International Nuclear Information System (INIS)
Kim, Jin Hee; Seo, Joon Beom; Do, Kyung Hyun; Yang, Dong Hyun; Lee, Soo Hyun; Ko, Sung Min; Heo, Jeong Nam; Lim, Tae Hwan
2004-01-01
To compare a free-breathing, navigator-echo-gated, three-dimensional, inversion-recovery, gradient-echo, MR pulse sequence (3D-MRI) with standard, multiple breath-hold, two-dimensional, inversion-recovery, gradient-echo MR (2D-MRI) for the evaluation of delayed hyperenhancement of nonviable myocardium in patients with chronic ischemic heart disease. Ten patients with chronic ischemic heart disease were enrolled in this study. MRI was performed on a 1.5-T system. 3D-MRI was obtained in the short axis plane at 10 minutes after the administration of Gd-DTPA (0.2 mmol/kg, 4 cc/sec). Prospective gating of the acquisition based on the navigator echo was applied. 2D-MRI was performed immediately after finishing 3D-MRI. The area of total and hyperenhanced myocardium measured on both image sets was compared with paired Student t-test and Bland-Altman method. By using a 60-segment model, the transmural extent and segment width of the hyperenhanced area were recorded by 3-scale grading method. The agreement between the two sequences was evaluated with kappa statistics. We also evaluated the agreement of hyperenhancement among the three portions (apical, middle and basal portion) of the left ventricle with kappa statistics. The two sequences showed good agreement for the measured area of total and hyperenhanced myocardium on paired t-test (ρ = 0.11 and ρ = 0.34, respectively). No systematic bias was shown on Bland-Altman analysis. Good agreement was found for the segmental width (Κ = 0.674) and transmural extent (Κ = 0.615) of hyperenhancement on the segmented analysis. However, the agreement of the transmural extent of hyperenhancement in the apical segments was relatively poor compared with that in the middle or basal portions. This study showed good agreement between 3D-MRI and 2D-MRI in evaluation of non-viable myocardium. Therefore, 3D-MRI may be useful in the assessment of myocardial viability in patients with dyspnea and children because it allows free
International Nuclear Information System (INIS)
Ogawa, Masashi; Matsumura, Yoshio; Tsuchihashi, Toshio
2013-01-01
Delayed contrast-enhanced cardiac magnetic resonance imaging (MRI) is a valuable tool for detecting myocardial infarction and assessing myocardial viability. The standard viability MRI technique is the inversion-recovery gradient echo (IR-GRE) method. Several previous studies have demonstrated that this imaging technique provides superior image quality at high magnetic field strengths, e.g., 3.0 T. However, there are numerous possible flip angles. We investigated the optimal flip angle of IR-GRE in delayed contrast-enhanced cardiac MRI. Phantoms were made that modeled infarcted myocardium and normal myocardium after administration of contrast agent. To determine optimal flip angle, we compared the contrast-to-noise ratio (CNR) among these phantoms and evaluated the degree of artifacts induced by increased flip angle. The flip angle that showed the highest CNR for 2D IR-GRE and 3D IR-GRE was 30deg/15deg at 1.5 T and 25deg/15deg at 3.0 T. The flip angle that showed the highest CNR was independent of R-R interval. Streak artifacts induced by increased flip angle tended to occur more readily at 3.0 T than 1.5 T. The optimal flip angle for 2D IR-GRE and 3D IR-GRE at 1.5 T was 30deg and 15deg, respectively. At 3.0 T, taking into account the results for both CNR and streak artifacts, we concluded the optimal flip angle of 2D IR-GRE to be 15-20deg. (author)
International Nuclear Information System (INIS)
Stehling, C.; Niederstadt, T.; Kraemer, S.; Kugel, H.; Schwindt, W.; Heindel, W.; Bachmann, R.
2005-01-01
Purpose: The increased T1 relaxation times at 3.0 Tesla lead to a reduced T1 contrast, requiring adaptation of imaging protocols for high magnetic fields. This prospective study assesses the performance of three techniques for T1-weighted imaging (T1w) at 3.0 T with regard to gray-white differentiation and contrast-to-noise-ratio (CNR). Materials and Methods: Thirty-one patients were examined at a 3.0 T system with axial T1 w inversion recovery (IR), spin-echo (SE) and gradient echo (GE) sequences and after contrast enhancement (CE) with CE-SE and CE-GE sequences. For qualitative analysis, the images were ranked with regard to artifacts, gray-white differentiation, image noise and overall diagnostic quality. For quantitative analysis, the CNR was calculated, and cortex and basal ganglia were compared with the white matter. Results: In the qualitative analysis, IR was judged superior to SE and GE for gray-white differentiation, image noise and overall diagnostic quality, but inferior to the GE sequence with regard to artifacts. CE-GE proved superior to CE-SE in all categories. In the quantitative analysis, CNR of the based ganglia was highest for IR, followed by GE and SE. For the CNR of the cortex, no significant difference was found between IR (16.9) and GE (15.4) but both were superior to the SE (9.4). The CNR of the cortex was significantly higher for CE-GE compared to CE-SE (12.7 vs. 7.6, p<0.001), but the CNR of the basal ganglia was not significantly different. Conclusion: For unenhanced T1w imaging at 3.0 T, the IR technique is, despite increased artifacts, the method of choice due to its superior gray-white differentiation and best overall image quality. For CE-studies, GE sequences are recommended. For cerebral imaging, SE sequences give unsatisfactory results at 3.0 T. (orig.)
Shao, Jiaxin; Rapacchi, Stanislas; Nguyen, Kim-Lien; Hu, Peng
2016-02-01
To develop an accurate and precise myocardial T1 mapping technique using an inversion recovery spoiled gradient echo readout at 3.0 Tesla (T). The modified Look-Locker inversion-recovery (MOLLI) sequence was modified to use fast low angle shot (FLASH) readout, incorporating a BLESSPC (Bloch Equation Simulation with Slice Profile Correction) T1 estimation algorithm, for accurate myocardial T1 mapping. The FLASH-MOLLI with BLESSPC fitting was compared with different approaches and sequences with regards to T1 estimation accuracy, precision and image artifact based on simulation, phantom studies, and in vivo studies of 10 healthy volunteers and three patients at 3.0 Tesla. The FLASH-MOLLI with BLESSPC fitting yields accurate T1 estimation (average error = -5.4 ± 15.1 ms, percentage error = -0.5% ± 1.2%) for T1 from 236-1852 ms and heart rate from 40-100 bpm in phantom studies. The FLASH-MOLLI sequence prevented off-resonance artifacts in all 10 healthy volunteers at 3.0T. In vivo, there was no significant difference between FLASH-MOLLI-derived myocardial T1 values and "ShMOLLI+IE" derived values (1458.9 ± 20.9 ms versus 1464.1 ± 6.8 ms, P = 0.50); However, the average precision by FLASH-MOLLI was significantly better than that generated by "ShMOLLI+IE" (1.84 ± 0.36% variance versus 3.57 ± 0.94%, P < 0.001). The FLASH-MOLLI with BLESSPC fitting yields accurate and precise T1 estimation, and eliminates banding artifacts associated with bSSFP at 3.0T. © 2015 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Loebel, Ulrike; Sedlacik, Jan; Sabin, Noah D.; Hillenbrand, Claudia M.; Patay, Zoltan; Kocak, Mehmet; Broniscer, Alberto
2010-01-01
We compared the sensitivity and specificity of T2*-weighted gradient-echo imaging (T2*-GRE) and susceptibility-weighted imaging (SWI) in determining prevalence and cumulative incidence of intratumoral hemorrhages in children with diffuse intrinsic pontine glioma (DIPG) undergoing antiangiogenic and radiation therapy. Patients were recruited from an institutional review board-approved prospective phase I trial of vandetanib administered in combination with radiation therapy. Patient consent was obtained before enrollment. Consecutive T2*-GRE and SWI exams of 17 patients (F/M: 9/8; age 3-17 years) were evaluated. Two reviewers (R1 and R2) determined the number and size of hemorrhages at baseline and multiple follow-ups (92 scans, mean 5.4/patient). Statistical analyses were performed using descriptive statistics, graphical tools, and mixed-effects Poisson regression models. Prevalence of hemorrhages at diagnosis was 41% and 47%; the cumulative incidences of hemorrhages at 6 months by T2*-GRE and SWI were 82% and 88%, respectively. Hemorrhages were mostly petechial; 9.7% of lesions on T2*-GRE and 5.2% on SWI were hematomas (>5 mm). SWI identified significantly more hemorrhages than T2*-GRE did. Lesions were missed or misinterpreted in 36/39 (R1/R2) scans by T2*-GRE and 9/3 scans (R1/R2) by SWI. Hemorrhages had no clinically significant neurological correlates in patients. SWI is more sensitive than T2*-GRE in detecting hemorrhages and differentiating them from calcification, necrosis, and artifacts. Also, petechial hemorrhages are more common in DIPG at diagnosis than previously believed and their number increases during the course of treatment; hematomas are rare. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Shimada, Kotaro, E-mail: kotaro@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Isoda, Hiroyoshi, E-mail: sayuki@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Okada, Tomohisa, E-mail: tomokada@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Kamae, Toshikazu, E-mail: toshi13@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Arizono, Shigeki, E-mail: arizono@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Hirokawa, Yuusuke, E-mail: yuusuke@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Shibata, Toshiya, E-mail: ksj@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Togashi, Kaori, E-mail: ktogashi@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan)
2011-01-15
Objective: To study whether shortening the acquisition time for selective hepatic artery visualization is feasible without image quality deterioration by adopting two-dimensional (2D) parallel imaging (PI) and short tau inversion recovery (STIR) methods. Materials and methods: Twenty-four healthy volunteers were enrolled. 3D true steady-state free-precession imaging with a time spatial labeling inversion pulse was conducted using 1D or 2D-PI and fat suppression by chemical shift selective (CHESS) or STIR methods. Three groups of different scan conditions were assigned and compared: group A (1D-PI factor 2 and CHESS), group B (2D-PI factor 2 x 2 and CHESS), and group C (2D-PI factor 2 x 2 and STIR). The artery-to-liver contrast was quantified, and the quality of artery visualization and overall image quality were scored. Results: The mean scan time was 9.5 {+-} 1.0 min (mean {+-} standard deviation), 5.9 {+-} 0.8 min, and 5.8 {+-} 0.5 min in groups A, B, and C, respectively, and was significantly shorter in groups B and C than in group A (P < 0.01). The artery-to-liver contrast was significantly better in group C than in groups A and B (P < 0.01). The scores for artery visualization and overall image quality were worse in group B than in groups A and C. The differences were statistically significant (P < 0.05) regarding the arterial branches of segments 4 and 8. Between group A and group C, which had similar scores, there were no statistically significant differences. Conclusion: Shortening the acquisition time for selective hepatic artery visualization was feasible without deterioration of the image quality by the combination of 2D-PI and STIR methods. It will facilitate using non-contrast-enhanced MRA in clinical practice.
International Nuclear Information System (INIS)
Shimada, Kotaro; Isoda, Hiroyoshi; Okada, Tomohisa; Kamae, Toshikazu; Arizono, Shigeki; Hirokawa, Yuusuke; Shibata, Toshiya; Togashi, Kaori
2011-01-01
Objective: To study whether shortening the acquisition time for selective hepatic artery visualization is feasible without image quality deterioration by adopting two-dimensional (2D) parallel imaging (PI) and short tau inversion recovery (STIR) methods. Materials and methods: Twenty-four healthy volunteers were enrolled. 3D true steady-state free-precession imaging with a time spatial labeling inversion pulse was conducted using 1D or 2D-PI and fat suppression by chemical shift selective (CHESS) or STIR methods. Three groups of different scan conditions were assigned and compared: group A (1D-PI factor 2 and CHESS), group B (2D-PI factor 2 x 2 and CHESS), and group C (2D-PI factor 2 x 2 and STIR). The artery-to-liver contrast was quantified, and the quality of artery visualization and overall image quality were scored. Results: The mean scan time was 9.5 ± 1.0 min (mean ± standard deviation), 5.9 ± 0.8 min, and 5.8 ± 0.5 min in groups A, B, and C, respectively, and was significantly shorter in groups B and C than in group A (P < 0.01). The artery-to-liver contrast was significantly better in group C than in groups A and B (P < 0.01). The scores for artery visualization and overall image quality were worse in group B than in groups A and C. The differences were statistically significant (P < 0.05) regarding the arterial branches of segments 4 and 8. Between group A and group C, which had similar scores, there were no statistically significant differences. Conclusion: Shortening the acquisition time for selective hepatic artery visualization was feasible without deterioration of the image quality by the combination of 2D-PI and STIR methods. It will facilitate using non-contrast-enhanced MRA in clinical practice.
Hargreaves, Brian
2012-01-01
Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185
A short TE gradient-echo sequence using asymmetric sampling
International Nuclear Information System (INIS)
Fujita, Norihiko; Harada, Kohshi; Sakurai, Kosuke; Nakanishi, Katsuyuki; Kim, Shyogen; Kozuka, Takahiro
1990-01-01
We have developed a gradient-echo pulse sequence with a short TE less than 4 msec using a data set of asymmetric off-center sampling with a broad bandwidth. The use of such a short TE significantly reduces T 2 * dephasing effect even in a two-dimensional mode, and by collecting an off-center echo, motion-induced phase dispersion is also considerably decreased. High immunity of this sequence to these dephasing effects permits clear visualization of anatomical details near the skull base where large local field inhomogeneities and rapid blood flow such as in the internal carotid artery are present. (author)
Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis
Energy Technology Data Exchange (ETDEWEB)
Fellner, Franz A. [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria) and Zentrales Radiologie Institut, Allgemeines Krankenhaus der Stadt Linz, Krankenhausstr. 9, 4020 Linz (Austria)]. E-mail: franz.fellner@akh.linz.at; Fellner, Claudia [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria); Aichner, Franz T. [Abteilung fuer Neurologie, Landes-Nervenklinik Wagner-Jauregg, Linz (Austria); Moelzer, Guenther [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria)
2005-11-01
We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 {mu}s, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis.
Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis
International Nuclear Information System (INIS)
Fellner, Franz A.; Fellner, Claudia; Aichner, Franz T.; Moelzer, Guenther
2005-01-01
We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 μs, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis
Quantitation of structural distortion with gradient-echo imaging techniques
International Nuclear Information System (INIS)
Tien, R.D.; Schwaighofer, B.W.; Hesselink, J.R.; Chu, P.K.
1990-01-01
This paper determines the structural distortion and measurement error associated with fast MR imaging of the spinal neural foramina. Dry skeletal specimens and a thin cadaveric sagittal section through the neural foramina were placed in a water bath. MR images were obtained with a 1.5-T unit in different planes and with various pulse sequences. The size and shape of each neural foramen were carefully measured on the images and on the skeletal specimens. Gradient-echo (GRE) techniques (gradient recalled acquisition in a steady state, MPGR, three-dimensional volume acquisition) resulted in structural distortion in up to 10% on the fresh skeleton and 30% of the dry skeleton specimens when a small TE was used (the foramina appear narrower on the images)
Short echo time, fast gradient-echo imaging
International Nuclear Information System (INIS)
Haacke, E.M.; Lenz, G.W.
1987-01-01
Present fast-gradient-echoes schemes can acquire volume data rapidly and are flexible in T1 or T1/T2 contrast behavior. However, sequences used to date employ echo time (TE) values of about 15 ms +- 5 and, because of in vivo field inhomogeneities (short T2), they suffer badly from signal loss near sinuses and tissue boundaries. The authors implemented sequences with TE = 4-6 ms and found significant improvement in image quality, especially at high fields. Examples with long TEs vs. short TEs are given in the knee, spine, head, and orbits. Further advantages include (1) faster repetition times (15 ms), (2) higher-quality spin-density or T1-weighted images, and (3) reduction of blood motion artifacts
Inaudible functional MRI using a truly mute gradient echo sequence
International Nuclear Information System (INIS)
Marcar, V.L.; Girard, F.; Rinkel, Y.; Schneider, J.F.; Martin, E.
2002-01-01
We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)
Inaudible functional MRI using a truly mute gradient echo sequence
Energy Technology Data Exchange (ETDEWEB)
Marcar, V.L. [University of Zurich, Department of Psychology, Neuropsychology, Treichlerstrasse 10, 8032 Zurich (Switzerland); Girard, F. [GE Medical Systems SA, 283, rue de la Miniere B.P. 34, 78533 Buc Cedex (France); Rinkel, Y.; Schneider, J.F.; Martin, E. [University Children' s Hospital, Neuroradiology and Magnetic Resonance, Department of Diagnostic Imaging, Steinwiesstrasse 75, 8032 Zurich (Switzerland)
2002-11-01
We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)
An Inversion Recovery NMR Kinetics Experiment
Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping
2011-01-01
A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a conveni...
Alikhanov, A A; Sinitsyn, V E; Perepelova, E M; Mukhin, K Iu; Demushkina, A A; Omarova, M O; Piliia, S V
2001-01-01
Small dysplastic lesions of the cerebral cortex are often missed by conventional MRI methods. The identification of subtle structural abnormalities by traditional multiplanar rectilinear slices is often limited by the complex convolutional pattern of the brain. We used a method of FSPGR (fast spoiled gradient-echo) of three-dimensional MRI data that improves the anatomical display of the sulcal structure of the hemispheric convexities. It also reduces the asymmetric sampling of gray-white matter that may lead to false-positive results. We present 5 from 12 patients with dysplastic cortical lesions in whom conventional two-dimensional and three-dimensional MRI with multiplanar reformatting was initially considered normal. Subsequent studies using 3D FSPGR identified various types of focal cortical dysplasia in all. These results indicate that an increase in the detection of subtle focal dysplastic lesions may be accomplished when one improves the anatomical display of the brain sulcal structure by performing 3D FSPGR.
Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise
2014-07-01
The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.
An Inversion Recovery NMR Kinetics Experiment
Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping
2011-01-01
A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…
Ultra-high-speed inversion recovery echo planar MR imaging
International Nuclear Information System (INIS)
Stehling, M.K.; Ordidge, R.J.; Coxon, R.; Chapman, B.; Houseman, A.M.; Guifoyle, D.; Blamire, A.; Gibbs, P.; Mansfield, P.
1988-01-01
Fast two-dimensional FT MR imaging techniques such as fast low-angle shot do not allow inversion recovery (IR). Rapid repetition of low-angle pulses is incompatible with a 180 0 inversion pulse. Echo planar imaging (EPI) can be applied in conjunction with IR, because after preparation of the spin system, a complete image is acquired. Data acquisition in less than 100 msec and real-time display allows interactive optimization of inversion time (4.0-9,000 msec) with little time penalty. The authors have applied IR EPI to the study of the brain, liver, and kidneys in normal volunteers and patients. Technical details are presented, and the applications of this first ultra-high-speed IR technique will be shown
Spontaneous cerebral microbleeds on gradient echo MR imaging in the stroke patients
International Nuclear Information System (INIS)
Kwak, Seong Ho; Song, Chang June; Kim, Dae Bong; Jeong, Geum Chae
2003-01-01
To investigate the spontaneous cerebral microbleeding occurring at gradient-echo MRI, and its relationship with associated stroke lesions and risk factors. Between September 2001 and December, 2002, 32 patients (21 men and 11 women; mean age 63 years) in whom cerebral microbleeding occurred at gradient-echo MRI were retrospectively investigated. Using a 1.5T MR imager, spin-echo T1-weighted, fast spin-echo T2-weighted, diffusion-weighted, and gradient-echo images were obtained. The number and location of microbleeds seen on gradient echo images, patients data, and associated stroke lesions such as intracerebral hemorrhage and lacunar and territorial infarction were assessed. Among the 32 patients, 563 microbleeds and between 1 and 66 (mean, 17.6) were noted at gradient-echo imaging. Microbleeding occurred in the cortical/subcortical area (n=216), the basal ganglia (n=173), thalamus (n=92), cerebellum (n=41), brainstem (n=36) and corpus callosum (n=1), and in 20 patients was bilateral. Patients had a history of hypertension (n=26), hypertriglycemia (n=12), heart disease (n=4), and diabetes mellitus (n=3). Stroke lesions were seen in 27 patients, intracerebral hemorrhage in ten, lacunar infarction in 24, and territorial infarction in four. The incidence and number of microbleeds was greater in older patients and in those with hypertension, hypertriglycemia, and stroke lesions such as intracerebral hemorrhage or lacunar infarction. The detection of microbleeding at gradient-echo imaging is helpful, since it predicts the possibility of cerebral hemorrhage in these patients
In vivo quantitative NMR imaging of fruit tissues during growth using Spoiled Gradient Echo sequence
DEFF Research Database (Denmark)
Kenouche, S.; Perrier, M.; Bertin, N.
2014-01-01
of this study was to design a robust and accurate quantitative measurement method based on NMR imaging combined with contrast agent (CA) for mapping and quantifying water transport in growing cherry tomato fruits. A multiple flip-angle Spoiled Gradient Echo (SGE) imaging sequence was used to evaluate...
International Nuclear Information System (INIS)
Ramalho, Miguel; Heredia, Vasco; Campos, Rafael O. P. de; Azevedo, Rafael M.; Semelka, Richard C.; Dale, Brian M.
2012-01-01
Background: T1-weighted gradient-echo in-phase and out-of-phase imaging is an essential component of comprehensive abdominal MR exams. It is useful for the study of fat-containing lesions and to identify various disease states related to the presence of fat in the liver. Purpose: To compare three T1-weighted in-phase and out-of-phase (IP/OP) gradient-echo imaging sequences in an intra-individual fashion, and to determine whether advantages exist for each of these sequences for various patient types. Material and Methods: One hundred and eighteen consecutive subjects (74 men, 44 women; mean age 53.9 ± 13.8 years) who had MRI examinations containing all three different IP/OP sequences (two-dimensional spoiled gradient-echo [2D-GRE], three-dimensional gradient-echo [3D-GRE], and magnetization-prepared gradient-recall echo [MP-GRE]) were included. Two different reviewers independently and blindly qualitatively evaluated IP/OP sequences to determine image quality, extent of artifacts, lesion detectability and conspicuity, and subjective grading of liver steatosis for the various sequences. Quantitative analysis was also performed. Qualitative and quantitative data were subjected to statistical analysis. Results: Respiratory ghosting, parallel imaging, and truncation artifacts as well as shading and blurring were more pronounced with 3D-GRE IP/OP imaging. Overall image quality was higher with 2D-GRE (P < 0.05). Detectability of low-fluid content lesions was lower with IP/OP MP-GRE sequences. MP-GRE sequences had the lowest SNRs (P < 0.001). Liver-to-spleen and liver-to-lesion CNRs were significantly lower with 3D-GRE and MP-GR, respectively (P < 0.001). Fat liver indexes showed strongly positive correlation between all sequences. Conclusion: Currently, 2D-GRE remains the best approach for clinical IP/OP imaging. The good image quality of MP-GRE sequences acquired in a free-breathing manner should recommend its use in patients unable to suspend breathing
Energy Technology Data Exchange (ETDEWEB)
Ramalho, Miguel; Heredia, Vasco; Campos, Rafael O. P. de; Azevedo, Rafael M.; Semelka, Richard C. (Dept. of Radiology, Univ. of North Carolina at Chapel Hill (United States)); Dale, Brian M. (Siemens Medical Systems, Morrisville (United States)), email: richsem@med.unc.edu
2012-05-15
Background: T1-weighted gradient-echo in-phase and out-of-phase imaging is an essential component of comprehensive abdominal MR exams. It is useful for the study of fat-containing lesions and to identify various disease states related to the presence of fat in the liver. Purpose: To compare three T1-weighted in-phase and out-of-phase (IP/OP) gradient-echo imaging sequences in an intra-individual fashion, and to determine whether advantages exist for each of these sequences for various patient types. Material and Methods: One hundred and eighteen consecutive subjects (74 men, 44 women; mean age 53.9 +- 13.8 years) who had MRI examinations containing all three different IP/OP sequences (two-dimensional spoiled gradient-echo [2D-GRE], three-dimensional gradient-echo [3D-GRE], and magnetization-prepared gradient-recall echo [MP-GRE]) were included. Two different reviewers independently and blindly qualitatively evaluated IP/OP sequences to determine image quality, extent of artifacts, lesion detectability and conspicuity, and subjective grading of liver steatosis for the various sequences. Quantitative analysis was also performed. Qualitative and quantitative data were subjected to statistical analysis. Results: Respiratory ghosting, parallel imaging, and truncation artifacts as well as shading and blurring were more pronounced with 3D-GRE IP/OP imaging. Overall image quality was higher with 2D-GRE (P < 0.05). Detectability of low-fluid content lesions was lower with IP/OP MP-GRE sequences. MP-GRE sequences had the lowest SNRs (P < 0.001). Liver-to-spleen and liver-to-lesion CNRs were significantly lower with 3D-GRE and MP-GR, respectively (P < 0.001). Fat liver indexes showed strongly positive correlation between all sequences. Conclusion: Currently, 2D-GRE remains the best approach for clinical IP/OP imaging. The good image quality of MP-GRE sequences acquired in a free-breathing manner should recommend its use in patients unable to suspend breathing
Usefulness of enhanced breathhold 3D spoiled gradient-echo MRA for intrathoracic mass
International Nuclear Information System (INIS)
Kobayashi, Takeshi; Kadoya, Masumi; Kamimura, Ryoichi; Takashima, Tsutomu
1999-01-01
Enhanced Breathhold 3D Spoiled Gradient-echo MRA was very attractive method for not only evaluating relationship between intrathoracic mass and intrathoracic vessels, but also visualizing small pulmonary vessels that could not be detected conventional MRA methods. Moreover, this methods could be applied for evaluating vascularity of the lesions. This method will be accepted as routine pulse sequence for evaluating intrathoracic mass especially malignant tumors. (author)
Energy Technology Data Exchange (ETDEWEB)
Dupuy, Sheena L.; Tauhid, Shahamat; Kim, Gloria; Chu, Renxin; Tummala, Subhash [Departments of Neurology, Brigham and Women' s Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA (United States); Hurwitz, Shelley [Departments of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Bakshi, Rohit, E-mail: rbakshi@bwh.harvard.edu [Departments of Neurology, Brigham and Women' s Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA (United States); Departments of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)
2015-08-15
Highlights: • Compared T1SE and T1GE in detecting hypointense brain lesions in MS patients. • T1GE detected a higher cerebral lesion volume and number than T1SE. • T1SE correlated significantly with disability, while T1GE did not. • Hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. - Abstract: Objective: Compare T1 spin-echo (T1SE) and T1 gradient-echo (T1GE) sequences in detecting hypointense brain lesions in multiple sclerosis (MS). Background: Chronic hypointense lesions on T1SE MRI scans are a surrogate of severe demyelination and axonal loss in MS. The role of T1GE images in the detection of such lesions has not been clarified. Design/methods: In 45 patients with MS [Expanded Disability Status Scale (EDSS) score (mean ± SD) 3.5 ± 2.0; 37 relapsing-remitting (RR); 8 secondary progressive (SP)], cerebral T1SE, T1GE, and T2-weighted fluid-attenuated inversion-recovery (FLAIR) images were acquired on a 1.5 T MRI scanner. Images were re-sampled to axial 5 mm slices before directly comparing lesion detectability using Jim (v.7, Xinapse Systems). Statistical methods included Wilcoxon signed rank tests to compare sequences and Spearman correlations to test associations. Results: Considering the entire cohort, T1GE detected a higher lesion volume (5.90 ± 6.21 vs. 4.17 ± 4.84 ml, p < 0.0001) and higher lesion number (27.82 ± 20.66 vs. 25.20 ± 20.43, p < 0.05) than T1SE. Lesion volume differences persisted when considering RR and SP patients separately (both p < 0.01). A higher lesion number by T1GE was seen only in the RR group (p < 0.05). When comparing correlations between lesion volume and overall neurologic disability (EDSS score), T1SE correlated with EDSS (Spearman r = 0.29, p < 0.05) while T1GE (r = 0.23, p = 0.13) and FLAIR (r = 0.24, p = 0.12) did not. Conclusion: Our data suggest that hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. Based on these results, we hypothesize that T1GE
International Nuclear Information System (INIS)
Dupuy, Sheena L.; Tauhid, Shahamat; Kim, Gloria; Chu, Renxin; Tummala, Subhash; Hurwitz, Shelley; Bakshi, Rohit
2015-01-01
Highlights: • Compared T1SE and T1GE in detecting hypointense brain lesions in MS patients. • T1GE detected a higher cerebral lesion volume and number than T1SE. • T1SE correlated significantly with disability, while T1GE did not. • Hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. - Abstract: Objective: Compare T1 spin-echo (T1SE) and T1 gradient-echo (T1GE) sequences in detecting hypointense brain lesions in multiple sclerosis (MS). Background: Chronic hypointense lesions on T1SE MRI scans are a surrogate of severe demyelination and axonal loss in MS. The role of T1GE images in the detection of such lesions has not been clarified. Design/methods: In 45 patients with MS [Expanded Disability Status Scale (EDSS) score (mean ± SD) 3.5 ± 2.0; 37 relapsing-remitting (RR); 8 secondary progressive (SP)], cerebral T1SE, T1GE, and T2-weighted fluid-attenuated inversion-recovery (FLAIR) images were acquired on a 1.5 T MRI scanner. Images were re-sampled to axial 5 mm slices before directly comparing lesion detectability using Jim (v.7, Xinapse Systems). Statistical methods included Wilcoxon signed rank tests to compare sequences and Spearman correlations to test associations. Results: Considering the entire cohort, T1GE detected a higher lesion volume (5.90 ± 6.21 vs. 4.17 ± 4.84 ml, p < 0.0001) and higher lesion number (27.82 ± 20.66 vs. 25.20 ± 20.43, p < 0.05) than T1SE. Lesion volume differences persisted when considering RR and SP patients separately (both p < 0.01). A higher lesion number by T1GE was seen only in the RR group (p < 0.05). When comparing correlations between lesion volume and overall neurologic disability (EDSS score), T1SE correlated with EDSS (Spearman r = 0.29, p < 0.05) while T1GE (r = 0.23, p = 0.13) and FLAIR (r = 0.24, p = 0.12) did not. Conclusion: Our data suggest that hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. Based on these results, we hypothesize that T1GE
Prognostic value of gradient echo T2* sequences for brain MR imaging in preterm infants
Energy Technology Data Exchange (ETDEWEB)
Bruine, Francisca T. de; Berg-Huysmans, Annette A. van den; Buchem, Mark A. van; Grond, Jeroen van der [Leiden University Medical Center, Department of Radiology, PO Box 9600, Leiden (Netherlands); Steggerda, Sylke J.; Leijser, Lara M.; Rijken, Monique [Leiden University Medical Center, Department of Pediatrics, subdivision of Neonatology, Leiden (Netherlands); Wezel-Meijler, Gerda van [Leiden University Medical Center, Department of Pediatrics, subdivision of Neonatology, Leiden (Netherlands); Isala Hospital, Department of Neonatology, Zwolle (Netherlands)
2014-03-15
Gradient echo T2*-W sequences are more sensitive than T2-W spin-echo sequences for detecting hemorrhages in the brain. The aim of this study is to correlate presence of hemosiderin deposits in the brain of very preterm infants (gestational age <32 weeks) detected by T2*-W gradient echo MRI to white matter injury and neurodevelopmental outcome at 2 years. In 101 preterm infants, presence and location of hemosiderin were assessed on T2*-W gradient echo MRI performed around term-equivalent age (range: 40-60 weeks). White matter injury was defined as the presence of >6 non-hemorrhagic punctate white matter lesions (PWML), cysts and/or ventricular dilatation. Six infants with post-hemorrhagic ventricular dilatation detected by US in the neonatal period were excluded. Infants were seen for follow-up at 2 years. Univariate and regression analysis assessed the relation between presence and location of hemosiderin, white matter injury and neurodevelopmental outcome. In 38/95 (40%) of the infants, hemosiderin was detected. Twenty percent (19/95) of the infants were lost to follow-up. There was a correlation between hemosiderin in the ventricular wall with >6 PWML (P < 0.001) and cysts (P < 0.001) at term-equivalent age, and with a lower psychomotor development index (PDI) (P=0.02) at 2 years. After correcting for known confounders (gestational age, gender, intrauterine growth retardation and white matter injury), the correlation with PDI was no longer significant. The clinical importance of detecting small hemosiderin deposits is limited as there is no independent association with neurodevelopmental outcome. (orig.)
