WorldWideScience

Sample records for two-dimensional photonic lattices

  1. The focusing effect of electromagnetic waves in two-dimensional photonic crystals with gradually varying lattice constant

    Directory of Open Access Journals (Sweden)

    F Bakhshi Garmi

    2016-02-01

    Full Text Available In this paper we studied the focusing effect of electromagnetic wave in the two-dimensional graded photonic crystal consisting of Silicon rods in the air background with gradually varying lattice constant. The results showed that graded photonic crystal can focus wide beams on a narrow area at frequencies near the lower edge of the band gap, where equal frequency contours are not concave. For calculation of photonic band structure and equal frequency contours, we have used plane wave expansion method and revised plane wave expansion method, respectively. The calculation of the electric and magnetic fields was performed by finite difference time domain method.

  2. Tunable all-angle negative refraction and photonic band gaps in two-dimensional plasma photonic crystals with square-like Archimedean lattices

    International Nuclear Information System (INIS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2014-01-01

    In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor

  3. Simulating Photons and Plasmons in a Three-dimensional Lattice

    International Nuclear Information System (INIS)

    Pletzer, A.; Shvets, G.

    2002-01-01

    Three-dimensional metallic photonic structures are studied using a newly developed mixed finite element-finite difference (FE-FD) code, Curly3d. The code solves the vector Helmholtz equation as an eigenvalue problem in the unit cell of a triply periodic lattice composed of conductors and/or dielectrics. The mixed FE-FD discretization scheme ensures rapid numerical convergence of the eigenvalue and allows the code to run at low resolution. Plasmon and photonic band structure calculations are presented

  4. Experimental two-dimensional quantum walk on a photonic chip.

    Science.gov (United States)

    Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min

    2018-05-01

    Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.

  5. Lattice topology dictates photon statistics.

    Science.gov (United States)

    Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-08-21

    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

  6. Influence of index contrast in two dimensional photonic crystal lasers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner

    2010-01-01

    The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavity...

  7. Exploring photonic topological insulator states in a circuit-QED lattice

    Science.gov (United States)

    Li, Jing-Ling; Shan, Chuan-Jia; Zhao, Feng

    2018-04-01

    We propose a simple protocol to explore the topological properties of photonic integer quantum Hall states in a one-dimensional circiut-QED lattice. By periodically modulating the on-site photonic energies in such a lattice, we demonstrate that this one-dimensional lattice model can be mapped into a two-dimensional integer quantum Hall insulator model. Based on the lattice-based cavity input-output theory, we show that both the photonic topological protected edge states and topological invariants can be clearly measured from the final steady state of the resonator lattice after taking into account cavity dissipation. Interestingly, we also find that the measurement signals associated with the above topological features are quite unambitious even in five coupled dissipative resonators. Our work opens up a new prospect of exploring topological states with a small-size dissipative quantum artificial lattice, which is quite attractive to the current quantum optics community.

  8. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  9. Band gap of two-dimensional fiber-air photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shu, E-mail: yangshu5678@163.com; Li, Masha

    2016-04-15

    A two-dimensional photonic crystal (PC) composed of textile fiber and air is initially discussed in this paper. Textile materials are so called soft materials, which are different from the previous PCs composed of rigid materials. The plain wave expansion method is used to calculate band structure of different PCs by altering component properties or structural parameters. Results show that the dielectric constant of textile fibers, fiber filling ratio and lattice arrangement are effective factors which influence PCs' band gap. Yet lattice constant and fiber diameter make inconspicuous influence on the band gap feature.

  10. Symmetrical analysis of the defect level splitting in two-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Malkova, N; Kim, S; Gopalan, V

    2003-01-01

    In this paper doubly degenerate defect states in the band gap of the two-dimensional photonic crystal are studied. These states can be split by a convenient distortion of the lattice. Through analogy with the Jahn-Teller effect in solids, we present a group theoretical analysis of the lifting of the degeneracy of doubly degenerate states in a square lattice by different vibronic modes. The effect is supported by the supercell plane-wave model and by the finite difference time domain technique. We suggest ways for using the effect in photonic switching devices and waveguides

  11. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  12. Interaction between a dark spot and a two-dimensional nonlinear photonic lattice with fully incoherent white light

    International Nuclear Information System (INIS)

    Liu, Zhaohong; Liu, Simin; Guo, Ru; Song, Tao; Zhu, Nan

    2007-01-01

    We study experimentally the interaction of a dark spot with a nonlinear photonic lattice with fully incoherent white light emitted from an incandescent bulb in the self-defocussing photovoltaic media when the dark spot is aimed at different positions of lattices with different lattice spacing. In this case a host of novel phenomena is demonstrated, including dark spot induced lattice dislocation-deformation, the annihilation of the dark spot and so on. Results demonstrate that the interaction between incoherent dark spot and photonic lattice is always attraction and the large-spacing photonic lattice is analogous to the continuous medium

  13. Localized electromagnetic modes and transmission spectrum of one-dimensional photon crystal with lattice defects

    CERN Document Server

    Vetrov, S Y

    2001-01-01

    The properties of the localized electromagnetic modes in the one-dimensional photon crystal with a structural defective layer are studied. The anisotropic layer of the nematic liquid layer is considered as the defect. It is shown that the frequency and coefficient of the defective modes attenuation essentially depend on the defective layer thickness and nematic optical axis orientation. The spectrum of the photon crystal transmittance with one or two defects in the lattice is studied. The possibility of controlling the the photon crystal transmittance spectrum on the count of changing the orientation of the nematic optical axis, for example, through the external electric field is shown with an account of strong anisotropy of the dielectric permittivity

  14. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)

    2016-05-06

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  15. Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials

    International Nuclear Information System (INIS)

    Lidorikis, E.; Sigalas, M. M.; Economou, E. N.; Soukoulis, C. M.

    2000-01-01

    By using two ab initio numerical methods, we study the effects that disorder has on the spectral gaps and on wave localization in two-dimensional photonic-band-gap materials. We find that there are basically two different responses depending on the lattice realization (solid dielectric cylinders in air or vice versa), the wave polarization, and the particular form under which disorder is introduced. Two different pictures for the photonic states are employed, the ''nearly free'' photon and the ''strongly localized'' photon. These originate from the two different mechanisms responsible for the formation of the spectral gaps, i.e., multiple scattering and single scatterer resonances, and they qualitatively explain our results. (c) 2000 The American Physical Society

  16. Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals

    KAUST Repository

    Li, Yan

    2013-01-01

    We developed a selection rule for Dirac-like points in two-dimensional dielectric photonic crystals. The rule is derived from a perturbation theory and states that a non-zero, mode-coupling integral between the degenerate Bloch states guarantees a Dirac-like point, regardless of the type of the degeneracy. In fact, the selection rule can also be determined from the symmetry of the Bloch states even without computing the integral. Thus, the existence of Dirac-like points can be quickly and conclusively predicted for various photonic crystals independent of wave polarization, lattice structure, and composition. © 2013 Optical Society of America.

  17. Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer

    International Nuclear Information System (INIS)

    Trifonov, T.; Marsal, L.F.; Pallares, J.; Rodriguez, A.; Alcubilla, R.

    2004-01-01

    We investigate different aspects of the absolute photonic band gap (PBG) formation in two-dimensional photonic structures consisting of rods covered with a thin dielectric film. Specifically, triangular and honeycomb lattices in both complementary arrangements, i.e., air rods drilled in silicon matrix and silicon rods in air, are studied. We consider that the rods are formed of a dielectric core (silicon or air) surrounded by a cladding layer of silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or germanium (Ge). Such photonic lattices present absolute photonic band gaps, and we study the evolution of these gaps as functions of the cladding material and thickness. Our results show that in the case of air rods in dielectric media the existence of dielectric cladding reduces the absolute gap width and may cause complete closure of the gap if thick layers are considered. For the case of dielectric rods in air, however, the existence of a cladding layer can be advantageous and larger absolute PBG's can be achieved

  18. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    Science.gov (United States)

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  19. Two dimensional tunable photonic crystals and n doped semiconductor materials

    International Nuclear Information System (INIS)

    Elsayed, Hussein A.; El-Naggar, Sahar A.; Aly, Arafa H.

    2015-01-01

    In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications

  20. Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal

    International Nuclear Information System (INIS)

    Li-Mei, Qi; Zi-Qiang, Yang; Feng, Lan; Xi, Gao; Da-Zhi, Li

    2010-01-01

    This paper studies dispersion characteristics of the transverse magnetic (TM) mode for two-dimensional unmagnetized dielectric plasma photonic crystal by a modified plane wave method. First, the cutoff behaviour is made clear by using the Maxwell–Garnett effective medium theory, and the influences of dielectric filling factor and dielectric constant on effective plasma frequency are analysed. Moreover, the occurence of large gaps in dielectric plasma photonic crystal is demonstrated by comparing the skin depth with the lattice constant, and the influence of plasma frequency on the first three gaps is also studied. Finally, by using the particle-in-cell simulation method, a transmission curve in the Γ – X direction is obtained in dielectric plasma photonic crystal, which is in accordance with the dispersion curves calculated by the modified plane wave method, and the large gap between the transmission points of 27 GHz and 47 GHz is explained by comparing the electric field patterns in particle-in-cell simulation

  1. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    International Nuclear Information System (INIS)

    Quan, Xu; Qiang, Tian

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi–Pasta–Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather. (condensed matter: structure, thermal and mechanical properties)

  2. Creation of tunable absolute bandgaps in a two-dimensional anisotropic photonic crystal modulated by a nematic liquid crystal

    International Nuclear Information System (INIS)

    Liu Chenyang

    2008-01-01

    Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation. We have investigated the tunable absolute bandgap in a two-dimensional anisotropic photonic crystal structures modulated by a nematic liquid crystal. The PC structure composed of an anisotropic-dielectric cylinder in the liquid crystal medium is studied by solving Maxwell's equations using the plane wave expansion method. The photonic band structures are found to exhibit absolute bandgaps for the square and triangular lattices. Numerical simulations show that the absolute bandgaps can be continuously tuned in the square and triangular lattices consisting of anisotropic-dielectric cylinders by infiltrating nematic liquid crystals. Such a mechanism of bandgap adjustment should open up a new application for designing components in photonic integrated circuits

  3. Transfer of optical signals around bends in two-dimensional linear photonic networks

    International Nuclear Information System (INIS)

    Nikolopoulos, G M

    2015-01-01

    The ability to navigate light signals in two-dimensional networks of waveguide arrays is a prerequisite for the development of all-optical integrated circuits for information processing and networking. In this article, we present a theoretical analysis of bending losses in linear photonic lattices with engineered couplings, and discuss possible ways for their minimization. In contrast to previous work in the field, the lattices under consideration operate in the linear regime, in the sense that discrete solitons cannot exist. The present results suggest that the functionality of linear waveguide networks can be extended to operations that go beyond the recently demonstrated point-to-point transfer of signals, such as blocking, routing, logic functions, etc. (paper)

  4. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure

    Science.gov (United States)

    Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2016-01-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters. PMID:27491952

  5. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fathollahi Khalkhali, T., E-mail: tfathollahi@aeoi.org.ir; Bananej, A.

    2016-12-16

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals. - Highlights: • In this paper, we have investigated plasma photonic crystals. • Plasma is a kind of dispersive medium with its equivalent refractive index related to the frequency of an incident EM wave. • In this work, our simulations are performed using the Meep implementation of the finite-difference time-domain (FDTD) method. • For this study, the lattice structures investigated are triangular and square. • Extensive calculations reveal that almost all of these structures represent wide complete band gaps.

  6. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    International Nuclear Information System (INIS)

    Fathollahi Khalkhali, T.; Bananej, A.

    2016-01-01

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals. - Highlights: • In this paper, we have investigated plasma photonic crystals. • Plasma is a kind of dispersive medium with its equivalent refractive index related to the frequency of an incident EM wave. • In this work, our simulations are performed using the Meep implementation of the finite-difference time-domain (FDTD) method. • For this study, the lattice structures investigated are triangular and square. • Extensive calculations reveal that almost all of these structures represent wide complete band gaps.

  7. Modeling and Optimization of Optical Half Adder in Two Dimensional Photonic Crystals

    Science.gov (United States)

    Sonth, Mahesh V.; Soma, Savita; Gowre, Sanjaykumar C.; Biradar, Nagashettappa

    2018-05-01

    The output of photonic integrated devices is enhanced using crystal waveguides and cavities but optimization of these devices is a topic of research. In this paper, optimization of the optical half adder in two-dimensional (2-D) linear photonic crystals using four symmetric T-shaped waveguides with 180° phase shift inputs is proposed. The input section of a T-waveguide acts as a beam splitter, and the output section acts as a power combiner. The constructive and destructive interference phenomenon will provide an output optical power. Output port Cout will receive in-phase power through the 180° phase shifter cavity designed near the junction. The optical half adder is modeled in a 2-D photonic crystal using the finite difference time domain method (FDTD). It consists of a cubic lattice with an array of 39 × 43 silicon rods of radius r 0.12 μm and 0.6 μm lattice constant a. The extinction ratio r e of 11.67 dB and 12.51 dB are achieved at output ports using the RSoft FullWAVE-6.1 software package.

  8. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  9. Quantum entanglement and phase transition in a two-dimensional photon-photon pair model

    International Nuclear Information System (INIS)

    Zhang Jianjun; Yuan Jianhui; Zhang Junpei; Cheng Ze

    2013-01-01

    We propose a two-dimensional model consisting of photons and photon pairs. In the model, the mixed gas of photons and photon pairs is formally equivalent to a two-dimensional system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phases. Using the variational method, we discuss the quantum phase transition of the mixed gas and obtain the critical coupling line analytically. Moreover, we also find that the phase transition of the photon gas can be interpreted as enhanced second harmonic generation. We then discuss the entanglement between photons and photon pairs. Additionally, we also illustrate how the entanglement between photons and photon pairs can be associated with the phase transition of the system.

  10. Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice

    International Nuclear Information System (INIS)

    Butt, Imran A; Wattis, Jonathan A D

    2006-01-01

    Using asymptotic methods, we investigate whether discrete breathers are supported by a two-dimensional Fermi-Pasta-Ulam lattice. A scalar (one-component) two-dimensional Fermi-Pasta-Ulam lattice is shown to model the charge stored within an electrical transmission lattice. A third-order multiple-scale analysis in the semi-discrete limit fails, since at this order, the lattice equations reduce to the (2 + 1)-dimensional cubic nonlinear Schroedinger (NLS) equation which does not support stable soliton solutions for the breather envelope. We therefore extend the analysis to higher order and find a generalized (2 + 1)-dimensional NLS equation which incorporates higher order dispersive and nonlinear terms as perturbations. We find an ellipticity criterion for the wave numbers of the carrier wave. Numerical simulations suggest that both stationary and moving breathers are supported by the system. Calculations of the energy show the expected threshold behaviour whereby the energy of breathers does not go to zero with the amplitude; we find that the energy threshold is maximized by stationary breathers, and becomes arbitrarily small as the boundary of the domain of ellipticity is approached

  11. Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals.

    Science.gov (United States)

    Xu, Lin; Wang, Hai-Xiao; Xu, Ya-Dong; Chen, Huan-Yang; Jiang, Jian-Hua

    2016-08-08

    A simple core-shell two-dimensional photonic crystal is studied where the triangular lattice symmetry and the C6 point group symmetry give rich physics in accidental touching points of photonic bands. We systematically evaluate different types of accidental nodal points at the Brillouin zone center for transverse-magnetic harmonic modes when the geometry and permittivity of the core-shell material are continuously tuned. The accidental nodal points can have different dispersions and topological properties (i.e., Berry phases). These accidental nodal points can be the critical states lying between a topological phase and a normal phase of the photonic crystal. They are thus very important for the study of topological photonic states. We show that, without breaking time-reversal symmetry, by tuning the geometry of the core-shell material, a phase transition into the photonic quantum spin Hall insulator can be achieved. Here the "spin" is defined as the orbital angular momentum of a photon. We study the topological phase transition as well as the properties of the edge and bulk states and their application potentials in optics.

  12. Two-dimensional 'photon fluid': effective photon-photon interaction and physical realizations

    International Nuclear Information System (INIS)

    Chiao, R Y; Hansson, T H; Leinaas, J M; Viefers, S

    2004-01-01

    We describe a recently developed effective theory for atom-mediated photon-photon interactions in a two-dimensional 'photon fluid' confined to a Fabry-Perot resonator. The photons in the lowest longitudinal cavity mode will appear as massive bosons interacting via a renormalized delta-function potential with a strength determined by physical parameters such as the density of atoms and the detuning of the photons relative to the resonance frequency of the atoms. We discuss novel quantum phenomena for photons, such as Bose-Einstein condensation and bound state formation, as well as possible experimental scenarios based on Rydberg atoms in a microwave cavity, or alkali atoms in an optical cavity

  13. Saddle-points of a two dimensional random lattice theory

    International Nuclear Information System (INIS)

    Pertermann, D.

    1985-07-01

    A two dimensional random lattice theory with a free massless scalar field is considered. We analyse the field theoretic generating functional for any given choice of positions of the lattice sites. Asking for saddle-points of this generating functional with respect to the positions we find the hexagonal lattice and a triangulated version of the hypercubic lattice as candidates. The investigation of the neighbourhood of a single lattice site yields triangulated rectangles and regular polygons extremizing the above generating functional on the local level. (author)

  14. Optical properties of the two-port resonant tunneling filters in two-dimensional photonic crystal slabs

    International Nuclear Information System (INIS)

    Ren Cheng; Cheng Li-Feng; Kang Feng; Gan Lin; Zhang Dao-Zhong; Li Zhi-Yuan

    2012-01-01

    We have designed and fabricated two types of two-port resonant tunneling filters with a triangular air-hole lattice in two-dimensional photonic crystal slabs. In order to improve the filtering efficiency, a feedback method is introduced by closing the waveguide. It is found that the relative position between the closed waveguide boundary and the resonator has an important impact on the dropping efficiency. Based on our analyses, two different types of filters are designed. The transmission spectra and scattering-light far-field patterns are measured, which agree well with theoretical prediction. In addition, the resonant filters are highly sensitive to the size of the resonant cavities, which are useful for practical applications

  15. Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers

    International Nuclear Information System (INIS)

    Liu, Cheng-Yang

    2011-01-01

    Photonic crystals have many potential applications because of their ability to control lightwave propagation. We report on the fabrication and optical properties of quasi-two-dimensional photonic crystals with triangular lattice of dielectric rods in air. Rod-type photonic crystal structures were fabricated in silicon by electron beam lithography and dry-etching techniques. Wavelength division multiplexing splitters were fabricated from two-dimensional photonic crystal directional waveguide couplers. Transmission spectra were measured and device operation was shown to be in agreement with theoretical calculations. The splitters can be used in visible light region. Such an approach to photonic element systems should enable new applications for designing components in photonic integrated circuits. -- Highlights: → We report the fabrication and optical properties of rod-type photonic crystal. → The splitter was fabricated by electron beam lithography and dry-etching techniques. → The splitter was composed of directional waveguide couplers. → Measured transmission spectra are in agreement with theoretical calculations. → The splitters can be used in visible light region.

  16. Many electron variational ground state of the two dimensional Anderson lattice

    International Nuclear Information System (INIS)

    Zhou, Y.; Bowen, S.P.; Mancini, J.D.

    1991-02-01

    A variational upper bound of the ground state energy of two dimensional finite Anderson lattices is determined as a function of lattice size (up to 16 x 16). Two different sets of many-electron basis vectors are used to determine the ground state for all values of the coulomb integral U. This variational scheme has been successfully tested for one dimensional models and should give good estimates in two dimensions

  17. Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice.

    Science.gov (United States)

    Ma, Jing; Martínez, Luis Javier; Povinelli, Michelle L

    2012-03-12

    A novel photonic crystal lattice is proposed for trapping a two-dimensional array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality factors on the order of 10⁵ are predicted in the lattice. A significant decrease of the optical power required for optical trapping can be achieved compared to our previous design.

  18. Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyungrae [Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826 (Korea, Republic of); Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826 (Korea, Republic of); Bae, Seunghwan [Department of Materials Science and Engineering, Seoul National University, Seoul 08826 (Korea, Republic of); Lee, Myungjae [Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Jeon, Heonsu, E-mail: hsjeon@snu.ac.kr [Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826 (Korea, Republic of); Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-05-02

    We report optically pumped room temperature single mode laser that contains a thin film of hybrid perovskite, an emerging photonic material, as gain medium. Two-dimensional square lattice photonic crystal (PhC) backbone structure enables single mode laser operation via a photonic bandedge mode, while a thin film of methyl-ammonium lead iodide (CH{sub 3}NH{sub 3}PbI{sub 3}) spin-coated atop provides optical gain for lasing. Two kinds of bandedge modes, Γ and M, are employed, and both devices laser in single mode at similar laser thresholds of ∼200 μJ/cm{sup 2} in pulse energy density. Polarization dependence measurements reveal a clear difference between the two kinds of bandedge lasers: isotropic for the Γ-point laser and highly anisotropic for the M-point laser. These observations are consistent with expected modal properties, confirming that the lasing actions indeed originate from the corresponding PhC bandedge modes.

  19. Surface topography to reflectivity mapping in two-dimensional photonic crystals designed in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Husanu, M.A.; Ganea, C.P. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania); Anghel, I. [National Institute for Laser, Plasma & Radiation Physics, Atomistilor 409, 077125 Magurele (Romania); University of Bucharest, Faculty of Physics, Atomistilor 405, 077125 Magurele (Romania); Florica, C.; Rasoga, O. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania); Popescu, D.G., E-mail: dana.popescu@infim.ro [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania)

    2015-11-15

    Highlights: • Laser ablation is used for drilling a periodic 2D photonic structure. • Confinement of radiation is revealed by infra-red spectromicroscopy correlated with numerical calculations. • Telecommunication range is accessible upon tuning conveniently the processing parameters. - Abstract: Light confinement in a two dimensional photonic crystal (2D PhC) with hexagonal symmetry is studied using infra-red reflectance spectromicroscopy and numerical calculations. The structure has been realized by laser ablation, using a pulsed laser (λ = 775 nm), perforating an In-doped Ge wafer and creating a lattice of holes with well-defined symmetry. Correlating the spectral signature of the photonic gaps recorded experimentally with the results obtained in the finite difference time domain and finite difference frequency domain calculations, we established the relationship between the geometric parameters of the structure (lattice constants, shape of the hole) and its efficiency in trapping and guiding the radiation in a well-defined frequency range. Besides the gap in the low energy range of transversal electric modes, a second one is identified in the telecommunication range, originating in the localization of the leaky modes within the radiation continuum. The emerging picture is of a device with promising characteristics as an alternative to Si-based technology in photonic device fabrication with special emphasize in energy storage and conversion.

  20. Harmonically trapped dipolar fermions in a two-dimensional square lattice

    DEFF Research Database (Denmark)

    Larsen, Anne-Louise G.; Bruun, Georg

    2012-01-01

    We consider dipolar fermions in a two-dimensional square lattice and a harmonic trapping potential. The anisotropy of the dipolar interaction combined with the lattice leads to transitions between phases with density order of different symmetries. We show that the attractive part of the dipolar...

  1. Anderson localization of light near boundaries of disordered photonic lattices

    International Nuclear Information System (INIS)

    Jovic, Dragana M.; Kivshar, Yuri S.; Denz, Cornelia; Belic, Milivoj R.

    2011-01-01

    We study numerically the effect of boundaries on Anderson localization of light in truncated two-dimensional photonic lattices in a nonlinear medium. We demonstrate suppression of Anderson localization at the edges and corners, so that stronger disorder is needed near the boundaries to obtain the same localization as in the bulk. We find that the level of suppression depends on the location in the lattice (edge vs corner), as well as on the strength of disorder. We also discuss the effect of nonlinearity on various regimes of Anderson localization.

  2. Zak phase induced multiband waveguide by two-dimensional photonic crystals.

    Science.gov (United States)

    Yang, Yuting; Xu, Tao; Xu, Yun Fei; Hang, Zhi Hong

    2017-08-15

    Interface states in photonic crystals provide efficient approaches to control the flow of light. Photonic Zak phase determines the bulk band properties of photonic crystals, and, by assembling two photonic crystals with different bulk band properties together, deterministic interface states can be realized. By translating each unit cell of a photonic crystal by half the lattice constant, another photonic crystal with identical common gaps but a different Zak phase at each photonic band can be created. By assembling these two photonic crystals together, multiband waveguide can thus be easily created and then experimentally characterized. Our experimental results have good agreement with numerical simulations, and the propagation properties of these measured interface states indicate that this new type of interface state will be a good candidate for future applications of optical communications.

  3. Modelling and design of complete photonic band gaps in two ...

    Indian Academy of Sciences (India)

    In this paper, we investigate the existence and variation of complete photonic band gap size with the introduction of asymmetry in the constituent dielectric rods with honeycomb lattices in two-dimensional photonic crystals (PhC) using the plane-wave expansion (PWE) method. Two examples, one consisting of elliptical rods ...

  4. A two-dimensional lattice equation as an extension of the Heideman-Hogan recurrence

    Science.gov (United States)

    Kamiya, Ryo; Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji

    2018-03-01

    We consider a two dimensional extension of the so-called linearizable mappings. In particular, we start from the Heideman-Hogan recurrence, which is known as one of the linearizable Somos-like recurrences, and introduce one of its two dimensional extensions. The two dimensional lattice equation we present is linearizable in both directions, and has the Laurent and the coprimeness properties. Moreover, its reduction produces a generalized family of the Heideman-Hogan recurrence. Higher order examples of two dimensional linearizable lattice equations related to the Dana Scott recurrence are also discussed.

  5. Two-dimensionally confined topological edge states in photonic crystals

    International Nuclear Information System (INIS)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters. (paper)

  6. Long-range inverse two-spin correlations in one-dimensional Potts lattices

    International Nuclear Information System (INIS)

    Tejero, C.F.; Cuesta, J.A.; Brito, R.

    1989-01-01

    The inverse two-spin correlation function of a one-dimensional three-state Potts lattice with constant nearest-neighbor interactions in a uniform external field is derived exactly. It is shown that the external field induces long-range correlations. The inverse two-spin correlation function decays in a monotonic exponential fashion for a ferromagnetic lattice, while it decays in an oscillatory exponential fashion for an antiferromagnetic lattice. With no external field the inverse two-spin correlation function has a finite range equal to that of the interactions

  7. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    Energy Technology Data Exchange (ETDEWEB)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-08-15

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system.

  8. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    International Nuclear Information System (INIS)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-01-01

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system

  9. FDTD method for computing the off-plane band structure in a two-dimensional photonic crystal consisting of nearly free-electron metals

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Sanshui; He Sailing

    2002-12-01

    An FDTD numerical method for computing the off-plane band structure of a two-dimensional photonic crystal consisting of nearly free-electron metals is presented. The method requires only a two-dimensional discretization mesh for a given off-plane wave number k{sub z} although the off-plane propagation is a three-dimensional problem. The off-plane band structures of a square lattice of metallic rods with the high-frequency metallic model in the air are studied, and a complete band gap for some nonzero off-plane wave number k{sub z} is founded.

  10. FDTD method for computing the off-plane band structure in a two-dimensional photonic crystal consisting of nearly free-electron metals

    International Nuclear Information System (INIS)

    Xiao Sanshui; He Sailing

    2002-01-01

    An FDTD numerical method for computing the off-plane band structure of a two-dimensional photonic crystal consisting of nearly free-electron metals is presented. The method requires only a two-dimensional discretization mesh for a given off-plane wave number k z although the off-plane propagation is a three-dimensional problem. The off-plane band structures of a square lattice of metallic rods with the high-frequency metallic model in the air are studied, and a complete band gap for some nonzero off-plane wave number k z is founded

  11. Exact lattice supersymmetry: The two-dimensional N=2 Wess-Zumino model

    International Nuclear Information System (INIS)

    Catterall, Simon; Karamov, Sergey

    2002-01-01

    We study the two-dimensional Wess-Zumino model with extended N=2 supersymmetry on the lattice. The lattice prescription we choose has the merit of preserving exactly a single supersymmetric invariance at finite lattice spacing a. Furthermore, we construct three other transformations of the lattice fields under which the variation of the lattice action vanishes to O(ga 2 ) where g is a typical interaction coupling. These four transformations correspond to the two Majorana supercharges of the continuum theory. We also derive lattice Ward identities corresponding to these exact and approximate symmetries. We use dynamical fermion simulations to check the equality of the mass gaps in the boson and fermion sectors and to check the lattice Ward identities. At least for weak coupling we see no problems associated with a lack of reflection positivity in the lattice action and find good agreement with theory. At strong coupling we provide evidence that problems associated with a lack of reflection positivity are evaded for small enough lattice spacing

  12. Bandgap optimization of two-dimensional photonic crystals using semidefinite programming and subspace methods

    International Nuclear Information System (INIS)

    Men, H.; Nguyen, N.C.; Freund, R.M.; Parrilo, P.A.; Peraire, J.

    2010-01-01

    In this paper, we consider the optimal design of photonic crystal structures for two-dimensional square lattices. The mathematical formulation of the bandgap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several frequency bands. The optimized structures exhibit patterns which go far beyond typical physical intuition on periodic media design.

  13. Hofstadter's butterfly in a two-dimensional lattice consisting of two sublattices

    International Nuclear Information System (INIS)

    Vugalter, G A; Pastukhov, A S

    2004-01-01

    Harper's equations for simple and complex two-dimensional lattices subject to a magnetic field have been derived in the tight-binding approximation. In our derivation we do not neglect the influence of the magnetic field on the electron eigenfunctions and eigenvalues in isolated atoms. Using a variational procedure for finding eigenfunctions and eigenvalues, we have self-consistently obtained Hofstadter's butterflies. Even for a simple square lattice Hofstadter's butterfly differs from the butterfly obtained in the case in which the influence of the magnetic field on the electron eigenvalues and eigenfunctions in isolated atoms is not taken into account

  14. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method......In the recent years a new class of periodic high-index contrast dielectric structures, known as photonic bandgap structures, has been discovered. In these structures frequency intervals, known as photonic bandgaps, where propagation of electromagnetic waves is not allowed, exist due to the periodic...... dielectric function. This is analogous to semiconductors, where electronic bandgaps exist due to the periodic arrangement of atoms. As is also the case for semiconductor structures, photonic bandgap structures may become of even greater value when defects are introduced. In particular, point defects make...

  15. Three-dimensional periodic dielectric structures having photonic Dirac points

    Science.gov (United States)

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin

    2015-06-02

    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  16. Three-dimensional periodic dielectric structures having photonic Dirac points

    Energy Technology Data Exchange (ETDEWEB)

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin

    2015-06-02

    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  17. Pythagoras's theorem on a two-dimensional lattice from a `natural' Dirac operator and Connes's distance formula

    Science.gov (United States)

    Dai, Jian; Song, Xing-Chang

    2001-07-01

    One of the key ingredients of Connes's noncommutative geometry is a generalized Dirac operator which induces a metric (Connes's distance) on the pure state space. We generalize such a Dirac operator devised by Dimakis et al, whose Connes distance recovers the linear distance on an one-dimensional lattice, to the two-dimensional case. This Dirac operator has the local eigenvalue property and induces a Euclidean distance on this two-dimensional lattice, which is referred to as `natural'. This kind of Dirac operator can be easily generalized into any higher-dimensional lattices.

  18. Quantum theory of two-dimensional generalized Toda lattice on bounded spatial interval

    International Nuclear Information System (INIS)

    Leznov, A.N.

    1982-01-01

    The quantization method of exactly solvable dynamical systems worked out in another paper is applied to a two-dimensional model described by the equations of generalized Toda lattice with a periodicity condition over spatial variable. The Heisenberg operators of the model are finite polynomials over the coupling constant g 2 , whose coefficients functionally depend on operators of noninteracting fields. The model has a direct relation with the string theories and reduces formally when L→infinity to two-dimensional quantum field theory described by the equations of generalized Toda lattice the formal solution of which has been found in Refs

  19. Unconventional phases in quantum spin and pseudospin systems in two dimensional and three dimensional lattices

    Science.gov (United States)

    Xu, Cenke

    Several examples of quantum spin systems and pseudo spin systems have been studied, and unconventional states of matters and phase transitions have been realized in all these systems under consideration. In the p +/- ip superconductor Josephson lattice and the p--band cold atomic system trapped in optical lattices, novel phases which behave similarly to 1+1 dimensional systems are realized, despite the fact that the real physical systems are in two or three dimensional spaces. For instance, by employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". This novel critical phase is analogous to the 1+1 dimensional algebraic boson liquid phase. The reason for the novel physics is that there is a quasilocal gauge symmetry in the effective low energy Hamiltonian. In a spin-1 system on the kagome lattice, and a hard-core boson system on the honeycomb lattice, the low energy physics is controlled by two components of compact U(1) gauge symmetries that emerge at low energy. Making use of the confinement nature of the 2+1 dimensional compact gauge theories and the powerful duality between gauge theories and height field theories, the crystalline phase diagrams are studied for both systems, and the transitions to other phases are also considered. These phase diagrams might be accessible in strongly correlated materials, or atomic systems in optical lattices. A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the

  20. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  1. Light propagation in two-dimensional photonic crystals based on uniaxial polar materials: results on polaritonic spectrum

    Science.gov (United States)

    Gómez-Urrea, H. A.; Duque, C. A.; Pérez-Quintana, I. V.; Mora-Ramos, M. E.

    2017-03-01

    The dispersion relations of two-dimensional photonic crystals made of uniaxial polaritonic cylinders arranged in triangular lattice are calculated. The particular case of the transverse magnetic polarization is taken into account. Three different uniaxial materials showing transverse phonon-polariton excitations are considered: aluminum nitride, gallium nitride, and indium nitride. The study is carried out by means of the finite-difference time-domain technique for the solution of Maxwell equations, together with the method of the auxiliary differential equation. It is shown that changing the filling fraction can result in the modification of both the photonic and polaritonic bandgaps in the optical dispersion relations. Wider gaps appear for smaller filling fraction values, whereas a larger number of photonic bandgaps will occur within the frequency range considered when a larger filling fraction is used. The effect of including the distinct wurtzite III-V nitride semiconductors as core materials in the cylinders embedded in the air on the photonic properties is discussed as well, highlighting the effect of the dielectric anisotropy on the properties of the polaritonic part of the photonic spectrum.

  2. Enhancement of Solar Cell Efficiency for Space Applications Using Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Postigo P.A.

    2017-01-01

    with the area of photonic crystal patterning has been clearly observed. Finally, a low-cost nanofabrication procedure to obtain high quality two-dimensional photonic crystals in large areas (up to square cm is described.

  3. Photonic Structure-Integrated Two-Dimensional Material Optoelectronics

    Directory of Open Access Journals (Sweden)

    Tianjiao Wang

    2016-12-01

    Full Text Available The rapid development and unique properties of two-dimensional (2D materials, such as graphene, phosphorene and transition metal dichalcogenides enable them to become intriguing candidates for future optoelectronic applications. To maximize the potential of 2D material-based optoelectronics, various photonic structures are integrated to form photonic structure/2D material hybrid systems so that the device performance can be manipulated in controllable ways. Here, we first introduce the photocurrent-generation mechanisms of 2D material-based optoelectronics and their performance. We then offer an overview and evaluation of the state-of-the-art of hybrid systems, where 2D material optoelectronics are integrated with photonic structures, especially plasmonic nanostructures, photonic waveguides and crystals. By combining with those photonic structures, the performance of 2D material optoelectronics can be further enhanced, and on the other side, a high-performance modulator can be achieved by electrostatically tuning 2D materials. Finally, 2D material-based photodetector can also become an efficient probe to learn the light-matter interactions of photonic structures. Those hybrid systems combine the advantages of 2D materials and photonic structures, providing further capacity for high-performance optoelectronics.

  4. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing.......Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...

  5. Two-dimensional N=(2,2) lattice gauge theories with matter in higher representations

    International Nuclear Information System (INIS)

    Joseph, Anosh

    2014-06-01

    We construct two-dimensional N=(2,2) supersymmetric gauge theories on a Euclidean spacetime lattice with matter in the two-index symmetric and anti-symmetric representations of SU(N c ) color group. These lattice theories preserve a subset of the supercharges exact at finite lattice spacing. The method of topological twisting is used to construct such theories in the continuum and then the geometric discretization scheme is used to formulate them on the lattice. The lattice theories obtained this way are gauge-invariant, free from fermion doubling problem and exact supersymmetric at finite lattice spacing. We hope that these lattice constructions further motivate the nonperturbative explorations of models inspired by technicolor, orbifolding and orientifolding in string theories and the Corrigan-Ramond limit.

  6. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    International Nuclear Information System (INIS)

    Fan Weili; Dong Lifang; Zhang Xinchun

    2010-01-01

    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  7. Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases

    Science.gov (United States)

    Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.

    2018-03-01

    The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.

  8. Investigations on the two-dimensional aperiodic plasma photonic crystals with fractal Fibonacci sequence

    Directory of Open Access Journals (Sweden)

    Hai-Feng Zhang

    2017-07-01

    Full Text Available In this paper, the properties of photonic band gaps (PBGs and defect modes of two-dimensional (2D fractal plasma photonic crystals (PPCs under a transverse-magnetic (TM wave are theoretically investigated by a modified plane wave expansion (PWE method. The configuration of 2D PPCs is the square lattices with the iteration rule of the Fibonacci sequence whose constituents are homogeneous and isotropic. The proposed 2D PPCs is filled with the dielectric cylinders in the plasma background. The accuracy and convergence of the present modified PWE method also are validated by a numerical example. The calculated results illustrate that the enough accuracy and good convergence can be achieved compared to the conventional PWE method, if the number of meshed grids is large enough. The dispersion curves of the proposed PPCs and 2D PPCs with a conventional square lattice are theoretically computed to study the properties of PBGs and defect modes. The simulated results demonstrate that the advantaged properties can be obtained in the proposed PPCs compared to the 2D conventional PPCs with similar lattices. If the Fibonacci sequence is introduced into the 2D PPCs, the larger PBGs and higher cutoff frequency can be achieved. The lower edges of PBGs are flat, which are originated from the Mie resonances. The defect modes can be considered as the quasi-localized states since the Fibonacci sequence has the self-similarity and non-periodicity at the same time. The effects of configurational parameters on the characters of the present PPCs are investigated. The results show that the PBGs and defect modes can be easily manipulated by tuning those parameters.

  9. Lattice formulation of a two-dimensional topological field theory

    International Nuclear Information System (INIS)

    Ohta, Kazutoshi; Takimi, Tomohisa

    2007-01-01

    We investigate an integrable property and the observables of 2-dimensional N=(4,4) topological field theory defined on a discrete lattice by using the 'orbifolding' and 'deconstruction' methods. We show that our lattice model is integrable and, for this reason, the partition function reduces to matrix integrals of scalar fields on the lattice sites. We elucidate meaningful differences between a discrete lattice and a differentiable manifold. This is important for studying topological quantities on a lattice. We also propose a new construction of N=(2,2) supersymmetric lattice theory, which is realized through a suitable truncation of scalar fields from the N=(4,4) theory. (author)

  10. Interference patterns of Bose-condensed gases in a two-dimensional optical lattice

    International Nuclear Information System (INIS)

    Liu Shujuan; Xiong Hongwei; Xu Zhijun; Huang Guoxiang

    2003-01-01

    For a Bose-condensed gas confined in a magnetic trap and in a two-dimensional (2D) optical lattice, the non-uniform distribution of atoms in different lattice sites is considered based on the Gross-Pitaevskii equation. A propagator method is used to investigate the time evolution of 2D interference patterns after (i) only the optical lattice is switched off, and (ii) both the optical lattice and the magnetic trap are switched off. An analytical description on the motion of side peaks in the interference patterns is presented by using the density distribution in a momentum space

  11. Far-Field Focus and Dispersionless Anticrossing Bands in Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Chen

    2007-01-01

    Full Text Available We review the simulation work for the far-field focus and dispersionless anticrossing bands in two-dimensional (2D photonic crystals. In a two-dimensional photonic-crystal-based concave lens, the far-field focus of a plane wave is given by the distance between the focusing point and the lens. Strong and good-quality far-field focusing of a transmitted wave, explicitly following the well-known wave-beam negative refraction law, can be achieved. The spatial frequency information of the Bloch mode in multiple Brillouin zones (BZs is investigated in order to indicate the wave propagation in two different regions. When considering the photonic transmission in a 2D photonic crystal composed of a negative phase-velocity medium (NPVM, it is shown that the dispersionless anticrossing bands are generated by the couplings among the localized surface polaritons of the NPVM rods. The photonic band structures of the NPVM photonic crystals are characterized by a topographical continuous dispersion relationship accompanied by many anticrossing bands.

