    We consider the Poynting vector of two exact solutions describing a charged magnetized non-rotating mass in the following limiting cases: (i) m{sup 2} = q{sup 2}, and (ii) m = 0. Whereas the former limit leads to a non-vanishing Poynting vector only for one of the solutions, the latter limit in both solutions results in non-zero expressions of the azimuthal component of the Poynting vector, thus providing evidence that Bonnor's frame-dragging effect takes place even in the case of a charged massless magnetic dipole.

  20. A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal

    Science.gov (United States)

    Ren, Jie; Sun, XiaoHong; Wang, Shuai

    2018-05-01

    In this article, a low threshold nanocavity is built and investigated in a two-dimensional 12-fold holographic photonic quasicrystal (PQC). The cavity is formed by using the method of multi-beam common-path interference. By finely adjusting the structure parameters of the cavity, the Q factor and the mode volume are optimized, which are two keys to low-threshold on the basis of Purcell effect. Finally, an optimal cavity is obtained with Q value of 6023 and mode volume of 1.24 ×10-12cm3 . On the other hand, by Fourier Transformation of the electric field components in the cavity, the in-plane wave vectors are calculated and fitted to evaluate the cavity performance. The performance analysis of the cavity further proves the effectiveness of the optimization process. This has a guiding significance for the research of low threshold nano-laser.

  1. Vectorization and improvement of nuclear codes. 3. DGR, STREAM V3.1, Cella, GGR

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Toshiyuki; Eguchi, Norikuni; Watanabe, Hideo; Machida, Masahiko; Yokokawa, Mitsuo; Fujii, Minoru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-01-01

    Four nuclear codes have been vectorized and improved in order to realize the high speed performance on the VP2600 supercomputer at Computing and Information Systems Center of JAERI in the fiscal year 1993. Molecular Dynamics simulation code DGR which simulates the irradiation damage on diamond crystalline, three-dimensional non-steady compressible fluid dynamics code STREAM V3.1, two-dimensional fluid simulation code using Cell Automaton model Cella and Molecular Dynamics code GGR which simulates the irradiation damage on black carbon crystalline have been vectorized and improved, respectively. Speed up ratios by the vectorization to scalar mode on VP2600 show 2.8, 6.8-14.8, 15-16 and 1.23 times for DGR, STREAM V3.1, Cella and GGR, respectively. In this report, we present vectorization techniques, vectorization effects, evaluations of the numerical results and techniques for the improvement. (author).

  2. Spatial optical (2+1)-dimensional scalar- and vector-solitons in saturable nonlinear media

    Energy Technology Data Exchange (ETDEWEB)

    Weilnau, C.; Traeger, D.; Schroeder, J.; Denz, C. [Institute of Applied Physics, Westfaelische Wilhelms-Universitaet Muenster, Corrensstr. 2/4, 48149 Muenster (Germany); Ahles, M.; Petter, J. [Institute of Applied Physics, Technische Universitaet Darmstadt, Hochschulstr. 6, 64289 Darmstadt (Germany)

    2002-10-01

    (2+1)-dimensional optical spatial solitons have become a major field of research in nonlinear physics throughout the last decade due to their potential in adaptive optical communication technologies. With the help of photorefractive crystals that supply the required type of nonlinearity for soliton generation, we are able to demonstrate experimentally the formation, the dynamic properties, and especially the interaction of solitary waves, which were so far only known from general soliton theory. Among the complex interaction scenarios of scalar solitons, we reveal a distinct behavior denoted as anomalous interaction, which is unique in soliton-supporting systems. Further on, we realize highly parallel, light-induced waveguide configurations based on photorefractive screening solitons that give rise to technical applications towards waveguide couplers and dividers as well as all-optical information processing devices where light is controlled by light itself. Finally, we demonstrate the generation, stability and propagation dynamics of multi-component or vector solitons, multipole transverse optical structures bearing a complex geometry. In analogy to the particle-light dualism of scalar solitons, various types of vector solitons can - in a broader sense - be interpreted as molecules of light. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  3. Spatial optical (2+1)-dimensional scalar- and vector-solitons in saturable nonlinear media

    International Nuclear Information System (INIS)

    Weilnau, C.; Traeger, D.; Schroeder, J.; Denz, C.; Ahles, M.; Petter, J.

    2002-01-01

    (2+1)-dimensional optical spatial solitons have become a major field of research in nonlinear physics throughout the last decade due to their potential in adaptive optical communication technologies. With the help of photorefractive crystals that supply the required type of nonlinearity for soliton generation, we are able to demonstrate experimentally the formation, the dynamic properties, and especially the interaction of solitary waves, which were so far only known from general soliton theory. Among the complex interaction scenarios of scalar solitons, we reveal a distinct behavior denoted as anomalous interaction, which is unique in soliton-supporting systems. Further on, we realize highly parallel, light-induced waveguide configurations based on photorefractive screening solitons that give rise to technical applications towards waveguide couplers and dividers as well as all-optical information processing devices where light is controlled by light itself. Finally, we demonstrate the generation, stability and propagation dynamics of multi-component or vector solitons, multipole transverse optical structures bearing a complex geometry. In analogy to the particle-light dualism of scalar solitons, various types of vector solitons can - in a broader sense - be interpreted as molecules of light. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  4. On vector fields having properties of Reeb fields

    OpenAIRE

    Hajduk, Boguslaw; Walczak, Rafal

    2011-01-01

    We study constructions of vector fields with properties which are characteristic to Reeb vector fields of contact forms. In particular, we prove that all closed oriented odd-dimensional manifold have geodesible vector fields.

  5. Application of Bred Vectors To Data Assimilation

    Science.gov (United States)

    Corazza, M.; Kalnay, E.; Patil, Dj

    ,0,0]=1.8, less than 2 because one direction is more dominant than the other in representing the original data. The results (Patil et al, 2001) show that there are large regions where the bred vectors span a subspace of substantially lower dimension than that of the full space. These low dimensionality regions are dominant in the baroclinic extratropics, typically have a lifetime of 3-7 days, have a well-defined horizontal and vertical structure that spans 1 most of the atmosphere, and tend to move eastward. New results with a large number of ensemble members confirm these results and indicate that the low dimensionality regions are quite robust, and depend only on the verification time (i.e., the underlying flow). Corazza et al (2001) have performed experiments with a data assimilation system based on a quasi-geostrophic model and simulated observations (Morss, 1999, Hamill et al, 2000). A 3D-variational data assimilation scheme for a quasi-geostrophic chan- nel model is used to study the structure of the background error and its relationship to the corresponding bred vectors. The "true" evolution of the model atmosphere is defined by an integration of the model and "rawinsonde observations" are simulated by randomly perturbing the true state at fixed locations. It is found that after 3-5 days the bred vectors develop well organized structures which are very similar for the two different norms considered in this paper (potential vorticity norm and streamfunction norm). The results show that the bred vectors do indeed represent well the characteristics of the data assimilation forecast errors, and that the subspace of bred vectors contains most of the forecast error, except in areas where the forecast errors are small. For example, the angle between the 6hr forecast error and the subspace spanned by 10 bred vectors is less than 10o over 90% of the domain, indicating a pattern correlation of more than 98.5% between the forecast error and its projection onto the bred vector

  6. Multi-task Vector Field Learning.

    Science.gov (United States)

    Lin, Binbin; Yang, Sen; Zhang, Chiyuan; Ye, Jieping; He, Xiaofei

    2012-01-01

    Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously and identifying the shared information among tasks. Most of existing MTL methods focus on learning linear models under the supervised setting. We propose a novel semi-supervised and nonlinear approach for MTL using vector fields. A vector field is a smooth mapping from the manifold to the tangent spaces which can be viewed as a directional derivative of functions on the manifold. We argue that vector fields provide a natural way to exploit the geometric structure of data as well as the shared differential structure of tasks, both of which are crucial for semi-supervised multi-task learning. In this paper, we develop multi-task vector field learning (MTVFL) which learns the predictor functions and the vector fields simultaneously. MTVFL has the following key properties. (1) The vector fields MTVFL learns are close to the gradient fields of the predictor functions. (2) Within each task, the vector field is required to be as parallel as possible which is expected to span a low dimensional subspace. (3) The vector fields from all tasks share a low dimensional subspace. We formalize our idea in a regularization framework and also provide a convex relaxation method to solve the original non-convex problem. The experimental results on synthetic and real data demonstrate the effectiveness of our proposed approach.

  7. Temporal aggregation in first order cointegrated vector autoregressive models

    DEFF Research Database (Denmark)

    La Cour, Lisbeth Funding; Milhøj, Anders

    We study aggregation - or sample frequencies - of time series, e.g. aggregation from weekly to monthly or quarterly time series. Aggregation usually gives shorter time series but spurious phenomena, in e.g. daily observations, can on the other hand be avoided. An important issue is the effect of ...... of aggregation on the adjustment coefficient in cointegrated systems. We study only first order vector autoregressive processes for n dimensional time series Xt, and we illustrate the theory by a two dimensional and a four dimensional model for prices of various grades of gasoline...

  8. Development of three-dimensional neoclassical transport simulation code with high performance Fortran on a vector-parallel computer

    International Nuclear Information System (INIS)

    Satake, Shinsuke; Okamoto, Masao; Nakajima, Noriyoshi; Takamaru, Hisanori

    2005-11-01

    A neoclassical transport simulation code (FORTEC-3D) applicable to three-dimensional configurations has been developed using High Performance Fortran (HPF). Adoption of computing techniques for parallelization and a hybrid simulation model to the δf Monte-Carlo method transport simulation, including non-local transport effects in three-dimensional configurations, makes it possible to simulate the dynamism of global, non-local transport phenomena with a self-consistent radial electric field within a reasonable computation time. In this paper, development of the transport code using HPF is reported. Optimization techniques in order to achieve both high vectorization and parallelization efficiency, adoption of a parallel random number generator, and also benchmark results, are shown. (author)

  9. Derivatives, forms and vector fields on the κ-deformed Euclidean space

    International Nuclear Information System (INIS)

    Dimitrijevic, Marija; Moeller, Lutz; Tsouchnika, Efrossini

    2004-01-01

    The model of κ-deformed space is an interesting example of a noncommutative space, since it allows a deformed symmetry. In this paper, we present new results concerning different sets of derivatives on the coordinate algebra of κ-deformed Euclidean space. We introduce a differential calculus with two interesting sets of one-forms and higher-order forms. The transformation law of vector fields is constructed in accordance with the transformation behaviour of derivatives. The crucial property of the different derivatives, forms and vector fields is that in an n-dimensional spacetime there are always n of them. This is the key difference with respect to conventional approaches, in which the differential calculus is (n + 1)-dimensional. This work shows that derivative-valued quantities such as derivative-valued vector fields appear in a generic way on noncommutative spaces

  10. Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric

    Science.gov (United States)

    Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael

    2016-02-01

    One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.

  11. Two- and three-dimensional CT analysis of ankle fractures

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.

    1988-01-01

    CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem

  12. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  13. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  14. Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis

    International Nuclear Information System (INIS)

    Goldman, D.; Merril, C.R.

    1983-01-01

    A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of 14 C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses

  15. Charge density wave properties of the quasi two-dimensional purple molybdenum bronze KMo 6O 17

    Science.gov (United States)

    Balaska, H.; Dumas, J.; Guyot, H.; Mallet, P.; Marcus, J.; Schlenker, C.; Veuillen, J. Y.; Vignolles, D.

    2005-06-01

    The purple molybdenum bronze KMo 6O 17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic CDW state. Electron spectroscopy (ARUPS), Scanning Tunnelling Microscopy (STM) and spectroscopy (STS) as well as high magnetic field studies are reported. ARUPS studies corroborate the model of the hidden nesting and provide a value of the CDW vector in good agreement with other measurements. STM studies visualize the triple- q CDW in real space. This is consistent with other measurements of the CDW vector. STS studies provide a value of several 10 meV for the average CDW gap. High magnetic field measurements performed in pulsed fields up to 55 T establish that first order transitions to smaller gap states take place at low temperature. These transitions are ascribed to Pauli type coupling. A phase diagram summarizing all observed anomalies and transitions is presented.

  16. Energy dispersion of charged particles decelerated in a two-dimensional electrostatic field of the type x1/n

    International Nuclear Information System (INIS)

    Zashkvara, V.V.; Bok, A.A.

    1992-01-01

    Two components of the spatial dispersion of particles with respect to kinetic energy can be distinguished of the motion of charged particle beams in electrostatic mirros with a two-dimensional field φ(x,y) ans xz symmetry plane. The first is the longitudinal dispersion, which is along the z axis perpendicular to the field; the second is the transverse dispersion, along the x axis parallel to the field vector in the plane of symmetry. The longitudinal dispersion is a basic characteristic of electrostatic mirrors used as energy analyzers. It has been shown that for first-order angular focusing, the longitudinal dispersion, divided by the focal length, is independent of the structure of the two-dimensional field and is a function only of the angle at which the charged particle beam enters the mirror. The transverse dispersion stems from the energy dependence of the penetration depth of the beam as it is decelerated, and it plays an important role when the energy of a charged particle beam is analyzed by the filtering principle, making use of the property of an electrostatic mirror to transmit or reflect charged particles with kinetic energy in a specified interval. This type of dispersion in electrostatic mirrors with two-dimensional fields has not been analyzed systematically. In the present note the authors consider a particular type of two-dimensional electrostatic field which is characterized by a large transverse dispersion, many times larger than in existing electrostatic reflecting filters employing planar and cylindrical fields

  17. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

    Science.gov (United States)

    Hano, Mitsuo; Hotta, Masashi

    A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

  18. Topics in two dimensional conformal field theory and three dimensional topological lattice field theory

    International Nuclear Information System (INIS)

    Chung, Stephen-wei.

    1993-01-01

    The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint

  19. Approximation of scalar and vector transport problems on polyhedral meshes

    International Nuclear Information System (INIS)

    Cantin, Pierre

    2016-01-01

    This thesis analyzes, at the continuous and at the discrete level on polyhedral meshes, the scalar and the vector transport problems in three-dimensional domains. These problems are composed of a diffusive term, an advective term, and a reactive term. In the context of Friedrichs systems, the continuous problems are analyzed in Lebesgue graph spaces. The classical positivity assumption on the Friedrichs tensor is generalized so as to consider the case of practical interest where this tensor takes null or slightly negative values. A new scheme converging at the order 3/2 is devised for the scalar advection-reaction problem using scalar degrees of freedom attached to mesh vertices. Two new schemes considering as well scalar degrees of freedom attached to mesh vertices are devised for the scalar transport problem and are robust with respect to the dominant regime. The first scheme converges at the order 1/2 when advection effects are dominant and at the order 1 when diffusion effects are dominant. The second scheme improves the accuracy by converging at the order 3/2 when advection effects are dominant. Finally, a new scheme converging at the order 1/2 is devised for the vector advection-reaction problem considering only one scalar degree of freedom per mesh edge. The accuracy and the efficiency of all these schemes are assessed on various test cases using three-dimensional polyhedral meshes. (author)

  20. Construction of gateway-compatible yeast two-hybrid vectors for ...

    African Journals Online (AJOL)

    USER

    2010-03-01

    Mar 1, 2010 ... vectors pBTM116GW and pVP16GW by introducing the gateway cassette ... Key words: Yeast two-hybrid, gateway cloning technology, protein interaction. .... cycling parameters were as follows: an initial denaturation step at.

  1. Optimizing separations in online comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.

  2. Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields

    Science.gov (United States)

    Shihui, Y.; Jiehai, J.; Minhan, J.

    1985-01-01

    A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.

  3. Anisotropic mass density by two-dimensional acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera s/n, E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es

    2008-02-15

    We show that specially designed two-dimensional arrangements of full elastic cylinders embedded in a nonviscous fluid or gas define (in the homogenization limit) a new class of acoustic metamaterials characterized by a dynamical effective mass density that is anisotropic. Here, analytic expressions for the dynamical mass density and the effective sound velocity tensors are derived in the long wavelength limit. Both show an explicit dependence on the lattice filling fraction, the elastic properties of cylinders relative to the background, their positions in the unit cell, and their multiple scattering interactions. Several examples of these metamaterials are reported and discussed.

  4. Vector form Intrinsic Finite Element Method for the Two-Dimensional Analysis of Marine Risers with Large Deformations

    Science.gov (United States)

    Li, Xiaomin; Guo, Xueli; Guo, Haiyan

    2018-06-01

    Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element (VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method (FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.

  5. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    -dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...

  6. Two-dimensional simulation of sintering process

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.

    1996-01-01

    The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)

  7. Two-dimensional versus three-dimensional treatment planning of tangential breast irradiation

    International Nuclear Information System (INIS)

    Damen, E.M.F.; Bruinvis, I.A.D.; Mijnheer, B.J.

    1995-01-01

    Purpose: Full three-dimensional (3-D) treatment planning requires 3-D patient contours and density information, derived either from CT scanning or from other 3-D contouring methods. These contouring techniques are time consuming, and are often not available or cannot be used. Two-dimensional (2-D) treatment planning can be performed using only a few patient contours, made with much simpler techniques, in combination with simulator images for estimating the lung position. In order to investigate the need for full 3-D planning, we compared the performance of both a 2-D and a 3-D planning system in calculating absolute dose values and relative dose distributions in tangential breast irradiation. Methods: Two breast-shaped phantoms were used in this study. The first phantom consists of a polyethylene mould, filled with water and cork to mimic the lung. An ionization chamber can be inserted in the phantom at fixed positions. The second phantom is made of 25 transverse slices of polystyrene and cork, made with a computerized milling machine from CT information. In this phantom, films can be inserted in three sagittal planes. Both phantoms have been irradiated with two tangential 8 MV photon beams. The measured dose distribution has been compared with the dose distribution predicted by the two planning systems. Results: In the central plane, the 3-D planning system predicts the absolute dose with an accuracy of 0.5 - 4%. The dose at the isocentre of the beams agrees within 0.5% with the measured dose. The 2-D system predicts the dose with an accuracy of 0.9 - 3%. The dose calculated at the isocentre is 2.6% higher than the measured dose, because missing lateral scatter is not taken into account in this planning system. In off-axis planes, the calculated absolute dose agrees with the measured dose within 4% for the 2-D system and within 6% for the 3-D system. However, the relative dose distribution is predicted better by the 3-D planning system. Conclusions: This study

  8. Optical properties of the two-port resonant tunneling filters in two-dimensional photonic crystal slabs

    International Nuclear Information System (INIS)

    Ren Cheng; Cheng Li-Feng; Kang Feng; Gan Lin; Zhang Dao-Zhong; Li Zhi-Yuan

    2012-01-01

    We have designed and fabricated two types of two-port resonant tunneling filters with a triangular air-hole lattice in two-dimensional photonic crystal slabs. In order to improve the filtering efficiency, a feedback method is introduced by closing the waveguide. It is found that the relative position between the closed waveguide boundary and the resonator has an important impact on the dropping efficiency. Based on our analyses, two different types of filters are designed. The transmission spectra and scattering-light far-field patterns are measured, which agree well with theoretical prediction. In addition, the resonant filters are highly sensitive to the size of the resonant cavities, which are useful for practical applications

  9. An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms

    Science.gov (United States)

    Sá, Lucas

    2017-03-01

    Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.