DEFF Research Database (Denmark)
Kjølby, Birgitte Fuglsang; Mikkelsen, Irene Klærke; Pedersen, Michael
2009-01-01
of an AIF voxel including the relaxation properties of blood and tissue. Artery orientations parallel and perpendicular to the main magnetic field were investigated and AIF voxels were modeled to either include or be situated close to a large artery. The impact of partial volume effects on quantitative...... perfusion metrics was investigated for the gradient echo pulse sequence at 1.5 T and 3.0 T. It is shown that the tissue contribution broadens and introduces fluctuations in the AIF. Furthermore, partial volume effects bias perfusion metrics in a nonlinear fashion, compromising quantitative perfusion...
Exact algebraization of the signal equation of spoiled gradient echo MRI
Energy Technology Data Exchange (ETDEWEB)
Dathe, Henning [Department of Orthodontics, Biomechanics Group, University Medical Centre, Goettingen (Germany); Helms, Gunther, E-mail: ghelms@gwdg.d [MR-Research in Neurology and Psychiatry, University Medical Centre, Goettingen (Germany)
2010-08-07
The Ernst equation for Fourier transform nuclear magnetic resonance (MR) describes the spoiled steady-state signal created by periodic partial excitation. In MR imaging (MRI), it is commonly applied to spoiled gradient-echo acquisition in the steady state, created by a small flip angle {alpha} at a repetition time TR much shorter than the longitudinal relaxation time T{sub 1}. We describe two parameter transformations of {alpha} and TR/T{sub 1}, which render the Ernst equation as a low-order rational function. Computer algebra can be readily applied for analytically solving protocol optimization, as shown for the dual flip angle experiment. These transformations are based on the half-angle tangent substitution and its hyperbolic analogue. They are monotonic and approach identity for small {alpha} and small TR/T{sub 1} with a third-order error. Thus, the exact algebraization can be readily applied to fast gradient echo MRI to yield a rational approximation in {alpha} and TR/T{sub 1}. This reveals a fundamental relationship between the square of the flip angle and TR/T{sub 1} which characterizes the Ernst angle, constant degree of T{sub 1}-weighting and the influence of the local radio-frequency field.
International Nuclear Information System (INIS)
Tuite, M.J.; Yandow, D.R.; DeSmet, A.A.; Orwin, J.F.; Quintana, F.A.
1994-01-01
Most magnetic resonance (MR) studies evaluating the rotator cuff for tears have used T2-weighted imaging in the coronal oblique and sagittal oblique planes. T2 * -weighted gradient echo imaging, however, has advantages over spin echo imaging, including contiguous slices without cross-talk, high contrast around the cuff, and intrinsically shorter imaging times which can be used to increase the number of signals averaged and thus improve the signal-to-noise ratio. We reviewed the shoulder MR scans of 87 consecutive patients who underwent both a MR scan and a shoulder arthroscopy during which the size of tears, if present, was graded. The reviewers were blinded as to the history and arthroscopic results. The MR scans included oblique coronal T2 * -weighted gradient echo and oblique sagittal T2-weighted spin echo images. MR cuff grades were correlated with arthroscopic findings. For complete tears, the sensitivity of MR was 0.91 and the specificity 0.95. For partial tears, the sensitivity was 0.74 and the specificity 0.87. This accuracy is similar to two-plane T2-weighted imaging as previously reported in the literature. There was a statistically significant correlation (p < 0.0005) between the cuff grade as determined by MR and the arthroscopic findings. (orig.)
Liver iron content determined by MRI. Spin-echo vs. gradient-echo
Energy Technology Data Exchange (ETDEWEB)
Juchems, M.S.; Wunderlich, A.P. [Universitaetskliniken Ulm (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Cario, H. [Universitaetskliniken Ulm (Germany). Klinik fuer Kinder- und Jugendmedizin; Schmid, M. [Stadtspital Triemli, Zuerich (Switzerland). Medizinische Onkologie und Haematologie
2012-05-15
Purpose: Liver iron content (LIC) measurement plays a central role in the management of patients with transfusional iron overload. Calculating the LIC with data obtained from standardized MRI sequences represents an attractive alternative diagnostic possibility. The purpose of this study was to compare the LIC measurement obtained with gradient-echo (GRE) sequences to the mean liver proton transverse relaxation (R2) acquired with SE sequences. Materials and Methods: 68 patients with iron overload (median age: 24, range: 3 - 88) underwent 1.5 T MRI for liver iron content measurement. All patients received spin-echo (SE) and gradient-echo (GRE) sequences. Results: The two MRI methods revealed different liver iron content results although a significant correlation was found (r = 0.85, p < 0.001). Values evaluated using GRE sequences (median: 260 {mu}mol/g dry weight [d.w.], range: 6 - 732) were generally higher than those obtained by SE examinations (median: 161 {mu}mol /g d.w., range: 5 - 830). Conclusion: In conclusion, our study revealed different results for both MRI measurements, which could lead to different decisions concerning the management of chelation therapy in individual patients. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Tuite, M J [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); Yandow, D R [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); DeSmet, A A [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); Orwin, J F [Div. of Orthopedic Surgery, Univ. of Wisconsin, Madison, WI (United States); Quintana, F A [Dept. of Biostatistics, Univ. of Wisconsin, Madison, WI (United States)
1994-10-01
Most magnetic resonance (MR) studies evaluating the rotator cuff for tears have used T2-weighted imaging in the coronal oblique and sagittal oblique planes. T2{sup *}-weighted gradient echo imaging, however, has advantages over spin echo imaging, including contiguous slices without cross-talk, high contrast around the cuff, and intrinsically shorter imaging times which can be used to increase the number of signals averaged and thus improve the signal-to-noise ratio. We reviewed the shoulder MR scans of 87 consecutive patients who underwent both a MR scan and a shoulder arthroscopy during which the size of tears, if present, was graded. The reviewers were blinded as to the history and arthroscopic results. The MR scans included oblique coronal T2{sup *}-weighted gradient echo and oblique sagittal T2-weighted spin echo images. MR cuff grades were correlated with arthroscopic findings. For complete tears, the sensitivity of MR was 0.91 and the specificity 0.95. For partial tears, the sensitivity was 0.74 and the specificity 0.87. This accuracy is similar to two-plane T2-weighted imaging as previously reported in the literature. There was a statistically significant correlation (p < 0.0005) between the cuff grade as determined by MR and the arthroscopic findings. (orig.)
Gradient-echo imaging of intervertebral disk degeneration and facet joint disease
International Nuclear Information System (INIS)
Berns, D.H.; Kormos, D.; Modic, M.T.; Carter, J.; Masaryk, T.J.; Ross, J.S.
1988-01-01
The purpose of this study was to evaluate the accuracy of gradient-echo, partial-flip angle images in the evaluation of components of degenerative spine disease. First, cadaveric spines were studied with plain radiographs, high-resolution CT, T1-weighted spin-echo (SE) MR images (repetition time msec/echo time msec=500/17). T2-weighted SE images (2,000/30-90), and fast low-angle shot (FLASH) images (200/10.50 0 ) before and after intradiskal injection of air (0.1-1cc). Second, lumbar spine MR images were retrospectively evaluated to compare gradient-echo and SE sequences. Results indicate that the signal intensity changes of the intervertebral disk related to degeneration were best appreciated on T2-weighted SE studies in both groups. Vacuum phenomenon and calcification were most accurately assessed with FLASH imaging (based on susceptibility changes) and CT images. SE images appeared more sensitive to adjacent marrow change. In the facet joints, CT was more accurate for changes in the subarticular bone, but FLASH images were more sensitive to change in the articular cartilage
Fast-gradient-echo variable-flip-angle imaging of the cervical spine
International Nuclear Information System (INIS)
Van Dyke, C.W.; Ross, J.S.; Masaryk, T.J.; Tkach, J.; Beale, S.; Hueftle, M.G.; Kaufman, B.; Modic, M.T.
1987-01-01
Two hundred consecutive patients were studied with 4-mm sagittal and axial T1-weighted images and gradient echo sequences with 6-msec or 13-msec echo time (TE) and 10 0 or 60 0 flip angles to evaluate cervical extradural disease. Images were independently evaluated for contrast behavior and anatomy, then directly compared for conspicuity of lesions. FLASH sequences produced better conspicuity of disease in half the imaging time. T1-weighted spin-echo (SE) sequences were more sensitive to marrow changes and intradural disease. Shorter TEs produced overall image improvement and reduced susceptibility effects. A fast and sensitive cervical examination combines sagittal T1-weighted SE with sagittal and axial FLASH 10 0 sequences with 6-msec TE
Magnetization transfer contrast on gradient echo MR imaging of the temporomandibular joint
International Nuclear Information System (INIS)
Niitsu, M.; Hirohata, H.; Yoshioka, H.; Anno, I.; Campeau, N.G.; Itai, Y.
1995-01-01
Thirty-nine temporomandibular joints (TMJ) from 20 patients with suspected internal derangements were imaged by a 1.5 T MR imager. The on-resonance binomial magnetization transfer contrast (MTC) pulse was applied to gradient echo images with a dual receiver coil (9 s/section). With the use of an opening device, a series of sequential images were obtained at increments of mouth opening and closing. The tissue signal intensities with (Ms) and without (Mo) MTC were measured and subjective image analysis was performed. Compared with the standard images, MTC technique provided selective signal suppression of disks. The average of Ms/Mo ratio of the disks (0.56) was lower than that of the retrodiskal pad (0.79) and of the effusion (0.89). With MTC technique, fluid conspicuity was superior to standard image. However, no significant superiority was found in disk definition subjectively. (orig.)
Storage and manipulation of light using a Raman gradient-echo process
International Nuclear Information System (INIS)
Hosseini, M; Sparkes, B M; Campbell, G T; Lam, P K; Buchler, B C
2012-01-01
The gradient-echo memory (GEM) scheme has potential to be a suitable protocol for storage and retrieval of optical quantum information. In this paper, we review the properties of the Λ-GEM method that stores information in the ground states of three-level atomic ensembles via Raman coupling. The scheme is versatile in that it can store and re-sequence multiple pulses of light. To date, this scheme has been implemented using warm rubidium gas cells. There are different phenomena that can influence the performance of these atomic systems. We investigate the impact of atomic motion and four-wave mixing and present experiments that show how parasitic four-wave mixing can be mitigated. We also use the memory to demonstrate preservation of pulse shape and the backward retrieval of pulses. (paper)
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
International Nuclear Information System (INIS)
Yokoyama, Shunichi; Uomizu, Kenji; Kajiya, Yoriko; Tajitsu, Kenichiro; Kusumoto, Kazuhiro; Hirano, Hirofumi
2005-01-01
The incidence and characteristics of microbleeds in hemodialysis (HD) patients were investigated to elucidate the clinical significance with T 2 * -weighted gradient-echo magnetic resonance (MR) imaging. The 57 patients with chronic renal failure maintained by HD had no previous history of stroke. The control group consisted of 53 patients without previous history of stroke or chronic renal failure. The incidence and the number of microbleeds were assessed in the HD and control groups. The findings of microbleeds with T 2 * -weighted gradient-echo MR imaging were compared with those of T 1 - and T 2 -weighted MR imaging in HD patients. The incidence of microbleeds was significantly greater in the HD patients compared with the control patients. T 2 * -weighted gradient-echo imaging revealed a total of 44 microbleeds in 11 HD patients. T 2 -weighted imaging demonstrated 13 of 44 microbleeds as hyperintensity, whereas T 1 -weighted imaging demonstrated 12 lesions as hypointensity. T 2 - and T 1 -weighted imagings did not demonstrate any findings in 31 and 32 lesions, respectively. T 2 * -weighted gradient-echo MR imaging is effective to detect microbleeds which may be a predictor of intracerebral hemorrhage in HD patients and should be included in the protocol for the study of cerebrovascular disease, because T 2 - and T 1 -weighted MR imaging recognizes microbleeds as lacunar infarction. (author)
International Nuclear Information System (INIS)
Tsuchihashi, Toshio; Maki, Toshio; Suzuki, Takeshi
1997-01-01
The fast inversion recovery (fast IR) pulse sequence was evaluated. We compared the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence in which inversion time (TI) was established as equal to the water null point for the purpose of the water-suppressed T 2 -weighted image, with the fast short TI inversion recovery (fast STIR) pulse sequence in which TI was established as equal to the fat null point for purpose of fat suppression. In the fast FLAIR pulse sequence, the water null point was increased by making TR longer. In the FLAIR pulse sequence, the longitudinal magnetization contrast is determined by TI. If TI is increased, T 2 -weighted contrast improves in the same way as increasing TR for the SE pulse sequence. Therefore, images should be taken with long TR and long TI, which are longer than TR and longer than the water null point. On the other hand, the fat null point is not affected by TR in the fast STIR pulse sequence. However, effective TE was affected by variation of the null point. This increased in proportion to the increase in effective TE. Our evaluation indicated that the fast STIR pulse sequence can control the extensive signals from fat in a short time. (author)
Directory of Open Access Journals (Sweden)
Jie Wen
2015-01-01
Full Text Available Cortical gray matter (GM damage is now widely recognized in multiple sclerosis (MS. The standard MRI does not reliably detect cortical GM lesions, although cortical volume loss can be measured. In this study, we demonstrate that the gradient echo MRI can reliably and quantitatively assess cortical GM damage in MS patients using standard clinical scanners. High resolution multi-gradient echo MRI was used for regional mapping of tissue-specific MRI signal transverse relaxation rate values (R2* in 10 each relapsing–remitting, primary-progressive and secondary-progressive MS subjects. A voxel spread function method was used to correct artifacts induced by background field gradients. R2* values from healthy controls (HCs of varying ages were obtained to establish baseline data and calculate ΔR2* values – age-adjusted differences between MS patients and HC. Thickness of cortical regions was also measured in all subjects. In cortical regions, ΔR2* values of MS patients were also adjusted for changes in cortical thickness. Symbol digit modalities (SDMT and paced auditory serial addition (PASAT neurocognitive tests, as well as Expanded Disability Status Score, 25-foot timed walk and nine-hole peg test results were also obtained on all MS subjects. We found that ΔR2* values were lower in multiple cortical GM and normal appearing white matter (NAWM regions in MS compared with HC. ΔR2* values of global cortical GM and several specific cortical regions showed significant (p < 0.05 correlations with SDMT and PASAT scores, and showed better correlations than volumetric measures of the same regions. Neurological tests not focused on cognition (Expanded Disability Status Score, 25-foot timed walk and nine-hole peg tests showed no correlation with cortical GM ΔR2* values. The technique presented here is robust and reproducible. It requires less than 10 min and can be implemented on any MRI scanner. Our results show that quantitative tissue-specific R2
Signal changes in gradient echo images of human brain induced by hypo- and hyperoxia
DEFF Research Database (Denmark)
Rostrup, Egill; Larsson, H B; Toft, P B
1995-01-01
The effect of hypoxia (inspired oxygen fraction, FiO2 of 10% and 16%) and hyperoxia (FiO2) of 100%) on gradient echo images of the brain using long echo times was investigated in six healthy volunteers (age 24-28 years). Different flip angles were used with an FiO2 of 10% to assess the importance...... of saturation effects. The total cerebral blood flow was measured by a phase mapping technique during normoxia as well as hypoxia (FiO2 of 10% and 16%) and hyperoxia (FiO2 of 50% and 100%). High relative signal changes were found, independently of the flip angle, with FiO2 of 10%. With a flip angle of 40...... degrees the values of delta R2* for cortical grey matter, central grey matter, white matter and the sagittal sinus were 0.79, 0.41, 0.26 and 3.00/s; with a flip angle of 10 degrees the corresponding values were 0.70, 0.37, 0.24 and 3.15/s. The total cerebral blood flow increased by 41% during inhalation...
Prognostic value of gradient echo T2* sequences for brain MR imaging in preterm infants
International Nuclear Information System (INIS)
Bruine, Francisca T. de; Berg-Huysmans, Annette A. van den; Buchem, Mark A. van; Grond, Jeroen van der; Steggerda, Sylke J.; Leijser, Lara M.; Rijken, Monique; Wezel-Meijler, Gerda van
2014-01-01
Gradient echo T2*-W sequences are more sensitive than T2-W spin-echo sequences for detecting hemorrhages in the brain. The aim of this study is to correlate presence of hemosiderin deposits in the brain of very preterm infants (gestational age 6 non-hemorrhagic punctate white matter lesions (PWML), cysts and/or ventricular dilatation. Six infants with post-hemorrhagic ventricular dilatation detected by US in the neonatal period were excluded. Infants were seen for follow-up at 2 years. Univariate and regression analysis assessed the relation between presence and location of hemosiderin, white matter injury and neurodevelopmental outcome. In 38/95 (40%) of the infants, hemosiderin was detected. Twenty percent (19/95) of the infants were lost to follow-up. There was a correlation between hemosiderin in the ventricular wall with >6 PWML (P < 0.001) and cysts (P < 0.001) at term-equivalent age, and with a lower psychomotor development index (PDI) (P=0.02) at 2 years. After correcting for known confounders (gestational age, gender, intrauterine growth retardation and white matter injury), the correlation with PDI was no longer significant. The clinical importance of detecting small hemosiderin deposits is limited as there is no independent association with neurodevelopmental outcome. (orig.)
Evaluation of renal function with dynamic MRI-T2-weighted gradient echo technique
International Nuclear Information System (INIS)
Kato, Katsuya
1995-01-01
To evaluate the usefulness of dynamic MRI of kidneys in healthy volunteers and patients with different 24-hour creatinine clearance (Ccr) levels, a dynamic study that employed the T2 weighted gradient echo technique (FLASH: TR/TE=34/25 msec, flip angle= 20 degrees) with single images during breathhold was performed on 10 healthy volunteers and 35 patients, all examined for the Ccr and suspected of having renal parenchymal disease after a phantom study. T1-weighted and dynamic MR imagings were obtained with a 1.5T imager. I analyzed the time-intensity curve of renal cortex and medulla, and defined a cortex decreased ratio (CDR) and medulla decreased ratio (MDR) in comparison with the Ccr. The cortico-medullary difference ratio (CMDR) of T1WI was also compared with the Ccr. The parameters of the T2 dynamic MRI study (CDR, MDR) better correlated with the Ccr than CMDR. Renal function can be quantitatively evaluated with the T2 dynamic MRI and there is a possibility that we can qualitatively evaluate the renal dysfunction and estimate its cause. (author)
Optimizing the magnetization-prepared rapid gradient-echo (MP-RAGE sequence.
Directory of Open Access Journals (Sweden)
Jinghua Wang
Full Text Available The three-dimension (3D magnetization-prepared rapid gradient-echo (MP-RAGE sequence is one of the most popular sequences for structural brain imaging in clinical and research settings. The sequence captures high tissue contrast and provides high spatial resolution with whole brain coverage in a short scan time. In this paper, we first computed the optimal k-space sampling by optimizing the contrast of simulated images acquired with the MP-RAGE sequence at 3.0 Tesla using computer simulations. Because the software of our scanner has only limited settings for k-space sampling, we then determined the optimal k-space sampling for settings that can be realized on our scanner. Subsequently we optimized several major imaging parameters to maximize normal brain tissue contrasts under the optimal k-space sampling. The optimal parameters are flip angle of 12°, effective inversion time within 900 to 1100 ms, and delay time of 0 ms. In vivo experiments showed that the quality of images acquired with our optimal protocol was significantly higher than that of images obtained using recommended protocols in prior publications. The optimization of k-spacing sampling and imaging parameters significantly improved the quality and detection sensitivity of brain images acquired with MP-RAGE.
MRI of bone marrow: opposed-phase gradient-echo sequences with long repetition time
International Nuclear Information System (INIS)
Seiderer, M.; Staebler, A.; Wagner, H.
1999-01-01
Signal intensity for opposed-phase gradient-echo (GE) sequences of tissues composed of fat- and water-equivalent cells such as red bone marrow is extremely sensitive to variation of the ratio of both cell populations (fat-to-water ratio Q F/W ). Because most bone marrow pathology results in variation of Q F/W , GE sequences are characterized by high-contrast imaging of pathology. The aim of this study was to evaluate the influence of TR, TE, FA, Q F/W and histology on signal intensity. Signal intensity of opposed-phase GE sequences as a function of TR, TE, FA, and Q F/W was measured for a fat-water phantom and cadaver specimens of normal bone marrow (red and yellow) and pathological bone marrow (tumors). All specimens were correlated to histology. Opposed-phase GE imaging of red bone marrow pathology results in low-signal-intensity imaging of intact red bone marrow and high-signal-intensity positive contrast imaging of pathology associated with a change in Q F/W . In first-order approximation the signal intensity of pathology is linearly correlated to the change in Q F/W . Opposed-phase GE imaging is a sensitive imaging technique for red bone marrow pathology. Relative contrast of red bone marrow pathology is similar to fat-suppressed imaging techniques. Acquisition time is identical to T1-weighted SE sequences. (orig.)
Parameter Optimization for Quantitative Signal-Concentration Mapping Using Spoiled Gradient Echo MRI
Directory of Open Access Journals (Sweden)
Gasser Hathout
2012-01-01
Full Text Available Rationale and Objectives. Accurate signal to tracer concentration maps are critical to quantitative MRI. The purpose of this study was to evaluate and optimize spoiled gradient echo (SPGR MR sequences for the use of gadolinium (Gd-DTPA as a kinetic tracer. Methods. Water-gadolinium phantoms were constructed for a physiologic range of gadolinium concentrations. Observed and calculated SPGR signal to concentration curves were generated. Using a percentage error determination, optimal pulse parameters for signal to concentration mapping were obtained. Results. The accuracy of the SPGR equation is a function of the chosen MR pulse parameters, particularly the time to repetition (TR and the flip angle (FA. At all experimental values of TR, increasing FA decreases the ratio between observed and calculated signals. Conversely, for a constant FA, increasing TR increases this ratio. Using optimized pulse parameter sets, it is possible to achieve excellent accuracy (approximately 5% over a physiologic range of concentration tracer concentrations. Conclusion. Optimal pulse parameter sets exist and their use is essential for deriving accurate signal to concentration curves in quantitative MRI.
Energy Technology Data Exchange (ETDEWEB)
Jang, Kyung Mi; Kim, Seong Hyun; Choi, Dongil; Lee, Soon Jin; Rhim, Hyunchul; Park, Min Jung (Depts. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)), email: kshyun@skku.edu
2011-10-15
Background The use of oral contrast has been essential for the identification of a normal appendix on MR imaging during pregnancy. However, stool could be used as a positive oral contrast as it is characterized by a relatively high signal on T1-weighted imaging, and 3D T1-weighted gradient-echo (T1W-GRE) MR imaging has been used to evaluate 3 mm diameter intestines in fetuses. Purpose To evaluate the added value of 3D T1W-GRE MR imaging in combination with T2-weighted imaging (T2WI) compared to T2WI alone for evaluating the appendix during pregnancy. Material and Methods Eighteen consecutive pregnant patients who were clinically suspected of having acute appendicitis underwent appendix MR imaging which included T2WI with or without spectral presaturation attenuated inversion-recovery (SPAIR) fat suppression, and 3D T1W-GRE with SPAIR fat suppression. Two radiologists reviewed the two image sets (the T2WI set and the combined set of T2WI and 3D T1W-GRE images). Pathologic and clinical results served as the reference standard. The differences in the degree of visibility of the appendix and confidence scale for diagnosing acute appendicitis between two image sets were compared by using the paired Wilcoxon signed rank test. Results For both reviewers, the degree of visibility of the appendix using the combined T2WI and 3D T1W-GRE images was significantly higher than using T2WI alone (P < 0.01), and the confidence levels for acute appendicitis using combined T2WI and 3D T1W-GRE images were significantly different from those using T2WI alone (P < 0.01). In the 13 patients with a normal appendix, both reviewers showed improved confidence levels for appendicitis using combined T2WI and 3D T1W-GRE images than T2WI alone. Conclusion Adding 3D T1W-GRE images to T2WI is helpful for identification of the appendix, as compared to T2WI alone in pregnant women without ingestion of oral contrast material. This may improve diagnostic confidence for acute appendicitis in pregnant
Mapping brain activity in gradient-echo functional MRI using principal component analysis
Khosla, Deepak; Singh, Manbir; Don, Manuel
1997-05-01
The detection of sites of brain activation in functional MRI has been a topic of immense research interest and many technique shave been proposed to this end. Recently, principal component analysis (PCA) has been applied to extract the activated regions and their time course of activation. This method is based on the assumption that the activation is orthogonal to other signal variations such as brain motion, physiological oscillations and other uncorrelated noises. A distinct advantage of this method is that it does not require any knowledge of the time course of the true stimulus paradigm. This technique is well suited to EPI image sequences where the sampling rate is high enough to capture the effects of physiological oscillations. In this work, we propose and apply tow methods that are based on PCA to conventional gradient-echo images and investigate their usefulness as tools to extract reliable information on brain activation. The first method is a conventional technique where a single image sequence with alternating on and off stages is subject to a principal component analysis. The second method is a PCA-based approach called the common spatial factor analysis technique (CSF). As the name suggests, this method relies on common spatial factors between the above fMRI image sequence and a background fMRI. We have applied these methods to identify active brain ares during visual stimulation and motor tasks. The results from these methods are compared to those obtained by using the standard cross-correlation technique. We found good agreement in the areas identified as active across all three techniques. The results suggest that PCA and CSF methods have good potential in detecting the true stimulus correlated changes in the presence of other interfering signals.
Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer
International Nuclear Information System (INIS)
Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won
1997-01-01
To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20
Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer
Energy Technology Data Exchange (ETDEWEB)
Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)
1997-10-01
To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20.
MRI of the cervical spine with 3D gradient echo sequence at 3 T: initial experience
International Nuclear Information System (INIS)
Xiao, L.; Siu, C.W.J.; Yeung, K.; Leung, A.; Yuen, M.K.; Wong, Y.C.
2015-01-01
Aim: The aim of this study was to compare three-dimensional (3D) high resolution T2*-weighted gradient echo (3D FFE) magnetic resonance (MR) sequence with conventional 2D T2-weighted turbo spin echo (TSE) MR sequence for imaging of the cervical spine, especially to assess the detectability of the internal anatomy of the cervical spinal cord, i.e. to distinguish the grey and white matter. Methods: Fifteen volunteers were examined at 3.0T MR unit. Signal-to-noise (SNR), contrast-to-noise (CNR) and image homogeneity were evaluated. In the visual analysis, the visibility of anatomical structures of the cervical spine and artifacts were assessed. The nonparametric method of paired sample t-test was adopted to evaluate the differences between the sequences. Results: The 3D FFE sequence provided better results for CNR, cerebrospinal fluid (CSF) versus white matter, grey matter, disk and bone. Moreover, it yielded good results for the CNR grey matter versus white matter. The butterfly-shaped “H” is clearly displayed in the 3D FFE sequence. The statistical analysis revealed the statistically significant difference between the 2D TSE and 3D FFE sequences for the contrast of CSF versus spinal cord (both grey matter and white matter). Conclusion: The 3D FFE sequence in MR imaging of the cervical spinal cord is superior in delineation of spinal cord anatomical structures compared to 2D TSE sequence. -- Highlights: •We investigate the potential of 3D FFE sequence to distinguish the grey-white of the cervical spinal cord at 3T MRI system. •We optimized The 3D FFE sequence was optimized to increase the grey-white contrast. •Utilizing medium TE for T2W and the shortest TR for reduction of susceptibility related artifacts and motion artefacts. •This technique may increase the confidence in the diagnosis of disease with the improved delineation of cord anatomy
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
International Nuclear Information System (INIS)
Schroer, Bert; Freie Universitaet, Berlin
2005-02-01
It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)
Two-dimensional ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)
2000-03-31
The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)
International Nuclear Information System (INIS)
Reiser, M.F.; Bongartz, G.; Erlemann, R.; Gaebert, K.; Stoeber, U.; Peters, P.E.; Strobel, M.; Pauly, T.
1988-01-01
Diagnosis of chondromalacia of the patellofemoral joint using three-dimensional gradient-echo sequences was investigated in 41 patients, with arthroscopic verification in 25 patients. In vitro examinations in human caderveric patellae were performed in order to determine optimal imaging parameters. FLASH (T R =40 ms, T E =10 ms, flip angle=30 0 ) and FISP (T R =40 ms, T E =10 ms, flip angle=40 0 ) were used in clinical studies. The therapeutically relevant differentiation of major and minor degrees of chondromalacia seems to be possible. 30 0 FLASH-images in the axial plane proved to be the most efficacious technique for the diagnosis of chondromalacia. (orig./GDG)
MRI of the breast with 2D spin-echo and gradient echo sequences in diagnostically difficult cases
International Nuclear Information System (INIS)
Allgayer, B.; Lukas, P.; Loos, W.; Kersting-Sommerhoff, B.