  12. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  13. Exact compact breather-like solutions of two-dimensional Fermi-Pasta-Ulam lattice

    International Nuclear Information System (INIS)

    Sarkar, Ranja; Dey, Bishwajyoti

    2006-01-01

    We demonstrate that two-dimensional Fermi-Pasta-Ulam lattice support exact discrete compact breather-like solutions. We also find exact compact breather solutions of the same lattice in presence of long-range interaction with r -s dependence on the distance in the continuum limit. The usefulness of these solutions for energy localization and transport in various physical systems are discussed. (letter to the editor)

  14. Design, Fabrication, and Measurement of Two-Dimensional Photonic Crystal Slab Waveguides

    International Nuclear Information System (INIS)

    Chao, Zhang; Xuan, Tang; Xiao-Yu, Mao; Kai-Yu, Cui; Lei, Cao; Yi-Dong, Huang; Wei, Zhang; Jiang-De, Peng

    2008-01-01

    Two-dimensional photonic crystal slab waveguides on SOI wafer are designed and fabricated. Photonic band gap, band gap guided mode, and index guided mode are observed by measuring the transmission spectra. The experimental results are in good agreement with the theoretical ones

  15. Three-dimensional function photonic crystals

    Science.gov (United States)

    Zhang, Hai-Feng

    2017-11-01

    In this paper, the properties of the photonic band gaps (PBGs) of three-dimensional (3D) function photonic crystals (PCs) are theoretically investigated by a modified plane wave expansion (PWE) method, whose equations for computations are deduced. The configuration of 3D function PCs is the dielectric spheres inserted in the air background with simple-cubic (SC) lattices whose dielectric constants are the functions of space coordinates, which can be realized by the electro-optical or optical Kerr effect in the practice. The influences of the parameter for 3D function PCs on the PBGs also are discussed. The calculated results show that the bandwidths and number of PBGs can be tuned with different distributions of function dielectrics. Compared with the conventional 3D dielectric PCs with SC lattices, the larger and more PBGs can be obtained in the 3D function PCs. Those results provide a new way to design the novel practical devices.

  16. Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps.

    Science.gov (United States)

    Vyunishev, Andrey M; Pankin, Pavel S; Svyakhovskiy, Sergey E; Timofeev, Ivan V; Vetrov, Stepan Ya

    2017-09-15

    We propose an elegant approach to produce photonic bandgap (PBG) structures with multiple photonic bandgaps by constructing quasiperiodic photonic crystals (QPPCs) composed of a superposition of photonic lattices with different periods. Generally, QPPC structures exhibit both aperiodicity and multiple PBGs due to their long-range order. They are described by a simple analytical expression, instead of quasiperiodic tiling approaches based on substitution rules. Here we describe the optical properties of QPPCs exhibiting two PBGs that can be tuned independently. PBG interband spacing and its depth can be varied by choosing appropriate reciprocal lattice vectors and their amplitudes. These effects are confirmed by the proof-of-concept measurements made for the porous silicon-based QPPC of the appropriate design.

  17. Backlund transformations and three-dimensional lattice equations

    NARCIS (Netherlands)

    Nijhoff, F.W.; Capel, H.W.; Wiersma, G.L.; Quispel, G.R.W.

    1984-01-01

    A (nonlocal) linear integral equation is studied, which allows for Bäcklund transformations in the measure. The compatibility of three of these transformations leads to an integrable nonlinear three-dimensional lattice equation. In appropriate continuum limits the two-dimensional Toda-lattice

  18. Non-perturbative effects in two-dimensional lattice O(N) models

    International Nuclear Information System (INIS)

    Ogilvie, M.C.; Maryland Univ., College Park

    1981-01-01

    Non-abelian analogues of Kosterlitz-Thouless vortices may have important effects in two-dimensional lattice spin systems with O(N) symmetries. Renormalization group equations which include these effects are developed in two ways. The first set of equations extends the renormalization group equations of Kosterlitz to 0(N) spin systems, in a form suggested by Cardy and Hamber. The second is derived from a Villain-type 0(N) model using Migdal's recursion relations. Using these equations, the part played by topological excitations int he crossover from weak to strong coupling behavior is studied. Another effect which influences crossover behavior is also discussed; irrelevant operators which occur naturally in lattice theories can make important contributions to the renormalization group flow in the crossover region. When combined with conventional perturbative results, these two effects may explain the observed crossover behavior of these models. (orig.)

  19. New edge-centered photonic square lattices with flat bands

    Science.gov (United States)

    Zhang, Da; Zhang, Yiqi; Zhong, Hua; Li, Changbiao; Zhang, Zhaoyang; Zhang, Yanpeng; Belić, Milivoj R.

    2017-07-01

    We report a new class of edge-centered photonic square lattices with multiple flat bands, and consider in detail two examples: the Lieb-5 and Lieb-7 lattices. In these lattices, there are 5 and 7 sites in the unit cell and in general, the number is restricted to odd integers. The number of flat bands m in the new Lieb lattices is related to the number of sites N in the unit cell by a simple formula m =(N - 1) / 2. The flat bands reported here are independent of the pseudomagnetic field. The properties of lattices with even and odd number of flat bands are different. We consider the localization of light in such Lieb lattices. If the input beam excites the flat-band mode, it will not diffract during propagation, owing to the strong mode localization. In the Lieb-7 lattice, the beam will also oscillate during propagation and still not diffract. The period of oscillation is determined by the energy difference between the two flat bands. This study provides a new platform for investigating light trapping, photonic topological insulators, and pseudospin-mediated vortex generation.

  20. Hofstadter's butterfly in a two-dimensional lattice consisting of two sublattices

    Energy Technology Data Exchange (ETDEWEB)

    Vugalter, G A; Pastukhov, A S [Department of Physics, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod 603950 (Russian Federation)

    2004-06-04

    Harper's equations for simple and complex two-dimensional lattices subject to a magnetic field have been derived in the tight-binding approximation. In our derivation we do not neglect the influence of the magnetic field on the electron eigenfunctions and eigenvalues in isolated atoms. Using a variational procedure for finding eigenfunctions and eigenvalues, we have self-consistently obtained Hofstadter's butterflies. Even for a simple square lattice Hofstadter's butterfly differs from the butterfly obtained in the case in which the influence of the magnetic field on the electron eigenvalues and eigenfunctions in isolated atoms is not taken into account.

  1. Multiple nonlinear Bragg diffraction of femtosecond laser pulses in a {\\chi^{(2)}} photonic lattice with hexagonal domains

    Science.gov (United States)

    Vyunishev, A. M.; Arkhipkin, V. G.; Baturin, I. S.; Akhmatkhanov, A. R.; Shur, V. Ya; Chirkin, A. S.

    2018-04-01

    The frequency doubling of femtosecond laser pulses in a two-dimensional (2D) rectangular nonlinear photonic lattice with hexagonal domains is studied experimentally and theoretically. The broad fundamental spectrum enables frequency conversion under nonlinear Bragg diffraction for a series of transverse orders at a fixed longitudinal quasi-phase-matching order. The consistent nonstationary theory of the frequency doubling of femtosecond laser pulses is developed using the representation based on the reciprocal lattice of the structure. The calculated spatial distribution of the second-harmonic spectral intensity agrees well with the experimental data. The condition for multiple nonlinear Bragg diffraction in a 2D nonlinear photonic lattice is offered. The hexagonal shape of the domains contributes to multibeam second harmonic excitation. The maximum conversion efficiency for a series of transverse orders in the range 0.01%-0.03% is obtained.

  2. Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm.

    Science.gov (United States)

    Gan, Lin; Liu, Ya-Zhao; Li, Jiang-Yan; Zhang, Ze-Bo; Zhang, Dao-Zhong; Li, Zhi-Yuan

    2009-06-08

    We demonstrate design, fabrication, and ray trace observation of negative refraction of near-infrared light in a two-dimensional square lattice of air holes etched into an air-bridged silicon slab. Special surface morphologies are designed to reduce the impedance mismatch when light refracts from a homogeneous silicon slab into the photonic crystal slab. We clearly observed negative refraction of infrared light for TE-like modes in a broad wavelength range by using scanning near-field optical microscopy technology. The experimental results are in good agreement with finite-difference time-domain simulations. The results indicate the designed photonic crystal structure can serve as polarization beam splitter.

  3. Surface Reconstruction-Induced Coincidence Lattice Formation Between Two-Dimensionally Bonded Materials and a Three-Dimensionally Bonded Substrate

    NARCIS (Netherlands)

    Boschker, Jos E.; Momand, Jamo; Bragaglia, Valeria; Wang, Ruining; Perumal, Karthick; Giussani, Alessandro; Kooi, Bart J.; Riechert, Henning; Calarco, Raffaella

    Sb2Te3 films are used for studying the epitaxial registry between two-dimensionally bonded (2D) materials and three-dimensional bonded (3D) substrates. In contrast to the growth of 3D materials, it is found that the formation of coincidence lattices between Sb2Te3 and Si(111) depends on the geometry

  4. Controlling spatiotemporal chaos in one- and two-dimensional coupled logistic map lattices

    International Nuclear Information System (INIS)

    Astakhov, V.V.; Anishchenko, V.S.; Strelkova, G.I.; Shabunin, A.V.

    1996-01-01

    A method of control of spatiotemporal chaos in lattices of coupled maps is proposed in this work. Forms of spatiotemporal perturbations of a system parameter are analytically determined for one- and two-dimensional logistic map lattices with different kinds of coupling to stabilize chosen spatiotemporal states previously unstable. The results are illustrated by numerical simulation. Controlled transition from the regime of spatiotemporal chaos to the previously chosen regular spatiotemporal patterns is demonstrated. copyright 1996 American Institute of Physics

  5. Periodic, quasiperiodic, and chaotic breathers in two-dimensional discrete β-Fermi—Pasta—Ulam lattice

    International Nuclear Information System (INIS)

    Xu Quan; Tian Qiang

    2013-01-01

    Using numerical method, we investigate whether periodic, quasiperiodic, and chaotic breathers are supported by the two-dimensional discrete Fermi—Pasta—Ulam (FPU) lattice with linear dispersion term. The spatial profile and time evolution of the two-dimensional discrete β-FPU lattice are segregated by the method of separation of variables, and the numerical simulations suggest that the discrete breathers (DBs) are supported by the system. By introducing a periodic interaction into the linear interaction between the atoms, we achieve the coupling of two incommensurate frequencies for a single DB, and the numerical simulations suggest that the quasiperiodic and chaotic breathers are supported by the system, too. (condensed matter: structural, mechanical, and thermal properties)

  6. N = 2 two dimensional Wess-Zumino model on the lattice

    International Nuclear Information System (INIS)

    Elitzur, S.; Schwimmer, A.

    1983-04-01

    A lattice version of the N = 2 SUSY two dimensional Wess-Zumino model was constructed and studied. The correct continuum limit is checked in perturbation theory. The strong coupling limit is defined and investigated. We find that the ground state of the model has zero energy and infinite degeneracy. The connection between this degeneracy and the properties of the Nicolai-Parisi-Sourlas transformation is discussed. (author)

  7. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal

    International Nuclear Information System (INIS)

    Berrier, A.; Mulot, M.; Swillo, M.; Qiu, M.; Thylen, L.; Anand, S.; Talneau, A.

    2004-01-01

    We report on the first experimental evidence of negative refraction at telecommunication wavelengths by a two-dimensional photonic crystal field. Samples were fabricated by chemically assisted ion beam etching in the InP-based low-index constrast system. Experiments of beam imaging and light collection show light focusing by the photonic crystal field. Finite-difference time-domain simulations confirm that the observed focusing is due to negative refraction in the photonic crystal area

  8. Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals

    International Nuclear Information System (INIS)

    Zong Yi-Xin; Xia Jian-Bai; Wu Hai-Bin

    2017-01-01

    An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. (paper)

  9. Thermalization of a two-dimensional photonic gas in a `white wall' photon box

    Science.gov (United States)

    Klaers, Jan; Vewinger, Frank; Weitz, Martin

    2010-07-01

    Bose-Einstein condensation, the macroscopic accumulation of bosonic particles in the energetic ground state below a critical temperature, has been demonstrated in several physical systems. The perhaps best known example of a bosonic gas, blackbody radiation, however exhibits no Bose-Einstein condensation at low temperatures. Instead of collectively occupying the lowest energy mode, the photons disappear in the cavity walls when the temperature is lowered-corresponding to a vanishing chemical potential. Here we report on evidence for a thermalized two-dimensional photon gas with a freely adjustable chemical potential. Our experiment is based on a dye-filled optical microresonator, acting as a `white wall' box for photons. Thermalization is achieved in a photon-number-conserving way by photon scattering off the dye molecules, and the cavity mirrors provide both an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. As a striking example of the unusual system properties, we demonstrate a yet unobserved light concentration effect into the centre of the confining potential, an effect with prospects for increasing the efficiency of diffuse solar light collection.

  10. Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Ding, Guo-Wen; Li, Hai-Ming; Liu, Shao-Bin [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2015-02-15

    In this paper, the properties of complete photonic band gaps (CPBGs) and tunable self-collimation in two-dimensional plasma photonic crystals (2D PPCs) with a new structure in square lattices, whose dielectric fillers (GaAs) are inserted into homogeneous and nomagnetized plasma background are theoretically investigated by a modified plane wave expansion (PWE) method with a novel technique. The novel PWE method can be utilized to compute the dispersion curves of 2D PPCs with arbitrary-shaped cross section in any lattices. As a comparison, CPBGs of PPCs for four different configurations are numerically calculated. The computed results show that the proposed design has the advantages of achieving the larger CPBGs compared to the other three configurations. The influences of geometric parameters of filled unit cell and plasma frequency on the properties of CPBGs are studied in detail. The calculated results demonstrate that CPBGs of the proposed 2D PPCs can be easily engineered by changing those parameters, and the larger CPBGs also can be obtained by optimization. The self-collimation in such 2D PPCs also is discussed in theory under TM wave. The theoretical simulations reveal that the self-collimation phenomena can be found in the TM bands, and both the frequency range of self-collimation and the equifrequency surface contours can be tuned by the parameters as mentioned above. It means that the frequency range and direction of electromagnetic wave can be manipulated by designing, as it propagates in the proposed PPCs without diffraction. Those results can hold promise for designing the tunable applications based on the proposed PPCs.

  11. Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure

    International Nuclear Information System (INIS)

    Zhang, Hai-Feng; Ding, Guo-Wen; Li, Hai-Ming; Liu, Shao-Bin

    2015-01-01

    In this paper, the properties of complete photonic band gaps (CPBGs) and tunable self-collimation in two-dimensional plasma photonic crystals (2D PPCs) with a new structure in square lattices, whose dielectric fillers (GaAs) are inserted into homogeneous and nomagnetized plasma background are theoretically investigated by a modified plane wave expansion (PWE) method with a novel technique. The novel PWE method can be utilized to compute the dispersion curves of 2D PPCs with arbitrary-shaped cross section in any lattices. As a comparison, CPBGs of PPCs for four different configurations are numerically calculated. The computed results show that the proposed design has the advantages of achieving the larger CPBGs compared to the other three configurations. The influences of geometric parameters of filled unit cell and plasma frequency on the properties of CPBGs are studied in detail. The calculated results demonstrate that CPBGs of the proposed 2D PPCs can be easily engineered by changing those parameters, and the larger CPBGs also can be obtained by optimization. The self-collimation in such 2D PPCs also is discussed in theory under TM wave. The theoretical simulations reveal that the self-collimation phenomena can be found in the TM bands, and both the frequency range of self-collimation and the equifrequency surface contours can be tuned by the parameters as mentioned above. It means that the frequency range and direction of electromagnetic wave can be manipulated by designing, as it propagates in the proposed PPCs without diffraction. Those results can hold promise for designing the tunable applications based on the proposed PPCs

  12. A highly-sensitive label-free biosensor based on two dimensional photonic crystals with negative refraction

    Science.gov (United States)

    Malmir, Narges; Fasihi, Kiazand

    2017-11-01

    In this work, we present a novel high-sensitive optical label-free biosensor based on a two-dimensional photonic crystal (2D PC). The suggested structure is composed of a negative refraction structure in a hexagonal lattice PC, along with a positive refraction structure which is arranged in a square lattice PC. The frequency shift of the transmission peak is measured respect to the changes of refractive indices of the studied materials (the blood plasma, water, dry air and normal air). The studied materials are filled into a W1 line-defect waveguide which is located in the PC structure with positive refraction (the microfluidic nanochannel). Our numerical simulations, which are based on finite-difference time-domain (FDTD) method, show that in the proposed structure, a sensitivity about 1100 nm/RIU and a transmission efficiency more than 75% can be achieved. With this design, to the best of our knowledge, the obtained sensitivity and the transmission efficiency are one of the highest values in the reported PC label-free biosensors.

  13. Propagation of optical vortex beams and nucleation of vortex-antivortex pairs in disordered nonlinear photonic lattices

    International Nuclear Information System (INIS)

    Cho, Yeong-Kwon; Kim, Ki-Hong

    2014-01-01

    The propagation of optical vortex beams through disordered nonlinear photonic lattices is numerically studied. The vortex beams are generated by using a superposition of several Gaussian laser beams arranged in a radially-symmetric manner. The paraxial nonlinear Schroedinger equation describing the longitudinal propagation of the beam array through nonlinear triangular photonic lattices with two-dimensional disorder is solved numerically by using the split-step Fourier method. We find that due to the spatial disorder, the vortex beam is destabilized after propagating a finite distance and new vortex-antivortex pairs are nucleated at the positions of perfect destructive interference. We also find that in the presence of a self-focusing nonlinearity, the vortex-antivortex pair nucleation is suppressed and the vortex beam becomes more stable, while a self-defocusing nonlinearity enhances the vortex-antivortex pair nucleation.

  14. Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals

    Science.gov (United States)

    Zong, Yi-Xin; Xia, Jian-Bai; Wu, Hai-Bin

    2017-04-01

    An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. Project supported by the National Basic Research Program of China (Grant No. 2011CB922200) and the National Natural Science Foundation of China (Grant No. 605210010).

  15. One-dimensional modulation instability in biased two-photon photorefractive-photovoltaic crystals

    International Nuclear Information System (INIS)

    Zhan Kaiyun; Hou Chunfeng; Li Xin

    2010-01-01

    The one-dimensional modulation instability of broad optical beams in biased two-photon photorefractive-photovoltaic crystals is investigated under steady-state conditions. Our analysis indicates that the modulation instability growth rate depends on the external bias field, the bulk photovoltaic effect and the ratio of the intensity of the incident beam to that of the dark irradiance. Moreover, our results show that this modulation instability growth rate is the same as that in two-photon photorefractive-photovoltaic crystals under open circuit conditions in the absence of an external bias field, and the modulation instability growth rate in two-photon biased photorefractive-nonphotovoltaic crystals can be predicted when the bulk photovoltaic effect is neglected.

  16. Cooperative single-photon subradiant states in a three-dimensional atomic array

    Energy Technology Data Exchange (ETDEWEB)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2016-11-15

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.

  17. Theory and application of the RAZOR two-dimensional continuous energy lattice physics code

    International Nuclear Information System (INIS)

    Zerkle, M.L.; Abu-Shumays, I.K.; Ott, M.W.; Winwood, J.P.

    1997-01-01

    The theory and application of the RAZOR two-dimensional, continuous energy lattice physics code are discussed. RAZOR solves the continuous energy neutron transport equation in one- and two-dimensional geometries, and calculates equivalent few-group diffusion theory constants that rigorously account for spatial and spectral self-shielding effects. A dual energy resolution slowing down algorithm is used to reduce computer memory and disk storage requirements for the slowing down calculation. Results are presented for a 2D BWR pin cell depletion benchmark problem

  18. Finite-size scaling of clique percolation on two-dimensional Moore lattices

    Science.gov (United States)

    Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong

    2018-05-01

    Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.

  19. Quantum phases of dipolar rotors on two-dimensional lattices.

    Science.gov (United States)

    Abolins, B P; Zillich, R E; Whaley, K B

    2018-03-14

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  20. Quantum phases of dipolar rotors on two-dimensional lattices

    Science.gov (United States)

    Abolins, B. P.; Zillich, R. E.; Whaley, K. B.

    2018-03-01

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  1. Enhanced 29Si spin-lattice relaxation and observation of three-dimensional lattice connectivity in zeolites by two-dimensional 29Si MASS NMR

    International Nuclear Information System (INIS)

    Sivadinarayana, C.; Choudhary, V.R.; Ganapathy, S.

    1994-01-01

    It is shown that considerable sensitivity enhancement is achieved in the 29 Si magic angle sample spinning (MASS) NMR spectra of highly siliceous zeolites by pre treating the material with oxygen. The presence of adsorbed molecular oxygen in zeolite channels promotes an efficient 29 Si spin-lattice relaxation via a paramagnetic interaction between the lattice 29 Si T-site and the adsorbed oxygen on zeolite channels. This affords an efficient 2-D data collection and leads to increased sensitivity. The utility of this method is demonstrated in a two-dimensional COSY-45 NMR experiment of a high silica zeolite ZSM-5. (author). 20 refs., 3 figs., 1 tab

  2. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  3. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.

    Science.gov (United States)

    Degirmenci, Elif; Landais, Pascal

    2013-10-20

    Photonic band gap and transmission characteristics of 2D metallic photonic crystals at THz frequencies have been investigated using finite element method (FEM). Photonic crystals composed of metallic rods in air, in square and triangular lattice arrangements, are considered for transverse electric and transverse magnetic polarizations. The modes and band gap characteristics of metallic photonic crystal structure are investigated by solving the eigenvalue problem over a unit cell of the lattice using periodic boundary conditions. A photonic band gap diagram of dielectric photonic crystal in square lattice array is also considered and compared with well-known plane wave expansion results verifying our FEM approach. The photonic band gap designs for both dielectric and metallic photonic crystals are consistent with previous studies obtained by different methods. Perfect match is obtained between photonic band gap diagrams and transmission spectra of corresponding lattice structure.

  4. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Jiang, Ping; Ding, Chengyuan; Hu, Xiaoyong; Gong, Qihuang

    2007-01-01

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  5. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Ding, Chengyuan [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: qhgong@pku.edu.cn

    2007-04-02

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed.

  6. Cooper pair induced frustration and nematicity of two-dimensional magnetic adatom lattices

    Science.gov (United States)

    Schecter, Michael; Syljuâsen, Olav F.; Paaske, Jens

    2018-05-01

    We propose utilizing the Cooper pair to induce magnetic frustration in systems of two-dimensional (2D) magnetic adatom lattices on s -wave superconducting surfaces. The competition between singlet electron correlations and the RKKY coupling is shown to lead to a variety of hidden-order states that break the point-group symmetry of the 2D adatom lattice at finite temperature. The phase diagram is constructed using a newly developed effective bond theory [M. Schecter et al., Phys. Rev. Lett. 119, 157202 (2017), 10.1103/PhysRevLett.119.157202], and exhibits broad regions of long-range vestigial nematic order.

  7. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com [College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023 ,China (China); Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 (China); Liu, Shao-Bin [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 (China)

    2016-08-15

    In this paper, the properties of photonic band gaps (PBGs) in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs) under a transverse-magnetic (TM) wave are theoretically investigated by a modified plane wave expansion (PWE) method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.

  8. Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices

    International Nuclear Information System (INIS)

    Luz, H. L. F. da; Gammal, A.; Abdullaev, F. Kh.; Salerno, M.; Tomio, Lauro

    2010-01-01

    The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.

  9. Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices

    Science.gov (United States)

    da Luz, H. L. F.; Abdullaev, F. Kh.; Gammal, A.; Salerno, M.; Tomio, Lauro

    2010-10-01

    The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.

  10. Five-dimensional Lattice Gauge Theory as Multi-Layer World

    OpenAIRE

    Murata, Michika; So, Hiroto

    2003-01-01

    A five-dimensional lattice space can be decomposed into a number of four-dimens ional lattices called as layers. The five-dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. In the theory, there exist two independent coupling constants; $\\beta_4$ controls the dynamics inside a layer and $\\beta_5$ does the strength of the inter-layer interaction.We propose the new possibility to realize t...

  11. Photon management in two-dimensional disordered media.

    Science.gov (United States)

    Vynck, Kevin; Burresi, Matteo; Riboli, Francesco; Wiersma, Diederik S

    2012-12-01

    Elaborating reliable and versatile strategies for efficient light coupling between free space and thin films is of crucial importance for new technologies in energy efficiency. Nanostructured materials have opened unprecedented opportunities for light management, notably in thin-film solar cells. Efficient coherent light trapping has been accomplished through the careful design of plasmonic nanoparticles and gratings, resonant dielectric particles and photonic crystals. Alternative approaches have used randomly textured surfaces as strong light diffusers to benefit from their broadband and wide-angle properties. Here, we propose a new strategy for photon management in thin films that combines both advantages of an efficient trapping due to coherent optical effects and broadband/wide-angle properties due to disorder. Our approach consists of the excitation of electromagnetic modes formed by multiple light scattering and wave interference in two-dimensional random media. We show, by numerical calculations, that the spectral and angular responses of thin films containing disordered photonic patterns are intimately related to the in-plane light transport process and can be tuned through structural correlations. Our findings, which are applicable to all waves, are particularly suited for improving the absorption efficiency of thin-film solar cells and can provide a new approach for high-extraction-efficiency light-emitting diodes.

  12. Photonic density of states of two-dimensional quasicrystalline photonic structures

    International Nuclear Information System (INIS)

    Jia Lin; Bita, Ion; Thomas, Edwin L.

    2011-01-01

    A large photonic band gap (PBG) is highly favorable for photonic crystal devices. One of the most important goals of PBG materials research is identifying structural design strategies for maximizing the gap size. We provide a comprehensive analysis of the PBG properties of two-dimensional (2D) quasicrystals (QCs), where rotational symmetry, dielectric fill factor, and structural morphology were varied systematically in order to identify correlations between structure and PBG width at a given dielectric contrast (13:1, Si:air). The transverse electric (TE) and transverse magnetic (TM) PBGs of 12 types of QCs are investigated (588 structures). We discovered a 12mm QC with a 56.5% TE PBG, the largest reported TE PBG for an aperiodic crystal to date. We also report here a QC morphology comprising ''throwing star''-like dielectric domains, with near-circular air cores and interconnecting veins emanating radially around the core. This interesting morphology leads to a complete PBG of ∼20% , which is the largest reported complete PBG for aperiodic crystals.

  13. Analysis of photonic band gap in dispersive properties of tunable three-dimensional photonic crystals doped by magnetized plasma

    International Nuclear Information System (INIS)

    Zhang HaiFeng; Liu Shaobin; Yang Huan; Kong Xiangkun

    2013-01-01

    In this paper, the magnetooptical effects in dispersive properties for two types of three-dimensional magnetized plasma photonic crystals (MPPCs) containing homogeneous dielectric and magnetized plasma with diamond lattices are theoretically investigated for electromagnetic (EM) wave based on plane wave expansion (PWE) method, as incidence EM wave vector is parallel to the external magnetic field. The equations for two types of MPPCs with diamond lattices (dielectric spheres immersed in magnetized plasma background or vice versa) are theoretically deduced. The influences of dielectric constant, plasma collision frequency, filling factor, the external magnetic field, and plasma frequency on the dispersive properties for both types of structures are studied in detail, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that the photonic band gaps (PBGs) for both types of MPPCs can be manipulated by plasma frequency, filling factor, the external magnetic field, and the relative dielectric constant of dielectric, respectively. Especially, the external magnetic field can enlarge the PBG for type-2 structure (plasma spheres immersed in dielectric background). However, the plasma collision frequency has no effect on the dispersive properties of two types of three-dimensional MPPCs. The locations of flatbands regions for both types of structures cannot be tuned by any parameters except for plasma frequency and the external magnetic field. The analytical results may be informative and of technical use to design the MPPCs devices.

  14. Discrete breathers in a two-dimensional hexagonal Fermi Pasta Ulam lattice

    Science.gov (United States)

    Butt, Imran A.; Wattis, Jonathan A. D.

    2007-02-01

    We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a reduction to a cubic nonlinear Schrödinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher order analysis yielding a generalized NLS, which includes known stabilizing terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, asymptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximized for stationary breathers and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt and Wattis 2006 J. Phys. A: Math. Gen. 39 4955), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalized NLS equation.

  15. Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals.

    Science.gov (United States)

    Shukla, Mukesh Kumar; Das, Ritwick

    2018-02-01

    We present an investigation to ascertain the existence of Tamm-plasmon-polariton-like modes in one-dimensional (1D) quasi-periodic photonic systems. Photonic bandgap formation in quasi-crystals is essentially a consequence of long-range periodicity exhibited by multilayers and, thus, it can be explained using the dispersion relation in the Brillouin zone. Defining a "Zak"-like topological phase in 1D quasi-crystals, we propose a recipe to ascertain the existence of Tamm-like photonic surface modes in a metal-terminated quasi-crystal lattice. Additionally, we also explore the conditions of efficient excitation of such surface modes along with their dispersion characteristics.

  16. Structures and Dynamics of Two-Dimensional Dust Lattices with and without Coulomb Molecules in Plasmas

    International Nuclear Information System (INIS)

    Huang Feng; Wang Xue-Jin; Liu Yan-Hong; Ye Mao-Fu; Wang Long

    2010-01-01

    Structures and dynamics of two-dimensional dust lattices with and without Coulomb molecules in plasmas are investigated. The experimental results show that the lattices have the crystal-like hexagonal structures, i.e. most particles have six nearest-neighboring particles. However, the lattice points can be occupied by the individual particles or by a pair of particles called Coulomb molecules. The pair correlation function is used to compare the structures between the lattices with or without the Coulomb molecules. In the experiments, the Coulomb molecules can also decompose and recombine with another individual particle to form a new molecule. (physics of gases, plasmas, and electric discharges)

  17. Commutativity of the source generation procedure and integrable semi-discretizations: the two-dimensional Leznov lattice

    International Nuclear Information System (INIS)

    Hu Juan; Yu Guofu; Tam, Hon-Wah

    2012-01-01

    The source generation procedure (SGP) is applied to a y-directional discrete version and an x-directional discrete version of the Leznov lattice. Consequently, a y-discrete Leznov lattice equation with self-consistent sources (y-discrete Leznov ESCS) and an x-discrete Leznov ESCS are presented. Also utilizing the SGP, a new type of Leznov lattice equation with self-consistent sources (new Leznov ESCS) is derived. It is interesting that the two semi-discrete Leznov ESCS produced constitute a y-discretization for the Leznov ESCS given by Wang et al (2007 J. Phys. A: Math. Theor. 40 12691) and an x-discretization for the new Leznov ESCS, respectively. This means that the commutativity of SGP and integrable semi-discretizations is valid for the two-dimensional Leznov lattice equation. (paper)

  18. Pythagoras's theorem on a two-dimensional lattice from a 'natural' Dirac operator and Connes's distance formula

    Energy Technology Data Exchange (ETDEWEB)

    Dai Jian [Theory Group, Department of Physics, Peking University, Beijing (China)]. E-mail: jdai@mail.phy.pku.edu.cn; Song Xingchang [Theory Group, Department of Physics, Peking University, Beijing (China)]. E-mail: songxc@ibm320h.phy.pku.edu.cn

    2001-07-13

    One of the key ingredients of Connes's noncommutative geometry is a generalized Dirac operator which induces a metric (Connes's distance) on the pure state space. We generalize such a Dirac operator devised by Dimakis et al, whose Connes distance recovers the linear distance on an one-dimensional lattice, to the two-dimensional case. This Dirac operator has the local eigenvalue property and induces a Euclidean distance on this two-dimensional lattice, which is referred to as 'natural'. This kind of Dirac operator can be easily generalized into any higher-dimensional lattices. (author)

  19. A Dirac-Kaehler approach to the two dimensional Wess-Zumino N=2 model on the lattice

    International Nuclear Information System (INIS)

    Zimerman, A.H.; Aratyn, H.

    1983-08-01

    We introduce a Dirac-Kaehler model for the two dimensional Wess-Zumino N=2 Lagrangean. We can show that in the model, when we go to the euclidean space-time lattive, we have no energy doubling, the action has no lattice surface terms (contrary to other authors), while the Hamiltonians (when time is continuous) present lattice surface terms. (orig.)

  20. N-dimensional integrability from two-photon coalgebra symmetry

    International Nuclear Information System (INIS)

    Ballesteros, Angel; Blasco, Alfonso; Herranz, Francisco J

    2009-01-01

    A wide class of Hamiltonian systems with N degrees of freedom and endowed with, at least, (N - 2) functionally independent integrals of motion in involution is constructed by making use of the two-photon Lie-Poisson coalgebra (h 6 , Δ). The set of (N - 2) constants of the motion is shown to be a universal one for all these Hamiltonians, irrespective of the dependence of the latter on several arbitrary functions and N free parameters. Within this large class of quasi-integrable N-dimensional Hamiltonians, new families of completely integrable systems are identified by finding explicitly a new independent integral I through the analysis of the sub-coalgebra structure of h 6 . In particular, new completely integrable N-dimensional Hamiltonians describing natural systems, geodesic flows and static electromagnetic Hamiltonians are presented

  1. Tunable spin-orbit coupling for ultracold atoms in two-dimensional optical lattices

    Science.gov (United States)

    Grusdt, Fabian; Li, Tracy; Bloch, Immanuel; Demler, Eugene

    2017-06-01

    Spin-orbit coupling (SOC) is at the heart of many exotic band structures and can give rise to many-body states with topological order. Here we present a general scheme based on a combination of microwave driving and lattice shaking for the realization of two-dimensional SOC with ultracold atoms in systems with inversion symmetry. We show that the strengths of Rashba and Dresselhaus SOC can be independently tuned in a spin-dependent square lattice. More generally, our method can be used to open gaps between different spin states without breaking time-reversal symmetry. We demonstrate that this allows for the realization of topological insulators with nontrivial spin textures closely related to the Kane-Mele model.

  2. Bose-Einstein condensate in an optical lattice with Raman-assisted two-dimensional spin-orbit coupling

    Science.gov (United States)

    Pan, Jian-Song; Zhang, Wei; Yi, Wei; Guo, Guang-Can

    2016-10-01

    In a recent experiment (Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji, Y. Deng, S. Chen, X.-J. Liu, and J.-W. Pan, arXiv:1511.08170 [cond-mat.quant-gas]), a Raman-assisted two-dimensional spin-orbit coupling has been realized for a Bose-Einstein condensate in an optical lattice potential. In light of this exciting progress, we study in detail key properties of the system. As the Raman lasers inevitably couple atoms to high-lying bands, the behaviors of the system in both the single- and many-particle sectors are significantly affected. In particular, the high-band effects enhance the plane-wave phase and lead to the emergence of "roton" gaps at low Zeeman fields. Furthermore, we identify high-band-induced topological phase boundaries in both the single-particle and the quasiparticle spectra. We then derive an effective two-band model, which captures the high-band physics in the experimentally relevant regime. Our results not only offer valuable insights into the two-dimensional lattice spin-orbit coupling, but also provide a systematic formalism to model high-band effects in lattice systems with Raman-assisted spin-orbit couplings.

  3. Numerical evidence for two types of localized states in a two-dimensional disordered lattice

    International Nuclear Information System (INIS)

    Tit, N.; Kumar, N.

    1992-06-01

    We report results of our numerical calculations, based on the equation of motion method, of dc-electrical conductivity and of density of states up to 40x40 two-dimensional square lattices modelling a right-binding Hamiltonian for a binary (AB) compound, disordered by randomly distributed B vacancies up to 10%. Our results indicate strongly localized states away from band centers separated from the relatively weakly localized states toward midband. This is in qualitative agreement with the idea of a ''mobility edge'' separating exponentially localized states from the power-law localized states as suggested by the two-parameter scaling theory of Kaevh in two dimensions. (author). 7 refs, 4 figs

  4. Coupling effect of topological states and Chern insulators in two-dimensional triangular lattices

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Xue, Yang; Zhou, Tong; Yang, Zhongqin

    2018-03-01

    We investigate topological states of two-dimensional (2D) triangular lattices with multiorbitals. Tight-binding model calculations of a 2D triangular lattice based on px and py orbitals exhibit very interesting doubly degenerate energy points at different positions (Γ and K /K' ) in momentum space, with quadratic non-Dirac and linear Dirac band dispersions, respectively. Counterintuitively, the system shows a global topologically trivial rather than nontrivial state with consideration of spin-orbit coupling due to the "destructive interference effect" between the topological states at the Γ and K /K' points. The topologically nontrivial state can emerge by introducing another set of triangular lattices to the system (bitriangular lattices) due to the breakdown of the interference effect. With first-principles calculations, we predict an intrinsic Chern insulating behavior (quantum anomalous Hall effect) in a family of the 2D triangular lattice metal-organic framework of Co(C21N3H15) (TPyB-Co) from this scheme. Our results provide a different path and theoretical guidance for the search for and design of new 2D topological quantum materials.

  5. Photonic band structures in one-dimensional photonic crystals containing Dirac materials

    International Nuclear Information System (INIS)

    Wang, Lin; Wang, Li-Gang

    2015-01-01

    We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions

  6. Engineering two-photon high-dimensional states through quantum interference

    Science.gov (United States)

    Zhang, Yingwen; Roux, Filippus S.; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew

    2016-01-01

    Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits. PMID:26933685

  7. Coherent and radiative couplings through two-dimensional structured environments

    Science.gov (United States)

    Galve, F.; Zambrini, R.

    2018-03-01

    We study coherent and radiative interactions induced among two or more quantum units by coupling them to two-dimensional (2D) lattices acting as structured environments. This model can be representative of atoms trapped near photonic crystal slabs, trapped ions in Coulomb crystals, or to surface acoustic waves on piezoelectric materials, cold atoms on state-dependent optical lattices, or even circuit QED architectures, to name a few. We compare coherent and radiative contributions for the isotropic and directional regimes of emission into the lattice, for infinite and finite lattices, highlighting their differences and existing pitfalls, e.g., related to long-time or large-lattice limits. We relate the phenomenon of directionality of emission with linear-shaped isofrequency manifolds in the dispersion relation, showing a simple way to disrupt it. For finite lattices, we study further details such as the scaling of resonant number of lattice modes for the isotropic and directional regimes, and relate this behavior with known van Hove singularities in the infinite lattice limit. Furthermore, we export the understanding of emission dynamics with the decay of entanglement for two quantum, atomic or bosonic, units coupled to the 2D lattice. We analyze in some detail completely subradiant configurations of more than two atoms, which can occur in the finite lattice scenario, in contrast with the infinite lattice case. Finally, we demonstrate that induced coherent interactions for dark states are zero for the finite lattice.

  8. Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder

    Science.gov (United States)

    Thouin, Félix; Neutzner, Stefanie; Cortecchia, Daniele; Dragomir, Vlad Alexandru; Soci, Cesare; Salim, Teddy; Lam, Yeng Ming; Leonelli, Richard; Petrozza, Annamaria; Kandada, Ajay Ram Srimath; Silva, Carlos

    2018-03-01

    With strongly bound and stable excitons at room temperature, single-layer, two-dimensional organic-inorganic hybrid perovskites are viable semiconductors for light-emitting quantum optoelectronics applications. In such a technological context, it is imperative to comprehensively explore all the factors—chemical, electronic, and structural—that govern strong multiexciton correlations. Here, by means of two-dimensional coherent spectroscopy, we examine excitonic many-body effects in pure, single-layer (PEA) 2PbI4 (PEA = phenylethylammonium). We determine the binding energy of biexcitons—correlated two-electron, two-hole quasiparticles—to be 44 ±5 meV at room temperature. The extraordinarily high values are similar to those reported in other strongly excitonic two-dimensional materials such as transition-metal dichalcogenides. Importantly, we show that this binding energy increases by ˜25 % upon cooling to 5 K. Our work highlights the importance of multiexciton correlations in this class of technologically promising, solution-processable materials, in spite of the strong effects of lattice fluctuations and dynamic disorder.

  9. Photonic Crystal Waveguides in Triangular Lattice of Nanopillars

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei

    2004-01-01

    Photonic nanopillars waveguides have been analysed. Dielectric nanopillars are arranged in such way that they from a tringular lattice of 2D photonic crystal. Dispersion of the modes depends on the direction of the triangular lattice, Ã-J or Ã-X, in which nanopillars arrays are extended. Light fi....... Transmission spectra calculated by FDTD method completely reflect peculiarities of modes dispersion, showing up to 80% transmission for a realistic SOI nanopillar structure....

  10. Packaging consideration of two-dimensional polymer-based photonic crystals for laser beam steering

    Science.gov (United States)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T.

    2009-02-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results were also reported.