  10. Two-Dimensional DOA Estimation in Compressed Sensing with Compressive-Reduced Dimension-lp-MUSIC

    Directory of Open Access Journals (Sweden)

    Weijian Si

    2015-01-01

    Full Text Available This paper presents a novel two-dimensional (2D direction of arrival (DOA estimation method in compressed sensing (CS to remove the estimation failure problem and achieve superior performance. The proposed method separates the steering vector into two parts to construct two corresponding noise subspaces by introducing electric angles. Then, electric angles are estimated based on the constructed noise subspaces. In order to estimate the azimuth and elevation angles in terms of estimates of electric angles, arc-tangent operations are exploited. The arc-tangent is a one-to-one function and allows the value of the argument to be larger than unity so that the proposed method never fails. The proposed method can avoid pair matching to reduce the computational complexity and extend the number of snapshots to improve performance. Simulation results show that the proposed method can avoid estimation failure occurrence and has superior performance as compared to existing methods.

  11. Chaotic dynamics in two-dimensional noninvertible maps

    CERN Document Server

    Mira, Christian; Cathala, Jean-Claude; Gardini, Laura

    1996-01-01

    This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this resea

  12. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  13. Metrics for vector quantization-based parametric speech enhancement and separation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2013-01-01

    Speech enhancement and separation algorithms sometimes employ a two-stage processing scheme, wherein the signal is first mapped to an intermediate low-dimensional parametric description after which the parameters are mapped to vectors in codebooks trained on, for exam- ple, individual noise...

  14. General n-dimensional quadrature transform and its application to interferogram demodulation.

    Science.gov (United States)

    Servin, Manuel; Quiroga, Juan Antonio; Marroquin, Jose Luis

    2003-05-01

    Quadrature operators are useful for obtaining the modulating phase phi in interferometry and temporal signals in electrical communications. In carrier-frequency interferometry and electrical communications, one uses the Hilbert transform to obtain the quadrature of the signal. In these cases the Hilbert transform gives the desired quadrature because the modulating phase is monotonically increasing. We propose an n-dimensional quadrature operator that transforms cos(phi) into -sin(phi) regardless of the frequency spectrum of the signal. With the quadrature of the phase-modulated signal, one can easily calculate the value of phi over all the domain of interest. Our quadrature operator is composed of two n-dimensional vector fields: One is related to the gradient of the image normalized with respect to local frequency magnitude, and the other is related to the sign of the local frequency of the signal. The inner product of these two vector fields gives us the desired quadrature signal. This quadrature operator is derived in the image space by use of differential vector calculus and in the frequency domain by use of a n-dimensional generalization of the Hilbert transform. A robust numerical algorithm is given to find the modulating phase of two-dimensional single-image closed-fringe interferograms by use of the ideas put forward.

  15. ''Vanishing theorem'' for a positive holomorphic vector bundle of undefined rank

    International Nuclear Information System (INIS)

    Le Potier, J.

    1974-01-01

    Let M ba a compact complex manifold of dimension n and let E→M be a holomorphic vector bundle over M. Theorem: If E is positive of rank r and if Hsup(p,q)(M,E) is the cohomology of type (p,q) of M with values in E, then Hsup(p,q)(M,E) = O as soon as p+q >=n+r. If r = 1, this is the ''precise vanishing theorem'' due to Kodaira and Nakano; the present paper contains a proof of the general case

  16. Two-dimensional analytic weighting functions for limb scattering

    Science.gov (United States)

    Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.

    2017-10-01

    Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.

  17. UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.

    Science.gov (United States)

    Chang, Kai; Xia, Yuanqing; Huang, Kaoli

    2016-01-01

    This paper considers the artificial potential field method combined with rotational vectors for a general problem of multi-unmanned aerial vehicle (UAV) systems tracking a moving target in dynamic three-dimensional environment. An attractive potential field is generated between the leader and the target. It drives the leader to track the target based on the relative position of them. The other UAVs in the formation are controlled to follow the leader by the attractive control force. The repulsive force affects among the UAVs to avoid collisions and distribute the UAVs evenly on the spherical surface whose center is the leader-UAV. Specific orders or positions of the UAVs are not required. The trajectories of avoidance obstacle can be obtained through two kinds of potential field with rotation vectors. Every UAV can choose the optimal trajectory to avoid the obstacle and reconfigure the formation after passing the obstacle. Simulations study on UAV are presented to demonstrate the effectiveness of proposed method.

  18. Symmetric vectors and algebraic classification

    International Nuclear Information System (INIS)

    Leibowitz, E.

    1980-01-01

    The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed

  19. Study on two-dimensional POISSON design of large-scale FFAG magnet

    International Nuclear Information System (INIS)

    Ouyang Huafu

    2006-01-01

    In order to decrease the edge effect of the field, the designed magnetic field distribution in a large-scale FFAG magnet is realized by both the trim coil and the shape of the magnet pole-face. Through two-dimensional POISSON simulations, the distribution about the current and the position of the trim coil and the shape of the magnet pole are determined. In order to facilitate the POISSON design, two codes are writteen to automatically adjust the current and the position of the trim coil and the shape of magnet pole-face appeared in the POISSON input file. With the two codes, the efficiency of POISSON simulations is improved and the mistakes which might occur in writing and adjusting the POISSON input file manually could be avoided. (authors)

  20. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    Science.gov (United States)

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  1. Three-dimensional conformal breast irradiation in the prone position

    Directory of Open Access Journals (Sweden)

    C. Kurtman

    2003-10-01

    Full Text Available The prone position can be used for the planning of adjuvant radiotherapy after conservative breast surgery in order to deliver less irradiation to lung and cardiac tissue. In the present study, we compared the results of three-dimensional conformal radiotherapy planning for five patients irradiated in the supine and prone position. Tumor stage was T1N0M0 in four patients and T1N1M0 in one. All patients had been previously submitted to conservative breast surgery. Breast size was large in three patients and moderate in the other two. Irradiation in the prone position was performed using an immobilization foam pad with a hole cut into it to accommodate the breast so that it would hang down away from the chest wall. Dose-volume histograms showed that mean irradiation doses reaching the ipsilateral lung were 8.3 ± 3.6 Gy with the patient in the supine position and 1.4 ± 1.0 Gy with the patient in the prone position (P = 0.043. The values for the contralateral lung were 1.3 ± 0.7 and 0.3 ± 0.1 Gy (P = 0.043 and the values for cardiac tissue were 4.6 ± 1.6 and 3.0 ± 1.7 Gy (P = 0.079, respectively. Thus, the dose-volume histograms demonstrated that lung tissue irradiation was significantly lower with the patient in the prone position than in the supine position. Large-breasted women appeared to benefit most from irradiation in the prone position. Prone position breast irradiation appears to be a simple and effective alternative to the conventional supine position for patients with large breasts, since they are subjected to lower pulmonary doses which may cause less pulmonary side effects in the future.

  2. Positive, Neutral, and Negative Mass-Charges in General Relativity

    Directory of Open Access Journals (Sweden)

    Borissova L.

    2006-07-01

    Full Text Available As shown, any four-dimensional proper vector has two observable projections onto time line, attributed to our world and the mirror world (for a mass-bearing particle, the projections posses are attributed to positive and negative mass-charges. As predicted, there should be a class of neutrally mass-charged particles that inhabit neither our world nor the mirror world. Inside the space-time area (membrane the space rotates at the light speed, and all particles move at as well the light speed. So, the predicted particles of the neutrally mass-charged class should seem as light-like vortices.

  3. Functional inks and printing of two-dimensional materials.

    Science.gov (United States)

    Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique

    2018-05-08

    Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.

  4. Vector velocity estimation using directional beam forming and cross-correlation

    DEFF Research Database (Denmark)

    2000-01-01

    The two-dimensional velocity vector using a pulsed ultrasound field can be determined with the invention. The method uses a focused ultrasound field along the velocity direction for probing the moving medium under investigation. Several pulses are emitted and the focused received fields along...

  5. K-FIX: a computer program for transient, two-dimensional, two-fluid flow. THREED: an extension of the K-FIX code for three-dimensional calculations

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1978-10-01

    The transient, two-dimensional, two-fluid code K-FIX has been extended to perform three-dimensional calculations. This capability is achieved by adding five modification sets of FORTRAN statements to the basic two-dimensional code. The modifications are listed and described, and a complete listing of the three-dimensional code is provided. Results of an example problem are provided for verification

  6. Automated analysis of two-dimensional positions and body lengths of earthworms (Oligochaeta); MimizuTrack.

    Science.gov (United States)

    Kodama, Naomi; Kimura, Toshifumi; Yonemura, Seiichiro; Kaneda, Satoshi; Ohashi, Mizue; Ikeno, Hidetoshi

    2014-01-01

    Earthworms are important soil macrofauna inhabiting almost all ecosystems. Their biomass is large and their burrowing and ingestion of soils alters soil physicochemical properties. Because of their large biomass, earthworms are regarded as an indicator of "soil heath". However, primarily because the difficulties in quantifying their behavior, the extent of their impact on soil material flow dynamics and soil health is poorly understood. Image data, with the aid of image processing tools, are a powerful tool in quantifying the movements of objects. Image data sets are often very large and time-consuming to analyze, especially when continuously recorded and manually processed. We aimed to develop a system to quantify earthworm movement from video recordings. Our newly developed program successfully tracked the two-dimensional positions of three separate parts of the earthworm and simultaneously output the change in its body length. From the output data, we calculated the velocity of the earthworm's movement. Our program processed the image data three times faster than the manual tracking system. To date, there are no existing systems to quantify earthworm activity from continuously recorded image data. The system developed in this study will reduce input time by a factor of three compared with manual data entry and will reduce errors involved in quantifying large data sets. Furthermore, it will provide more reliable measured values, although the program is still a prototype that needs further testing and improvement. Combined with other techniques, such as measuring metabolic gas emissions from earthworm bodies, this program could provide continuous observations of earthworm behavior in response to environmental variables under laboratory conditions. In the future, this standardized method will be applied to other animals, and the quantified earthworm movement will be incorporated into models of soil material flow dynamics or behavior in response to chemical

  7. Complex vector triads in spinor theory in Minkowski space

    International Nuclear Information System (INIS)

    Zhelnorovich, V.A.

    1990-01-01

    It is shown that tensor equations corresponding to the spinor Dirac equations represent a three-dimensional part of four-dimensional vector equations. The equations are formulated in an evidently invariant form in antisymmetric tensor components and in the corresponding components of a complex vector triad. A complete system of relativistically invariant tensor equations is ascertained

  8. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  9. A new estimator for vector velocity estimation [medical ultrasonics

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2001-01-01

    A new estimator for determining the two-dimensional velocity vector using a pulsed ultrasound field is derived. The estimator uses a transversely modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation...... be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce the influence of a spatial velocity spread. Examples for different velocity vectors and field conditions are shown using both simple and more complex field simulations. A relative accuracy of 10.1% is obtained...

  10. Topics in 2 + 1 and 3 + 1 dimensional physics

    International Nuclear Information System (INIS)

    Camperi, M.F.

    1994-01-01

    This thesis is concerned with the study of two different topics pertaining to two different dimensionalities in Field Theory. First, the issues Chern-Simons Gauge Field Theory in 2 + 1 dimensions, mainly as a field theoretic description of knots and links in three euclidean dimensions is addressed. The author provides both a non-perturbative and a perturbative approach, relating them in the large-N limit. A non-perturbative duality was found between the SU(N) k Chern-Simons theory and the SU(k) N one, providing a possible physical consequences of these constructions, notably the case of Fractional Statistics. Second, this thesis addresses the study of the so-called open-quotes vector modelclose quotes, written in the language of Chiral Perturbation Theory in the physical (3 + 1)-dimensional space time. This model was introduced as a possible way to study the physics of vector and pseudoscalar mesons and is based on the assumption that there is a limit of QCD where the vector mesons become massless. The author relates this model to the Hidden Symmetry Scheme, a model sharing the motivation with the previous one, but based on different assumptions. Considering only well established physical results as vector meson dominance, The thesis concludes that the vector model does not appear to be a good candidate for the effective description of vector mesons

  11. Magnetic structure of the quasi-two-dimensional compound CoTa{sub 2}O{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Kinast, E.J. [Universidade Estadual do Rio Grande do Sul, Rua 7 de Setembro, 1156, 90010-191 Porto Alegre (Brazil); Santos, C.A. dos [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre (Brazil); Schmitt, D. [Laboratoire de Geophysique Interne et Tectonophysique, Universite Joseph Fourier, B. P. 53, 38041 Grenoble Cedex 9 (France); Isnard, O., E-mail: olivier.isnard@grenoble.cnrs.f [Institut Neel, CNRS/Universite Jospeh Fourier, avenue des martyrs B. P. 166, 38042 Grenoble Cedex 9 (France); Gusmao, M.A.; Cunha, J.B.M. da [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre (Brazil)

    2010-02-18

    We report on a detailed investigation of magnetic properties of CoTa{sub 2}O{sub 6} using several techniques: neutron and X-ray diffraction, specific-heat, magnetic susceptibility, and magnetization measurements. The compound shows quasi-two-dimensional behavior due to its layered structure of alternating Co-O and Ta-O planes. We find that all magnetic moments lie entirely in the Co-O planes, along easy axes determined by the orientations of oxygen octahedra that surround the Co ions. The easy axes in successive magnetic planes have relative orientations that differ by 90{sup o}. Antiferromagnetic ordering is observed below 6.6 K, with propagation vectors ({+-}1/4,1/4,1/4) associated to the two non-equivalent sets of Co{sup 2+} ions, whose magnetic moments are perpendicularly oriented.

  12. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.

    Science.gov (United States)

    Wan, Ren-Gang; Zhang, Tong-Yi

    2011-12-05

    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  13. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  14. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  15. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Jiang, Ping; Ding, Chengyuan; Hu, Xiaoyong; Gong, Qihuang

    2007-01-01

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  16. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Ding, Chengyuan [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: qhgong@pku.edu.cn

    2007-04-02

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed.

  17. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  18. Multiple surface plasmon polaritons modes on thin silver film controlled by a two-dimensional lattice of silver nanodimers

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying; Jiang, Yongyuan, E-mail: jiangyy@hit.edu.cn [Harbin Institute of Technology, Department of Physics (China)

    2015-01-15

    We study the optical resonant spectrum of a two-dimensional periodic array of silver nanodimers on a thin silver film using multiple scattering formalism. The excited multiple plasmonic modes on two interfaces of the silver film reveal that the dispersion relationships of surface plasmon polaritons on metallic film are modified by doubly periodic lattice due to the fact that wave vectors matching conditions are satisfied. Moreover, we demonstrate that the plasmonic modes are directly controlled by the thickness of silver film, as well as the gap between nanodimer array and silver film. These effects provide novel high-efficient and steady way for excitation in future plasmonic nanodevices.

  19. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  20. Two-state vector formalism and quantum interference

    International Nuclear Information System (INIS)

    Hashmi, F A; Li, Fu; Zhu, Shi-Yao; Zubairy, M Suhail

    2016-01-01

    We show that two-state vector formalism (TSVF), applied to quantum systems that make use of delicate interference effects, can lead to paradoxes. We consider a few schemes of nested Mach–Zehnder interferometers that make use of destructive interference. A particular interpretation of TSVF applied to these schemes makes predictions that are contradictory to quantum theory and can not always be verified. Our results suggest that TSVF might not be a suitable tool to describe quantum systems that make use of delicate quantum interference effects. (paper)

  1. Application of vector CSAMT for the imaging of an active fault; CSAMT ho ni yoru danso no imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T; Fukuoka, K [Oyo Corp., Tokyo (Japan)

    1997-05-27

    With an objective to identify three-dimensionally resistivity in deep fault in the Mizunawa fault in Fukuoka Prefecture, a measurement was carried out by using the CSAMT method. The measurement was conducted by arranging seven traverse lines, each line having observation points installed at intervals of about 500 m. Among the 68 observation points in total, 33 points performed the vector measurement, and the remaining points the scaler measurement. For observation points having performed the vector measurement, polarized wave eclipses were depicted in the electric field to discuss which direction the current will prevail in. For analyses, a one-dimensional analysis was performed by using an inversion with smoothing restriction, and a two-dimensional analysis was conducted by using the finite element method based on the result of the former analysis. The vector measurement revealed that the structure in the vicinity of a fault was estimated to have become complex, and the two-dimensional analysis discovered that the Mizunawa fault is located on a relatively clear resistivity boundary. In addition, it was made clear that the high resistivity band may even be divided into two regions of about 200 ohm-m and about 1000 ohm-m. 2 refs., 7 figs.

  2. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; van Heijst, G.J.F.

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  3. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; Heijst, van G.J.F.

    2009-01-01

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  4. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao; Zhang, Hua

    2015-01-01

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards

  5. Time-dependent behavior of D-dimensional ideal quantum gases

    International Nuclear Information System (INIS)

    Oh, Suhk Kun

    1985-01-01

    The time-dependent behavior of D-dimensional ideal quantum gases is studied within the Mori formalism and its extension by Lee. In the classical limit, the time-dependent behavior is found to be independent of the dimensionality D of the system and is characterized by an extremely damped Gaussian relaxation function. However, at T=0K, it depends on the particular statistics adopted for the system and also on the dimensionality of the system. For the ideal Bose gas at T=0 K, complete Bose condensation is manifested by collapse of the dimensionality of a Hilbert space, spanned by basis vectors fsub(ν), from infinity to two. On the other hand, the dimensional effect for the ideal Fermi gas is exhibited by a change in Hilbert space structure, which is determined by the recurrants Δsub(ν) and the basis vectors fsub(ν) More specifically, the structural form of the recurrants is modified such that the relaxation function becomes more damped as D is increased. (Author)

  6. Landau quantization, Aharonov–Bohm effect and two-dimensional pseudoharmonic quantum dot around a screw dislocation

    International Nuclear Information System (INIS)

    Filgueiras, Cleverson; Rojas, Moises; Aciole, Gilson; Silva, Edilberto O.

    2016-01-01

    Highlights: • We derive the Schrödinger equation for an electron around a screw dislocation in the presence of an external magnetic field. • We consider the electron confined on an interface. • Modifications due to the screw dislocation on the light interband absorption coefficient and absorption threshold frequency. - Abstract: We investigate the influence of a screw dislocation on the energy levels and the wavefunctions of an electron confined in a two-dimensional pseudoharmonic quantum dot under the influence of an external magnetic field inside a dot and Aharonov–Bohm field inside a pseudodot. The exact solutions for energy eigenvalues and wavefunctions are computed as functions of applied uniform magnetic field strength, Aharonov–Bohm flux, magnetic quantum number and the parameter characterizing the screw dislocation, the Burgers vector. We investigate the modifications due to the screw dislocation on the light interband absorption coefficient and absorption threshold frequency. Two scenarios are possible, depending on if singular effects either manifest or not. We found that as the Burgers vector increases, the curves of frequency are pushed up towards of the growth of it. One interesting aspect which we have observed is that the Aharonov–Bohm flux can be tuned in order to cancel the screw effect of the model.