1993-01-01
One or both breasts of 296 patients with equivocal clinical or mammographical findings were examined with MRI. T 1 weighted spinecho (SE) and gradient echo (FFE) sequences were acquired before and after i.v. application of Gadolinium DTPA. 50 lesions with enhancement after Gd-DTPA were biopsied -26 carcinomas, 17 proliferating mastopathic tissues, 5 fibroadenomas and 1 abscess were found. Contrast enhanced MRI with 2D-SE and FFE sequences is an effective technqiue for evaluating suspicious breast lesions with high diagnostic acurracy. (orig.) [de
DEFF Research Database (Denmark)
Fatnassi, Chemseddine; Boucenna, Rachid; Zaidi, Habib
2017-01-01
PURPOSE: In 3D gradient echo magnetic resonance imaging (MRI), strong field gradients B0macro are visually observed at air/tissue interfaces. At low spatial resolution in particular, the respective field gradients lead to an apparent increase in intravoxel dephasing, and subsequently, to signal...... loss or inaccurate R2* estimates. If the strong field gradients are measured, their influence can be removed by postprocessing. METHODS: Conventional corrections usually assume a linear phase evolution with time. For high macroscopic gradient inhomogeneities near the edge of the brain...
International Nuclear Information System (INIS)
Takahashi, Wakoh; Ide, Michiru; Ohnuki, Tomohide; Takagi, Shigeharu; Shinohara, Yukito
2004-01-01
The gradient-echo T 2 * -weighted sequence in magnetic resonance imaging is known to be useful for detecting microbleeds (MBs) in patients with intracranial hemorrhage or lacunar stroke. We investigated the characteristics of apparently healthy adults with MBs but without stroke, employing echo-planar gradient-echo T 2 * -weighted MRI. The subjects were recruited from among 3,537 participants who underwent brain check-ups at the HIMEDIC Imaging Center. Of the 3,537 participants, 3,296 (mean age, 55±11 years) without any history of cerebrovascular disease or apparent focal neurological manifestations were selected for the present study. MBs on echo-planar gradient-echo T 2 * -weighted MRI were observed in 74 (2.2%) of the 3,296 subjects. Of a total of 133 lesions found in these 74 persons, 31 were located in the basal ganglia or cortico-subcortical regions. Thirty were in the deep white matter, 19 in the thalamus, 16 in the cerebellum, and 6 in the brain stem. The subjects with MBs were significantly older than the subjects without MBs, and the mean values for their systolic and diastolic blood pressures were higher than those in the subjects without MBs. Asymptomatic cerebral infarction, periventricular hyperintensity, and deep and subcortical white matter hyperintensity on T 1 - and T 2 -weighted MRI were more frequent in the subjects with MBs, as compared with those without MBs. Asymptomatic cerebral infarction, periventricular hyperintensity, and deep and subcortical white matter hyperintensity on T 1 - and T 2 -weighted MRI were more frequent in the subjects with MBs of the basal ganglia or thalamus than in those with MBs in other regions. MBs on echo-planar gradient-echo T 2 * -weighted MRI were thus relatively rare in apparently healthy adults. However, MBs in the basal ganglia or thalamus are suggested to be closely related to intracerebral microangiopathy. Persons with MBs in such regions should therefore be carefully checked for cerebrovascular risk
Directory of Open Access Journals (Sweden)
J. De Reuck
2011-09-01
Full Text Available The present post-mortem study of a brain from an Alzheimer patient showed on a T2*-weighted gradient-echo 7.0-T MRI of a coronal brain section a hyposignal in the hippocampus, suggesting a microbleed. On the corresponding histological examination, only iron deposits around the granular cellular layer and in blood vessel walls of the hippocampus were observed without evidence of a bleeding. This case report illustrates that the detection of microbleeds on MRI has to be interpreted with caution.
Energy Technology Data Exchange (ETDEWEB)
Casselman, J.W. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium); Kuhweide, R. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); Ampe, W. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); D`Hont, G.D. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); Offeciers, E.F. [ENT Dept., Sint-Augustinus Medical Inst., Univ. of Antwerp (Belgium); Faes, W.K. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium); Pattyn, G. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium)
1996-04-01
The sensitivity of different MRI sequences in the detection of inner ear malformations in patients presenting with sensorineural hearing loss (SNHL) and/or vertigo was evaluated. We studied 650 patients presenting with SNHL and/or vertigo, clinically not suspected of having inner ear malformations. The sensitivity of T1-weigted, Gd-enhanced T1-weighted and (when available) T2-weighted spin-echo images, and three-dimensional Fourier transformation-constructive interference in steady state (3DFT-CISS) gradient-echo images, to unexpected malformations was assessed. Inner ear malformations were found in 15 (2.3%) of these patients. Enlargement of the endolymphatic duct and sac was the most frequent malformation, found in 11 patients. The 3DFT-CISS images showed all lesions; the other sequences were less sensitive and the pathology was missed, partially or only retrospectively seen in 11 of the 15 patients. Therefore, in addition to the routine unenhanced and Gd-enhanced T1-weighted and T2-weighted images, thin gradient-echo (3DFT-CISS) images are necessary to detect all clinically unexpected inner ear malformations in patients presenting with vertigo and/or SNHL. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Nolte-Ernsting, C.C.A.; Tacke, J.; Adam, G.B.; Haage, P.; Guenther, R.W. [Univ. of Technology, Aachen (Germany). Dept. of Diagnostic Radiology; Jung, P.; Jakse, G. [Univ. of Technology, Aachen (Germany). Dept. of Urology
2001-01-01
The aim of this study was to investigate the utility of different gadolinium-enhanced T1-weighted gradient-echo techniques in excretory MR urography. In 74 urologic patients, excretory MR urography was performed using various T1-weighted gradient-echo (GRE) sequences after injection of gadolinium-DTPA and low-dose furosemide. The examinations included conventional GRE sequences and echo-planar imaging (GRE EPI), both obtained with 3D data sets and 2D projection images. Breath-hold acquisition was used primarily. In 20 of 74 examinations, we compared breath-hold imaging with respiratory gating. Breath-hold imaging was significantly superior to respiratory gating for the visualization of pelvicaliceal systems, but not for the ureters. Complete MR urograms were obtained within 14-20 s using 3D GRE EPI sequences and in 20-30 s with conventional 3D GRE sequences. Ghost artefacts caused by ureteral peristalsis often occurred with conventional 3D GRE imaging and were almost completely suppressed in EPI sequences (p < 0.0001). Susceptibility effects were more pronounced on GRE EPI MR urograms and calculi measured 0.8-21.7% greater in diameter compared with conventional GRE sequences. Increased spatial resolution degraded the image quality only in GRE-EPI urograms. (orig.)
International Nuclear Information System (INIS)
Casselman, J.W.; Kuhweide, R.; Ampe, W.; D'Hont, G.D.; Offeciers, E.F.; Faes, W.K.; Pattyn, G.
1996-01-01
The sensitivity of different MRI sequences in the detection of inner ear malformations in patients presenting with sensorineural hearing loss (SNHL) and/or vertigo was evaluated. We studied 650 patients presenting with SNHL and/or vertigo, clinically not suspected of having inner ear malformations. The sensitivity of T1-weigted, Gd-enhanced T1-weighted and (when available) T2-weighted spin-echo images, and three-dimensional Fourier transformation-constructive interference in steady state (3DFT-CISS) gradient-echo images, to unexpected malformations was assessed. Inner ear malformations were found in 15 (2.3%) of these patients. Enlargement of the endolymphatic duct and sac was the most frequent malformation, found in 11 patients. The 3DFT-CISS images showed all lesions; the other sequences were less sensitive and the pathology was missed, partially or only retrospectively seen in 11 of the 15 patients. Therefore, in addition to the routine unenhanced and Gd-enhanced T1-weighted and T2-weighted images, thin gradient-echo (3DFT-CISS) images are necessary to detect all clinically unexpected inner ear malformations in patients presenting with vertigo and/or SNHL. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Reiser, M.F.; Bongartz, G.; Erlemann, R.; Gaebert, K.; Stoeber, U.; Peters, P.E.; Strobel, M.; Pauly, T.
1988-10-01
Diagnosis of chondromalacia of the patellofemoral joint using three-dimensional gradient-echo sequences was investigated in 41 patients, with arthroscopic verification in 25 patients. In vitro examinations in human caderveric patellae were performed in order to determine optimal imaging parameters. FLASH (T/sub R/=40 ms, T/sub E/=10 ms, flip angle=30/sup 0/) and FISP (T/sub R/=40 ms, T/sub E/=10 ms, flip angle=40/sup 0/) were used in clinical studies. The therapeutically relevant differentiation of major and minor degrees of chondromalacia seems to be possible. 30/sup 0/ FLASH-images in the axial plane proved to be the most efficacious technique for the diagnosis of chondromalacia. (orig./GDG).
Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI
DEFF Research Database (Denmark)
Nunes, Daniel; Cruz, Tomás L; Jespersen, Sune N
2017-01-01
available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time...... the quantitative results are compared against ground-truth histology, they seem to reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing......-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures – such as axons and extra-axonal spaces, which we here used in a simple model for the microstructure – and that, for axons parallel to the main magnetic field...
Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Koichi; Onishi, Takaaki; Nishijo, Hisao
2016-10-01
Magnetic resonance elastography (MRE) can measure tissue stiffness quantitatively and noninvasively. Supraspinatus muscle injury is a significant problem among throwing athletes. The purpose of this study was to develop an MRE technique for application to the supraspinatus muscle by using a conventional magnetic resonance imaging (MRI). MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 100Hz pneumatic vibration. A custom-designed vibration pad was used as a pneumatic transducer in order to adapt to individual shoulder shapes. In a gradient-echo type multi-echo MR sequence, without motion encoding gradient (MEG) that synchronizes with vibrations, bipolar readout gradient lobes achieved a similar function to MEG (MEG-like effect). In other words, a dedicated MRE sequence (built-in MEG) is not always necessary for MRE. In this study, 7 healthy volunteers underwent MRE. We investigated the effects of direction of the MEG-like effect and selected imaging planes on the patterns of wave propagation (wave image). The results indicated that wave images showed clear wave propagation on a condition that the direction of the MEG-like effect was nearly perpendicular to the long axis of the supraspinatus muscle, and that the imaging plane was superior to the proximal supraspinatus muscle. This limited condition might be ascribed to specific features of fibers in the supraspinatus muscle and wave reflection from the boundaries of the supraspinous fossa. The mean stiffness of the supraspinatus muscle was 10.6±3.17kPa. Our results demonstrated that using MRE, our method can be applied to the supraspinatus muscle by using conventional MRI. Copyright © 2016 Elsevier Inc. All rights reserved.
Kreeftenberg, HG; Mooyaart, EL; Sluiter, WJ; Kreeftenberg, HG; Huizenga, Reint
Background: The aim of the study was to quantify hepatic iron by MRI for practical use. Methods: In twenty-three patients with various degrees of iron overload, measurements were carried out with a 1.5 Tesla MR unit. A combination of pulse sequences (T1, T2 and gradient echo) enabled us to quantify
International Nuclear Information System (INIS)
Mulkern, Robert V.; Voss, Stephan; Loeb Salsberg, Sandra; Krauel, Marta Ramon; Ludwig, David S.
2008-01-01
With the increase in obese and overweight children, nonalcoholic fatty liver disease has become more prevalent in the pediatric population. Appreciating subtleties of magnetic resonance (MR) signal intensity behavior from fatty livers under different imaging conditions thus becomes important to pediatric radiologists. We report an initially confusing signal behavior - increased signal from fatty livers when fat-suppression pulses are applied in an opposed-phase gradient echo imaging sequence - and seek to explain the physical mechanisms for this paradoxical signal intensity behavior. Abdominal MR imaging at 3 T with a 3-D volumetric interpolated breath-hold (VIBE) sequence in the opposed-phase condition (TR/TE 3.3/1.3 ms) was performed in five obese boys (14±2 years of age, body mass index >95th percentile for age and sex) with spectroscopically confirmed fatty livers. Two VIBE acquisitions were performed, one with and one without the use of chemical shift selective (CHESS) pulse fat suppression. The ratios of fat-suppressed over non-fat-suppressed signal intensities were assessed in regions-of-interest (ROIs) in five tissues: subcutaneous fat, liver, vertebral marrow, muscle and spleen. The boys had spectroscopically estimated hepatic fat levels between 17% and 48%. CHESS pulse fat suppression decreased subcutaneous fat signals dramatically, by more than 85% within regions of optimal fat suppression. Fatty liver signals, in contrast, were elevated by an average of 87% with CHESS pulse fat suppression. Vertebral marrow signal was also significantly elevated with CHESS pulse fat suppression, while spleen and muscle signals demonstrated only small signal increases on the order of 10%. We demonstrated that CHESS pulse fat suppression actually increases the signal intensity from fatty livers in opposed-phase gradient echo imaging conditions. The increase can be attributed to suppression of one partner of the opposed-phase pair that normally contributes to the
Energy Technology Data Exchange (ETDEWEB)
Mulkern, Robert V.; Voss, Stephan [Harvard Medical School, Department of Radiology, Children' s Hospital Boston, Boston, MA (United States); Loeb Salsberg, Sandra; Krauel, Marta Ramon; Ludwig, David S. [Harvard Medical School, Department of Medicine, Children' s Hospital Boston, Boston, MA (United States)
2008-10-15
With the increase in obese and overweight children, nonalcoholic fatty liver disease has become more prevalent in the pediatric population. Appreciating subtleties of magnetic resonance (MR) signal intensity behavior from fatty livers under different imaging conditions thus becomes important to pediatric radiologists. We report an initially confusing signal behavior - increased signal from fatty livers when fat-suppression pulses are applied in an opposed-phase gradient echo imaging sequence - and seek to explain the physical mechanisms for this paradoxical signal intensity behavior. Abdominal MR imaging at 3 T with a 3-D volumetric interpolated breath-hold (VIBE) sequence in the opposed-phase condition (TR/TE 3.3/1.3 ms) was performed in five obese boys (14{+-}2 years of age, body mass index >95th percentile for age and sex) with spectroscopically confirmed fatty livers. Two VIBE acquisitions were performed, one with and one without the use of chemical shift selective (CHESS) pulse fat suppression. The ratios of fat-suppressed over non-fat-suppressed signal intensities were assessed in regions-of-interest (ROIs) in five tissues: subcutaneous fat, liver, vertebral marrow, muscle and spleen. The boys had spectroscopically estimated hepatic fat levels between 17% and 48%. CHESS pulse fat suppression decreased subcutaneous fat signals dramatically, by more than 85% within regions of optimal fat suppression. Fatty liver signals, in contrast, were elevated by an average of 87% with CHESS pulse fat suppression. Vertebral marrow signal was also significantly elevated with CHESS pulse fat suppression, while spleen and muscle signals demonstrated only small signal increases on the order of 10%. We demonstrated that CHESS pulse fat suppression actually increases the signal intensity from fatty livers in opposed-phase gradient echo imaging conditions. The increase can be attributed to suppression of one partner of the opposed-phase pair that normally contributes to the
Energy Technology Data Exchange (ETDEWEB)
Harada, Yuko; Tokuda, Osamu; Matsunaga, Naofumi [Yamaguchi University Graduate School of Medicine, Department of Radiology, Yamaguchi (Japan); Fukuda, Kouji [Shunan Memorial Hospital, Division of Radiological Technology, Yamaguchi (Japan); Shiraishi, Gen; Motomura, Tetsuhisa [Shunan Memorial Hospital, Department of Orthopedics Surgery, Yamaguchi (Japan); Kimura, Motoichi [Customer Application Gr., GE Healthcare MR Sales and Marketing Department, Osaka (Japan)
2012-05-15
To examine whether the femoral trochlear groove angle (TGA) is a determinant of the patellar cartilage volume and patellar cartilage damage. Patellar cartilage was evaluated by MR imaging in 66 patients (22 males and 44 females) with knee pain. Fat-suppressed 3D spoiled gradient-echo images were used to calculate the cartilage volume and to grade the cartilage damage. The proximal and distal TGAs were measured from axial PD-weighted FSE MR images with fat suppression. For every increase in the TGA at the distal femur, the patellar cartilage volume was significantly increased by 6.07 x 10{sup -3} cm{sup 3} (95% CI: 1.27 x 10{sup -3}, 10.9 x 10{sup -3}) after adjustment for age, gender, and patellar bone volume (P < 0.05). The MR grade of medial patellar cartilage damage progressed as the distal TGA became narrower, although there was no significant correlation between the distal TGA and the MR grading of patellar cartilage damage. A more flattened distal TGA was associated with increased patellar cartilage volume. However, there was no association between TGA and patellar cartilage defects. (orig.)
Directory of Open Access Journals (Sweden)
Shingo Mitaki
2013-01-01
Full Text Available Cerebral venous thrombosis (CVT is an uncommon cause of stroke with diverse etiologies and varied clinical presentations. Because of variability in clinical presentation and neuroimaging, CVT remains a diagnostic challenge. Recently, some studies have highlighted the value of T2*-weighted gradient-echo MRI (T2*WI in the diagnosis of CVT. We report the case of a 79-year-old woman with CVT due to a hypercoagulable state associated with cancer. On the initial T2-weighted image (T2WI, there was a diffuse high-intensity lesion in the right thalamus, extending into the posterior limb of the internal capsule and midbrain. T2*WI showed diminished signal and enlargement of the right basilar vein and the vein of Galen. Even though there is a wide range of differential diagnoses in unilateral thalamic lesions, and a single thalamus lesion is a rare entity of CVT, based on T2*WI findings we could make an early diagnosis and perform treatment. Our case report suggests that T2*WI could detect thrombosed veins and be a useful method of early diagnosis in CVT.
International Nuclear Information System (INIS)
Yokoe, Toshio; Yoshida, Tazuka; Kobayashi, Nozomu; Nakamura, Yukihiro; Kubota, Kazuyuki
2005-01-01
Magnetic resonance imaging (MRI) has the potential to reveal residues of intracerabral hemorrhage (ICH) throughout life because of the high sensitivity for iron-containing compounds. Gradient-echo T2 * -weighted MR imaging (T2 * MRI) requiring short times for complete acquisition is known to detect small areas of signal loss without surrounding edema representing microbleeds (MBs). MBs in the basal ganglia including the thalami are suggested to be closely related to intracerebral atherosclerotic microangiopathy. We looked for more than 3 MBs in basal ganglia or thalamus of patients with and without episodes of previous ICH. Twelve patients with previous hemorrhagic stroke and 82 without were studied. Multiple MBs in those regions were significantly more frequent in patients with recurrent ICH. In addition, a 76-year-old woman with a history of hypertension was transferred to our hospital for treatment of head injury. She had multiple incidental old basal ganglionic and thalamic MBs. The patient had an asymptomatic primary ICH on computed tomography (CT) 3 months later. In conclusion, MR evidence of multiple MBs in the basal ganglia and thalamus might identify patients at a risk for new and recurrent ICH. Therefore, patients with multiple MBs in those regions should be treated for cerebrovascular risk factors, especially hypertension. Our results appear to confirm the utility of T2 * MRI in hemorrhagic stroke. (author)
International Nuclear Information System (INIS)
Neumann, K.; Hosten, N.; Venz, S.
1995-01-01
Opposed-phase gradient echo (GRE) MRI at 0.5 T was compared with T1-weighted GRE MRI and bone scintigraphy regarding the detection of malignant bone marrow infiltrates of the spine and pelvis. Seventeen control patients and 41 patients with suspected skeletal metastases were studied with plain and gadolinium-enhanced MRI. In the control group only a vertebral haemangioma showed contrast enhancement, while all metastases (confirmed histologically or by follow-up) were enhancing. Opposed-phase surface coil MRI showed a significantly higher contrast-to-noise ratio of 56 metastases than T1-weighted images. In 28 patients body coil opposed-phase MRI detected more metastatic foci of the spine and pelvis than did bone scintigraphy (84 vs 56). No scintigraphically visualised lesion was missed by MRI. In conclusion, body coil gadolinium-enhanced opposed-phase GRE MRI may be applied as a screening method for skeletal metastases of the spine and pelvis at intermediate field strengths. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Neumann, K. [Zentralinstitut fuer Roentgendiagnostik, Universitaetsklinikum Essen, Gesamthochschule Essen (Germany); Hosten, N. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany); Venz, S. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany)
1995-11-01
Opposed-phase gradient echo (GRE) MRI at 0.5 T was compared with T1-weighted GRE MRI and bone scintigraphy regarding the detection of malignant bone marrow infiltrates of the spine and pelvis. Seventeen control patients and 41 patients with suspected skeletal metastases were studied with plain and gadolinium-enhanced MRI. In the control group only a vertebral haemangioma showed contrast enhancement, while all metastases (confirmed histologically or by follow-up) were enhancing. Opposed-phase surface coil MRI showed a significantly higher contrast-to-noise ratio of 56 metastases than T1-weighted images. In 28 patients body coil opposed-phase MRI detected more metastatic foci of the spine and pelvis than did bone scintigraphy (84 vs 56). No scintigraphically visualised lesion was missed by MRI. In conclusion, body coil gadolinium-enhanced opposed-phase GRE MRI may be applied as a screening method for skeletal metastases of the spine and pelvis at intermediate field strengths. (orig.)
Detection and characterization with short TI inversion recovery MR imaging
Energy Technology Data Exchange (ETDEWEB)
Komata, Kaori (Nippon Medical School, Tokyo (Japan))
1994-10-01
Short TI inversion recovery magnetic resonance imaging (STIR-MRI) with spin echo (SE) T1- and T2-weighted images of the pelvis was investigated to evaluate its usefulness in detecting and characterizing endometriosis. Thirty-one women suspected of having the disease were studied in detail. MR findings with and without STIR-MRI were correlated with the results of laparotomy (27 women) and laparoscopy (4 women). Surgery revealed endometriosis in 29 women (17 ovarian chocolate cysts, 22 intestinal adhesions, 14 cul-de-sac obliterations and 12 adenomyosis). The other two women did not have endometriosis (uterine prolapse in one and submucosal leiomyoma in one). An ovarian chocolate cyst was diagnosed when a T1-elongated lesion showed shading, loculus or a low intensity rim on SE MR images, and a low intensity rim on STIR-MRI. Only 12 of the 17 chocolate cysts and neither of the two hemorrhagic corpus lutein cysts were correctly diagnosed on SE MR images, whereas 18 of these 19 cysts were correctly diagnosed because of the low intensity rim on STIR-MRI. In the pathological analysis, the rim was found to be a fibrous capsule and there were many macrophages which phagocytized hemosiderin. For the assessment of ovarian chocolate cysts, accuracy improved from 63.2% to 94.7%. As for the adhesion between the intestine and the uterus, specificity improved from 61.9% to 90.5% and accuracy improved from 67.7% to 93.5% when STRI-MRI was used. For the assessment of the cul-de-sac obliteration, accuracy improved from 67.7% to 83.8% although [chi][sup 2] analysis showed no significance. The major factors for the improved accuracy with STIR-MRI are the decrease of the motion artifact owing to the suppression of the fat signal, decreased chemical shift artifact and accurate differentiation of fat from hemorrhagic component. Therefore, STIR-MRI is a useful and reliable procedure and should be used together with SE T1-, T2-weighted images for the assessment of endometriosis. (author).
Detection and characterization with short TI inversion recovery MR imaging
International Nuclear Information System (INIS)
Komata, Kaori
1994-01-01
Short TI inversion recovery magnetic resonance imaging (STIR-MRI) with spin echo (SE) T1- and T2-weighted images of the pelvis was investigated to evaluate its usefulness in detecting and characterizing endometriosis. Thirty-one women suspected of having the disease were studied in detail. MR findings with and without STIR-MRI were correlated with the results of laparotomy (27 women) and laparoscopy (4 women). Surgery revealed endometriosis in 29 women (17 ovarian chocolate cysts, 22 intestinal adhesions, 14 cul-de-sac obliterations and 12 adenomyosis). The other two women did not have endometriosis (uterine prolapse in one and submucosal leiomyoma in one). An ovarian chocolate cyst was diagnosed when a T1-elongated lesion showed shading, loculus or a low intensity rim on SE MR images, and a low intensity rim on STIR-MRI. Only 12 of the 17 chocolate cysts and neither of the two hemorrhagic corpus lutein cysts were correctly diagnosed on SE MR images, whereas 18 of these 19 cysts were correctly diagnosed because of the low intensity rim on STIR-MRI. In the pathological analysis, the rim was found to be a fibrous capsule and there were many macrophages which phagocytized hemosiderin. For the assessment of ovarian chocolate cysts, accuracy improved from 63.2% to 94.7%. As for the adhesion between the intestine and the uterus, specificity improved from 61.9% to 90.5% and accuracy improved from 67.7% to 93.5% when STRI-MRI was used. For the assessment of the cul-de-sac obliteration, accuracy improved from 67.7% to 83.8% although χ 2 analysis showed no significance. The major factors for the improved accuracy with STIR-MRI are the decrease of the motion artifact owing to the suppression of the fat signal, decreased chemical shift artifact and accurate differentiation of fat from hemorrhagic component. Therefore, STIR-MRI is a useful and reliable procedure and should be used together with SE T1-, T2-weighted images for the assessment of endometriosis. (author)
Quantitative Magnetization Transfer Imaging in Human Brain at 3 T via Selective Inversion Recovery
Dortch, Richard D.; Li, Ke; Gochberg, Daniel F.; Welch, E. Brian; Dula, Adrienne N.; Tamhane, Ashish A.; Gore, John C.; Smith, Seth A.
2011-01-01
Quantitative magnetization transfer imaging yields indices describing the interactions between free water protons and immobile, macromolecular protons—including the macromolecular to free pool size ratio (PSR) and the rate of magnetization transfer between pools kmf. This study describes the first implementation of the selective inversion recovery quantitative magnetization transfer method on a clinical 3.0-T scanner in human brain in vivo. Selective inversion recovery data were acquired at 1...
Two-dimensional NMR spectrometry
International Nuclear Information System (INIS)
Farrar, T.C.
1987-01-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2
Quasi-two-dimensional holography
International Nuclear Information System (INIS)
Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.
1980-01-01
The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de
Kim, Seong-Eun; Roberts, John A; Eisenmenger, Laura B; Aldred, Booth W; Jamil, Osama; Bolster, Bradley D; Bi, Xiaoming; Parker, Dennis L; Treiman, Gerald S; McNally, J Scott
2017-02-01
Carotid artery imaging is important in the clinical management of patients at risk for stroke. Carotid intraplaque hemorrhage (IPH) presents an important diagnostic challenge. 3D magnetization prepared rapid acquisition gradient echo (MPRAGE) has been shown to accurately image carotid IPH; however, this sequence can be limited due to motion- and flow-related artifact. The purpose of this work was to develop and evaluate an improved 3D carotid MPRAGE sequence for IPH detection. We hypothesized that a radial-based k-space trajectory sequence such as "Stack of Stars" (SOS) incorporated with inversion recovery preparation would offer reduced motion sensitivity and more robust flow suppression by oversampling of central k-space. A total of 31 patients with carotid disease (62 carotid arteries) were imaged at 3T magnetic resonance imaging (MRI) with 3D IR-prep Cartesian and SOS sequences. Image quality was determined between SOS and Cartesian MPRAGE in 62 carotid arteries using t-tests and multivariable linear regression. Kappa analysis was used to determine interrater reliability. In all, 25 among 62 carotid plaques had carotid IPH by consensus from the reviewers on SOS compared to 24 on Cartesian sequence. Image quality was significantly higher with SOS compared to Cartesian (mean 3.74 vs. 3.11, P SOS acquisition yielded sharper image features with less motion (19.4% vs. 45.2%, P SOS (kappa = 0.89), higher than that of Cartesian (kappa = 0.84). By minimizing flow and motion artifacts and retaining high interrater reliability, the SOS MPRAGE has important advantages over Cartesian MPRAGE in carotid IPH detection. 1 J. Magn. Reson. Imaging 2017;45:410-417. © 2016 International Society for Magnetic Resonance in Medicine.
International Nuclear Information System (INIS)
Marti-Bonati, L.; Casillas, C.
1999-01-01
To compare the diagnostic reliability, the proportion of common diagnoses and the degree of agreement between the results of two magnetic resonance (MR) sequences in the diagnosis of lesions of the meniscus of the knee. One hundred consecutive patients were studied prospectively by MR (1,5 Teslas). All of them underwent T1-weighted spin-echo and T1 and T2-weighted gradient-echo sequences. The final diagnosis was based on the combined results of four imaging sequences. The sensitivity, specificity, positive predictive value (PPV) and negative predictive (NPV) in terms of the final diagnosis were calculated for each meniscus and MR technique. The chi.squared test and kappa test were employed for the statistical analysis. There were discrepancies between the final diagnosis and the spin-echo sequence in 4 cases and between the final diagnosis and the gradient-echo sequences in 5 Both spin-echo and gradient-echo sequences showed the same diagnostic reliabilities: sensitivity of 0.98, specificity of 0.99, PPV of 0.98 and NPV of 0.99. The correlation between the two sequences was highly significant (chi-squared, p < 0.001) with a very high rate of agreement (kappa=0.84). The two sequences can be considered equally reliable in the study of meniscal lesions. (Author) 7 refs
Energy Technology Data Exchange (ETDEWEB)
Murakami, Takamichi; Fujita, Norihiko; Harada, Koushi; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)
1989-07-01
Sixteen patients including 13 cases with disk herniation and 3 cases with spondylosis of lumbar spine were examined on a resistive MRI system operating at 0.1 T. All lesions were studied with both multiple spin echo (MSE) and low flip angle gradient echo (LF) techniques to evaluate which technique is more effective in detecting the disk degeneration and the indentation on subarachnoid space. MSE images were obtained with repetition time (TR) of 1100-1500 ms or cardiac gating, an echo time (TE) of 30, 60, 90, 120, 150, and 180 ms symmetrical 6 echoes, and total acquisition time of more than 281 sec. LF images were obtained with TR of 500, 250, and 100 ms, TE of 18 ms, a flip angle of 30 degree, and total acquisition time of 128 sec. Eleven lesions of spinal disk degeneration and 12 of indentation on subarachnoid space were detected with LF. On the other hand, 26 lesions of spinal disk degeneration and 38 of indentation on subarachnoid space were detected with MSE. Although the parameters of LF employed in this study were relatively effective to emphasize T2{sup *}-based contrast, the ability of LF in detection of spinal disk degeneration and indentation on subarachnoid space is less than that of MSE. Signal contrast to noise ratios for normal disk and degenerative disk, epidural-fat and disk herniated material, CSF and disk herniated material, and epidural-fat and CSF were less than 4 with LF, but more than 4 with MSE. This difference of contrast to noise ratio between MSE and LF was one of the main causes of the difference of the detection rate of spinal disk degeneration and indentation on subarachnoid space. (author).