  11. Micropatterning of bacteria on two-dimensional lattice protein surface observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Jo, W.; Lim, J.; Park, S.; Kim, Y.S.; Kim, Y.

    2008-01-01

    In this study, we characterized the two-dimensional lattice of bovine serum albumin (BSA) as a chemical and physical barrier against bacterial adhesion, using fluorescence microscopy and atomic force microscopy (AFM). The lattice of BSA on glass surface was fabricated by micro-contact printing (μCP), which is a useful way to pattern a wide range of molecules into microscale features on different types of substrates. The contact-mode AFM measurements showed that the average height of the printed BSA monolayer was 5-6 nm. Escherichia coli adhered rapidly on bare glass slide, while the bacterial adhesion was minimized on the lattices in the range of 1-3 μm 2 . Especially, the bacterial adhesion was completely inhibited on a 1 μm 2 lattice. The results suggest that the anti-adhesion effects are due by the steric repulsion forces exerted by BSA

  12. On integrability of a noncommutative q-difference two-dimensional Toda lattice equation

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.X., E-mail: trisha_li2001@163.com [School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Department of Mathematics, College of Charleston, Charleston, SC 29401 (United States); Nimmo, J.J.C., E-mail: jonathan.nimmo@glasgow.ac.uk [School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW (United Kingdom); Shen, Shoufeng, E-mail: mathssf@zjut.edu.cn [Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023 (China)

    2015-12-18

    In our previous work (C.X. Li and J.J.C. Nimmo, 2009 [18]), we presented a generalized type of Darboux transformations in terms of a twisted derivation in a unified form. The twisted derivation includes ordinary derivatives, forward difference operators, super derivatives and q-difference operators as its special cases. This result not only enables one to recover the known Darboux transformations and quasideterminant solutions to the noncommutative KP equation, the non-Abelian two-dimensional Toda lattice equation, the non-Abelian Hirota–Miwa equation and the super KdV equation, but also inspires us to investigate quasideterminant solutions to q-difference soliton equations. In this paper, we first construct the bilinear Bäcklund transformations for the known bilinear q-difference two-dimensional Toda lattice equation (q-2DTL) and then derive a Lax pair whose compatibility gives a formally different nonlinear q-2DTL equation and finally obtain its quasideterminant solutions by iterating its Darboux transformations. - Highlights: • Examples are given to illustrate the extensive applications of twisted derivations. • Bilinear Bäcklund transformation is constructed for the known q-2DTL equation. • Lax pair is obtained for an equivalent q-2DTL equation. • Quasideterminant solutions are found for the nc q-2DTL equation.

  13. Few quantum particles on one dimensional lattices

    Energy Technology Data Exchange (ETDEWEB)

    Valiente Cifuentes, Manuel

    2010-06-18

    There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and

  14. Few quantum particles on one dimensional lattices

    International Nuclear Information System (INIS)

    Valiente Cifuentes, Manuel

    2010-01-01

    There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and extended Hubbard models

  15. Two-Dimensional Photonic Crystals for Sensitive Microscale Chemical and Biochemical Sensing

    Science.gov (United States)

    Miller, Benjamin L.

    2015-01-01

    Photonic crystals – optical devices able to respond to changes in the refractive index of a small volume of space – are an emerging class of label-free chemical-and bio-sensors. This review focuses on one class of photonic crystal, in which light is confined to a patterned planar material layer of sub-wavelength thickness. These devices are small (on the order of tens to 100s of microns square), suitable for incorporation into lab-on-a-chip systems, and in theory can provide exceptional sensitivity. We introduce the defining characteristics and basic operation of two-dimensional photonic crystal sensors, describe variations of their basic design geometry, and summarize reported detection results from chemical and biological sensing experiments. PMID:25563402

  16. Photon-phonon interaction in photonic crystals

    International Nuclear Information System (INIS)

    Ueta, T

    2010-01-01

    Photon-phonon interaction on the analogy of electron-phonon interaction is considered in one-dimensional photonic crystal. When lattice vibration is artificially introduced to the photonic crystal, a governing equation of electromagnetic field is derived. A simple model is numerically analysed and the following novel phenomena are found out. The lattice vibration generates the light of frequency which added the integral multiple of the vibration frequency to that of the incident wave and also amplifies the incident wave resonantly. On a resonance, the amplification factor increases very rapidly with the number of layers increases. Resonance frequencies change with the phases of lattice vibration. The amplification phenomenon is analytically discussed for low frequency of the lattice vibration.

  17. Regularized lattice Bhatnagar-Gross-Krook model for two- and three-dimensional cavity flow simulations.

    Science.gov (United States)

    Montessori, A; Falcucci, G; Prestininzi, P; La Rocca, M; Succi, S

    2014-05-01

    We investigate the accuracy and performance of the regularized version of the single-relaxation-time lattice Boltzmann equation for the case of two- and three-dimensional lid-driven cavities. The regularized version is shown to provide a significant gain in stability over the standard single-relaxation time, at a moderate computational overhead.

  18. Second order phase transition in two dimensional sine-Gordon field theory - lattice model

    International Nuclear Information System (INIS)

    Babu Joseph, K.; Kuriakose, V.C.

    1978-01-01

    Two dimensional sine-Gordon (SG) field theory on a lattice is studied using the single-site basis variational method of Drell and others. The nature of the phase transition associated with the spontaneous symmetry breakdown in a SG field system is clarified to be of second order. A generalisation is offered for a SG-type field theory in two dimensions with a potential of the form [cossup(n)((square root of lambda)/m)phi-1].(author)

  19. Ultra-compact laser beam steering device using holographically formed two dimensional photonic crystal.

    Science.gov (United States)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T

    2010-03-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results showed a beam steering angle of 10 degree for 30 nm wavelength variation.

  20. Electro-optic tunable multi-channel filter in two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Fu, Yulan; Zhang, Jiaxiang; Hu, Xiaoyong; Gong, Qihuang

    2010-01-01

    An electro-optic tunable multi-channel filter is presented, which is based on a two-dimensional ferroelectric photonic crystal made of barium titanate. The filtering properties of the photonic crystal filter can be tuned by an applied voltage or by adjusting the structural parameters. The channel shifts about 30 nm under excitation of an applied voltage of 54.8 V. The influences of the structural disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  1. Coupling between Fano and Bragg bands in the photonic band structure of two- dimensional metallic photonic structures

    Czech Academy of Sciences Publication Activity Database

    Markoš, P.; Kuzmiak, Vladimír

    2016-01-01

    Roč. 94, č. 3 (2016), č. článku 033845. ISSN 2469-9926 R&D Projects: GA MŠk(CZ) LD14028 Institutional support: RVO:67985882 Keywords : Crystal structure * Photonic crystals * Two-dimensional arrays Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.925, year: 2016

  2. New continual analogs of two-dimensional Toda lattices related with nonlinear integro-differential equations

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1988-01-01

    Continual ''extensions'' of two-dimensional Toda lattices are proposed. They are described by integro-differential equations, generally speaking, with singular kernels, depending on new (third) variable. The problem of their integrability on the corresponding class of the initial discrete system solutions is discussed. The latter takes place, in particular, for the kernel coinciding with the causal function

  3. Controllable photon and phonon localization in optomechanical Lieb lattices.

    Science.gov (United States)

    Wan, Liang-Liang; Lü, Xin-You; Gao, Jin-Hua; Wu, Ying

    2017-07-24

    The Lieb lattice featuring flat band is not only important in strongly-correlated many-body physics, but also can be utilized to inspire new quantum devices. Here we propose an optomechanical Lieb lattice, where the flat-band physics of photon-phonon polaritons is demonstrated. The tunability of the band structure of the optomechanical arrays allows one to obtain an approximate photon or phonon flat band as well as the transition between them. This ultimately leads to the result that the controllable photon or phonon localization could be realized by the path interference effects. This study offers an alternative approach to explore the exotic photon and phonon many-body effects, which has potential applications in the future hybrid-photon-phonon quantum network and engineering new type solid-state quantum devices.

  4. Mean-field description of ultracold bosons on disordered two-dimensional optical lattices

    International Nuclear Information System (INIS)

    Buonsante, Pierfrancesco; Massel, Francesco; Penna, Vittorio; Vezzani, Alessandro

    2007-01-01

    In the present communication, we describe the properties induced by disorder on an ultracold gas of bosonic atoms loaded into a two-dimensional optical lattice with global confinement ensured by a parabolic potential. Our analysis is centred on the spatial distribution of the various phases, focusing particularly on the superfluid properties of the system as a function of external parameters and disorder amplitude. In particular, it is shown how disorder can suppress superfluidity, while partially preserving the system coherence. (fast track communication)

  5. General point dipole theory for periodic metasurfaces: magnetoelectric scattering lattices coupled to planar photonic structures.

    Science.gov (United States)

    Chen, Yuntian; Zhang, Yan; Femius Koenderink, A

    2017-09-04

    We study semi-analytically the light emission and absorption properties of arbitrary stratified photonic structures with embedded two-dimensional magnetoelectric point scattering lattices, as used in recent plasmon-enhanced LEDs and solar cells. By employing dyadic Green's function for the layered structure in combination with the Ewald lattice summation to deal with the particle lattice, we develop an efficient method to study the coupling between planar 2D scattering lattices of plasmonic, or metamaterial point particles, coupled to layered structures. Using the 'array scanning method' we deal with localized sources. Firstly, we apply our method to light emission enhancement of dipole emitters in slab waveguides, mediated by plasmonic lattices. We benchmark the array scanning method against a reciprocity-based approach to find that the calculated radiative rate enhancement in k-space below the light cone shows excellent agreement. Secondly, we apply our method to study absorption-enhancement in thin-film solar cells mediated by periodic Ag nanoparticle arrays. Lastly, we study the emission distribution in k-space of a coupled waveguide-lattice system. In particular, we explore the dark mode excitation on the plasmonic lattice using the so-called array scanning method. Our method could be useful for simulating a broad range of complex nanophotonic structures, i.e., metasurfaces, plasmon-enhanced light emitting systems and photovoltaics.

  6. Quantum transport in d -dimensional lattices

    International Nuclear Information System (INIS)

    Manzano, Daniel; Chuang, Chern; Cao, Jianshu

    2016-01-01

    We show that both fermionic and bosonic uniform d -dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. We then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour of uniform spin lattices is a consequence of the interaction between different excitations. (paper)

  7. Manipulation of photons at the surface of three-dimensional photonic crystals.

    Science.gov (United States)

    Ishizaki, Kenji; Noda, Susumu

    2009-07-16

    In three-dimensional (3D) photonic crystals, refractive-index variations with a periodicity comparable to the wavelength of the light passing through the crystal give rise to so-called photonic bandgaps, which are analogous to electronic bandgaps for electrons moving in the periodic electrostatic potential of a material's crystal structure. Such 3D photonic bandgap crystals are envisioned to become fundamental building blocks for the control and manipulation of photons in optical circuits. So far, such schemes have been pursued by embedding artificial defects and light emitters inside the crystals, making use of 3D bandgap directional effects. Here we show experimentally that photons can be controlled and manipulated even at the 'surface' of 3D photonic crystals, where 3D periodicity is terminated, establishing a new and versatile route for photon manipulation. By making use of an evanescent-mode coupling technique, we demonstrate that 3D photonic crystals possess two-dimensional surface states, and we map their band structure. We show that photons can be confined and propagate through these two-dimensional surface states, and we realize their localization at arbitrary surface points by designing artificial surface-defect structures through the formation of a surface-mode gap. Surprisingly, the quality factors of the surface-defect mode are the largest reported for 3D photonic crystal nanocavities (Q up to approximately 9,000). In addition to providing a new approach for photon manipulation by photonic crystals, our findings are relevant for the generation and control of plasmon-polaritons in metals and the related surface photon physics. The absorption-free nature of the 3D photonic crystal surface may enable new sensing applications and provide routes for the realization of efficient light-matter interactions.

  8. Vibrational spectra and thermal rectification in three-dimensional anharmonic lattices

    International Nuclear Information System (INIS)

    Lan Jinghua; Li Baowen

    2007-01-01

    We study thermal rectification in a three-dimensional model consisting of two segments of anharmonic lattices. One segment consists of layers of harmonic oscillator arrays coupled to a substrate potential, which is a three-dimensional Frenkel-Kontorova model, and the other segment is a three-dimensional Fermi-Pasta-Ulam model. We study the vibrational bands of the two lattices analytically and numerically, and find that, by choosing the system parameters properly, the rectification can be as high as a few thousands, which is high enough to be observed in experiment. Possible experiments in nanostructures are discussed

  9. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

    International Nuclear Information System (INIS)

    Xie Hai-Qiong; Zeng Zhong; Zhang Liang-Qi

    2016-01-01

    We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. (paper)

  10. Topics in two dimensional conformal field theory and three dimensional topological lattice field theory

    International Nuclear Information System (INIS)

    Chung, Stephen-wei.

    1993-01-01

    The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint

  11. Engineering the near-field imaging of a rectangular-lattice photonic-crystal slab in the second band

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Imaging properties of a two-dimensional rectangular-lattice photonic crystal (PC) slab consisting of air holes immersed in a dielectric are studied in this work. The field patterns of electromagnetic waves radiated from a point source through the PC slab are calculated with the finite-difference time-domain method. Comparing the field patterns with the corresponding equifrequency-surface contours simulated by the plane-wave expansion method, we find that an excellent-quality near-field image may be formed through the PC slab by the mechanisms of the simultaneous action of the self-collimation effect and the negative-refraction effect. Near-field imaging may be obtained within two different frequency regions in two vertical directions of the PC slab.

  12. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Siegert, Christoph; Farrer, Ian; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Pepper, Michael [Department of Electrical and Electronic Engineering, University College, London WC1E 7JE (United Kingdom)

    2013-12-04

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.

  13. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    International Nuclear Information System (INIS)

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam; Siegert, Christoph; Farrer, Ian; Ritchie, David A.; Pepper, Michael

    2013-01-01

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background

  14. Two-dimensional photonic-crystal-based double switch-divider.

    Science.gov (United States)

    Dmitriev, Victor; Martins, Leno

    2016-05-01

    We propose and investigate a new multifunctional component, consisting of a T-junction of three waveguides in 2D photonic crystal with a square lattice. One waveguide is the input port, while the other two serve as output ports. This component can fulfil three functions: First, it can switch OFF the two output ports; second, our component can be used as a 3 dB divider of the input power; and third, it can switch ON any one of the two output ports. Changing the regime is achieved by a DC magnetic field that magnetizes a cylindrical ferrite resonator placed in the T-junction. We present an analysis of the scattering matrices of the component and calculated frequency characteristics in the low terahertz region. In the frequency band of about 1 GHz with a central frequency of f=98.46  GHz, the device has the following parameters: isolation of the output ports from the input port in the first regime is better than -30  dB, division of the input signal is about (-3.8±1.0)  dB in the second regime, and isolation in the regime switch ON, where any one of the two output ports is higher than -15  dB and the insertion loss is lower than -2.0  dB.

  15. Turing instability for a two-dimensional Logistic coupled map lattice

    International Nuclear Information System (INIS)

    Xu, L.; Zhang, G.; Han, B.; Zhang, L.; Li, M.F.; Han, Y.T.

    2010-01-01

    In this Letter, stability analysis is applied to a two-dimensional Logistic coupled map lattice with the periodic boundary conditions. The conditions of Turing instability are obtained, and various patterns can be exhibited by numerical simulations in the Turing instability region. For example, space-time periodic structures, periodic or quasiperiodic traveling wave solutions, stationary wave solutions, spiral waves, and spatiotemporal chaos, etc. have been observed. In particular, the different pattern structures have also been observed for same parameters and different initial values. That is, pattern structures also depend on the initial values. The similar patterns have also been seen in relevant references. However, the present Letter owes to pattern formation via diffusion-driven instabilities because the system is stable in the absence of diffusion.

  16. Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation

    International Nuclear Information System (INIS)

    Chen, G.S.

    1997-01-01

    We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used. TFQMR (transpose free quasi-minimal residual algorithm), CGS (conjuage gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These sub-routines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. (author)

  17. Two-dimensional metamaterial optics

    International Nuclear Information System (INIS)

    Smolyaninov, I I

    2010-01-01

    While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes

  18. Hofstadter's butterfly energy spectrum of ultracold fermions on the two-dimensional triangular optical lattice

    International Nuclear Information System (INIS)

    Hou Jingmin; Lu Qingqing

    2009-01-01

    We study the energy spectrum of ultracold fermionic atoms on the two-dimensional triangular optical lattice subjected to a perpendicular effective magnetic field, which can be realized with laser beams. We derive the generalized Harper's equations and numerically solve them, then we obtain the Hofstadter's butterfly-like energy spectrum, which has a novel fractal structure. The observability of the Hofstadter's butterfly spectrum is also discussed

  19. Three-dimensional coupled double-distribution-function lattice ...

    Indian Academy of Sciences (India)

    Ruo-Fan Qiu

    2017-11-14

    Nov 14, 2017 ... Abstract. Two three-dimensional (3D) lattice Boltzmann models in the framework of coupled double-distribution- function approach for compressible flows, in which specific-heat ratio and Prandtl number can be adjustable, are developed in this paper. The main differences between the two models are ...

  20. Engineering topological edge states in two dimensional magnetic photonic crystal

    Science.gov (United States)

    Yang, Bing; Wu, Tong; Zhang, Xiangdong

    2017-01-01

    Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."

  1. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com [Department of Physics, Amity Institute of Applied Sciences, AmityUniversity, Noida (U.P.) (India); Kumar, Narendra [Department of Physics (CASH), Modi University of Science and Technology, Lakshmangarh, Sikar, Rajsthan (India); Thapa, Khem B. [Department of Physics, U I E T, ChhatrapatiShahu Ji Maharaj University, Kanpur- (UP) (India); Ojha, S. P. [Department of Physics IIT, Banaras Hindu University (India)

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  2. Disorder-induced modification of the transmission of light through two-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Beggs, D M; Kaliteevski, M A; Abram, R A; Cassagne, D; Albert, J P

    2005-01-01

    Disordered two-dimensional photonic crystals with a complete photonic band-gap have been investigated. Transmission and reflection spectra have been modelled for both ballistic and scattered light. The density of states and electromagnetic field profiles of disorder-induced localized states have also been calculated, for various levels of disorder. It is found that there is a threshold-like behaviour in the amount of disorder. Below the threshold, it is seen that there is a vanishing probability of disorder-induced localized states being introduced into the centre of the photonic band-gap, but that edge-states narrow the band-gap. Above the threshold, there is a non-zero probability of disorder-induced localized states throughout the photonic band-gap, and the modification of the transmission and reflection spectra due to disorder rapidly increases with increasing disorder

  3. Optical-lattice Hamiltonians for relativistic quantum electrodynamics

    International Nuclear Information System (INIS)

    Kapit, Eliot; Mueller, Erich

    2011-01-01

    We show how interpenetrating optical lattices containing Bose-Fermi mixtures can be constructed to emulate the thermodynamics of quantum electrodynamics (QED). We present models of neutral atoms on lattices in 1+1, 2+1, and 3+1 dimensions whose low-energy effective action reduces to that of photons coupled to Dirac fermions of the corresponding dimensionality. We give special attention to (2+1)-dimensional quantum electrodynamics (QED3) and discuss how two of its most interesting features, chiral symmetry breaking and Chern-Simons physics, could be observed experimentally.

  4. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  5. On d -Dimensional Lattice (co)sine n -Algebra

    International Nuclear Information System (INIS)

    Yao Shao-Kui; Zhang Chun-Hong; Zhao Wei-Zhong; Ding Lu; Liu Peng

    2016-01-01

    We present the (co)sine n-algebra which is indexed by the d-dimensional integer lattice. Due to the associative operators, this generalized (co)sine n-algebra is the higher order Lie algebra for the n even case. The particular cases are the d-dimensional lattice sine 3 and cosine 5-algebras with the special parameter values. We find that the corresponding d-dimensional lattice sine 3 and cosine 5-algebras are the Nambu 3-algebra and higher order Lie algebra, respectively. The limiting case of the d-dimensional lattice (co)sine n-algebra is also discussed. Moreover we construct the super sine n-algebra, which is the super higher order Lie algebra for the n even case. (paper)

  6. Enhancement of polymer dye lasers by multifunctional photonic crystal lattice

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Xiao, Sanshui; Mortensen, Asger

    2009-01-01

    The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser.......The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser....

  7. Photon-exchange energy transfer of an electron–hole plasma between quasi-two-dimensional semiconductor layers

    International Nuclear Information System (INIS)

    Lyo, S.K.

    2012-01-01

    Photon-mediated energy transfer is shown to play an important role for transfer of an electron–hole plasma between two quasi-two-dimensional quantum wells separated by a wide barrier. The magnitude and the dependence of the transfer rate of an electron–hole plasma on the temperature, the well-to-well distance, and the plasma density are compared with those of the standard Förster (i.e., dipolar) rate and also with the exciton transfer rate. The plasma transfer rate through the photon-exchange mechanism decays very slowly as a function of the well-to-well distance and is larger than the dipolar rate except for short distances. The transfer rate of plasmas saturates at high densities and decays rapidly with the temperature. - Highlights: ► We study energy transfer (ET) between two two-dimensional semiconductor quantum wells. ► We compare the ET rates of an electron–hole plasma (at a high density) and Mott excitons. ► We show that the proposed photon-exchange rate is practically dominant over the Förster rate. ► We examine the dependences of the ET rate on the temperature, density, and well-to-well distance.

  8. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua

    International Nuclear Information System (INIS)

    Zhang, Weigang; Zhang, Gangsheng

    2015-01-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures

  9. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weigang, E-mail: abczwg15@163.com [College of Materials and Chemical Engineering, Chuzhou University, Chuzhou 239000 (China); Zhang, Gangsheng [College of Material Science and Technology, Guangxi University, Nanning 530004 (China)

    2015-07-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures.

  10. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    International Nuclear Information System (INIS)

    Mario Agio

    2002-01-01

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser

  11. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Agio, Mario [Iowa State Univ., Ames, IA (United States)

    2002-12-31

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.

  12. Effect of background dielectric on TE-polarized photonic bandgap of metallodielectric photonic crystals using Dirichlet-to-Neumann map method.

    Science.gov (United States)

    Sedghi, Aliasghar; Rezaei, Behrooz

    2016-11-20

    Using the Dirichlet-to-Neumann map method, we have calculated the photonic band structure of two-dimensional metallodielectric photonic crystals having the square and triangular lattices of circular metal rods in a dielectric background. We have selected the transverse electric mode of electromagnetic waves, and the resulting band structures showed the existence of photonic bandgap in these structures. We theoretically study the effect of background dielectric on the photonic bandgap.

  13. Data reading with the aid of one-photon and two-photon luminescence in three-dimensional optical memory devices based on photochromic materials

    International Nuclear Information System (INIS)

    Akimov, Denis A; Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A; Sokolyuk, N T

    1998-01-01

    The problem of nondestructive reading of the data stored in the interior of a photochromic sample was analysed. A comparison was made of the feasibility of reading based on one-photon and two-photon luminescence. A model was proposed for the processes of reading the data stored in photochromic molecules with the aid of one-photon and two-photon luminescence. In addition to photochromic transitions, account was taken of the transfer of populations between optically coupled transitions in molecules under the action of the exciting radiation. This model provided a satisfactory description of the kinetics of decay of the coloured form of bulk samples of spiropyran and made it possible to determine experimentally the quantum yield of the reverse photoreaction as well as the two-photon absorption cross section of the coloured form. Measurements were made of the characteristic erasure times of the data stored in a photochromic medium under one-photon and two-photon luminescence reading conditions. It was found that the use of two-photon luminescence made it possible to enhance considerably the contrast and localisation of the optical data reading scheme in three-dimensional optical memory devices. The experimental results were used to estimate the two-photon absorption cross section of the coloured form of a sample of indoline spiropyran in a polymethyl methacrylate matrix. (laser applications and other topics in quantum electronics)

  14. Near-Integrability of Low-Dimensional Periodic Klein-Gordon Lattices

    Directory of Open Access Journals (Sweden)

    Ognyan Christov

    2018-01-01

    Full Text Available The low-dimensional periodic Klein-Gordon lattices are studied for integrability. We prove that the periodic lattice with two particles and certain nonlinear potential is nonintegrable. However, in the cases of up to six particles, we prove that their Birkhoff-Gustavson normal forms are integrable, which allows us to apply KAM theory in most cases.

  15. Spatial filtering of light by chirped photonic crystals

    International Nuclear Information System (INIS)

    Staliunas, Kestutis; Sanchez-Morcillo, Victor J.

    2009-01-01

    We propose an efficient method for spatial filtering of light beams by propagating them through two-dimensional (also three dimensional) chirped photonic crystals, i.e., through the photonic structures with fixed transverse lattice period and with the longitudinal lattice period varying along the direction of the beam propagation. We prove the proposed idea by numerically solving the paraxial propagation equation in refraction-index-modulated media and we evaluate the efficiency of the process by harmonic-expansion analysis. The technique can be also applied for filtering (for cleaning) of the packages of atomic waves (Bose condensates), also to improve the directionality of acoustic and mechanical waves.

  16. A Bloch modal approach for engineering waveguide and cavity modes in two-dimensional photonic crystals

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper

    2014-01-01

    uses no external excitation and determines the quasi-normal modes as unity eigenvalues of the cavity roundtrip matrix. We demonstrate the method and the quasi-normal modes for two types of two-dimensional photonic crystal structures, and discuss the quasi-normal mode eld distributions and Q-factors...

  17. Simulation of diffusion in a two-dimensional lattice gas cellular automaton: a test of mode-coupling theory

    NARCIS (Netherlands)

    Frenkel, D.; Ernst, M.H.

    1989-01-01

    We compute the velocity autocorrelation function of a tagged particle in a two-dimensional lattice-gas cellular automaton using a method that is about a million times more efficient than existing techniques. A t-1 algebraic tail in the tagged-particle velocity autocorrelation function is clearly

  18. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    -dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is ...

  19. The band structures of three-dimensional nonlinear plasma photonic crystals

    Directory of Open Access Journals (Sweden)

    Hai-Feng Zhang

    2018-01-01

    Full Text Available In this paper, the properties of the photonic band gaps (PBGs for three-dimensional (3D nonlinear plasma photonic crystals (PPCs are theoretically investigated by the plane wave expansion method, whose equations for calculations also are deduced. The configuration of 3D nonlinear PPCs is the Kerr nonlinear dielectric spheres (Kerr effect is considered inserted in the plasma background with simple-cubic lattices. The inserted dielectric spheres are Kerr nonlinear dielectrics whose relative permittivities are the functions of the external light intensity. Three different Kerr nonlinear dielectrics are considered, which can be expressed as the functions of space coordinates. The influences of the parameters for the Kerr nonlinear dielectrics on the PBGs also are discussed. The calculated results demonstrate that the locations, bandwidths and number of PBGs can be manipulated with the different Kerr nonlinear dielectrics. Compared with the conventional 3D dielectric PCs and PPCs with simple-cubic lattices, the more PBGs or larger PBG can be achieved in the 3D nonlinear PPCs. Those results provide a new way to design the novel devices based on the PPCs.

  20. One-way quantum computation with four-dimensional photonic qudits

    International Nuclear Information System (INIS)

    Joo, Jaewoo; Knight, Peter L.; O'Brien, Jeremy L.; Rudolph, Terry

    2007-01-01

    We consider the possibility of performing linear optical quantum computations making use of extra photonic degrees of freedom. In particular, we focus on the case where we use photons as quadbits, four-dimensional photonic qudits. The basic 2-quadbit cluster state is a hyperentangled state across polarization and two spatial mode degrees of freedom. We examine the nondeterministic methods whereby such states can be created from single photons and/or Bell pairs and then give some mechanisms for performing higher-dimensional fusion gates

  1. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    Science.gov (United States)

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  2. Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication

    International Nuclear Information System (INIS)

    Duan Xuanming; Sun Hongbo; Kaneko, Koshiro; Kawata, Satoshi

    2004-01-01

    We have investigated two-photon polymerization of metal ions doped acrylate monomers and oligomers which is applied for three-dimensional (3D) micro/nano-structure fabrication. Titanium (IV) ions doped urethane acrylate photopolymerizable resins were synthesized, and their optical and polymerization properties were investigated. The resolution of two-photon polymerization for micro/nanofabrication was evaluated. Titanium dioxide (TiO 2 ) nanoparticles were generated in the polymer matrix of micron-sized polymer structures. A 3D diamond photonic crystal structure, which consisted of polymer composite materials of TiO 2 nanoparticles, was successfully fabricated by direct laser writing and its photonic bandgap was confirmed. This work would give us a new solution for producing 3D micro/nanodevices of functional polymer composite materials

  3. High Efficiency Optical MEMS by the Integration of Photonic Lattices with Surface MEMS

    Energy Technology Data Exchange (ETDEWEB)

    FLEMING, JAMES G.; LIN, SHAWN-YU; MANI, SEETHAMBAL S.; RODGERS, M. STEVEN; DAGEL, DARYL J.

    2002-11-01

    This report outlines our work on the integration of high efficiency photonic lattice structures with MEMS (MicroElectroMechanical Systems). The simplest of these structures were based on 1-D mirror structures. These were integrated into a variety of devices, movable mirrors, switchable cavities and finally into Bragg fiber structures which enable the control of light in at least 2 dimensions. Of these devices, the most complex were the Bragg fibers. Bragg fibers consist of hollow tubes in which light is guided in a low index media (air) and confined by surrounding Bragg mirror stacks. In this work, structures with internal diameters from 5 to 30 microns have been fabricated and much larger structures should also be possible. We have demonstrated the fabrication of these structures with short wavelength band edges ranging from 400 to 1600nm. There may be potential applications for such structures in the fields of integrated optics and BioMEMS. We have also looked at the possibility of waveguiding in 3 dimensions by integrating defects into 3-dimensional photonic lattice structures. Eventually it may be possible to tune such structures by mechanically modulating the defects.

  4. Lattice classification of the four-dimensional heterotic strings

    International Nuclear Information System (INIS)

    Balog, J.; Forgacs, P.; Vecsernyes, P.; Horvath, Z.

    1987-06-01

    A lattice slicing procedure is proposed which leads to the classification of all four-dimensional chiral heterotic strings based on Conway and Sloane's 22-dimensional self-dual Euclidean lattices. By reversing this procedure it is possible to construct all these theories. (author)

  5. Topological Quantum Phase Transitions in Two-Dimensional Hexagonal Lattice Bilayers

    Science.gov (United States)

    Zhai, Xuechao; Jin, Guojun

    2013-09-01

    Since the successful fabrication of graphene, two-dimensional hexagonal lattice structures have become a research hotspot in condensed matter physics. In this short review, we theoretically focus on discussing the possible realization of a topological insulator (TI) phase in systems of graphene bilayer (GBL) and boron nitride bilayer (BNBL), whose band structures can be experimentally modulated by an interlayer bias voltage. Under the bias, a band gap can be opened in AB-stacked GBL but is still closed in AA-stacked GBL and significantly reduced in AA- or AB-stacked BNBL. In the presence of spin-orbit couplings (SOCs), further demonstrations indicate whether the topological quantum phase transition can be realized strongly depends on the stacking orders and symmetries of structures. It is observed that a bulk band gap can be first closed and then reopened when the Rashba SOC increases for gated AB-stacked GBL or when the intrinsic SOC increases for gated AA-stacked BNBL. This gives a distinct signal for a topological quantum phase transition, which is further characterized by a jump of the ℤ2 topological invariant. At fixed SOCs, the TI phase can be well switched by the interlayer bias and the phase boundaries are precisely determined. For AA-stacked GBL and AB-stacked BNBL, no strong TI phase exists, regardless of the strength of the intrinsic or Rashba SOCs. At last, a brief overview is given on other two-dimensional hexagonal materials including silicene and molybdenum disulfide bilayers.

  6. Low crosstalk waveguide intersections in honeycomb lattice photonic crystals for TM-polarized light

    International Nuclear Information System (INIS)

    Ma, P; Jäckel, H

    2011-01-01

    We present the design of a low crosstalk, high throughput waveguide intersection for transverse-magnetic-polarized light. The design is based on two orthogonal photonic crystal waveguides and a resonant photonic crystal cavity in honeycomb lattice geometry. The results of our numerical simulation validate the concept of the design and demonstrate a crosstalk smaller than 0.1% and throughput transmission of more than 80% for both orthogonal waveguide branches

  7. Tuning topological phase transitions in hexagonal photonic lattices made of triangular rods

    Science.gov (United States)

    Chan, Hsun-Chi; Guo, Guang-Yu

    2018-01-01

    In this paper we study topological phases in a two-dimensional photonic crystal with broken time (T ) and parity (P ) symmetries by performing calculations of band structures, Berry curvatures, Chern numbers, edge states, and also numerical simulations of light propagation in the edge modes. Specifically, we consider a hexagonal lattice consisting of triangular gyromagnetic rods. Here the gyromagnetic material breaks T symmetry while the triangular rods break P symmetry. Interestingly, we find that the crystal could host quantum anomalous Hall (QAH) phases with different gap Chern numbers (Cg) including | Cg|>1 as well as quantum valley Hall (QVH) phases with contrasting valley Chern numbers (Cv), depending on the orientation of the triangular rods. Furthermore, phase transitions among these topological phases, such as from QAH to QVH and vice versa, can be engineered by a simple rotation of the rods. Our band theoretical analyses reveal that the Dirac nodes at the K and K' valleys in the momentum space are produced and protected by the mirror symmetry (my) instead of the P symmetry, and they become gapped when either T or my symmetry is broken, resulting in a QAH or QVH phase, respectively. Moreover, a high Chern number (Cg=-2 ) QAH phase is generated by gapping triply degenerate nodal points rather than pairs of Dirac points by breaking T symmetry. Our proposed photonic crystal thus provides a platform for investigating intriguing topological phenomena which may be challenging to realize in electronic systems, and also has promising potentials for device applications in photonics such as reflection-free one-way waveguides and topological photonic circuits.

  8. Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices

    International Nuclear Information System (INIS)

    Rojas-Rojas, Santiago; Naether, Uta; Delgado, Aldo; Vicencio, Rodrigo A.

    2016-01-01

    Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  9. Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Rojas, Santiago, E-mail: srojas@cefop.cl [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Naether, Uta [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Delgado, Aldo [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Vicencio, Rodrigo A. [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile)

    2016-09-16

    Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  10. Photonic crystals: features and applications (physics research and technology)

    CERN Document Server

    2013-01-01

    The present book is focused on the study of unprecedented control and manipulation of light by photonic crystals (PCs) and their applications. These are micro- or usually nano-structures composed of periodic indexes of refraction of dielectrics with high refractive index contrast. They exhibit optical frequency band gaps in analogy to electronic bands for a periodic potential of a semiconductor crystal lattice. The gemstone opal and butterflys feathers colours are already referred to as natural examples of photonic crystals. The characteristics of such supper-lattices were first reported by Yablonovitch in 1987. The exploitation of photonic crystals is a promising tool in communication, sensors, optical computing, and nanophotonics. Discussed are the various features of one-dimensional (1D) and two-dimensional (2D) photonic crystals, photonic quasi crystals, heterostuctures and PC fibres under a variety of conditions using several materials, and metamaterials. It also focuses on the applications of PCs in opt...

  11. Third sound in one and two dimensional modulated structures

    International Nuclear Information System (INIS)

    Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.

    1996-01-01

    An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction

  12. Spectral properties of a two dimensional photonic crystal with quasi-integrable geometry

    International Nuclear Information System (INIS)

    Cruz-Bueno, J J; Méndez-Bermúdez, J A; Arriaga, J

    2013-01-01

    In this paper we study the statistical properties of the allowed frequencies for electromagnetic waves propagating in two-dimensional photonic crystals with quasi-integrable geometry. We compute the level spacing, group velocity, and curvature distributions (P(s), P(v), and P(c), respectively) and compare them with the corresponding random matrix theory predictions. Due to the quasi-integrability of the crystal we observe signatures of intermediate statistics in P(s) and P(c) for high refractive index contrasts

  13. Reconfigurable lattice mesh designs for programmable photonic processors.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A

    2016-05-30

    We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.

  14. An approach to higher dimensional theories based on lattice gauge theory

    International Nuclear Information System (INIS)

    Murata, M.; So, H.

    2004-01-01

    A higher dimensional lattice space can be decomposed into a number of four-dimensional lattices called as layers. The higher dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. We propose the new possibility to realize the continuum limit of a five-dimensional theory based on the property of the phase diagram

  15. Broadband slow light in one-dimensional logically combined photonic crystals.

    Science.gov (United States)

    Alagappan, G; Png, C E

    2015-01-28

    Here, we demonstrate the broadband slow light effects in a new family of one dimensional photonic crystals, which are obtained by logically combining two photonic crystals of slightly different periods. The logical combination slowly destroys the original translational symmetries of the individual photonic crystals. Consequently, the Bloch modes of the individual photonic crystals with different wavevectors couple with each other, creating a vast number of slow modes. Specifically, we describe a photonic crystal architecture that results from a logical "OR" mixture of two one dimensional photonic crystals with a periods ratio of r = R/(R - 1), where R > 2 is an integer. Such a logically combined architecture, exhibits a broad region of frequencies in which a dense number of slow modes with varnishing group velocities, appear naturally as Bloch modes.

  16. Engineering two-photon high-dimensional states through quantum interference

    CSIR Research Space (South Africa)

    Zhang, YI

    2016-02-01

    Full Text Available . ngled photon pairs (see p a nonlinear crystal to ersion (SPDC). At the tate (6) ℓ¼1 stat th , w from ℓ = 0. The subscripts A and B la R E S EARCH ART I C L E o n February 28, 2016 http://advances.sciencem ag.org/ D ow nloaded from stitute of Photonics... contribution from the ℓ = 1, 2, and 3 subspaces in this six-dimensional state (36 × 36 matrix). (B) The state after the filter, which in principle is given byd01jY � 1 〉 þ d 0 3jY � 3 〉; the contribution from the ℓ = 2 subspace is 3.8 ± 0.2% of its original...

  17. Two-dimensional melting of vortex lattices and the mutual vortex drag effect in a superconducting transformer

    International Nuclear Information System (INIS)

    Glazman, L.I.; Fogel', N.Y.

    1984-01-01

    A study is reported of the effect of two-dimensional melting of a vortex lattice on the current-voltage characteristic of a transformer, in the form of the dependence of the secondary voltage V 2 on the primary-circuit transport current J 1 . The motion of vortices in the melted lattice is described in the diffusion approximation, and their interaction in the self-consistent field approximation. The melting of even one lattice largely eliminates the vortex drag: V 2 1 for any current J 1 . The square-root singularity of the characteristics which is typical of the ordinary transformer operation no longer occurs in the critical temperature range. In the linear part of the characteristic, the ratio V 2 /V 1 is inversely proportional to the magnetic field H over a wide range of the latter. The temperature dependence of V 2 and the asymptotic function V 2 (J 1 ) for large J 1 are different, according as one or both lattices melt. The transformer current-voltage characteristic thus conveys information about the state of the vortex lattice and allows its melting to be investigated. The function V 2 (V 1 ) and V 2 (H) found here agree well with experiment, and the experimental results can thus be explained by the melting of a vortex lattice

  18. Creating tuneable microwave media from a two-dimensional lattice of re-entrant posts

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, Maxim; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)

    2015-11-28

    The potential capabilities of resonators based on two dimensional arrays of re-entrant posts is demonstrated. Such posts may be regarded as magnetically coupled lumped element microwave harmonic oscillators, arranged in a 2D lattices structure, which is enclosed in a 3D cavity. By arranging these elements in certain 2D patterns, we demonstrate how to achieve certain requirements with respect to field localisation and device spectra. Special attention is paid to symmetries of the lattices, mechanical tuning, design of areas of high localisation of magnetic energy; this in turn creates unique discrete mode spectra. We demonstrate analogies between systems designed on the proposed platform and well known physical phenomena such as polarisation, frustration, and Whispering Gallery Modes. The mechanical tunability of the cavity with multiple posts is analysed, and its consequences to optomechanical applications is calculated. One particular application to quantum memory is demonstrated with a cavity design consisting of separate resonators analogous to discrete Fabry–Pérot resonators. Finally, we propose a generalised approach to a microwave system design based on the concept of Programmable Cavity Arrays.

  19. The linear lattice design of an advanced VUV/SXR photon source for Daresbury

    International Nuclear Information System (INIS)

    Clarke, J.A.; Corlett, J.N.; Poole, M.W.; Smith, S.L.; Suller, V.P.; Welbourne, L.A.