  7. Landau quantization, Aharonov–Bohm effect and two-dimensional pseudoharmonic quantum dot around a screw dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Filgueiras, Cleverson, E-mail: cleverson.filgueiras@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000, Lavras, MG (Brazil); Rojas, Moises, E-mail: moises.leyva@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000, Lavras, MG (Brazil); Aciole, Gilson [Unidade Acadêmica de Física, Universidade Federal de Campina Grande, POB 10071, 58109-970, Campina Grande, PB (Brazil); Silva, Edilberto O., E-mail: edilberto.silva@ufma.br [Departamento de Física, Universidade Federal do Maranhão, 65085-580, São Luís, MA (Brazil)

    2016-11-25

    Highlights: • We derive the Schrödinger equation for an electron around a screw dislocation in the presence of an external magnetic field. • We consider the electron confined on an interface. • Modifications due to the screw dislocation on the light interband absorption coefficient and absorption threshold frequency. - Abstract: We investigate the influence of a screw dislocation on the energy levels and the wavefunctions of an electron confined in a two-dimensional pseudoharmonic quantum dot under the influence of an external magnetic field inside a dot and Aharonov–Bohm field inside a pseudodot. The exact solutions for energy eigenvalues and wavefunctions are computed as functions of applied uniform magnetic field strength, Aharonov–Bohm flux, magnetic quantum number and the parameter characterizing the screw dislocation, the Burgers vector. We investigate the modifications due to the screw dislocation on the light interband absorption coefficient and absorption threshold frequency. Two scenarios are possible, depending on if singular effects either manifest or not. We found that as the Burgers vector increases, the curves of frequency are pushed up towards of the growth of it. One interesting aspect which we have observed is that the Aharonov–Bohm flux can be tuned in order to cancel the screw effect of the model.

  8. The noise analysis and optimum filtering techniques for a two-dimensional position sensitive orthogonal strip gamma ray detector employing resistive charge division

    International Nuclear Information System (INIS)

    Gerber, M.S.; Muller, D.W.

    1976-01-01

    The analysis of an orthogonal strip, two-dimensional position sensitive high purity germanium gamma ray detector is discussed. Position sensitivity is obtained by connecting each electrode strip on the detector to a resistor network. Charge, entering the network, divides in relation to the resistance between its entry point and the virtual earth points of the charge sensitive preamplifiers located at the end of each resistor network. The difference of the voltage pulses at the output of each preamplifier is proportional to the position at which the charge entered the resistor network and the sum of the pulse is proportional to the energy of the detected gamma ray. The analysis and spatial noise resolution is presented for this type of position sensitive detector. The results of the analysis show that the position resolution is proportional to the square root of the filter amplifier's output pulse time constant and that for energy measurement the resolution is maximized at the filter amplifier's noise corner time constant. The design of the electronic noise filtering system for the prototype gamma ray camera was based on the mathematical energy and spatial resolution equations. For the spatial channel a Gaussian trapezoidal filtering system was developed. Gaussian filtering was used for the energy channel. The detector noise model was verified by taking rms noise measurements of the filtered energy and spatial pulses from resistive readout charge dividing detectors. These measurements were within 10% of theory. (Auth.)

  9. Development and applications of a two-dimensional tip-tilting stage system with nanoradian-level positioning resolution

    Energy Technology Data Exchange (ETDEWEB)

    Shu Deming, E-mail: shu@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Lee, Wah-Keat; Liu, Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Ice, Gene E. [MST Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6132 (United States); Shvyd' ko, Yuri; Kim, Kwang-Je [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    In this paper, designs of a novel rotary weak-link stage for a vertical rotation axis and a two-dimensional tip-tilting system are presented. Applications of these new stage systems include: an advanced X-ray stereo imaging instrument for particle tracking velocimetry, an alignment stage system for hard X-ray nano-focusing Montel mirror optics, and an ultra-precision crystal manipulator for cryo-cooling optical cavities of an X-ray free-electron-laser oscillator (XFELO).

  10. Dynamics of vector dark soliton induced by the Rabi coupling in one-dimensional trapped Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Liu, Chao-Fei; Lu, Min; Liu, Wei-Qing

    2012-01-01

    The Rabi coupling between two components of Bose–Einstein condensates is used to controllably change ordinary dark soliton into dynamic vector dark soliton or ordinary vector dark soliton. When all inter- and intraspecies interactions are equal, the dynamic vector dark soliton is exactly constructed by two sub-dark-solitons, which oscillate with the same velocity and periodically convert with each other. When the interspecies interactions deviate from the intraspecies ones, the whole soliton can maintain its essential shape, but the sub-dark-soliton becomes inexact or is broken. This study indicates that the Rabi coupling can be used to obtain various vector dark solitons. -- Highlights: ► We consider the Rabi coupling to affect the dark soliton in BECs. ► We examine the changes of the initial dark solitons. ► The structure of the soliton depends on the inter- and intraspecies interactions strength. ► The Rabi coupling can be used to obtain various vector dark solitons.

  11. An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms

    International Nuclear Information System (INIS)

    Sá, Lucas

    2017-01-01

    Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism. (paper)

  12. Solution of the two-dimensional spectral factorization problem

    Science.gov (United States)

    Lawton, W. M.

    1985-01-01

    An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.

  13. Computational study of energy transfer in two-dimensional J-aggregates

    International Nuclear Information System (INIS)

    Gallos, Lazaros K.; Argyrakis, Panos; Lobanov, A.; Vitukhnovsky, A.

    2004-01-01

    We perform a computational analysis of the intra- and interband energy transfer in two-dimensional J-aggregates. Each aggregate is represented as a two-dimensional array (LB-film or self-assembled film) of two kinds of cyanine dyes. We consider the J-aggregate whose J-band is located at a shorter wavelength to be a donor and an aggregate or a small impurity with longer wavelength to be an acceptor. Light absorption in the blue wing of the donor aggregate gives rise to the population of its excitonic states. The depopulation of these states is possible by (a) radiative transfer to the ground state (b) intraband energy transfer, and (c) interband energy transfer to the acceptor. We study the dependence of energy transfer on properties such as the energy gap, the diagonal disorder, and the exciton-phonon interaction strength. Experimentally observable parameters, such as the position and form of luminescence spectrum, and results of the kinetic spectroscopy measurements strongly depend upon the density of states in excitonic bands, rates of energy exchange between states and oscillator strengths for luminescent transitions originating from these states

  14. Method of composing two-dimensional scanned spectra observed by the New Vacuum Solar Telescope

    Science.gov (United States)

    Cai, Yun-Fang; Xu, Zhi; Chen, Yu-Chao; Xu, Jun; Li, Zheng-Gang; Fu, Yu; Ji, Kai-Fan

    2018-04-01

    In this paper we illustrate the technique used by the New Vacuum Solar Telescope (NVST) to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observations involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude can reach 1.3″ due to the Earth’s atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with scanned spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Hα line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sampling and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. A physical quantity, such as the line-of-sight velocities in multiple layers of the solar atmosphere, is also inferred from the re-arranged spectrum, demonstrating the advantage of this technique.

  15. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  16. Two-hadron saturation for the pseudoscalar–vector–vector correlator and phenomenological applications

    Energy Technology Data Exchange (ETDEWEB)

    Husek, Tomáš, E-mail: husek@ipnp.mff.cuni.cz [Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Charles University, V Holešovičkách 2, Prague 8 (Czech Republic); Leupold, Stefan, E-mail: stefan.leupold@physics.uu.se [Institutionen för Fysik och Astronomi, Uppsala Universitet, Box 516, 75120, Uppsala (Sweden)

    2015-12-12

    The pseudoscalar–vector–vector correlator is constructed using two meson multiplets in the vector and two in the pseudoscalar channel. The parameters are constrained by the operator product expansion at leading order where two or all three momenta are considered as large. Demanding in addition the Brodsky–Lepage limit one obtains (in the chiral limit) a pion-vector-vector (πVV) correlator with only one free parameter. The singly virtual pion transition form factor F{sub π{sup 0}γγ{sup ∗}} and the decay width of ω→π{sup 0}γ are independent of this parameter and can serve as cross-checks of the results. The free parameter is determined from a fit of the ω–π transition form factor F{sub π{sup 0}ωγ{sup ∗}}. The resulting πVV correlator is used to calculate the decay widths ω→π{sup 0}e{sup +}e{sup -} and ω→π{sup 0}μ{sup +}μ{sup -} and finally the widths of the rare decay π{sup 0}→e{sup +}e{sup -} and of the Dalitz decay π{sup 0}→e{sup +}e{sup -}γ. Incorporating radiative QED corrections the calculations of π{sup 0} decays are compared to the KTeV results. We find a deviation of 2 σ or less for the rare pion decay.

  17. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    OpenAIRE

    Nikola Stefanović

    2007-01-01

    In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic ...

  18. Infrared magneto-spectroscopy of two-dimensional and three-dimensional massless fermions: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Orlita, M., E-mail: milan.orlita@lncmi.cnrs.fr [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Faugeras, C.; Barra, A.-L.; Martinez, G.; Potemski, M. [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Basko, D. M. [LPMMC UMR 5493, Université Grenoble 1/CNRS, B.P. 166, 38042 Grenoble (France); Zholudev, M. S. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Gavrilenko, V. I. [Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Mikhailov, N. N.; Dvoretskii, S. A. [A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Neugebauer, P. [Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, C. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Institut Néel/CNRS-UJF BP 166, F-38042 Grenoble Cedex 9 (France); Heer, W. A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-21

    Here, we report on a magneto-optical study of two distinct systems hosting massless fermions—two-dimensional graphene and three-dimensional HgCdTe tuned to the zero band gap condition at the point of the semiconductor-to-semimetal topological transition. Both materials exhibit, in the quantum regime, a fairly rich magneto-optical response, which is composed from a series of intra- and interband inter-Landau level resonances with for massless fermions typical √(B) dependence. The impact of the system's dimensionality and of the strength of the spin-orbit interaction on the optical response is also discussed.

  19. One-dimensional versus two-dimensional electronic states in vicinal surfaces

    International Nuclear Information System (INIS)

    Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F

    2005-01-01

    Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d

  20. Densis. Densimetric representation of two-dimensional matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.

    1978-01-01

    Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)

  1. The zero-dimensional O(N) vector model as a benchmark for perturbation theory, the large-N expansion and the functional renormalization group

    International Nuclear Information System (INIS)

    Keitel, Jan; Bartosch, Lorenz

    2012-01-01

    We consider the zero-dimensional O(N) vector model as a simple example to calculate n-point correlation functions using perturbation theory, the large-N expansion and the functional renormalization group (FRG). Comparing our findings with exact results, we show that perturbation theory breaks down for moderate interactions for all N, as one should expect. While the interaction-induced shift of the free energy and the self-energy are well described by the large-N expansion even for small N, this is not the case for higher order correlation functions. However, using the FRG in its one-particle irreducible formalism, we see that very few running couplings suffice to get accurate results for arbitrary N in the strong coupling regime, outperforming the large-N expansion for small N. We further remark on how the derivative expansion, a well-known approximation strategy for the FRG, reduces to an exact method for the zero-dimensional O(N) vector model. (paper)

  2. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  3. Localization of vector field on dynamical domain wall

    Directory of Open Access Journals (Sweden)

    Masafumi Higuchi

    2017-03-01

    Full Text Available In the previous works (arXiv:1202.5375 and arXiv:1402.1346, the dynamical domain wall, where the four dimensional FRW universe is embedded in the five dimensional space–time, has been realized by using two scalar fields. In this paper, we consider the localization of vector field in three formulations. The first formulation was investigated in the previous paper (arXiv:1510.01099 for the U(1 gauge field. In the second formulation, we investigate the Dvali–Shifman mechanism (arXiv:hep-th/9612128, where the non-abelian gauge field is confined in the bulk but the gauge symmetry is spontaneously broken on the domain wall. In the third formulation, we investigate the Kaluza–Klein modes coming from the five dimensional graviton. In the Randall–Sundrum model, the graviton was localized on the brane. We show that the (5,μ components (μ=0,1,2,3 of the graviton are also localized on the domain wall and can be regarded as the vector field on the domain wall. There are, however, some corrections coming from the bulk extra dimension if the domain wall universe is expanding.

  4. Algebra of Complex Vectors and Applications in Electromagnetic Theory and Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Kundeti Muralidhar

    2015-08-01

    Full Text Available A complex vector is a sum of a vector and a bivector and forms a natural extension of a vector. The complex vectors have certain special geometric properties and considered as algebraic entities. These represent rotations along with specified orientation and direction in space. It has been shown that the association of complex vector with its conjugate generates complex vector space and the corresponding basis elements defined from the complex vector and its conjugate form a closed complex four dimensional linear space. The complexification process in complex vector space allows the generation of higher n-dimensional geometric algebra from (n — 1-dimensional algebra by considering the unit pseudoscalar identification with square root of minus one. The spacetime algebra can be generated from the geometric algebra by considering a vector equal to square root of plus one. The applications of complex vector algebra are discussed mainly in the electromagnetic theory and in the dynamics of an elementary particle with extended structure. Complex vector formalism simplifies the expressions and elucidates geometrical understanding of the basic concepts. The analysis shows that the existence of spin transforms a classical oscillator into a quantum oscillator. In conclusion the classical mechanics combined with zeropoint field leads to quantum mechanics.

  5. Atomic structure of a metal-supported two-dimensional germania film

    Science.gov (United States)

    Lewandowski, Adrián Leandro; Schlexer, Philomena; Büchner, Christin; Davis, Earl M.; Burrall, Hannah; Burson, Kristen M.; Schneider, Wolf-Dieter; Heyde, Markus; Pacchioni, Gianfranco; Freund, Hans-Joachim

    2018-03-01

    The growth and microscopic characterization of two-dimensional germania films is presented. Germanium oxide monolayer films were grown on Ru(0001) by physical vapor deposition and subsequent annealing in oxygen. We obtain a comprehensive image of the germania film structure by combining intensity-voltage low-energy electron diffraction (I/V-LEED) and ab initio density functional theory (DFT) analysis with atomic-resolution scanning tunneling microscopy (STM) imaging. For benchmarking purposes, the bare Ru(0001) substrate and the (2 ×2 )3 O covered Ru(0001) were analyzed with I/V-LEED with respect to previous reports. STM topographic images of the germania film reveal a hexagonal network where the oxygen and germanium atom positions appear in different imaging contrasts. For quantitative LEED, the best agreement has been achieved with DFT structures where the germanium atoms are located preferentially on the top and fcc hollow sites of the Ru(0001) substrate. Moreover, in these atomically flat germania films, local site geometries, i.e., tetrahedral building blocks, ring structures, and domain boundaries, have been identified, indicating possible pathways towards two-dimensional amorphous networks.

  6. Subjective figure reversal in two- and three-dimensional perceptual space.

    Science.gov (United States)

    Radilová, J; Radil-Weiss, T

    1984-08-01

    A permanently illuminated pattern of Mach's truncated pyramid can be perceived according to the experimental instruction given, either as a three-dimensional reversible figure with spontaneously changing convex and concave interpretation (in one experiment), or as a two-dimensional reversible figure-ground pattern (in another experiment). The reversal rate was about twice as slow, without the subjects being aware of it, if it was perceived as a three-dimensional figure compared to the situation when it was perceived as two-dimensional. It may be hypothetized that in the three-dimensional case, the process of perception requires more sequential steps than in the two-dimensional one.

  7. Two multi-dimensional uncertainty relations

    International Nuclear Information System (INIS)

    Skala, L; Kapsa, V

    2008-01-01

    Two multi-dimensional uncertainty relations, one related to the probability density and the other one related to the probability density current, are derived and discussed. Both relations are stronger than the usual uncertainty relations for the coordinates and momentum

  8. Mechanical exfoliation of two-dimensional materials

    Science.gov (United States)

    Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping

    2018-06-01

    Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.

  9. High-dimensional statistical inference: From vector to matrix

    Science.gov (United States)

    Zhang, Anru

    Statistical inference for sparse signals or low-rank matrices in high-dimensional settings is of significant interest in a range of contemporary applications. It has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. In this thesis, we consider several problems in including sparse signal recovery (compressed sensing under restricted isometry) and low-rank matrix recovery (matrix recovery via rank-one projections and structured matrix completion). The first part of the thesis discusses compressed sensing and affine rank minimization in both noiseless and noisy cases and establishes sharp restricted isometry conditions for sparse signal and low-rank matrix recovery. The analysis relies on a key technical tool which represents points in a polytope by convex combinations of sparse vectors. The technique is elementary while leads to sharp results. It is shown that, in compressed sensing, delta kA 0, delta kA < 1/3 + epsilon, deltak A + thetak,kA < 1 + epsilon, or deltatkA< √(t - 1) / t + epsilon are not sufficient to guarantee the exact recovery of all k-sparse signals for large k. Similar result also holds for matrix recovery. In addition, the conditions delta kA<1/3, deltak A+ thetak,kA<1, delta tkA < √(t - 1)/t and deltarM<1/3, delta rM+ thetar,rM<1, delta trM< √(t - 1)/ t are also shown to be sufficient respectively for stable recovery of approximately sparse signals and low-rank matrices in the noisy case. For the second part of the thesis, we introduce a rank-one projection model for low-rank matrix recovery and propose a constrained nuclear norm minimization method for stable recovery of low-rank matrices in the noisy case. The procedure is adaptive to the rank and robust against small perturbations. Both upper and lower bounds for the estimation accuracy under the Frobenius norm loss are obtained. The proposed estimator is shown to be rate-optimal under certain conditions. The

  10. Analysis of two-dimensional microdischarge distribution in dielectric-barrier discharges

    International Nuclear Information System (INIS)

    Chirokov, A; Gutsol, A; Fridman, A; Sieber, K D; Grace, J M; Robinson, K S

    2004-01-01

    The two-dimensional spatial distribution of microdischarges in atmospheric pressure dielectric-barrier discharges (DBDs) in air was studied. Experimental images of DBDs (Lichtenberg figures) were obtained using photostimulable phosphors. The storage phosphor imaging method takes advantage of the linear response of the phosphor for characterization of microdischarge intensity and position. A microdischarge interaction model in DBDs is proposed and a Monte Carlo simulation of microdischarge interactions in the discharge is presented. Comparison of modelled and experimental images indicates interactions and short-range structuring of microdischarge channels

  11. Magnetoresistance in two-dimensional array of Ge/Si quantum dots

    Science.gov (United States)

    Stepina, N. P.; Koptev, E. S.; Pogosov, A. G.; Dvurechenskii, A. V.; Nikiforov, A. I.; Zhdanov, E. Yu

    2012-07-01

    Magnetoresistance in two-dimensional array of Ge/Si was studied for a wide range of the conductance, where the transport regime changes from hopping to diffusive one. The behavior of magnetoresistance is similar for all samples; it is negative in weak fields and becomes positive with increasing of magnetic field. Negative magnetoresistance can be described in the frame of weak localization approach with suggestion that quantum interference contribution to the conductance is restricted not only by the phase breaking length but also by the localization length.