Rinella, Mary E; McCarthy, Richard; Thakrar, Kiran; Finn, John Paul; Rao, Sambasiva M; Koffron, Alan J; Abecassis, Michael; Blei, Andres T
2003-08-01
In living liver donation, a fatty liver poses risks for both recipient and donor. Currently, liver biopsy is the standard for assessing the presence and extent of steatosis. The goals of this study were to correlate a steatosis index derived from magnetic resonance imaging (MRI) to the histologic grade on biopsy as well as to determine the topographic distribution of steatosis within the liver. We examined the ability of dual-echo, chemical shift gradient-echo MRI to predict the degree of steatosis on liver biopsy. A total of 22 subjects received both a liver biopsy and detailed MRI evaluation. These individuals included 15 potential living donors and 7 patients with nonalcoholic fatty liver disease. MRI steatosis index was then compared with histologic grade on liver biopsy. The topographic distribution of hepatic steatosis was determined from those subjects in whom MRI detected hepatic steatosis. The steatosis index had a positive correlation with grade of steatosis on liver biopsy (correlation coefficient, 0.84). There was no significant variation in the degree of steatosis among segments. A steatosis index of >0.2 had good positive and negative predictive value for the presence of significant steatosis (>15%) on biopsy. Our quantitative MRI protocol can predict the degree of hepatic steatosis when it is minimal to moderate, and may obviate the need for liver biopsy for the purpose of quantification of steatosis in living donors. Fat saturation added to the MRI protocol may further improve diagnostic accuracy. This technique may be applicable to the larger population with hepatic steatosis.
Two-dimensional metamaterial optics
International Nuclear Information System (INIS)
Smolyaninov, I I
2010-01-01
While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes
Two-dimensional flexible nanoelectronics
Akinwande, Deji; Petrone, Nicholas; Hone, James
2014-12-01
2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.
Two-dimensional topological photonics
Khanikaev, Alexander B.; Shvets, Gennady
2017-12-01
Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.
Two-dimensional thermofield bosonization
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.
2005-01-01
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized
Two-dimensional critical phenomena
International Nuclear Information System (INIS)
Saleur, H.
1987-09-01
Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
International Nuclear Information System (INIS)
Silagadze, Z.K.
2007-01-01
Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems
International Nuclear Information System (INIS)
Baudelet, Christine; Ansiaux, Reginald; Jordan, Benedicte F; Havaux, Xavier; Macq, Benoit; Gallez, Bernard
2004-01-01
T2*-weighted gradient-echo magnetic resonance imaging (T2*-weighted GRE MRI) was used to investigate spontaneous fluctuations in tumour vasculature non-invasively. FSa fibrosarcomas, implanted intramuscularly (i.m.) in the legs of mice, were imaged at 4.7 T, over a 30 min or 1 h sampling period. On a voxel-by-voxel basis, time courses of signal intensity were analysed using a power spectrum density (PSD) analysis to isolate voxels for which signal changes did not originate from Gaussian white noise or linear drift. Under baseline conditions, the tumours exhibited spontaneous signal fluctuations showing spatial and temporal heterogeneity over the tumour. Statistically significant fluctuations occurred at frequencies ranging from 1 cycle/3 min to 1 cycle/h. The fluctuations were independent of the scanner instabilities. Two categories of signal fluctuations were reported: (i) true fluctuations (TFV), i.e., sequential signal increase and decrease, and (ii) profound drop in signal intensity with no apparent signal recovery (SDV). No temporal correlation between tumour and contralateral muscle fluctuations was observed. Furthermore, treatments aimed at decreasing perfusion-limited hypoxia, such as carbogen combined with nicotinamide and flunarizine, decreased the incidence of tumour T2*-weighted GRE fluctuations. We also tracked dynamic changes in T2* using multiple GRE imaging. Fluctuations of T2* were observed; however, fluctuation maps using PSD analysis could not be generated reliably. An echo-time dependency of the signal fluctuations was observed, which is typical to physiological noise. Finally, at the end of T2*-weighted GRE MRI acquisition, a dynamic contrast-enhanced MRI was performed to characterize the microenvironment in which tumour signal fluctuations occurred in terms of vessel functionality, vascularity and microvascular permeability. Our data showed that TFV were predominantly located in regions with functional vessels, whereas SDV occurred in regions
Drobnitzky, Matthias; Klose, Uwe
2017-03-01
Magnetization-prepared rapid gradient-echo (MPRAGE) sequences are commonly employed for T1-weighted structural brain imaging. Following a contrast preparation radiofrequency (RF) pulse, the data acquisition proceeds under nonequilibrium conditions of the relaxing longitudinal magnetization. Variation of the flip angle can be used to maximize total available signal. Simulated annealing or greedy algorithms have so far been published to numerically solve this problem, with signal-to-noise ratios optimized for clinical imaging scenarios by adhering to a predefined shape of the signal evolution. We propose an unconstrained optimization of the MPRAGE experiment that employs techniques from resource allocation theory. A new dynamic programming solution is introduced that yields closed-form expressions for optimal flip angle variation. Flip angle series are proposed that maximize total transverse magnetization (Mxy) for a range of physiologic T1 values. A 3D MPRAGE sequence is modified to allow for a controlled variation of the excitation angle. Experiments employing a T1 contrast phantom are performed at 3T. 1D acquisitions without phase encoding permit measurement of the temporal development of Mxy. Image mean signal and standard deviation for reference flip angle trains are compared in 2D measurements. Signal profiles at sharp phantom edges are acquired to access image blurring related to nonuniform Mxy development. A novel closed-form expression for flip angle variation is found that constitutes the optimal policy to reach maximum total signal. It numerically equals previously published results of other authors when evaluated under their simplifying assumptions. Longitudinal magnetization (Mz) is exhaustively used without causing abrupt changes in the measured MR signal, which is a prerequisite for artifact free images. Phantom experiments at 3T verify the expected benefit for total accumulated k-space signal when compared with published flip angle series. Describing
Two dimensional infinite conformal symmetry
International Nuclear Information System (INIS)
Mohanta, N.N.; Tripathy, K.C.
1993-01-01
The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
-dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...
International Nuclear Information System (INIS)
Takeda, T.; Takeda, A.; Nagaoka, T.; Kunieda, E.; Takemasa, K.; Watanabe, M.; Hatou, T.; Oguro, S.; Katayama, M.
2008-01-01
Background: Precisely defining the number and location of brain metastases is very important for establishing a treatment strategy for malignancies. Although magnetic resonance imaging (MRI) is now considered the best modality, various improvements in sequences are still being made. Purpose: To prospectively compare the diagnostic ability of three-dimensional, magnetization-prepared rapid gradient-echo (3D MP-RAGE) imaging in detecting metastatic brain tumors, with that of two-dimensional spin-echo (2D SE) T1-weighted imaging. Material and Methods: A total of 123 examinations were included in this study, and 119 examinations from 88 patients with known malignancies were analyzed. All patients underwent T1- and T2-weighted 2D SE transverse imaging, followed by gadolinium-enhanced T1-weighted transverse and coronal 2D SE imaging and 3D MP-RAGE transverse imaging. Four radiologists interpreted the images to compare the accuracy and the time required for interpretation for each imaging. Results: 3D MP-RAGE imaging was significantly better than 2D SE imaging for detecting metastatic brain lesions, regardless of the readers' experience. The sensitivities of the 3D MP-RAGE and 2D SE imaging for all observers were 0.81 vs. 0.80 (P>0.05), specificities were 0.93 vs. 0.87 (P 0.05), and accuracies were 0.84 vs. 0.78 (P<0.05), respectively. There was no significant difference in the time required for image interpretation between the two modalities (15.6±4.0 vs. 15.4±4.1 min). Conclusion: 3D MP-RAGE imaging proved superior to 2D SE imaging in the detection of brain metastases
International Nuclear Information System (INIS)
Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro
2004-01-01
Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional capillary origami
International Nuclear Information System (INIS)
Brubaker, N.D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two dimensional solid state NMR
International Nuclear Information System (INIS)
Kentgens, A.P.M.
1987-01-01
This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs
Two-dimensional turbulent convection
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Consensus recommendations for MS cortical lesion scoring using double inversion recovery MRI
DEFF Research Database (Denmark)
Geurts, J J G; Roosendaal, S D; Calabrese, M
2011-01-01
Different double inversion recovery (DIR) sequences are currently used in multiple sclerosis (MS) research centers to visualize cortical lesions, making it difficult to compare published data. This study aimed to formulate consensus recommendations for scoring cortical lesions in patients with MS...
Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).
Goldfarb, James W
2010-04-01
The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.
Murphy, B J
2001-06-01
To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee.
International Nuclear Information System (INIS)
Murphy, B.J.
2001-01-01
Objective. To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee.Design and patients. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed.Results. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%.Conclusion. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee. (orig.)
International Nuclear Information System (INIS)
Uhl, M.; Allmann, K.H.; Hauer, M.P.; Langer, M.; Ihling, C.; Conca, W.
1998-01-01
Purpose. To assess the accuracy of different MR sequences for the detection of articular cartilage abnormalities in rheumatoid arthritis. Design and patients. Ten metacarpophalangeal joints and 10 metatarsophalangeal joints (specimens from arthritis patients undergoing ablative joint surgery) were examined with a fat-suppressed (FS) 3D FLASH, a FS 3D FISP, a FS 2D fast spin-echo T2-weighted, and a 2D FS spin-echo T1-weighted sequence. Each cartilage lesion and each cortical lesion was graded from 0 to 4 (modified Outerbridge staging system). Subsequently, the results of each sequence were compared with the macroscopic findings and statistically tested against each other. Results. The study shows that 3D gradient-echo sequences with fat suppression were best for imaging and grading of cartilage lesions in arthritis of the small joints of the hands and feet. Using 3D techniques, all grade 2, grade 3, and grade 4 lesions of cartilage or cortical bone were detected. Conclusion. FS 3D gradient-echo techniques were best for the detection and grading of hyaline cartilage and subchondral bone lesions in rheumatoid arthritis. MRI has a great potential as an objective method of evaluating cartilage damage and bone erosions in rheumatoid arthritis. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Murphy, B.J. [Dept. of Radiology, Univ. of Miami School of Medicine, FL (United States)
2001-06-01
Objective. To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee.Design and patients. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed.Results. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%.Conclusion. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Chandarana, Hersh; Block, Kai T.; Winfeld, Matthew J.; Lala, Shailee V.; Mazori, Daniel; Giuffrida, Emalyn; Babb, James S.; Milla, Sarah S. [New York University Langone Medical Center, Department of Radiology, New York, NY (United States)
2014-02-15
To compare the image quality of contrast-enhanced abdominopelvic 3D fat-suppressed T1-weighted gradient-echo imaging with radial and conventional Cartesian k-space acquisition schemes in paediatric patients. Seventy-three consecutive paediatric patients were imaged at 1.5 T with sequential contrast-enhanced T1-weighted Cartesian (VIBE) and radial gradient echo (GRE) acquisition schemes with matching parameters when possible. Cartesian VIBE was acquired as a breath-hold or as free breathing in patients who could not suspend respiration, followed by free-breathing radial GRE in all patients. Two paediatric radiologists blinded to the acquisition schemes evaluated multiple parameters of image quality on a five-point scale, with higher score indicating a more optimal examination. Lesion presence or absence, conspicuity and edge sharpness were also evaluated. Mixed-model analysis of variance was performed to compare radial GRE and Cartesian VIBE. Radial GRE had significantly (all P < 0.001) higher scores for overall image quality, hepatic edge sharpness, hepatic vessel clarity and respiratory motion robustness than Cartesian VIBE. More lesions were detected on radial GRE by both readers than on Cartesian VIBE, with significantly higher scores for lesion conspicuity and edge sharpness (all P < 0.001). Radial GRE has better image quality and lesion conspicuity than conventional Cartesian VIBE in paediatric patients undergoing contrast-enhanced abdominopelvic MRI. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Uhl, M.; Allmann, K.H.; Hauer, M.P.; Langer, M. [Department of Diagnostic Radiology, University Hospital Freiburg (Germany); Ihling, C. [Department of Pathology, University Hospital Freiburg, Freiburg (Germany); Conca, W. [Department of Rheumatology, University Hospital Freiburg (Germany)
1998-12-01
Purpose. To assess the accuracy of different MR sequences for the detection of articular cartilage abnormalities in rheumatoid arthritis. Design and patients. Ten metacarpophalangeal joints and 10 metatarsophalangeal joints (specimens from arthritis patients undergoing ablative joint surgery) were examined with a fat-suppressed (FS) 3D FLASH, a FS 3D FISP, a FS 2D fast spin-echo T2-weighted, and a 2D FS spin-echo T1-weighted sequence. Each cartilage lesion and each cortical lesion was graded from 0 to 4 (modified Outerbridge staging system). Subsequently, the results of each sequence were compared with the macroscopic findings and statistically tested against each other. Results. The study shows that 3D gradient-echo sequences with fat suppression were best for imaging and grading of cartilage lesions in arthritis of the small joints of the hands and feet. Using 3D techniques, all grade 2, grade 3, and grade 4 lesions of cartilage or cortical bone were detected. Conclusion. FS 3D gradient-echo techniques were best for the detection and grading of hyaline cartilage and subchondral bone lesions in rheumatoid arthritis. MRI has a great potential as an objective method of evaluating cartilage damage and bone erosions in rheumatoid arthritis. (orig.) With 5 figs., 19 refs.
International Nuclear Information System (INIS)
Hawighorst, H.; Schad, L.R.; Gademann, G.; Knopp, M.V.; Wenz, F.; Kaick, G. van
1995-01-01
The authors report on a 3D sequence for MRI of the brain and its application in radiosurgical treatment planning of 35 brain metastases. The measuring sequence, called magnetization - prepared rapid gradient echo (MPRAGE), was compared with 2D T1-weighted spin-echo (SE) sequences following intravenous contrast-medium application in 19 patients with brain metastases. The average diameter of all lesions was similar in both sequences, with 16.8 and 17.0 mm for SE and MPRAGE, respectively. Target point definition was equal in 29 metastases, and in 6 cases superior on MPRAGE, due to better gray-white matter contrast and increased contrast enhancement. In cases of bleeding metastases there was improved depiction of internal structures in 3D MRI. Postprocessing of 3D MPRAGE data created multiplanar reconstruction along any chosen plane with isotropic spatial resolution, which helped to improve radiosurgical isodose distribution in 4 cases when compared to 2D SE. However, sensitivity of 3D MPRAGE to detect small lesions (< 3 mm) was decreased in one patient with more than 50 metastases. We conclude that 3D gradient-echo (GE) imaging might be of great value for radiosurgical treatment planning, but does not replace 2D SE with its current parameters. (orig.)
Equilibrium: two-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7
International Nuclear Information System (INIS)
Drejer, J.; Thomsen, H.S.; Tanttu, J.
1995-01-01
49 patients underwent 53 examinations with both a traditional T1-weighted gradient-echo (PS) sequence and a new completely balanced steady-state 3-D (CBASS3D) sequence; 20 examinations included the cervical spine, 8 the thoracic spine and 25 the lumbar spine. All 106 examinations were reviewed twice regarding visibility of selected structures in the spinal region and diagnostic usefulness. The CBASS3D sequence delineated the medulla, nerve roots, CSF, the intervertebral discs and the posterior longitudinal ligament significantly better than the PS sequence. Disc hernia was also better visualised (p<0.01). There were significantly more artefacts on images obtained with the CBASS3D sequence, but they were usually outside the region of interest and occurred less frequently over time due to increased experience of the staff. Both reviewers found the diagnostic usefulness of CBASS3D to be superior compared to that of PS and excellent for diagnostic purposes. (orig./MG)
Energy Technology Data Exchange (ETDEWEB)
Drejer, J. [Dept. of Diagnostic Radiology, Herlev Hospital, Univ. Copenhagen (Denmark); Thomsen, H.S. [Dept. of Diagnostic Radiology, Herlev Hospital, Univ. Copenhagen (Denmark); Tanttu, J. [Picker Nordstar, Helsinki (Finland)
1995-09-01
49 patients underwent 53 examinations with both a traditional T1-weighted gradient-echo (PS) sequence and a new completely balanced steady-state 3-D (CBASS3D) sequence; 20 examinations included the cervical spine, 8 the thoracic spine and 25 the lumbar spine. All 106 examinations were reviewed twice regarding visibility of selected structures in the spinal region and diagnostic usefulness. The CBASS3D sequence delineated the medulla, nerve roots, CSF, the intervertebral discs and the posterior longitudinal ligament significantly better than the PS sequence. Disc hernia was also better visualised (p<0.01). There were significantly more artefacts on images obtained with the CBASS3D sequence, but they were usually outside the region of interest and occurred less frequently over time due to increased experience of the staff. Both reviewers found the diagnostic usefulness of CBASS3D to be superior compared to that of PS and excellent for diagnostic purposes. (orig./MG).
Energy Technology Data Exchange (ETDEWEB)
Zilkens, Christoph, E-mail: christoph.zilkens@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Miese, Falk, E-mail: falk.miese@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstraße 5, D-40225 Dusseldorf (Germany); Herten, Monika, E-mail: Moherten@web.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Kurzidem, Sabine, E-mail: sabine.kurzidem@uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Jäger, Marcus [Univ Essen, Medical Faculty, Department of Orthopaedic Surgery, D-45147 Essen (Germany); König, Dietmar, E-mail: Dietmarpierre.koenig@lvr.de [LVR Clinic for Orthopedic Surgery, D-41749 Viersen (Germany); Antoch, Gerald, E-mail: antoch@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstraße 5, D-40225 Dusseldorf (Germany); Krauspe, Rüdiger, E-mail: krauspe@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany); Bittersohl, Bernd, E-mail: bernd.bittersohl@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstraße 5, D-40225 Dusseldorf (Germany)
2013-02-15
Objective: To validate gradient-echo three-dimensional (3D) delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) by means of histological analyses in the assessment of hip joint cartilage. Materials and methods: Twenty-one femoral head specimens collected from 21 patients (7 males, 14 females, mean age: 60.9 ± 9.6 years; range: 37.6–77.3 years), who underwent total hip replacement for symptomatic hip joint osteoarthritis, underwent MRI and histological assessment. A region of 2 cm{sup 2} at the weight-bearing area was marked with four pins to enable multi-planar MRI reformatting to be matched with histological sections. MRI was performed at 3 T with a 3D double-echo steady-state (DESS) sequence for morphological cartilage assessment and 3D Volumetric Interpolated Breathhold Examination (VIBE) for T1{sub Gd} mapping. Histological sections were evaluated according to the Mankin score system. Total Mankin score, grade of toluidine staining (sensitive for glycosaminoglycan content) and a modified Mankin score classification system with four sub-groups of cartilage damage were correlated with MRI data. Results: Spearman's rho correlation analyses revealed a statistically significant correlation between T1{sub Gd} mapping and histological analyses in all categories including total Mankin score (r = −0.658, p-value ≤ 0.001), toluidine staining (r = −0.802, p-value < 0.001) and modified Mankin score (r = −0.716, p-value < 0.001). The correlation between morphological MRI and histological cartilage assessment was statistically significant but inferior to the biochemical cartilage MRI (r-values ranging from −0.411 to 0.525, p-values < 0.001). Conclusions: Gradient-echo dGEMRIC is reliable while offering the unique features of high image resolution and 3D biochemically sensitive MRI for the assessment of early cartilage degeneration.
Boyacioglu, R.; Schulz, J.; Müller, N.C.J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon
2014-01-01
A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo
Energy Technology Data Exchange (ETDEWEB)
Lee, So Yeon; Jee, Won-Hee; Kim, Sun Ki (Dept. of Radiology, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea)), e-mail: whjee@catholic.ac.kr; Koh, In-Jun (Dept. of Joint Reconstruction Center, Seoul National Univ. Bundang Hospital, Seoul (Korea)); Kim, Jung-Man (Dept. of Orthopedic Surgery, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea))
2010-05-15
Background: Fat-suppressed (FS) proton density (PD)-weighted magnetic resonance imaging (MRI) and FS three-dimensional (3D) gradient-echo imaging such as spoiled gradient-recalled (SPGR) sequence have been established as accurate methods for detecting articular cartilage defects. Purpose: To retrospectively compare the diagnostic efficacy between FS PD-weighted and FS 3D gradient-echo MRI for differentiating between grade 3 and grade 4 cartilage defects of the knee with arthroscopy as the standard of reference. Material and Methods: Twenty-one patients who had grade 3 or 4 cartilage defects in medial femoral condyle at arthroscopy and knee MRI were included in this study: grade 3, >50% cartilage defects; grade 4, full thickness cartilage defects exposed to the bone. Sagittal FS PD-weighted MR images and FS 3D gradient-echo images with 1.5 T MR images were independently graded for the cartilage abnormalities of medial femoral condyle by two musculoskeletal radiologists. Statistical analysis was performed by Fisher's exact test. Inter-observer agreement in grading of cartilage was assessed using ? coefficients. Results: Arthroscopy revealed grade 3 defects in 17 patients and grade 4 defects in 4 patients in medial femoral condyles. For FS 3D gradient-echo images grade 3 defects were graded as grade 3 (n=15) and grade 4 (n=2), and all grade 4 defects (n=4) were correctly graded. However, for FS PD-weighted MR images all grade 3 defects were misinterpreted as grade 1 (n=1) and grade 4 (n=16), whereas all grade 4 defects (n=4) were correctly graded. FS 3D gradient-echo MRI could differentiate grade 3 from grade 4 defects (P=0.003), whereas FS PD-weighted imaging could not (P=1.0). Inter-observer agreement was substantial (?=0.70) for grading of cartilage using FS PD-weighted imaging, whereas it was moderate (?=0.46) using FS 3D gradient-echo imaging. Conclusion: FS 3D gradient-echo MRI is more helpful for differentiating between grade 3 and grade 4 cartilage
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Inversion recovery RARE: Clinical application of T2-weighted CSF-suppressed rapid sequence
International Nuclear Information System (INIS)
Goetz, G.F.; Hennig, J.; Ziyeh, S.
1995-01-01
Inversion-Recovery RARE is a strongly T 2 -weighted fast sequence in which the CSF appears dark. This sequence was used in more than 100 patients. Retrospective analysis of 80 patients with cerebrovascular and inflammatory disease was carried out. The IR-RARE sequence proved to be particularly suitable for identifying small lesions in the neighbourhood of the subarachnoid space. We illustrate the typical contrast provided by this sequence, and describe its characteristics, exemplifying the advantages it offers for the diagnosis of multiple sclerosis, cerebral microangiopathy and brain infarction. (orig.) [de
Piezoelectricity in Two-Dimensional Materials
Wu, Tao; Zhang, Hua
2015-01-01
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards
Construction of two-dimensional quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Klimek, S.; Kondracki, W.
1987-12-01
We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.
Development of Two-Dimensional NMR
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...
International Nuclear Information System (INIS)
Chen Jun; Di Yujin; Bu Chunqing; Zhang Yanfeng; Li Shuhua
2012-01-01
Objective: To analyze the characteristics of double inversion recovery (DIR) turbo field echo (TFE) and turbo spin echo (TSE) sequences and explore the value of double inversion recovery TFE sequence on carotid artery wall imaging. Patients and methods: 56 patients (32 males and 24 females, aged 31–76 years with a mean age of 53 years) were performed with DIR TFE and DIR TSE T1 weighted imaging (T1WI) sequences on carotid artery bifurcations. Image quality acquired by different techniques were evaluated and scored by two physicians. Whether there is significant difference is determined by SPSS 11.0 software. Paired-samples t test was used for statistics. Results: There was no significant difference in the image quality scores between two sequences (t = 0.880, P = 0.383 > 0.05). Conclusions: DIR TFE sequence has short scanning time and high spatial resolution. DIR TFE sequence can be used as the preferred sequence for screening carotid atherosclerotic plaque compared with DIR TSE sequence.
Phase transitions in two-dimensional systems
International Nuclear Information System (INIS)
Salinas, S.R.A.
1983-01-01
Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt
International Nuclear Information System (INIS)
Matsunobu, Satosi; Amanuma, Makoto; Tsukuda, Shunji
2004-01-01
The purpose of this study was to evaluate the image quality and vascular selectivity of MR venography of the head using an magnetization prepared rapid gradient echo (MP-RAGE) technique when obtained with a body radiofrequency transmitter coil system. A total of 24 patients were imaged with a head or body radiofrequency (RF) transmission system. Subtraction MR angiography (MRA) was processed with 0.1 mmol Gd-DTPA administration, and signal-to-noise ratios of the vascular system were measured. Venous demonstration and selectivity were also assessed. MP-RAGE MR venography with a body transmission system showed almost the same signal intensity for the venous and arterial systems, resulting in nonspecific vascular demonstration, while the head transmission system showed semi-selective venograms owing to inflow-induced high signal on precontrast images. However, MRA with a body transmission system provided a 1.5- to 2.5-fold higher signal-to-noise ratios based on higher gradient performance and excellent demonstration of the head veins, especially those below the skull base. Although selective venography was difficult, MRA with a body transmission coil provided excellent vascular images of the brain. (author)
Energy Technology Data Exchange (ETDEWEB)
Kakite, Suguru, E-mail: sugkaki@med.tottori-u.ac.jp [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Fujii, Shinya [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kurosaki, Masamichi [Department of Neurosurgery, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kanasaki, Yoshiko; Matsusue, Eiji; Kaminou, Toshio; Ogawa, Toshihide [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan)
2011-07-15
Introduction: To clarify whether a three-dimensional-gradient echo (3D-GRE) or spin echo (SE) sequence is more useful for evaluating sellar lesions on contrast-enhanced T1-weighted MR imaging at 3.0 Tesla (T). Methods: We retrospectively assessed contrast-enhanced T1-weighted images using 3D-GRE and SE sequences at 3.0 T obtained from 33 consecutive patients with clinically suspected sellar lesions. Two experienced neuroradiologists evaluated the images qualitatively in terms of the following criteria: boundary edge of the cavernous sinus and pituitary gland, border of sellar lesions, delineation of the optic nerve and cranial nerves within the cavernous sinus, susceptibility and flow artifacts, and overall image quality. Results: At 3.0 T, 3D-GRE provided significantly better images than the SE sequence in terms of the border of sellar lesions, delineation of cranial nerves, and overall image quality; there was no significant difference regarding the boundary edge of the cavernous sinus and pituitary gland. In addition, the 3D-GRE sequence showed fewer pulsation artifacts but more susceptibility artifacts. Conclusion: Our results indicate that 3D-GRE is the more suitable sequence for evaluating sellar lesions on contrast-enhanced T1-weighted imaging at 3.0 T.
Directory of Open Access Journals (Sweden)
Allansdotter-Johnsson Ase
2009-01-01
Full Text Available Abstract Background Knowledge about age-specific normal values for left ventricular mass (LVM, end-diastolic volume (EDV, end-systolic volume (ESV, stroke volume (SV and ejection fraction (EF by cardiac magnetic resonance imaging (CMR is of importance to differentiate between health and disease and to assess the severity of disease. The aims of the study were to determine age and gender specific normal reference values and to explore the normal physiological variation of these parameters from adolescence to late adulthood, in a cross sectional study. Methods Gradient echo CMR was performed at 1.5 T in 96 healthy volunteers (11–81 years, 50 male. Gender-specific analysis of parameters was undertaken in both absolute values and adjusted for body surface area (BSA. Results Age and gender specific normal ranges for LV volumes, mass and function are presented from the second through the eighth decade of life. LVM, ESV and EDV rose during adolescence and declined in adulthood. SV and EF decreased with age. Compared to adult females, adult males had higher BSA-adjusted values of EDV (p = 0.006 and ESV (p Conclusion LV volumes, mass and function vary over a broad age range in healthy individuals. LV volumes and mass both rise in adolescence and decline with age. EF showed a rapid decline in adolescence compared to changes throughout adulthood. These findings demonstrate the need for age and gender specific normal ranges for clinical use.
Lam, Mie K; de Greef, Martijn; Bouwman, Job G; Moonen, Chrit T W; Viergever, Max A; Bartels, Lambertus W
2015-10-07
The multi-gradient echo MR thermometry (MGE MRT) method is proposed to use at the interface of the muscle and fat layers found in the abdominal wall, to monitor MR-HIFU heating. As MGE MRT uses fat as a reference, it is field-drift corrected. Relative temperature maps were reconstructed by subtracting absolute temperature maps. Because the absolute temperature maps are reconstructed of individual scans, MGE MRT provides the flexibility of interleaved mapping of temperature changes between two arbitrary time points. The method's performance was assessed in an ex vivo water bath experiment. An ex vivo HIFU experiment was performed to show the method's ability to monitor heating of consecutive HIFU sonications and to estimate cooling time constants, in the presence of field drift. The interleaved use between scans of a clinical protocol was demonstrated in vivo in a patient during a clinical uterine fibroid treatment. The relative temperature measurements were accurate (mean absolute error 0.3 °C) and provided excellent visualization of the heating of consecutive HIFU sonications. Maps were reconstructed of estimated cooling time constants and mean ROI values could be well explained by the applied heating pattern. Heating upon HIFU sonication and subsequent cooling could be observed in the in vivo demonstration.
Two-dimensional nuclear magnetic resonance spectroscopy
International Nuclear Information System (INIS)
Bax, A.; Lerner, L.
1986-01-01
Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures
Influence of crosstalk on the fast fluid attenuated inversion recovery pulse sequence
Energy Technology Data Exchange (ETDEWEB)
Urata, Tohru; Nonoshita, Koji; Miyazaki, Takayuki; Arima, Akira [Funabashi Municipal Medical Center, Chiba (Japan)
2000-04-01
The influence of crosstalk on the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence was studied. On multislice fast FLAIR images, the water null point was shortened in comparison with that on single slice images owing to the crosstalk received from adjacent slices. That influence became greater with decreases in the slice gap and increases in the number of slices. The timing of crosstalk in each slice varied according to excitation order. The process of recovery of longitudinal magnetization changed according to differences in timing; thus, it was possible that the water null point changed in each slice. In brain images with thinner slice gaps, the signal intensity of CSF is increased by the effect of crosstalk. In order to eliminate changes in the water null point caused by crosstalk on fast FLAIR, the multislice sequence requires a sequence with interleaving based on the premise that slice gaps are set for more than 100% of slice thickness. (author)
Influence of crosstalk on the fast fluid attenuated inversion recovery pulse sequence
International Nuclear Information System (INIS)
Urata, Tohru; Nonoshita, Koji; Miyazaki, Takayuki; Arima, Akira
2000-01-01
The influence of crosstalk on the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence was studied. On multislice fast FLAIR images, the water null point was shortened in comparison with that on single slice images owing to the crosstalk received from adjacent slices. That influence became greater with decreases in the slice gap and increases in the number of slices. The timing of crosstalk in each slice varied according to excitation order. The process of recovery of longitudinal magnetization changed according to differences in timing; thus, it was possible that the water null point changed in each slice. In brain images with thinner slice gaps, the signal intensity of CSF is increased by the effect of crosstalk. In order to eliminate changes in the water null point caused by crosstalk on fast FLAIR, the multislice sequence requires a sequence with interleaving based on the premise that slice gaps are set for more than 100% of slice thickness. (author)
MR imaging of the orbit and eye using inversion recovery sequences
International Nuclear Information System (INIS)
Smith, F.W.; Parekh, S.; Forrester, J.; Redpath, T.W.