    1992-01-01

    The linear lattice design of an advanced synchrotron radiation source in the VUV/SXR region, optimised to produce undulator radiation with high brilliance over the range 5-1000 eV, is discussed. The photon source is based on a 10 cell double bend achromat which will operate over the range 0.5-1.2 GeV. The linear lattice properties over the total available working region are presented for this structure. It is demonstrated that the circular lattice can be extended to a racetrack configuration by the inclusion of two long matched straights with free lengths of over 15 m each. (author) 8 refs.; 5 figs.; 1 tab

  20. Optical properties of a defective one-dimensional photonic crystal containing graphene nanaolayers

    International Nuclear Information System (INIS)

    Entezar, S. Roshan; Saleki, Z.; Madani, A.

    2015-01-01

    The transmission properties of a defective one-dimensional photonic crystal containing graphene nanolayers have been investigated using the transfer matrix method. It is shown that two kinds of the defect modes can be found in the band gaps of the structure. One kind is the traditional defect mode which is created in the Bragg gaps of the structure and is due to the breaking of the periodicity of the dielectric lattice. The other one is created in the graphene induced band gap. Such a defect mode which we call it the graphene induced defect mode is due to the breaking of the periodicity of the graphene lattice. However, our investigations reveal that only in the case of wide defect layers one can obtain the graphene induced defect modes. The effects of many parameters such as the incident angle, the state of polarization and the chemical potential of the graphene nanolayers on the properties of the graphene induced defect modes are discussed. Moreover, the possibility of external control of the graphene induced defect modes using a gate voltage is shown.

  1. Interacting Fermi gases in disordered one-dimensional lattices

    International Nuclear Information System (INIS)

    Xianlong, Gao; Polini, M.; Tosi, M. P.; Tanatar, B.

    2006-01-01

    Interacting two-component Fermi gases loaded in a one-dimensional (1D) lattice and subject to harmonic trapping exhibit intriguing compound phases in which fluid regions coexist with local Mott-insulator and/or band-insulator regions. Motivated by experiments on cold atoms inside disordered optical lattices, we present a theoretical study of the effects of a random potential on these ground-state phases. Within a density-functional scheme we show that disorder has two main effects: (i) it destroys the local insulating regions if it is sufficiently strong compared with the on-site atom-atom repulsion, and (ii) it induces an anomaly in the compressibility at low density from quenching of percolation

  2. Topological photonic crystals with zero Berry curvature

    Science.gov (United States)

    Liu, Feng; Deng, Hai-Yao; Wakabayashi, Katsunori

    2018-02-01

    Topological photonic crystals are designed based on the concept of Zak's phase rather than the topological invariants such as the Chern number and spin Chern number, which rely on the existence of a nonvanishing Berry curvature. Our photonic crystals (PCs) are made of pure dielectrics and sit on a square lattice obeying the C4 v point-group symmetry. Two varieties of PCs are considered: one closely resembles the electronic two-dimensional Su-Schrieffer-Heeger model, and the other continues as an extension of this analogy. In both cases, the topological transitions are induced by adjusting the lattice constants. Topological edge modes (TEMs) are shown to exist within the nontrivial photonic band gaps on the termination of those PCs. The high efficiency of these TEMs transferring electromagnetic energy against several types of disorders has been demonstrated using the finite-element method.

  3. Unidirectional edge states in topological honeycomb-lattice membrane photonic crystals.

    Science.gov (United States)

    Anderson, P Duke; Subramania, Ganapathi

    2017-09-18

    Photonic analogs of electronic systems with topologically non-trivial behavior such as unidirectional scatter-free propagation has tremendous potential for transforming photonic systems. Like in electronics topological behavior can be observed in photonics for systems either preserving time-reversal (TR) symmetry or explicitly breaking it. TR symmetry breaking requires magneto-optic photonics crystals (PC) or generation of synthetic gauge fields. For on-chip photonics that operate at optical frequencies both are quite challenging because of poor magneto-optic response of materials or substantial nanofabrication challenges in generating synthetic gauge fields. A recent work by Ma, et al. [Phys. Rev. Lett.114, 223901 (2015)] based on preserving pseudo TR symmetry offers a promising design scheme for observing unidirectional edge states in a modified honeycomb photonic crystal (PC) lattice of circular rods that offers encouraging alternatives. Here we propose through bandstructure calculations the inverse system of modified honeycomb PC of circular holes in a dielectric membrane which is more attractive from fabrication standpoint for on-chip applications. We observe trivial and non-trivial bandgaps as well as unidirectional edge states of opposite helicity propagating in opposite directions at the interface of a trivial and non-trivial PC structures. Around 1550nm operating wavelength ~55nm of bandwidth is possible for practicable values of design parameters (lattice constant, hole radii, membrane thickness, scaling factor etc.) and robust to reasonable variations in those parameters.

  4. Optical coupling between atomically thin black phosphorus and a two dimensional photonic crystal nanocavity

    Science.gov (United States)

    Ota, Yasutomo; Moriya, Rai; Yabuki, Naoto; Arai, Miho; Kakuda, Masahiro; Iwamoto, Satoshi; Machida, Tomoki; Arakawa, Yasuhiko

    2017-05-01

    Atomically thin black phosphorus (BP) is an emerging two dimensional (2D) material exhibiting bright photoluminescence in the near infrared region. Coupling its radiation to photonic nanostructures will be an important step toward the realization of 2D material based nanophotonic devices that operate efficiently in the near infrared region, which includes the technologically important optical telecommunication wavelength bands. In this letter, we demonstrate the optical coupling between atomically thin BP and a 2D photonic crystal nanocavity. We employed a home-build dry transfer apparatus for placing a thin BP flake on the surface of the nanocavity. Their optical coupling was analyzed through measuring cavity mode emission under optical carrier injection at room temperature.

  5. Two-dimensional discrete ordinates photon transport calculations for brachytherapy dosimetry applications

    International Nuclear Information System (INIS)

    Daskalov, G.M.; Baker, R.S.; Little, R.C.; Rogers, D.W.O.; Williamson, J.F.

    2000-01-01

    The DANTSYS discrete ordinates computer code system is applied to quantitative estimation of water kerma rate distributions in the vicinity of discrete photon sources with energies in the 20- to 800-keV range in two-dimensional cylindrical r-z geometry. Unencapsulated sources immersed in cylindrical water phantoms of 40-cm diameter and 40-cm height are modeled in either homogeneous phantoms or shielded by Ti, Fe, and Pb filters with thicknesses of 1 and 2 mean free paths. The obtained dose results are compared with corresponding photon Monte Carlo simulations. A 210-group photon cross-section library for applications in this energy range is developed and applied, together with a general-purpose 42-group library developed at Los Alamos National Laboratory, for DANTSYS calculations. The accuracy of DANTSYS with the 42-group library relative to Monte Carlo exhibits large pointwise fluctuations from -42 to +84%. The major cause for the observed discrepancies is determined to be the inadequacy of the weighting function used for the 42-group library derivation. DANTSYS simulations with a finer 210-group library show excellent accuracy on and off the source transverse plane relative to Monte Carlo kerma calculations, varying from minus4.9 to 3.7%. The P 3 Legendre polynomial expansion of the angular scattering function is shown to be sufficient for accurate calculations. The results demonstrate that DANTSYS is capable of calculating photon doses in very good agreement with Monte Carlo and that the multigroup cross-section library and efficient techniques for mitigation of ray effects are critical for accurate discrete ordinates implementation

  6. Thermal conduction in classical low-dimensional lattices

    International Nuclear Information System (INIS)

    Lepri, Stefano; Livi, Roberto; Politi, Antonio

    2003-01-01

    Deriving macroscopic phenomenological laws of irreversible thermodynamics from simple microscopic models is one of the tasks of non-equilibrium statistical mechanics. We consider stationary energy transport in crystals with reference to simple mathematical models consisting of coupled oscillators on a lattice. The role of lattice dimensionality on the breakdown of the Fourier's law is discussed and some universal quantitative aspects are emphasized: the divergence of the finite-size thermal conductivity is characterized by universal laws in one and two dimensions. Equilibrium and non-equilibrium molecular dynamics methods are presented along with a critical survey of previous numerical results. Analytical results for the non-equilibrium dynamics can be obtained in the harmonic chain where the role of disorder and localization can be also understood. The traditional kinetic approach, based on the Boltzmann-Peierls equation is also briefly sketched with reference to one-dimensional chains. Simple toy models can be defined in which the conductivity is finite. Anomalous transport in integrable non-linear systems is briefly discussed. Finally, possible future research themes are outlined

  7. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.

    Science.gov (United States)

    Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton

    2017-11-03

    Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.

  8. Synchrotron 4-dimensional imaging of two-phase flow through porous media.

    Science.gov (United States)

    Kim, F H; Penumadu, D; Patel, P; Xiao, X; Garboczi, E J; Moylan, S P; Donmez, M A

    2016-01-01

    Near real-time visualization of complex two-phase flow in a porous medium was demonstrated with dynamic 4-dimensional (4D) (3D + time) imaging at the 2-BM beam line of the Advanced Photon Source (APS) at Argonne National Laboratory. Advancing fluid fronts through tortuous flow paths and their interactions with sand grains were clearly captured, and formations of air bubbles and capillary bridges were visualized. The intense X-ray photon flux of the synchrotron facility made 4D imaging possible, capturing the dynamic evolution of both solid and fluid phases. Computed Tomography (CT) scans were collected every 12 s with a pixel size of 3.25 µm. The experiment was carried out to improve understanding of the physics associated with two-phase flow. The results provide a source of validation data for numerical simulation codes such as Lattice-Boltzmann, which are used to model multi-phase flow through porous media.

  9. Anisotropic ordering in a two-temperature lattice gas

    DEFF Research Database (Denmark)

    Szolnoki, Attila; Szabó, György; Mouritsen, Ole G.

    1997-01-01

    We consider a two-dimensional lattice gas model with repulsive nearest- and next-nearest-neighbor interactions that evolves in time according to anisotropic Kawasaki dynamics. The hopping of particles along the principal directions is governed by two heat baths at different temperatures T-x and T...

  10. Ballistic magnetotransport in a suspended two-dimensional electron gas with periodic antidot lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, E. Yu., E-mail: zhdanov@isp.nsc.ru; Pogosov, A. G.; Budantsev, M. V.; Pokhabov, D. A.; Bakarov, A. K. [Siberian Branch of the Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics (Russian Federation)

    2017-01-15

    The magnetoresistance of suspended semiconductor nanostructures with a two-dimensional electron gas structured by periodic square antidot lattices is studied. It is shown that the ballistic regime of electron transport is retained after detaching the sample from the substrate. Direct comparative analysis of commensurability oscillations of magnetoresistance and their temperature dependences in samples before and after suspension is performed. It is found that the temperature dependences are almost identical for non-suspended and suspended samples, whereas significant differences are observed in the nonlinear regime, caused by direct current passage. Commensurability oscillations in the suspended samples are more stable with respect to exposure to direct current, which can be presumably explained by electron–electron interaction enhancement after detaching nanostructures from the high-permittivity substrate.

  11. Lattice gas simulations of dynamical geometry in two dimensions.

    Science.gov (United States)

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  12. Dynamics of single photon transport in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system

    KAUST Repository

    Wang, Yuwen

    2016-09-22

    We study the dynamics of an ultrafast single photon pulse in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system. We find that for any single photon input the transmissivity depends periodically on the separation between the two coupling points. For a pulse containing many plane wave components it is almost impossible to suppress transmission, especially when the width of the pulse is less than 20 times the period. In contrast to plane wave input, the waveform of the pulse can be modified by controlling the coupling between the waveguide and Jaynes-Cummings system. Tailoring of the waveform is important for single photon manipulation in quantum informatics. © The Author(s) 2016.

  13. Two-photon spin generation and detection

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2009-01-01

    A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay (Δt), lattice temperature (T L ), doping density (n) as well as of the excess photon energy ΔE 2ω = ℎ2ω - E g , where E g is the band gap energy. P is found to be decayed with Δt and enhanced with the decrease in T L or the increase in n. It is also found that P decreases with the increase in ΔE 2ω and depolarizes rapidly for ΔE 2ω > ΔE SO , where ΔE SO is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.

  14. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  15. Effects of hydrostatic pressure on spin-lattice coupling in two-dimensional ferromagnetic Cr2Ge2Te6

    Science.gov (United States)

    Sun, Y.; Xiao, R. C.; Lin, G. T.; Zhang, R. R.; Ling, L. S.; Ma, Z. W.; Luo, X.; Lu, W. J.; Sun, Y. P.; Sheng, Z. G.

    2018-02-01

    Spin-lattice coupling plays an important role in both formation and understanding of the magnetism in two-dimensional magnetic semiconductors (2DMS). In this paper, the steady pressure effects on the lattice structure, Raman resonances, and magnetization of a 2DMS Cr2Ge2Te6 have been studied by both experiments and first principles calculations. It is found that the bond length of Cr-Cr decreases, the angle of Cr-Te-Cr diverges from 90°, and the Raman modes Eg3 and Ag1 show an increase with the application of external pressure. Consequently, the magnetic phase transition temperature TC decreases from 66.6 K to 60.6 K (˜9%) as the pressure increases from 0 to 1 GPa. These pressure effects not only confirm the existence of strong spin-lattice coupling but also reveal the detailed information about the lattice deformation effect on the magnetic properties in such 2DMS, which would be a benefit for the further understanding and manipulation of the magnetism in 2D materials.

  16. Decoherence in two-dimensional quantum walks

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Portugal, R.; Donangelo, R.

    2006-01-01

    We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk

  17. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton

    2014-07-30

    Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.

  18. Two-dimensional multiferroics in monolayer group IV monochalcogenides

    Science.gov (United States)

    Wang, Hua; Qian, Xiaofeng

    2017-03-01

    Low-dimensional multiferroic materials hold great promises in miniaturized device applications such as nanoscale transducers, actuators, sensors, photovoltaics, and nonvolatile memories. Here, using first-principles theory we predict that two-dimensional (2D) monolayer group IV monochalcogenides including GeS, GeSe, SnS, and SnSe are a class of 2D semiconducting multiferroics with giant strongly-coupled in-plane spontaneous ferroelectric polarization and spontaneous ferroelastic lattice strain that are thermodynamically stable at room temperature and beyond, and can be effectively modulated by elastic strain engineering. Their optical absorption spectra exhibit strong in-plane anisotropy with visible-spectrum excitonic gaps and sizable exciton binding energies, rendering the unique characteristics of low-dimensional semiconductors. More importantly, the predicted low domain wall energy and small migration barrier together with the coupled multiferroic order and anisotropic electronic structures suggest their great potentials for tunable multiferroic functional devices by manipulating external electrical, mechanical, and optical field to control the internal responses, and enable the development of four device concepts including 2D ferroelectric memory, 2D ferroelastic memory, and 2D ferroelastoelectric nonvolatile photonic memory as well as 2D ferroelectric excitonic photovoltaics.

  19. Generalized isothermic lattices

    International Nuclear Information System (INIS)

    Doliwa, Adam

    2007-01-01

    We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem

  20. Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    Science.gov (United States)

    Roy, Dibyendu

    2013-01-01

    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782

  1. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.

    Science.gov (United States)

    Singh, Bipin K; Pandey, Praveen C

    2016-07-20

    Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.

  2. Holographic Fabrication of Designed Functional Defect Lines in Photonic Crystal Lattice Using a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Jeffrey Lutkenhaus

    2016-04-01

    Full Text Available We report the holographic fabrication of designed defect lines in photonic crystal lattices through phase engineering using a spatial light modulator (SLM. The diffracted beams from the SLM not only carry the defect’s content but also the defect related phase-shifting information. The phase-shifting induced lattice shifting in photonic lattices around the defects in three-beam interference is less than the one produced by five-beam interference due to the alternating shifting in lattice in three beam interference. By designing the defect line at a 45 degree orientation and using three-beam interference, the defect orientation can be aligned with the background photonic lattice, and the shifting is only in one side of the defect line, in agreement with the theory. Finally, a new design for the integration of functional defect lines in a background phase pattern reduces the relative phase shift of the defect and utilizes the different diffraction efficiency between the defect line and background phase pattern. We demonstrate that the desired and functional defect lattice can be registered into the background lattice through the direct imaging of designed phase patterns.

  3. Two Dimensional Super QCD on a Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon [Syracuse U.; Veernala, Aarti [Fermilab

    2017-10-04

    We construct a lattice theory with one exact supersymmetry which consists of fields transforming in both the adjoint and fundamental representations of a U(Nc) gauge group. In addition to gluons and gluinos, the theory contains Nf flavors of fermion in the fundamental representation along with their scalar partners and is invariant under a global U(Nf) flavor symmetry. The lattice action contains an additional Fayet-Iliopoulos term which can be used to generate a scalar potential. We perform numerical simulations that corroborate the theoretical expectation that supersymmetry is spontaneously broken for Nf

  4. Enhanced complete photonic bandgap in a moderate refractive index contrast chalcogenide-air system with connected-annular-rods photonic crystals

    KAUST Repository

    Hou, Jin

    2018-03-27

    Connected-annular-rods photonic crystals (CARPCs) in both triangular and square lattices are proposed to enhance the two-dimensional complete photonic bandgap (CPBG) for chalcogenide material systems with moderate refractive index contrast. For the typical chalcogenide-glass–air system with an index contrast of 2.8:1, the optimized square lattice CARPC exhibits a significantly larger normalized CPBG of about 13.50%, though the use of triangular lattice CARPC is unable to enhance the CPBG. It is almost twice as large as our previously reported result [IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016) [CrossRef] ]. Moreover, the CPBG of the square-lattice CARPC could remain until an index contrast as low as 2.24:1. The result not only favors wideband CPBG applications for index contrast systems near 2.8:1, but also makes various optical applications that are dependent on CPBG possible for more widely refractive index contrast systems.

  5. The disorder effect on the performance of novel waveguides constructed in two-dimensional amorphous photonic materials

    International Nuclear Information System (INIS)

    Chen Xiao; Wang Yi-Quan

    2011-01-01

    On the basis of two-dimensional amorphous photonic materials, we have designed a novel waveguide by inserting thinner cylindrical inclusions in the centre of basic hexagonal units of the amorphous structure along a given path. This waveguide in amorphous structure is similar to the coupled resonator optical waveguides in periodic photonic crystals. The transmission of this waveguide for S-polarized waves is investigated by a multiple-scattering method. Compared with the conventional waveguide by removing a line of cells from amorphous photonic materials, the guiding properties of this waveguide, including the transmissivity and bandwidth, are improved significantly. Then we study the effect of various types of positional disorder on the functionality of this device. Our results show that the waveguide performance is quite sensitive to the disorder located on the boundary layer of the waveguide, but robust against the disorder in the other area in amorphous structure except the waveguide border. This disorder effect in amorphous photonic materials is similar to the case in periodic photonic crystals. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Investigation of 2D photonic crystal structure based channel drop filter using quad shaped photonic crystal ring resonator for CWDM system

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar [Government Engineering College Ajmer, Rajasthan (India); Rajasthan Technical University, Kota, Rajasthan (India)

    2016-05-06

    In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 and 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  7. Two-dimensional nano-lattice in Fe-Co-Ni-Al-Cu alloys

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Ibragimova, E.M.; Khamraeva, R.N.; Rustamova, V.M.; Ummatov, H.D.

    2007-01-01

    Full text: The high coercive strength of the dispersionally solidified alloys on the base of Fe-Co-Ni-Al-Cu system appears as a result of the special thermomagnetic annealing, when particles of the strong magnetic phase are distinguished in non-magnetic matrix along an external magnetic field direction. The neutron studying allows one to reveal the correlation between magnetization and inclusion axes, and also existence of magnetic microcell and perfectness of the lattice. This work presents results of neutron diffraction study with a double-crystal spectrometer (0.145 nm). Plate like samples of size 18 12 4 mm 3 were cut from a single crystal of alloy UNDK35 T5 along (100) plane. Magnetic field of 6 kOe was applied perpendicular to the neutron beam. Zero-field spectrum had only random variation of the background. Under the applied magnetic field two maxima appeared at the angles of 12 and 24 minute. In the case of the magnetic field directed in parallel to the scattering vector, the two maxima disappeared as expected. It is evidence that nuclear scattering is less than magnetic one and the observed maxima correspond to (10) and (20) reflections from a two dimensional ferro-magnetic microcell. The cell parameter of the magnetic microcell was found 40.6 nm. The coherent scattering region size was 120-160 nm. The ferro-magnetic rod diameter estimated from the peak widths was 16 nm. The diffraction pattern for the demagnetized sample strongly differs from the initial magnetized sample, where a diffuse reflection was observed near Bragg reflection and related with residual magnetization. So, the magnetic inclusions created in the Fe-Co-Ni-Al-Cu system at the thermomagnetic annealing by means of disintegration of the solid solution are strong ferro-magnetic and one-domain. These particles form the two-dimensional magnetic microcell and interact each to other within 3-4 periods of the cell. (authors)

  8. Two-photon spin generation and detection

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2009-02-21

    A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay ({Delta}t), lattice temperature (T{sub L}), doping density (n) as well as of the excess photon energy {Delta}E{sub 2{omega}}= {h_bar}2{omega} - E{sub g}, where E{sub g} is the band gap energy. P is found to be decayed with {Delta}t and enhanced with the decrease in T{sub L} or the increase in n. It is also found that P decreases with the increase in {Delta}E{sub 2{omega}}and depolarizes rapidly for {Delta}E{sub 2{omega}}> {Delta}E{sub SO}, where {Delta}E{sub SO} is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.

  9. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method.

    Science.gov (United States)

    Dang, Zhiya; Breese, Mark Bh; Recio-Sánchez, Gonzalo; Azimi, Sara; Song, Jiao; Liang, Haidong; Banas, Agnieszka; Torres-Costa, Vicente; Martín-Palma, Raúl José

    2012-07-23

    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared range.

  10. Photonic quasicrystals for application in WDM systems

    DEFF Research Database (Denmark)

    Romero-Vivas, J.; Chigrin, D. N.; Lavrinenko, Andrei

    2005-01-01

    Photonic quasicrystals can possess an isotropic (complete) photonic bandgap even in the case of low refractive indices of the constitutive materials, which makes them atrractive optical materials with important technological applications. In this work, several aspects related to the design...... of waveguides and cavities using the two-dimensional (2D) octagonal quasiperiodic lattice are investigated numerically. As an example, the integration of waveguides and a resonating cavity to design an add/drop filer for wavelength division multiplexing applications is brieflydescribed....

  11. Two-Dimensional SiO2/VO2 Photonic Crystals with Statically Visible and Dynamically Infrared Modulated for Smart Window Deployment.

    Science.gov (United States)

    Ke, Yujie; Balin, Igal; Wang, Ning; Lu, Qi; Tok, Alfred Iing Yoong; White, Timothy J; Magdassi, Shlomo; Abdulhalim, Ibrahim; Long, Yi

    2016-12-07

    Two-dimensional (2D) photonic structures, widely used for generating photonic band gaps (PBG) in a variety of materials, are for the first time integrated with the temperature-dependent phase change of vanadium dioxide (VO 2 ). VO 2 possesses thermochromic properties, whose potential remains unrealized due to an undesirable yellow-brown color. Here, a SiO 2 /VO 2 core/shell 2D photonic crystal is demonstrated to exhibit static visible light tunability and dynamic near-infrared (NIR) modulation. Three-dimensional (3D) finite difference time domain (FDTD) simulations predict that the transmittance can be tuned across the visible spectrum, while maintaining good solar regulation efficiency (ΔT sol = 11.0%) and high solar transmittance (T lum = 49.6%). Experiments show that the color changes of VO 2 films are accompanied by NIR modulation. This work presents a novel way to manipulate VO 2 photonic structures to modulate light transmission as a function of wavelength at different temperatures.

  12. Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete analogues

    International Nuclear Information System (INIS)

    Maruno, Ken-ichi; Biondini, Gino

    2004-01-01

    We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differential-difference equations, difference equations and cellular automata (ultra-discrete equations)

  13. Piecewise parabolic negative magnetoresistance of two-dimensional electron gas with triangular antidot lattice

    International Nuclear Information System (INIS)

    Budantsev, M. V.; Lavrov, R. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Pokhabov, D. A.

    2011-01-01

    Extraordinary piecewise parabolic behavior of the magnetoresistance has been experimentally detected in the two-dimensional electron gas with a dense triangular lattice of antidots, where commensurability magnetoresistance oscillations are suppressed. The magnetic field range of 0–0.6 T can be divided into three wide regions, in each of which the magnetoresistance is described by parabolic dependences with high accuracy (comparable to the experimental accuracy) and the transition regions between adjacent regions are much narrower than the regions themselves. In the region corresponding to the weakest magnetic fields, the parabolic behavior becomes almost linear. The observed behavior is reproducible as the electron gas density changes, which results in a change in the resistance by more than an order of magnitude. Possible physical mechanisms responsible for the observed behavior, including so-called “memory effects,” are discussed.

  14. Ultraviolet stability of three-dimensional lattice pure gauge field theories

    International Nuclear Information System (INIS)

    Balaban, T.

    1985-01-01

    We prove the ultraviolet stability for three-dimensional lattice gauge field theories. We consider only the Wilson lattice approximation for pure Yang-Mills field theories. The proof is based on results of the previous papers on renormalization group method for lattice gauge theories. (orig.)

  15. Perfect 3-dimensional lattice actions for 4-dimensional quantum field theories at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.; Mack, G.; Palma, G.

    1994-12-01

    We propose a two-step procedure to study the order of phase transitions at finite temperature in electroweak theory and in simplified models thereof. In a first step a coarse grained free energy is computed by perturbative methods. It is obtained in the form of a 3-dimensional perfect lattice action by a block spin transformation. It has finite temperature dependent coefficients. In this way the UV-problem and the infrared problem is separated in a clean way. In the second step the effective 3-dimensional lattice theory is treated in a nonperturbative way, either by the Feynman-Bololiubov method (solution of a gap equation), by real space renormalization group methods, or by computer simulations. In this paper we outline the principles for φ 4 -theory and scalar electrodynamics. The Balaban-Jaffe block spin transformation for the gauge field is used. It is known how to extend this transformation to the nonabelian case, but this will not be discussed here. (orig.)

  16. Periodic, quasiperiodic and chaotic discrete breathers in a parametrical driven two-dimensional discrete diatomic Klein–Gordon lattice

    International Nuclear Information System (INIS)

    Quan, Xu; Qiang, Tian

    2009-01-01

    We study a two-dimensional (2D) diatomic lattice of anharmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers (DBs) can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the 2D discrete diatomic Klein–Gordon lattice with hard and soft on-site potentials. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers (QDBs) and chaotic discrete breathers (CDBs) by changing the amplitude of the driver. But the DBs and QDBs with symmetric and anti-symmetric profiles that are centered at a heavy atom are more stable than at a light atom, because the frequencies of the DBs and QDBs centered at a heavy atom are lower than those centered at a light atom

  17. Stable three-dimensional solitons in attractive Bose-Einstein condensates loaded in an optical lattice

    International Nuclear Information System (INIS)

    Mihalache, D.; Mazilu, D.; Lederer, F.; Malomed, B.A.; Crasovan, L.-C.; Kartashov, Y.V.; Torner, L.

    2005-01-01

    The existence and stability of solitons in Bose-Einstein condensates with attractive interatomic interactions, described by the Gross-Pitaevskii equation with a three-dimensional (3D) periodic potential, are investigated in a systematic form. We find a one-parameter family of stable 3D solitons in a certain interval of values of their norm, provided that the strength of the potential exceeds a threshold value. The minimum number of 7 Li atoms in the stable solitons is 60, and the energy of the soliton at the stability threshold is ≅6 recoil energies in the lattice. The respective energy versus norm diagram features two cuspidal points, resulting in a typical swallowtail pattern, which is a generic feature of 3D solitons supported by quasi-two-dimensional or fully dimensional lattice potentials

  18. The Fundamental Structure and the Reproduction of Spiral Wave in a Two-Dimensional Excitable Lattice.

    Science.gov (United States)

    Qian, Yu; Zhang, Zhaoyang

    2016-01-01

    In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects.

  19. Simulation and detection of massive Dirac fermions with cold atoms in one-dimensional optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yafei, E-mail: yfyuks@hotmail.com [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); Shan Chuanjia [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002 (China); Mei Feng; Zhang Zhiming [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China)

    2012-09-15

    We propose a simple but feasible experimental scheme to simulate and detect Dirac fermions with cold atoms trapped in one-dimensional optical lattice. In our scheme, through tuning the laser intensity, the one-dimensional optical lattice can have two sites in each unit cell and the atoms around the low energy behave as massive Dirac fermions. Furthermore, we show that these relativistic quasiparticles can be detected experimentally by using atomic density profile measurements and Bragg scattering.

  20. One-Dimensional Photonic Crystal Superprisms

    Science.gov (United States)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  1. A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal

    Science.gov (United States)

    Ren, Jie; Sun, XiaoHong; Wang, Shuai

    2018-05-01

    In this article, a low threshold nanocavity is built and investigated in a two-dimensional 12-fold holographic photonic quasicrystal (PQC). The cavity is formed by using the method of multi-beam common-path interference. By finely adjusting the structure parameters of the cavity, the Q factor and the mode volume are optimized, which are two keys to low-threshold on the basis of Purcell effect. Finally, an optimal cavity is obtained with Q value of 6023 and mode volume of 1.24 ×10-12cm3 . On the other hand, by Fourier Transformation of the electric field components in the cavity, the in-plane wave vectors are calculated and fitted to evaluate the cavity performance. The performance analysis of the cavity further proves the effectiveness of the optimization process. This has a guiding significance for the research of low threshold nano-laser.

  2. Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals

    NARCIS (Netherlands)

    Euser, T.G.; Wei, Hong; Kalkman, Jeroen; Jun, Yoonho; Polman, Albert; Norris, David J.; Vos, Willem L.

    2007-01-01

    We present ultrafast optical switching experiments on three-dimensional photonic band gap crystals. Switching the Si inverse opal is achieved by optically exciting free carriers by a two-photon process. We probe reflectivity in the frequency range of second order Bragg diffraction where the photonic

  3. Dispersion of guided modes in two-dimensional split ring lattices

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Koenderink, A. Femius

    2014-01-01

    . This method takes into account all retarded electrodynamic interactions as well as radiation damping self-consistently. As illustration, we analyze the dispersion of plasmon nanorod lattices, and of 2D split ring resonator lattices. Plasmon nanorod lattices support transverse and longitudinal in...

  4. Effect of the defect on the focusing in a two-dimensional photonic-crystal-based flat lens

    International Nuclear Information System (INIS)

    Feng Zhifang; Wang Xiuguo; Li Zhiyuan; Zhang Daozhong

    2008-01-01

    We have investigated in detail the influence of defect on the focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens by using the finite-difference time-domain method. The result shows that many focusings can be observed at the symmetrical positions when a defect is introduced into the lens. Furthermore, the wave-guides in the lens can confine the transmission wave effectively and improve the quality of the focusing

  5. Spin-Orbit Coupling for Photons and Polaritons in Microstructures

    Directory of Open Access Journals (Sweden)

    V. G. Sala

    2015-03-01

    Full Text Available We use coupled micropillars etched out of a semiconductor microcavity to engineer a spin-orbit Hamiltonian for photons and polaritons in a microstructure. The coupling between the spin and orbital momentum arises from the polarization-dependent confinement and tunneling of photons between adjacent micropillars arranged in the form of a hexagonal photonic molecule. It results in polariton eigenstates with distinct polarization patterns, which are revealed in photoluminescence experiments in the regime of polariton condensation. Thanks to the strong polariton nonlinearities, our system provides a photonic workbench for the quantum simulation of the interplay between interactions and spin-orbit effects, particularly when extended to two-dimensional lattices.

  6. Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity

    International Nuclear Information System (INIS)

    Zhang Xuan; Chen Shu-Wen; Liao Qing-Hua; Yu Tian-Bao; Liu Nian-Hua; Huang Yong-Zhen

    2011-01-01

    We propose and analyze a novel ultra-compact polarization beam splitter based on a resonator cavity in a two-dimensional photonic crystal. The two polarizations can be separated efficiently by the strong coupling between the microcavities and the waveguides occurring around the resonant frequency of the cavities. The transmittance of two polarized light around 1.55 μm can be more than 98.6%, and the size of the device is less than 15 μm×13 μm, so these features will play an important role in future integrated optical circuits. (fundamental areas of phenomenology(including applications))

  7. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.

    Science.gov (United States)

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2015-10-28

    Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.

  8. The sequence d(CGGCGGCCGC) self-assembles into a two dimensional rhombic DNA lattice

    International Nuclear Information System (INIS)

    Venkadesh, S.; Mandal, P.K.; Gautham, N.

    2011-01-01

    Highlights: → This is the first crystal structure of a four-way junction with sticky ends. → Four junction structures bind to each other and form a rhombic cavity. → Each rhombus binds to others to form 'infinite' 2D tiles. → This is an example of bottom-up fabrication of a DNA nano-lattice. -- Abstract: We report here the crystal structure of the partially self-complementary decameric sequence d(CGGCGGCCGC), which self assembles to form a four-way junction with sticky ends. Each junction binds to four others through Watson-Crick base pairing at the sticky ends to form a rhombic structure. The rhombuses bind to each other and form two dimensional tiles. The tiles stack to form the crystal. The crystal diffracted in the space group P1 to a resolution of 2.5 A. The junction has the anti-parallel stacked-X conformation like other junction structures, though the formation of the rhombic net noticeably alters the details of the junction geometry.

  9. Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity.

    Science.gov (United States)

    Jeon, Seung-Woo; Han, Jin-Kyu; Song, Bong-Shik; Noda, Susumu

    2010-08-30

    To enhance the mechanical stability of a two-dimensional photonic crystal slab structure and maintain its excellent performance, we designed a glass-embedded silicon photonic crystal device consisting of a broad bandwidth waveguide and a nanocavity with a high quality (Q) factor, and then fabricated the structure using spin-on glass (SOG). Furthermore, we showed that the refractive index of the SOG could be tuned from 1.37 to 1.57 by varying the curing temperature of the SOG. Finally, we demonstrated a glass-embedded heterostructured cavity with an ultrahigh Q factor of 160,000 by adjusting the refractive index of the SOG.

  10. Square-lattice large-pitch hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Couny, F.; Roberts, John; Birks, T.A.

    2008-01-01

    We report on the design, fabrication and characterization of silica square-lattice hollow core photonic crystal fibers optimized for low loss guidance over an extended frequency range in the mid-IR region of the optical spectrum. The fiber's linear optical properties include an ultra-low group...... velocity dispersion and a polarization cross-coupling as low as -13.4dB over 10m of fiber....

  11. Multiple surface plasmon polaritons modes on thin silver film controlled by a two-dimensional lattice of silver nanodimers

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying; Jiang, Yongyuan, E-mail: jiangyy@hit.edu.cn [Harbin Institute of Technology, Department of Physics (China)

    2015-01-15

    We study the optical resonant spectrum of a two-dimensional periodic array of silver nanodimers on a thin silver film using multiple scattering formalism. The excited multiple plasmonic modes on two interfaces of the silver film reveal that the dispersion relationships of surface plasmon polaritons on metallic film are modified by doubly periodic lattice due to the fact that wave vectors matching conditions are satisfied. Moreover, we demonstrate that the plasmonic modes are directly controlled by the thickness of silver film, as well as the gap between nanodimer array and silver film. These effects provide novel high-efficient and steady way for excitation in future plasmonic nanodevices.

  12. The exact solution of a three-dimensional lattice polymer confined in a slab with sticky walls

    Energy Technology Data Exchange (ETDEWEB)

    Brak, R; Iliev, G K; Owczarek, A L [Department of Mathematics and Statistics, University of Melbourne, Parkville, Vic 3010 (Australia); Whittington, S G [Department of Chemistry, University of Toronto, Toronto M5S 3H6 (Canada)

    2010-04-02

    We present the exact solution of a three-dimensional lattice model of a polymer confined between two sticky walls, that is within a slab. We demonstrate that the model behaves in a similar way to its two-dimensional analogues and agrees with Monte Carlo evidence based upon simulations of self-avoiding walks in slabs. The model on which we focus is a variant of the partially directed walk model on the cubic lattice. We consider both the phase diagram of relatively long polymers in a macroscopic slab and the effective force of the polymer on the walls of the slab.

  13. An Exact Method to Determine the Photonic Resonances of Quasicrystals Based on Discrete Fourier Harmonics of Higher-Dimensional Atomic Surfaces

    Directory of Open Access Journals (Sweden)

    Farhad A. Namin

    2016-08-01

    Full Text Available A rigorous method for obtaining the diffraction patterns of quasicrystals is presented. Diffraction patterns are an essential analytical tool in the study of quasicrystals, since they can be used to determine their photonic resonances. Previous methods for approximating the diffraction patterns of quasicrystals have relied on evaluating the Fourier transform of finite-sized super-lattices. Our approach, on the other hand, is exact in the sense that it is based on a technique that embeds quasicrystals into higher dimensional periodic hyper-lattices, thereby completely capturing the properties of the infinite structure. The periodicity of the unit cell in the higher dimensional space can be exploited to obtain the Fourier series expansion in closed-form of the corresponding atomic surfaces. The utility of the method is demonstrated by applying it to one-dimensional Fibonacci and two-dimensional Penrose quasicrystals. The results are verified by comparing them to those obtained by using the conventional super-lattice method. It is shown that the conventional super-cell approach can lead to inaccurate results due to the continuous nature of the Fourier transform, since quasicrystals have a discrete spectrum, whereas the approach introduced in this paper generates discrete Fourier harmonics. Furthermore, the conventional approach requires very large super-cells and high-resolution sampling of the reciprocal space in order to produce accurate results leading to a very large computational burden, whereas the proposed method generates accurate results with a relatively small number of terms. Finally, we propose how this approach can be generalized from the vertex model, which assumes identical particles at all vertices, to a more realistic case where the quasicrystal is composed of different atoms.

  14. Polarized two-photon photoselection in EGFP: Theory and experiment.

    Science.gov (United States)

    Masters, T A; Marsh, R J; Blacker, T S; Armoogum, D A; Larijani, B; Bain, A J

    2018-04-07

    In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S 0 → S 1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S 0 → S 1 transition.

  15. Polarized two-photon photoselection in EGFP: Theory and experiment

    Science.gov (United States)

    Masters, T. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S0 → S1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S0 → S1 transition.

  16. Controllable scattering of photons in a one-dimensional resonator waveguide

    Science.gov (United States)

    Sun, C. P.; Zhou, L.; Gong, Z. R.; Liu, Y. X.; Nori, F.

    2009-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. [4pt] L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons in a 1D resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). URL: http://link.aps.org/abstract/PRL/v101/e100501

  17. Stopping single photons in one-dimensional circuit quantum electrodynamics systems

    International Nuclear Information System (INIS)

    Shen, J.-T.; Povinelli, M. L.; Sandhu, Sunil; Fan Shanhui

    2007-01-01

    We propose a mechanism to stop and time reverse single photons in one-dimensional circuit quantum electrodynamics systems. As a concrete example, we exploit the large tunability of the superconducting charge quantum bit (charge qubit) to predict one-photon transport properties in multiple-qubit systems with dynamically controlled transition frequencies. In particular, two qubits coupled to a waveguide give rise to a single-photon transmission line shape that is analogous to electromagnetically induced transparency in atomic systems. Furthermore, by cascading double-qubit structures to form an array and dynamically controlling the qubit transition frequencies, a single photon can be stopped, stored, and time reversed. With a properly designed array, two photons can be stopped and stored in the system at the same time. Moreover, the unit cell of the array can be designed to be of deep subwavelength scale, miniaturizing the circuit

  18. Lattice Study for the Taiwan Photon Source

    CERN Document Server

    Kuo, Chin-Cheng; Chen Chien Te; Luo, Gwo-Huei; Tsai, Hung-Jen; Wang, Min-Huey

    2005-01-01

    The feasibility study for the new 3.0~3.3 GeV Taiwan synchrotron light source, dubbed Taiwan Photon Source, was initiated in July, 2004. The goal is to construct a high performance light source with extremely bright X-ray in complementary to the existing 1.5 GeV light source in Taiwan. The ring circumference is 518.4 m and a 24-cell DBA lattice structure is chosen. The natural emittance with distributed dispersion is less than 2 nm-rad. A large booster ring of 499.2 m sharing the storage ring tunnel will be adopted.

  19. Two-Photon Fluorescence Microscopy Developed for Microgravity Fluid Physics

    Science.gov (United States)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2004-01-01

    Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.