  12. Magnetoresistance in two-dimensional array of Ge/Si quantum dots

    International Nuclear Information System (INIS)

    Stepina, N P; Koptev, E S; Pogosov, A G; Dvurechenskii, A V; Nikiforov, A I; Zhdanov, E Yu

    2012-01-01

    Magnetoresistance in two-dimensional array of Ge/Si was studied for a wide range of the conductance, where the transport regime changes from hopping to diffusive one. The behavior of magnetoresistance is similar for all samples; it is negative in weak fields and becomes positive with increasing of magnetic field. Negative magnetoresistance can be described in the frame of weak localization approach with suggestion that quantum interference contribution to the conductance is restricted not only by the phase breaking length but also by the localization length.

  13. Analyzing three-dimensional position of region of interest using an image of contrast media using unilateral X-ray exposure

    International Nuclear Information System (INIS)

    Harauchi, Hajime; Gotou, Hiroshi; Tanooka, Masao

    1994-01-01

    Analyzing three-dimensional internal structure of object in an X-ray study is usually performed by using two or more of the incidents of an X-ray direction. In this report, we analyzed the three-dimensional position of tubes with a phantom by using both contrast media and imaging of one direction in the X-ray study. The concentration of the iodine in contrast media can be known by using the log-subtraction image of only the one-directional incident X-ray. Also the diameter of tube filled with contrast media is calculated by the concentration of iodine. So we can show the three-dimensional position of tubes geometrically, by the diameter of tube and the measured value of the film. We verified this method by an experiment according to the theory. (author)

  14. Experimental investigation of flow over two-dimensional multiple hill models.

    Science.gov (United States)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke

    2017-12-31

    The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Generalized vector calculus on convex domain

    Science.gov (United States)

    Agrawal, Om P.; Xu, Yufeng

    2015-06-01

    In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.

  16. A Visualization of Evolving Clinical Sentiment Using Vector Representations of Clinical Notes.

    Science.gov (United States)

    Ghassemi, Mohammad M; Mark, Roger G; Nemati, Shamim

    2015-09-01

    Our objective in this paper was to visualize the evolution of clinical language and sentiment with respect to several common population-level categories including: time in the hospital, age, mortality, gender and race. Our analysis utilized seven years of unstructured free text notes from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) database. The text data was partitioned by category and used to generate several high dimensional vector space representations. We generated visualizations of the vector spaces using Distributed Stochastic Neighbor Embedding (tSNE) and Principal Component Analysis (PCA). We also investigated representative words from clusters in the vector space. Lastly, we inferred the general sentiment of the clinical notes toward each parameter by gauging the average distance between positive and negative keywords and all other terms in the space. We found intriguing differences in the sentiment of clinical notes over time, outcome, and demographic features. We noted a decrease in the homogeneity and complexity of clusters over time for patients with poor outcomes. We also found greater positive sentiment for females, unmarried patients, and patients of African ethnicity.

  17. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  18. Toward lattice fractional vector calculus

    International Nuclear Information System (INIS)

    Tarasov, Vasily E

    2014-01-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)

  19. Toward lattice fractional vector calculus

    Science.gov (United States)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  20. Topological vector spaces and their applications

    CERN Document Server

    Bogachev, V I

    2017-01-01

    This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. In addition, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.

  1. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  2. Procedures for two-dimensional electrophoresis of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  3. Quantum oscillations in quasi-two-dimensional conductors

    CERN Document Server

    Galbova, O

    2002-01-01

    The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...

  4. Optical Two Dimensional Fourier Transform Spectroscopy of Layered Metal Dichalcogenides

    Science.gov (United States)

    Dey, P.; Paul, J.; Stevens, C. E.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.; Shan, J.; Karaiskaj, D.; Z. D. Kovalyuk; Z. R. Kudrynskyi Collaboration; A. H. Romero Collaboration; A. Cantarero Collaboration; D. J. Hilton Collaboration; J. Shan Collaboration

    2015-03-01

    Nonlinear two-dimensional Fourier transform (2DFT) measurements were used to study the mechanism of excitonic dephasing and probe the electronic structure of the excitonic ground state in layered metal dichalcogenides. Temperature-dependent 2DFT measurements were performed to probe exciton-phonon interactions. Excitation density dependent 2DFT measurements reveal exciton-exciton and exciton-carrier scattering, and the lower limit for the homogeneous linewidth of excitons on positively and negatively doped samples. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0012635.

  5. Third sound in one and two dimensional modulated structures

    International Nuclear Information System (INIS)

    Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.

    1996-01-01

    An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction

  6. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.

    2018-01-01

    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  7. Oracle Inequalities for High Dimensional Vector Autoregressions

    DEFF Research Database (Denmark)

    Callot, Laurent; Kock, Anders Bredahl

    This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number of parameters is of a much larger order...

  8. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  9. Positional and Dimensional Accuracy Assessment of Drone Images Geo-referenced with Three Different GPSs

    Science.gov (United States)

    Cao, C.; Lee, X.; Xu, J.

    2017-12-01

    Unmanned Aerial Vehicles (UAVs) or drones have been widely used in environmental, ecological and engineering applications in recent years. These applications require assessment of positional and dimensional accuracy. In this study, positional accuracy refers to the accuracy of the latitudinal and longitudinal coordinates of locations on the mosaicked image in reference to the coordinates of the same locations measured by a Global Positioning System (GPS) in a ground survey, and dimensional accuracy refers to length and height of a ground target. Here, we investigate the effects of the number of Ground Control Points (GCPs) and the accuracy of the GPS used to measure the GCPs on positional and dimensional accuracy of a drone 3D model. Results show that using on-board GPS and a hand-held GPS produce a positional accuracy on the order of 2-9 meters. In comparison, using a differential GPS with high accuracy (30 cm) improves the positional accuracy of the drone model by about 40 %. Increasing the number of GCPs can compensate for the uncertainty brought by the GPS equipment with low accuracy. In terms of the dimensional accuracy of the drone model, even with the use of a low resolution GPS onboard the vehicle, the mean absolute errors are only 0.04 m for height and 0.10 m for length, which are well suited for some applications in precision agriculture and in land survey studies.

  10. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.

    1985-01-01

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt

  11. A two-dimensional Zn coordination polymer with a three-dimensional supramolecular architecture

    Directory of Open Access Journals (Sweden)

    Fuhong Liu

    2017-10-01

    Full Text Available The title compound, poly[bis{μ2-4,4′-bis[(1,2,4-triazol-1-ylmethyl]biphenyl-κ2N4:N4′}bis(nitrato-κOzinc(II], [Zn(NO32(C18H16N62]n, is a two-dimensional zinc coordination polymer constructed from 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The ZnII cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl ligands, forming a distorted octahedral {ZnN4O2} coordination geometry. The linear 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl ligand links two ZnII cations, generating two-dimensional layers parallel to the crystallographic (132 plane. The parallel layers are connected by C—H...O, C—H...N, C—H...π and π–π stacking interactions, resulting in a three-dimensional supramolecular architecture.

  12. Multi-dimensional two-phase flow measurements in a large-diameter pipe using wire-mesh sensor

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa; Ueda, Nobuyuki

    2011-01-01

    The authors developed a method of measurement to determine the multi-dimensionality of two phase flow. A wire-mesh sensor (WMS) can acquire a void fraction distribution at a high temporal and spatial resolution and also estimate the velocity of a vertical rising flow by investigating the signal time-delay of the upstream WMS relative to downstream. Previously, one-dimensional velocity was estimated by using the same point of each WMS at a temporal resolution of 1.0 - 5.0 s. The authors propose to extend this time series analysis to estimate the multi-dimensional velocity profile via cross-correlation analysis between a point of upstream WMS and multiple points downstream. Bubbles behave in various ways according to size, which is used to classify them into certain groups via wavelet analysis before cross-correlation analysis. This method was verified by air-water straight and swirl flows within a large-diameter vertical pipe. A high-speed camera is used to set the parameter of cross-correlation analysis. The results revealed that for the rising straight and swirl flows, large scale bubbles tend to move to the center, while the small bubble is pushed to the outside or sucked into the space where the large bubbles existed. Moreover, it is found that this method can estimate the rotational component of velocity of the swirl flow as well as measuring the multi-dimensional velocity vector at high temporal resolutions of 0.2 s. (author)

  13. Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures.

    Science.gov (United States)

    Cheon, Gowoon; Duerloo, Karel-Alexander N; Sendek, Austin D; Porter, Chase; Chen, Yuan; Reed, Evan J

    2017-03-08

    Layered materials held together by weak interactions including van der Waals forces, such as graphite, have attracted interest for both technological applications and fundamental physics in their layered form and as an isolated single-layer. Only a few dozen single-layer van der Waals solids have been subject to considerable research focus, although there are likely to be many more that could have superior properties. To identify a broad spectrum of layered materials, we present a novel data mining algorithm that determines the dimensionality of weakly bonded subcomponents based on the atomic positions of bulk, three-dimensional crystal structures. By applying this algorithm to the Materials Project database of over 50,000 inorganic crystals, we identify 1173 two-dimensional layered materials and 487 materials that consist of weakly bonded one-dimensional molecular chains. This is an order of magnitude increase in the number of identified materials with most materials not known as two- or one-dimensional materials. Moreover, we discover 98 weakly bonded heterostructures of two-dimensional and one-dimensional subcomponents that are found within bulk materials, opening new possibilities for much-studied assembly of van der Waals heterostructures. Chemical families of materials, band gaps, and point groups for the materials identified in this work are presented. Point group and piezoelectricity in layered materials are also evaluated in single-layer forms. Three hundred and twenty-five of these materials are expected to have piezoelectric monolayers with a variety of forms of the piezoelectric tensor. This work significantly extends the scope of potential low-dimensional weakly bonded solids to be investigated.

  14. Velocity and Dispersion for a Two-Dimensional Random Walk

    International Nuclear Information System (INIS)

    Li Jinghui

    2009-01-01

    In the paper, we consider the transport of a two-dimensional random walk. The velocity and the dispersion of this two-dimensional random walk are derived. It mainly show that: (i) by controlling the values of the transition rates, the direction of the random walk can be reversed; (ii) for some suitably selected transition rates, our two-dimensional random walk can be efficient in comparison with the one-dimensional random walk. Our work is motivated in part by the challenge to explain the unidirectional transport of motor proteins. When the motor proteins move at the turn points of their tracks (i.e., the cytoskeleton filaments and the DNA molecular tubes), some of our results in this paper can be used to deal with the problem. (general)

  15. Two-dimensional polarimeter with a charge-coupled-device image sensor and a piezoelastic modulator.

    Science.gov (United States)

    Povel, H P; Keller, C U; Yadigaroglu, I A

    1994-07-01

    We present the first measurements and scientific observations of the solar photosphere obtained with a new two-dimensional polarimeter based on piezoelastic modulators and synchronous demodulation in a CCD imager. This instrument, which is developed for precision solar-vector polarimetry, contains a specially masked CCD that has every second row covered with an opaque mask. During exposure the charges are shifted back and forth between covered and light-sensitive rows synchronized with the modulation. In this way Stokes I and one of the other Stokes parameters can be recorded. Since the charge shifting is performed at frequencies well above the seeing frequencies and both polarization states are measured with the same pixel, highly sensitive and accurate polarimetry is achieved. We have tested the instrument in laboratory conditions as well as at three solar telescopes.

  16. Theory of the one- and two-dimensional electron gas

    International Nuclear Information System (INIS)

    Emery, V.J.

    1987-01-01

    Two topics are discussed: (1) the competition between 2k/sub F/ and 4k/sub F/ charge state waves in a one-dimensional electron gas and (2) a two-dimensional model of high T/sub c/ superconductivity in the oxides

  17. Calculus with vectors

    CERN Document Server

    Treiman, Jay S

    2014-01-01

    Calculus with Vectors grew out of a strong need for a beginning calculus textbook for undergraduates who intend to pursue careers in STEM. fields. The approach introduces vector-valued functions from the start, emphasizing the connections between one-variable and multi-variable calculus. The text includes early vectors and early transcendentals and includes a rigorous but informal approach to vectors. Examples and focused applications are well presented along with an abundance of motivating exercises. All three-dimensional graphs have rotatable versions included as extra source materials and may be freely downloaded and manipulated with Maple Player; a free Maple Player App is available for the iPad on iTunes. The approaches taken to topics such as the derivation of the derivatives of sine and cosine, the approach to limits, and the use of "tables" of integration have been modified from the standards seen in other textbooks in order to maximize the ease with which students may comprehend the material. Additio...

  18. Two-Sample Tests for High-Dimensional Linear Regression with an Application to Detecting Interactions.

    Science.gov (United States)

    Xia, Yin; Cai, Tianxi; Cai, T Tony

    2018-01-01

    Motivated by applications in genomics, we consider in this paper global and multiple testing for the comparisons of two high-dimensional linear regression models. A procedure for testing the equality of the two regression vectors globally is proposed and shown to be particularly powerful against sparse alternatives. We then introduce a multiple testing procedure for identifying unequal coordinates while controlling the false discovery rate and false discovery proportion. Theoretical justifications are provided to guarantee the validity of the proposed tests and optimality results are established under sparsity assumptions on the regression coefficients. The proposed testing procedures are easy to implement. Numerical properties of the procedures are investigated through simulation and data analysis. The results show that the proposed tests maintain the desired error rates under the null and have good power under the alternative at moderate sample sizes. The procedures are applied to the Framingham Offspring study to investigate the interactions between smoking and cardiovascular related genetic mutations important for an inflammation marker.

  19. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  20. Absence of effects of an in-plane magnetic field in a quasi-two-dimensional electron system

    Science.gov (United States)

    Brandt, F. T.; Sánchez-Monroy, J. A.

    2018-03-01

    The dynamics of a quasi-two-dimensional electron system (q2DES) in the presence of a tilted magnetic field is reconsidered employing the thin-layer method. We derive the effective equations for relativistic and nonrelativistic q2DESs. Through a perturbative expansion, we show that while the magnetic length is much greater than the confinement width, the in-plane magnetic field only affects the particle dynamics through the spin. Therefore, effects due to an in-plane magnetic vector potential reported previously in the literature for 2D quantum rings, 2D quantum dots and graphene are fictitious. In particular, the so-called pseudo chiral magnetic effect recently proposed in graphene is not realistic.

  1. Comparison of Two- and Three-Dimensional Methods for Analysis of Trunk Kinematic Variables in the Golf Swing.

    Science.gov (United States)

    Smith, Aimée C; Roberts, Jonathan R; Wallace, Eric S; Kong, Pui; Forrester, Stephanie E

    2016-02-01

    Two-dimensional methods have been used to compute trunk kinematic variables (flexion/extension, lateral bend, axial rotation) and X-factor (difference in axial rotation between trunk and pelvis) during the golf swing. Recent X-factor studies advocated three-dimensional (3D) analysis due to the errors associated with two-dimensional (2D) methods, but this has not been investigated for all trunk kinematic variables. The purpose of this study was to compare trunk kinematic variables and X-factor calculated by 2D and 3D methods to examine how different approaches influenced their profiles during the swing. Trunk kinematic variables and X-factor were calculated for golfers from vectors projected onto the global laboratory planes and from 3D segment angles. Trunk kinematic variable profiles were similar in shape; however, there were statistically significant differences in trunk flexion (-6.5 ± 3.6°) at top of backswing and trunk right-side lateral bend (8.7 ± 2.9°) at impact. Differences between 2D and 3D X-factor (approximately 16°) could largely be explained by projection errors introduced to the 2D analysis through flexion and lateral bend of the trunk and pelvis segments. The results support the need to use a 3D method for kinematic data calculation to accurately analyze the golf swing.

  2. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  3. Topological aspect of disclinations in two-dimensional crystals

    International Nuclear Information System (INIS)

    Wei-Kai, Qi; Tao, Zhu; Yong, Chen; Ji-Rong, Ren

    2009-01-01

    By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given. (the physics of elementary particles and fields)

  4. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  5. Stationary closed strings in five-dimensional flat spacetime

    Science.gov (United States)

    Igata, Takahisa; Ishihara, Hideki; Nishiwaki, Keisuke

    2012-11-01

    We investigate stationary rotating closed Nambu-Goto strings in five-dimensional flat spacetime. The stationary string is defined as a world sheet that is tangent to a timelike Killing vector. The Nambu-Goto equation of motion for the stationary string is reduced to the geodesic equation on the orbit space of the isometry group action generated by the Killing vector. We take a linear combination of a time-translation vector and space-rotation vectors as the Killing vector, and explicitly construct general solutions of stationary rotating closed strings in five-dimensional flat spacetime. We show a variety of their configurations and properties.

  6. Finding two-dimensional peaks

    International Nuclear Information System (INIS)

    Silagadze, Z.K.

    2007-01-01

    Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems

  7. General projective relativity and the vector-tensor gravitational field

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    In the general projective relativity, the induced 4-dimensional metric is symmetric in three cases, and we obtain the vector-tensor, the scalar-tensor, and the scalar-vector-tensor theories of gravitation. In this work we examine the vector-tensor theory, similar to the Veblen's theory, but with a different physical interpretation

  8. Two-dimensional nano-lattice in Fe-Co-Ni-Al-Cu alloys

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Ibragimova, E.M.; Khamraeva, R.N.; Rustamova, V.M.; Ummatov, H.D.