1986-01-01
Most centers performing MR imaging use spin-echo sequences to produce images; however, there are many advantages to using short TI inversion-recovery sequences for examination of the orbits. By selecting a TI similar to the relaxation time of any structure, the signal from this can be suppressed, thereby enhancing the signal from other structures. Using a sequence of TR = 1,000 msec and TI of less than 200 msec, the signal from fat is suppressed, improving image quality adjacent to the surface coil and providing better contrast between orbital structures and fat. The use of this short TI sequence for the examination of the eye in patients with opaque lenses is an accurate method of diagnosis since the sequence enhances the signal from both long T1 and T2 lesions. Eighty-five patients with orbital or ocular pathology have been studied, and the results demonstrate the usefulness of this technique for diagnosis
Fast spine echo and fast fluid attenuated inversion recovery sequences in multiple sclerosis
International Nuclear Information System (INIS)
Paolillo, Andrea; Giugni, Elisabetta; Bozzao, Alessandro; Bastianello, Stefano
1997-01-01
Fast spin echo (FSE) and fast fluid attenuated inversion recovery (fast-FLAIR) sequences, were compared with conventional spin echo (CSE) in quantitating multiple sclerosis (MS) lesion burden. For each sequence, the total number and volume of MS lesions were calculated in 38 remitting multiple sclerosis patients using a semiautomated lesion detection program. Conventional spin echo, fast spin echo, and fast fluid attenuated inversion recovery image were reported on randomly and at different times by two expert observers. Interobserver differences, the time needed to quantitative multiple sclerosis lesions and lesion signal intensity (contrast-to-noise ratio and overall contrast) were considered. The lesions were classified by site into infratentorial, white matter and cortical/subcortical. A total of 2970 lesions with a volume of 961.7 cm 3 was calculated on conventional spin echo images. Fast spin echo images depicted fewer (16.6%; p < .005) and smaller (24.9%; p < .0001) lesions and the differences were statistically significant. Despite an overall nonsignificant reduction for fast-FLAIR images (-5% and 4.8% for lesion number and volume, respectively), significantly lower values (lesion number: p < 0.1; volume: p < .04)were observed for infratentorial lesions, while significantly higher values were seen for cortical/subcortical lesions (lesion number: p < .01; volume: p < .02). A higher lesion/white matter contrast (p < .002), a significant time saving for lesion burden quantitation (p < .05) and very low interobserver variability were found in favor of fast-FLAIR. Our data suggest that, despite the limitations regarding infratentorial lesions, fast-FLAIR sequences are indicated in R studies because of their good identification of cortical/subcortical lesions, almost complete interobserver agreement, higher contrast-to-noise ratio and limited time needed for semiautomated quantitation
Energy Technology Data Exchange (ETDEWEB)
Wan, Chih-Cheng; Chen, David Yen-Ting; Tseng, Ying-Chi; Lee, Kun-Yu; Chiang, Chen-Hua; Chen, Chi-Jen [Taipei Medical University, Department of Radiology, Shuang-Ho Hospital, New Taipei City (China); Taipei Medical University, School of Medicine, College of Medicine, Taipei (China); Yan, Feng-Xian [Taipei Medical University, Department of Radiology, Shuang-Ho Hospital, New Taipei City (China)
2017-08-15
No reliable imaging sign predicting cerebral hyperperfusion after intracranial arterial stenting (IAS) had been described in the literature. This study evaluated the effect of fluid-attenuated inversion recovery vascular hyperintensities (FVHs), also called hyperintense vessel sign on T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) MR images, in predicting significant increase in cerebral blood flow (CBF) defined by arterial spin labeling (ASL) after IAS. We reviewed ASL CBF images and T2-FLAIR MR images before (D0), 1 day after (D1), and 3 days after (D3) IAS of 16 patients. T1-weighted MR images were used as cerebral maps for calculating CBF. The changes in CBF values after IAS were calculated in and compared among stenting and nonstenting vascular territories. An increase more than 50% of CBF was considered as hyperperfusion. The effect of FVHs in predicting hyperperfusion was calculated. The D1 CBF value was significantly higher than the D0 CBF value in stenting vascular, contralateral anterior cerebral artery, contralateral middle cerebral artery, and contralateral posterior cerebral artery (PCA) territories (all P <.05). The D1 and D3 CBF values were significantly higher than the D0 CBF value in overall vascular (P <.001), overall nonstenting vascular (P <.001), and ipsilateral PCA (P <.05) territories. The rate of more than 50% increases in CBF was significantly higher in patients who exhibited asymmetric FVHs than in those who did not exhibit these findings. FVHs could be a critical predictor of a significant increase in CBF after IAS. (orig.)
International Nuclear Information System (INIS)
Wan, Chih-Cheng; Chen, David Yen-Ting; Tseng, Ying-Chi; Lee, Kun-Yu; Chiang, Chen-Hua; Chen, Chi-Jen; Yan, Feng-Xian
2017-01-01
No reliable imaging sign predicting cerebral hyperperfusion after intracranial arterial stenting (IAS) had been described in the literature. This study evaluated the effect of fluid-attenuated inversion recovery vascular hyperintensities (FVHs), also called hyperintense vessel sign on T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) MR images, in predicting significant increase in cerebral blood flow (CBF) defined by arterial spin labeling (ASL) after IAS. We reviewed ASL CBF images and T2-FLAIR MR images before (D0), 1 day after (D1), and 3 days after (D3) IAS of 16 patients. T1-weighted MR images were used as cerebral maps for calculating CBF. The changes in CBF values after IAS were calculated in and compared among stenting and nonstenting vascular territories. An increase more than 50% of CBF was considered as hyperperfusion. The effect of FVHs in predicting hyperperfusion was calculated. The D1 CBF value was significantly higher than the D0 CBF value in stenting vascular, contralateral anterior cerebral artery, contralateral middle cerebral artery, and contralateral posterior cerebral artery (PCA) territories (all P <.05). The D1 and D3 CBF values were significantly higher than the D0 CBF value in overall vascular (P <.001), overall nonstenting vascular (P <.001), and ipsilateral PCA (P <.05) territories. The rate of more than 50% increases in CBF was significantly higher in patients who exhibited asymmetric FVHs than in those who did not exhibit these findings. FVHs could be a critical predictor of a significant increase in CBF after IAS. (orig.)
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Equivalence of two-dimensional gravities
International Nuclear Information System (INIS)
Mohammedi, N.
1990-01-01
The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given
International Nuclear Information System (INIS)
Morana, Giovanni; Tortora, Domenico; Severino, Mariasavina; Rossi, Andrea; Alves, Cesar Augusto; Finlay, Jonathan L.; Nozza, Paolo; Ravegnani, Marcello; Pavanello, Marco; Milanaccio, Claudia; Garre, Maria Luisa; Maghnie, Mohamad
2018-01-01
The role of T2*-based MR imaging in intracranial germ cell tumors (GCTs) has not been fully elucidated. The aim of this study was to evaluate the susceptibility-weighted imaging (SWI) or T2* gradient echo (GRE) features of germinomas and non-germinomatous germ cell tumors (NGGCTs) in midline and off-midline locations. We retrospectively evaluated all consecutive pediatric patients referred to our institution between 2005 and 2016, for newly diagnosed, treatment-naive intracranial GCT, who underwent MRI, including T2*-based MR imaging (T2* GRE sequences or SWI). Standard pre- and post-contrast T1- and T2-weighted imaging characteristics along with T2*-based MR imaging features of all lesions were evaluated. Diagnosis was performed in accordance with the SIOP CNS GCT protocol criteria. Twenty-four subjects met the inclusion criteria (17 males and 7 females). There were 17 patients with germinomas, including 5 basal ganglia primaries, and 7 patients with secreting NGGCT. All off-midline germinomas presented with SWI or GRE hypointensity; among midline GCT, all NGGCTs showed SWI or GRE hypointensity whereas all but one pure germinoma were isointense or hyperintense to normal parenchyma. A significant difference emerged on T2*-based MR imaging among midline germinomas, NGGCTs, and off-midline germinomas (p < 0.001). Assessment of the SWI or GRE characteristics of intracranial GCT may potentially assist in differentiating pure germinomas from NGGCT and in the characterization of basal ganglia involvement. T2*-based MR imaging is recommended in case of suspected intracranial GCT. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ohana, Mickael; Jeung, Mi-Young; Roy, Catherine [Nouvel Hopital Civil-Hopitaux Universitaires de Strasbourg, Service de Radiologie B/Radiology Department, Strasbourg (France); Bazille, Gauthier [Clinique Saint Anne-Groupe Radiologique MIM, Strasbourg (France)
2014-08-15
Gadolinium-enhanced magnetic resonance imaging (MRI) is the gold standard for cerebral staging in thoracic oncology. We hypothesize that a minimalist examination, consisting of a single contrast-enhanced T1-weighted three-dimensional gradient-echo sequence (CE 3D-GRE), would be sufficient for the cerebral staging of nonsymptomatic lung cancer patients. Seventy nonsymptomatic patients (50 % men; 62 years ± 10.2) referred for cerebral staging of a lung cancer were retrospectively included. All underwent a standard 3 T MRI examination with T1, FLAIR, T2* GRE, diffusion, and CE 3D-GRE sequences, for a total examination time of 20 min. The sole CE 3D-GRE (acquisition time: 6 min) was extracted and blindly interpreted by two radiologists in search of brain metastases. Hemorrhagic features of potential lesions and relevant incidental findings were also noted. Discrepant cases were reviewed by a third reader. The full MRI examination and follow-up studies were used as a reference to calculate sensitivity and specificity of the sole CE 3D-GRE. Thirty-eight point six percent (27 out of 70) of the patients had brain metastases. Performances and reader's agreement with the sole CE 3D-GRE sequence were excellent for the diagnosis of brain metastases (sensitivity = 96.3 %, specificity = 100 %, κ = 0.91) and incidental findings (sensitivity = 85.7 %, specificity = 100 %, κ = 0.62) but insufficient for the identification of hemorrhages within the metastases (sensitivity = 33.3 %, specificity = 85.7 %, κ = 0.47). In the specific case of lung cancer, cerebral staging in nonsymptomatic patients can be efficiently achieved with a minimalistic protocol consisting of a single CE 3D-GRE sequence, completed if positive with a T2* sequence for hemorrhagic assessment, thus halving appointment delays. (orig.)
International Nuclear Information System (INIS)
Cain, Peter A; Ahl, Ragnhild; Hedstrom, Erik; Ugander, Martin; Allansdotter-Johnsson, Ase; Friberg, Peter; Arheden, Hakan
2009-01-01
Knowledge about age-specific normal values for left ventricular mass (LVM), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV) and ejection fraction (EF) by cardiac magnetic resonance imaging (CMR) is of importance to differentiate between health and disease and to assess the severity of disease. The aims of the study were to determine age and gender specific normal reference values and to explore the normal physiological variation of these parameters from adolescence to late adulthood, in a cross sectional study. Gradient echo CMR was performed at 1.5 T in 96 healthy volunteers (11–81 years, 50 male). Gender-specific analysis of parameters was undertaken in both absolute values and adjusted for body surface area (BSA). Age and gender specific normal ranges for LV volumes, mass and function are presented from the second through the eighth decade of life. LVM, ESV and EDV rose during adolescence and declined in adulthood. SV and EF decreased with age. Compared to adult females, adult males had higher BSA-adjusted values of EDV (p = 0.006) and ESV (p < 0.001), similar SV (p = 0.51) and lower EF (p = 0.014). No gender differences were seen in the youngest, 11–15 year, age range. LV volumes, mass and function vary over a broad age range in healthy individuals. LV volumes and mass both rise in adolescence and decline with age. EF showed a rapid decline in adolescence compared to changes throughout adulthood. These findings demonstrate the need for age and gender specific normal ranges for clinical use
Energy Technology Data Exchange (ETDEWEB)
Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji
2003-12-01
Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation.
International Nuclear Information System (INIS)
Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji
2003-01-01
Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation
Energy Technology Data Exchange (ETDEWEB)
Morana, Giovanni; Tortora, Domenico; Severino, Mariasavina; Rossi, Andrea [Istituto Giannina Gaslini, Neuroradiology Unit, Genoa (Italy); Alves, Cesar Augusto [Hospital Das Clinicas, Radiology Department, Sao Paulo (Brazil); Finlay, Jonathan L. [Nationwide Children' s Hospital and The Ohio State University, Division of Hematology, Oncology and BMT, Columbus, OH (United States); Nozza, Paolo [Istituto Giannina Gaslini, Pathology Unit, Genoa (Italy); Ravegnani, Marcello; Pavanello, Marco [Istituto Giannina Gaslini, Neurosurgery Unit, Genoa (Italy); Milanaccio, Claudia; Garre, Maria Luisa [Istituto Giannina Gaslini, Neuro-oncology Unit, Genoa (Italy); Maghnie, Mohamad [Istituto Giannina Gaslini, University of Genova, Pediatric Endocrine Unit, Genoa (Italy)
2018-01-15
The role of T2*-based MR imaging in intracranial germ cell tumors (GCTs) has not been fully elucidated. The aim of this study was to evaluate the susceptibility-weighted imaging (SWI) or T2* gradient echo (GRE) features of germinomas and non-germinomatous germ cell tumors (NGGCTs) in midline and off-midline locations. We retrospectively evaluated all consecutive pediatric patients referred to our institution between 2005 and 2016, for newly diagnosed, treatment-naive intracranial GCT, who underwent MRI, including T2*-based MR imaging (T2* GRE sequences or SWI). Standard pre- and post-contrast T1- and T2-weighted imaging characteristics along with T2*-based MR imaging features of all lesions were evaluated. Diagnosis was performed in accordance with the SIOP CNS GCT protocol criteria. Twenty-four subjects met the inclusion criteria (17 males and 7 females). There were 17 patients with germinomas, including 5 basal ganglia primaries, and 7 patients with secreting NGGCT. All off-midline germinomas presented with SWI or GRE hypointensity; among midline GCT, all NGGCTs showed SWI or GRE hypointensity whereas all but one pure germinoma were isointense or hyperintense to normal parenchyma. A significant difference emerged on T2*-based MR imaging among midline germinomas, NGGCTs, and off-midline germinomas (p < 0.001). Assessment of the SWI or GRE characteristics of intracranial GCT may potentially assist in differentiating pure germinomas from NGGCT and in the characterization of basal ganglia involvement. T2*-based MR imaging is recommended in case of suspected intracranial GCT. (orig.)
International Nuclear Information System (INIS)
Atlas, S.W.; Grossman, R.I.; Gomori, J.M.; Hackney, D.B.; Goldberg, H.I.; Bilaniuk, L.T.; Zimmerman, R.A.
1987-01-01
Evolving paramagnetic blood-breakdown products create static local magnetic susceptibility gradients, which induce rapid phase dispersion on the basis of T2/sup */ shortening. The authors evaluated 30 patients with 50 separate hemorrhagic intracranial lesions with both spin-echo (SE) and gradient echo signal acquisition (GESA) MR imaging at 1.5 T. GESA sequences used repetition time (TR) of 200-750 msec, echo time (TE) of 50-80 msec, and flip angles of 10 0 to 15 0 to emphasize T2/sup */-based contributions to contrast. SE sequences in all cases utilized both short and long TR (600 and 2,500-3,000 msec), with TE of 20-120 msec. Advantages of GESA imaging with Long TE and short flip angles in the evaluation of intracranial hemorrhage include (1) increased sensitivity to susceptibility-induced phase loss from T2/sup */ shortening, resulting in detection of hemorrhagic lesions not seen on conventional long TR/long TE SE images, and (2) very rapid acquisition of images with T2/sup */-based contrast. Limitations of this sequence include (1) severe diamagnetic susceptibility-induced artifacts, especially near air-brain interfaces, which often obscure large portions of the brain and occasionally simulate serious pathology, (2) characteristic internal signal intensity patterns demonstrated by SE imaging, such as in evolving hematomas, occult vascular malformations, and hemorrhagic malignancies, are often obscured by marked hypointensity on GESA images, and (3) reduced signal-noise ratio. The authors conclude that, although images with marked sensitivity to T2/sup */ effects can be rapidly generated by GESA, there is only a limited role for this sequence when evaluating intracranial hemorrhage at 1.5 T, and, in fact, significant information is lost when compared to SE images
Belay, Abel A; Bellizzi, Andrew M; Stolpen, Alan H
2018-01-15
Extramedullary hematopoiesis is the proliferation of hematopoietic cells outside bone marrow secondary to marrow hematopoiesis failure. Extramedullary hematopoiesis rarely presents as a mass-forming hepatic lesion; in this case, imaging-based differentiation from primary and metastatic hepatic neoplasms is difficult, often leading to biopsy for definitive diagnosis. We report a case of tumefactive hepatic extramedullary hematopoiesis in the setting of myelodysplastic syndrome with concurrent hepatic iron overload, and the role of T2*-weighted gradient-echo magnetic resonance imaging in differentiating extramedullary hematopoiesis from primary and metastatic hepatic lesions. To the best of our knowledge, T2*-weighted gradient-echo evaluation of extramedullary hematopoiesis in the setting of diffuse hepatic hemochromatosis has not been previously described. A 52-year-old white man with myelodysplastic syndrome and marrow fibrosis was found to have a 4 cm hepatic lesion on ultrasound during workup for bone marrow transplantation. Magnetic resonance imaging revealed diffuse hepatic iron overload and non-visualization of the lesion on T2* gradient-echo sequence suggesting the presence of iron deposition within the lesion similar to that in background hepatic parenchyma. Subsequent ultrasound-guided biopsy of the lesion revealed extramedullary hematopoiesis. Six months later, while still being evaluated for bone marrow transplant, our patient was found to have poor pulmonary function tests. Follow-up computed tomography angiogram showed a mass within his right main pulmonary artery. Bronchoscopic biopsy of this mass once again revealed extramedullary hematopoiesis. He received radiation therapy to his chest. However, 2 weeks later, he developed mediastinal hematoma and died shortly afterward, secondary to respiratory arrest. Mass-forming extramedullary hematopoiesis is rare; however, our report emphasizes that it needs to be considered in the initial differential
Analytical simulation of two dimensional advection dispersion ...
African Journals Online (AJOL)
The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...
Analytical Simulation of Two Dimensional Advection Dispersion ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly...
Stability of two-dimensional vorticity filaments
International Nuclear Information System (INIS)
Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.
2004-01-01
We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability
Two-Dimensional Motions of Rockets
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Conformal invariance and two-dimensional physics
International Nuclear Information System (INIS)
Zuber, J.B.
1993-01-01
Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...
Two-dimensional membranes in motion
Davidovikj, D.
2018-01-01
This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research
Extended Polymorphism of Two-Dimensional Material
Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro
When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Two-dimensional time-of-flight MR angiography of mediastinum and pulmonary hilar vessels
International Nuclear Information System (INIS)
Honda, Norinari; Machida, Kikuo; Mamiya, Toshio
1992-01-01
Two-dimensional time-of-flight magnetic resonance angiography (2D TOF MRA) of mediastinal and pulmonary hilar vessels was performed in 10 patients, seven men and three women with a mean age (range) of 65.7 (48-88) years. The rate of visualization of the vessels and the diagnostic ability of 2D TOF MRA were assessed in comparison with contrast-enhanced CT. A radiofrequency-spoiled gradient echo sequence (SPGR) was used during repeated breath-holding (8-27 seconds) in coronal (8 patients) and axial (2 patients) imaging planes on a 1.5 Tesla superconducting scanner under the following conditions: repetition time/echo time/flip angle/excitation: 25-33/7-8 ms/45deg/1, field-of-view: 30 x 30 cm, slice thickness: 2.5 mm, 32 slices, 256 (frequency) x 192 (phase) matrix, with gradient moment nulling technique. Visualization sufficient to enable diagnosis of the vascular lesion was obtained in 95 (52%) vessels, mere visualization in 63 (35%), and non-visualization in 24 (13%) of the 182 evaluable vessels. The rates of good visualization of pulmonary hilar vessels (26/86, 30%) and veins (26/48, 54%) were significantly lower than that of arteries (43/48, 90%, p<0.05). The sensitivity and specificity of 2D TOF MRA were 77% (10/13) and 100% (83/83), respectively, in 96 evaluable vessels of nine patients. 2D TOF MRA of mediastinum and pulmonary hili is clinically feasible, and may be useful because of its high specificity. (author)
Two-dimensional confinement of heavy fermions
International Nuclear Information System (INIS)
Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito
2010-01-01
Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)
Two-dimensional sensitivity calculation code: SENSETWO
International Nuclear Information System (INIS)
Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.
1979-05-01
A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Toward two-dimensional search engines
International Nuclear Information System (INIS)
Ermann, L; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)
Acoustic phonon emission by two dimensional plasmons
International Nuclear Information System (INIS)
Mishonov, T.M.
1990-06-01
Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig
Confined catalysis under two-dimensional materials
Li, Haobo; Xiao, Jianping; Fu, Qiang; Bao, Xinhe
2017-01-01
Small spaces in nanoreactors may have big implications in chemistry, because the chemical nature of molecules and reactions within the nanospaces can be changed significantly due to the nanoconfinement effect. Two-dimensional (2D) nanoreactor formed under 2D materials can provide a well-defined model system to explore the confined catalysis. We demonstrate a general tendency for weakened surface adsorption under the confinement of graphene overlayer, illustrating the feasible modulation of su...
Two-Dimensional Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Bo Jia
2015-01-01
(BP networks. However, like many other methods, ELM is originally proposed to handle vector pattern while nonvector patterns in real applications need to be explored, such as image data. We propose the two-dimensional extreme learning machine (2DELM based on the very natural idea to deal with matrix data directly. Unlike original ELM which handles vectors, 2DELM take the matrices as input features without vectorization. Empirical studies on several real image datasets show the efficiency and effectiveness of the algorithm.
Superintegrability on the two dimensional hyperboloid
International Nuclear Information System (INIS)
Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr
1998-01-01
This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad
2014-12-01
Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate
International Nuclear Information System (INIS)
Cai, B; Rao, Y; Tsien, C; Huang, J; Green, O; Mutic, S; Gach, H; Wen, J; Yablonskiy, D
2016-01-01
Purpose: To implement the Gradient Echo Plural Contrast Imaging(GEPCI) technique in MRI-simulation for radiation therapy and assess the feasibility of using GEPCI images with advanced inhomogeneity correction in MRI-guided radiotherapy for brain treatment. Methods: An optimized multigradient-echo GRE sequence (TR=50ms;TE1=4ms;delta-TE=4ms;flip angle=300,11 Echoes) was developed to generate both structural (T1w and T2*w) and functional MRIs (field and susceptibility maps) from a single acquisition. One healthy subject (Subject1) and one post-surgical brain cancer patient (Subject2) were scanned on a Philips Ingenia 1.5T MRI used for radiation therapy simulation. Another healthy subject (Subject3) was scanned on a 0.35T MRI-guided radiotherapy (MR-IGRT) system (ViewRay). A voxel spread function (VSF) was used to correct the B0 inhomogeneities caused by surgical cavities and edema for Subject2. GEPCI images and standard radiotherapy planning MRIs for this patient were compared focusing the delineation of radiotherapy target region. Results: GEPCI brain images were successfully derived from all three subjects with scan times of <7 minutes. The images derived for Subjects1&2 demonstrated that GEPCI can be applied and combined into radiotherapy MRI simulation. Despite low field, T1-weighted and R2* images were successfully reconstructed for Subject3 and were satisfactory for contour and target delineation. The R2* distribution of grey matter (center=12,FWHM=4.5) and white matter (center=14.6, FWHM=2) demonstrated the feasibility for tissue segmentation and quantification. The voxel spread function(VSF) corrected surgical site related inhomogeneities for Subject2. R2* and quantitative susceptibility map(QSM) images for Subject2 can be used to quantitatively assess the brain structure response to radiation over the treatment course. Conclusion: We implemented the GEPCI technique in MRI-simulation and in MR-IGRT system for radiation therapy. The images demonstrated that it
Mechanical exfoliation of two-dimensional materials
Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping
2018-06-01
Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.
Tissue Border Enhancement by inversion recovery MRI at 7.0 Tesla
International Nuclear Information System (INIS)
Costagli, Mauro; Tiberi, Gianluigi; Kelley, Douglas A.C.; Symms, Mark R.; Biagi, Laura; Tosetti, Michela; Stara, Riccardo; Cosottini, Mirco; Maggioni, Eleonora; Barba, Carmen; Guerrini, Renzo
2014-01-01
This contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing. The technique is based on an inversion recovery sequence that employs an appropriate inversion time to produce images where the interface between two tissues of interest is hypo-intense; therefore, tissue borders are clearly represented by dark lines. This effect is achieved by setting imaging parameters such that two neighboring tissues of interest have magnetization with equal magnitude but opposite sign; therefore, the voxels containing a mixture of each tissue (that is, the tissue interface) possess minimal net signal. The technique was implemented on a 7.0 T MRI system. This approach can assist the definition of tissue borders, such as that between cortical gray matter and white matter; therefore, it could facilitate segmentation procedures, which are often challenging on ultra-high-field systems due to inhomogeneous radiofrequency distribution. TBE allows delineating the contours of structural abnormalities, and its capabilities were demonstrated with patients with focal cortical dysplasia, gray matter heterotopia, and polymicrogyria. This technique provides a new type of image contrast and has several possible applications in basic neuroscience, neurogenetic research, and clinical practice, as it could improve the detection power of MRI in the characterization of cortical malformations, enhance the contour of small anatomical structures of interest, and facilitate cortical segmentation. (orig.)
International Nuclear Information System (INIS)
Daldrup, H.E.; Schuierer, G.; Link, T.M.; Moeller, H.; Bick, U.; Peters, P.E.; Kurlemann, G.
1997-01-01
The aim of our work was to determine the efficacy of turbo inversion recovery spin echo (TIRSE) pulse sequences in differentiating patients with normal and abnormal myelination. Twenty neurological normal children (aged 5 months to 12 years) as well as 65 children presenting clinically with neurologic developmental deficits (aged 2 months to 10 years) were examined using TIRSE, T1-weighted SE, and T2-weighted turbo SE pulse sequences. Contrast-to-noise-ratio (CNR) between myelinated white and gray matter was compared for the different pulse sequences. In addition, two readers analyzed all images qualitatively by consensus. The CNR values were significantly higher on TIRSE images as compared with conventional images (p < 0.05). Forty-two neurologically abnormal patients displayed a normal myelination on all sequences, whereas 23 showed an abnormal myelination. The TIRSE sequence provided a sensitive and specific depiction of an abnormal myelination in all of these patients. The TIRSE sequence provided additional information to conventional pulse sequences in determining myelination disorders in children, especially in children older than 2 years. (orig.)
Short TI inversion-recovery MR imaging of chest wall malignancies
International Nuclear Information System (INIS)
Dubinsky, T.J.; Porter, B.A.; Olson, D.O.
1987-01-01
Short-T1 inversion-recovery (STIR) sequences have greater constant, less motion sensitivity, and require shorter imaging times than conventional T2-weighted spin-echo (SE) sequences and are therefore particularly useful for staging chest wall malignancies. MR studies of 49 patients with possible chest wall malignancies were reviewed. Images were produced at 0.15 T with a variety of SE sequences. Forty-five also had STIR (repetition time, 1,400 - 2,100; echo time, 36 or 40; inversion time, 100 or 125). MR studies indicated chest wall involvement in 39 of 49 patients; 12 had obvious rib encasement, the most definitive finding. IN 13, lesions detected on STIR were either not visible or seen only in retrospect on T1 SE images. In five of five, STIR was clearly superior to T2 SE for delineation of tumor margins. The authors have discontinued using T2 SE sequences for chest neoplasms in favor of the higher contrast and sensitivity of STIR
Tissue Border Enhancement by inversion recovery MRI at 7.0 Tesla
Energy Technology Data Exchange (ETDEWEB)
Costagli, Mauro; Tiberi, Gianluigi [Imago7 Foundation, Pisa (Italy); IRCCS Stella Maris, Pisa (Italy); Kelley, Douglas A.C. [GE Healthcare Technologies, San Francisco, CA (United States); Symms, Mark R. [GE Applied Science Laboratory, Pisa (Italy); Biagi, Laura; Tosetti, Michela [IRCCS Stella Maris, Pisa (Italy); Stara, Riccardo; Cosottini, Mirco [Imago7 Foundation, Pisa (Italy); University of Pisa, Pisa (Italy); Maggioni, Eleonora [IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco (Italy); Politecnico di Milano, Milan (Italy); Barba, Carmen [Children' s Hospital A. Meyer - University of Florence, Neuroscience Department, Florence (Italy); Guerrini, Renzo [IRCCS Stella Maris, Pisa (Italy); Children' s Hospital A. Meyer - University of Florence, Neuroscience Department, Florence (Italy)
2014-07-15
This contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing. The technique is based on an inversion recovery sequence that employs an appropriate inversion time to produce images where the interface between two tissues of interest is hypo-intense; therefore, tissue borders are clearly represented by dark lines. This effect is achieved by setting imaging parameters such that two neighboring tissues of interest have magnetization with equal magnitude but opposite sign; therefore, the voxels containing a mixture of each tissue (that is, the tissue interface) possess minimal net signal. The technique was implemented on a 7.0 T MRI system. This approach can assist the definition of tissue borders, such as that between cortical gray matter and white matter; therefore, it could facilitate segmentation procedures, which are often challenging on ultra-high-field systems due to inhomogeneous radiofrequency distribution. TBE allows delineating the contours of structural abnormalities, and its capabilities were demonstrated with patients with focal cortical dysplasia, gray matter heterotopia, and polymicrogyria. This technique provides a new type of image contrast and has several possible applications in basic neuroscience, neurogenetic research, and clinical practice, as it could improve the detection power of MRI in the characterization of cortical malformations, enhance the contour of small anatomical structures of interest, and facilitate cortical segmentation. (orig.)
Vector (two-dimensional) magnetic phenomena
International Nuclear Information System (INIS)
Enokizono, Masato
2002-01-01
In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)
Two-dimensional Semiconductor-Superconductor Hybrids
DEFF Research Database (Denmark)
Suominen, Henri Juhani
This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...
Optimized two-dimensional Sn transport (BISTRO)
International Nuclear Information System (INIS)
Palmiotti, G.; Salvatores, M.; Gho, C.