  20. Photon-pair generation in nonlinear metal-dielectric one-dimensional photonic structures

    Czech Academy of Sciences Publication Activity Database

    Javůrek, D.; Svozilík, J.; Peřina ml., Jan

    2014-01-01

    Roč. 90, č. 5 (2014), "053813-1"-"053813-14" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * nonlinear metal-dielectric * one-dimensional photonic structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014

  1. Quantum Solitons and Localized Modes in a One-Dimensional Lattice Chain with Nonlinear Substrate Potential

    International Nuclear Information System (INIS)

    Li Dejun; Mi Xianwu; Deng Ke; Tang Yi

    2006-01-01

    In the classical lattice theory, solitons and localized modes can exist in many one-dimensional nonlinear lattice chains, however, in the quantum lattice theory, whether quantum solitons and localized modes can exist or not in the one-dimensional lattice chains is an interesting problem. By using the number state method and the Hartree approximation combined with the method of multiple scales, we investigate quantum solitons and localized modes in a one-dimensional lattice chain with the nonlinear substrate potential. It is shown that quantum solitons do exist in this nonlinear lattice chain, and at the boundary of the phonon Brillouin zone, quantum solitons become quantum localized modes, phonons are pinned to the lattice of the vicinity at the central position j = j 0 .

  2. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  3. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron

  4. Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals

    Science.gov (United States)

    Sun, Po; Williams, John D.

    2012-01-01

    This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.

  5. Absorption in one-dimensional metallic-dielectric photonic crystals

    International Nuclear Information System (INIS)

    Yu Junfei; Shen Yifeng; Liu Xiaohan; Fu Rongtang; Zi Jian; Zhu Zhiqiang

    2004-01-01

    We show theoretically that the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced considerably over the corresponding constituent metal. By properly choosing the structural and material parameters, the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced by one order of magnitude in the visible and in the near infrared regions. It is found that the absorptance of such photonic crystals increases with increasing number of periods. Rules on how to obtain a absorption enhancement in a certain frequency range are discussed. (letter to the editor)

  6. Giant enhancement of Kerr rotation in two-dimensional Bismuth iron garnet/Ag photonic crystals

    International Nuclear Information System (INIS)

    Liang Hong; Zhang Qiang; Liu Huan; Fu Shu-Fang; Zhou Sheng; Wang Xuan-Zhang

    2015-01-01

    Kerr effects of two-dimensional (2D) Bismuth iron garnet (BIG)/Ag photonic crystals (PCs) combined magnetic and plasmonic functionalities is investigated with the effective medium theory. An analytical expression of Kerr rotation angles is derived, in which the effects of the surface pasmons polaritons (SPP) on magneto–optical (MO) activities are reflected. The largest enhancement of Kerr rotation up to now is demonstrated, which is improved three orders of magnitude compared with that of BIG film. When λ < 750 nm all of the reflection are over 10% for the arbitrary filling ratio f 1 , in addition, the enhancement of Kerr rotation angles are at least one order of magnitude. (paper)

  7. Dispersive photonic crystals from the plane wave method

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  8. Two-dimensional photon-echo spectroscopy at a conical intersection: A two-mode pyrazine model with dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Sala, Matthieu; Egorova, Dassia

    2016-12-20

    The multi-dimensional electronic spectroscopy of ultrafast nuclear dynamics at conical intersections (CI) is an emerging field of investigation, which profits also from the recent extension of the techniques to the UV domain. We present a detailed computational study of oscillatory signatures in two-dimensional (2D) photon-echo spectroscopy (also known as 2D electronic spectroscopy, 2DES) for the two-mode pyrazine model with dissipation. Conventional 2D signals as well as the resulting beating maps are considered. Although of a reduced character, the model captures quite well all the main signatures of the excited-state dynamics of the molecule. Due to the ultrafast relaxation via the CI and no excited-state absorption from the low-lying dark state, the oscillatory components of the signal are found to be predominantly determined by the ground state bleach contribution. They reflect, therefore, the ground-state vibrational coherence induced in the Raman active mode. Beating maps provide a way to experimentally differentiate between ground state bleach and stimulated emission oscillatory components. The ultrafast decay of the latter constitutes a clear indirect signature of the CI. In the considered model, because of the sign properties of the involved transition dipole moments, the dominance of the ground-state coherence leads to anti-correlated oscillations of cross peaks located at symmetric positions with respect to the main diagonal.

  9. Anomalous diffusion in a dynamical optical lattice

    Science.gov (United States)

    Zheng, Wei; Cooper, Nigel R.

    2018-02-01

    Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.

  10. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice Boltzmann Model

    International Nuclear Information System (INIS)

    Hua-Bing, Li; Li, Jin; Bing, Qiu

    2008-01-01

    To study two-dimensional red blood cells deforming in a shear Bow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow. (fundamental areas of phenomenology(including applications))

  11. Large-area 2D periodic crystalline silicon nanodome arrays on nanoimprinted glass exhibiting photonic band structure effects

    International Nuclear Information System (INIS)

    Becker, C; Lockau, D; Sontheimer, T; Rech, B; Schubert-Bischoff, P; Rudigier-Voigt, E; Bockmeyer, M; Schmidt, F

    2012-01-01

    Two-dimensional silicon nanodome arrays are prepared on large areas up to 50 cm 2 exhibiting photonic band structure effects in the near-infrared and visible wavelength region by downscaling a recently developed fabrication method based on nanoimprint-patterned glass, high-rate electron-beam evaporation of silicon, self-organized solid phase crystallization and wet-chemical etching. The silicon nanodomes, arranged in square lattice geometry with 300 nm lattice constant, are optically characterized by angular resolved reflection measurements, allowing the partial determination of the photonic band structure. This experimentally determined band structure agrees well with the outcome of three-dimensional optical finite-element simulations. A 16% photonic bandgap is predicted for an optimized geometry of the silicon nanodome arrays. By variation of the duration of the selective etching step, the geometry as well as the optical properties of the periodic silicon nanodome arrays can be controlled systematically. (paper)

  12. Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation

    International Nuclear Information System (INIS)

    Chen, G.S.; Yang, D.Y.

    1998-01-01

    We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used: TFQMR (transpose free quasi-minimal residual algorithm) CGS (conjugate gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These subroutines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. The reasons to choose the generalized conjugate gradient methods are that the methods have better residual (equivalent to error) control procedures in the computation and have better convergent rate. The pointwise incomplete LU factorization ILU, modified pointwise incomplete LU factorization MILU, block incomplete factorization BILU and modified blockwise incomplete LU factorization MBILU are the preconditioning techniques used in the several testing problems. In Bi-CGSTAB, CGS, TFQMR and QMRCGSTAB method, we find that either CGS or Bi-CGSTAB method combined with preconditioner MBILU is the most efficient algorithm in these methods in the several testing problems. The numerical solution of flux by preconditioned CGS and Bi-CGSTAB methods has the same result as those from Cray computer, obtained by either the point successive relaxation method or the line successive relaxation method combined with Gaussian elimination

  13. Three-dimensional lattice Boltzmann model for compressible flows.

    Science.gov (United States)

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.

  14. Long-Lived Feshbach Molecules in a Three-Dimensional Optical Lattice

    International Nuclear Information System (INIS)

    Thalhammer, G.; Winkler, K.; Lang, F.; Schmid, S.; Denschlag, J. Hecker; Grimm, R.

    2006-01-01

    We have created and trapped a pure sample of 87 Rb 2 Feshbach molecules in a three-dimensional optical lattice. Compared to previous experiments without a lattice, we find dramatic improvements such as long lifetimes of up to 700 ms and a near unit efficiency for converting tightly confined atom pairs into molecules. The lattice shields the trapped molecules from collisions and, thus, overcomes the problem of inelastic decay by vibrational quenching. Furthermore, we have developed an advanced purification scheme that removes residual atoms, resulting in a lattice in which individual sites are either empty or filled with a single molecule in the vibrational ground state of the lattice

  15. One-dimensional photonic crystal design

    International Nuclear Information System (INIS)

    Mee, Cornelis van der; Contu, Pietro; Pintus, Paolo

    2010-01-01

    In this article we present a method to determine the band spectrum, band gaps, and discrete energy levels, of a one-dimensional photonic crystal with localized impurities. For one-dimensional crystals with piecewise constant refractive indices we develop an algorithm to recover the refractive index distribution from the period map. Finally, we derive the relationship between the period map and the scattering matrix containing the information on the localized modes.

  16. The geometry of percolation fronts in two-dimensional lattices with spatially varying densities

    International Nuclear Information System (INIS)

    Gastner, Michael T; Oborny, Beáta

    2012-01-01

    Percolation theory is usually applied to lattices with a uniform probability p that a site is occupied or that a bond is closed. The more general case, where p is a function of the position x, has received less attention. Previous studies with long-range spatial variations in p(x) have only investigated cases where p has a finite, non-zero gradient at the critical point p c . Here we extend the theory to two-dimensional cases in which the gradient can change from zero to infinity. We present scaling laws for the width and length of the hull (i.e. the boundary of the spanning cluster). We show that the scaling exponents for the width and the length depend on the shape of p(x), but they always have a constant ratio 4/3 so that the hull's fractal dimension D = 7/4 is invariant. On this basis, we derive and verify numerically an asymptotic expression for the probability h(x) that a site at a given distance x from p c is on the hull. (paper)

  17. Topotactic transformations of superstructures: from thin films to two-dimensional networks to nested two-dimensional networks.

    Science.gov (United States)

    Guo, Chuan Fei; Cao, Sihai; Zhang, Jianming; Tang, Haoying; Guo, Shengming; Tian, Ye; Liu, Qian

    2011-06-01

    Design and synthesis of super-nanostructures is one of the key and prominent topics in nanotechnology. Here we propose a novel methodology for synthesizing complex hierarchical superstructures using sacrificial templates composed of ordered two-dimensional (2D) nanostructures through lattice-directed topotactic transformations. The fabricated superstructures are nested 2D orthogonal Bi(2)S(3) networks composed of nanorods. Further investigation indicates that the lattice matching between the product and sacrificial template is the dominant mechanism for the formation of the superstructures, which agrees well with the simulation results based on an anisotropic nucleation and growth analysis. Our approach may provide a promising way toward a lattice-directed nonlithographic nanofabrication technique for making functional porous nanoarchitectures and electronic devices. © 2011 American Chemical Society

  18. Dimensional crossover in Bragg scattering from an optical lattice

    International Nuclear Information System (INIS)

    Slama, S.; Cube, C. von; Ludewig, A.; Kohler, M.; Zimmermann, C.; Courteille, Ph.W.

    2005-01-01

    We study Bragg scattering at one-dimensional (1D) optical lattices. Cold atoms are confined by the optical dipole force at the antinodes of a standing wave generated inside a laser-driven high-finesse cavity. The atoms arrange themselves into a chain of pancake-shaped layers located at the antinodes of the standing wave. Laser light incident on this chain is partially Bragg reflected. We observe an angular dependence of this Bragg reflection which is different from what is known from crystalline solids. In solids, the scattering layers can be taken to be infinitely spread (three-dimensional limit). This is not generally true for an optical lattice consistent of a 1D linear chain of pointlike scattering sites. By an explicit structure factor calculation, we derive a generalized Bragg condition, which is valid in the intermediate regime. This enables us to determine the aspect ratio of the atomic lattice from the angular dependance of the Bragg scattered light

  19. Tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal structure

    International Nuclear Information System (INIS)

    Huang, Wenbin; Pu, Donglin; Qiao, Wen; Wan, Wenqiang; Liu, Yanhua; Ye, Yan; Wu, Shaolong; Chen, Linsen

    2016-01-01

    A continuously tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal cavity is demonstrated. The triangular-lattice resonator was initially fabricated through multiple interference exposure and was then replicated into a low refractive index polymer via UV-nanoimprinting. The blend of a blue-emitting conjugated polymer and a red-emitting one was used as the gain medium. Three periods in the scalene triangular-lattice structure yield stable tri-wavelength laser emission (625.5 nm, 617.4 nm and 614.3 nm) in six different directions. A uniformly aligned liquid crystal (LC) layer was incorporated into the cavity as the top cladding layer. Upon heating, the orientation of LC molecules and thus the effective refractive index of the lasing mode changes which continuously shifts the lasing wavelength. A maximum tuning range of 12.2 nm was observed for the lasing mode at 625.5 nm. This tunable tri-wavelength polymer laser is simple constructed and cost-effective. It may find application in the fields of biosensors and photonic integrated circuits. (paper)

  20. Two mechanisms of disorder-induced localization in photonic-crystal waveguides

    Science.gov (United States)

    García, P. D.; KiršanskÄ--, G.; Javadi, A.; Stobbe, S.; Lodahl, P.

    2017-10-01

    Unintentional but unavoidable fabrication imperfections in state-of-the-art photonic-crystal waveguides lead to the spontaneous formation of Anderson-localized modes thereby limiting slow-light propagation and its potential applications. On the other hand, disorder-induced cavities offer an approach to cavity-quantum electrodynamics and random lasing at the nanoscale. The key statistical parameter governing the disorder effects is the localization length, which together with the waveguide length determines the statistical transport of light through the waveguide. In a disordered photonic-crystal waveguide, the localization length is highly dispersive, and therefore, by controlling the underlying lattice parameters, it is possible to tune the localization of the mode. In the present work, we study the localization length in a disordered photonic-crystal waveguide using numerical simulations. We demonstrate two different localization regimes in the dispersion diagram where the localization length is linked to the density of states and the photon effective mass, respectively. The two different localization regimes are identified in experiments by recording the photoluminescence from quantum dots embedded in photonic-crystal waveguides.

  1. Influence of blocking effect and energetic disorder on diffusion in one-dimensional lattice

    International Nuclear Information System (INIS)

    Mai Thi Lan; Nguyen Van Hong; Nguyen Thu Nhan; Hoang Van Hue

    2014-01-01

    The diffusion in one-dimensional disordered lattice with Gaussian distribution of site and transition energies has been studied by mean of kinetic Monte-Carlo simulation. We focus on investigating the influence of energetic disorders and diffusive particle density on diffusivity. In single-particle case, we used both analytical method and kinetic Monte-Carlo simulation to calculate the quantities that relate to diffusive behavior in disordered systems such as the mean time between two consecutive jumps, correlation factor and diffusion coefficient. The calculation shows a good agreement between analytical and simulation results for all disordered lattice types. In many - particle case, the blocking effect results in decreasing correlation factor F and average time τ jump between two consecutive jumps. With increasing the number of particles, the diffusion coefficient D M decreases for site-energy and transition-energy disordered lattices due to the F-effect affect affects stronger than τ-effect. Furthermore, the blocking effect almost is temperature independent for both lattices. (author)

  2. Optical properties of two-dimensional magnetoelectric point scattering lattices

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Sersic, Ivana; Koenderink, A. Femius

    2013-01-01

    of split ring resonators and provide a quantitative comparison of measured and calculated transmission spectra at normal incidence as a function of lattice density, showing excellent agreement. We further show angle-dependent transmission calculations for circularly polarized light and compare...... with the angle-dependent response of a single split ring resonator, revealing the importance of cross coupling between electric dipoles and magnetic dipoles for quantifying the pseudochiral response under oblique incidence of split ring lattices....

  3. Matter waves of Bose-Fermi mixtures in one-dimensional optical lattices

    International Nuclear Information System (INIS)

    Bludov, Yu. V.; Santhanam, J.; Kenkre, V. M.; Konotop, V. V.

    2006-01-01

    We describe solitary wave excitations in a Bose-Fermi mixture loaded in a one-dimensional and strongly elongated lattice. We focus on the mean-field theory under the condition that the fermion number significantly exceeds the boson number, and limit our consideration to lattice amplitudes corresponding to the order of a few recoil energies or less. In such a case, the fermionic atoms display 'metallic' behavior and are well-described by the effective mass approximation. After classifying the relevant cases, we concentrate on gap solitons and coupled gap solitons in the two limiting cases of large and small fermion density, respectively. In the former, the fermionic atoms are distributed almost homogeneously and thus can move freely along the lattice. In the latter, the fermionic density becomes negligible in the potential maxima, and this leads to negligible fermionic current in the linear regime

  4. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haifeng [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu Shaobin [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); State Key Laboratory of Millimeter Waves of Southeast University, Nanjing Jiangsu 210096 (China); Kong Xiangkun; Bian Borui; Dai Yi [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.

  5. Extremely Low Loss THz Guidance Using Kagome Lattice Porous Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Hossain, Anwar; Hasanuzzaman, G.K.M.; Habib, Selim

    2015-01-01

    A novel porous core Kagome lattice photonic crystal fiber is proposed for extremely low loss THz waves guiding. It has been reported that 82.5% of bulk effective material loss of Topas can be reduced...

  6. Parallel and Multivalued Logic by the Two-Dimensional Photon-Echo Response of a Rhodamine–DNA Complex

    Science.gov (United States)

    2015-01-01

    Implementing parallel and multivalued logic operations at the molecular scale has the potential to improve the miniaturization and efficiency of a new generation of nanoscale computing devices. Two-dimensional photon-echo spectroscopy is capable of resolving dynamical pathways on electronic and vibrational molecular states. We experimentally demonstrate the implementation of molecular decision trees, logic operations where all possible values of inputs are processed in parallel and the outputs are read simultaneously, by probing the laser-induced dynamics of populations and coherences in a rhodamine dye mounted on a short DNA duplex. The inputs are provided by the bilinear interactions between the molecule and the laser pulses, and the output values are read from the two-dimensional molecular response at specific frequencies. Our results highlights how ultrafast dynamics between multiple molecular states induced by light–matter interactions can be used as an advantage for performing complex logic operations in parallel, operations that are faster than electrical switching. PMID:25984269

  7. Optical fabrication of large area photonic microstructures by spliced lens

    Science.gov (United States)

    Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin

    2018-05-01

    We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.

  8. Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Photonic crystals (PCs have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze the Q -factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.

  9. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations.

    Science.gov (United States)

    Liu, Haihu; Valocchi, Albert J; Kang, Qinjun

    2012-04-01

    We present an improved three-dimensional 19-velocity lattice Boltzmann model for immisicible binary fluids with variable viscosity and density ratios. This model uses a perturbation step to generate the interfacial tension and a recoloring step to promote phase segregation and maintain surfaces. A generalized perturbation operator is derived using the concept of a continuum surface force together with the constraints of mass and momentum conservation. A theoretical expression for the interfacial tension is determined directly without any additional analysis and assumptions. The recoloring algorithm proposed by Latva-Kokko and Rothman is applied for phase segregation, which minimizes the spurious velocities and removes lattice pinning. This model is first validated against the Laplace law for a stationary bubble. It is found that the interfacial tension is predicted well for density ratios up to 1000. The model is then used to simulate droplet deformation and breakup in simple shear flow. We compute droplet deformation at small capillary numbers in the Stokes regime and find excellent agreement with the theoretical Taylor relation for the segregation parameter β=0.7. In the limit of creeping flow, droplet breakup occurs at a critical capillary number 0.35

  10. Liquid structure and freezing of the two-dimensional classical electron fluid

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Rovere, M.; Tosi, M.P.

    1984-11-01

    Accurate theoretical results are reported for the pair correlation function of the classical two-dimensional electron liquid with r -1 interactions at strong coupling. The approach involves an evaluation of the bridge diagram corrections to the hypernetted-chain approximation, the role of low dimensionality being evident, relative to the case of the three-dimensional classical plasma, in an enhanced sensitivity to long range correlations. The liquid structure results are utilized in a density-wave theory of first-order freezing into the triangular lattice, the calculated coupling strength at freezing being in reasonable agreement with computer simulation results and with data on electron films on a liquid-He surface. The stability of the triangular electron lattice against deformation into a body-centered rectangular lattice is also discussed. (author)

  11. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Centini, M.; Sciscione, L.; Sibilia, C.; Bertolotti, M.; Perina, J. Jr.; Scalora, M.; Bloemer, M.J.

    2005-01-01

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process

  12. The simulation of a two-dimensional (2D) transport problem in a rectangular region with Lattice Boltzmann method with two-relaxation-time

    Science.gov (United States)

    Sugiyanto, S.; Hardyanto, W.; Marwoto, P.

    2018-03-01

    Transport phenomena are found in many problems in many engineering and industrial sectors. We analyzed a Lattice Boltzmann method with Two-Relaxation Time (LTRT) collision operators for simulation of pollutant moving through the medium as a two-dimensional (2D) transport problem in a rectangular region model. This model consists of a 2D rectangular region with 54 length (x), 27 width (y), and it has isotropic homogeneous medium. Initially, the concentration is zero and is distributed evenly throughout the region of interest. A concentration of 1 is maintained at 9 < y < 18, whereas the concentration of zero is maintained at 0 < y < 9 and 18 < y < 27. A specific discharge (Darcy velocity) of 1.006 is assumed. A diffusion coefficient of 0.8333 is distributed uniformly with a uniform porosity of 0.35. A computer program is written in MATLAB to compute the concentration of pollutant at any specified place and time. The program shows that LTRT solution with quadratic equilibrium distribution functions (EDFs) and relaxation time τa=1.0 are in good agreement result with other numerical solutions methods such as 3DLEWASTE (Hybrid Three-dimensional Lagrangian-Eulerian Finite Element Model of Waste Transport Through Saturated-Unsaturated Media) obtained by Yeh and 3DFEMWATER-LHS (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media with Latin Hypercube Sampling) obtained by Hardyanto.

  13. Thermal field theory in a layer: Applications of thermal field theory methods to the propagation of photons in a two-dimensional electron sheet

    International Nuclear Information System (INIS)

    Nieves, Jose F.

    2010-01-01

    We apply the thermal field theory methods to study the propagation of photons in a plasma layer, that is a plasma in which the electrons are confined to a two-dimensional plane sheet. We calculate the photon self-energy and determine the appropriate expression for the photon propagator in such a medium, from which the properties of the propagating modes are obtained. The formulas for the photon dispersion relations and polarization vectors are derived explicitly in some detail for some simple cases of the thermal distributions of the charged particle gas, and appropriate formulas that are applicable in more general situations are also given.

  14. Lattice vortices in the two-dimensional Abelian Higgs model

    International Nuclear Information System (INIS)

    Grunewald, S.; Ilgenfritz, E.-M.; Mueller-Preussker, M.

    1986-01-01

    Multi-vortices of the 2D Abelian Higgs model on a finite lattice by relaxation of Monte-Carlo equilibrium configurations are generated and identified. The lattice vortices have action and a uniquely defined topological charge corresponding to the continuum ones. They exhibit the expected exponential decay behaviour and satisfy approximately the classical equations of motion. Vortex-antivortex superpositions are seen as well, supporting the dilute gas picture. Single vortices finally relax into ''dislocations'' and dissapear. A background charge construction turns out nearly insensitive with respect to dislocations

  15. Wave transmission in nonlinear lattices

    International Nuclear Information System (INIS)

    Hennig, D.; Tsironis, G.P.

    1999-01-01

    The interplay of nonlinearity with lattice discreteness leads to phenomena and propagation properties quite distinct from those appearing in continuous nonlinear systems. For a large variety of condensed matter and optics applications the continuous wave approximation is not appropriate. In the present review we discuss wave transmission properties in one dimensional nonlinear lattices. Our paradigmatic equations are discrete nonlinear Schroedinger equations and their study is done through a dynamical systems approach. We focus on stationary wave properties and utilize well known results from the theory of dynamical systems to investigate various aspects of wave transmission and wave localization. We analyze in detail the more general dynamical system corresponding to the equation that interpolates between the non-integrable discrete nonlinear Schroedinger equation and the integrable Albowitz-Ladik equation. We utilize this analysis in a nonlinear Kronig-Penney model and investigate transmission and band modification properties. We discuss the modifications that are effected through an electric field and the nonlinear Wannier-Stark localization effects that are induced. Several applications are described, such as polarons in one dimensional lattices, semiconductor superlattices and one dimensional nonlinear photonic band gap systems. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Phase transitions in two-dimensional uniformly frustrated XY models. I. antiferromagnetic model on a triangular lattice

    International Nuclear Information System (INIS)

    Korshunov, S.E.; Uimin, G.V.

    1986-01-01

    A most popular model in the family of two-dimensional uniformly-frustrated XY models is the antiferromagnetic model on a triangular lattice (AF XY(t) model). Its ground state is both continuously and twofold discretely degenerated. Different phase transitions possible in such systems are investigated. Relevant topological excitations are analyzed and a new class of such (vortices with a fractional number of circulation quanta) is discovered. Their role in determining the properties of the system proves itself essential. The characteristics of phase transitions related to breaking of discrete and continuous symmetries change. The phase diagram of the ''generalized'' AF XY(t) model is constructed. The results obtained are rederived in the representation of the Coulomb gas with half-interger charges, equivalent to the AF XY(t) model with the Berezinskii-Villain interaction

  17. Few-body bound states on a three-dimensional and two-dimensional lattice and continuum limit for one-dimensional many-body system

    International Nuclear Information System (INIS)

    Rudin, S.I.

    1984-01-01

    The three-body bound states of particles moving on a lattice and interacting with two-body point-like potentials are studied in two dimensions (2D) and three dimensions (3D) for spin 1/2 fermions and spin O bosons (with application to magnons). When a three boson bound state forms in 3D, it does so discontinuously implying a finite size of approximately two lattice constants. This phenomenon does not occur in 2D. For three fermions, interactions are effectively absent in the state S = 3/2. In the state S = 1/2, when there is an interaction, the three particles complex is unstable against breakup into a bound pair S = 0 and a free third particle. A finite density of states for 2D lattice makes this result relevant for BCS theory of superconductivity in 3D in confirming the choice of singlet pair (Cooper pair) as the fundamental entity. Results for bosons allows estimation of the limits of validity of spin wave theory as applied to the anisotropic Heisenberg ferromagnet in 3D with J/sub z/ > J/sub x/ = J/sub y/

  18. Two-dimensional photonic crystal arrays for polymer:fullerene solar cells.

    Science.gov (United States)

    Nam, Sungho; Han, Jiyoung; Do, Young Rag; Kim, Hwajeong; Yim, Sanggyu; Kim, Youngkyoo

    2011-11-18

    We report the application of two-dimensional (2D) photonic crystal (PC) array substrates for polymer:fullerene solar cells of which the active layer is made with blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The 2D PC array substrates were fabricated by employing a nanosphere lithography technique. Two different hole depths (200 and 300 nm) were introduced for the 2D PC arrays to examine the hole depth effect on the light harvesting (trapping). The optical effect by the 2D PC arrays was investigated by the measurement of optical transmittance either in the direction normal to the substrate (direct transmittance) or in all directions (integrated transmittance). The results showed that the integrated transmittance was higher for the 2D PC array substrates than the conventional planar substrate at the wavelengths of ca. 400 nm, even though the direct transmittance of 2D PC array substrates was much lower over the entire visible light range. The short circuit current density (J(SC)) was higher for the device with the 2D PC array (200 nm hole depth) than the reference device. However, the device with the 2D PC array (300 nm hole depth) showed a slightly lower J(SC) value at a high light intensity in spite of its light harvesting effect proven at a lower light intensity.

  19. Quantum anomalous Hall phase in a one-dimensional optical lattice

    Science.gov (United States)

    Liu, Sheng; Shao, L. B.; Hou, Qi-Zhe; Xue, Zheng-Yuan

    2018-03-01

    We propose to simulate and detect quantum anomalous Hall phase with ultracold atoms in a one-dimensional optical lattice, with the other synthetic dimension being realized by modulating spin-orbit coupling. We show that the system manifests a topologically nontrivial phase with two chiral edge states which can be readily detected in this synthetic two-dimensional system. Moreover, it is interesting that at the phase transition point there is a flat energy band and this system can also be in a topologically nontrivial phase with two Fermi zero modes existing at the boundaries by considering the synthetic dimension as a modulated parameter. We also show how to measure these topological phases experimentally in ultracold atoms. Another model with a random Rashba and Dresselhaus spin-orbit coupling strength is also found to exhibit topological nontrivial phase, and the impact of the disorder to the system is revealed.

  20. Applied optics. Gain modulation by graphene plasmons in aperiodic lattice lasers.

    Science.gov (United States)

    Chakraborty, S; Marshall, O P; Folland, T G; Kim, Y-J; Grigorenko, A N; Novoselov, K S

    2016-01-15

    Two-dimensional graphene plasmon-based technologies will enable the development of fast, compact, and inexpensive active photonic elements because, unlike plasmons in other materials, graphene plasmons can be tuned via the doping level. Such tuning is harnessed within terahertz quantum cascade lasers to reversibly alter their emission. This is achieved in two key steps: first, by exciting graphene plasmons within an aperiodic lattice laser and, second, by engineering photon lifetimes, linking graphene's Fermi energy with the round-trip gain. Modal gain and hence laser spectra are highly sensitive to the doping of an integrated, electrically controllable, graphene layer. Demonstration of the integrated graphene plasmon laser principle lays the foundation for a new generation of active, programmable plasmonic metamaterials with major implications across photonics, material sciences, and nanotechnology. Copyright © 2016, American Association for the Advancement of Science.

  1. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics.

    Science.gov (United States)

    Liu, Xiaofeng; Guo, Qiangbing; Qiu, Jianrong

    2017-04-01

    Low-dimensional (LD) materials demonstrate intriguing optical properties, which lead to applications in diverse fields, such as photonics, biomedicine and energy. Due to modulation of electronic structure by the reduced structural dimensionality, LD versions of metal, semiconductor and topological insulators (TIs) at the same time bear distinct nonlinear optical (NLO) properties as compared with their bulk counterparts. Their interaction with short pulse laser excitation exhibits a strong nonlinear character manifested by NLO absorption, giving rise to optical limiting or saturated absorption associated with excited state absorption and Pauli blocking in different materials. In particular, the saturable absorption of these emerging LD materials including two-dimensional semiconductors as well as colloidal TI nanoparticles has recently been utilized for Q-switching and mode-locking ultra-short pulse generation across the visible, near infrared and middle infrared wavelength regions. Beside the large operation bandwidth, these ultrafast photonics applications are especially benefit from the high recovery rate as well as the facile processibility of these LD materials. The prominent NLO response of these LD materials have also provided new avenues for the development of novel NLO and photonics devices for all-optical control as well as optical circuits beyond ultrafast lasers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Graphene-based one-dimensional photonic crystal

    OpenAIRE

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2011-01-01

    A novel type of one-dimensional (1D) photonic crystal formed by the array of periodically located stacks of alternating graphene and dielectric stripes embedded into a background dielectric medium is proposed. The wave equation for the electromagnetic wave propagating in such structure solved in the framework of the Kronig-Penney model. The frequency band structure of 1D graphene-based photonic crystal is obtained analytically as a function of the filling factor and the thickness of the diele...

  3. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.

    Science.gov (United States)

    Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing

    2014-11-17

    Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.

  4. Magnus force in discrete and continuous two-dimensional superfluids

    International Nuclear Information System (INIS)

    Gecse, Z.; Khlebnikov, S.

    2005-01-01

    Motion of vortices in two-dimensional superfluids in the classical limit is studied by solving the Gross-Pitaevskii equation numerically on a uniform lattice. We find that, in the presence of a superflow directed along one of the main lattice periods, vortices move with the superflow on fine lattices but perpendicular to it on coarse ones. We interpret this result as a transition from the full Magnus force in a Galilean-invariant limit to vanishing effective Magnus force in a discrete system, in agreement with the existing experiments on vortex motion in Josephson junction arrays

  5. Two-dimensional nonlinear equations of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1985-01-01

    Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations

  6. Two-Photon Excitation Microscopy for the Study of Living Cells and Tissues

    Science.gov (United States)

    Benninger, Richard K.P.; Piston, David W.

    2013-01-01

    Two-photon excitation microscopy is an alternative to confocal microscopy that provides advantages for three-dimensional and deep tissue imaging. This unit will describe the basic physical principles behind two-photon excitation and discuss the advantages and limitations of its use in laser-scanning microscopy. The principal advantages of two-photon microscopy are reduced phototoxicity, increased imaging depth, and the ability to initiate highly localized photochemistry in thick samples. Practical considerations for the application of two-photon microscopy will then be discussed, including recent technological advances. This unit will conclude with some recent applications of two-photon microscopy that highlight the key advantages over confocal microscopy and the types of experiments which would benefit most from its application. PMID:23728746

  7. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  8. Transition from two-dimensional to three-dimensional melting in Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Mukhopadhyay, M.K.; Sanyal, M.K.; Datta, A.; Mukherjee, M.; Geue, Th.; Grenzer, J.; Pietsch, U.

    2004-01-01

    Results of energy-dispersive x-ray reflectivity and grazing incidence diffraction studies of Langmuir-Blodgett films exhibited evolution of conventional three-dimensional melting from continuous melting, characteristic of two-dimensional systems, as a function of deposited monolayers. Continuous expansion followed by a sharp phase transition of the in-plane lattice was observed before the melting point and found to be independent of number of deposited layers. Evolution of conventional melting with an increase in the number of monolayers could be quantified by measuring stiffness against tilting of the vertical stack of molecules, which are kept together by an internal field. The internal field as defined in this model reduces as the in-plane lattice expands and the sample temperature approaches melting point. The sharpness of the melting transition, which has been approximated by a Langevin function, increases with the number of deposited monolayers

  9. Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials

    International Nuclear Information System (INIS)

    Chen, Yihang; Wang, Xinggang; Yong, Zehui; Zhang, Yunjuan; Chen, Zefeng; He, Lianxing; Lee, P.F.; Chan, Helen L.W.; Leung, Chi Wah; Wang, Yu

    2012-01-01

    Composite right/left-handed transmission lines with lumped element series capacitors and shunt inductors are used to experimentally realize the one-dimensional photonic crystals composed of single-negative metamaterials. The simulated and experimental results show that a special photonic band gap corresponding to zero-effective-phase (zero-φ eff ) may appear in the microwave regime. In contrast to the Bragg gap, by changing the length ratio of the two component materials, the width and depth of the zero-φ eff gap can be conveniently adjusted while keeping the center frequency constant. Furthermore, the zero-φ eff gap vanishes when both the phase-matching and impedance-matching conditions are satisfied simultaneously. These transmission line structures provide a good way for realizing microwave devices based on the zero-φ eff gap. -- Highlights: ► 1D photonic crystals with metamaterials were investigated experimentally. ► Both Bragg gap and zero-φ eff gap were observed in the microwave regime. ► The width and depth of the zero-φ eff gap were experimentally adjusted. ► Zero-φ eff gap was observed to be close when two match conditions were satisfied.

  10. Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: eon.chen@yahoo.com.cn [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Wang, Xinggang [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Yong, Zehui; Zhang, Yunjuan [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Chen, Zefeng [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); He, Lianxing; Lee, P.F.; Chan, Helen L.W.; Leung, Chi Wah [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Wang, Yu, E-mail: apywang@inet.polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)

    2012-03-19

    Composite right/left-handed transmission lines with lumped element series capacitors and shunt inductors are used to experimentally realize the one-dimensional photonic crystals composed of single-negative metamaterials. The simulated and experimental results show that a special photonic band gap corresponding to zero-effective-phase (zero-φ{sub eff}) may appear in the microwave regime. In contrast to the Bragg gap, by changing the length ratio of the two component materials, the width and depth of the zero-φ{sub eff} gap can be conveniently adjusted while keeping the center frequency constant. Furthermore, the zero-φ{sub eff} gap vanishes when both the phase-matching and impedance-matching conditions are satisfied simultaneously. These transmission line structures provide a good way for realizing microwave devices based on the zero-φ{sub eff} gap. -- Highlights: ► 1D photonic crystals with metamaterials were investigated experimentally. ► Both Bragg gap and zero-φ{sub eff} gap were observed in the microwave regime. ► The width and depth of the zero-φ{sub eff} gap were experimentally adjusted. ► Zero-φ{sub eff} gap was observed to be close when two match conditions were satisfied.

  11. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  12. Interferometric control of the photon-number distribution

    Directory of Open Access Journals (Sweden)

    H. Esat Kondakci

    2017-07-01

    Full Text Available We demonstrate deterministic control over the photon-number distribution by interfering two coherent beams within a disordered photonic lattice. By sweeping a relative phase between two equal-amplitude coherent fields with Poissonian statistics that excite adjacent sites in a lattice endowed with disorder-immune chiral symmetry, we measure an output photon-number distribution that changes periodically between super-thermal and sub-thermal photon statistics upon ensemble averaging. Thus, the photon-bunching level is controlled interferometrically at a fixed mean photon-number by gradually activating the excitation symmetry of the chiral-mode pairs with structured coherent illumination and without modifying the disorder level of the random system itself.

  13. A novel optical beam splitter based on photonic crystal with hybrid lattices

    International Nuclear Information System (INIS)

    Zhu Qing-Yi; Fu Yong-Qi; Zhang Zhi-Min; Hu De-Qing

    2012-01-01

    A novel optical beam splitter constructed on the basis of photonic crystal (PC) with hybrid lattices is proposed in this paper. The band gap of square-lattice PC is so designed that the incident light is divided into several branch beams. Triangular-lattice graded-index PCs are combined for focusing each branch. Computational calculations are carried out on the basis of finite-different time-domain algorithm to prove the feasibility of our design. The waveguide is unnecessary in the design. Thus the device has functions of both splitting and focusing beams. Size of the divided beam at site of full-width at half-maximum is of the order of λ/2. The designed splitter has the advantages that it has a small volume and can be integrated by conventional semiconductor manufacturing process. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Two dimentional lattice vibrations from direct product representations of symmetry groups

    Directory of Open Access Journals (Sweden)

    J. N. Boyd

    1983-01-01

    two dimensional crystals. First, the Born cyclic condition is applied to a double chain composed of coupled linear lattices to obtain a cylindrical arrangement. Then the quadratic Lagrangian function for the system is written in matrix notation. The Lagrangian is diagonalized to yield the natural frequencies of the system. The transformation to achieve the diagonalization was obtained from group theorectic considerations. Next, the techniques developed for the double chain are applied to a square lattice. The square lattice is transformed into the toroidal Ising model. The direct product nature of the symmetry group of the torus reveals the transformation to diagonalize the Lagrangian for the Ising model, and the natural frequencies for the principal directions in the model are obtained in closed form.

  15. Curvature effects in two-dimensional optical devices inspired by transformation optics

    KAUST Repository

    Yuan, Shuhao

    2016-11-14

    Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show that the curvature can induce light focusing and photonic crystal properties, which are confirmed by finite element simulations. Our results indicate that the curvature is an effective parameter for designing quasi two-dimensional optical devices in the fields of micro and nano photonics. © 2016 Author(s).

  16. One-dimensional versus two-dimensional electronic states in vicinal surfaces

    International Nuclear Information System (INIS)

    Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F

    2005-01-01

    Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d

  17. Introduction to Louis Michel's lattice geometry through group action

    CERN Document Server

    Zhilinskii, Boris

    2015-01-01

    Group action analysis developed and applied mainly by Louis Michel to the study of N-dimensional periodic lattices is the central subject of the book. Different basic mathematical tools currently used for the description of lattice geometry are introduced and illustrated through applications to crystal structures in two- and three-dimensional space, to abstract multi-dimensional lattices and to lattices associated with integrable dynamical systems. Starting from general Delone sets the authors turn to different symmetry and topological classifications including explicit construction of orbifolds for two- and three-dimensional point and space groups. Voronoï and Delone cells together with positive quadratic forms and lattice description by root systems are introduced to demonstrate alternative approaches to lattice geometry study. Zonotopes and zonohedral families of 2-, 3-, 4-, 5-dimensional lattices are explicitly visualized using graph theory approach. Along with crystallographic applications, qualitative ...

  18. Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime

    International Nuclear Information System (INIS)

    Pollet, L.; Rombouts, S.M.A.; Denteneer, P.J. H.

    2004-01-01

    Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short-range correlations do not enhance the convergence to the hard-core limit

  19. Analytical approach for collective diffusion: one-dimensional heterogeneous lattice

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander

    2016-01-01

    Roč. 144, č. 14 (2016), 1-11, č. článku 144105. ISSN 0021-9606 Institutional support: RVO:68378271 Keywords : diffusion * Monte Carlo simulations * one-dimensional heterogeneous lattice Subject RIV: BE - Theoretical Physics Impact factor: 2.965, year: 2016

  20. Simulating three-dimensional nonthermal high-energy photon emission in colliding-wind binaries

    Energy Technology Data Exchange (ETDEWEB)

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O., E-mail: klaus.reitberger@uibk.ac.at [Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck (Austria)

    2014-07-01

    Massive stars in binary systems have long been regarded as potential sources of high-energy γ rays. The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which subsequently emit γ rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision region—as obtained by a numerical hydrodynamics and particle transport model—we present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modeled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon-photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 10{sup –2}, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions, and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.