    2007-01-01

    Full text: The high coercive strength of the dispersionally solidified alloys on the base of Fe-Co-Ni-Al-Cu system appears as a result of the special thermomagnetic annealing, when particles of the strong magnetic phase are distinguished in non-magnetic matrix along an external magnetic field direction. The neutron studying allows one to reveal the correlation between magnetization and inclusion axes, and also existence of magnetic microcell and perfectness of the lattice. This work presents results of neutron diffraction study with a double-crystal spectrometer (0.145 nm). Plate like samples of size 18 12 4 mm 3 were cut from a single crystal of alloy UNDK35 T5 along (100) plane. Magnetic field of 6 kOe was applied perpendicular to the neutron beam. Zero-field spectrum had only random variation of the background. Under the applied magnetic field two maxima appeared at the angles of 12 and 24 minute. In the case of the magnetic field directed in parallel to the scattering vector, the two maxima disappeared as expected. It is evidence that nuclear scattering is less than magnetic one and the observed maxima correspond to (10) and (20) reflections from a two dimensional ferro-magnetic microcell. The cell parameter of the magnetic microcell was found 40.6 nm. The coherent scattering region size was 120-160 nm. The ferro-magnetic rod diameter estimated from the peak widths was 16 nm. The diffraction pattern for the demagnetized sample strongly differs from the initial magnetized sample, where a diffuse reflection was observed near Bragg reflection and related with residual magnetization. So, the magnetic inclusions created in the Fe-Co-Ni-Al-Cu system at the thermomagnetic annealing by means of disintegration of the solid solution are strong ferro-magnetic and one-domain. These particles form the two-dimensional magnetic microcell and interact each to other within 3-4 periods of the cell. (authors)

  9. Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Inampudi, Sandeep; Nazari, Mina; Forouzmand, Ali; Mosallaei, Hossein, E-mail: hosseinm@coe.neu.edu [Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 (United States)

    2016-01-14

    We present a comprehensive analysis of surface plasmon polariton dispersion characteristics associated with isotropic and anisotropic two-dimensional atomically thin layered materials (2D sheets) coupled to h-BN heterostructures. A scattering matrix based approach is presented to compute the electromagnetic fields and related dispersion characteristics of stacked layered systems composed of anisotropic 2D sheets and uniaxial bulk materials. We analyze specifically the surface plasmon polariton (SPP) dispersion characteristics in case of isolated and coupled two-dimensional layers with isotropic and anisotropic conductivities. An analysis based on residue theorem is utilized to identify optimum optical parameters (surface conductivity) and geometrical parameters (separation between layers) to maximize the SPP field at a given position. The effect of type and degree of anisotropy on the shapes of iso-frequency curves and propagation characteristics is discussed in detail. The analysis presented in this paper gives an insight to identify optimum setup to enhance the SPP field at a given position and in a given direction on the surface of two-dimensional materials.

  10. Quantum Communication Through a Two-Dimensional Spin Network

    International Nuclear Information System (INIS)

    Wang Zhaoming; Gu Yongjian

    2012-01-01

    We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.

  11. Two-dimensional wave propagation in layered periodic media

    KAUST Repository

    Quezada de Luna, Manuel

    2014-09-16

    We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.

  12. Efficient modeling of vector hysteresis using fuzzy inference systems

    International Nuclear Information System (INIS)

    Adly, A.A.; Abd-El-Hafiz, S.K.

    2008-01-01

    Vector hysteresis models have always been regarded as important tools to determine which multi-dimensional magnetic field-media interactions may be predicted. In the past, considerable efforts have been focused on mathematical modeling methodologies of vector hysteresis. This paper presents an efficient approach based upon fuzzy inference systems for modeling vector hysteresis. Computational efficiency of the proposed approach stems from the fact that the basic non-local memory Preisach-type hysteresis model is approximated by a local memory model. The proposed computational low-cost methodology can be easily integrated in field calculation packages involving massive multi-dimensional discretizations. Details of the modeling methodology and its experimental testing are presented

  13. Lorentz covariant tempered distributions in two-dimensional space-time

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1989-01-01

    The problem of describing Lorentz covariant distributions without any spectral condition has hitherto remained unsolved even for two-dimensional space-time. Attempts to solve this problem have already been made. Zharinov obtained an integral representation for the Laplace transform of Lorentz invariant distributions with support in the product of two-dimensional future light cones. However, this integral representation does not make it possible to obtain a complete description of the corresponding Lorentz invariant distributions. In this paper the author gives a complete description of Lorentz covariant distributions for two-dimensional space-time. No spectral conditions is assumed

  14. Impact of bowtie filter and object position on the two-dimensional noise power spectrum of a clinical MDCT system

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cardona, Daniel; Cruz-Bastida, Juan Pablo [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Budde, Adam; Hsieh, Jiang [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 and GE Healthcare, 3000 N Grandview Boulevard, Waukesha, Wisconsin 53188 (United States)

    2016-08-15

    Purpose: Noise characteristics of clinical multidetector CT (MDCT) systems can be quantified by the noise power spectrum (NPS). Although the NPS of CT has been extensively studied in the past few decades, the joint impact of the bowtie filter and object position on the NPS has not been systematically investigated. This work studies the interplay of these two factors on the two dimensional (2D) local NPS of a clinical CT system that uses the filtered backprojection algorithm for image reconstruction. Methods: A generalized NPS model was developed to account for the impact of the bowtie filter and image object location in the scan field-of-view (SFOV). For a given bowtie filter, image object, and its location in the SFOV, the shape and rotational symmetries of the 2D local NPS were directly computed from the NPS model without going through the image reconstruction process. The obtained NPS was then compared with the measured NPSs from the reconstructed noise-only CT images in both numerical phantom simulation studies and experimental phantom studies using a clinical MDCT scanner. The shape and the associated symmetry of the 2D NPS were classified by borrowing the well-known atomic spectral symbols s, p, and d, which correspond to circular, dumbbell, and cloverleaf symmetries, respectively, of the wave function of electrons in an atom. Finally, simulated bar patterns were embedded into experimentally acquired noise backgrounds to demonstrate the impact of different NPS symmetries on the visual perception of the object. Results: (1) For a central region in a centered cylindrical object, an s-wave symmetry was always present in the NPS, no matter whether the bowtie filter was present or not. In contrast, for a peripheral region in a centered object, the symmetry of its NPS was highly dependent on the bowtie filter, and both p-wave symmetry and d-wave symmetry were observed in the NPS. (2) For a centered region-ofinterest (ROI) in an off-centered object, the symmetry of

  15. Impact of bowtie filter and object position on the two-dimensional noise power spectrum of a clinical MDCT system

    International Nuclear Information System (INIS)

    Gomez-Cardona, Daniel; Cruz-Bastida, Juan Pablo; Li, Ke; Chen, Guang-Hong; Budde, Adam; Hsieh, Jiang

    2016-01-01

    Purpose: Noise characteristics of clinical multidetector CT (MDCT) systems can be quantified by the noise power spectrum (NPS). Although the NPS of CT has been extensively studied in the past few decades, the joint impact of the bowtie filter and object position on the NPS has not been systematically investigated. This work studies the interplay of these two factors on the two dimensional (2D) local NPS of a clinical CT system that uses the filtered backprojection algorithm for image reconstruction. Methods: A generalized NPS model was developed to account for the impact of the bowtie filter and image object location in the scan field-of-view (SFOV). For a given bowtie filter, image object, and its location in the SFOV, the shape and rotational symmetries of the 2D local NPS were directly computed from the NPS model without going through the image reconstruction process. The obtained NPS was then compared with the measured NPSs from the reconstructed noise-only CT images in both numerical phantom simulation studies and experimental phantom studies using a clinical MDCT scanner. The shape and the associated symmetry of the 2D NPS were classified by borrowing the well-known atomic spectral symbols s, p, and d, which correspond to circular, dumbbell, and cloverleaf symmetries, respectively, of the wave function of electrons in an atom. Finally, simulated bar patterns were embedded into experimentally acquired noise backgrounds to demonstrate the impact of different NPS symmetries on the visual perception of the object. Results: (1) For a central region in a centered cylindrical object, an s-wave symmetry was always present in the NPS, no matter whether the bowtie filter was present or not. In contrast, for a peripheral region in a centered object, the symmetry of its NPS was highly dependent on the bowtie filter, and both p-wave symmetry and d-wave symmetry were observed in the NPS. (2) For a centered region-ofinterest (ROI) in an off-centered object, the symmetry of

  16. Solution-Based Processing and Applications of Two-Dimensional Heterostructures

    Science.gov (United States)

    Hersam, Mark

    Two-dimensional materials have emerged as promising candidates for next-generation electronics and optoelectronics, but advances in scalable nanomanufacturing are required to exploit this potential in real-world technology. This talk will explore methods for improving the uniformity of solution-processed two-dimensional materials with an eye toward realizing dispersions and inks that can be deposited into large-area thin-films. In particular, density gradient ultracentrifugation allows the solution-based isolation of graphene, boron nitride, montmorillonite, and transition metal dichalcogenides (e.g., MoS2, WS2, ReS2, MoSe2, WSe2) with homogeneous thickness down to the atomically thin limit. Similarly, two-dimensional black phosphorus is isolated in organic solvents or deoxygenated aqueous surfactant solutions with the resulting phosphorene nanosheets showing field-effect transistor mobilities and on/off ratios that are comparable to micromechanically exfoliated flakes. By adding cellulosic polymer stabilizers to these dispersions, the rheological properties can be tuned by orders of magnitude, thereby enabling two-dimensional material inks that are compatible with a range of additive manufacturing methods including inkjet, gravure, screen, and 3D printing. The resulting solution-processed two-dimensional heterostructures show promise in several device applications including photodiodes, anti-ambipolar transistors, gate-tunable memristors, and heterojunction photovoltaics.

  17. Effects of friction on forced two-dimensional Navier-Stokes turbulence.

    Science.gov (United States)

    Blackbourn, Luke A K; Tran, Chuong V

    2011-10-01

    Large-scale dissipation mechanisms have been routinely employed in numerical simulations of two-dimensional turbulence to absorb energy at large scales, presumably mimicking the quasisteady picture of Kraichnan in an unbounded fluid. Here, "side effects" of such a mechanism--mechanical friction--on the small-scale dynamics of forced two-dimensional Navier-Stokes turbulence are elaborated by both theoretical and numerical analysis. Given a positive friction coefficient α, viscous dissipation of enstrophy has been known to vanish in the inviscid limit ν→0. This effectively renders the scale-neutral friction the only mechanism responsible for enstrophy dissipation in that limit. The resulting dynamical picture is that the classical enstrophy inertial range becomes a dissipation range in which the dissipation of enstrophy by friction mainly occurs. For each α>0, there exists a critical viscosity ν(c), which depends on physical parameters, separating the regimes of predominant viscous and frictional dissipation of enstrophy. It is found that ν(c)=[η'(1/3)/(Ck(f)(2))]exp[-η'(1/3)/(Cα)], where η' is half the enstrophy injection rate, k(f) is the forcing wave number, and C is a nondimensional constant (the Kraichnan-Batchelor constant). The present results have important theoretical and practical implications. Apparently, mechanical friction is a poor choice in numerical attempts to address fundamental issues concerning the direct enstrophy transfer in two-dimensional Navier-Stokes turbulence. Furthermore, as relatively strong friction naturally occurs on the surfaces and at lateral boundaries of experimental fluids as well as at the interfaces of shallow layers in geophysical fluid models, the frictional effects discussed in this study are crucial in understanding the dynamics of these systems.

  18. On the uncertainty relations for vector-valued operators

    International Nuclear Information System (INIS)

    Chistyakov, A.L.

    1976-01-01

    In analogy with the expression for the Heisenberg incertainty principle in terms of dispersions by means of the Weyl inequality, in the case of one-dimensional quantum mechanical quantities, the principle for many-dimensional quantities can be expressed in terms of generalized dispersions and covariance matrices by means of inequalities similar to the Weyl unequality. The proofs of these inequalities are given in an abstract form, not only for the physical vector quantities, but also for arbitrary vector-valued operators with commuting self-adjoint components

  19. Inter-layer Cooper pairing of two-dimensional electrons

    International Nuclear Information System (INIS)

    Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo

    1987-01-01

    The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)

  20. Time evolution of the eddy viscosity in two-dimensional navier-stokes flow

    Science.gov (United States)

    Chaves; Gama

    2000-02-01

    The time evolution of the eddy viscosity associated with an unforced two-dimensional incompressible Navier-Stokes flow is analyzed by direct numerical simulation. The initial condition is such that the eddy viscosity is isotropic and negative. It is shown by concrete examples that the Navier-Stokes dynamics stabilizes negative eddy viscosity effects. In other words, this dynamics moves monotonically the initial negative eddy viscosity to positive values before relaxation due to viscous term occurs.

  1. Two-dimensional simulation of positive and negative streamers in air

    International Nuclear Information System (INIS)

    Babaeva, N.Yu.; Naidis, G.V.

    1998-01-01

    The paper deals with 2D numerical simulation of positive and negative streamers in air at atmospheric pressure. The dynamics of an axially symmetric streamer based on a charged sphere is described by a coupled system of equations for the electric field and the density of charged particles. The results of simulation show that the production rate of radicals in short sphere-plane gaps depends only weakly on the discharge conditions, that the streamer velocity in uniform field depends linearly on the streamer length, and the field corresponding to the negative streamer propagation with a constant velocity is 2-3 times greater than that obtained with a positive streamer. (J.U.)

  2. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    Science.gov (United States)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that

  3. Correlation of acidic and basic carrier ampholyte and immobilized pH gradient two-dimensional gel electrophoresis patterns based on mass spectrometric protein identification

    DEFF Research Database (Denmark)

    Nawrocki, A; Larsen, Martin Røssel; Podtelejnikov, A V

    1998-01-01

    Separation of proteins on either carrier ampholyte-based or immobilized pH gradient-based two-dimensional (2-D) gels gives rise to electrophoretic patterns that are difficult to compare visually. In this paper we have used matrix-assisted laser desorption/ionization mass spectrometry (MALDI......-MS) to determine the identities of 335 protein spots in these two 2-D gel systems, including a substantial number of basic proteins which had never been identified before. Proteins that were identified in both gel systems allowed us to cross-reference the gel patterns. Vector analysis of these cross...

  4. Self-trapping of scalar and vector dipole solitary waves in Kerr media

    International Nuclear Information System (INIS)

    Zhong Weiping; Belic, Milivoj R.; Assanto, Gaetano; Malomed, Boris A.; Huang Tingwen

    2011-01-01

    We report solutions for expanding dipole-type optical solitary waves in two-dimensional Kerr media with the self-focusing nonlinearity, using exact analytical (Hirota) and numerical methods. Such localized beams carry intrinsic vorticity and exhibit symmetric shapes for both scalar and vector solitary modes. When vector beams are close to the scalar limit, simulations demonstrate their stability over propagation distances exceeding 50 diffraction lengths. In fact, the continuous expansion helps the vortical beams avoid the instability against the splitting, collapse, or decay, making them 'convectively stable' patterns.

  5. Spanning forests and the vector bundle Laplacian

    OpenAIRE

    Kenyon, Richard

    2011-01-01

    The classical matrix-tree theorem relates the determinant of the combinatorial Laplacian on a graph to the number of spanning trees. We generalize this result to Laplacians on one- and two-dimensional vector bundles, giving a combinatorial interpretation of their determinants in terms of so-called cycle rooted spanning forests (CRSFs). We construct natural measures on CRSFs for which the edges form a determinantal process. ¶ This theory gives a natural generalization of the spanning tre...

  6. Quasi-integrability and two-dimensional QCD

    International Nuclear Information System (INIS)

    Abdalla, E.; Mohayaee, R.

    1996-10-01

    The notion of integrability in two-dimensional QCD is discussed. We show that in spite of an infinite number of conserved charges, particle production is not entirely suppressed. This phenomenon, which we call quasi-integrability, is explained in terms of quantum corrections to the combined algebra of higher-conserved and spectrum-generating currents. We predict the qualitative form of particle production probabilities and verify that they are in agreement with numerical data. We also discuss four-dimensional self-dual Yang-Mills theory in the light of our results. (author). 25 refs, 4 figs, 1 tab

  7. Two-dimensional QCD in the Coulomb gauge

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Nefed'ev, A.V.

    2002-01-01

    Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru

  8. Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials

    DEFF Research Database (Denmark)

    Boll, Mads; Lotz, Mikkel Rønne; Hansen, Ole

    2014-01-01

    We demonstrate that the quasi-one-dimensional (1D) current transport, experimentally observed in graphene as measured by a collinear four-point probe in two electrode configurations A and B, can be interpreted using the sensitivity functions of the two electrode configurations (configurations...... A and B represents different pairs of electrodes chosen for current sources and potential measurements). The measured sheet resistance in a four-point probe measurement is averaged over an area determined by the sensitivity function. For a two-dimensional conductor, the sensitivity functions for electrode...... configurations A and B are different. But when the current is forced to flow through a percolation network, e.g., graphene with high density of extended defects, the two sensitivity functions become identical. This is equivalent to a four-point measurement on a line resistor, hence quasi-1D transport...

  9. Virasoro algebra with central charge c=1 on the horizon of a two-dimensional-Rindler space-time

    International Nuclear Information System (INIS)

    Moretti, Valter; Pinamonti, Nicola

    2004-01-01

    Using the holographic machinery built up in a previous work, we show that the hidden SL(2,R) symmetry of a scalar quantum field propagating in a Rindler space-time admits an enlargement in terms of a unitary positive-energy representation of Virasoro algebra defined in the Fock representation. That representation has central charge c=1. The Virasoro algebra of operators gets a manifest geometrical meaning if referring to the holographically associated quantum field theory on the horizon: It is nothing but a representation of the algebra of vector fields defined on the horizon equipped with a point at infinity. All that happens provided the Virasoro ground energy hcoloneμ 2 /2 vanishes and, in that case, the Rindler Hamiltonian is associated with a certain Virasoro generator. If a suitable regularization procedure is employed, for h=1/2, the ground state of that generator seems to correspond to a thermal state when examined in the Rindler wedge, taking the expectation value with respect to Rindler time. Finally, under Wick rotation in Rindler time, the pair of quantum field theories which are built up on the future and past horizon defines a proper two-dimensional conformal quantum field theory on a cylinder

  10. High-efficiency one-dimensional atom localization via two parallel standing-wave fields

    International Nuclear Information System (INIS)

    Wang, Zhiping; Wu, Xuqiang; Lu, Liang; Yu, Benli

    2014-01-01

    We present a new scheme of high-efficiency one-dimensional (1D) atom localization via measurement of upper state population or the probe absorption in a four-level N-type atomic system. By applying two classical standing-wave fields, the localization peak position and number, as well as the conditional position probability, can be easily controlled by the system parameters, and the sub-half-wavelength atom localization is also observed. More importantly, there is 100% detecting probability of the atom in the subwavelength domain when the corresponding conditions are satisfied. The proposed scheme may open up a promising way to achieve high-precision and high-efficiency 1D atom localization. (paper)

  11. Three dimensional (3d) transverse oscillation vector velocity ultrasound imaging

    DEFF Research Database (Denmark)

    2013-01-01

    as to traverse a field of view, and receive circuitry (306) configured to receive a two dimensional set of echoes produced in response to the ultrasound signal traversing structure in the field of view, wherein the structure includes flowing structures such as flowing blood cells, organ cells etc. A beamformer...

  12. Three-dimensional echocardiography of normal and pathologic mitral valve: a comparison with two-dimensional transesophageal echocardiography

    NARCIS (Netherlands)

    Salustri, A.; Becker, A. E.; van Herwerden, L.; Vletter, W. B.; ten Cate, F. J.; Roelandt, J. R.