1990-01-01
This paper reports on an S n two-dimensional transport module developed for the French fast reactor code system CCRR to optimize algorithms in order to obtain the best performance in terms of computational time. A form of diffusion synthetic acceleration was adopted, and a special effort was made to solve the associated diffusion equation efficiently. The improvements in the algorithms, along with the use of an efficient programming language, led to a significant gain in computational time with respect to the DOT code
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Airy beams on two dimensional materials
Imran, Muhammad; Li, Rujiang; Jiang, Yuyu; Lin, Xiao; Zheng, Bin; Dehdashti, Shahram; Xu, Zhiwei; Wang, Huaping
2018-05-01
We propose that quasi-transverse-magnetic (quasi-TM) Airy beams can be supported on two dimensional (2D) materials. By taking graphene as a typical example, the solution of quasi-TM Airy beams is studied under the paraxial approximation. The analytical field intensity in a bilayer graphene-based planar plasmonic waveguide is confirmed by the simulation results. Due to the tunability of the chemical potential of graphene, the self-accelerating behavior of the quasi-TM Airy beam can be steered effectively. 2D materials thus provide a good platform to investigate the propagation of Airy beams.
Two-dimensional heat flow apparatus
McDougall, Patrick; Ayars, Eric
2014-06-01
We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.
Energy Technology Data Exchange (ETDEWEB)
Allgayer, B. (Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik); Lukas, P. (Technische Univ. Muenchen (Germany). Inst. und Poliklinik fuer Strahlentherapie und Radiologische Onkologie); Loos, W. (Technische Univ. Muenchen (Germany). Frauenklinik und Poliklinik); Kersting-Sommerhoff, B. (Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik)
1993-05-01
One or both breasts of 296 patients with equivocal clinical or mammographical findings were examined with MRI. T[sub 1] weighted spinecho (SE) and gradient echo (FFE) sequences were acquired before and after i.v. application of Gadolinium DTPA. 50 lesions with enhancement after Gd-DTPA were biopsied - 26 carcinomas, 17 proliferating mastopathic tissues, 5 fibroadenomas and 1 abscess were found. Contrast enhanced MRI with 2D-SE and FFE sequences is an effective technqiue for evaluating suspicious breast lesions with high diagnostic acurracy. (orig.)
International Nuclear Information System (INIS)
Lee, Young Joon; Joo, Eun Young; Eun, Choong Ki
1999-01-01
The purpose of this study was to evaluate the effects of magnetization transfer contrast(MTC) and fat-suppression(FS) in variable spin-echo and gradient-echo sequences for articular cartilage imaging and to determine the optimal pulse sequences. Using variable 7-pulse sequences, the knees of 15 pigs were imaged Axial images were obtained using proton density and T2-weighted spin-echo (PDWSE and T2WSE), turbo spin-echo (TSE), multiplanar gradient-echo (MPGR), and 3D steady-state gradient-echo (3DGRE) sequences, and the same pulse sequences were then repeated using MTC. Also T1-weighted spin-echo(T1WSE) and 3D spoiled gradient-echo(3DSPGR) images of knees were also acquired, and the procedure was repeated using FS. For each knee, a total of 14 axial images were acquired, and using a 6-band scoring system, the visibility of and the visibilities of the the articular cartilage was analyzed. The visual effect of MTC and FS was scored using a 4-band scale. For each image, the signal intensities of articular cartilage, subchondral bone, muscles, and saline were measured, and signal-to-noise ratios(SNR) and contrast-to-noise ratios(CNR) were also calculated. Visibility of the cartilage was best when 3DSPGR and T1WSE sequences were used. MTC imaging increased the negative contrast between cartilage and saline, but FS imaging provided more positive contrast. CNR between cartilage and saline was highest when using TSE with FS(-351.1±15.3), though CNR between cartilage and bone then fell to -14.7±10.8. In MTC imaging using MPGR showed the greatest increase of negative contrast between cartilage and saline(CNR change=-74.7); the next highest was when 3DGRE was used(CNR change=-34.3). CNR between cartilage and bone was highest with MPGR(161.9±17.7), but with MTC, the greatest CNR decrease(-81.8) was observed. The greatest CNR increase between cartilage and bone was noted in T1WSE with FS. In all scans, FS provided a cartilage-only positive contrast image, though the absolute
Decoherence in two-dimensional quantum walks
International Nuclear Information System (INIS)
Oliveira, A. C.; Portugal, R.; Donangelo, R.
2006-01-01
We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk
Study of two-dimensional interchange turbulence
International Nuclear Information System (INIS)
Sugama, Hideo; Wakatani, Masahiro.
1990-04-01
An eddy viscosity model describing enstrophy transfer in two-dimensional turbulence is presented. This model is similar to that of Canuto et al. and provides an equation for the energy spectral function F(k) as a function of the energy input rate to the system per unit wavenumber, γ s (k). In the enstrophy-transfer inertial range, F(k)∝ k -3 is predicted by the model. The eddy viscosity model is applied to the interchange turbulence of a plasma in shearless magnetic field. Numerical simulation of the two-dimensional interchange turbulence demonstrates that the energy spectrum in the high wavenumber region is well described by this model. The turbulent transport driven by the interchange turbulence is expressed in terms of the Nusselt number Nu, the Rayleigh number Ra and Prantl number Pr in the same manner as that of thermal convection problem. When we use the linear growth rate for γ s (k), our theoretical model predicts that Nu ∝ (Ra·Pr) 1/2 for a constant background pressure gradient and Nu ∝ (Ra·Pr) 1/3 for a self-consistent background pressure profile with the stress-free slip boundary conditions. The latter agrees with our numerical result showing Nu ∝ Ra 1/3 . (author)
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Evaluation of chondromalacia of the patella with axial inversion recovery-fast spin-echo imaging.
Lee, S H; Suh, J S; Cho, J; Kim, S J; Kim, S J
2001-03-01
The purpose of our study was to assess the accuracy of inversion recovery-fast spin-echo (IR-FSE) imaging for the evaluation of chondromalacia of the patella. Eighty-six patients were included, they underwent magnetic resonance (MR) examination and subsequent knee arthroscopy. Medial and lateral facets of the patella were evaluated separately. Axial images were obtained by using IR-FSE (TR/TE/TI = 3000/25/150 msec; echo train length, 8; 4-mm thickness; 12-cm field of view; 512 x 256 matrix; two, number of excitations) with a 1.5-T MR machine. MR interpretation of chondromalacia was made on the basis of the arthroscopic grading system. Of a total of 172 facets graded, arthroscopy revealed chondromalacia in 14 facets with various grades (G0, 158; G1, 1; G2, 3; G3, 6; G4, 4). Sensitivity, specificity, and accuracy in the chondromalacia grades were 57.1%, 93.0%, and 90.1%, respectively. There was one false-negative case (G4) and 11 false-positive cases (G1, eight; G2, two; G3, one). Sensitivity and specificity corrected by one grade difference were improved to 85.7% and 98.1%, respectively. When cartilage changes were grouped into early (corresponding to grade 1 and 2) and advanced (grade 3 and 4) diseases, sensitivity and specificity of the early and advanced diseases were 75% and 94% and 80% and 99%, respectively. IR-FSE imaging of the knee revealed high specificity but low sensitivity for the evaluation of chondromalacia of the patella.
Contrast-enhanced fast fluid-attenuated inversion recovery MR imaging in patients with brain tumors
International Nuclear Information System (INIS)
Kim, Chan Kyo; Na, Dong Gyu; Ryoo, Wook Jae; Byun Hong Sik; Yoon, Hye Kyung; Kim, Jong hyun
2000-01-01
To assess the feasibility of contrast-enhanced fast fluid-attenuated inversion recovery (fast FLAIR) MR imaging in patients with brain tumors. This study involved 31 patients with pathologically proven brain tumors and nine with clinically diagnosed metastases. In all patients, T2-weighted, fast FLAIR, images were visual contrast-enhanced T1-weighted MR images were obtained. Contrast-enhanced fast FLAIR images were visually compared with other MR sequences in terms of tumor conspicuity. In order to distinguish tumor and surrounding edema, contrast-enhanced fast FLAIR images were compared with fast FLAIR and T2-weighted images. The tumor-to- white matter contrast-to-noise ratios (CNRs), as demonstrated by T2-weighted, fast FLAIR, contrast-enhanced fast FLAIR and contrast-enhanced T1-weighted imaging, were quantitatively assessed and compared. For the visual assessment of tumor conspicuity, contrast-enhanced fast FLAIR image imaging superior to fast FLAIR in 60% of cases (24/40), and superior to T2-weighted in 70% (28/40). Contrast-enhanced fast FLAIR imaging was inferior to contrast-enhanced T1-weighted in 58% of cases (23/40). For distinguishing between tumor and surrounding edema, contrast-enhanced fast FLAIR imaging was superior to fast FLAIR or T2-weighted in 22 of 27 tumors with peritumoral edema (81%). Quantitatively, CNR was the highest on contrast-enhanced fast FLAIR image and the lowest on fast FLAIR. For the detection of leptomeningeal metastases, contrast-enhanced fast FLAIR was partially superior to contrast-enhanced T1-weighted imaging in two of three high-grade gliomas. Although contrast-enhanced fast FLAIR imaging should not be seen as a replacement for conventional modalities, it provides additional informaton for assessment of the extent of glial cell tumors and leptomeningeal metastases in patients with brain tumors. (author)
International Nuclear Information System (INIS)
Michaux, Ruben P.
2004-01-01
Objective: To comparatively assess the images of the mesencephalic substantia nigra (mSN) obtained with FSE (PD and T2) and IR (STIR; T1; WMS and GMS) sequences in patients with Parkinson's disease (PKD) and normal volunteers. Methods: We studied 8 normal volunteers (N group) and 8 patients (PKD groups) of similar age, both men and women, with a clinical diagnosis of PKD. We obtained axial oblique images of the mesencephalon with FSE PD and T2 sequences; Inversion-Recovery (IR) with a short inversion time (STIR); T1 weighted (IR-T1 phase reconstruction) with white matter signal suppression (IR-WMS) and gray matter signal suppression (IR-GMS). Average values were measured for: a) normalized signal intensity; b) thickness; and c) area of the mSN in each sequence and group. A statistical analysis of the values obtained for each of the variables was performed for both groups (Student and Welch correlation tests), comparing the results of the intra an inter-group sequences. A p value 0.05). Images obtained with IR-WMS and GMS sequences showed significant differences between the three variables assessed, particularly thickness and area (p<0.01), and also showed a posterolateral-anteromedial gradient in the mSN alteration in patients with PKD or recent onset and chronic evolution. Conclusions: The T2 weighted FSE sequences are not useful for the assessment of mSN, whereas PD, STIR and IR-T1 sequences allow to delineate it more accurately, without morphological differences (thickness and area), or signal intensity differences among the groups assessed. The WMS and GMS sequences showed statistically significant differences in the assessment of thickness, area and the signal intensity of the mSN, and may hence be useful for diagnosis. (author)
Dortch, Richard D; Bagnato, Francesca; Gochberg, Daniel F; Gore, John C; Smith, Seth A
2018-03-24
To optimize a selective inversion recovery (SIR) sequence for macromolecular content mapping in the human brain at 3.0T. SIR is a quantitative method for measuring magnetization transfer (qMT) that uses a low-power, on-resonance inversion pulse. This results in a biexponential recovery of free water signal that can be sampled at various inversion/predelay times (t I/ t D ) to estimate a subset of qMT parameters, including the macromolecular-to-free pool-size-ratio (PSR), the R 1 of free water (R 1f ), and the rate of MT exchange (k mf ). The adoption of SIR has been limited by long acquisition times (≈4 min/slice). Here, we use Cramér-Rao lower bound theory and data reduction strategies to select optimal t I /t D combinations to reduce imaging times. The schemes were experimentally validated in phantoms, and tested in healthy volunteers (N = 4) and a multiple sclerosis patient. Two optimal sampling schemes were determined: (i) a 5-point scheme (k mf estimated) and (ii) a 4-point scheme (k mf assumed). In phantoms, the 5/4-point schemes yielded parameter estimates with similar SNRs as our previous 16-point scheme, but with 4.1/6.1-fold shorter scan times. Pair-wise comparisons between schemes did not detect significant differences for any scheme/parameter. In humans, parameter values were consistent with published values, and similar levels of precision were obtained from all schemes. Furthermore, fixing k mf reduced the sensitivity of PSR to partial-volume averaging, yielding more consistent estimates throughout the brain. qMT parameters can be robustly estimated in ≤1 min/slice (without independent measures of ΔB 0 , B1+, and T 1 ) when optimized t I -t D combinations are selected. © 2018 International Society for Magnetic Resonance in Medicine.
Rapid T1 quantification based on 3D phase sensitive inversion recovery
Directory of Open Access Journals (Sweden)
Warntjes Marcel JB
2010-08-01
Full Text Available Abstract Background In Contrast Enhanced Magnetic Resonance Imaging fibrotic myocardium can be distinguished from healthy tissue using the difference in the longitudinal T1 relaxation after administration of Gadolinium, the so-called Late Gd Enhancement. The purpose of this work was to measure the myocardial absolute T1 post-Gd from a single breath-hold 3D Phase Sensitivity Inversion Recovery sequence (PSIR. Equations were derived to take the acquisition and saturation effects on the magnetization into account. Methods The accuracy of the method was investigated on phantoms and using simulations. The method was applied to a group of patients with suspected myocardial infarction where the absolute difference in relaxation of healthy and fibrotic myocardium was measured at about 15 minutes post-contrast. The evolution of the absolute R1 relaxation rate (1/T1 over time after contrast injection was followed for one patient and compared to T1 mapping using Look-Locker. Based on the T1 maps synthetic LGE images were reconstructed and compared to the conventional LGE images. Results The fitting algorithm is robust against variation in acquisition flip angle, the inversion delay time and cardiac arrhythmia. The observed relaxation rate of the myocardium is 1.2 s-1, increasing to 6 - 7 s-1 after contrast injection and decreasing to 2 - 2.5 s-1 for healthy myocardium and to 3.5 - 4 s-1 for fibrotic myocardium. Synthesized images based on the T1 maps correspond very well to actual LGE images. Conclusions The method provides a robust quantification of post-Gd T1 relaxation for a complete cardiac volume within a single breath-hold.
Energy Technology Data Exchange (ETDEWEB)
Panara, V.; Navarra, R; Caulo, M. [University ' ' G. d' Annunzio' ' , Department of Neuroscience, Imaging and Clinical Sciences, Chieti (Italy); University ' ' G. d' Annunzio' ' , ITAB Institute of Advanced Biomedical Technologies, Chieti (Italy); Mattei, P.A. [University ' ' G. d' Annunzio' ' , ITAB Institute of Advanced Biomedical Technologies, Chieti (Italy); University ' ' G. d' Annunzio' ' , Department of Medicine and Science of Aging, Ophthalmology Clinic, Chieti (Italy); Piccirilli, E. [University ' ' G. d' Annunzio' ' , ITAB Institute of Advanced Biomedical Technologies, Chieti (Italy); Cotroneo, A.R.; Uncini, A. [University ' ' G. d' Annunzio' ' , Department of Neuroscience, Imaging and Clinical Sciences, Chieti (Italy); Papinutto, N.; Henry, R.G. [University of California, San Francisco, Department of Neurology, San Francisco, CA (United States)
2017-08-15
The aim of this prospective study was to determine the feasibility in terms of repeatability and reproducibility of diffusional kurtosis imaging (DKI) for microstructural assessment of the normal cervical spinal cord (cSC) using a phase-sensitive inversion recovery (PSIR) sequence as the anatomical reference for accurately defining white-matter (WM) and gray-matter (GM) regions of interests (ROIs). Thirteen young healthy subjects were enrolled to undergo DKI and PSIR sequences in the cSC. The repeatability and reproducibility of kurtosis metrics and fractional anisotropy (FA) were calculated in GM, WM, and cerebral-spinal-fluid (CSF) ROIs drawn by two independent readers on PSIR images of three different levels (C1-C4). The presence of statistically significant differences in DKI metrics for levels, ROIs (GM, WM, and CSF) repeatability, reproducibility, and inter-reader agreement was evaluated. Intra-class correlation coefficients between the two readers ranged from good to excellent (0.75 to 0.90). The inferior level consistently had the highest concordance. The lower values of scan-rescan variability for all DKI parameters were found for the inferior level. Statistically significant differences in kurtosis values were not found in the lateral white-matter bundles of the spinal cord. The integration of DKI and PSIR sequences in a clinical MR acquisition to explore the regional microstructure of the cSC in healthy subjects is feasible, and the results obtainable are reproducible. Further investigation will be required to verify the possibility to translate this method to a clinical setting to study patients with SC involvement especially in the absence of MRI abnormalities on standard sequences. (orig.)
Quantitative magnetization transfer imaging of rodent glioma using selective inversion recovery.
Xu, Junzhong; Li, Ke; Zu, Zhongliang; Li, Xia; Gochberg, Daniel F; Gore, John C
2014-03-01
Magnetization transfer (MT) provides an indirect means to detect noninvasively variations in macromolecular contents in biological tissues, but, so far, there have been only a few quantitative MT (qMT) studies reported in cancer, all of which used off-resonance pulsed saturation methods. This article describes the first implementation of a different qMT approach, selective inversion recovery (SIR), for the characterization of tumor in vivo using a rodent glioma model. The SIR method is an on-resonance method capable of fitting qMT parameters and T1 relaxation time simultaneously without mapping B0 and B1 , which is very suitable for high-field qMT measurements because of the lower saturation absorption rate. The results show that the average pool size ratio (PSR, the macromolecular pool versus the free water pool) in rat 9 L glioma (5.7%) is significantly lower than that in normal rat gray matter (9.2%) and white matter (17.4%), which suggests that PSR is potentially a sensitive imaging biomarker for the assessment of brain tumor. Despite being less robust, the estimated MT exchange rates also show clear differences from normal tissues (19.7 Hz for tumors versus 14.8 and 10.2 Hz for gray and white mater, respectively). In addition, the influence of confounding effects, e.g. B1 inhomogeneity, on qMT parameter estimates is investigated with numerical simulations. These findings not only help to better understand the changes in the macromolecular contents of tumors, but are also important for the interpretation of other imaging contrasts, such as chemical exchange saturation transfer of tumors. Copyright © 2013 John Wiley & Sons, Ltd.
Directory of Open Access Journals (Sweden)
Stefan Hindel
Full Text Available The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles
Seo, Kwon-Duk; Suh, Sang Hyun; Kim, Yong Bae; Kim, Ji Hwa; Ahn, Sung Jun; Kim, Dong-Seok; Lee, Kyung-Yul
2015-01-01
Purpose Leptomeningeal collateral, in moyamoya disease (MMD), appears as an ivy sign on fluid-attenuated inversion-recovery (FLAIR) images. There has been little investigation into the relationship between presentation of ivy signs and old brain lesions. We aimed to evaluate clinical significance of ivy signs and whether they correlate with old brain lesions and the severity of clinical symptoms in patients with MMD. Materials and Methods FLAIR images of 83 patients were reviewed. Each cerebr...
Two-dimensional simulation of sintering process
International Nuclear Information System (INIS)
Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.
1996-01-01
The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)
Two dimensional generalizations of the Newcomb equation
International Nuclear Information System (INIS)
Dewar, R.L.; Pletzer, A.
1989-11-01
The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs
Pressure of two-dimensional Yukawa liquids
International Nuclear Information System (INIS)
Feng, Yan; Wang, Lei; Tian, Wen-de; Goree, J; Liu, Bin
2016-01-01
A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas. (paper)
Two dimensional nanomaterials for flexible supercapacitors.
Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi
2014-05-21
Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.
Geometrical aspects of solvable two dimensional models
International Nuclear Information System (INIS)
Tanaka, K.
1989-01-01
It was noted that there is a connection between the non-linear two-dimensional (2D) models and the scalar curvature r, i.e., when r = -2 the equations of motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggests that these models are closely related. This relation is explored further in the classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra. 21 refs
Two-dimensional materials for ultrafast lasers
International Nuclear Information System (INIS)
Wang Fengqiu
2017-01-01
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)
Two-dimensional phase fraction charts
International Nuclear Information System (INIS)
Morral, J.E.
1984-01-01
A phase fraction chart is a graphical representation of the amount of each phase present in a system as a function of temperature, composition or other variable. Examples are phase fraction versus temperature charts used to characterize specific alloys and as a teaching tool in elementary texts, and Schaeffler diagrams used to predict the amount of ferrite in stainless steel welds. Isothermal-transformation diagrams (TTT diagrams) are examples that give phase (or microconstituent) amount versus temperature and time. The purpose of this communication is to discuss the properties of two-dimensional phase fraction charts in more general terms than have been reported before. It is shown that they can represent multi-component, multiphase equilibria in a way which is easier to read and which contains more information than the isotherms and isopleths of multi-component phase diagrams
Two-dimensional motions of rockets
International Nuclear Information System (INIS)
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights
Two dimensional NMR studies of polysaccharides
International Nuclear Information System (INIS)
Byrd, R.A.; Egan, W.; Summers, M.F.
1987-01-01
Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides
Two-Dimensional Homogeneous Fermi Gases
Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning
2018-02-01
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
Two-dimensional electroacoustic waves in silicene
Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.
2018-01-01
In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.
Versatile two-dimensional transition metal dichalcogenides
DEFF Research Database (Denmark)
Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max
), a strategy for the fabrication of 2D heterostructures must be developed. Here we demonstrate a novel approach for the bottom-up synthesis of TMDC monolayers, namely Pulsed Laser Deposition (PLD) combined with a sulfur evaporation beam. PLD relies on the use of a pulsed laser (ns pulse duration) to induce...... material transfer from a solid source (such as a sintered target of MoS2) to a substrate (such as Si or sapphire). The deposition rate in PLD is typically much less than a monolayer per pulse, meaning that the number of MLs can be controlled by a careful selection of the number of laser pulses......Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...
Two-dimensional heterostructures for energy storage
Energy Technology Data Exchange (ETDEWEB)
Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)
2017-06-12
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Equivalency of two-dimensional algebras
International Nuclear Information System (INIS)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.
2011-01-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Electronic Transport in Two-Dimensional Materials
Sangwan, Vinod K.; Hersam, Mark C.
2018-04-01
Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.
Stress distribution in two-dimensional silos
Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel
2018-01-01
Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Seismic isolation of two dimensional periodic foundations
International Nuclear Information System (INIS)
Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.
2014-01-01
Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.
Two-dimensional transport of tokamak plasmas
International Nuclear Information System (INIS)
Hirshman, S.P.; Jardin, S.C.
1979-01-01
A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Turbulent equipartitions in two dimensional drift convection
International Nuclear Information System (INIS)
Isichenko, M.B.; Yankov, V.V.
1995-01-01
Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Buckled two-dimensional Xene sheets.
Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji
2017-02-01
Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.
International Nuclear Information System (INIS)
Yamamoto, Takashi; Ashikaga, Ryuichiro; Araki, Yutaka; Nishimura, Yasumasa
2000-01-01
Marchiafava-Bignami disease (MBD) was diagnosed in a 56-year-old man. Spin-echo (SE) magnetic resonance imaging (MRI) at the acute phase showed normal signal areas in the central layer of the corpus callosum (CC), although the intensity of these areas revealed abnormal hyperintensity on fluid attenuated inversion recovery (FLAIR). On follow-up SE MRI at the late phase, the central layer of the CC showed fluid-like intensity. On FLAIR MRI, the lesions of the CC turned into hypointense cores surrounded by hyperintense rims indicating central necrosis and peripheral demyelination. Degenerative changes of the CC in MBD were clearly demonstrated by FLAIR MRI
DEFF Research Database (Denmark)
Marstrand, J.R.; Rostrup, Egill; Garde, Ellen
2001-01-01
Changes in cerebral blood flow (CBF) induced by Acetazolamide (ACZ) were measured using dynamic susceptibility contrast MRI (DSC-MRI) with both spin echo (SE) EPI and gradient echo (GE) EPI, and related to changes in internal carotid artery (ICA) flow measured by phase-mapping. Also examined...... was the effect of repeated bolus injections. CBF, cerebral blood volume (CBV), and mean transit time (MTT) were calculated by singular value decomposition (SVD) and by deconvolution using an exponential function as kernel. The results showed no dependency on calculation method. GE-EPI measured a significant...... increase in CBF and CBV in response to ACZ, while SE-EPI measured a significant increase in CBV and MTT. CBV and MTT change measured by SE-EPI was sensitive to previous bolus injections. There was a significant linear relation between change in CBF measured by GE-EPI and change in ICA flow. In conclusion...
DEFF Research Database (Denmark)
Marstrand, J.R.; Rostrup, Egill; Garde, Ellen
2001-01-01
Changes in cerebral blood flow (CBF) induced by Acetazolamide (ACZ) were measured using dynamic susceptibility contrast MRI (DSC-MRI) with both spin echo (SE) EPI and gradient echo (GE) EPI, and related to changes in internal carotid artery (ICA) flow measured by phase-mapping. Also examined...... increase in CBF and CBV in response to ACZ, while SE-EPI measured a significant increase in CBV and MTT. CBV and MTT change measured by SE-EPI was sensitive to previous bolus injections. There was a significant linear relation between change in CBF measured by GE-EPI and change in ICA flow. In conclusion......, GE-EPI under the present condition was superior to SE-EPI in monitoring cerebral vascular changes...
Two-dimensional vibrational-electronic spectroscopy
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Two-dimensional silica opens new perspectives
Büchner, Christin; Heyde, Markus
2017-12-01
In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science
Two-dimensional vibrational-electronic spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a
Harris, Robert J; Yao, Jingwen; Chakhoyan, Ararat; Raymond, Catalina; Leu, Kevin; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Salamon, Noriko; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M
2018-04-06
To introduce a new pH-sensitive and oxygen-sensitive MRI technique using amine proton CEST echo spin-and-gradient echo (SAGE) EPI (CEST-SAGE-EPI). pH-weighting was obtained using CEST estimations of magnetization transfer ratio asymmetry (MTR asym ) at 3 ppm, and oxygen-weighting was obtained using R2' measurements. Glutamine concentration, pH, and relaxation rates were varied in phantoms to validate simulations and estimate relaxation rates. The values of MTR asym and R2' in normal-appearing white matter, T 2 hyperintensity, contrast enhancement, and macroscopic necrosis were measured in 47 gliomas. Simulation and phantom results confirmed an increase in MTR asym with decreasing pH. The CEST-SAGE-EPI estimates of R 2 , R2*, and R2' varied linearly with gadolinium diethylenetriamine penta-acetic acid concentration (R 2 = 6.2 mM -1 ·sec -1 and R2* = 6.9 mM -1 ·sec -1 ). The CEST-SAGE-EPI and Carr-Purcell-Meiboom-Gill estimates of R 2 (R 2 = 0.9943) and multi-echo gradient-echo estimates of R2* (R 2 = 0.9727) were highly correlated. T 2 lesions had lower R2' and higher MTR asym compared with normal-appearing white matter, suggesting lower hypoxia and high acidity, whereas contrast-enhancement tumor regions had elevated R2' and MTR asym , indicating high hypoxia and acidity. The CEST-SAGE-EPI technique provides simultaneous pH-sensitive and oxygen-sensitive image contrasts for evaluation of the brain tumor microenvironment. Advantages include fast whole-brain acquisition, in-line B 0 correction, and simultaneous estimation of CEST effects, R 2 , R2*, and R2' at 3 T. © 2018 International Society for Magnetic Resonance in Medicine.
Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria
2016-03-01
Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.
Lie algebra contractions on two-dimensional hyperboloid
International Nuclear Information System (INIS)
Pogosyan, G. S.; Yakhno, A.
2010-01-01
The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Two-dimensional black holes and non-commutative spaces
International Nuclear Information System (INIS)
Sadeghi, J.
2008-01-01
We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon
Solution of the two-dimensional spectral factorization problem
Lawton, W. M.
1985-01-01
An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.
Two-dimensional Navier-Stokes turbulence in bounded domains
Clercx, H.J.H.; van Heijst, G.J.F.
In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the
Two-dimensional Navier-Stokes turbulence in bounded domains
Clercx, H.J.H.; Heijst, van G.J.F.
2009-01-01
In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the
International Nuclear Information System (INIS)
Morioka, Takato; Nishio, Shunji; Mihara, Futoshi; Muraishi, Mitsuteru; Hisada, Kei; Hasuo, Kanehiro; Fukui, Masashi
1998-01-01
A newly advanced MRI pulse sequence, the FLAIR (fluid attenuated inversion recovery) imaging, in which a long TE spin echo sequence is used with suppression of the CSF with an inversion pulse, displays the CSF space as a no-signal intensity area. There have been only a few reports on the FLAIR pulse sequence of temporal lobe epilepsy (TLE) as yet. We examined 9 cases of intractable TLE by FLAIR images and analyzed the advantages and disadvantages of the FLAIR pulse sequence for decision making on temporal lobectomy. All patients underwent anterior temporal lobectomy with hippocampectomy, and the diagnoses were confirmed histologically after surgery. Abnormally high T2 signals (HT2S) were more conspicuous with the FLAIR sequence than with any of the conventional sequences. Tilted axial plane, orientated along to the long axis of the hippocampal body, clearly demonstrated hippocampal atrophy (HA). Selection of a FLAIR sequence into the routine MR examination of patients with TLE is recommended. (author)
International Nuclear Information System (INIS)
Serai, Suraj; Towbin, Alexander J.; Podberesky, Daniel J.
2012-01-01
Abdominal contrast-enhanced MR angiography (CE-MRA) is routinely performed in children. CE-MRA is challenging in children because of patient motion, difficulty in obtaining intravenous access, and the inability of young patients to perform a breath-hold during imaging. The combination of pediatric-specific difficulties in imaging and the safety concerns regarding the risk of gadolinium-based contrast agents in patients with impaired renal function has renewed interest in the use of non-contrast (NC) MRA techniques. At our institution, we have optimized 3-D NC-MRA techniques for abdominal imaging. The purpose of this work is to demonstrate the utility of an inflow-enhanced, inversion recovery balanced steady-state free precession-based (b-SSFP) NC-MRA technique. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kuramochi, Masashi; Niitsu, Mamoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Wada, Mitsuyoshi
1997-06-01
Fluid-Attenuated Inversion Recovery (FLAIR) Pulse Sequences with inversion times of 1700 ms and echo times of 110 ms were used to demonstrate the brain of cerebrovascular disease (CVD) and brain trauma. The long inversion times and long echo times nulls the signal from cerebrospinal fluid and produces heavy T{sub 2} weighting images. We compared FLAIR Pulse Sequences with T{sub 2} weighted image Pulse Sequences for signal intensities of CVD and trauma. FLAIR Pulse Sequences is useful to detect at the periphery of the cerebral hemispheres, but infratentorial small infarctions often cannot be detected for its iso-intensity and slight intensity changes. In all patient of traumatic-subarachnoid hemorrhage (t-SAH) can be definitely detected high signal intensity of the cerebral hemispheres. (author)
Optimizing separations in online comprehensive two-dimensional liquid chromatography.
Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J
2018-01-01
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Paul, J.; Dey, P.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Tokumoto, T.; Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States); Reno, J. L. [CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2014-10-07
The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.
Functional inks and printing of two-dimensional materials.
Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique
2018-05-08
Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.
Third sound in one and two dimensional modulated structures
International Nuclear Information System (INIS)
Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.
1996-01-01
An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
International Nuclear Information System (INIS)
Franiel, Tobias; Luedemann, Lutz; Taupitz, Matthias; Boehmer, Dirk; Beyersdorff, Dirk
2009-01-01
Purpose: To identify and quantify suitable pharmacokinetic MRI parameters for monitoring tissue changes after external beam intensity-modulated radiotherapy of prostate cancer. Material and methods: Six patients with biopsy-proven prostate cancer (initial PSA, 6.0-81.4 ng/ml) underwent MRI at 1.5 T using a combined endorectal/body phased-array coil and a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence (T1/T2*w; 1.65 s temporal resolution). MRI was performed before and immediately after radiotherapy, at 3 months and at 1 year. Perfusion, blood volume, mean transit time, delay, dispersion, interstitial volume, and extraction coefficient were calculated in prostate cancer and normal prostate for all four time points using a sequential 3-compartment model. Results: Prostate cancer and normal prostate tissue showed a statistically significant decrease in perfusion (p = 0.006, p = 0.001) and increase in extraction coefficient (p = 0.004, p 3 min, p = 0.028) and a smaller extraction coefficient (0.42 vs. 0.64, p = 0.028). Conclusions: Two pharmacokinetic parameters, perfusion and extraction coefficient, appear to be suitable candidates for monitoring the response to percutaneous intensity-modulated radiotherapy of prostate cancer.
Energy Technology Data Exchange (ETDEWEB)
Aymerich, F.X. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, MR Unit. Department of Radiology (IDI), Barcelona (Spain); Universitat Politecnica de Catalunya - Barcelona Tech (UPC), Department of Automatic Control (ESAII), Barcelona (Spain); Auger, C.; Alcaide-Leon, P.; Pareto, D.; Huerga, E.; Corral, J.F.; Mitjana, R.; Rovira, A. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, MR Unit. Department of Radiology (IDI), Barcelona (Spain); Sastre-Garriga, J.; Montalban, X. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, Centre d' Esclerosi Multiple de Catalunya (Cemcat), Department of Neurology/Neuroimmunology, Barcelona (Spain)
2017-04-15
To compare the sensitivity of enhancing multiple sclerosis (MS) lesions in gadolinium-enhanced 2D T1-weighted gradient-echo (GRE) and spin-echo (SE) sequences, and to assess the influence of visual conspicuity and laterality on detection of these lesions. One hundred MS patients underwent 3.0T brain MRI including gadolinium-enhanced 2D T1-weighted GRE and SE sequences. The two sets of contrast-enhanced scans were evaluated in random fashion by three experienced readers. Lesion conspicuity was assessed by the image contrast ratio (CR) and contrast-to-noise ratio (CNR). The intracranial region was divided into four quadrants and the impact of lesion location on detection was assessed in each slice. Six hundred and seven gadolinium-enhancing MS lesions were identified. GRE images were more sensitive for lesion detection (0.828) than SE images (0.767). Lesions showed a higher CR in SE than in GRE images, whereas the CNR was higher in GRE than SE. Most misclassifications occurred in the right posterior quadrant. The gadolinium-enhanced 2D T1-weighted GRE sequence at 3.0T MRI enables detection of enhancing MS lesions with higher sensitivity and better lesion conspicuity than 2D T1-weighted SE. Hence, we propose the use of gadolinium-enhanced GRE sequences rather than SE sequences for routine scanning of MS patients at 3.0T. (orig.)
International Nuclear Information System (INIS)
Komada, Tomohiro; Naganawa, Shinji; Ogawa, Hiroshi
2008-01-01
We evaluated the newly developed whole-brain, isotropic, 3-dimensional turbo spin-echo imaging with variable flip angle echo train (SPACE) for contrast-enhanced T 1 -weighted imaging in detecting brain metastases at 3 tesla (T). Twenty-two patients with suspected brain metastases underwent postcontrast study with SPACE, magnetization-prepared rapid gradient-echo (MP-RAGE), and 2-dimensional T 1 -weighted spin echo (2D-SE) imaging at 3 T. We quantitatively compared SPACE, MP-RAGE, and 2D-SE images by using signal-to-noise ratios (SNRs) for gray matter (GM) and white matter (WM) and contrast-to-noise ratios (CNRs) for GM-to-WM, lesion-to-GM, and lesion-to-WM. Two blinded radiologists evaluated the detection of brain metastases by segment-by-segment analysis and continuously-distributed test. The CNR between GM and WM was significantly higher on MP-RAGE images than on SPACE images (P 1 -weighted imaging. (author)
Energy Technology Data Exchange (ETDEWEB)
Park, Jung Hyun; Kim, Eun Hee; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu; Bae, Yun Jung; Lee, Kyung Mi [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)
2015-07-15
We aimed to evaluate the utility of two types of MR cisternography [fast spin echo sequence and steady-state coherent gradient echo (GRE) sequence] in addition to phase contrast-cine imaging (PC-cine), for assessing patency at the aqueduct and third ventriculostomy site. 43 patients (35 patients with suspected aqueductal stenosis and 8 patients with third ventriculostomy) were retrospectively analyzed. PC-cine, 3 dimensional sagittal fast spin echo sequence [driven-equilibrium imaging (DRIVE) or volumetric isotrophic T2-weighted acquisition (T2 VISTA)] and steady-state coherent fast GRE sequence (balanced turbo field echo; bTFE) imaging were performed in all patients. The patency of the aqueduct or third ventriculostomy site was scored. Some pitfalls of each sequence were also analyzed in individual cases. 93% of all cases showed consistent scores in PC-cine, DRIVE/T2 VISTA, and bTFE imaging. DRIVE/T2 VISTA imaging provided functional information of cerebrospinal fluid flow with flow-related artifacts, while bTFE imaging allowed direct visualization of the aqueduct or ventriculostomy site. However, evaluation of anatomical structures was difficult in three cases with strong flow-related artifacts on DRIVE/T2 VISTA and in 2 cases with susceptibility artifacts on bTFE. Both DRIVE/T2 VISTA and bTFE imaging have complementary roles in evaluating the patency of the aqueduct and 3rd ventriculostomy site.
International Nuclear Information System (INIS)
Dornia, C.; Hoffstetter, P.; Asklepios Klinikum, Bad Abbach; Fleck, M.; Asklepios Klinikum, Bad Abbach; Hartung, W.; Niessen, C.; Stroszczynski, C.
2015-01-01
Magnetic resonance imaging (MRI) is the method of choice for the evaluation of spondyloarthritis (SpA). According to the guidelines of the Assessment of Spondyloarthritis International Society (ASAS) and Outcome Measures in Rheumatology (OMERACT), MRI findings in SpA of the spine and the sacroiliac joints (SIJ) are classified as inflammatory and structural alterations. Modern gradient-echo sequences (GRE) are recommended for optimized detection of structural alterations of the SIJ. We assess the benefit of GRE in the detection of structural alterations of the SIJ in comparison to conventional turbo spin-echo sequences (TSE). Retrospective study of 114 patients who received MRI of the SIJ for the evaluation of SpA. Structural alterations of the SIJ were assessed by two blinded readers separately for T1 TSE and T2 * GRE. The findings were classified according to a previously published chronicity score separately for both sides and sequences. Interobserver reliability was calculated with Cohen's Kappa, and the significance of findings was assessed with the Wilcoxon test. P-values * GRE showed a high interobserver reliability in the detection of structural alterations in patients with SpA. However, T2 * GRE detected significantly more structural alterations than T1 TSE and should be an integral part of a modern MRI protocol for the diagnostic workup of patients with suspected SpA.
International Nuclear Information System (INIS)
Park, Jung Hyun; Kim, Eun Hee; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu; Bae, Yun Jung; Lee, Kyung Mi
2015-01-01
We aimed to evaluate the utility of two types of MR cisternography [fast spin echo sequence and steady-state coherent gradient echo (GRE) sequence] in addition to phase contrast-cine imaging (PC-cine), for assessing patency at the aqueduct and third ventriculostomy site. 43 patients (35 patients with suspected aqueductal stenosis and 8 patients with third ventriculostomy) were retrospectively analyzed. PC-cine, 3 dimensional sagittal fast spin echo sequence [driven-equilibrium imaging (DRIVE) or volumetric isotrophic T2-weighted acquisition (T2 VISTA)] and steady-state coherent fast GRE sequence (balanced turbo field echo; bTFE) imaging were performed in all patients. The patency of the aqueduct or third ventriculostomy site was scored. Some pitfalls of each sequence were also analyzed in individual cases. 93% of all cases showed consistent scores in PC-cine, DRIVE/T2 VISTA, and bTFE imaging. DRIVE/T2 VISTA imaging provided functional information of cerebrospinal fluid flow with flow-related artifacts, while bTFE imaging allowed direct visualization of the aqueduct or ventriculostomy site. However, evaluation of anatomical structures was difficult in three cases with strong flow-related artifacts on DRIVE/T2 VISTA and in 2 cases with susceptibility artifacts on bTFE. Both DRIVE/T2 VISTA and bTFE imaging have complementary roles in evaluating the patency of the aqueduct and 3rd ventriculostomy site
Multisoliton formula for completely integrable two-dimensional systems
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1979-01-01
For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations
Two-dimensional electronic femtosecond stimulated Raman spectroscopy
Directory of Open Access Journals (Sweden)
Ogilvie J.P.
2013-03-01
Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.
Micromachined two dimensional resistor arrays for determination of gas parameters
van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of
Generalized similarity method in unsteady two-dimensional MHD ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology. Vol. 1, No. 1, 2009 ... temperature two-dimensional MHD laminar boundary layer of incompressible fluid. ...... Φ η is Blasius solution for stationary boundary layer on the plate,. ( ). 0.
Topological aspect of disclinations in two-dimensional crystals
International Nuclear Information System (INIS)
Wei-Kai, Qi; Tao, Zhu; Yong, Chen; Ji-Rong, Ren
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given. (the physics of elementary particles and fields)
Structures of two-dimensional three-body systems
International Nuclear Information System (INIS)
Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.
1996-01-01
Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)
Study on two-dimensional induced signal readout of MRPC
International Nuclear Information System (INIS)
Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin
2012-01-01
A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT...prospects for a variety of emerging applications in a broad range of fields, such as electronics, energy conversion and storage, catalysis and polymer
The theory of critical phenomena in two-dimensional systems
International Nuclear Information System (INIS)
Olvera de la C, M.
1981-01-01
An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)
Two-dimensional multifractal cross-correlation analysis
International Nuclear Information System (INIS)
Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong
2017-01-01
Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
International Nuclear Information System (INIS)
Aprile, I.; Principi, M.; Ottaviano, P.; Scapeccia, M.
2003-01-01
We assessed possible advantages of the use of fluid-attenuated inversion-recovery (FLAIR) sequences with magnetisation-transfer contrast (MTC) over conventional FLAIR images. We carried out cranial MRI at 1 tesla on 50 patients with both sequences. In nine patients with multiple sclerosis (MS) we performed a quantitative comparison of the two sequences, looking at the contrast-to-noise ratio between lesions and normal white matter and counting the number of lesions shown using each method. A qualitative comparison on all patients consisted of the analysis of the appearance of the normal parenchyma, of any lesions, and of artefacts, with particular reference to cerebrospinal fluid (CSF) motion artefacts. The quantitative analysis showed no meaningful difference between the two sequences. The cerebral parenchyma and lesions appeared substantially the same with both techniques. With FLAIR MTC there was a clear, and consistent reduction in CSF motion artefacts. FLAIR MTC sequences can usefully be used in place of the conventional sequence at 1 tesla. (orig.)
International Nuclear Information System (INIS)
Pang, A.K.K.; Hughes, T.
2000-01-01
The present limited retrospective study was performed to assess MR imaging of lipomatous tumours of the musculoskeletal system and to evaluate the potential of the T2 short tau inversion-recovery (STIR) technique for differentiating lipomas from liposarcomas. Magnetic resonance imaging of 12 patients with lipomatous tumours of the musculoskeletal system (eight benign lipomas, three well differentiated liposarcomas and one myxoid liposarcoma) were reviewed. Benign lipomas were usually superficial and showed homogeneity on T1- and T2-weighted spin echo sequences. Full suppression at T2-STIR was readily demonstrated. In contrast the liposarcomas in the present series were all deep-seated. Two well-differentiated liposarcomas showed homogeneity at long and short relaxation time (TR) but failed to show complete suppression at T2-STIR. One case of well-differentiated liposarcoma (dedifferentiated liposarcoma) and one of myxoid liposarcoma showed mild and moderate heterogeneity at T1 and T2, respectively and posed no difficulty in being diagnosed correctly. In conclusion, short and long TR in combination with T2 STIR show promise in differentiating benign from malignant lipomatous tumours of the musculoskeletal system, when taken in combination with the position of the tumour. Copyright (1999) Blackwell Science Pty Ltd
Yasokawa, Kazuya; Ito, Katsuyoshi; Tamada, Tsutomu; Yamamoto, Akira; Hayashida, Minoru; Tanimoto, Daigo; Higaki, Atsushi; Noda, Yasufumi; Kido, Ayumu
2015-11-01
To investigate the feasibility of noncontrast-enhanced cine dynamic magnetic resonance cholangiopancreatography (MRCP) with a spatially selective inversion-recovery (IR) pulse for evaluating exocrine pancreatic function in comparison with the N-benzoyl-L-tyrosyl-p-aminobenzoic acid (BT-PABA) test as a pancreatic exocrine function test. Twenty subjects with or without chronic pancreatitis were included. MRCP with a spatially selective IR pulse was repeated every 15 seconds for 5 minutes to acquire a total of 20 images (cine-dynamic MRCP). The median and mean frequency of the observation (the number of times) and the moving distance (mean secretion grading scores) of pancreatic juice inflow on cine-dynamic MRCP were compared with a BT-PABA test. The urinary PABA excretion rate (%) had significant positive correlations with both the mean secretion grade (r = 0.66, P = 0.002) and frequency of secretory inflow (r = 0.62, P = 0.004) in cine dynamic MRCP. Both the mean frequency of observations of pancreatic secretory inflow (1.4 ± 1.6 times vs. 14.3 ± 4.2 times, P Cine dynamic MRCP with a spatially selective IR pulse may have potential for estimating the pancreatic exocrine function noninvasively as a substitute for the BT-PABA test. © 2015 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Choi, Hye Young; Kwang, Hyoen Joo; Baek, Seoung Yeon; Lee, Sun Wha
1997-01-01
To evaluate the significance of fluid-attenuated inversion recovery(FLAIR) magnetic resonance(MR) images for the diagnosis of intracranial tumors. MR imaging was used to study 15 patients with various intracranial tumors and were compared the findings according to fast spin echo and fast FLAIR images. In 12 of 15 patients, tumor signal intensities on FLAIR images were consistent with those shown on T2-weighted(T2W) images. In seven of eight patients who had cystic or necrotic components within the mass, FLAIR images showed isosignal intensity and in the other patient, high signal intensity was seen. There was variation in the signal intensity from cerebrospinal fluid(CSF). In 12 of 13 patients in whom edema was associated with tumor, FLAIR images were clearer than T2W images as their signal intensity was brighter. In eight patients, however, FLAIR and T2W images provided a similar definition of the margin between edema and tumor. In six patients with intratumoral hemorrhage except the chronic cystic stage. We concluded that in the diagnosis of intracranial tumors, FLAIR images can supplement conventional spin-echo images
Energy Technology Data Exchange (ETDEWEB)
Yoo, Byung Il; Han, Ji Won; Oh, San Yeo Wool; Kim, Tae Hui [Seoul National University Bundang Hospital, Department of Neuropsychiatry, Seongnam, Gyeonggi-do (Korea, Republic of); Lee, Jung Jae; Lee, Eun Young [Kyungbook National University Chilgok Hospital, Department of Psychiatry, Buk-gu, Daegu (Korea, Republic of); MacFall, James R. [Duke University Medical Center, Neuropsychiatric Imaging Research Laboratory, Durham, NC (United States); Duke University Medical Center, Department of Radiology, Durham, NC (United States); Payne, Martha E. [Duke University Medical Center, Neuropsychiatric Imaging Research Laboratory, Durham, NC (United States); Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC (United States); Kim, Jae Hyoung [Seoul National University Bundang Hospital, Department of Radiology, Seongnam, Gyeonggi-do (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Kim, Ki Woong [Seoul National University Bundang Hospital, Department of Neuropsychiatry, Seongnam, Gyeonggi-do (Korea, Republic of); Seoul National University College of Medicine, Department of Psychiatry, Jongno-gu, Seoul (Korea, Republic of); Seoul National University College of Natural Sciences, Department of Brain and Cognitive Science, Gwanak-gu, Seoul (Korea, Republic of)
2014-04-15
White matter hyperintensities (WMHs) are regions of abnormally high intensity on T2-weighted or fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Accurate and reproducible automatic segmentation of WMHs is important since WMHs are often seen in the elderly and are associated with various geriatric and psychiatric disorders. We developed a fully automated monospectral segmentation method for WMHs using FLAIR MRIs. Through this method, we introduce an optimal threshold intensity (I{sub O}) for segmenting WMHs, which varies with WMHs volume (V{sub WMH}), and we establish the I{sub O} -V{sub WMH} relationship. Our method showed accurate validations in volumetric and spatial agreements of automatically segmented WMHs compared with manually segmented WMHs for 32 confirmatory images. Bland-Altman values of volumetric agreement were 0.96 ± 8.311 ml (bias and 95 % confidence interval), and the similarity index of spatial agreement was 0.762 ± 0.127 (mean ± standard deviation). Furthermore, similar validation accuracies were obtained in the images acquired from different scanners. The proposed segmentation method uses only FLAIR MRIs, has the potential to be accurate with images obtained from different scanners, and can be implemented with a fully automated procedure. In our study, validation results were obtained with FLAIR MRIs from only two scanner types. The design of the method may allow its use in large multicenter studies with correct efficiency. (orig.)
Fast fluid-attenuated inversion-recovery imaging: first experience with a 3D version in epilepsy
International Nuclear Information System (INIS)
Wieshmann, U.C.; Symms, M.R.; Bartlett, P.A.; Shorvon, S.D.; Barker, G.J.; Stevens, J.M.
1998-01-01
We developed a 3D version of fast fluid-attenuated inversion-recovery imaging (FLAIR) which provides images with a slice thickness of 1.5 mm. We present our initial experience with 3D fast FLAIR in patients with epilepsy. We compared 3D fast FLAIR (slice thickness 1.5 mm), 2D fast FLAIR (slice thickness 5 mm) and a 3D spoiled GRASS (IRSPGR) sequence (slice thickness 1.5 mm) in 10 patients with lesional epilepsy (head injury 1, hippocampal sclerosis 2, low-grade glioma 2, dysembryoplastic neuroepithelial tumour 2, polymicrogyria 1, perinatal infarct 1 and presumed thrombosed aneurysm 1). Both 2D and 3D fast FLAIR sequences yielded higher conspicuity for lesions than the T1-weighted IRSPGR sequence, except in the patient with polymicrogyria. The extent of the lesion, in particular that of low-grade tumours, was best assessed on 3D fast FLAIR images. 3D fast FLAIR may be a useful additional tool especially for imaging low-grade tumours. (orig.)
International Nuclear Information System (INIS)
Yoo, Byung Il; Han, Ji Won; Oh, San Yeo Wool; Kim, Tae Hui; Lee, Jung Jae; Lee, Eun Young; MacFall, James R.; Payne, Martha E.; Kim, Jae Hyoung; Kim, Ki Woong
2014-01-01
White matter hyperintensities (WMHs) are regions of abnormally high intensity on T2-weighted or fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Accurate and reproducible automatic segmentation of WMHs is important since WMHs are often seen in the elderly and are associated with various geriatric and psychiatric disorders. We developed a fully automated monospectral segmentation method for WMHs using FLAIR MRIs. Through this method, we introduce an optimal threshold intensity (I O ) for segmenting WMHs, which varies with WMHs volume (V WMH ), and we establish the I O -V WMH relationship. Our method showed accurate validations in volumetric and spatial agreements of automatically segmented WMHs compared with manually segmented WMHs for 32 confirmatory images. Bland-Altman values of volumetric agreement were 0.96 ± 8.311 ml (bias and 95 % confidence interval), and the similarity index of spatial agreement was 0.762 ± 0.127 (mean ± standard deviation). Furthermore, similar validation accuracies were obtained in the images acquired from different scanners. The proposed segmentation method uses only FLAIR MRIs, has the potential to be accurate with images obtained from different scanners, and can be implemented with a fully automated procedure. In our study, validation results were obtained with FLAIR MRIs from only two scanner types. The design of the method may allow its use in large multicenter studies with correct efficiency. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kwag, Eujean; Lim, Soo Mee; Park, Ji Eun; Chae, In Hye [Ewha Womans University School of Medicine, Department of Radiology, Mokdong Hospital, Seoul (Korea, Republic of)
2014-09-15
To evaluate the utility of BLADE fluid-attenuated inversion recovery images (FLAIR) magnetic resonance (MR) imaging compared to conventional FLAIR for the detection of arterial hyperintensity (AH) in hyperacute territorial infarction. We retrospectively analysed MR images of patients with hyperacute (<6 h) territorial infarction over a 9-month study period. Special attention was paid to the presence or absence of AH in the frontal, parietal and temporal lobes and the number of AHs in the sylvian fissure. We also evaluated the presence of three kinds of artefacts on BLADE FLAIR and conventional FLAIR images. AH was seen in 41 (91 %) patients with conventional FLAIR and 45 (100 %) patients with BLADE FLAIR images. More instances of AH were detected in the frontal, parietal and temporal lobes and within the sylvian fissure using BLADE FLAIR. Motion artefacts, pulsation artefacts from the sigmoid sinus and incomplete cerebrospinal fluid (CSF) nulling that reduced image quality were observed more frequently on conventional FLAIR images than on BLADE FLAIR images. BLADE FLAIR sequences are more sensitive than conventional FLAIR for the detection of AH in hyperacute territorial infarctions and provide better image quality by reducing artefacts. They may be used in place of conventional FLAIR for patients with hyperacute stroke. (orig.)
Traditional Semiconductors in the Two-Dimensional Limit.
Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B
2018-02-23
Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.
Two-dimensional analytic weighting functions for limb scattering
Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.
2017-10-01
Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.
International Nuclear Information System (INIS)
Kim, Yong Pyo; Kim, Sung Jun; Chung, Tae Sub; Yoo, Yeon Hwa; Yoon, Choon Sik; Kanneengiesser, Stephan; Paek, Moon Young; Song, Ho Taek; Lee, Young Han; Suh, Jin Suck
2014-01-01
To assess the feasibility of T2 * -corrected fat-signal fraction (FF) map by using the three-echo volume interpolated breath-hold gradient echo (VIBE) Dixon sequence to differentiate between malignant marrow-replacing lesions and benign red marrow deposition of vertebrae. We assessed 32 lesions from 32 patients who underwent magnetic resonance imaging after being referred for assessment of a known or possible vertebral marrow abnormality. The lesions were divided into 21 malignant marrow-replacing lesions and 11 benign red marrow depositions. Three sequences for the parameter measurements were obtained by using a 1.5-T MR imaging scanner as follows: three-echo VIBE Dixon sequence for FF; conventional T1-weighted imaging for the lesion-disc ratio (LDR); pre- and post-gadolinium enhanced fat-suppressed T1-weighted images for the contrast-enhancement ratio (CER). A region of interest was drawn for each lesion for parameter measurements. The areas under the curve (AUC) of the parameters and their sensitivities and specificities at the most ideal cutoff values from receiver operating characteristic curve analysis were obtained. AUC, sensitivity, and specificity were respectively compared between FF and CER. The AUCs of FF, LDR, and CER were 0.96, 0.80, and 0.72, respectively. In the comparison of diagnostic performance between the FF and CER, the FF showed a significantly larger AUC as compared to the CER (p = 0.030), although the difference of sensitivity (p = 0.157) and specificity (p = 0.157) were not significant. Fat-signal fraction measurement using T2 * -corrected three-echo VIBE Dixon sequence is feasible and has a more accurate diagnostic performance, than the CER, in distinguishing benign red marrow deposition from malignant bone marrow-replacing lesions.
Dynamical class of a two-dimensional plasmonic Dirac system.
Silva, Érica de Mello
2015-10-01
A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Velocity and Dispersion for a Two-Dimensional Random Walk
International Nuclear Information System (INIS)
Li Jinghui
2009-01-01
In the paper, we consider the transport of a two-dimensional random walk. The velocity and the dispersion of this two-dimensional random walk are derived. It mainly show that: (i) by controlling the values of the transition rates, the direction of the random walk can be reversed; (ii) for some suitably selected transition rates, our two-dimensional random walk can be efficient in comparison with the one-dimensional random walk. Our work is motivated in part by the challenge to explain the unidirectional transport of motor proteins. When the motor proteins move at the turn points of their tracks (i.e., the cytoskeleton filaments and the DNA molecular tubes), some of our results in this paper can be used to deal with the problem. (general)
Two-dimensional nonlinear equations of supersymmetric gauge theories
International Nuclear Information System (INIS)
Savel'ev, M.V.
1985-01-01
Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Pair Interaction of Dislocations in Two-Dimensional Crystals
Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.
2005-10-01
The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
International Nuclear Information System (INIS)
Stathaki, P.T.; Constantinides, A.G.
1994-01-01
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging
Densis. Densimetric representation of two-dimensional matrices
International Nuclear Information System (INIS)
Los Arcos Merino, J.M.
1978-01-01
Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)
Two-dimensional QCD in the Coulomb gauge
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Nefed'ev, A.V.
2002-01-01
Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru
Quantum Communication Through a Two-Dimensional Spin Network
International Nuclear Information System (INIS)
Wang Zhaoming; Gu Yongjian
2012-01-01
We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
Energy Technology Data Exchange (ETDEWEB)
Stathaki, P T; Constantinides, A G [Signal Processing Section, Department of Electrical and Electronic Engineering, Imperial College, Exhibition Road, London SW7 2BT, UK (United Kingdom)
1994-12-31
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging. 7 refs, 2 figs.
Finite element solution of two dimensional time dependent heat equation
International Nuclear Information System (INIS)
Maaz
1999-01-01
A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)
Chaotic dynamics in two-dimensional noninvertible maps
Mira, Christian; Cathala, Jean-Claude; Gardini, Laura
1996-01-01
This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this resea
Chiral anomaly, fermionic determinant and two dimensional models
International Nuclear Information System (INIS)
Rego Monteiro, M.A. do.
1985-01-01
The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt
Energy Technology Data Exchange (ETDEWEB)
Ni Jianming [Medical Imaging Department, Wuxi Second Hospital Affiliated Nanjing Medical University, 68 Zhong Shan Road, Wuxi, Jiangsu Province 214002 (China); Radiology Department, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Urumqi Middle Road, Shanghai 200040 (China); Nuclear Medicine Department, Renji Hospital, Medical School of Jiaotong University, Dongfang Road 1630, Shanghai 200127 (China); Mogensen, Monique A. [Department of Radiology, Division of Neuroradiology, University of Southern California, Los Angeles, CA (United States); Chen Zengai [Radiology Department, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Urumqi Middle Road, Shanghai 200040 (China); Nuclear Medicine Department, Renji Hospital, Medical School of Jiaotong University, Dongfang Road 1630, Shanghai 200127 (China); Shuang Chen; Shen Tianzhen [Radiology Department, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Urumqi Middle Road, Shanghai 200040 (China); Huang Gang, E-mail: huang2802@163.co [Nuclear Medicine Department, Renji Hospital, Medical School of Jiaotong University, Dongfang Road 1630, Shanghai 200127 (China)
2010-08-15
Background and purpose: The application of a fluid-attenuated inversion-recovery pulse with a conventional diffusion-weighted MRI sequence (FLAIR DWI) decreases the partial volume effects from cerebrospinal fluid on apparent diffusion coefficient (ADC) measurements. For this reason, FLAIR DWI may be more useful in the evaluation of ischemic stroke, but few studies have looked at the effect of FLAIR on ADC measurements in this setting. This study quantitatively compares FLAIR DWI and conventional DWI in ischemic stroke of varying ages to assess the potential advantages of this technique. Methods: We respectively analyzed 139 DWI studies in patients with ischemic stroke with and without FLAIR at varying time points ranging from hyperacute to chronic. ADC values were measured in each lesion, as well as in the contralateral normal side. Comparisons were made between the ADC values obtained from the DWI sequences with and without FLAIR for both the lesion and the normal contralateral side. Results: The ADC measurements within the ischemic lesion were very similar on FLAIR DWI and conventional DWI for lesions less than 14 days old (p > 0.05), but were significantly decreased on FLAIR DWI for lesions between 15 and 30 days old and in lesions >31 days old (chronic stage) (p < 0.01). The contralateral ADC values were all significantly decreased on the FLAIR DWI sequence compared with conventional DWI (p < 0.01). Conclusions: The application of an inversion pulse does not significantly affect the ADC values for early stage ischemic stroke (less than 14 days from symptom onset), but results in a more accurate relative ADC measurement by reducing the cerebrospinal fluid partial volume effects of the normal contralateral side. In addition, combined with the conventional DWI, FLAIR DWI may be helpful in determining the age of ischemic lesions.