  1. Lateral shifting in one dimensional chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    You Yuan, E-mail: yctcyouyuan@163.com [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China); Chen Changyuan [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China)

    2012-07-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  2. Lateral shifting in one dimensional chiral photonic crystal

    International Nuclear Information System (INIS)

    You Yuan; Chen Changyuan

    2012-01-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  3. An integrated single- and two-photon non-diffracting light-sheet microscope

    Science.gov (United States)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  4. Can Two-Photon Interference be Considered the Interference of Two Photons?

    International Nuclear Information System (INIS)

    Pittman, T.B.; Strekalov, D.V.; Migdall, A.; Rubin, M.H.; Sergienko, A.V.; Shih, Y.H.

    1996-01-01

    We report on a open-quote open-quote postponed compensation close-quote close-quote experiment in which the observed two-photon entangled state interference cannot be pictured in terms of the overlap of the two individual photon wave packets of a parametric down-conversion pair on a beam splitter. In the sense of a quantum eraser, the distinguishability of the different two-photon Feynman amplitudes leading to a coincidence detection is removed by delaying the compensation until after the output of an unbalanced two-photon interferometer. copyright 1996 The American Physical Society

  5. One- and two-dimensional gap solitons and dynamics in the PT-symmetric lattice potential and spatially-periodic momentum modulation

    Science.gov (United States)

    Chen, Yong; Yan, Zhenya; Li, Xin

    2018-02-01

    The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.

  6. Extra-Dimensional “Metamaterials”: A Model of Inflation Due to a Metric Signature Transition

    Directory of Open Access Journals (Sweden)

    Igor I. Smolyaninov

    2017-09-01

    Full Text Available Lattices of topological defects, such as Abrikosov lattices and domain wall lattices, often arise as metastable ground states in higher-dimensional field theoretical models. We demonstrate that such lattice states may be described as extra-dimensional “metamaterials” via higher-dimensional effective medium theory. A 4 + 1 dimensional extension of Maxwell electrodynamics with a compactified time-like dimension is considered as an example. It is demonstrated that from the point of view of macroscopic electrodynamics an Abrikosov lattice state in such a 4 + 1 dimensional spacetime may be described as a uniaxial hyperbolic medium. Extraordinary photons perceive this medium as a 3 + 1 dimensional Minkowski spacetime in which one of the original spatial dimensions plays the role of a new time-like coordinate. Since the metric signature of this effective spacetime depends on the Abrikosov lattice periodicity, the described model may be useful in studying metric signature transitions.

  7. Three-dimensional passive sensing photon counting for object classification

    Science.gov (United States)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2007-04-01

    In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.

  8. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice

    International Nuclear Information System (INIS)

    Bhanjadeo, Madhabi M.; Nayak, Ashok K.; Subudhi, Umakanta

    2017-01-01

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.

  9. The Emergence of Dirac points in Photonic Crystals with Mirror Symmetry

    Science.gov (United States)

    He, Wen-Yu; Chan, C. T.

    2015-01-01

    We show that Dirac points can emerge in photonic crystals possessing mirror symmetry when band gap closes. The mechanism of generating Dirac points is discussed in a two-dimensional photonic square lattice, in which four Dirac points split out naturally after the touching of two bands with different parity. The emergence of such nodal points, characterized by vortex structure in momentum space, is attributed to the unavoidable band crossing protected by mirror symmetry. The Dirac nodes can be unbuckled through breaking the mirror symmetry and a photonic analog of Chern insulator can be achieved through time reversal symmetry breaking. Breaking time reversal symmetry can lead to unidirectional helical edge states and breaking mirror symmetry can reduce the band gap to amplify the finite size effect, providing ways to engineer helical edge states. PMID:25640993

  10. Two-photon physics

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1981-10-01

    A new experimental frontier has recently been opened to the study of two photon processes. The first results of many aspects of these reactions are being presented at this conference. In contrast, the theoretical development of research ito two photon processes has a much longer history. This talk reviews the many different theoretical ideas which provide a detailed framework for our understanding of two photon processes

  11. Study of long-range orders of hard-core bosons coupled to cooperative normal modes in two-dimensional lattices

    Science.gov (United States)

    Ghosh, A.; Yarlagadda, S.

    2017-09-01

    Understanding the microscopic mechanism of coexisting long-range orders (such as lattice supersolidity) in strongly correlated systems is a subject of immense interest. We study the possible manifestations of long-range orders, including lattice-supersolid phases with differently broken symmetry, in a two-dimensional square lattice system of hard-core bosons (HCBs) coupled to archetypal cooperative/coherent normal-mode distortions such as those in perovskites. At strong HCB-phonon coupling, using a duality transformation to map the strong-coupling problem to a weak-coupling one, we obtain an effective Hamiltonian involving nearest-neighbor, next-nearest-neighbor, and next-to-next-nearest-neighbor hoppings and repulsions. Using stochastic series expansion quantum Monte Carlo, we construct the phase diagram of the system. As coupling strength is increased, we find that the system undergoes a first-order quantum phase transition from a superfluid to a checkerboard solid at half-filling and from a superfluid to a diagonal striped solid [with crystalline ordering wave vector Q ⃗=(2 π /3 ,2 π /3 ) or (2 π /3 ,4 π /3 )] at one-third filling without showing any evidence of supersolidity. On tuning the system away from these commensurate fillings, checkerboard supersolid is generated near half-filling whereas a rare diagonal striped supersolid is realized near one-third filling. Interestingly, there is an asymmetry in the extent of supersolidity about one-third filling. Within our framework, we also provide an explanation for the observed checkerboard and stripe formations in La2 -xSrxNiO4 at x =1 /2 and x =1 /3 .

  12. Two-dimensional models in statistical mechanics and field theory

    International Nuclear Information System (INIS)

    Koberle, R.

    1980-01-01

    Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt

  13. Pattern formation in two-dimensional square-shoulder systems

    International Nuclear Information System (INIS)

    Fornleitner, Julia; Kahl, Gerhard

    2010-01-01

    Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.

  14. Pattern formation in two-dimensional square-shoulder systems

    Energy Technology Data Exchange (ETDEWEB)

    Fornleitner, Julia [Institut fuer Festkoerperforschung, Forschungsszentrum Juelich, D-52425 Juelich (Germany); Kahl, Gerhard, E-mail: fornleitner@cmt.tuwien.ac.a [Institut fuer Theoretische Physik and Centre for Computational Materials Science (CMS), Technische Universitaet Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien (Austria)

    2010-03-17

    Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.

  15. Fabrication of Refractive Index Tunable Polydimethylsiloxane Photonic Crystal for Biosensor Application

    Science.gov (United States)

    Raman, Karthik; Murthy, T. R. Srinivasa; Hegde, G. M.

    Photonic crystal based nanostructures are expected to play a significant role in next generation nanophotonic devices. Recent developments in two-dimensional (2D) photonic crystal based devices have created widespread interest as such planar photonic structures are compatible with conventional microelectronic and photonic devices. Various optical components such as waveguides, resonators, modulators and demultiplexers have been designed and fabricated based on 2D photonic crystal geometry. This paper presents the fabrication of refractive index tunable Polydimethylsiloxane (PDMS) polymer based photonic crystals. The advantages of using PDMS are mainly its chemical stability, bio-compatibility and the stack reduces sidewall roughness scattering. The PDMS structure with square lattice was fabricated by using silicon substrate patterned with SU8-2002 resist. The 600 nm period grating of PDMS is then fabricated using Nano-imprinting. In addition, the refractive index of PDMS is modified using certain additive materials. The resulting photonic crystals are suitable for application in photonic integrated circuits and biological applications such as filters, cavities or microlaser waveguides.

  16. Approximate solutions for the two-dimensional integral transport equation. Solution of complex two-dimensional transport problems

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr

  17. Quantization of an electromagnetic field in two-dimensional photonic structures based on the scattering matrix formalism ( S-quantization)

    Science.gov (United States)

    Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-10-01

    Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate

  18. On the presence of lower dimensional confinement mechanisms in 4d SU2 lattice gauge theory

    International Nuclear Information System (INIS)

    Hari Dass, N.D.

    1983-11-01

    The presence of an essentially two-dimensional confinement mechanism in 4d SU 2 gauge theory has been conjectured. The authors present an explicit realization of this conjecture valid up to β = 1.8 based on variational investigations of lattice gauge theories. (Auth.)

  19. Similarity between the superconductivity in the graphene with the spin transport in the two-dimensional antiferromagnet in the honeycomb lattice

    Science.gov (United States)

    Lima, L. S.

    2017-02-01

    We have used the Dirac's massless quasi-particles together with the Kubo's formula to study the spin transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC currents of this system, that is a relativistic electron plasma. Our results show that the AC conductivity tends to infinity in the limit ω → 0 , similar to the behavior obtained for the spin transport in the two-dimensional frustrated antiferromagnet in the honeycomb lattice. We have made a diagrammatic expansion for the Green's function and we have not gotten significative change in the results.

  20. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    OpenAIRE

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-01-01

    Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity de...

  1. Pair Interaction of Dislocations in Two-Dimensional Crystals

    Science.gov (United States)

    Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.

    2005-10-01

    The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.

  2. Supersymmetric quiver gauge theories on the lattice

    International Nuclear Information System (INIS)

    Joseph, Anosh

    2013-12-01

    In this paper we detail the lattice constructions of several classes of supersymmetric quiver gauge theories in two and three Euclidean spacetime dimensions possessing exact supersymmetry at finite lattice spacing. Such constructions are obtained through the methods of topological twisting and geometric discretization of Euclidean Yang-Mills theories with eight and sixteen supercharges in two and three dimensions. We detail the lattice constructions of two-dimensional quiver gauge theories possessing four and eight supercharges and three-dimensional quiver gauge theories possessing eight supercharges.

  3. Polarization response of RHIC electron lens lattices

    Directory of Open Access Journals (Sweden)

    V. H. Ranjbar

    2016-10-01

    Full Text Available Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. In particular we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. These results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. Finally we consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.

  4. Polarization response of RHIC electron lens lattices

    International Nuclear Information System (INIS)

    Ranjbar, V. H.; Méot, F.; Bai, M.; Abell, D. T.; Meiser, D.

    2016-01-01

    Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. Particularly, we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. Furthermore, these results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. We then consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.

  5. Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography

    Science.gov (United States)

    Scott, Timothy F.; Kowalski, Benjamin A.; Sullivan, Amy C.; Bowman, Christopher N.; McLeod, Robert R.

    2009-05-01

    Controlling and reducing the developed region initiated by photoexposure is one of the fundamental goals of optical lithography. Here, we demonstrate a two-color irradiation scheme whereby initiating species are generated by single-photon absorption at one wavelength while inhibiting species are generated by single-photon absorption at a second, independent wavelength. Co-irradiation at the second wavelength thus reduces the polymerization rate, delaying gelation of the material and facilitating enhanced spatial control over the polymerization. Appropriate overlapping of the two beams produces structures with both feature sizes and monomer conversions otherwise unobtainable with use of single- or two-photon absorption photopolymerization. Additionally, the generated inhibiting species rapidly recombine when irradiation with the second wavelength ceases, allowing for fast sequential exposures not limited by memory effects in the material and thus enabling fabrication of complex two- or three-dimensional structures.

  6. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion

    Science.gov (United States)

    Ilina, Olga; Bakker, Gert-Jan; Vasaturo, Angela; Hoffman, Robert M.; Friedl, Peter

    2011-02-01

    Cancer invasion into an extracellular matrix (ECM) results from a biophysical reciprocal interplay between the expanding cancer lesion and tissue barriers imposed by the adjacent microenvironment. In vivo, connective tissue provides both densely packed ECM barriers adjacent to channel/track-like spaces and loosely organized zones, both of which may impact cancer invasion mode and efficiency; however little is known about how three-dimensional (3D) spaces and aligned tracks present in interstitial tissue guide cell invasion. We here describe a two-photon laser ablation procedure to generate 3D microtracks in dense 3D collagen matrices that support and guide collective cancer cell invasion. Whereas collective invasion of mammary tumor (MMT) breast cancer cells into randomly organized collagen networks required matrix metalloproteinase (MMP) activity for cell-derived collagen breakdown, re-alignment and track generation, preformed tracks supported MMP-independent collective invasion down to a track caliber of 3 µm. Besides contact guidance along the track of least resistance and initial cell deformation (squeezing), MMP-independent collective cell strands led to secondary track expansion by a pushing mechanism. Thus, two-photon laser ablation is useful to generate barrier-free microtracks in a 3D ECM which guide collective invasion independently of pericellular proteolysis.

  7. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion

    International Nuclear Information System (INIS)

    Ilina, Olga; Bakker, Gert-Jan; Hoffman, Robert M; Friedl, Peter; Vasaturo, Angela

    2011-01-01

    Cancer invasion into an extracellular matrix (ECM) results from a biophysical reciprocal interplay between the expanding cancer lesion and tissue barriers imposed by the adjacent microenvironment. In vivo, connective tissue provides both densely packed ECM barriers adjacent to channel/track-like spaces and loosely organized zones, both of which may impact cancer invasion mode and efficiency; however little is known about how three-dimensional (3D) spaces and aligned tracks present in interstitial tissue guide cell invasion. We here describe a two-photon laser ablation procedure to generate 3D microtracks in dense 3D collagen matrices that support and guide collective cancer cell invasion. Whereas collective invasion of mammary tumor (MMT) breast cancer cells into randomly organized collagen networks required matrix metalloproteinase (MMP) activity for cell-derived collagen breakdown, re-alignment and track generation, preformed tracks supported MMP-independent collective invasion down to a track caliber of 3 µm. Besides contact guidance along the track of least resistance and initial cell deformation (squeezing), MMP-independent collective cell strands led to secondary track expansion by a pushing mechanism. Thus, two-photon laser ablation is useful to generate barrier-free microtracks in a 3D ECM which guide collective invasion independently of pericellular proteolysis

  8. Vortex matter and ultracold superstrings in optical lattices

    NARCIS (Netherlands)

    Snoek, M.

    2006-01-01

    The combination of a rotating cigar-shaped Bose-Einstein condensate with a one-dimensional optical lattice gives rise to very interesting physics. The one-dimensional optical lattice splits the Bose-Einstein condensate into two-dimensional pancake-condensates, each containing a small number of

  9. One-dimensional plasma photonic crystals with sinusoidal densities

    International Nuclear Information System (INIS)

    Qi, L.; Shang, L.; Zhang, S.

    2014-01-01

    Properties of electromagnetic waves with normal and oblique incidence have been studied for one-dimensional plasma layers with sinusoidal densities. Wave transmittance as a function of wave frequency exhibits photonic band gaps characteristic of photonic crystals. For periodic structures, increasing collision frequency is demonstrated to lead to greater absorption, increasing the modulation factor enlarges the gap width, and increasing incidence angle can change the gap locations of the two polarizations. If a defect layer is introduced by inserting a new plasma layer in the center, a defect mode may appear within the gap. Periodic number, collision frequency, and modulation factor can affect magnitude of the defect mode. The incidence angle enables the frequency to be tuned. Defect layer thickness affects both frequency and number of defect modes. These results may provide theoretical guidance in designing tunable narrow-band filters

  10. Preparation, one- and two-photon properties of carbazole derivatives containing nitrogen heterocyclic ring

    Science.gov (United States)

    Zhang, Yichi; Wang, Ping; Li, Liang; Chen, Zhimin; He, Chunying; Wu, Yiqun

    Preparation of recording materials with high two-photon absorption activities is one of the important issues to superhigh- density two-photon absorption (TPA) three-dimensional (3D) optical data storage. In this paper, three new carbazole derivatives containing nitrogen heterocyclic ring with symmetric and asymmetric structures are prepared using ethylene as the π bridge between the carbazole unit and nitrogen heterocyclic ring, namely, 9-butyl-3-(2-(1,8- naphthyridin)vinyl)-carbazole (material 1), 9-butyl-3,6-bis(2-(1,8-naphthyl)vinyl)-carbazole (material 2) and 9-butyl-3,6- bis(2-(quinolin)vinyl)-carbazole (material 3). Their one photon properties including linear absorption spectra, fluorescence emission spectra, and fluorescence quantum yields are studied. The fluorescence excited by 120 fs pulse at 800 nm Ti: sapphire laser operating at 1 kHz repetition rate with different incident powers of 9-butyl-3-(2-(quinolin) vinyl)-carbazole (material 3) was investigated, and two-photon absorption cross-sections has been obtained. It is shown that material 3 containing quinoline rings as electron acceptor with symmetric structure exhibit high two-photon absorption activity. The result implies that material 3 (9-butyl-3-(2-(quinolin) vinyl)-carbazole) is a good candidate as a promising recording material for super-high-density two-photon absorption (TPA) three-dimensional (3D) optical data storage. The influence of chemical structure of the materials on the optical properties is discussed.

  11. Wave dispersion relations in two-dimensional Yukawa systems

    International Nuclear Information System (INIS)

    Liu Yanhong; Liu Bin; Chen Yanping; Yang Size; Wang Long; Wang Xiaogang

    2003-01-01

    Collective modes in a two-dimensional Yukawa system are investigated by molecular dynamics simulation in a wide range of coupling parameter Γ and screening strength κ. The dispersion relations and sound speeds of the transverse and longitudinal waves obtained for hexagonal lattice are in agreement with the theoretical results. The negative dispersion of the longitudinal wave is demonstrated. Frequency gaps are found on the dispersion curves of the transverse wave due to scattering of the waves on lattice defects for proper values of Γ. The common frequency of transverse and longitudinal waves drops dramatically with the increasing screening strength κ

  12. Negative refraction angular characterization in one-dimensional photonic crystals.

    Directory of Open Access Journals (Sweden)

    Jesus Eduardo Lugo

    2011-04-01

    Full Text Available Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs.By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone.Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  13. Negative refraction angular characterization in one-dimensional photonic crystals.

    Science.gov (United States)

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-04-06

    Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  14. Three-Dimensional Self-Assembled Photonic Crystal Waveguide

    Science.gov (United States)

    Baek, Kang-Hyun

    Photonic crystals (PCs), two- or three-dimensionally periodic, artificial, and dielectric structures, have a specific forbidden band for electromagnetic waves, referred to as photonic bandgap (PBG). The PBG is analogous to the electronic bandgap in natural crystal structures with periodic atomic arrangement. A well-defined and embedded planar, line, or point defect within the PCs causes a break in its structural periodicity, and introduces a state in the PBG for light localization. It offers various applications in integrated optics and photonics including optical filters, sharp bending light guides and very low threshold lasers. Using nanofabrication processes, PCs of the 2-D slab-type and 3-D layer-by-layer structures have been investigated widely. Alternatively, simple and low-cost self-assembled PCs with full 3-D PBG, inverse opals, have been suggested. A template with face centered cubic closed packed structure, opal, may initially be built by self-assembly of colloidal spheres, and is selectively removed after infiltrating high refractive index materials into the interstitials of spheres. In this dissertation, the optical waveguides utilizing the 3-D self-assembled PCs are discussed. The waveguides were fabricated by microfabrication technology. For high-quality colloidal silica spheres and PCs, reliable synthesis, self-assembly, and characterization techniques were developed. Its theoretical and experimental demonstrations are provided and correlated. They suggest that the self-assembled PCs with PBG are feasible for the applications in integrated optics and photonics.

  15. Ultra-refractive and extended-range one-dimensional photonic crystal superprisms

    Science.gov (United States)

    Ting, D. Z. Y.

    2003-01-01

    We describe theoretical analysis and design of one-dimensional photonic crystal prisms. We found that inside the photonic crystal, for frequencies near the band edges, light propagation direction is extremely sensitive to the variations in wavelength and incident angle.

  16. Quantum logic using correlated one-dimensional quantum walks

    Science.gov (United States)

    Lahini, Yoav; Steinbrecher, Gregory R.; Bookatz, Adam D.; Englund, Dirk

    2018-01-01

    Quantum Walks are unitary processes describing the evolution of an initially localized wavefunction on a lattice potential. The complexity of the dynamics increases significantly when several indistinguishable quantum walkers propagate on the same lattice simultaneously, as these develop non-trivial spatial correlations that depend on the particle's quantum statistics, mutual interactions, initial positions, and the lattice potential. We show that even in the simplest case of a quantum walk on a one dimensional graph, these correlations can be shaped to yield a complete set of compact quantum logic operations. We provide detailed recipes for implementing quantum logic on one-dimensional quantum walks in two general cases. For non-interacting bosons—such as photons in waveguide lattices—we find high-fidelity probabilistic quantum gates that could be integrated into linear optics quantum computation schemes. For interacting quantum-walkers on a one-dimensional lattice—a situation that has recently been demonstrated using ultra-cold atoms—we find deterministic logic operations that are universal for quantum information processing. The suggested implementation requires minimal resources and a level of control that is within reach using recently demonstrated techniques. Further work is required to address error-correction.

  17. Simulation and design of the photonic crystal microwave accelerating structure

    International Nuclear Information System (INIS)

    Song Ruiying; Wu Congfeng; He Xiaodong; Dong Sai

    2007-01-01

    The authors have derived the global band gaps for general two-dimensional (2D) photonic crystal microwave accelerating structures formed by square or triangular arrays of metal posts. A coordinate-space, finite-difference code was used to calculate the complete dispersion curves for the lattices. The fundamental and higher frequency global photonic band gaps were determined numerically. The structure formed by triangular arrays of metal posts with a missing rod at the center has advantages of higher-order-modes (HOM) suppression and main mode restriction under the condition of a/b<0.2. The relationship between the RF properties and the geometrical parameters have been studied for the 9.37 GHz photonic crystal accelerating structure. The Rs, Q, Rs/Q of the new structure may be comparable to the disk-loaded accelerating structure. (authors)

  18. Band structure of magneto-metallo-dielectric photonic crystals with hybrid one- and two-dimensional periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Ayona, E. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico); Instituto Nacional de Astrofisica Optica y Electronica, Apartado Postal 51, Puebla 72000 (Mexico); Halevi, P. [Instituto Nacional de Astrofisica Optica y Electronica, Apartado Postal 51, Puebla 72000 (Mexico)

    2012-06-15

    We calculate the band structure of a magneto-metallo-dielectric photonic crystal (PC) with hybrid one- and two-dimensional periodicity. Namely, the permittivity (permeability) is periodic in a plane (single direction). The metallic and magnetic properties are described, respectively, by means of the Drude model and a specific permeability model for Barium-M ferrite. Because of the dispersion of both the permeability and the permittivity, we obtain a non-standard eigenvalue problem which is possible to solve by means of a linearization technique. We found that the first band of this PC is very sensitive to the filling fraction of the magnetic component: by changing this fraction from 0.20 to 0.16 the slope - and effective index of refraction - changes from positive to negative. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  20. Two-Photon Fluorescence Microscope for Microgravity Research

    Science.gov (United States)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2005-01-01

    A two-photon fluorescence microscope has been developed for the study of biophysical phenomena. Two-photon microscopy is a novel form of laser-based scanning microscopy that enables three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon optical microscopy, two-photon microscopy utilizes the simultaneous nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption, so an ultra-fast pulsed laser source is typically employed. On the other hand, the critical energy threshold for two-photon absorption leads to fluorophore excitation that is intrinsically localized to the focal volume. Consequently, two-photon microscopy enables optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction (relative to one-photon optical microscopy) in photon-induced damage because of the longer excitation wavelength. This reduction is especially advantageous for in vivo studies. Relative to confocal microscopy, there is also a reduction in background fluorescence, and, because of a reduction in Rayleigh scattering, there is a 4 increase of penetration depth. The prohibitive cost of a commercial two-photon fluorescence-microscope system, as well as a need for modularity, has led to the construction of a custom-built system (see Figure 1). This system includes a coherent mode-locked titanium: sapphire laser emitting 120-fs-duration pulses at a repetition rate of 80 MHz. The pulsed laser has an average output power of 800 mW and a wavelength tuning range of 700 to 980 nm, enabling the excitation of a variety of targeted fluorophores. The output from the laser is attenuated, spatially filtered, and then directed into a confocal scanning head that has been modified to provide for side entry of the laser beam. The laser output coupler has been replaced with a dichroic filter that reflects the

  1. Effective field theory and integrability in two-dimensional Mott transition

    International Nuclear Information System (INIS)

    Bottesi, Federico L.; Zemba, Guillermo R.

    2011-01-01

    Highlights: → Mott transition in 2d lattice fermion model. → 3D integrability out of 2D. → Effective field theory for Mott transition in 2d. → Double Chern-Simons. → d-Density waves. - Abstract: We study the Mott transition in a two-dimensional lattice spinless fermion model with nearest neighbors density-density interactions. By means of a two-dimensional Jordan-Wigner transformation, the model is mapped onto the lattice XXZ spin model, which is shown to possess a quantum group symmetry as a consequence of a recently found solution of the Zamolodchikov tetrahedron equation. A projection (from three to two space-time dimensions) property of the solution is used to identify the symmetry of the model at the Mott critical point as U q (sl(2)-circumflex)xU q (sl(2)-circumflex), with deformation parameter q = -1. Based on this result, the low-energy effective field theory for the model is obtained and shown to be a lattice double Chern-Simons theory with coupling constant k = 1 (with the standard normalization). By further employing the effective filed theory methods, we show that the Mott transition that arises is of topological nature, with vortices in an antiferromagnetic array and matter currents characterized by a d-density wave order parameter. We also analyze the behavior of the system upon weak coupling, and conclude that it undergoes a quantum gas-liquid transition which belongs to the Ising universality class.

  2. Enhancement of Raman scattering from monolayer graphene by photonic crystal nanocavities

    Science.gov (United States)

    Kimura, Issei; Yoshida, Masahiro; Sota, Masaki; Inoue, Taiki; Chiashi, Shohei; Maruyama, Shigeo; Kato, Yuichiro K.

    Monolayer graphene is an atomically thin two-dimensional material that shows strong Raman scattering, while photonic crystal nanocavities with small mode volumes allow for efficient optical coupling at the nanoscale. Here we demonstrate resonant enhancement of graphene Raman G' band by coupling to photonic crystal cavity modes. Hexagonal-lattice photonic crystal L3 cavities are fabricated from silicon-on-insulator substrates. and monolayer graphene sheets grown by chemical vapor deposition are transferred onto the nanocavities. Excitation wavelength dependence of Raman spectra show that the Raman intensity is enhanced when the G' peak is in resonance with the cavity mode. By performing imaging measurements, we confirm that such an enhancement is only observed at the cavity position. Work supported by JSPS KAKENHI Grant Numbers JP16K13613, JP25107002 and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  3. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    International Nuclear Information System (INIS)

    Gorelik, V.S.; Voinov, Yu.P.; Shchavlev, V.V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2017-01-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  4. Pattern generation using axicon lens beam shaping in two-photon polymerisation

    International Nuclear Information System (INIS)

    Bhuian, B.; Winfield, R.J.; O'Brien, S.; Crean, G.M.

    2007-01-01

    The fabrication of three-dimensional microstructures by two-photon polymerisation has been widely reported as a viable route to the development of photonic crystals, rotors, bridges and other complex artefacts requiring nanoscale resolution. Conventionally, single point serial writing is used to write the structures but recently multipoint beam delivery using beam division optics has been reported as a method of introducing parallel processing. In this paper we present an alternative and novel approach using an axicon lens to give profiled beam delivery. This enables complete three-dimensional annular structure fabrication without the use of scanning stages. In addition, the concept of axicon delivery is developed further to investigate three-dimensional structure as a function of axicon geometry. A Ti:sapphire laser, with wavelength 795 nm, 80 MHz repetition rate, 100 fs pulse duration and an average power of 700 mW, was used to initiate two-photon polymerisation. The axicon was used, in combination with a 100x microscope objective, to form representative three-dimensional structures based on the annular cell with varying diameter. The structures were written in a Zr-loaded resin prepared on a glass substrate using dip coating deposition of a Zr/PMMA hybrid prepared by the sol-gel method. Annuli with diameters up to 50 μm were characterised in terms of topography and surface roughness using SEM and Zygo interferometer. The writing technique was also extended to fabrication of stacked structures

  5. Weyl solitons in three-dimensional optical lattices

    Science.gov (United States)

    Shang, Ce; Zheng, Yuanlin; Malomed, Boris A.

    2018-04-01

    Weyl fermions are massless chiral quasiparticles existing in materials known as Weyl semimetals. Topological surface states, associated with the unusual electronic structure in the Weyl semimetals, have been recently demonstrated in linear systems. Ultracold atomic gases, featuring laser-assisted tunneling in three-dimensional optical lattices, can be used for the emulation of Weyl semimetals, including nonlinear effects induced by the collisional nonlinearity of atomic Bose-Einstein condensates. We demonstrate that this setting gives rise to topological states in the form of Weyl solitons at the surface of the underlying optical lattice. These nonlinear modes, being exceptionally robust, bifurcate from linear states for a given quasimomentum. The Weyl solitons may be used to design an efficient control scheme for topologically protected unidirectional propagation of excitations in light-matter-interaction physics. After the recently introduced Majorana and Dirac solitons, the Weyl solitons proposed in this work constitute the third (and the last) member in this family of topological solitons.

  6. Designing lattice structures with maximal nearest-neighbor entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Munoz, J C; Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, 78216 San Luis Potosi (Mexico); Garcia, M E [Theoretische Physik, FB 18, Universitaet Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str.40, 34132 Kassel (Germany)

    2009-08-07

    In this paper, we study the numerical optimization of nearest-neighbor concurrence of bipartite one- and two-dimensional lattices, as well as non-bipartite two-dimensional lattices. These systems are described in the framework of a tight-binding Hamiltonian while the optimization of concurrence was performed using genetic algorithms. Our results show that the concurrence of the optimized lattice structures is considerably higher than that of non-optimized systems. In the case of one-dimensional chains, the concurrence increases dramatically when the system begins to dimerize, i.e., it undergoes a structural phase transition (Peierls distortion). This result is consistent with the idea that entanglement is maximal or shows a singularity near quantum phase transitions. Moreover, the optimization of concurrence in two-dimensional bipartite and non-bipartite lattices is achieved when the structures break into smaller subsystems, which are arranged in geometrically distinguishable configurations.

  7. Black phosphorus-based one-dimensional photonic crystals and microcavities.

    Science.gov (United States)

    Kriegel, Ilka; Toffanin, Stefano; Scotognella, Francesco

    2016-11-10

    The latest achievements in the fabrication of thin layers of black phosphorus (BP), toward the technological breakthrough of a phosphorene atomically thin layer, are paving the way for their use in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e., photonic crystals and microcavities, in which few-layer BP is one of the components. The insertion of the 5-nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity that is interesting for light manipulation and emission enhancement.

  8. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    Science.gov (United States)

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  9. Random-lattice models and simulation algorithms for the phase equilibria in two-dimensional condensed systems of particles with coupled internal and translational degrees of freedom

    DEFF Research Database (Denmark)

    Nielsen, Morten; Miao, Ling; Ipsen, John Hjorth

    1996-01-01

    In this work we concentrate on phase equilibria in two-dimensional condensed systems of particles where both translational and internal degrees of freedom are present and coupled through microscopic interactions, with a focus on the manner of the macroscopic coupling between the two types...... where the spin degrees of freedom are slaved by the translational degrees of freedom and develop a first-order singularity in the order-disorder transition that accompanies the lattice-melting transition. The internal degeneracy of the spin states in model III implies that the spin order...

  10. Monte Carlo simulation of the three-state vector Potts model on a three-dimensional random lattice

    International Nuclear Information System (INIS)

    Jianbo Zhang; Heping Ying

    1991-09-01

    We have performed a numerical simulation of the three-state vector Potts model on a three-dimensional random lattice. The averages of energy density, magnetization, specific heat and susceptibility of the system in the N 3 (N=8,10,12) lattices were calculated. The results show that a first order nature of the Z(3) symmetry breaking transition appears, as characterized by a thermal hysterisis in the energy density as well as an abrupt drop of magnetization being sharper and discontinuous with increasing of volume in the cross-over region. The results obtained on the random lattice were consistent with those obtained on the three-dimensional cubic lattice. (author). 12 refs, 4 figs

  11. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering.

    Science.gov (United States)

    Williams, G Jackson; Lee, Sooheyong; Walko, Donald A; Watson, Michael A; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C

    2016-12-22

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.

  12. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  13. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Wan-Su, E-mail: 2010thzz@sina.com [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-04-25

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  14. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    International Nuclear Information System (INIS)

    Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei

    2017-01-01

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  15. Supersymmetry on a space-time lattice

    International Nuclear Information System (INIS)

    Kaestner, Tobias

    2008-01-01

    In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)

  16. Supersymmetry on a space-time lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kaestner, Tobias

    2008-10-28

    In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)

  17. 8-dimensional lattice optimized formats in 25-GBaud/s VCSEL based IM/DD optical interconnections

    DEFF Research Database (Denmark)

    Lu, Xiaofeng; Tafur Monroy, Idelfonso

    2015-01-01

    Temporally combined 4- and 8-dimensional lattice grids optimized modulation formats for VCSEL based IM/DD short-reach optical inter-connections has been proposed and investigated numerically together with its conventional counterpart PAM-4. © 2015 OSA.......Temporally combined 4- and 8-dimensional lattice grids optimized modulation formats for VCSEL based IM/DD short-reach optical inter-connections has been proposed and investigated numerically together with its conventional counterpart PAM-4. © 2015 OSA....

  18. Tale of two photons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A very profitable spinoff from electron- positron collisions is two-photon physics. Rather than the electron and positron interacting directly via an exchanged photon, two virtual (transient) photons, one from each particle, get tangled up. With new electron-positron colliders appearing on the scene, a topical meeting on two-photon physics - 'From DAPHNE to LEP 200 and beyond' - held from 2-4 February in Paris, in the premises of the Ministry of Higher Education and Research, was particularly timely. Some 60 physicists, both experimentalists and theorists, participated, with some thirty speakers

  19. Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystal

    International Nuclear Information System (INIS)

    Endo, Tatsuro; Ueda, China; Hisamoto, Hideaki; Kajita, Hiroshi; Okuda, Norimichi; Tanaka, Satoru

    2013-01-01

    We have fabricated polymer-based 2-dimensional photonic crystals that play a key role in enhancing the fluorescence of DNA intercalators. Highly ordered 2-dimensional photonic crystals possessing triangle-shaped and nm-sized hole arrays were fabricated on a 100 μm thick polymer film using nano-imprint lithography. Samples of double-stranded DNAs (sizes: 4361 and 48502 bp; concentration: 1 pM to 10 nM) were adsorbed on the surface of the 2-dimensional photonic crystal by electrostatic interactions and then treated with intercalators. It is found that the fluorescence intensity of the intercalator is enhanced by a factor of up to 10 compared to the enhancement in the absence of the 2-dimensional photonic crystal. Fluorescence intensity increases with increasing length and concentration of the DNAs. If the 2-dimensional photonic crystal is used as a Bragg reflection mirror, the enhancement of fluorescence intensity can be easily observed using a conventional spectrofluorometer. These results suggest that the printed photonic crystal offers a great potential for highly sensitive intercalator-based fluorescent detection of DNAs. (author)

  20. Similarity measurement method of high-dimensional data based on normalized net lattice subspace

    Institute of Scientific and Technical Information of China (English)

    Li Wenfa; Wang Gongming; Li Ke; Huang Su

    2017-01-01

    The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity, leading to the dissimilarities between any results.A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed.The data range of each dimension is divided into several intervals, and the components in different dimensions are mapped onto the corresponding interval.Only the component in the same or adjacent interval is used to calculate the similarity.To validate this meth-od, three data types are used, and seven common similarity measurement methods are compared. The experimental result indicates that the relative difference of the method is increasing with the di-mensionality and is approximately two or three orders of magnitude higher than the conventional method.In addition, the similarity range of this method in different dimensions is [0, 1], which is fit for similarity analysis after dimensionality reduction.

  1. Lattice Boltzmann model for simulating immiscible two-phase flows

    International Nuclear Information System (INIS)

    Reis, T; Phillips, T N

    2007-01-01

    The lattice Boltzmann equation is often promoted as a numerical simulation tool that is particularly suitable for predicting the flow of complex fluids. This paper develops a two-dimensional 9-velocity (D2Q9) lattice Boltzmann model for immiscible binary fluids with variable viscosities and density ratio using a single relaxation time for each fluid. In the macroscopic limit, this model is shown to recover the Navier-Stokes equations for two-phase flows. This is achieved by constructing a two-phase component of the collision operator that induces the appropriate surface tension term in the macroscopic equations. A theoretical expression for surface tension is determined. The validity of this analysis is confirmed by comparing numerical and theoretical predictions of surface tension as a function of density. The model is also shown to predict Laplace's law for surface tension and Poiseuille flow of layered immiscible binary fluids. The spinodal decomposition of two fluids of equal density but different viscosity is then studied. At equilibrium, the system comprises one large low viscosity bubble enclosed by the more viscous fluid in agreement with theoretical arguments of Renardy and Joseph (1993 Fundamentals of Two-Fluid Dynamics (New York: Springer)). Two other simulations, namely the non-equilibrium rod rest and the coalescence of two bubbles, are performed to show that this model can be used to simulate two fluids with a large density ratio

  2. Theoretical analysis of enhanced light output from a GaN light emitting diode with an embedded photonic crystal

    International Nuclear Information System (INIS)

    Wen Feng; Liu Deming; Huang Lirong

    2010-01-01

    The enhancement of the light output of an embedded photonic crystal light emitting diode is investigated based on the finite-difference time-domain modeling. The embedded photonic crystal (PC) lattice type, multi-layer embedded PC, distance between the multiple quantum well and the embedded PC are studied. It is found that the embedded one dimensional PC can act as well as embedded two dimensional PCs. The emitted light flux in the up direction can be increased by a new kind of multi-layer embedded PC. Also, we show that the light output in the up direction for the LED with both surfaces and embedded PC could be as high as five times that of a conventional LED. (semiconductor devices)

  3. Theoretical analysis of enhanced light output from a GaN light emitting diode with an embedded photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wen Feng; Liu Deming; Huang Lirong, E-mail: hlr5649@163.co [Wuhan National Laboratory for Optoelectronics, College of Opto-Electronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-10-15

    The enhancement of the light output of an embedded photonic crystal light emitting diode is investigated based on the finite-difference time-domain modeling. The embedded photonic crystal (PC) lattice type, multi-layer embedded PC, distance between the multiple quantum well and the embedded PC are studied. It is found that the embedded one dimensional PC can act as well as embedded two dimensional PCs. The emitted light flux in the up direction can be increased by a new kind of multi-layer embedded PC. Also, we show that the light output in the up direction for the LED with both surfaces and embedded PC could be as high as five times that of a conventional LED. (semiconductor devices)

  4. Two-photon interference of polarization-entangled photons in a Franson interferometer.

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb

    2017-07-18

    We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.

  5. Quantum key distribution session with 16-dimensional photonic states

    Science.gov (United States)

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033

  6. The right circular polarized waves in the three-dimensional anisotropic dispersive photonic crystals consisting of the magnetized plasma and uniaxial material as the Faraday effects considered

    International Nuclear Information System (INIS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Tang, Yi-Jun; Zhen, Jian-Ping

    2014-01-01

    In this paper, the properties of the right circular polarized (RCP) waves in the three-dimensional (3D) dispersive photonic crystals (PCs) consisting of the magnetized plasma and uniaxial material with face-centered-cubic (fcc) lattices are theoretically investigated by the plane wave expansion method, which the homogeneous anisotropic dielectric spheres (the uniaxial material) immersed in the magnetized plasma background, as the Faraday effects of magnetized plasma are considered (the incidence electromagnetic wave vector is parallel to the external magnetic field at any time). The equations for calculating the anisotropic photonic band gaps (PBGs) for the RCP waves in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and a flatbands region can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, anisotropic dielectric filling factor, plasma frequency, and plasma cyclotron frequency (the external magnetic field) on the properties of first two anisotropic PBGs for the RCP waves are investigated in detail, respectively. The numerical results show that the anisotropy can open partial band gaps in fcc lattices at U and W points, and the complete PBGs for the RCP waves can be achieved compared to the conventional 3D dispersive PCs composed of the magnetized plasma and isotropic material. It is also shown that the first two anisotropic PBGs can be tuned by those parameters as mentioned above. Those PBGs can be enlarged by introducing the uniaxial material into such 3D PCs as the Faraday effects are considered

  7. Influence of Dzyaloshinskii-Moriya interaction and ballistic spin transport in the two and three-dimensional Heisenberg model

    Science.gov (United States)

    Lima, L. S.

    2018-06-01

    We study the effect of Dzyaloshisnkii-Moriya interaction on spin transport in the two and three-dimensional Heisenberg antiferromagnetic models in the square lattice and cubic lattice respectively. For the three-dimensional model, we obtain a large peak for the spin conductivity and therefore a finite AC conductivity. For the two-dimensional model, we have gotten the AC spin conductivity tending to the infinity at ω → 0 limit and a suave decreasing in the spin conductivity with increase of ω. We obtain a small influence of the Dzyaloshinskii-Moriya interaction on the spin conductivity in all cases analyzed.