    1996-01-01

    This study was done to ascertain whether three-dimensional echocardiography can facilitate the diagnosis of mitral valve abnormalities. The value of the additional information provided by three-dimensional echocardiography compared with two-dimensional multiplane transesophageal echocardiography for

  13. Three-dimensional tumor spheroids for in vitro analysis of bacteria as gene delivery vectors in tumor therapy.

    Science.gov (United States)

    Osswald, Annika; Sun, Zhongke; Grimm, Verena; Ampem, Grace; Riegel, Karin; Westendorf, Astrid M; Sommergruber, Wolfgang; Otte, Kerstin; Dürre, Peter; Riedel, Christian U

    2015-12-12

    Several studies in animal models demonstrated that obligate and facultative anaerobic bacteria of the genera Bifidobacterium, Salmonella, or Clostridium specifically colonize solid tumors. Consequently, these and other bacteria are discussed as live vectors to deliver therapeutic genes to inhibit tumor growth. Therapeutic approaches for cancer treatment using anaerobic bacteria have been investigated in different mouse models. In the present study, solid three-dimensional (3D) multicellular tumor spheroids (MCTS) of the colorectal adenocarcinoma cell line HT-29 were generated and tested for their potential to study prodrug-converting enzyme therapies using bacterial vectors in vitro. HT-29 MCTS resembled solid tumors displaying all relevant features with an outer zone of proliferating cells and hypoxic and apoptotic regions in the core. Upon incubation with HT-29 MCTS, Bifidobacterium bifidum S17 and Salmonella typhimurium YB1 selectively localized, survived and replicated in hypoxic areas inside MCTS. Furthermore, spores of the obligate anaerobe Clostridium sporogenes germinated in these hypoxic areas. To further evaluate the potential of MCTS to investigate therapeutic approaches using bacteria as gene delivery vectors, recombinant bifidobacteria expressing prodrug-converting enzymes were used. Expression of a secreted cytosine deaminase in combination with 5-fluorocytosine had no effect on growth of MCTS due to an intrinsic resistance of HT-29 cells to 5-fluorouracil, i.e. the converted drug. However, a combination of the prodrug CB1954 and a strain expressing a secreted chromate reductase effectively inhibited MCTS growth. Collectively, the presented results indicate that MCTS are a suitable and reliable model to investigate live bacteria as gene delivery vectors for cancer therapy in vitro.

  14. Identification of cardiac rhythm features by mathematical analysis of vector fields.

    Science.gov (United States)

    Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K

    2005-01-01

    Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.

  15. Probing exotic phases of interacting two-dimensional carriers using one-dimensional density modulation

    Science.gov (United States)

    Mueed, M. A.

    In this Thesis, we present low-temperature magnetotransport studies of two-dimensional (2D) electron and hole systems confined to GaAs quantum wells and subjected to a one-dimensional, periodic density modulation. The modulation is achieved through the piezo-electric effect in GaAs as we fabricate a periodic, strain-inducing superlattice on the sample surface. Under varying perpendicular magnetic field, whenever the carriers' cyclotron orbit becomes commensurate with the modulation period, the magnetoresistance exhibits a minimum value. The resulting oscillations, known as the commensurability oscillations, directly measure the carriers' Fermi wave vector. Imposing a density modulation thus allows us to study the Fermi contour properties of 2D electrons and holes near zero field, and composite fermions (CFs) near the half filling of the lowest Landau level, i.e., filling factor nu=1/2. The application of a parallel magnetic field (B||) also features extensively in the Thesis. First, we use commensurability oscillations to capture the B||-induced deformation and the eventual splitting of the Fermi contour of 2D electrons. We also deduce the scattering time anisotropy of hole-flux CFs whose Fermi contour is rendered anisotropic by B||. Moreover, we study the anisotropic (warped) Fermi contour of 2D holes and hole-flux CFs in wide quantum well samples at B||=0. The results provide evidence that CFs inherit Fermi contour properties from their zero-field counterparts. We further investigate the fate of CFs near the bilayer quantum Hall states at nu=1 and 1/2 induced by a large B||. We observe that the commensurability features of CFs near nu=1 are consistent with half the total carrier density, implying that CFs prefer to stay in separate layers and show a two-component behavior. In contrast, close to nu=1/2, CFs appear single-layer-like (single-component) as their commensurability features correspond to the total density. This finding sheds light on the different

  16. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  17. Graphene materials as 2D non-viral gene transfer vector platforms.

    Science.gov (United States)

    Vincent, M; de Lázaro, I; Kostarelos, K

    2017-03-01

    Advances in genomics and gene therapy could offer solutions to many diseases that remain incurable today, however, one of the critical reasons halting clinical progress is due to the difficulty in designing efficient and safe delivery vectors for the appropriate genetic cargo. Safety and large-scale production concerns counter-balance the high gene transfer efficiency achieved with viral vectors, while non-viral strategies have yet to become sufficiently efficient. The extraordinary physicochemical, optical and photothermal properties of graphene-based materials (GBMs) could offer two-dimensional components for the design of nucleic acid carrier systems. We discuss here such properties and their implications for the optimization of gene delivery. While the design of such vectors is still in its infancy, we provide here an exhaustive and up-to-date analysis of the studies that have explored GBMs as gene transfer vectors, focusing on the functionalization strategies followed to improve vector performance and on the biological effects attained.

  18. Intraoperative Vector Flow Imaging of the Heart

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse; Pedersen, Mads Møller

    2013-01-01

    The cardiac flow is complex and multidirectional, and difficult to measure with conventional Doppler ultrasound (US) methods due to the one-dimensional and angle-dependent velocity estimation. The vector velocity method Transverse Oscillation (TO) has been proposed as a solution to this. TO is im......The cardiac flow is complex and multidirectional, and difficult to measure with conventional Doppler ultrasound (US) methods due to the one-dimensional and angle-dependent velocity estimation. The vector velocity method Transverse Oscillation (TO) has been proposed as a solution to this....... TO is implemented on a conventional US scanner (Pro Focus 2202 UltraView, BK Medical) using a linear transducer (8670, BK Medical) and can provide real-time, angle-independent vector velocity estimates of the cardiac blood flow. During cardiac surgery, epicardiac US examinations using TO were performed on three...

  19. Classification of e-government documents based on cooperative expression of word vectors

    Science.gov (United States)

    Fu, Qianqian; Liu, Hao; Wei, Zhiqiang

    2017-03-01

    The effective document classification is a powerful technique to deal with the huge amount of e-government documents automatically instead of accomplishing them manually. The word-to-vector (word2vec) model, which converts semantic word into low-dimensional vectors, could be successfully employed to classify the e-government documents. In this paper, we propose the cooperative expressions of word vector (Co-word-vector), whose multi-granularity of integration explores the possibility of modeling documents in the semantic space. Meanwhile, we also aim to improve the weighted continuous bag of words model based on word2vec model and distributed representation of topic-words based on LDA model. Furthermore, combining the two levels of word representation, performance result shows that our proposed method on the e-government document classification outperform than the traditional method.

  20. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  1. Robust Pseudo-Hierarchical Support Vector Clustering

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Sjöstrand, Karl; Olafsdóttir, Hildur

    2007-01-01

    Support vector clustering (SVC) has proven an efficient algorithm for clustering of noisy and high-dimensional data sets, with applications within many fields of research. An inherent problem, however, has been setting the parameters of the SVC algorithm. Using the recent emergence of a method...... for calculating the entire regularization path of the support vector domain description, we propose a fast method for robust pseudo-hierarchical support vector clustering (HSVC). The method is demonstrated to work well on generated data, as well as for detecting ischemic segments from multidimensional myocardial...

  2. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.

    2001-01-01

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  3. Three-dimensional analysis of eddy current with the finite element method

    International Nuclear Information System (INIS)

    Takano, Ichiro; Suzuki, Yasuo

    1977-05-01

    The finite element method is applied to three-dimensional analysis of eddy current induced in a large Tokamak device (JT-60). Two techniques to study the eddy current are presented: those of ordinary vector potential and modified vector potential. The latter is originally developed for decreasing dimension of the global matrix. Theoretical treatment of these two is given. The skin effect for alternate current flowing in the circular loop of rectangular cross section is examined as an example of the modified vector potential technique, and the result is compared with analytical one. This technique is useful in analysis of the eddy current problem. (auth.)

  4. A three-dimensional field solutions of Halbach

    International Nuclear Information System (INIS)

    Chen Jizhong; Xiao Jijun; Zhang Yiming; Xu Chunyan

    2008-01-01

    A three-dimensional field solutions are presented for Halback cylinder magnet. Based on Ampere equivalent current methods, the permanent magnets are taken as distributing of current density. For getting the three-dimensional field solution of ideal polarized permanent magnets, the solution method entails the use of the vector potential and involves the closed-form integration of the free-space Green's function. The programmed field solution are ideal for performing rapid parametric studies of the dipole Halback cylinder magnets made from rare earth materials. The field solutions are verified by both an analytical two-dimensional algorithm and three-dimensional finite element software. A rapid method is presented for extensive analyzing and optimizing Halbach cylinder magnet. (authors)

  5. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  6. A two-stage preventive maintenance optimization model incorporating two-dimensional extended warranty

    International Nuclear Information System (INIS)

    Su, Chun; Wang, Xiaolin

    2016-01-01

    In practice, customers can decide whether to buy an extended warranty or not, at the time of item sale or at the end of the basic warranty. In this paper, by taking into account the moments of customers purchasing two-dimensional extended warranty, the optimization of imperfect preventive maintenance for repairable items is investigated from the manufacturer's perspective. A two-dimensional preventive maintenance strategy is proposed, under which the item is preventively maintained according to a specified age interval or usage interval, whichever occurs first. It is highlighted that when the extended warranty is purchased upon the expiration of the basic warranty, the manufacturer faces a two-stage preventive maintenance optimization problem. Moreover, in the second stage, the possibility of reducing the servicing cost over the extended warranty period is explored by classifying customers on the basis of their usage rates and then providing them with customized preventive maintenance programs. Numerical examples show that offering customized preventive maintenance programs can reduce the manufacturer's warranty cost, while a larger saving in warranty cost comes from encouraging customers to buy the extended warranty at the time of item sale. - Highlights: • A two-dimensional PM strategy is investigated. • Imperfect PM strategy is optimized by considering both two-dimensional BW and EW. • Customers are categorized based on their usage rates throughout the BW period. • Servicing cost of the EW is reduced by offering customized PM programs. • Customers buying the EW at the time of sale is preferred for the manufacturer.

  7. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...

  8. Two-dimensional turbulent flows on a bounded domain

    NARCIS (Netherlands)

    Kramer, W.

    2006-01-01

    Large-scale flows in the oceans and the atmosphere reveal strong similarities with purely two-dimensional flows. One of the most typical features is the cascade of energy from smaller flow scales towards larger scales. This is opposed to three-dimensional turbulence where larger flow structures

  9. Intrinsic two-dimensional states on the pristine surface of tellurium

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-05-01

    Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.

  10. The heavy quark form factors at two loops

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de; Marquard, P.; Rana, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Falcioni, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Nikhef, Amsterdam (Netherlands). Theory Group

    2017-12-15

    We compute the two-loop QCD corrections to the heavy quark form factors in case of the vector, axial-vector, scalar and pseudo-scalar currents up to second order in the dimensional parameter ε=(4-D)/2. These terms are required in the renormalization of the higher order corrections to these form factors.

  11. Adaptive nonseparable vector lifting scheme for digital holographic data compression.

    Science.gov (United States)

    Xing, Yafei; Kaaniche, Mounir; Pesquet-Popescu, Béatrice; Dufaux, Frédéric

    2015-01-01

    Holographic data play a crucial role in recent three-dimensional imaging as well as microscopic applications. As a result, huge amounts of storage capacity will be involved for this kind of data. Therefore, it becomes necessary to develop efficient hologram compression schemes for storage and transmission purposes. In this paper, we focus on the shifted distance information, obtained by the phase-shifting algorithm, where two sets of difference data need to be encoded. More precisely, a nonseparable vector lifting scheme is investigated in order to exploit the two-dimensional characteristics of the holographic contents. Simulations performed on different digital holograms have shown the effectiveness of the proposed method in terms of bitrate saving and quality of object reconstruction.

  12. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method

    International Nuclear Information System (INIS)

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere

  13. Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.

    2005-01-01

    Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications

  14. hdm: High-dimensional metrics

    OpenAIRE

    Chernozhukov, Victor; Hansen, Christian; Spindler, Martin

    2016-01-01

    In this article the package High-dimensional Metrics (\\texttt{hdm}) is introduced. It is a collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for (possibly many) low-dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and uniformly valid confidence intervals for regression coefficients on target variables (e...

  15. Construction of two-dimensional quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, S.; Kondracki, W.

    1987-12-01

    We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.

  16. TUTANK a two-dimensional neutron kinetics code

    International Nuclear Information System (INIS)

    Watts, M.G.; Halsall, M.J.; Fayers, F.J.

    1975-04-01

    TUTANK is a two-dimensional neutron kinetics code which treats two neutron energy groups and up to six groups of delayed neutron precursors. A 'theta differencing' method is used to integrate the time dependence of the equations. A position dependent exponential transformation on the time variable is available as an option, which in many circumstances can remove much of the time dependence, and thereby allow longer time steps to be taken. A further manipulation is made to separate the solutions of the neutron fluxes and the precursor concentrations. The spatial equations are based on standard diffusion theory, and their solution is obtained from alternating direction sweeps with a transverse buckling - the so-called ADI-B 2 method. Other features of the code include an elementary temperature feedback and heat removal treatment, automatic time step adjustment, a flexible method of specifying cross-section and heat transfer coefficient variations during a transient, and a restart facility which requires a minimal data specification. Full details of the code input are given. An example of the solution of a NEACRP benchmark for an LWR control rod withdrawal is given. (author)

  17. A two-dimensional Zn coordination polymer with a three-dimensional supra-molecular architecture.

    Science.gov (United States)

    Liu, Fuhong; Ding, Yan; Li, Qiuyu; Zhang, Liping

    2017-10-01

    The title compound, poly[bis-{μ 2 -4,4'-bis-[(1,2,4-triazol-1-yl)meth-yl]biphenyl-κ 2 N 4 : N 4' }bis-(nitrato-κ O )zinc(II)], [Zn(NO 3 ) 2 (C 18 H 16 N 6 ) 2 ] n , is a two-dimensional zinc coordination polymer constructed from 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Zn II cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligands, forming a distorted octa-hedral {ZnN 4 O 2 } coordination geometry. The linear 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligand links two Zn II cations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C-H⋯O, C-H⋯N, C-H⋯π and π-π stacking inter-actions, resulting in a three-dimensional supra-molecular architecture.

  18. Properties of Vector Preisach Models

    Science.gov (United States)

    Kahler, Gary R.; Patel, Umesh D.; Torre, Edward Della

    2004-01-01

    This paper discusses rotational anisotropy and rotational accommodation of magnetic particle tape. These effects have a performance impact during the reading and writing of the recording process. We introduce the reduced vector model as the basis for the computations. Rotational magnetization models must accurately compute the anisotropic characteristics of ellipsoidally magnetizable media. An ellipticity factor is derived for these media that computes the two-dimensional magnetization trajectory for all applied fields. An orientation correction must be applied to the computed rotational magnetization. For isotropic materials, an orientation correction has been developed and presented. For anisotropic materials, an orientation correction is introduced.

  19. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  20. Exact lattice supersymmetry: The two-dimensional N=2 Wess-Zumino model

    International Nuclear Information System (INIS)

    Catterall, Simon; Karamov, Sergey

    2002-01-01

    We study the two-dimensional Wess-Zumino model with extended N=2 supersymmetry on the lattice. The lattice prescription we choose has the merit of preserving exactly a single supersymmetric invariance at finite lattice spacing a. Furthermore, we construct three other transformations of the lattice fields under which the variation of the lattice action vanishes to O(ga 2 ) where g is a typical interaction coupling. These four transformations correspond to the two Majorana supercharges of the continuum theory. We also derive lattice Ward identities corresponding to these exact and approximate symmetries. We use dynamical fermion simulations to check the equality of the mass gaps in the boson and fermion sectors and to check the lattice Ward identities. At least for weak coupling we see no problems associated with a lack of reflection positivity in the lattice action and find good agreement with theory. At strong coupling we provide evidence that problems associated with a lack of reflection positivity are evaded for small enough lattice spacing

  1. Three-dimensional magnetic properties of soft magnetic composite materials

    International Nuclear Information System (INIS)

    Lin, Z.W.; Zhu, J.G.

    2007-01-01

    A three-dimensional (3-D) magnetic property measurement system, which can control the three components of the magnetic flux density B vector and measure the magnetic field strength H vector in a cubic sample of soft magnetic material, has been developed and calibrated. This paper studies the relationship between the B and H loci in 3-D space, and the power losses features of a soft magnetic composite when the B loci are controlled to be circles with increasing magnitudes and ellipses evolving from a straight line to circle in three orthogonal planes. It is found that the B and H loci lie in the same magnetization plane, but the H loci and power losses strongly depend on the orientation, position, and process of magnetization. On the other hand, the H vector evolves into a unique locus, and the power loss approaches a unique value, respectively, when the B vector evolves into the round locus with the same magnitude from either a series of circles or ellipses

  2. Noninteracting beams of ballistic two-dimensional electrons

    International Nuclear Information System (INIS)

    Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.

    1991-01-01

    We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels

  3. Seasonal Variation in Biting Rates of Simulium damnosum sensu lato, Vector of Onchocerca volvulus, in Two Sudanese Foci.

    Directory of Open Access Journals (Sweden)

    Isam M A Zarroug

    June. There was a significant difference in mean monthly density of S. damnosum s.l. across the two foci in 2007-2008 (df = 3, F = 3.91, P = 0.011. Minimum temperature showed significant correlation with adult flies counts in four areas sampled; the adult counts were increased in Nady village (rs = 0.799 and were decreased in Kalasecal (rs = -0.676, Gumaiza (rs = -0.585, and Hilat Khateir (rs = -0.496. Maximum temperature showed positive correlation with black fly counts only in Galabat focus. Precipitation was significantly correlated with adult flies counts in Nady village, Abu-Hamed, but no significance was found in the rest of the sampled villages in both foci. Hourly-based distribution of black flies showed a unimodal pattern in Abu-Hamed with one peak (10:00-18:00, while a bimodal pattern with two peaks (07:00-10:00 and (14:00-18:00 was exhibited in Galabat.Transmission of onchocerciasis in both foci showed marked differences in seasonality, which may be attributed to ecology, microclimate and proximity of breeding sites to collection sites. The seasonal shifts between the two foci might be related to variations in climate zones. This information on black fly vector seasonality, ecology, distribution and biting activity has obvious implications in monitoring transmission levels to guide the national and regional onchocerciasis elimination programs in Sudan.

  4. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  5. Equilibrium: two-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7

  6. Real-Time GPU Implementation of Transverse Oscillation Vector Velocity Flow Imaging

    DEFF Research Database (Denmark)

    Bradway, David; Pihl, Michael Johannes; Krebs, Andreas

    2014-01-01

    Rapid estimation of blood velocity and visualization of complex flow patterns are important for clinical use of diagnostic ultrasound. This paper presents real-time processing for two-dimensional (2-D) vector flow imaging which utilizes an off-the-shelf graphics processing unit (GPU). In this work...... vector flow acquisition takes 2.3 milliseconds seconds on an Advanced Micro Devices Radeon HD 7850 GPU card. The detected velocities are accurate to within the precision limit of the output format of the display routine. Because this tool was developed as a module external to the scanner’s built...

  7. Extended Polymorphism of Two-Dimensional Material

    NARCIS (Netherlands)

    Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro

    When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from

  8. A Transverse Oscillation Approach for Estimation of Three-Dimensional Velocity Vectors, Part I: Concept and Simulation Study

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2014-01-01

    A method for 3-D velocity vector estimation us - ing transverse oscillations is presented. The method employs a 2-D transducer and decouples the velocity estimation into three orthogonal components, which are estimated simultane - ously and from the same data. The validity of the method is invest......A method for 3-D velocity vector estimation us - ing transverse oscillations is presented. The method employs a 2-D transducer and decouples the velocity estimation into three orthogonal components, which are estimated simultane - ously and from the same data. The validity of the method...... is investigated by conducting simulations emulating a 32 × 32 matrix transducer. The results are evaluated using two per - formance metrics related to precision and accuracy. The study includes several parameters including 49 flow directions, the SNR, steering angle, and apodization types. The 49 flow direc...... - tions cover the positive octant of the unit sphere. In terms of accuracy, the median bias is −2%. The precision of v x and v y depends on the flow angle β and ranges from 5% to 31% rela - tive to the peak velocity magnitude of 1 m/s. For comparison, the range is 0.4 to 2% for v z . The parameter study...

  9. Two-dimensional nonlinear equations of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1985-01-01

    Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations

  10. Method and system for manipulating a digital representation of a three-dimensional object

    DEFF Research Database (Denmark)

    2010-01-01

    A method of manipulating a three-dimensional virtual building block model by means of two-dimensional cursor movements, the virtual building block model including a plurality of virtual building blocks each including a number of connection elements for connecting the virtual building block...... with another virtual building block according to a set of connection rules, the method comprising positioning by means of cursor movements in a computer display area representing a two-dimensional projection of said model, a two-dimensional projection of a first virtual building block to be connected...... to the structure, resulting in a two-dimensional position; determining, from the two-dimensional position, a number of three-dimensional candidate positions of the first virtual building block in the three-dimensional coordinate system; selecting one of said candidate positions based on the connection rules...

  11. Expression of Separate Proteins in the Same Plant Leaves and Cells Using Two Independent Virus-Based Gene Vectors

    Directory of Open Access Journals (Sweden)

    Maria R. Mendoza

    2017-11-01

    Full Text Available Plant viral vectors enable the expression of proteins at high levels in a relatively short time. For many purposes (e.g., cell biological interaction studies it may be desirable to express more than one protein in a single cell but that is often not feasible when using a single virus vector. Such a co-expression strategy requires the simultaneous delivery by two compatible and non-competitive viruses that can co-exist to each express a separate protein. Here, we report on the use of two agro-launchable coat-protein gene substitution GFP-expressing virus vector systems based on Tomato bushy stunt virus (TBSV referred to as TG, and Tobacco mosaic virus (TMV annotated as TRBO-G. TG expressed GFP in Nicotiana benthamiana, tomato, lettuce and cowpea, whereas expression from TRBO-G was detected only in the first two species. Upon co-infiltration of the two vectors co-expression was monitored by: molecular detection of the two slightly differently sized GFPs, suppressor-complementation assays, and using TG in combination with TRBO-RFP. All the results revealed that in N. benthamiana and tomato the TBSV and TMV vectors accumulated and expressed proteins in the same plants, the same leaves, and in the same cells. Therefore, co-expression by these two vectors provides a platform for fast and high level expression of proteins to study their cell biology or other properties.

  12. Anisotropic strain in YBa2Cu3O7-δ films analysed by deconvolution of two-dimensional intensity data

    International Nuclear Information System (INIS)

    Broetz, J.; Fuess, H.

    2001-01-01

    The influence of the instrumental resolution on two-dimensional reflection profiles of epitaxic YBa 2 Cu 3 O 7-δ films on SrTiO 3 (001) has been studied in order to investigate the strain in the superconducting films. The X-ray diffraction intensity data were obtained by two-dimensional scans in reciprocal space (q-scan). Since the reflection broadening caused by the apparatus differs for each position in reciprocal space, a highly crystalline substrate was used as a standard. Thus it was possible to measure a standard very close to the YBa 2 Cu 3 O 7-δ reflections in reciprocal space. The two-dimensional deconvolution of reflections by a new computer program revealed an anisotropic strain of the two twinning systems of the film. (orig.)

  13. A two-dimensional model for the study of interpersonal attraction.

    Science.gov (United States)

    Montoya, R Matthew; Horton, Robert S

    2014-02-01

    We describe a model for understanding interpersonal attraction in which attraction can be understood as a product of the initial evaluations we make about others. The model posits that targets are evaluated on two basic dimensions, capacity and willingness, such that affective and behavioral attraction result from evaluations of (a) a target's capacity to facilitate the perceiver's goals/needs and (b) a target's potential willingness to facilitate those goals/needs. The plausibility of the two-dimensional model of attraction is evaluated vis-à-vis the extant literature on various attraction phenomena including the reciprocity of liking effect, pratfall effect, matching hypothesis, arousal effects, and similarity effect. We conclude that considerable evidence across a wide range of phenomena supports the idea that interpersonal attraction is principally determined by inferences about the target's capacity and willingness.

  14. Applications of the Local Algebras of Vector Fields to the Modelling of Physical Phenomena

    OpenAIRE

    Bayak, Igor V.

    2015-01-01

    In this paper we discuss the local algebras of linear vector fields that can be used in the mathematical modelling of physical space by building the dynamical flows of vector fields on eight-dimensional cylindrical or toroidal manifolds. It is shown that the topological features of the vector fields obey the Dirac equation when moving freely within the surface of a pseudo-sphere in the eight-dimensional pseudo-Euclidean space.

  15. Superintegrability on the two dimensional hyperboloid

    International Nuclear Information System (INIS)

    Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr

    1998-01-01

    This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out

  16. Few helium atoms in quasi two-dimensional space

    International Nuclear Information System (INIS)

    Kilic, Srecko; Vranjes, Leandra

    2003-01-01

    Two, three and four 3 He and 4 He atoms in quasi two-dimensional space above graphite and cesium surfaces and in 'harmonic' potential perpendicular to the surface have been studied. Using some previously examined variational wave functions and the Diffusion Monte Carlo procedure, it has been shown that all molecules: dimers, trimers and tetramers, are bound more strongly than in pure two- and three-dimensional space. The enhancement of binding with respect to unrestricted space is more pronounced on cesium than on graphite. Furthermore, for 3 He 3 ( 3 He 4 ) on all studied surfaces, there is an indication that the configuration of a dimer and a 'free' particle (two dimers) may be equivalently established

  17. Optimal conclusive teleportation of a d-dimensional two-particle unknown quantum state

    Institute of Scientific and Technical Information of China (English)

    Yang Yu-Guang; Wen Qiao-Yan; Zhu Fu-Chen

    2006-01-01

    A conclusive teleportation protocol of a d-dimensional two-particle unknown quantum state using three ddimensional particles in an arbitrary pure state is proposed. A sender teleports the unknown state conclusively to a receiver by using the positive operator valued measure(POVM) and introducing an ancillary qudit to perform the generalized Bell basis measurement. We calculate the optimal teleportation fidelity. We also discuss and analyse the reason why the information on the teleported state is lost in the course of the protocol.

  18. Quantum transport in new two-dimensional heterostructures: Thin films of topological insulators, phosphorene

    Science.gov (United States)

    Majidi, Leyla; Zare, Moslem; Asgari, Reza

    2018-06-01

    The unusual features of the charge and spin transport characteristics are investigated in new two-dimensional heterostructures. Intraband specular Andreev reflection is realized in a topological insulator thin film normal/superconducting junction in the presence of a gate electric field. Perfect specular electron-hole conversion is shown for different excitation energy values in a wide experimentally available range of the electric field and also for all angles of incidence when the excitation energy has a particular value. It is further demonstrated that the transmission probabilities of the incoming electrons from different spin subbands to the monolayer phosphorene ferromagnetic/normal/ferromagnetic (F/N/F) hybrid structure have different behavior with the angle of incidence and perfect transmission occurs at defined angles of incidence to the proposed structure with different length of the N region, and different alignments of magnetization vectors. Moreover, the sign change of the spin-current density is demonstrated by tuning the chemical potential and exchange field of the F region.

  19. Dynamic three-dimensional display of common congenital cardiac defects from reconstruction of two-dimensional echocardiographic images.

    Science.gov (United States)

    Hsieh, K S; Lin, C C; Liu, W S; Chen, F L

    1996-01-01

    Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.

  20. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.; Dey, P.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Tokumoto, T.; Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States); Reno, J. L. [CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-10-07

    The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.

  1. Positive Quasi Linear Operator Formulation

    International Nuclear Information System (INIS)

    Berry, L.A.; Jaeger, E.F.

    2005-01-01

    Expressions for the RF quasi-linear operator are biquadratic sums over the Fourier modes (or FLR equivalent) that describe the RF electric field with a kernel that is a function of the two wave vectors, k-vector L and k-vector R , in the sum. As a result of either an implicit or explicit average over field lines or flux surfaces, this kernel only depends on one parallel wave vector, conventionally k R -vector. When k-vector is an independent component of the representation for E, the sums are demonstrably positive. However, except for closed field line systems, k-vector is dependent on the local direction of the equilibrium magnetic field, and, empirically, the absorbed energy and quasi-linear diffusion coefficients are observed to have negative features. We have formally introduced an independent k-vector sum by Fourier transforming the RF electric field (assuming straight field lines) using a field-line-length coordinate. The resulting expression is positive. We have modeled this approach by calculating the quasi linear operator for 'modes' with fixed k-vector. We form these modes by discretizing k-vector and then assigning all of the Fourier components with k-vectorthat fall within a given k-vector bin to that k-vector mode. Results will be shown as a function of the number of bins. Future work will involve implementing the expressions derived from the Fourier transform and evaluating the dependence on field line length

  2. Local Patch Vectors Encoded by Fisher Vectors for Image Classification

    Directory of Open Access Journals (Sweden)

    Shuangshuang Chen

    2018-02-01

    Full Text Available The objective of this work is image classification, whose purpose is to group images into corresponding semantic categories. Four contributions are made as follows: (i For computational simplicity and efficiency, we directly adopt raw image patch vectors as local descriptors encoded by Fisher vector (FV subsequently; (ii For obtaining representative local features within the FV encoding framework, we compare and analyze three typical sampling strategies: random sampling, saliency-based sampling and dense sampling; (iii In order to embed both global and local spatial information into local features, we construct an improved spatial geometry structure which shows good performance; (iv For reducing the storage and CPU costs of high dimensional vectors, we adopt a new feature selection method based on supervised mutual information (MI, which chooses features by an importance sorting algorithm. We report experimental results on dataset STL-10. It shows very promising performance with this simple and efficient framework compared to conventional methods.

  3. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  4. On the ground state of the two-dimensional non-ideal Bose gas

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Yudson, V.I.

    1978-01-01

    The theory of the ground state of the two-dimensional non-ideal Bose gas is presented. The conditions for the validity of the ladder and the Bogolubov approximations are derived. These conditions ensure the existence of a Bose condensate in the ground state of two-dimensional systems. These conditions are different from the corresponding conditions for the three-dimensional case. The connection between the effective interaction and the two-dimensional scattering amplitude at some characteristic energy kappa 2 /2m (not equal to 0) is obtained (f(kappa = 0) = infinity in the two-dimensional case). (Auth.)

  5. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  6. Two-dimensional condensation of physi-sorbed methane on layer-like halides

    International Nuclear Information System (INIS)

    Nardon, Yves

    1972-01-01

    Two-dimensional condensation of methane in physi-sorbed layers has been studied from sets of stepped isotherms of methane on the cleavage plane of layer-like halides (FeCl 2 , CdCl 2 , NiBr 2 , CdBr 2 , FeI 2 , CaI 2 , CaI 2 and PbI 2 ) in most cases prepared by sublimation in a rapid current of inert gas. The vertical parts of the steps of adsorption isotherms correspond to the formation of successive monomolecular layers by two-dimensional condensation. Thermodynamic analysis of experimental results, has mainly emphasized the important effect of the potential relief of adsorbent surfaces, on both the structure of the physi-sorbed layers and the two-dimensional critical temperature. From its entropy, we conclude that the first layer is a (111) plane of f.c.c.: methane which becomes more loosely packed as the dimensional compatibility of the lattices of the adsorbent and adsorbate becomes poorer. Experimental values of the two-dimensional critical temperatures in the first, second and third layers have been determined, and interpreted on the following basis. An expansion of the layer induces a lowering of the two-dimensional critical temperature by decreasing the lateral interaction energy, while a localisation of the adsorbed molecules in potential wells, when possible, induces a rise of the two-dimensional critical temperature. (author) [fr

  7. Chitosan-based DNA delivery vector targeted to gonadotropin-releasing hormone (GnRH) receptor.

    Science.gov (United States)

    Boonthum, Chatwalee; Namdee, Katawut; Boonrungsiman, Suwimon; Chatdarong, Kaywalee; Saengkrit, Nattika; Sajomsang, Warayuth; Ponglowhapan, Suppawiwat; Yata, Teerapong

    2017-02-10

    The main purpose of this study was to investigate the application of modified chitosan as a potential vector for gene delivery to gonadotropin-releasing hormone receptor (GnRHR)-expressing cells. Such design of gene carrier could be useful in particular for gene therapy for cancers related to the reproductive system, gene disorders of sexual development, and contraception and fertility control. In this study, a decapeptide GnRH was successfully conjugated to chitosan (CS) as confirmed by proton nuclear magnetic resonance spectroscopy ( 1 H NMR) and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The synthesized GnRH-conjugated chitosan (GnRH-CS) was able to condense DNA to form positively charged nanoparticles and specifically deliver plasmid DNA to targeted cells in both two-dimensional (2D) and three-dimensional (3D) cell cultures systems. Importantly, GnRH-CS exhibited higher transfection activity compared to unmodified CS. In conclusion, GnRH-conjugated chitosan can be a promising carrier for targeted DNA delivery to GnRHR-expressing cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development of a Two-Dimensional Tracker with Plasma Panel Detector

    CERN Document Server

    AUTHOR|(CDS)2233132

    Plasma panel sensors are micropattern gaseous radiation detectors which are based on the technology of plasma display panels. This thesis summarizes the research that had been done on commercially available plasma display panels that were converted to plasma panel sensor prototypes and describes the construction of a two-dimensional tracker consisting of four of those prototypes, with one-dimensional readout on each, used to detect tracks of cosmic muons. A large amount of 2-point as well as 3 and 4-point tracks were detected. Qualitative analyses as well as Pearson’s χ2 tests are performed on the track angular distribution and on a histogram of the linearity measure of 3-point tracks to reject the hypothesis that these tracks result from completely random panel hits. Some RF noise effects contributing to false positives are ruled out, while it is shown that other effects can be ruled out only with a high-intensity minimum ionizing particle source. A significant part of the tracker construction was the dev...

  9. Conformal invariance and two-dimensional physics

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1993-01-01

    Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness

  10. Multisoliton formula for completely integrable two-dimensional systems

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1979-01-01

    For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations

  11. The blind student’s interpretation of two-dimensional shapes in geometry

    Science.gov (United States)

    Andriyani; Budayasa, I. K.; Juniati, D.

    2018-01-01

    The blind student’s interpretation of two-dimensional shapes represents the blind student’s mental image of two-dimensional shapes that they can’t visualize directly, which is related to illustration of the characteristics and number of edges and angles. The objective of this research is to identify the blind student’s interpretation of two-dimensional shapes. This research was an exploratory study with qualitative approach. A subject of this research is a sixth-grade student who experiencing total blind from the fifth grade of elementary school. Researchers interviewed the subject about his interpretation of two-dimensional shapes according to his thinking.The findings of this study show the uniqueness of blind students, who have been totally blind since school age, in knowing and illustrating the characteristics of edges and angles of two-dimensional shapes by utilizing visual experiences that were previously obtained before the blind. The result can inspire teachers to design further learning for development of blind student geometry concepts.

  12. A new approach to radiative transfer theory using Jones's vectors. I

    International Nuclear Information System (INIS)

    Fymat, A.L.; Vasudevan, R.

    1975-01-01

    Radiative transfer of partially polarized radiation in an anisotropically scattering, inhomogeneous atmosphere containing arbitrary polydispersion of particles is described using Jones's amplitude vectors and matrices. This novel approach exploits the close analogy between the quantum mechanical states of spin 1/2 systems and the polarization states of electromagnetic radiation described by Jones's vector, and draws on the methodology of such spin 1/2 systems. The complete equivalence between the transport equation for Jones's vectors and the classical radiative transfer equation for Stokes's intensity vectors is demonstrated in two independent ways after deriving the transport equations for the polarization coherency matrices and for the quaternions corresponding to the Jones's vectors. A compact operator formulation of the theory is provided, and used to derive the necessary equations for both a local and a global description of the transport of Jones's vectors. Lastly, the integro-differential equations for the amplitude reflection and transmission matrices are derived, and related to the usual corresponding equations. The present formulation is the most succinct and the most convenient one for both theoretical and experimental studies. It yields a simpler analysis than the classical formulation since it reduces by a factor of two the dimensionality of transfer problems. It preserves information on phases, and thus can be used directly across the entire electromagnetic spectrum without any further conversion into intensities. (Auth.)

  13. Two-dimensional servo control of surface motor; Surface motor no nijigen servo control

    Energy Technology Data Exchange (ETDEWEB)

    Ebihara, D; Takahashi, T; Watada, M [Musashi Institute of Technology, Tokyo (Japan)

    1995-08-20

    Two dimensional (2D) drive system is needed in many aspects of factory automation (FA) and office automation (OA) machines, such as pen drivers in X-Y plotters, X-Y stage for machining, 2D moving robots, etc. Conventional 2D drive systems are consisted from two sets of rotational motor drive and several types of rotary-to-linear transform mechanisms. Linear motors, in these days, have become to be effective as the requirement for high speed increases. We have been studying about Surface Motor which enables 2D drive on a surface by single mover, and the characteristics are measured. Main difficulty of the actuator is that it is short of thrust forces. Also the feasibility is limited because of its vocational uncertainty caused by the open loop control. Our interest is to introduce the closed loop digital control, to obtain required thrust force at any point on the stator. Since open loop control is used, that is, stability point where the thrust force is zero is moved one after another, generated thrust force within the range of synchronization is small. We have been studying about the peculiar expression of exciting currents to generate required direction at all the stator. On the basis of results, two dimensional position feedback system is assembled, which detect the two dimensional location of the mover by optical sensors and direct current instructions are generated for all the four phases of the mover. 14 refs., 11 figs., 1 tab.