  8. Two-dimensional Potts antiferromagnets with a phase transition at arbitrarily large q

    Czech Academy of Sciences Publication Activity Database

    Huang, Y.; Chen, K.; Deng, Y.; Jacobsen, J. L.; Kotecký, R.; Salas, J.; Sokal, Alan D.; Swart, Jan M.

    2013-01-01

    Roč. 87, Č. 1 (2013), 12136-1-12136-5 ISSN 1539-3755 R&D Projects: GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : Monte Carlo simulation * two-dimensional lattices * q-state Potts Subject RIV: BE - Theoretical Physics Impact factor: 2.326, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/swart-two-dimensional potts antiferromagnets with a phase transition at arbitrarily large q.pdf

  9. On-chip non-reciprocal optical devices based on quantum inspired photonic lattices

    Science.gov (United States)

    El-Ganainy, R.; Eisfeld, A.; Levy, Miguel; Christodoulides, D. N.

    2013-10-01

    We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8 mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.

  10. Neutron scattering study on the spin dynamics of the two dimensional square lattice antiferromagnet, La2NiO4

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Yamada, Kazuyoshi; Hosoya, Syoichi; Endoh, Yasuo; Omata, Tomoya; Arai, Masatoshi; Taylor, A.

    1993-01-01

    The spin dynamics of an S = 1, two dimensional (2D) square lattice antiferromagnet, La 2 NiO 4 was studied by neutron scattering experiments in wide energy (E N ), the spin wave excitations of La 2 NiO 4 are well described by a classical spin wave theory. The nearest-neighbor-exchange coupling constant, the in-plane and the out-of-plane anisotropy constants at 10 K were determined to be 28.7±0.7 meV, 0.10±0.02 meV and 1.26±0.12 meV, respectively. Above T N , the 2D spin fluctuation was observed over 600 K. The critical slowing down behavior of the fluctuation was observed in the enhancement of the low energy component toward T N . On the other hand, the high energy component is hardly affected by the three dimensional magnetic transition and still exists even at T N as observed in La 2 CuO 4 . The spin correlation length and the static structure factor at the 2D zone center were measured and compared with theoretical calculations for 2D Heisenberg antiferromagnets. (author)

  11. Two-photon polymerization of an epoxy-acrylate resin material system

    International Nuclear Information System (INIS)

    Winfield, R.J.; O'Brien, S.

    2011-01-01

    Improved material systems are of great interest in the development of two-photon polymerization techniques for the fabrication of three dimensional micro- and nano-structures. The properties of the photosensitive resin are important in the realisation of structures with submicron dimensions. In this study investigation of a custom organic resin, cross-linked by a two-photon induced process, using a femtosecond Ti:sapphire laser, is described. A structural, optical and mechanical analysis of the optimised material is presented. The influence of both material system and laser processing parameters on achievable micro-structure and size is presented as are representative structures. Parameters include: laser power, photo-initiator concentration and material composition.

  12. Picosecond phase conjugation in two-photon absorption in poly-di-acetylenes

    International Nuclear Information System (INIS)

    Nunzi, Dominique Jean-Michel

    1990-01-01

    Poly-di-acetylenes exhibit a large two-photon absorption at 1064 nm wavelength. Its different effects on phase-conjugate nonlinearity are described in the framework of picosecond experiments. In solutions, gels, and films (optically thin media), third-order susceptibility appears as an increasing intensity dependent function. Phase measurements by nonlinear interferometry with the substrate or with the solvent are compared with predictions of a resonantly driven three level system. Phase-conjugate response exhibits a multi-exponential decay. Polarization symmetries analysis shows a one-dimensional effect. Study under strong static electric field action reveals that we face charged species bound to photoconductive polymer chains. In PTS single crystals (optically thick media), response saturates and cancels at high light intensity. This is well accounted for by propagation equations solved in large two-photon absorption conditions. The effect is exploited in a phase conjugation experiment under external optical pump excitation. We thus demonstrate that enhanced nonlinearity is a two-photon absorption relayed and amplified by mid-gap absorbing species which have been created by this two-photon absorption. We formally face a four-photon absorption described by a positive imaginary seventh-order non-linearity. (author) [fr

  13. Three dimensional Dirac point at k=0 in photonic and phononic systems

    OpenAIRE

    Huang, Xueqin; Liu, Fengming; Chan, C. T.

    2012-01-01

    While "Dirac cone" dispersions can only be meaningfully defined in two dimensional (2D) systems, the notion of a Dirac point can be extended to three dimensional (3D) classical wave systems. We show that a simple cubic photonic crystal composing of core-shell spheres exhibits a 3D Dirac point at the center of the Brillouin zone at a finite frequency. Using effective medium theory, we can map our structure to a zero refractive index material in which the effective permittivity and permeability...

  14. Dynamics of an impurity in a one-dimensional lattice

    International Nuclear Information System (INIS)

    Massel, F; Kantian, A; Giamarchi, T; Daley, A J; Törmä, P

    2013-01-01

    We study the non-equilibrium dynamics of an impurity in a harmonic trap that is kicked with a well-defined quasi-momentum, and interacts with a bath of free fermions or interacting bosons in a one-dimensional lattice configuration. Using numerical and analytical techniques we investigate the full dynamics beyond linear response, which allows us to quantitatively characterize states of the impurity in the bath for different parameter regimes. These vary from a tightly bound molecular state in a strongly interacting limit to a polaron (dressed impurity) and a free particle for weak interactions, with composite behaviour in the intermediate regime. These dynamics and different parameter regimes should be readily realizable in systems of cold atoms in optical lattices. (paper)

  15. Room-temperature light-emission from Ge quantum dots in photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xia Jinsong [Advanced Research Laboratories, Musashi Institute of Technolgy, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082 (Japan)], E-mail: jxia@sc.musashi-tech.ac.jp; Nemoto, Koudai; Ikegami, Yuta [Advanced Research Laboratories, Musashi Institute of Technolgy, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082 (Japan); Usami, Noritaka [Institute of Materials Research, Tohoku University, 2-2-1 Katahira, Aoba-ku, Sendai Japan (Japan)], E-mail: usa@imr.tohoku.ac.jp; Nakata, Yasushi [Horiba, Ltd., 1-7-8 Higashi-Kanda, Chiyoda-ku, Tokyo 101-0031 (Japan)], E-mail: yasushi.nakata@horiba.com; Shiraki, Yasuhiro [Advanced Research Laboratories, Musashi Institute of Technolgy, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082 (Japan)

    2008-11-03

    Multiple layers of Ge self-assembled quantum dots were embedded into two-dimensional silicon photonic crystal microcavities fabricated on silicon-on-insulator substrates. Microphotoluminescence was used to study the light-emission characteristic of the Ge quantum dots in the microcavities. Strong resonant room-temperature light-emission was observed in the telecommunication wavelength region. Significant enhancement of the luminescence from Ge dots was obtained due to the resonance in the cavities. Multiple sharp resonant peaks dominated the spectrum, showing strong optical resonance inside the cavity. By changing the lattice constant of photonic crystal structure, the wavelengths of the resonant peaks are tuned in the wide wavelength range from 1.2 to 1.6 {mu}m.

  16. Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times

    Directory of Open Access Journals (Sweden)

    Kosuke Hayashi

    2012-06-01

    Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.

  17. Large-area metallic photonic lattices for military applications.

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting Shan

    2007-11-01

    In this project we developed photonic crystal modeling capability and fabrication technology that is scaleable to large area. An intelligent optimization code was developed to find the optimal structure for the desired spectral response. In terms of fabrication, an exhaustive survey of fabrication techniques that would meet the large area requirement was reduced to Deep X-ray Lithography (DXRL) and nano-imprint. Using DXRL, we fabricated a gold logpile photonic crystal in the <100> plane. For the nano-imprint technique, we fabricated a cubic array of gold squares. These two examples also represent two classes of metallic photonic crystal topologies, the connected network and cermet arrangement.

  18. Galilean invariant lattice Boltzmann scheme for natural convection on square and rectangular lattices

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2006-01-01

    In this paper we present lattice Boltzmann (LB) schemes for convection diffusion coupled to fluid flow on two-dimensional rectangular lattices. Via inverse Chapman-Enskog analysis of LB schemes including source terms, we show that for consistency with physics it is required that the moments of the

  19. Hamiltonian Monte Carlo study of (1+1)-dimensional models with restricted supersymmetry on the lattice

    International Nuclear Information System (INIS)

    Ranft, J.; Schiller, A.

    1984-01-01

    Lattice versions with restricted suppersymmetry of simple (1+1)-dimensional supersymmetric models are numerically studied using a local hamiltonian Monte Carlo method. The pattern of supersymmetry breaking closely follows the expectations of Bartels and Bronzan obtain in an alternative lattice formulation. (orig.)

  20. Semiconductor Three-Dimensional Photonic Crystals with Novel Layer-by-Layer Structures

    Directory of Open Access Journals (Sweden)

    Satoshi Iwamoto

    2016-05-01

    Full Text Available Three-dimensional photonic crystals (3D PhCs are a fascinating platform for manipulating photons and controlling their interactions with matter. One widely investigated structure is the layer-by-layer woodpile structure, which possesses a complete photonic bandgap. On the other hand, other types of 3D PhC structures also offer various possibilities for controlling light by utilizing the three dimensional nature of structures. In this article, we discuss our recent research into novel types of layer-by-layer structures, including the experimental demonstration of a 3D PhC nanocavity formed in a <110>-layered diamond structure and the realization of artificial optical activity in rotationally stacked woodpile structures.

  1. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    CERN Document Server

    García, Marcos Fernández; Echeverría, Richard Jaramillo; Moll, Michael; Santos, Raúl Montero; Moya, David; Pinto, Rogelio Palomo; Vila, Iván

    2016-01-01

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  2. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    Energy Technology Data Exchange (ETDEWEB)

    García, Marcos Fernández; Sánchez, Javier González; Echeverría, Richard Jaramillo [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Moll, Michael [CERN, Organisation europénne pour la recherche nucléaire, CH-1211 Genéve 23 (Switzerland); Santos, Raúl Montero [SGIker Laser Facility, UPV/EHU, Sarriena, s/n - 48940 Leioa-Bizkaia (Spain); Moya, David [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Pinto, Rogelio Palomo [Departamento de Ingeniería Electrónica, Escuela Superior de Ingenieros Universidad de Sevilla (Spain); Vila, Iván [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain)

    2017-02-11

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  3. One-dimensional transient radiative transfer by lattice Boltzmann method.

    Science.gov (United States)

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.

  4. The dynamics of a photonic band gap in 2D Si-based photonic crystals

    International Nuclear Information System (INIS)

    Glushko, O.Je.; Karachevtseva, L.A.

    2006-01-01

    The theoretical investigations of the photonic band structure of two-dimensional photonic crystals for the off-plane propagation of electromagnetic waves and the influence of a surface layer on the position and width of photonic band gaps are carried out. The experimentally measured width of a photonic band gap and the dispersion for two-dimensional silicon structures at the off-plane propagation of an electromagnetic wave correlate with the theoretical band gap position and width

  5. Terahertz spectroscopy of three-dimensional photonic band-gap crystals

    International Nuclear Information System (INIS)

    Oezbay, E.; Michel, E.; Tuttle, G.; Biswas, R.; Ho, K.M.; Bostak, J.; Bloom, D.M.

    1994-01-01

    We have fabricated and built three-dimensional photonic band-gap crystals with band-gap frequencies larger than 500 GHz. We built the crystals by stacking micromachined (110) silicon wafers. The transmission and dispersion characteristics of the structures were measured by an all-electronic terahertz spectroscopy setup. The experimental results were in good agreement with theoretical calculations. To our knowledge, our new crystal has the highest reported photonic band-gap frequency

  6. Two-dimensional restoration of single photon emission computed tomography images using the Kalman filter

    International Nuclear Information System (INIS)

    Boulfelfel, D.; Rangayyan, R.M.; Kuduvalli, G.R.; Hahn, L.J.; Kloiber, R.

    1994-01-01

    The discrete filtered backprojection (DFBP) algorithm used for the reconstruction of single photon emission computed tomography (SPECT) images affects image quality because of the operations of filtering and discretization. The discretization of the filtered backprojection process can cause the modulation transfer function (MTF) of the SPECT imaging system to be anisotropic and nonstationary, especially near the edges of the camera's field of view. The use of shift-invariant restoration techniques fails to restore large images because these techniques do not account for such variations in the MTF. This study presents the application of a two-dimensional (2-D) shift-variant Kalman filter for post-reconstruction restoration of SPECT slices. This filter was applied to SPECT images of a hollow cylinder phantom; a resolution phantom; and a large, truncated cone phantom containing two types of cold spots, a sphere, and a triangular prism. The images were acquired on an ADAC GENESYS camera. A comparison was performed between results obtained by the Kalman filter and those obtained by shift-invariant filters. Quantitative analysis of the restored images performed through measurement of root mean squared errors shows a considerable reduction in error of Kalman-filtered images over images restored using shift-invariant methods

  7. Optical NOR logic gate design on square lattice photonic crystal platform

    Energy Technology Data Exchange (ETDEWEB)

    D’souza, Nirmala Maria, E-mail: nirmala@cukerala.ac.in; Mathew, Vincent, E-mail: vincent@cukerala.ac.in [Department of Physics, Central University of Kerala, Kasaragod, Kerala-671 314 (India)

    2016-05-06

    We numerically demonstrate a new configuration of all-optical NOR logic gate with square lattice photonic crystal (PhC) waveguide using finite difference time domain (FDTD) method. The logic operations are based on interference effect of optical waves. We have determined the operating frequency range by calculating the band structure for a perfectly periodic PhC using plane wave expansion (PWE) method. Response time of this logic gate is 1.98 ps and it can be operated with speed about 513 GB/s. The proposed device consists of four linear waveguides and a square ring resonator waveguides on PhC platform.

  8. Emergent criticality and Friedan scaling in a two-dimensional frustrated Heisenberg antiferromagnet

    Science.gov (United States)

    Orth, Peter P.; Chandra, Premala; Coleman, Piers; Schmalian, Jörg

    2014-03-01

    We study a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of triangular and dual honeycomb lattice sites. In the classical ground state, the spins on different sublattices are decoupled, but quantum and thermal fluctuations drive the system into a coplanar state via an "order from disorder" mechanism. We obtain the finite temperature phase diagram using renormalization group approaches. In the coplanar regime, the relative U(1) phase between the spins on the two sublattices decouples from the remaining degrees of freedom, and is described by a six-state clock model with an emergent critical phase. At lower temperatures, the system enters a Z6 broken phase with long-range phase correlations. We derive these results by two distinct renormalization group approaches to two-dimensional magnetism: Wilson-Polyakov scaling and Friedan's geometric approach to nonlinear sigma models where the scaling of the spin stiffnesses is governed by the Ricci flow of a 4D metric tensor.

  9. Construction of a Holliday Junction in Small Circular DNA Molecules for Stable Motifs and Two-Dimensional Lattices.

    Science.gov (United States)

    Guo, Xin; Wang, Xue-Mei; Wei, Shuai; Xiao, Shou-Jun

    2018-04-12

    Design rules for DNA nanotechnology have been mostly learnt from using linear single-stranded (ss) DNA as the source material. For example, the core structure of a typical DAO (double crossover, antiparallel, odd half-turns) tile for assembling 2D lattices is constructed from only two linear ss-oligonucleotide scaffold strands, similar to two ropes making a square knot. Herein, a new type of coupled DAO (cDAO) tile and 2D lattices of small circular ss-oligonucleotides as scaffold strands and linear ss-oligonucleotides as staple strands are reported. A cDAO tile of cDAO-c64nt (c64nt: circular 64 nucleotides), shaped as a solid parallelogram, is constructed with a Holliday junction (HJ) at the center and two HJs at both poles of a c64nt; similarly, cDAO-c84nt, shaped as a crossed quadrilateral composed of two congruent triangles, is formed with a HJ at the center and four three-way junctions at the corners of a c84nt. Perfect 2D lattices were assembled from cDAO tiles: infinite nanostructures of nanoribbons, nanotubes, and nanorings, and finite nanostructures. The structural relationship between the visible lattices imaged by AFM and the corresponding invisible secondary and tertiary molecular structures of HJs, inclination angle of hydrogen bonds against the double-helix axis, and the chirality of the tile can be interpreted very well. This work could shed new light on DNA nanotechnology with unique circular tiles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Observation of Bloch oscillations in complex PT-symmetric photonic lattices

    Science.gov (United States)

    Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf

    2015-01-01

    Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941

  11. Attosecond Two-Photon Interferometry for Doubly Excited States of Helium

    International Nuclear Information System (INIS)

    Feist, J.; Nagele, S.; Burgdoerfer, J.; Ticknor, C.; Collins, L. A.; Schneider, B. I.

    2011-01-01

    We show that the correlation dynamics in coherently excited doubly excited resonances of helium can be followed in real time by two-photon interferometry. This approach promises to map the evolution of the two-electron wave packet onto experimentally easily accessible noncoincident single-electron spectra. We analyze the interferometric signal in terms of a semianalytical model which is validated by a numerical solution of the time-dependent two-electron Schroedinger equation in its full dimensionality.

  12. Modeling of Dipole and Quadrupole Fringe-Field Effects for the Advanced Photon Source Upgrade Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Borland, M.; Lindberg, R.

    2017-06-01

    The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice requires shorter and much stronger quadrupole magnets than are present in the existing ring. This results in longitudinal gradient profiles that differ significantly from a hard-edge model. Additionally, the lattice assumes the use of five-segment longitudinal gradient dipoles. Under these circumstances, the effects of fringe fields and detailed field distributions are of interest. We evaluated the effect of soft-edge fringe fields on the linear optics and chromaticity, finding that compensation for these effects is readily accomplished. In addition, we evaluated the reliability of standard methods of simulating hardedge nonlinear fringe effects in quadrupoles.

  13. Complete three-dimensional photonic bandgap in a simple cubic structure

    International Nuclear Information System (INIS)

    Lin, Shawn-Yu; Fleming, J. G.; Lin, Robin; Sigalas, M. M.; Biswas, R.; Ho, K. M.

    2001-01-01

    The creation of a three-dimensional (3D) photonic crystal with simple cubic (sc) symmetry is important for applications in the signal routing and 3D waveguiding of light. With a simple stacking scheme and advanced silicon processing, a 3D sc structure was constructed from a 6-in. silicon wafer. The sc structure is experimentally shown to have a complete 3D photonic bandgap in the infrared wavelength. The finite size effect is also observed, accounting for a larger absolute photonic bandgap

  14. Cavity assisted measurements of heat and work in optical lattices

    Directory of Open Access Journals (Sweden)

    Louis Villa

    2018-01-01

    Full Text Available We propose a method to experimentally measure the internal energy of a system of ultracold atoms trapped in optical lattices by coupling them to the fields of two optical cavities. We show that the tunnelling and self-interaction terms of the one-dimensional Bose-Hubbard Hamiltonian can be mapped to the field and photon number of each cavity, respectively. We compare the energy estimated using this method with numerical results obtained using the density matrix renormalisation group algorithm. Our method can be employed for the assessment of power and efficiency of thermal machines whose working substance is a strongly correlated many-body system.

  15. Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application.

    Science.gov (United States)

    Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki

    2017-01-25

    Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.

  16. Neutron radiography imaging with 2-dimensional photon counting method and its problems

    International Nuclear Information System (INIS)

    Ikeda, Y.; Kobayashi, H.; Niwa, T.; Kataoka, T.

    1988-01-01

    A ultra sensitive neutron imaging system has been deviced with a 2-dimensional photon counting camara (ARGUS 100). The imaging system is composed by a 2-dimensional single photon counting tube and a low background vidicon followed with an image processing unit and frame memories. By using the imaging system, electronic neutron radiography (NTV) has been possible under the neutron flux less than 3 x 10 4 n/cm 2 ·s. (author)

  17. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  18. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  19. Chimera states in Gaussian coupled map lattices

    Science.gov (United States)

    Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian

    2018-04-01

    We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.

  20. Lift generation by a two-dimensional symmetric flapping wing: immersed boundary-lattice Boltzmann simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Keigo; Suzuki, Kosuke; Inamuro, Takaji, E-mail: inamuro@kuaero.kyoto-u.ac.jp [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2012-08-01

    Two-dimensional (2D) symmetric flapping flight is investigated by an immersed boundary-lattice Boltzmann method (IB-LBM). In this method, we can treat the moving boundary problem efficiently on the Cartesian grid. We consider a model consisting of 2D symmetric flapping wings without mass connected by a hinge with mass. Firstly, we investigate the effect of the Reynolds number in the range of 40-200 on flows around symmetric flapping wings under no gravity field and find that for high Reynolds numbers (Re Greater-Than-Or-Slanted-Equal-To 55), asymmetric vortices with respect to the horizontal line appear and the time-averaged lift force is induced on the wings, whereas for low Reynolds numbers (Re Less-Than-Or-Slanted-Equal-To 50), only symmetric vortices appear around the wings and no lift force is induced. Secondly, the effect of the initial position of the wings is investigated, and the range of the initial phases where the upward flight is possible is found. The effects of the mass and flapping amplitude are also studied. Finally, we carry out free flight simulations under gravity field for various Reynolds numbers in the range 60 Less-Than-Or-Slanted-Equal-To Re Less-Than-Or-Slanted-Equal-To 300 and Froude numbers in the range 3 Less-Than-Or-Slanted-Equal-To Fr Less-Than-Or-Slanted-Equal-To 60 and identify the region where upward flight is possible. (paper)

  1. Two-dimensional N = 2 Super-Yang-Mills Theory

    Science.gov (United States)

    August, Daniel; Wellegehausen, Björn; Wipf, Andreas

    2018-03-01

    Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (SYM) theory with gauge group SU(2) dimensionally reduced to two-dimensional N = 2 SYM theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.

  2. Two- to three-dimensional crossover in a dense electron liquid in silicon

    Science.gov (United States)

    Matmon, Guy; Ginossar, Eran; Villis, Byron J.; Kölker, Alex; Lim, Tingbin; Solanki, Hari; Schofield, Steven R.; Curson, Neil J.; Li, Juerong; Murdin, Ben N.; Fisher, Andrew J.; Aeppli, Gabriel

    2018-04-01

    Doping of silicon via phosphine exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8 ×1014 cm-2) disordered two-dimensional array of P atoms, the full field magnitude and angle-dependent magnetotransport is remarkably well described by classic weak localization theory with no corrections due to interaction. The two- to three-dimensional crossover seen upon warming can also be interpreted using scaling concepts developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.

  3. Selective two-photon excitation of a vibronic state by correlated photons.

    Science.gov (United States)

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  4. Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy (Conference Presentation)

    Science.gov (United States)

    Kwok, Sheldon J. J.; Kuznetsov, Ivan A.; Kim, Moonseok; Choi, Myunghwan; Scarcelli, Giuliano; Yun, Seok-Hyun

    2017-02-01

    Two-photon polymerization and crosslinking are commonly used methods for microfabrication of three-dimensional structures with applications spanning from photonic microdevices, drug delivery systems, to cellular scaffolds. However, the use of two-photon processes for precise, internal modification of biological tissues has not yet been reported. One of the major challenges has been a lack of appropriate tools to monitor and characterize crosslinked regions nondestructively. Here, we demonstrate spatially selective two-photon collagen crosslinking (2P-CXL) in intact tissue for the first time. Using riboflavin photosensitizer and femtosecond laser irradiation, we crosslinked a small volume of tissue within animal corneas. Collagen fiber orientations and photobleaching were characterized by second harmonic generation and two-photon fluorescence imaging, respectively. Using confocal Brillouin microscopy, we measured local changes in longitudinal mechanical moduli and visualized the cross-linked pattern without perturbing surrounding non-irradiated regions. 2P-CXL-induced tissue stiffening was comparable to that achieved with conventional one-photon CXL. Our results demonstrate the ability to selectively stiffen biological tissue in situ at high spatial resolution, with broad implications in ophthalmology, laser surgery, and tissue engineering.

  5. Study of deformed quasi-periodic Fibonacci two dimensional photonic crystals

    International Nuclear Information System (INIS)

    Abdelaziz, K Ben; Bouazzi, Y; Kanzari, M

    2015-01-01

    Quasi-periodic photonic crystals are not periodic structures. These structures are generally obtained by the arrangement of layers according to a recursive rule. Properties of these structures make more attention the researchers especially in the case when applying defects. So, photonic crystals with defects present localized modes in the band gap leading to many potential applications such light localization.The objective of this work is to study by simulation the effect of the global deformation introduced in 2D quasiperiodic photonic crystals. Deformation was introduced by applying a power law, so that the coordinates y of the deformed object were determined through the coordinates x of the non-deformed structure in accordance with the following rule: y = x 1+k . Here k is the coefficient defining the deformation. Therefore, the objective is to study the effect of this deformation on the optical properties of 2D quasiperiodic photonic crystals, constructed by Fibonacci generation. An omnidirectional mirror was obtained for optimization Fibonacci iteration in a part of visible spectra. (paper)

  6. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    Science.gov (United States)

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  7. Numerical prediction of pressure loss in tight-lattice rod bundle by use of 3-dimensional two-fluid model simulation code ACE-3D

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Takase, Kazuyuki; Suzuki, Takayuki

    2009-01-01

    Two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method or particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D that adopts boundary fitted coordinate system in order to simulate complex shape flow channel. In this paper, boiling two-phase flow analysis in a tight-lattice rod bundle was performed by the ACE-3D. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. The tendency of void fraction distribution agreed with the measurement results by neutron radiography qualitatively. To evaluate effects of two-phase flow model used in the ACE-3D, numerical simulation of boiling two-phase in tight-lattice rod bundle with no lift force model was also performed. In the results, the lift force model has direct effects on void fraction concentration in gap region, and pressure distribution in horizontal plane induced by void fraction distribution cause of bubble movement from the gap region to the subchannel region. The predicted pressure loss in the section that includes no spacer accorded with experimental results with around 10% of differences. The predicted friction pressure loss was underestimated around 20% of measured values, and the effect of the turbulence model is considered as one of the causes of this underestimation. (author)

  8. Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis

    International Nuclear Information System (INIS)

    Sun, Z.-B.; Dong, X.-Z.; Chen, W.-Q.; Duan, X.-M.; Nakanishi, S.; Kawata, S.

    2007-01-01

    A log-pile photonic crystal of CdS nanoparticles-polymer nanocomposites was successfully fabricated by a novel method combining the two-photon polymerization technique and in situ synthesis of CdS nanoparticles in a polymer matrix. The photonic band gap of the three-dimensional (3D) log-pile photonic crystal is confirmed and becomes more effective for CdS nanoparticles-polymer nanocomposites than polymer doped with Cd 2+ ions, because the nanocomposites possess a higher refractive index than the polymer. The proposed concept in the new fabrication method for a 3D microstructure of polymer nanocomposites should be of critical importance in providing a general methodology for functionalization of materials via functional nanocomposites used in the field of laser microstructure fabrication. (orig.)

  9. Stability of trapped Bose—Einstein condensates in one-dimensional tilted optical lattice potential

    International Nuclear Information System (INIS)

    Fang Jian-Shu; Liao Xiang-Ping

    2011-01-01

    Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose—Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose—Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable. (general)

  10. EPRI-LATTICE: a multigroup neutron transport code for light water reactor lattice physics calculations

    International Nuclear Information System (INIS)

    Jones, D.B.

    1986-01-01

    EPRI-LATTICE is a multigroup neutron transport computer code for the analysis of light water reactor fuel assemblies. It can solve the two-dimensional neutron transport problem by two distinct methods: (a) the method of collision probabilities and (b) the method of discrete ordinates. The code was developed by S. Levy Inc. as an account of work sponsored by the Electric Power Research Institute (EPRI). The collision probabilities calculation in EPRI-LATTICE (L-CP) is based on the same methodology that exists in the lattice codes CPM-2 and EPRI-CPM. Certain extensions have been made to the data representations of the CPM programs to improve the overall accuracy of the calculation. The important extensions include unique representations of scattering matrices and fission fractions (chi) for each composition in the problem. A new capability specifically developed for the EPRI-LATTICE code is a discrete ordinates methodology. The discrete ordinates calculation in EPRI-LATTICE (L-SN) is based on the discrete S/sub n/ methodology that exists in the TWODANT program. In contrast to TWODANT, which utilizes synthetic diffusion acceleration and supports multiple geometries, only the transport equations are solved by L-SN and only the data representations for the two-dimensional geometry are treated

  11. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

    DEFF Research Database (Denmark)

    Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld

    2017-01-01

    is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually......-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling...

  12. On the number of lattice points in three-dimensional solids of revolution

    International Nuclear Information System (INIS)

    Popov, D A

    2000-01-01

    We derive an accurate estimate for the order of magnitude of the remainder term in the problem of the number of lattice points in families of homothetic domains belonging to the class of three-dimensional solids of revolution with smooth boundaries (under certain additional conditions). This estimate is realized in the case of the solid bounded by a standardly embedded torus, for which the second term of the expansion, which describes the dependence of the number of lattice points on the dilation parameter, is written in explicit form

  13. Two-dimensional atom localization via Raman-driven coherence

    Energy Technology Data Exchange (ETDEWEB)

    Rahmatullah,; Qamar, Sajid, E-mail: sajid_qamar@comsats.edu.pk

    2014-02-07

    A scheme for two-dimensional (2D) atom localization via Raman-driven coherence in a four-level diamond-configuration system is suggested. The atom interacts with two orthogonal standing-wave fields where each standing-wave field is constructed from the superposition of the two-standing wave fields along the corresponding directions. Due to the position-dependent atom–field interaction, the frequency of the spontaneously emitted photon carries the position information about the atom. We investigate the effect of the detunings and phase shifts associated with standing-wave fields. Unique position information of the single atom is obtained by properly adjusting the system parameters. This is an extension of our previous proposal for one-dimensional atom localization via Raman-driven coherence.

  14. Quantum phase transition in a coupled two-level system embedded in anisotropic three-dimensional photonic crystals.

    Science.gov (United States)

    Shen, H Z; Shao, X Q; Wang, G C; Zhao, X L; Yi, X X

    2016-01-01

    The quantum phase transition (QPT) describes a sudden qualitative change of the macroscopic properties mapped from the eigenspectrum of a quantum many-body system. It has been studied intensively in quantum systems with the spin-boson model, but it has barely been explored for systems in coupled spin-boson models. In this paper, we study the QPT with coupled spin-boson models consisting of coupled two-level atoms embedded in three-dimensional anisotropic photonic crystals. The dynamics of the system is derived exactly by means of the Laplace transform method, which has been proven to be equivalent to the dissipationless non-Markovian dynamics. Drawing on methods for analyzing the ground state, we obtain the phase diagrams through two exact critical equations and two QPTs are found: one QPT is that from the phase without one bound state to the phase with one bound state and another is that from one phase with the bound state having one eigenvalue to another phase where the bound state has two eigenvalues. Our analytical results also suggest a way of control to overcome the effect of decoherence by engineering the spectrum of the reservoirs to approach the non-Markovian regime and to form the bound state of the whole system for quantum devices and quantum statistics.

  15. Fabrication of 3D polymer photonic crystals for near-IR applications

    Science.gov (United States)

    Yao, Peng; Qiu, Liang; Shi, Shouyuan; Schneider, Garrett J.; Prather, Dennis W.; Sharkawy, Ahmed; Kelmelis, Eric

    2008-02-01

    Photonic crystals[1, 2] have stirred enormous research interest and became a growing enterprise in the last 15 years. Generally, PhCs consist of periodic structures that possess periodicity comparable with the wavelength that the PhCs are designed to modulate. If material and periodic pattern are properly selected, PhCs can be applied to many applications based on their unique properties, including photonic band gaps (PBG)[3], self-collimation[4], super prism[5], etc. Strictly speaking, PhCs need to possess periodicity in three dimensions to maximize their advantageous capabilities. However, many current research is based on scaled two-dimensional PhCs, mainly due to the difficulty of fabrication such three-dimensional PhCs. Many approaches have been explored for the fabrication of 3D photonic crystals, including layer-by-layer surface micromachining[6], glancing angle deposition[7], 3D micro-sculpture method[8], self-assembly[9] and lithographical methods[10-12]. Among them, lithographic methods became increasingly accepted due to low costs and precise control over the photonic crystal structure. There are three mostly developed lithographical methods, namely X-ray lithography[10], holographic lithography[11] and two-photon polymerization[12]. Although significant progress has been made in developing these lithography-based technologies, these approaches still suffer from significant disadvantages. X-ray lithography relies on an expensive radiation source. Holographic lithography lacks the flexibility to create engineered defects, and multi-photon polymerization is not suitable for parallel fabrication. In our previous work, we developed a multi-layer photolithography processes[13, 14] that is based on multiple resist application and enhanced absorption upon exposure. Using a negative lift-off resist (LOR) and 254nm DUV source, we have demonstrated fabrication of 3D arbitrary structures with feature size of several microns. However, severe intermixing problem

  16. One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice

    Science.gov (United States)

    Gonzalez, M. G.; Ghioldi, E. A.; Gazza, C. J.; Manuel, L. O.; Trumper, A. E.

    2017-11-01

    We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J'≪J ) and the isotropic triangular lattice (J'=J ). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J'/J) c˜0.42 , signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J'/J) c˜0.43 . The agreement of these complementary methods, along with the strong difference found between the intra- and the interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.

  17. Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China); College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China)

    2015-09-28

    Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.

  18. Two dimensional numerical simulations of carrier dynamics during time-resolved photoluminescence decays in two-photon microscopy measurements in semiconductors

    International Nuclear Information System (INIS)

    Kanevce, Ana; Kuciauskas, Darius; Levi, Dean H.; Johnston, Steven W.; Allende Motz, Alyssa M.

    2015-01-01

    We use two-dimensional numerical simulations to analyze high spatial resolution time-resolved spectroscopy data. This analysis is applied to two-photon excitation time-resolved photoluminescence (2PE-TRPL) but is broadly applicable to all microscopic time-resolved techniques. By solving time-dependent drift-diffusion equations, we gain insight into carrier dynamics and transport characteristics. Accurate understanding of measurement results establishes the limits and potential of the measurement and enhances its value as a characterization method. Diffusion of carriers outside of the collection volume can have a significant impact on the measured decay but can also provide an estimate of carrier mobility as well as lifetime. In addition to material parameters, the experimental conditions, such as spot size and injection level, can impact the measurement results. Although small spot size provides better resolution, it also increases the impact of diffusion on the decay; if the spot size is much smaller than the diffusion length, it impacts the entire decay. By reproducing experimental 2PE-TRPL decays, the simulations determine the bulk carrier lifetime from the data. The analysis is applied to single-crystal and heteroepitaxial CdTe, material important for solar cells, but it is also applicable to other semiconductors where carrier diffusion from the excitation volume could affect experimental measurements

  19. Slow Light by Two-Dimensional Photonic Crystal Waveguides

    International Nuclear Information System (INIS)

    Chao, Zhang; Yan, Huang; Xiao-Yu, Mao; Kai-Yu, Cui; Yi-Dong, Huang; Wei, Zhang; Jiang-De, Peng

    2009-01-01

    A simple and effective way to measure the group velocity of photonic crystal waveguides (PCWGs) is developed by using a fiber Mach–Zehnder interferometer. A PCWG with perfect air-bridge structure is fabricated and slow light with group velocity slower than c/80 is demonstrated. (fundamental areas of phenomenology (including applications))

  20. Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal

    Science.gov (United States)

    Yue, Chenxi; Tan, Wei; Liu, Jianjun

    2018-05-01

    In this paper, the photonic band gap (PBG) properties of one-dimensional (1D) Thue-Morse photonic quasicrystal (PQC) S4 structure are theoretically investigated by using transfer matrix method in Bragg condition. The effects of the center wavelength, relative permittivity and incident angle on PBG properties are elaborately analyzed. Numerical results reveal that, in the case of normal incidence, the symmetry and periodicity properties of the photonic band structure are presented. As the center wavelength increases, the PBG center frequency and PBG width decrease while the photonic band structure is always symmetrical about the central frequency and the photonic band structure repeats periodically in the expanding observation frequency range. With the decrease of relative permittivity contrast, the PBG width and the relative PBG width gradually decreases until PBG disappears while the symmetry of the photonic band structure always exists. In the case of oblique incidence, as the incident angle increases, multiple narrow PBGs gradually merge into a wide PBG for the TE mode while for the TM mode, the number of PBG continuously decreases and eventually disappears, i.e., multiple narrow PBGs become a wide passband for the TM mode. The research results will provide a reference for the choice of the material, the incident angle for the PBG properties and its applications of 1D Thue-Morse PQC.

  1. A review on the processing accuracy of two-photon polymerization

    Directory of Open Access Journals (Sweden)

    Xiaoqin Zhou

    2015-03-01

    Full Text Available Two-photon polymerization (TPP is a powerful and potential technology to fabricate true three-dimensional (3D micro/nanostructures of various materials with subdiffraction-limit resolution. And it has been applied to microoptics, electronics, communications, biomedicine, microfluidic devices, MEMS and metamaterials. These applications, such as microoptics and photon crystals, put forward rigorous requirements on the processing accuracy of TPP, including the dimensional accuracy, shape accuracy and surface roughness and the processing accuracy influences their performance, even invalidate them. In order to fabricate precise 3D micro/nanostructures, the factors influencing the processing accuracy need to be considered comprehensively and systematically. In this paper, we review the basis of TPP micro/nanofabrication, including mechanism of TPP, experimental set-up for TPP and scaling laws of resolution of TPP. Then, we discuss the factors influencing the processing accuracy. Finally, we summarize the methods reported lately to improve the processing accuracy from improving the resolution and changing spatial arrangement of voxels.

  2. A review on the processing accuracy of two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaoqin; Hou, Yihong [School of Mechanical Science and Engineering, Jilin University, Changchun, 130022 (China); Lin, Jieqiong, E-mail: linjieqiong@mail.ccut.edu.cn [School of Electromechanical Engineering, Changchun University of Technology, Changchun, 130012 (China)

    2015-03-15

    Two-photon polymerization (TPP) is a powerful and potential technology to fabricate true three-dimensional (3D) micro/nanostructures of various materials with subdiffraction-limit resolution. And it has been applied to microoptics, electronics, communications, biomedicine, microfluidic devices, MEMS and metamaterials. These applications, such as microoptics and photon crystals, put forward rigorous requirements on the processing accuracy of TPP, including the dimensional accuracy, shape accuracy and surface roughness and the processing accuracy influences their performance, even invalidate them. In order to fabricate precise 3D micro/nanostructures, the factors influencing the processing accuracy need to be considered comprehensively and systematically. In this paper, we review the basis of TPP micro/nanofabrication, including mechanism of TPP, experimental set-up for TPP and scaling laws of resolution of TPP. Then, we discuss the factors influencing the processing accuracy. Finally, we summarize the methods reported lately to improve the processing accuracy from improving the resolution and changing spatial arrangement of voxels.

  3. Ultracold bosons in a one-dimensional optical lattice chain: Newton's cradle and Bose enhancement effect

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji-Guo; Yang, Shi-Jie, E-mail: yangshijie@tsinghua.org.cn

    2017-05-18

    We study a model to realize the long-distance correlated tunneling of ultracold bosons in a one-dimensional optical lattice chain. The model reveals the behavior of a quantum Newton's cradle, which is the perfect transfer between two macroscopic quantum states. Due to the Bose enhancement effect, we find that the resonantly tunneling through a Mott domain is greatly enhanced.

  4. Multigrid for Staggered Lattice Fermions

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Richard C. [Boston U.; Clark, M. A. [Unlisted, US; Strelchenko, Alexei [Fermilab; Weinberg, Evan [Boston U.

    2018-01-23

    Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.

  5. Two-photon interference : spatial aspects of two-photon entanglement, diffraction, and scattering

    NARCIS (Netherlands)

    Peeters, Wouter Herman

    2010-01-01

    This dissertation contains scientific research within the realm of quantum optics, which is a branch of physics. An experimental and theoretical study is made of two-photon interference phenomena in various optical systems. Spatially entangled photon pairs are produced via the nonlinear optical

  6. Dimensional versus lattice regularization within Luescher's Yang Mills theory

    International Nuclear Information System (INIS)

    Diekmann, B.; Langer, M.; Schuette, D.