  14. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  15. A Wavelet Kernel-Based Primal Twin Support Vector Machine for Economic Development Prediction

    Directory of Open Access Journals (Sweden)

    Fang Su

    2013-01-01

    Full Text Available Economic development forecasting allows planners to choose the right strategies for the future. This study is to propose economic development prediction method based on the wavelet kernel-based primal twin support vector machine algorithm. As gross domestic product (GDP is an important indicator to measure economic development, economic development prediction means GDP prediction in this study. The wavelet kernel-based primal twin support vector machine algorithm can solve two smaller sized quadratic programming problems instead of solving a large one as in the traditional support vector machine algorithm. Economic development data of Anhui province from 1992 to 2009 are used to study the prediction performance of the wavelet kernel-based primal twin support vector machine algorithm. The comparison of mean error of economic development prediction between wavelet kernel-based primal twin support vector machine and traditional support vector machine models trained by the training samples with the 3–5 dimensional input vectors, respectively, is given in this paper. The testing results show that the economic development prediction accuracy of the wavelet kernel-based primal twin support vector machine model is better than that of traditional support vector machine.

  16. High-Throughput Agrobacterium-mediated Transformation of Medicago Truncatula in Comparison to Two Expression Vectors

    International Nuclear Information System (INIS)

    Sultana, T.; Deeba, F.; Naqvi, S. M. S.

    2016-01-01

    Legumes have been turbulent to efficient Agrobacterium-mediated transformation for a long time. The selection of Medicago truncatula as a model legume plant for molecular analysis resulted in the development of efficient Agrobacterium-mediated transformation protocols. In current study, M. truncatula transformed plants expressing OsRGLP1 were obtained through GATEWAY technology using pGOsRGLP1 (pH7WG2.0=OsRGLP1). The transformation efficiency of this vector was compared with expression vector from pCAMBIA series over-expressing same gene (pCOsRGLP1). A lower number of explants generated hygromycin resistant plantlet for instance, 18.3 with pGOsRGLP1 vector as compared to 35.5 percent with pCOsRGLP1 vector. Transformation efficiency of PCR positive plants generated was 9.4 percent for pGOsRGLP1 while 21.6 percent for pCOsRGLP1. Furthermore 24.4 percent of explants generated antibiotic resistant plantlet on 20 mgl/sup -1/ of hygromycin which was higher than on 15 mgl/sup -1/ of hygromycin such as 12.2 percent. T/sub 1/ progeny analysis indicated that the transgene was inherited in Mendelian manner. The functionally active status of transgene was monitored by high level of Superoxide dismutase (SOD) activity in transformed progeny. (author)

  17. Rapidly converging bound state eigenenergies for the two dimensional quantum dipole

    International Nuclear Information System (INIS)

    Handy, C R; Vrinceanu, D

    2013-01-01

    We examine the effectiveness of a new spectral method in solving the two dimensional dipole problem (DP), as originally formulated by Dasbiswas et al (2010 Phys. Rev. B: At. Mol. Opt. Phys. 81 064516), and recently analysed by Amore and Fernandez (AF, 2012 Phys. Rev. B: At. Mol. Opt. Phys. 45 235004), through a large, non-orthogonal basis, Rayleigh–Ritz (RR) analysis. This deceptively simple problem has a long history of poorly approximated energy values, particularly for the ground state, until the recent work by AF. In contrast to their approach, we implement an orthogonal polynomial projection quantization (OPPQ) analysis (Handy and Vrinceanu 2013 J. Phys. A: Math. Theor. 46 135202), involving expanding the wavefunction in terms of a complete basis, Ψ( r-vector )=∑ n Ω n P n ( r-vector )R( r-vector ), where P n are the orthogonal polynomials relative to the weight R. For systems transformable into a moment equation, such as DP, the projection coefficients are determinable in closed form, yielding an efficient quantization procedure, particularly when the weight assumes the asymptotic form of the physical solutions. There are several theoretical reasons why the OPPQ should be more effective than the above RR approach. Indeed, comparable results are achieved with significantly fewer OPPQ variational parameters as compared to RR-variational parameters. For instance, with regards to the delicate ground state energy, 130 OPPQ variables are required to achieve E gr = −0.137 7614 (E gr = −0.137 7514 after a Shanks transform) as opposed to the 821 required within the RR formulation: E gr = −0.137 7478. Despite this, the relative slow convergence for low lying even parity states, within both the OPPQ and RR formulations, suggests that significant logarithmic contributions to the wavefunction, at the origin, have been ignored by all previous investigators. Modifying the RR variational analysis to include log-dependent basis, affirms this through an

  18. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    Science.gov (United States)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  19. Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems

    International Nuclear Information System (INIS)

    Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi

    2015-01-01

    Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima–Oikawa (YO) systems, which contain multi-short-wave components and single long-wave one, are presented by using the bilinear method. For two-dimensional system, the fundamental rational solution first describes the localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue waves can be obtained under certain parameter conditions and their behaviors are also classified to above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves are line localized waves which arise from the constant background with a line profile and then disappear into the constant background again. In particular, two-dimensional intermediate and dark counterparts of rogue wave are found with the different parameter requirements. We demonstrate that multirogue waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that the wave structures start from lump and then retreat back to it, and this transient wave possesses the patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional case is derived under the parameter constraints. - Highlights: • Exact explicit rational solutions of two-and one-dimensional multicomponent Yajima–Oikawa systems. • Two-dimensional rogue wave contains three different patterns: bright, intermediate and dark states. • Multi- and higher-order rogue waves exhibit distinct dynamic behaviors in two-dimensional case

  20. Effective diffusion constant in a two-dimensional medium of charged point scatterers

    International Nuclear Information System (INIS)

    Dean, D S; Drummond, I T; Horgan, R R

    2004-01-01

    We obtain exact results for the effective diffusion constant of a two-dimensional Langevin tracer particle in the force field generated by charged point scatterers with quenched positions. We show that if the point scatterers have a screened Coulomb (Yukawa) potential and are uniformly and independently distributed then the effective diffusion constant obeys the Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained for pure Coulomb scatterers frozen in an equilibrium configuration of the same temperature as that of the tracer

  1. Electro-optic tunable multi-channel filter in two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Fu, Yulan; Zhang, Jiaxiang; Hu, Xiaoyong; Gong, Qihuang

    2010-01-01

    An electro-optic tunable multi-channel filter is presented, which is based on a two-dimensional ferroelectric photonic crystal made of barium titanate. The filtering properties of the photonic crystal filter can be tuned by an applied voltage or by adjusting the structural parameters. The channel shifts about 30 nm under excitation of an applied voltage of 54.8 V. The influences of the structural disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  2. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  3. Calculating vibrational spectra with sum of product basis functions without storing full-dimensional vectors or matrices.

    Science.gov (United States)

    Leclerc, Arnaud; Carrington, Tucker

    2014-05-07

    We propose an iterative method for computing vibrational spectra that significantly reduces the memory cost of calculations. It uses a direct product primitive basis, but does not require storing vectors with as many components as there are product basis functions. Wavefunctions are represented in a basis each of whose functions is a sum of products (SOP) and the factorizable structure of the Hamiltonian is exploited. If the factors of the SOP basis functions are properly chosen, wavefunctions are linear combinations of a small number of SOP basis functions. The SOP basis functions are generated using a shifted block power method. The factors are refined with a rank reduction algorithm to cap the number of terms in a SOP basis function. The ideas are tested on a 20-D model Hamiltonian and a realistic CH3CN (12 dimensional) potential. For the 20-D problem, to use a standard direct product iterative approach one would need to store vectors with about 10(20) components and would hence require about 8 × 10(11) GB. With the approach of this paper only 1 GB of memory is necessary. Results for CH3CN agree well with those of a previous calculation on the same potential.

  4. High-velocity two-phase flow two-dimensional modeling

    International Nuclear Information System (INIS)

    Mathes, R.; Alemany, A.; Thilbault, J.P.

    1995-01-01

    The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field

  5. Hydrodynamic Influence Dabanhu River Bridge Holes Widening Based on Two-Dimensional Finite Element Numerical Model

    Science.gov (United States)

    Li, Dong Feng; Bai, Fu Qing; Nie, Hui

    2018-06-01

    In order to analyze the influence of bridge holes widening on hydrodynamic such as water level, a two-dimensional mathematical model was used to calculate the hydrodynamic factors, river network flow velocity vector distribution is given, water level and difference of bridge widening before and after is calculated and charted, water surface gradient in seven different river sections near the upper reaches of bridges is counted and revealed. The results of hydrodynamic calculation indicate that The Maximum and the minimum deducing numerical value of the water level after bridge widening is 0.028m, and 0.018m respective. the seven sections water surface gradient becomes smaller until it becomes negative, the influence of bridge widening on the upstream is basically over, the range of influence is about 450m from the bridge to the upstream. reach

  6. A Robust Identification of the Protein Standard Bands in Two-Dimensional Electrophoresis Gel Images

    Directory of Open Access Journals (Sweden)

    Serackis Artūras

    2017-12-01

    Full Text Available The aim of the investigation presented in this paper was to develop a software-based assistant for the protein analysis workflow. The prior characterization of the unknown protein in two-dimensional electrophoresis gel images is performed according to the molecular weight and isoelectric point of each protein spot estimated from the gel image before further sequence analysis by mass spectrometry. The paper presents a method for automatic and robust identification of the protein standard band in a two-dimensional gel image. In addition, the method introduces the identification of the positions of the markers, prepared by using pre-selected proteins with known molecular mass. The robustness of the method was achieved by using special validation rules in the proposed original algorithms. In addition, a self-organizing map-based decision support algorithm is proposed, which takes Gabor coefficients as image features and searches for the differences in preselected vertical image bars. The experimental investigation proved the good performance of the new algorithms included into the proposed method. The detection of the protein standard markers works without modification of algorithm parameters on two-dimensional gel images obtained by using different staining and destaining procedures, which results in different average levels of intensity in the images.

  7. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    Energy Technology Data Exchange (ETDEWEB)

    Schultheis, M. [Université de Nice Sophia-Antipolis, CNRS, Observatoire de Côte d' Azur, Laboratoire Lagrange, 06304 Nice Cedex 4 (France); Zasowski, G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Allende Prieto, C. [Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Anders, F.; Chiappini, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Beaton, R. L.; García Pérez, A. E.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Beers, T. C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Bizyaev, D. [Apache Point Observatory, Sunspot, NM 88349 (United States); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Ge, J. [Astronomy Department, University of Florida, Gainesville, FL 32611 (United States); Hearty, F.; Schneider, D. P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); Muna, D. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, D. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shetrone, M., E-mail: mathias.schultheis@oca.eu, E-mail: gail.zasowski@gmail.com [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States)

    2014-07-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  8. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    International Nuclear Information System (INIS)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.; Anders, F.; Chiappini, C.; Beaton, R. L.; García Pérez, A. E.; Majewski, S. R.; Beers, T. C.; Bizyaev, D.; Frinchaboy, P. M.; Ge, J.; Hearty, F.; Schneider, D. P.; Holtzman, J.; Muna, D.; Nidever, D.; Shetrone, M.

    2014-01-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  9. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  10. Heavy quark form factors at two loops in perturbative QCD

    International Nuclear Information System (INIS)

    Ablinger, J.; Schneider, C.; Behring, A.; Falcioni, G.

    2017-11-01

    We present the results for heavy quark form factors at two-loop order in perturbative QCD for different currents, namely vector, axial-vector, scalar and pseudo-scalar currents, up to second order in the dimensional regularization parameter. We outline the necessary computational details, ultraviolet renormalization and corresponding universal infrared structure.

  11. Heavy quark form factors at two loops in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de; Marquard, P.; Rana, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Falcioni, G. [Nikhef, Amsterdam (Netherlands). Theory Group

    2017-11-15

    We present the results for heavy quark form factors at two-loop order in perturbative QCD for different currents, namely vector, axial-vector, scalar and pseudo-scalar currents, up to second order in the dimensional regularization parameter. We outline the necessary computational details, ultraviolet renormalization and corresponding universal infrared structure.

  12. A support vector machine based test for incongruence between sets of trees in tree space

    Science.gov (United States)

    2012-01-01

    Background The increased use of multi-locus data sets for phylogenetic reconstruction has increased the need to determine whether a set of gene trees significantly deviate from the phylogenetic patterns of other genes. Such unusual gene trees may have been influenced by other evolutionary processes such as selection, gene duplication, or horizontal gene transfer. Results Motivated by this problem we propose a nonparametric goodness-of-fit test for two empirical distributions of gene trees, and we developed the software GeneOut to estimate a p-value for the test. Our approach maps trees into a multi-dimensional vector space and then applies support vector machines (SVMs) to measure the separation between two sets of pre-defined trees. We use a permutation test to assess the significance of the SVM separation. To demonstrate the performance of GeneOut, we applied it to the comparison of gene trees simulated within different species trees across a range of species tree depths. Applied directly to sets of simulated gene trees with large sample sizes, GeneOut was able to detect very small differences between two set of gene trees generated under different species trees. Our statistical test can also include tree reconstruction into its test framework through a variety of phylogenetic optimality criteria. When applied to DNA sequence data simulated from different sets of gene trees, results in the form of receiver operating characteristic (ROC) curves indicated that GeneOut performed well in the detection of differences between sets of trees with different distributions in a multi-dimensional space. Furthermore, it controlled false positive and false negative rates very well, indicating a high degree of accuracy. Conclusions The non-parametric nature of our statistical test provides fast and efficient analyses, and makes it an applicable test for any scenario where evolutionary or other factors can lead to trees with different multi-dimensional distributions. The

  13. Temperature maxima in stable two-dimensional shock waves

    International Nuclear Information System (INIS)

    Kum, O.; Hoover, W.G.; Hoover, C.G.

    1997-01-01

    We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith model for strong shock waves in dilute three-dimensional gases. copyright 1997 The American Physical Society

  14. Genus two finite gap solutions to the vector nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Woodcock, Thomas; Warren, Oliver H; Elgin, John N

    2007-01-01

    A recently published article presents a technique used to derive explicit formulae for odd genus solutions to the vector nonlinear Schroedinger equation. In another article solutions of genus two are derived using a different approach which assumes a separable ansatz. In this communication, the extension of the first technique to the even genus case is discussed, and this extension is carried out explicitly for genus two. Furthermore, a birational mapping is found between the spectral curves that arise in the two approaches. (fast track communication)

  15. Dynamics of a bilayer membrane coupled to a two-dimensional cytoskeleton: Scale transfers of membrane deformations

    Science.gov (United States)

    Okamoto, Ryuichi; Komura, Shigeyuki; Fournier, Jean-Baptiste

    2017-07-01

    We theoretically investigate the dynamics of a floating lipid bilayer membrane coupled with a two-dimensional cytoskeleton network, taking into account explicitly the intermonolayer friction, the discrete lattice structure of the cytoskeleton, and its prestress. The lattice structure breaks lateral continuous translational symmetry and couples Fourier modes with different wave vectors. It is shown that within a short time interval a long-wavelength deformation excites a collection of modes with wavelengths shorter than the lattice spacing. These modes relax slowly with a common renormalized rate originating from the long-wavelength mode. As a result, and because of the prestress, the slowest relaxation is governed by the intermonolayer friction. Conversely, and most interestingly, forces applied at the scale of the cytoskeleton for a sufficiently long time can cooperatively excite large-scale modes.

  16. Tuning spin transport across two-dimensional organometallic junctions

    Science.gov (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping

    2018-01-01

    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.

  17. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  18. SCALAR AND VECTOR NONLINEAR DECAYS OF LOW-FREQUENCY ALFVÉN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan 3 Avenue Circulaire, B-1180 Brussels (Belgium)

    2015-02-01

    We found several efficient nonlinear decays for Alfvén waves in the solar wind conditions. Depending on the wavelength, the dominant decay is controlled by the nonlinearities proportional to either scalar or vector products of wavevectors. The two-mode decays of the pump MHD Alfvén wave into co- and counter-propagating product Alfvén and slow waves are controlled by the scalar nonlinearities at long wavelengths ρ{sub i}{sup 2}k{sub 0⊥}{sup 2}<ω{sub 0}/ω{sub ci} (k {sub 0} is wavenumber perpendicular to the background magnetic field, ω{sub 0} is frequency of the pump Alfvén wave, ρ {sub i} is ion gyroradius, and ω {sub ci} is ion-cyclotron frequency). The scalar decays exhibit both local and nonlocal properties and can generate not only MHD-scale but also kinetic-scale Alfvén and slow waves, which can strongly accelerate spectral transport. All waves in the scalar decays propagate in the same plane, hence these decays are two-dimensional. At shorter wavelengths, ρ{sub i}{sup 2}k{sub 0⊥}{sup 2}>ω{sub 0}/ω{sub ci}, three-dimensional vector decays dominate generating out-of-plane product waves. The two-mode decays dominate from MHD up to ion scales ρ {sub i} k {sub 0} ≅ 0.3; at shorter scales the one-mode vector decays become stronger and generate only Alfvén product waves. In the solar wind the two-mode decays have high growth rates >0.1ω{sub 0} and can explain the origin of slow waves observed at kinetic scales.

  19. Laser sheet dropsizing based on two-dimensional Raman and Mie scattering.

    Science.gov (United States)

    Malarski, Anna; Schürer, Benedikt; Schmitz, Ingo; Zigan, Lars; Flügel, Alexandre; Leipertz, Alfred

    2009-04-01

    The imaging and quantification of droplet sizes in sprays is a challenging task for optical scientists and engineers. Laser sheet dropsizing (LSDS) combines the two-dimensional information of two different optical processes, one that is proportional to the droplet volume and one that depends on the droplet surface, e.g., Mie scattering. Besides Mie scattering, here we use two-dimensional Raman scattering as the volume-dependent measurement technique. Two different calibration strategies are presented and discussed. Two-dimensional droplet size distributions in a spray have been validated in comparison with the results of point-resolved phase Doppler anemometry (PDA) measurements.

  20. Laser sheet dropsizing based on two-dimensional Raman and Mie scattering

    International Nuclear Information System (INIS)

    Malarski, Anna; Schuerer, Benedikt; Schmitz, Ingo; Zigan, Lars; Fluegel, Alexandre; Leipertz, Alfred

    2009-01-01

    The imaging and quantification of droplet sizes in sprays is a challenging task for optical scientists and engineers. Laser sheet dropsizing (LSDS) combines the two-dimensional information of two different optical processes, one that is proportional to the droplet volume and one that depends on the droplet surface, e.g., Mie scattering. Besides Mie scattering, here we use two-dimensional Raman scattering as the volume-dependent measurement technique. Two different calibration strategies are presented and discussed. Two-dimensional droplet size distributions in a spray have been validated in comparison with the results of point-resolved phase Doppler anemometry (PDA) measurements