    1993-01-01

    It is pointed out that the coefficients of Luescher's effective model space Hamiltonian, which is based upon dimensional regularization techniques, can be reproduced by applying folded diagram perturbation theory to the Kogut Susskind Hamiltonian and by performing a lattice continuum limit (keeping the volume fixed). Alternative cutoff regularizations of the Hamiltonian are in general inconsistent, the critical point beeing the correct prediction for Luescher's tadpole coefficient which is formally quadratically divergent and which has to become a well defined (negative) number. (orig.)

  7. DNA denaturation through a model of the partition points on a one-dimensional lattice

    International Nuclear Information System (INIS)

    Mejdani, R.; Huseini, H.

    1994-08-01

    We have shown that by using a model of the partition points gas on a one-dimensional lattice, we can study, besides the saturation curves obtained before for the enzyme kinetics, also the denaturation process, i.e. the breaking of the hydrogen bonds connecting the two strands, under treatment by heat of DNA. We think that this model, as a very simple model and mathematically transparent, can be advantageous for pedagogic goals or other theoretical investigations in chemistry or modern biology. (author). 29 refs, 4 figs

  8. High-resolution mapping of two-dimensional lattice distortions in ion-implanted crystals from X-ray diffractometry data

    International Nuclear Information System (INIS)

    Nikulin, A.Y.; Gureyev, T.E.; Stevenson, A.W.; Wilkins, S.W.; Hashizume, H.; Cookson, D.

    1996-01-01

    The triple-crystal synchrotron X-ray diffractometry data described in Nikulin, Stevenson, Hashizume, Wilkins, Foran, Cookson and Garrett (J. Appl. Cryst. 28, 57-60 (1995)) has been analyzed to map out two-dimensional (2D) lattice distortions in silicon (111) crystals implanted with B + ions of 100 keV energy through a periodic SiO 2 strip pattern. The lateral periodic structure produced a series of satellite reflections associated with the 111 Bragg peak. The 2D reconstruction incorporates the use of the Petrashen-Chukhovskii method, which retrieves the phases of the Bragg waves for these satellite reflections, together with that for the fundamental. The finite Fourier series is then synthesized with the relative phases determined. Localized distortions perpendicular to the surface arising from deposited B + ions in near-surface layers of the crystal are clearly displayed with spatial resolutions of 0.016 and 0.265 μm in the depth and lateral directions respectively. For a sample with the oxide layer removed from the surface, two equally plausible strain maps have been obtained by assigning relative phases to eleven satellites using a sequential trial method and a minimum-energy method. Failed map reconstructions for the oxide-covered sample are discussed in terms of the non-unique solutions of the Petrashen-Chukhovskii phase-recovery algorithm and the ambiguous phases determined for the satellites. 16 refs., 8 figs

  9. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    OpenAIRE

    Ke, Yonggang; Voigt, Niels V.; Gothelf, Kurt V.; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher r...

  10. Cluster evolution and critical cluster sizes for the square and triangular lattice Ising models using lattice animals and Monte Carlo simulations

    NARCIS (Netherlands)

    Eising, G.; Kooi, B. J.

    2012-01-01

    Growth and decay of clusters at temperatures below T-c have been studied for a two-dimensional Ising model for both square and triangular lattices using Monte Carlo (MC) simulations and the enumeration of lattice animals. For the lattice animals, all unique cluster configurations with their internal

  11. APS-U LATTICE DESIGN FOR OFF-AXIS ACCUMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng; Borland, M.; Lindberg, R.; Sajaev, V.

    2017-06-25

    A 67-pm hybrid-seven-bend achromat (H7BA) lattice is being proposed for a future Advanced Photon Source (APS) multi-bend-achromat (MBA) upgrade project. This lattice design pushes for smaller emittance and requires use of a swap-out (on-axis) injection scheme due to limited dynamic acceptance. Alternate lattice design work has also been performed for the APS upgrade to achieve better beam dynamics performance than the nominal APS MBA lattice, in order to allow off-axis accumulation. Two such alternate H7BA lattice designs, which target a still-low emittance of 90 pm, are discussed in detail in this paper. Although the single-particle-dynamics performance is good, simulations of collective effects indicate that surprising difficulty would be expected accumulating high single-bunch charge in this lattice. The brightness of the 90-pm lattice is also a factor of two lower than the 67-pm H7BA lattice.

  12. Few-photon optical diode

    OpenAIRE

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  13. Problems on one-dimensionally disordered lattices, and reliability of structural analysis of liquids and amorphous solids

    International Nuclear Information System (INIS)

    Kakinoki, J.

    1974-01-01

    Methods for obtaining the intensity of X-ray diffraction by one-dimensional by disordered lattices have been studied, and matrix method was developed. The method has been applied for structural analysis. Several problems concerning neutron diffraction were shown in the course of analysis. Large single crystals should be used for measurement. It is hard to grasp the local variation of structure. The technique of topography is still in development. Measurement of weak intensity diffraction is not sufficient. Technique of photography to observe overall feature is not good. General remarks concerning the one-dimensionally disordered lattices are as follows. A large number of parameters for analysis are not practical, and the disorder parameters are preferably two. In case of the disorder between two kinds of layers having same frequency and different structure, peak shift is not caused, and Laue term remains at the position. Reliability of the structural analysis of liquid and amorphous solid is discussed. The analysis is basically the analysis two atom molecule of same kind of atoms. The intensity of diffraction can be obtained from radial distribution function (RDF). Since practical observation is limited to a finite region, termination effect should be taken into consideration. Accuracy of analysis is not good in case of X-ray diffraction. The analysis by neutron diffraction is preferable. (Kato, T.)

  14. Sound waves and dynamics of superfluid Fermi gases in optical lattices

    International Nuclear Information System (INIS)

    Zhang Aixia; Xue Jukui

    2009-01-01

    The sound waves, the stability of Bloch waves, the Bloch oscillation, and the self-trapping phenomenon in interacting two-component Fermi gases throughout the BEC-BCS crossover in one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) optical lattices are discussed in detail. Within the hydrodynamical theory and by using the perturbative and tight-binding approximation, sound speed in both weak and tight 1D, 2D, 3D optical lattices, and the criteria for occurrences of instability of Bloch waves and self-trapping of Fermi gases along the whole BEC-BCS crossover in tight 1D, 2D, 3D optical lattices are obtained analytically. The results show that the sound speed, the criteria for occurrences of instability of Bloch waves and self-trapping, and the destruction of Bloch oscillation are modified dramatically by the lattice parameters (lattice dimension and lattice strength), the atom density or atom number, and the atom interaction.

  15. Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides

    International Nuclear Information System (INIS)

    Li Zhiyuan; Ho Kaiming

    2003-01-01

    The plane-wave-based transfer-matrix method (TMM) exhibits a peculiar advantage of being capable of solving eigenmodes involved in an infinite photonic crystal and electromagnetic (EM) wave propagation in finite photonic crystal slabs or even semi-infinite photonic crystal structures within the same theoretical framework. In addition, this theoretical approach can achieve much improved numerical convergency in solution of photonic band structures than the conventional plane-wave expansion method. In this paper we employ this TMM in combination with a supercell technique to handle two important kinds of three-dimensional (3D) photonic crystal waveguide structures. The first one is waveguides created in a 3D layer-by-layer photonic crystal that possesses a complete band gap, the other more popular one is waveguides built in a two-dimensional photonic crystal slab. These waveguides usually have mirror-reflection symmetries in one or two directions perpendicular to their axis. We have taken advantage of these structural symmetries to reduce the numerical burden of the TMM solution of the guided modes. The solution to the EM problems under these mirror-reflection symmetries in both the real space and the plane-wave space is discussed in a systematic way and in great detail. Both the periodic boundary condition and the absorbing boundary condition are employed to investigate structures with or without complete 3D optical confinement. The fact that the EM field components investigated in the TMM are collinear with the symmetric axes of the waveguide brings great convenience and clarity in exploring the eigenmode symmetry in both the real space and the plane-wave space. The classification of symmetry involved in the guided modes can help people to better understand the coupling of the photonic crystal waveguides with external channels such as dielectric slab or wire waveguides

  16. Many-body pairing in a two-dimensional Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Neidig, Mathias

    2017-05-24

    This thesis reports on experiments conducted in a single layer, quasi two-dimensional, two-component ultracold Fermi gas in the strongly interacting regime. Ultracold gases can be used to simulate key aspects of more complicated systems like for example cuprates which show high-T{sub c} superconductivity. The momentum distribution of a sample of bosonic dimers in a quasi-2D square lattice geometry was measured to obtain the coherence properties. For shallow lattices, sharp peaks in the momentum distribution, indicating coherence, were observed at zero momentum as well as at positive and negative lattice momenta along each axis. For deeper lattices, heating impeded the ability to prepare a Mott-insulator. A spatially resolved radio-frequency spectroscopy was employed for a quasi-2D Fermi gas in the normal phase throughout the BEC-BCS crossover. The interaction induced energy shifts were measured in the strongly interacting region where they can be on the order of the Fermi energy and thus the local resolution is crucial. Furthermore, the onset of pairing in the strongly interacting region was measured as a function of temperature and it was shown that the fraction of free atoms decreases faster than expected from thermal non-interacting theory. At last, the pairing gap was measured using an imbalanced sample. On the BEC side it was found to be in very good agreement with two-body physics as expected. In the strongly interacting regime, however, a deviation from two-body physics indicates that here many-body effects play a role and thus further studies are required.

  17. Two-dimensional benchmark calculations for PNL-30 through PNL-35

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1997-01-01

    Interest in critical experiments with lattices of mixed-oxide (MOX) fuel pins has been revived by the possibility that light water reactors will be used for disposition of weapons-grade plutonium. A series of six experiments with MOX lattices, designated PNL-30 through PNL-35, was performed at Pacific Northwest Laboratories in 1975 and 1976, and a set of benchmark specifications for these experiments subsequently was adopted by the Cross Section Evaluation Working Group (CSEWG). Although there appear to be some problems with these experiments, they remain the only CSEWG benchmarks for MOX lattices. The number of fuel pins in these experiments is relatively low, corresponding to fewer than 4 typical pressurized-water-reactor fuel assemblies. Accordingly, they are more appropriate as benchmarks for lattice-physics codes than for reactor-core simulator codes. Unfortunately, the CSEWG specifications retain the full three-dimensional (3D) detail of the experiments, while lattice-physics codes almost universally are limited to two dimensions (2D). This paper proposes an extension of the benchmark specifications to include a 2D model, and it justifies that extension by comparing results from the MCNP Monte Carlo code for the 2D and 3D specifications

  18. Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures.

    Science.gov (United States)

    Cheon, Gowoon; Duerloo, Karel-Alexander N; Sendek, Austin D; Porter, Chase; Chen, Yuan; Reed, Evan J

    2017-03-08

    Layered materials held together by weak interactions including van der Waals forces, such as graphite, have attracted interest for both technological applications and fundamental physics in their layered form and as an isolated single-layer. Only a few dozen single-layer van der Waals solids have been subject to considerable research focus, although there are likely to be many more that could have superior properties. To identify a broad spectrum of layered materials, we present a novel data mining algorithm that determines the dimensionality of weakly bonded subcomponents based on the atomic positions of bulk, three-dimensional crystal structures. By applying this algorithm to the Materials Project database of over 50,000 inorganic crystals, we identify 1173 two-dimensional layered materials and 487 materials that consist of weakly bonded one-dimensional molecular chains. This is an order of magnitude increase in the number of identified materials with most materials not known as two- or one-dimensional materials. Moreover, we discover 98 weakly bonded heterostructures of two-dimensional and one-dimensional subcomponents that are found within bulk materials, opening new possibilities for much-studied assembly of van der Waals heterostructures. Chemical families of materials, band gaps, and point groups for the materials identified in this work are presented. Point group and piezoelectricity in layered materials are also evaluated in single-layer forms. Three hundred and twenty-five of these materials are expected to have piezoelectric monolayers with a variety of forms of the piezoelectric tensor. This work significantly extends the scope of potential low-dimensional weakly bonded solids to be investigated.

  19. Photonic band gaps of porous solids

    International Nuclear Information System (INIS)

    Biswas, R.; Sigalas, M. M.; Subramania, G.; Soukoulis, C. M.; Ho, K.-M.

    2000-01-01

    Colloidal inverse photonic crystals composed of ordered lattices of air spheres in a high dielectric background are found to have three-dimensional photonic gaps for face-centered cubic, hexgaonal close-packed, and double hexagonal close-packed stacking sequences. Conditions for the occurrence of the complete gap are a sufficient dielectric contrast and a geometry near close packed. Although the lower pseudogaps of these stacking sequences differ, the lowest stop band in the stacking direction is insensitive to the stacking sequence; hence their experimental reflection should be similar. Transmission calculations with structural disorder show the lower pseudogap is relatively unaffected but the higher gap is very difficult to observe with moderate disorder. (c) 2000 The American Physical Society

  20. Two- and three dimensional electrons and photons and their supersymmetric partners

    International Nuclear Information System (INIS)

    Steringa, J.J.

    1989-01-01

    This thesis contains a study of supersymmetric gauge theories in two and tree spacetime dimensions. Supersymmetric gauge theories in less than four spacetime dimensions are useful for trying out field theoretical methods which ultimately will be applied to realistic models. In ch. 1 all the aspects of field theory that are necessary for later chapters are treated. In ch. 2 sypersymmetry in two- and three-dimensional space time is treated, and superfields and superspace techniques are introduced. With these a simple Abelian supersymmetric gauge theory in two spacetime dimensions is constructed, the Schwinger model. Ch. 3 deals with general properties and a perturbative analysis of the model. Ch. 4 contains a non-perturbative analysis by means of Dyson-Schwinger equations. A supersummetric extension of theSalam-Delbourgo Gauge Technique is presented and is applied with some seccess to the supersymmetric Schwinger model. In ch. 5 prperties of three-dimensional supersymmetric gauge theories are investigated. (author). 55 refs.; 7 figs.; schemes

  1. Two-photon excitation of argon

    International Nuclear Information System (INIS)

    Pindzola, P.S.; Payne, M.C.

    1982-01-01

    The authors calculate two photon excitation parameters for various excited states of argon assuming the absorption of near resonance broad-bandwidth laser radiation. Results are given for the case of two photons absorbed for the same laser beam as well as the case of absorbing photons of different frequency from each of two laser beams. The authors use multiconfiguration Hartree-Fock wave functions to evaluate the second-order sums over matrix elements. Various experimental laser schemes are suggested for the efficient excitation and subsequent ionization of argon

  2. Molecular photosensitisers for two-photon photodynamic therapy.

    Science.gov (United States)

    Bolze, F; Jenni, S; Sour, A; Heitz, V

    2017-11-30

    Two-photon excitation has attracted the attention of biologists, especially after the development of two-photon excited microscopy in the nineties. Since then, new applications have rapidly emerged such as the release of biologically active molecules and photodynamic therapy (PDT) using two-photon excitation. PDT, which requires a light-activated drug (photosensitiser), is a clinically approved and minimally invasive treatment for cancer and for non-malignant diseases. This feature article focuses on the engineering of molecular two-photon photosensitisers for PDT, which should bring important benefits to the treatment, increase the treatment penetration depth with near-infrared light excitation, improve the spatial selectivity and reduce the photodamage to healthy tissues. After an overview of the two-photon absorption phenomenon and the methods to evaluate two-photon induced phototoxicity on cell cultures, the different classes of photosensitisers described in the literature are discussed. The two-photon PDT performed with historical one-photon sensitisers are briefly presented, followed by specifically engineered cyclic tetrapyrrole photosensitisers, purely organic photosensitisers and transition metal complexes. Finally, targeted two-photon photosensitisers and theranostic agents that should enhance the selectivity and efficiency of the treatment are discussed.

  3. Anomalous critical behavior in the polymer collapse transition of three-dimensional lattice trails.

    Science.gov (United States)

    Bedini, Andrea; Owczarek, Aleksander L; Prellberg, Thomas

    2012-07-01

    Trails (bond-avoiding walks) provide an alternative lattice model of polymers to self-avoiding walks, and adding self-interaction at multiply visited sites gives a model of polymer collapse. Recently a two-dimensional model (triangular lattice) where doubly and triply visited sites are given different weights was shown to display a rich phase diagram with first- and second-order collapse separated by a multicritical point. A kinetic growth process of trails (KGTs) was conjectured to map precisely to this multicritical point. Two types of low-temperature phases, a globule phase and a maximally dense phase, were encountered. Here we investigate the collapse properties of a similar extended model of interacting lattice trails on the simple cubic lattice with separate weights for doubly and triply visited sites. Again we find first- and second-order collapse transitions dependent on the relative sizes of the doubly and triply visited energies. However, we find no evidence of a low-temperature maximally dense phase with only the globular phase in existence. Intriguingly, when the ratio of the energies is precisely that which separates the first-order from the second-order regions anomalous finite-size scaling appears. At the finite-size location of the rounded transition clear evidence exists for a first-order transition that persists in the thermodynamic limit. This location moves as the length increases, with its limit apparently at the point that maps to a KGT. However, if one fixes the temperature to sit at exactly this KGT point, then only a critical point can be deduced from the data. The resolution of this apparent contradiction lies in the breaking of crossover scaling and the difference in the shift and transition width (crossover) exponents.

  4. Large band gaps of water waves through two-dimensional periodic topography

    International Nuclear Information System (INIS)

    Yang Shaohua; Wu Fugen; Zhong Huilin; Zhong Lanhua

    2006-01-01

    In this Letter, the band structures and band gaps of liquid surface waves propagating over two-dimensional periodic topography was investigated by plane-waves expansion method. The periodic topography drilled by square hollows with square lattice was considered. And the effects of the filling fraction and the orientation of bottom-hollows on the band gaps are investigated in detail

  5. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures

    Science.gov (United States)

    Endo, Masayuki; Sugiyama, Hiroshi

    2015-01-01

    Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed ‘lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space. PMID:26310995

  6. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures

    Science.gov (United States)

    Suzuki, Yuki; Endo, Masayuki; Sugiyama, Hiroshi

    2015-08-01

    Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed `lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space.

  7. Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations.

    Science.gov (United States)

    Fu, Wei; Nijhoff, Frank W

    2017-07-01

    A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.

  8. Dynamics of attractively interacting Fermi atoms in one-dimensional optical lattices: Non-equilibrium simulations of fermion superfluidity

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, M., E-mail: okumura.masahiko@jaea.go.j [CCSE, Japan Atomic Energy Agency, 6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015 (Japan); CREST (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Onishi, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Yamada, S. [CCSE, Japan Atomic Energy Agency, 6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015 (Japan); CREST (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Machida, M. [CCSE, Japan Atomic Energy Agency, 6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015 (Japan); CREST (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan) and JST, TRIP, Sambancho Chiyoda-ku, Tokyo 102-0075 (Japan)

    2010-12-15

    We study center of mass (CoM) motions of attractively interacting fermionic atoms loaded on an one-dimensional optical lattice confined by a harmonic potential at zero temperature by using adaptive time-dependent density-matrix renormalization-group method. We find that the CoM motions in weak and strong attraction show underdamped and overdamped motions, respectively, which are consistent with the experimental results of the CoM motion in the three-dimensional optical lattice. In addition, we find spin-imbalance effects on the CoM motion, which slow the CoM motion down.

  9. Exact solutions of the two-dimensional discrete nonlinear Schrodinger equation with saturable nonlinearity

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, K. O.; Samuelsen, Mogens Rugholm

    2010-01-01

    We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the e...

  10. Phase transition of light in cavity QED lattices.

    Science.gov (United States)

    Schiró, M; Bordyuh, M; Oztop, B; Türeci, H E

    2012-08-03

    Systems of strongly interacting atoms and photons, which can be realized wiring up individual cavity QED systems into lattices, are perceived as a new platform for quantum simulation. While sharing important properties with other systems of interacting quantum particles, here we argue that the nature of light-matter interaction gives rise to unique features with no analogs in condensed matter or atomic physics setups. By discussing the physics of a lattice model of delocalized photons coupled locally with two-level systems through the elementary light-matter interaction described by the Rabi model, we argue that the inclusion of counterrotating terms, so far neglected, is crucial to stabilize finite-density quantum phases of correlated photons out of the vacuum, with no need for an artificially engineered chemical potential. We show that the competition between photon delocalization and Rabi nonlinearity drives the system across a novel Z(2) parity symmetry-breaking quantum criticality between two gapped phases that share similarities with the Dicke transition of quantum optics and the Ising critical point of quantum magnetism. We discuss the phase diagram as well as the low-energy excitation spectrum and present analytic estimates for critical quantities.

  11. Surface solitons of four-wave mixing in an electromagnetically induced lattice

    International Nuclear Information System (INIS)

    Zhang, Yanpeng; Yuan, Chenzhi; Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Wang, Zhiguo; Xiao, Min

    2013-01-01

    By creating lattice states with two-dimensional spatial periodic atomic coherence, we report an experimental demonstration of generating two-dimensional surface solitons of a four-wave mixing signal in an electromagnetically induced lattice composed of two electromagnetically induced gratings with different orientations in an atomic medium, each of which can support a one-dimensional surface soliton. The surface solitons can be well controlled by different experimental parameters, such as probe frequency, pump power, and beam incident angles, and can be affected by coherent induced defect states. (letter)

  12. Cooperation in two-dimensional mixed-games

    International Nuclear Information System (INIS)

    Amaral, Marco A; Silva, Jafferson K L da; Wardil, Lucas

    2015-01-01

    Evolutionary game theory is a common framework to study the evolution of cooperation, where it is usually assumed that the same game is played in all interactions. Here, we investigate a model where the game that is played by two individuals is uniformly drawn from a sample of two different games. Using the master equation approach we show that the random mixture of two games is equivalent to play the average game when (i) the strategies are statistically independent of the game distribution and (ii) the transition rates are linear functions of the payoffs. We also use Monte-Carlo simulations in a two-dimensional lattice and mean-field techniques to investigate the scenario when the two above conditions do not hold. We find that even outside of such conditions, several quantities characterizing the mixed-games are still the same as the ones obtained in the average game when the two games are not very different. (paper)

  13. Two-dimensional condensation of physi-sorbed methane on layer-like halides

    International Nuclear Information System (INIS)

    Nardon, Yves

    1972-01-01

    Two-dimensional condensation of methane in physi-sorbed layers has been studied from sets of stepped isotherms of methane on the cleavage plane of layer-like halides (FeCl 2 , CdCl 2 , NiBr 2 , CdBr 2 , FeI 2 , CaI 2 , CaI 2 and PbI 2 ) in most cases prepared by sublimation in a rapid current of inert gas. The vertical parts of the steps of adsorption isotherms correspond to the formation of successive monomolecular layers by two-dimensional condensation. Thermodynamic analysis of experimental results, has mainly emphasized the important effect of the potential relief of adsorbent surfaces, on both the structure of the physi-sorbed layers and the two-dimensional critical temperature. From its entropy, we conclude that the first layer is a (111) plane of f.c.c.: methane which becomes more loosely packed as the dimensional compatibility of the lattices of the adsorbent and adsorbate becomes poorer. Experimental values of the two-dimensional critical temperatures in the first, second and third layers have been determined, and interpreted on the following basis. An expansion of the layer induces a lowering of the two-dimensional critical temperature by decreasing the lateral interaction energy, while a localisation of the adsorbed molecules in potential wells, when possible, induces a rise of the two-dimensional critical temperature. (author) [fr

  14. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    DEFF Research Database (Denmark)

    Ke, Yonggang; Voigt, Niels Vinther; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry....... Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer...... DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology....

  15. Multilayer DNA origami packed on hexagonal and hybrid lattices.

    Science.gov (United States)

    Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M

    2012-01-25

    "Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. © 2011 American Chemical Society

  16. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  17. 3D Metallic Lattices for Accelerator Applications

    CERN Document Server

    Shapiro, Michael A; Sirigiri, Jagadishwar R; Temkin, Richard J

    2005-01-01

    We present the results of research on 3D metallic lattices operating at microwave frequencies for application in (1) accelerator structures with higher order mode suppression, (2) Smith-Purcell radiation beam diagnostics, and (3) polaritonic materials for laser acceleration. Electromagnetic waves in a 3D simple cubic lattice formed by metal wires are calculated using HFSS. The bulk modes in the lattice are determined using single cell calculations with different phase advances in all three directions. The Brillouin diagram for the bulk modes is presented and indicates the absence of band gaps in simple lattices except the band below the cutoff. Lattices with thin wires as well as with thick wires have been analyzed. The Brillouin diagram also indicates the presence of low frequency 3D plasmon mode as well as the two degenerate photon modes analogous to those in a 2D lattice. Surface modes for a semi-infinite cubic lattice are modeled as a stack of cells with different phase advances in the two directions alon...

  18. Two-dimensional discrete solitons in dipolar Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Gligoric, Goran; Stepic, Milutin; Hadzievski, Ljupco; Maluckov, Aleksandra; Malomed, Boris A.

    2010-01-01

    We analyze the formation and dynamics of bright unstaggered solitons in the disk-shaped dipolar Bose-Einstein condensate, which features the interplay of contact (collisional) and long-range dipole-dipole (DD) interactions between atoms. The condensate is assumed to be trapped in a strong optical-lattice potential in the disk's plane, hence it may be approximated by a two-dimensional (2D) discrete model, which includes the on-site nonlinearity and cubic long-range (DD) interactions between sites of the lattice. We consider two such models, which differ by the form of the on-site nonlinearity, represented by the usual cubic term, or more accurate nonpolynomial one, derived from the underlying three-dimensional Gross-Pitaevskii equation. Similar results are obtained for both models. The analysis is focused on the effects of the DD interaction on fundamental localized modes in the lattice (2D discrete solitons). The repulsive isotropic DD nonlinearity extends the existence and stability regions of the fundamental solitons. New families of on-site, inter-site, and hybrid solitons, built on top of a finite background, are found as a result of the interplay of the isotropic repulsive DD interaction and attractive contact nonlinearity. By themselves, these solutions are unstable, but they evolve into robust breathers which exist on an oscillating background. In the presence of the repulsive contact interactions, fundamental localized modes exist if the DD interaction (attractive isotropic or anisotropic) is strong enough. They are stable in narrow regions close to the anticontinuum limit, while unstable solitons evolve into breathers. In the latter case, the presence of the background is immaterial.

  19. Optical lattice on an atom chip

    DEFF Research Database (Denmark)

    Gallego, D.; Hofferberth, S.; Schumm, Thorsten

    2009-01-01

    Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retroreflected using the atom chip surface as a high......-quality mirror, generating a vertical array of purely optical oblate traps. We transfer thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice....

  20. A review of two photon physics

    International Nuclear Information System (INIS)

    Cooper, S.

    1982-08-01

    This talk is intended as an introduction for those not yet expert in two-photon physics, especially those e + e - one-photon physicists who still think of two-photon events as background. I concentrate on the physics questions involved, especially emphasizing the areas where I feel progress can be made in the near future, and of necessity leaving most experimental details to be found in the references. After a quick survey of the field and a few words about kinematics, I discuss in detail two major fields: the photon structure function and resonance production. (orig.)

  1. Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics

    NARCIS (Netherlands)

    Gaudillière, A.; Hollander, den W.Th.F.; Nardi, F.R.; Olivieri, E.; Scoppola, E.

    2009-01-01

    In this paper we consider a two-dimensional lattice gas under Kawasaki dynamics, i.e., particles hop around randomly subject to hard-core repulsion and nearest-neighbor attraction. We show that, at fixed temperature and in the limit as the particle density tends to zero, such a gas evolves in a way

  2. Método de Diferencias Finitas en el Dominio de las Frecuencias para Cristales Fotónicos 1d y 2d

    Directory of Open Access Journals (Sweden)

    Juan P. Vasco

    2010-06-01

    Full Text Available In this work we study the electromagnetic modes in one-dimensional and two-dimensional photonic crystals through finite difference frequency domain method. The band diagrams and the intensity profiles are calculated for one-dimensional photonic crystal with a defect, and for two-dimensional photonic crystals in hexagonal and square lattices. Our calculations are compared with simulations made with MPB software based on plane wave expansion method.

  3. Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory

    Science.gov (United States)

    Riello, Aldo

    2018-01-01

    I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.

  4. Current status of three-dimensional silicon photonic crystals operating at infrared wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    LIN,SHAWN-YU; FLEMING,JAMES G.; SIGALAS,M.M.; BISWAS,R.; HO,K.M.

    2000-05-11

    In this paper, the experimental realization and promises of three-dimensional (3D) photonic crystals in the infrared and optical wavelengths will be described. Emphasis will be placed on the development of new 3D photonic crystals, the micro- and nano-fabrication techniques, the construction of high-Q micro-cavities and the creation of 3D waveguides.

  5. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Jordanovic, Jelena; Beleggia, Marco; Schiøtz, Jakob

    2015-01-01

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the parti......We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices...... taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls...... oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder...

  6. Two-dimensional numerical simulation of chimney fluidization in a granular medium using a combination of discrete element and lattice Boltzmann methods

    Science.gov (United States)

    Ngoma, Jeff; Philippe, Pierre; Bonelli, Stéphane; Radjaï, Farhang; Delenne, Jean-Yves

    2018-05-01

    We present here a numerical study dedicated to the fluidization of a submerged granular medium induced by a localized fluid injection. To this end, a two-dimensional (2D) model is used, coupling the lattice Boltzmann method (LBM) with the discrete element method (DEM) for a relevant description of fluid-grains interaction. An extensive investigation has been carried out to analyze the respective influences of the different parameters of our configuration, both geometrical (bed height, grain diameter, injection width) and physical (fluid viscosity, buoyancy). Compared to previous experimental works, the same qualitative features are recovered as regards the general phenomenology including transitory phase, stationary states, and hysteretic behavior. We also present quantitative findings about transient fluidization, for which several dimensionless quantities and scaling laws are proposed, and about the influence of the injection width, from localized to homogeneous fluidization. Finally, the impact of the present 2D geometry is discussed, by comparison to the real three-dimensional (3D) experiments, as well as the crucial role of the prevailing hydrodynamic regime within the expanding cavity, quantified through a cavity Reynolds number, that can presumably explain some substantial differences observed regarding upward expansion process of the fluidized zone when the fluid viscosity is changed.

  7. All-optical routing and switching for three-dimensional photonic circuitry

    Science.gov (United States)

    Keil, Robert; Heinrich, Matthias; Dreisow, Felix; Pertsch, Thomas; Tünnermann, Andreas; Nolte, Stefan; Christodoulides, Demetrios N.; Szameit, Alexander

    2011-01-01

    The ability to efficiently transmit and rapidly process huge amounts of data has become almost indispensable to our daily lives. It turned out that all-optical networks provide a very promising platform to deal with this task. Within such networks opto-optical switches, where light is directed by light, are a crucial building block for an effective operation. In this article, we present an experimental analysis of the routing and switching behaviour of light in two-dimensional evanescently coupled waveguide arrays of Y- and T-junction geometries directly inscribed into fused silica using ultrashort laser pulses. These systems have the fundamental advantage of supporting three-dimensional network topologies, thereby breaking the limitations on complexity associated with planar structures while maintaining a high dirigibility of the light. Our results show how such arrays can be used to control the flow of optical signals within integrated photonic circuits. PMID:22355612

  8. The magnetic properties of a mixed spin-1/2 and spin-1 Heisenberg ferrimagnetic system on a two-dimensional square lattice

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ai-Yuan, E-mail: huaiyuanhuyuanai@126.com [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Zhang, A.-Jie [Military Operational Research Teaching Division of the 4th Department, PLA Academy of National Defense Information, Wuhan 430000 (China)

    2016-02-01

    The magnetic properties of a mixed spin-1/2 and spin-1 Heisenberg ferrimagnetic system on a two-dimensional square lattice are investigated by means of the double-time Green's function technique within the random phase decoupling approximation. The role of the nearest-, next-nearest-neighbors interactions and the exchange anisotropy in the Hamiltonian is explored. And their effects on the critical and compensation temperature are discussed in detail. Our investigation indicates that both the next-nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram. - Highlights: • Spin-1/2 and spin-1 ferrimagnetic model is examined. • Green's function technique is used. • The role of the nearest-, next-nearest-neighbors interactions and the exchange anisotropy in the Hamiltonian is explored. • The next-nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram.

  9. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence.

    Science.gov (United States)

    Cruz, Carlos M; Márquez, Irene R; Mariz, Inês F A; Blanco, Victor; Sánchez-Sánchez, Carlos; Sobrado, Jesús M; Martín-Gago, José A; Cuerva, Juan M; Maçôas, Ermelinda; Campaña, Araceli G

    2018-04-28

    Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push-pull geometry and the extended network of sp 2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results.

  10. Monte Carlo studies of two-dimensional random-anisotropy magnets

    Science.gov (United States)

    Denholm, D. R.; Sluckin, T. J.

    1993-07-01

    We have carried out a systematic set of Monte Carlo simulations of the Harris-Plischke-Zuckermann lattice model of random magnetic anisotropy on a two-dimensional square lattice, using the classical Metropolis algorithm. We have considered varying temperature T, external magnetic field H (both in the reproducible and irreproducible limits), time scale of the simulation τ in Monte Carlo steps and anisotropy ratio D/J. In the absence of randomness this model reduces to the XY model in two dimensions, which possesses the familiar Kosterlitz-Thouless low-temperature phase with algebraic but no long-range order. In the presence of random anisotropy we find evidence of a low-temperature phase with some disordered features, which might be identified with a spin-glass phase. The low-temperature Kosterlitz-Thouless phase survives at intermediate temperatures for low randomness, but is no longer present for large D/J. We have also studied the high-H approach to perfect order, for which there are theoretical predictions due to Chudnovsky.

  11. Q-deformed Grassmann field and the two-dimensional Ising model

    International Nuclear Information System (INIS)

    Bugrij, A.I.; Shadura, V.N.

    1994-01-01

    In this paper we construct the exact representation of the Ising partition function in form of the SL q (2,R)-invariant functional integral for the lattice free q-fermion field theory (q=-1). It is shown that the proposed method of q-fermionization allows one to re-express the partition function of the eight vertex model in external field through the functional integral with four-fermion interaction. For the construction of these representation we define a lattice (l,q,s)-deformed Grassmann bi spinor field and extend the Berezin integration rules for this field. At q = - 1, l = s 1 we obtain the lattice q-fermion field which allows to fermionize the two-dimensional Ising model. We show that Gaussian integral over (q,s)-Grassmann variables is expressed through the (q,s)-deformed Pfaffian which is equal to square root of the determinant of some matrix at q = ± 1, s = ±1. (author). 39 refs

  12. An extended approach for computing the critical properties in the two-and three-dimensional lattices within the effective-field renormalization group method

    Science.gov (United States)

    de Albuquerque, Douglas F.; Santos-Silva, Edimilson; Moreno, N. O.

    2009-10-01

    In this letter we employing the effective-field renormalization group (EFRG) to study the Ising model with nearest neighbors to obtain the reduced critical temperature and exponents ν for bi- and three-dimensional lattices by increasing cluster scheme by extending recent works. The technique follows up the same strategy of the mean field renormalization group (MFRG) by introducing an alternative way for constructing classical effective-field equations of state takes on rigorous Ising spin identities.

  13. An extended approach for computing the critical properties in the two-and three-dimensional lattices within the effective-field renormalization group method

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Douglas F. de [Departamento de Matematica, Universidade Federal de Sergipe, 49100-000 Sao Cristovao, SE (Brazil)], E-mail: douglas@ufs.br; Santos-Silva, Edimilson [Departamento de Matematica, Universidade Federal de Sergipe, 49100-000 Sao Cristovao, SE (Brazil); Moreno, N.O. [Departamento de Fisica, Universidade Federal de Sergipe, 49100-000 Sao Cristovao, SE (Brazil)

    2009-10-15

    In this letter we employing the effective-field renormalization group (EFRG) to study the Ising model with nearest neighbors to obtain the reduced critical temperature and exponents {nu} for bi- and three-dimensional lattices by increasing cluster scheme by extending recent works. The technique follows up the same strategy of the mean field renormalization group (MFRG) by introducing an alternative way for constructing classical effective-field equations of state takes on rigorous Ising spin identities.

  14. An extended approach for computing the critical properties in the two-and three-dimensional lattices within the effective-field renormalization group method

    International Nuclear Information System (INIS)

    Albuquerque, Douglas F. de; Santos-Silva, Edimilson; Moreno, N.O.

    2009-01-01

    In this letter we employing the effective-field renormalization group (EFRG) to study the Ising model with nearest neighbors to obtain the reduced critical temperature and exponents ν for bi- and three-dimensional lattices by increasing cluster scheme by extending recent works. The technique follows up the same strategy of the mean field renormalization group (MFRG) by introducing an alternative way for constructing classical effective-field equations of state takes on rigorous Ising spin identities.

  15. Two-photon superradiance in extended medium

    International Nuclear Information System (INIS)

    Branzan, V.; Enache, N.

    1993-01-01

    The possibility of collectivization of an ensemble of atoms of an extended system (the distance between atoms is larger or equal to the wave-length of a spontaneous emitted radiation) during two-photon spontaneous decay is theoretically investigated. It is demonstrated that such systems of inverted atoms should emit phase-correlated pairs of photons. The time-space correlation among atoms is realized due to the two-photon exchanging through the electromagnetic field's vacuum. An increase of the spontaneous decay rate of the two-atom inverted ensemble is demonstrated. The dependence of two-photon superradiance on the sample geometry is investigated. A non-equilibrium method of the elimination of the atoms level Fermi-operators is proposed. (Author)

  16. Higgs Decay into Two Photons, Revisited

    CERN Document Server

    Gastmans, R; Wu, Tai Tsun

    2011-01-01

    The one-loop calculation of the amplitude for the Higgs decay H-->\\gamma\\gamma\\ due to virtual W's in the unitary gauge is presented. As the Higgs does not directly couple to the massless photons, the one-loop amplitude is finite. The calculation is performed in a straightforward way, without encountering divergences. In particular, artifacts like dimensional regularization are avoided. This is achieved by judiciously routing the external momenta through the loop and by combining the integrands of the amplitudes before carrying out the integration over the loop momentum. The present result satisfies the decoupling theorem for infinite Higgs mass, and is thus different from the earlier results obtained in the \\xi=1 gauge using dimensional regularization. The difference between the results is traced to the use of dimensional regularization.

  17. Strain-engineered growth of two-dimensional materials.

    Science.gov (United States)

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali

    2017-09-20

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.

  18. Resonance interaction energy between two entangled atoms in a photonic bandgap environment.

    Science.gov (United States)

    Notararigo, Valentina; Passante, Roberto; Rizzuto, Lucia

    2018-03-26

    We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction asymptotically decays faster with distance compared to the free-space case, specifically as 1/r 2 compared to the 1/r free-space dependence in the three-dimensional case, and as 1/r compared to the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction energy remains significant and much stronger than dispersion interactions between atoms. On the other hand, spontaneous emission is strongly suppressed by the environment and the correlated state is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is suitable for observing the elusive quantum resonance interaction between entangled atoms.

  19. Fabrication of Terahertz Wave Resonators with Alumina Diamond Photonic Crystals for Frequency Amplification in Water Solvents

    International Nuclear Information System (INIS)

    Ohta, N; Niki, T; Kirihara, S

    2011-01-01

    Terahertz wave resonators composed of alumina photonic crystals with diamond lattice structures were designed and fabricated by using micro stereolithography. These three dimensional periodic structures can reflect perfectly electromagnetic waves through Bragg diffraction. A micro glass cell including water solutions was put between the photonic crystals as a novel resonance sensor with terahertz frequency range. The localized and amplified waves in the resonators were measured by a spectroscopy, and visualized by theoretical simulations.

  20. The (2+1)-dimensional nonisospectral relativistic Toda hierarchy related to the generalized discrete Painleve hierarchy

    International Nuclear Information System (INIS)

    Zhu Zuonong

    2007-01-01

    In this paper, we will concentrate on the topic of integrable discrete hierarchies in 2+1 dimensions, and their connection with discrete Painleve hierarchies. By considering a (2+1)-dimensional nonisospectral discrete linear problem, two new (2+1)-dimensional nonisospectral integrable lattice hierarchies-the 2+1 nonisospectral relativistic Toda lattice hierarchy and the 2+1 nonisospectral negative relativistic Toda lattice hierarchy-are constructed. It is shown that the reductions of the two new 2+1 nonisospectral lattice hierarchies lead to the (2+1)-dimensional nonisospectral Volterra lattice hierarchy and the (2+1)-dimensional nonisospectral negative Volterra lattice hierarchy. We also obtain two new (1+1)-dimensional nonisospectral integrable lattice hierarchies and two new ordinary difference hierarchies which are direct reductions of the two 2+1 nonisospectral integrable lattice hierarchies. One of the two difference hierarchies yields our previously obtained generalized discrete first Painleve (dP I ) hierarchy and another one yields a generalized alternative discrete second Painleve (alt-dP II ) hierarchy