Energy Technology Data Exchange (ETDEWEB)
Varga-Szemes, Akos; Schoepf, U.J.; De Cecco, Carlo N.; Fuller, Stephen R.; Suranyi, Pal [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Geest, Rob J. van der [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Spottiswoode, Bruce S. [Siemens Medical Solutions, Chicago, IL (United States); Muscogiuri, Giuseppe [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Bambino Gesu Children' s Hospital IRCCS, Department of Imaging, Rome (Italy); Wichmann, Julian L. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Mangold, Stefanie [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Maurovich-Horvat, Pal; Merkely, Bela [Semmelweis University, MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Budapest (Hungary); Litwin, Sheldon E. [Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Vliegenthart, Rozemarijn [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Department of Radiology, Groningen (Netherlands)
2017-08-15
To evaluate the influence of inversion time (TI) on the precision of myocardial late gadolinium enhancement (LGE) quantification using synthetic inversion recovery (IR) imaging in patients with myocardial infarction (MI). Fifty-three patients with suspected prior MI underwent 1.5-T cardiac MRI with conventional magnitude (MagIR) and phase-sensitive IR (PSIR) LGE imaging and T1 mapping at 15 min post-contrast. T1-based synthetic MagIR and PSIR images were calculated with a TI ranging from -100 to +150 ms at 5-ms intervals relative to the optimal TI (TI{sub 0}). LGE was quantified using a five standard deviation (5SD) and full width at half-maximum (FWHM) thresholds. Measurements were compared using one-way analysis of variance. The MagIR{sub sy} technique provided precise assessment of LGE area at TIs ≥ TI{sub 0}, while precision was decreased below TI{sub 0}. The LGE area showed significant differences at ≤ -25 ms compared to TI{sub 0} using 5SD (P < 0.001) and at ≤ -65 ms using the FWHM approach (P < 0.001). LGE measurements did not show significant difference over the analysed TI range in the PSIR{sub sy} images using either of the quantification methods. T1 map-based PSIR{sub sy} images provide precise quantification of MI independent of TI at the investigated time point post-contrast. MagIR{sub sy}-based MI quantification is precise at TI{sub 0} and at longer TIs while showing decreased precision at TI values below TI{sub 0}. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Fujiwara, Hirokazu [Department of Diagnostic Radiology, School of Medicine, Keio University, Tokyo 1608582 (Japan)]. E-mail: hirokazu_fujiwara@ybb.ne.jp; Momoshima, Suketaka [Department of Diagnostic Radiology, School of Medicine, Keio University, Tokyo 1608582 (Japan); Kuribayashi, Sachio [Department of Diagnostic Radiology, School of Medicine, Keio University, Tokyo 1608582 (Japan)
2005-08-01
Purpose: There are a few reports on leptomeningeal high signal intensity (LMHI: ivy sign) on fluid-attenuated inversion-recovery (FLAIR) images in moyamoya disease, but the feature of this finding has not been completely understood. The purpose of this study was to characterize LMHI on FLAIR images in moyamoya disease and to assess usefulness of this finding in the diagnosis of moyamoya disease in conventional MR imaging. Material and methods: MR imaging of 28 patients with moyamoya disease was retrospectively reviewed. The grade of LMHI on FLAIR images was classified as 'absent,' 'minimal,' 'moderate' and 'marked.' Fifty-four hemispheres of 28 patients (2 patients had unilateral disease) were assessed for the frequency of visualization and distribution of LMHI. The correlations between LMHI on FLAIR images, moyamoya vessels on T1- and T2-weighted images and MR angiography findings were also analyzed. Results: Moderate and marked LMHI was seen in 31 out of 54 hemispheres (57%). LMHI was seen more prominently in the frontal and parietal lobes than in the temporal and occipital lobes. Although there was a tendency for LMHI on FLAIR images to be prominent in groups with moderate and marked moyamoya vessels on T1- and T2-weighted images, there was no significant correlation. More prominent LMHI was observed in the hemispheres in which cortical branches of the middle cerebral arteries were poorly visualized on MR angiography. Conclusion: Leptomeningeal high signal intensity (ivy sign) on FLAIR images is predominantly seen in the frontal and parietal lobes. Because this sign can be seen in patients with unremarkable moyamoya vessels, LMHI is a useful sign in conventional MR imaging for the diagnosis of moyamoya disease.
Seo, Kwon-Duk; Suh, Sang Hyun; Kim, Yong Bae; Kim, Ji Hwa; Ahn, Sung Jun; Kim, Dong-Seok; Lee, Kyung-Yul
2015-09-01
Leptomeningeal collateral, in moyamoya disease (MMD), appears as an ivy sign on fluid-attenuated inversion-recovery (FLAIR) images. There has been little investigation into the relationship between presentation of ivy signs and old brain lesions. We aimed to evaluate clinical significance of ivy signs and whether they correlate with old brain lesions and the severity of clinical symptoms in patients with MMD. FLAIR images of 83 patients were reviewed. Each cerebral hemisphere was divided into 4 regions and each region was scored based on the prominence of the ivy sign. Total ivy score (TIS) was defined as the sum of the scores from the eight regions and dominant hemispheric ivy sign (DHI) was determined by comparing the ivy scores from each hemisphere. According to the degree of ischemic symptoms, patients were classified into four subgroups: 1) nonspecific symptoms without motor weakness, 2) single transient ischemic attack (TIA), 3) recurrent TIA, or 4) complete stroke. TIS was significantly different as follows: 4.86±2.55 in patients with nonspecific symptoms, 5.89±3.10 in patients with single TIA, 9.60±3.98 in patients with recurrent TIA and 8.37±3.39 in patients with complete stroke (p=0.003). TIS associated with old lesions was significantly higher than those not associated with old lesions (9.35±4.22 vs. 7.49±3.37, p=0.032). We found a significant correlation between DHI and motor symptoms (p=0.001). Because TIS has a strong tendency with severity of ischemic motor symptom and the presence of old lesions, the ivy sign may be useful in predicting severity of disease progression.
Vectorized Matlab Codes for Linear Two-Dimensional Elasticity
Directory of Open Access Journals (Sweden)
Jonas Koko
2007-01-01
Full Text Available A vectorized Matlab implementation for the linear finite element is provided for the two-dimensional linear elasticity with mixed boundary conditions. Vectorization means that there is no loop over triangles. Numerical experiments show that our implementation is more efficient than the standard implementation with a loop over all triangles.
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Two-dimensional P T -symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both ...
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both
Interior design of a two-dimensional semiclassical black hole
Levanony, Dana; Ori, Amos
2009-10-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.
On final states of two-dimensional decaying turbulence
Yin, Z.
2004-01-01
Numerical and analytical studies of final states of two-dimensional (2D) decaying turbulence are carried out. The first part of this work is trying to give a definition for final states of 2D decaying turbulence. The functional relation of ¿-¿, which is frequently adopted as the characterization of
Vibrations of thin piezoelectric shallow shells: Two-dimensional ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...
Inter-layer Cooper pairing of two-dimensional electrons
International Nuclear Information System (INIS)
Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo
1987-01-01
The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)
Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...
Indian Academy of Sciences (India)
Aly R Seadawy
2017-09-13
Sep 13, 2017 ... We considered the two-dimensional DASWs in colli- sionless, unmagnetized cold plasma consisting of dust fluid, ions and electrons. The dynamics of DASWs is governed by the normalized fluid equations of nonlin- ear continuity (1), nonlinear motion of system (2) and. (3) and linear Poisson equation (4) as.
Two-dimensional generalized harmonic oscillators and their Darboux partners
International Nuclear Information System (INIS)
Schulze-Halberg, Axel
2011-01-01
We construct two-dimensional Darboux partners of the shifted harmonic oscillator potential and of an isotonic oscillator potential belonging to the Smorodinsky–Winternitz class of superintegrable systems. The transformed solutions, their potentials and the corresponding discrete energy spectra are computed in explicit form. (paper)
First principles calculation of two dimensional antimony and antimony arsenide
Energy Technology Data Exchange (ETDEWEB)
Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)
2016-05-23
This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.
Two-dimensional models in statistical mechanics and field theory
International Nuclear Information System (INIS)
Koberle, R.
1980-01-01
Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt
Theory of the one- and two-dimensional electron gas
International Nuclear Information System (INIS)
Emery, V.J.
1987-01-01
Two topics are discussed: (1) the competition between 2k/sub F/ and 4k/sub F/ charge state waves in a one-dimensional electron gas and (2) a two-dimensional model of high T/sub c/ superconductivity in the oxides
Two-dimensional turbulent flows on a bounded domain
Kramer, W.
2006-01-01
Large-scale flows in the oceans and the atmosphere reveal strong similarities with purely two-dimensional flows. One of the most typical features is the cascade of energy from smaller flow scales towards larger scales. This is opposed to three-dimensional turbulence where larger flow structures
Exterior calculus and two-dimensional supersymmetric models
International Nuclear Information System (INIS)
Sciuto, S.
1980-01-01
An important property of the calculus of differential forms on superspace is pointed out, and an economical way to treat the linear problem associated with certain supersymmetric two-dimensional models is discussed. A generalization of the super sine-Gordon model is proposed; its bosonic limit is a new model whose associate linear set has an SU(3) structure. (orig.)
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
Construction of superpotentials for two-dimensional classical super systems (for N. 2) is carried ... extensively used for the case of non-linear partial differential equation by various authors. [3,4–7,12 ..... found to be integrable just by accident.
Quantitative optical mapping of two-dimensional materials
DEFF Research Database (Denmark)
Jessen, Bjarke S.; Whelan, Patrick R.; Mackenzie, David M. A.
2018-01-01
The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image...
Temperature maxima in stable two-dimensional shock waves
International Nuclear Information System (INIS)
Kum, O.; Hoover, W.G.; Hoover, C.G.
1997-01-01
We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith model for strong shock waves in dilute three-dimensional gases. copyright 1997 The American Physical Society
Two-dimensional molecular line transfer for a cometary coma
Szutowicz, S.
2017-09-01
In the proposed axisymmetric model of the cometary coma the gas density profile is described by an angular density function. Three methods for treating two-dimensional radiative transfer are compared: the Large Velocity Gradient (LVG) (the Sobolev method), Accelerated Lambda Iteration (ALI) and accelerated Monte Carlo (MC).
Sub-Nanometer Channels Embedded in Two-Dimensional Materials
Han, Yimo; Li, Ming-yang; Jung, Gang-Seob; Marsalis, Mark A.; Qin, Zhao; Buehler, Markus J.; Li, Lain-Jong; Muller, David A.
2017-01-01
Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...
Coherent Electron Focussing in a Two-Dimensional Electron Gas.
Houten, H. van; Wees, B.J. van; Mooij, J.E.; Beenakker, C.W.J.; Williamson, J.G.; Foxon, C.T.
1988-01-01
The first experimental realization of ballistic point contacts in a two-dimensional electron gas for the study of transverse electron focussing by a magnetic field is reported. Multiple peaks associated with skipping orbits of electrons reflected specularly by the channel boundary are observed. At
Two-dimensional ion effects in relativistic diodes
International Nuclear Information System (INIS)
Poukey, J.W.
1975-01-01
In relativistic diodes, ions are emitted from the anode plasma. The effects and properties of these ions are studied via a two-dimensional particle simulation code. The space charge of these ions enhances the electron emission, and this additional current (including that of the ions, themselves) aids in obtaining superpinched electron beams for use in pellet fusion studies. (U.S.)
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run-l...
Interior design of a two-dimensional semiclassical black hole
International Nuclear Information System (INIS)
Levanony, Dana; Ori, Amos
2009-01-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.
Two-dimensional profiling of Xanthomonas campestris pv. viticola ...
African Journals Online (AJOL)
However, the analysis of the 2D-PAGE gel images revealed a larger number of spots in the lysis method when compared to the others. Taking ... Keywords: Bacterial canker, Vitis vinifera, proteomics, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2D-PAGE).
Image Making in Two Dimensional Art; Experiences with Straw and ...
African Journals Online (AJOL)
Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. ... havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre glass in the three dimensional form; We also have Pencil, Charcoal Pastel and, Acrylic oil-paint in two dimensional form.
Image Making in Two Dimensional Art; Experiences with Straw and ...
African Journals Online (AJOL)
Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. It is an art form executed in three dimensional (3D)and two dimensional (2D) formats respectively. Uncountable materials havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre ...
Mass relations for two-dimensional classical configurations
International Nuclear Information System (INIS)
Tataru-Mihai, P.
1980-01-01
Using the two-dimensional sigma-nonlinear models as a framework mass relations for classical configurations of instanton/soliton type are derived. Our results suggest an interesting differential-geometric interpretation of the mass of a classical configuration in terms of the topological characteristics of an associated manifold. (orig.)
Seismically constrained two-dimensional crustal thermal structure of ...
Indian Academy of Sciences (India)
The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...
Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy
Jansen, Thomas L. C.; Knoester, Jasper
We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,
Two-dimensional NMR studies of allyl palladium complexes of ...
Indian Academy of Sciences (India)
Administrator
h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Two-dimensional position sensitive Si(Li) detector
International Nuclear Information System (INIS)
Walton, J.T.; Hubbard, G.S.; Haller, E.E.; Sommer, H.A.
1978-11-01
Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n + resisitive layer for one contact and a boron implanted p + resistive layer for the second contact. A position resolution of the order of 100 μm is indicated
A TWO-DIMENSIONAL POSITION SENSITIVE SI(LI) DETECTOR
Energy Technology Data Exchange (ETDEWEB)
Walton, Jack T.; Hubbard, G. Scott; Haller, Eugene E.; Sommer, Heinrich A.
1978-11-01
Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n{sup +} resistive layer for one contact and a boron implanted p{sup +} resistive layer for the second contact. A position resolution of the order of 100 {micro}m is indicated.
Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...
Indian Academy of Sciences (India)
tribpo
Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...
Linkage analysis by two-dimensional DNA typing
te Meerman, G J; Mullaart, E; Meulen ,van der Martin; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core
Proximity Induced Superconducting Properties in One and Two Dimensional Semiconductors
DEFF Research Database (Denmark)
Kjærgaard, Morten
This report is concerned with the properties of one and two dimensional semiconducting materials when brought into contact with a superconductor. Experimentally we study the 2D electron gas in an InGaAs/InAs heterostructure with aluminum grown in situ on the surface, and theoretically we show tha...
Two-Dimensional Charge Transport in Disordered Organic Semiconductors
Brondijk, J. J.; Roelofs, W. S. C.; Mathijssen, S. G. J.; Shehu, A.; Cramer, T.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M.
2012-01-01
We analyze the effect of carrier confinement on the charge-transport properties of organic field-effect transistors. Confinement is achieved experimentally by the use of semiconductors of which the active layer is only one molecule thick. The two-dimensional confinement of charge carriers provides
Noninteracting beams of ballistic two-dimensional electrons
International Nuclear Information System (INIS)
Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.
1991-01-01
We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels
Two-dimensional dissipation in third sound resonance
International Nuclear Information System (INIS)
Buck, A.L.; Mochel, J.M.; Illinois Univ., Urbana
1981-01-01
The first determination of non-linear superflow dissipation in a truly two-dimensional helium film is reported. Superfluid velocities were measured using third sound resonance on a closed superfluid film. The predicted power law dissipation function, with exponent of approximately eight, is observed at three temperatures in a film of 0.58 mobile superfluid layers. (orig.)
Graphene: a promising two-dimensional support for heterogeneous catalysts
Directory of Open Access Journals (Sweden)
Xiaobin eFan
2015-01-01
Full Text Available Graphene has many advantages that make it an attractive two-dimensional (2D support for heterogeneous catalysts. It not only allows the high loading of targeted catalytic species, but also facilitates the mass transfer during the reaction processes. These advantages, along with its unique physical and chemical properties, endow graphene great potential as catalyst support in heterogeneous catalysis.
Two-dimensional interpolation with experimental data smoothing
International Nuclear Information System (INIS)
Trejbal, Z.
1989-01-01
A method of two-dimensional interpolation with smoothing of time statistically deflected points is developed for processing of magnetic field measurements at the U-120M field measurements at the U-120M cyclotron. Mathematical statement of initial requirements and the final result of relevant algebraic transformations are given. 3 refs
Tunneling between parallel two-dimensional electron liquids
Czech Academy of Sciences Publication Activity Database
Jungwirth, Tomáš; MacDonald, A. H.
361/362, - (1996), s. 167-170 ISSN 0039-6028. [International Conference on the Electronic Properties of Two Dimensional Systems /11./. Nottingham, 07.08.1995-11.08.1995] R&D Projects: GA ČR GA202/94/1278 Grant - others:INT(XX) 9106888 Impact factor: 2.783, year: 1996
Influence of index contrast in two dimensional photonic crystal lasers
DEFF Research Database (Denmark)
Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner
2010-01-01
The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavity...
Two-Dimensional Tellurene as Excellent Thermoelectric Material
Sharma, Sitansh; Singh, Nirpendra; Schwingenschlö gl, Udo
2018-01-01
We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high
Analysis of Two-Dimensional Electrophoresis Gel Images
DEFF Research Database (Denmark)
Pedersen, Lars
2002-01-01
This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...
Patched Green's function techniques for two-dimensional systems
DEFF Research Database (Denmark)
Settnes, Mikkel; Power, Stephen; Lin, Jun
2015-01-01
We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...
Nonlinear dynamic characterization of two-dimensional materials
Davidovikj, D.; Alijani, F.; Cartamil Bueno, S.J.; van der Zant, H.S.J.; Amabili, M.; Steeneken, P.G.
2017-01-01
Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's
Transient two-dimensional flow in porous media
International Nuclear Information System (INIS)
Sharpe, L. Jr.
1979-01-01
The transient flow of an isothermal ideal gas from the cavity formed by an underground nuclear explosion is investigated. A two-dimensional finite element method is used in analyzing the gas flow. Numerical results of the pressure distribution are obtained for both the stemming column and the surrounding porous media
Two-dimensional QCD as a model for strong interaction
International Nuclear Information System (INIS)
Ellis, J.
1977-01-01
After an introduction to the formalism of two-dimensional QCD, its applications to various strong interaction processes are reviewed. Among the topics discussed are spectroscopy, deep inelastic cross-sections, ''hard'' processes involving hadrons, ''Regge'' behaviour, the existence of the Pomeron, and inclusive hadron cross-sections. Attempts are made to abstracts features useful for four-dimensional QCD phenomenology. (author)
Two-dimensional gel electrophoresis analysis of different parts of ...
African Journals Online (AJOL)
Two-dimensional gel electrophoresis analysis of different parts of Panax quinquefolius L. root. ... From these results it was concluded that proteomic analysis method was an effective way to identify the different parts of quinquefolius L. root. These findings may contribute to further understanding of the physiological ...
Two-dimensional optimization of free-electron-laser designs
Prosnitz, D.; Haas, R.A.
1982-05-04
Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.
Kubo conductivity of a strongly magnetized two-dimensional plasma.
Montgomery, D.; Tappert, F.
1971-01-01
The Kubo formula is used to evaluate the bulk electrical conductivity of a two-dimensional guiding-center plasma in a strong dc magnetic field. The particles interact only electrostatically. An ?anomalous' electrical conductivity is derived for this system, which parallels a recent result of Taylor and McNamara for the coefficient of spatial diffusion.
Bayesian approach for peak detection in two-dimensional chromatography
Vivó-Truyols, G.
2012-01-01
A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual
Equilibrium spherically curved two-dimensional Lennard-Jones systems
Voogd, J.M.; Sloot, P.M.A.; van Dantzig, R.
2005-01-01
To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N < 800) equilibrium configu- rations are traced
Giant 1/f noise in two-dimensional polycrystalline media
International Nuclear Information System (INIS)
Snarskii, A.; Bezsudnov, I.
2008-01-01
The behaviour of excess (1/f noise) in two-dimensional polycrystalline media is investigated. On the base of current trap model, it is shown that there exists a certain anisotropy value of conductivity tensor for polycrystalline media when the amplitude of 1/f noise becomes giant
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr
International Nuclear Information System (INIS)
Hui Lihong; Zhang Xiaodong; He Chao; Xie Sheng; Xiao Jiangxi; Zhang jue; Wang Xiaoying; Jiang Xuexiang
2010-01-01
Objective: To evaluate the stability and repeatability of gradient-echo sampling of spin- echo (GESSE) sequence in measuring the R 2 ' value in volunteers, by comparison with traditional GRE sequence (T 2 * ]nap and T 2 map). Methods: Eight normal healthy volunteers were enrolled in this study and written informed consents were obtained from all subjects. MR scanning including sequences of GESSE, T 2 map and T 2 * map were performed in these subjects at resting status. The same protocol was repeated one day later. Raw data from GESSE sequence were transferred to PC to conduct postprocessing with the software built in house. R 2 ' map and OEF map were got consequently. To obtain quantitative R 2 ' and OEF values in the brain parenchyma, six ROIs were equally placed in the anterior, middle and posterior part of bilateral hemispheres. Both mean and standard deviation of R 2 ' and OEF were recorded. All images from T 2 * map and T 2 map were transferred to the Workstation for postprocessing. The ROIs were put at the same areas as those for GESSE sequence. R 2 ' is defined as R 2 ' = R 2 * - R 2 , R 2 * = 1/T 2 * . The R 2 ' value of GESSE sequence were compared with that of GRE sequence. Results: The mean R 2 ' values of GESSE at the first and second scan and those of the GRE were (4.21±0.92), (4.45±0.94) Hz and (7.37±1.47), (6.42±2.33) Hz respectively. The mean OEF values of GESSE at the first and second scan is 0.327±0.036 and 0.336± 0.035 respectively. The R 2 ' value and OEF value obtained from GESSE were not significantly different between the first and second scan (t=-0.83, -1.48, P>0.05). The R 2 ' value of first GRE imaging had significantly statistical difference from that of second GRE imaging (t=1.80, P 2 ' value of GESSE sequence was less than that of GRE sequence, and there was significantly statistical difference between them (t=1.71, P<0.05). Conclusion: The GESSE sequence has good stability and repeatability with promising clinical practicability
Triple-layer appearance of Brodmann area 4 at thin-section double inversion-recovery MR imaging.
Kim, Eung Yeop; Kim, Dong-Hyun; Chang, Jong-Hee; Yoo, Eunhye; Lee, Jae-Wook; Park, Hae-Jeong
2009-02-01
To investigate whether thin-section axial double inversion-recovery (DIR) brain magnetic resonance (MR) imaging at 3.0 T can help distinguish the primary motor cortex (PMC), or Brodmann area 4, from other selected cortical regions, including the primary sensory cortex (PSC), or Brodmann areas 1-3, on the basis of the presence of a "triple-layer" appearance. This prospective study was approved by the institutional review board; informed consent was obtained from patients. This study included 191 patients (94 female, age range, 5-80 years; 97 male, age range, 5-76 years) with normal findings at 3.0-T MR imaging. The presence or absence of a triple-layer appearance within selected cortical regions on DIR images was graded independently by two neuroradiologists as definitely present (grade 2), probably present (grade 1), or definitely absent (grade 0). Ten additional patients with tumors underwent DIR imaging and intraoperative cortical mapping for further validation of the PMC. A myelin-stained brain specimen image in a patient not imaged with DIR was correlated with a representative set of DIR images. A triple-layer appearance was found in the PMC bilaterally in 184 of 191 patients; grade 0 was assigned in only seven patients, who were all younger than 10 years. Grades were significantly lower in patients younger than 10 years than in others (P .0018). Interobserver agreement was excellent (weighted kappa = 0.843). The PMC determined on DIR images was confirmed with cortical mapping in all 10 patients with tumors. Triple-layer appearance was not present in the other cortical regions examined, including the PSC (P < .01). The triple-layer appearance on DIR images corresponded to the myelin band within the PMC present on the myelin-stained specimen image. A triple-layer appearance was found in the PMC at thin-section 3.0-T DIR imaging but not in other examined brain regions and therefore might be useful as an adjunct sign for identification of motor regions.
Two dimensional analytical model for a reconfigurable field effect transistor
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown
Energy Technology Data Exchange (ETDEWEB)
Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)
2016-01-04
Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.
Quasi-two-dimensional thermoelectricity in SnSe
Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.
2018-01-01
Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.
Folding two dimensional crystals by swift heavy ion irradiation
Energy Technology Data Exchange (ETDEWEB)
Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)
2014-12-01
Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.
Folding two dimensional crystals by swift heavy ion irradiation
International Nuclear Information System (INIS)
Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika
2014-01-01
Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS 2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS 2 does not
Two-dimensional time dependent Riemann solvers for neutron transport
International Nuclear Information System (INIS)
Brunner, Thomas A.; Holloway, James Paul
2005-01-01
A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...
Quantum vacuum energy in two dimensional space-times
International Nuclear Information System (INIS)
Davies, P.C.W.; Fulling, S.A.
1977-01-01
The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine
2004-01-01
of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine......Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...
Tuning spin transport across two-dimensional organometallic junctions
Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping
2018-01-01
We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.
Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases
Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.
2018-03-01
The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.
Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas
International Nuclear Information System (INIS)
Valeo, E.J.; Kramer, G.J.; Nazikian, R.
2001-01-01
A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed
Directional detection of dark matter with two-dimensional targets
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Tully, Christopher G.; Zurek, Kathryn M.
2017-09-01
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.
Linear negative magnetoresistance in two-dimensional Lorentz gases
Schluck, J.; Hund, M.; Heckenthaler, T.; Heinzel, T.; Siboni, N. H.; Horbach, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.; Mailly, D.
2018-03-01
Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles at low number densities, our results agree with the predictions of a model based on classical retroreflection. In extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while contributions from weak localization cannot be excluded, in particular for large obstacle densities.
Quantum vacuum energy in two dimensional space-times
Energy Technology Data Exchange (ETDEWEB)
Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics
1977-04-21
The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Transport behavior of water molecules through two-dimensional nanopores
International Nuclear Information System (INIS)
Zhu, Chongqin; Li, Hui; Meng, Sheng
2014-01-01
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules
Two-dimensional superconductivity in ultrathin disordered thin films
International Nuclear Information System (INIS)
Beasley, M.R.
1992-01-01
The status of the understanding of two-dimensional superconductivity in ultrathin, disordered thin films is reviewed. The different consequences of microscopic versus macroscopic disorder are stressed. It is shown that microscopic disorder leads to a rapid suppression of the mean-field transition temperature. The consequences of macroscopic disorder are not well understood, but a universal behavior of the zero-bias resistance as a function of field and temperature has been observed. (orig.)
Two-dimensional heat conducting simulation of plasma armatures
International Nuclear Information System (INIS)
Huerta, M.A.; Boynton, G.
1991-01-01
This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature
Topological field theories and two-dimensional instantons
International Nuclear Information System (INIS)
Schaposnik, F.A.
1990-01-01
In this paper, the author discusses some topics related to the recently developed Topological Field Theories (TFTs). The first part is devoted to a discussion on how a TFT can be quantized using techniques which are well-known from the study of gauge theories. Then the author describes the results that we have obtained in collaboration with George Thompson in the study of a two-dimensional TFT related to the Abelian Higgs model
Two-dimensional color-code quantum computation
International Nuclear Information System (INIS)
Fowler, Austin G.
2011-01-01
We describe in detail how to perform universal fault-tolerant quantum computation on a two-dimensional color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple-defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. Controlled-NOT (CNOT) is implemented between pairs of triple-defect logical qubits via braiding.
Collision dynamics of two-dimensional non-Abelian vortices
Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio
2017-09-01
We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.
An energy principle for two-dimensional collisionless relativistic plasmas
International Nuclear Information System (INIS)
Otto, A.; Schindler, K.
1984-01-01
Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)
Graphene – A Two-Dimensional Dirac Material
Liu, Danny; Wicklund, Johan
2014-01-01
Graphene is a two-dimensional material, whose popularity has soared in both condensedmatter physics and material science the past decade. Due to its unique properties, graphene can be used in a vast array of new and interesting applications that could fundamentally change the material industry. This report reviews the current research and literature in order to trace the historical development of graphene. Then, in order to better understand the material, the unique properties of graphene are...
Resistive-strips micromegas detectors with two-dimensional readout
Byszewski, M.; Wotschack, J.
2012-02-01
Micromegas detectors show very good performance for charged particle tracking in high rate environments as for example at the LHC. It is shown that two coordinates can be extracted from a single gas gap in these detectors. Several micromegas chambers with spark protection by resistive strips and two-dimensional readout have been tested in the context of the R&D work for the ATLAS Muon System upgrade.
Hall effect in the two-dimensional Luttinger liquid
International Nuclear Information System (INIS)
Anderson, P.W.
1991-01-01
The temperature dependence of the Hall effect in the normal state is a commom theme of all the cuprate superconductors and has been one of the more puzzling observations on these puzzling materials. We describe a general scheme within the Luttinger liquid theory of these two-dimensional quantum fluids which corrrelates the anomalous Hall and resistivity observations on a wide variety of both pure and doped single crystals, especially the data in the accompanying Letter of Chien, Wang, and Ong
Theory of a Nearly Two-Dimensional Dipolar Bose Gas
2016-05-11
order to be published, he sent the paper to Einstein to translate it. The other contributing scientist is world famous physicist Albert Einstein , maybe...mechanical state, a Bose- Einstein condensate (BEC), where the atoms cease to behave like distinguishable entities, and instead form a single macroscopic...model in both three- and two-dimensional geometries. 15. SUBJECT TERMS Bose Einstein condensation, ultracold physics, condensed matter, dipoles 16
SU(1,2) invariance in two-dimensional oscillator
Energy Technology Data Exchange (ETDEWEB)
Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2017-02-01
Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.
Decaying Two-Dimensional Turbulence in a Circular Container
Schneider, Kai; Farge, Marie
2005-01-01
We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5×104 in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the...
Two-dimensional readout in a liquid xenon ionisation chamber
Solovov, V; Ferreira-Marques, R; Lopes, M I; Pereira, A; Policarpo, Armando
2002-01-01
A two-dimensional readout with metal strips deposited on both sides of a glass plate is investigated aiming to assess the possibility of its use in a liquid xenon ionisation chamber for positron emission tomography. Here, we present results obtained with an alpha-source. It is shown that position resolution of <=1 mm, fwhm, can be achieved for free charge depositions equivalent to those due to gamma-rays with energy from 220 down to 110 keV.
Stochastic and collisional diffusion in two-dimensional periodic flows
International Nuclear Information System (INIS)
Doxas, I.; Horton, W.; Berk, H.L.
1990-05-01
The global effective diffusion coefficient D* for a two-dimensional system of convective rolls with a time dependent perturbation added, is calculated. The perturbation produces a background diffusion coefficient D, which is calculated analytically using the Menlikov-Arnold integral. This intrinsic diffusion coefficient is then enhanced by the unperturbed flow, to produce the global effective diffusion coefficient D*, which we can calculate theoretically for a certain range of parameters. The theoretical value agrees well with numerical simulations. 23 refs., 4 figs
The Convergence Acceleration of Two-Dimensional Fourier Interpolation
Directory of Open Access Journals (Sweden)
Anry Nersessian
2008-07-01
Full Text Available Hereby, the convergence acceleration of two-dimensional trigonometric interpolation for a smooth functions on a uniform mesh is considered. Together with theoretical estimates some numerical results are presented and discussed that reveal the potential of this method for application in image processing. Experiments show that suggested algorithm allows acceleration of conventional Fourier interpolation even for sparse meshes that can lead to an efficient image compression/decompression algorithms and also to applications in image zooming procedures.
Two-dimensional correlation spectroscopy in polymer study
Park, Yeonju; Noda, Isao; Jung, Young Mee
2015-01-01
This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286
Spatial Discrete Soliton in Two dimensional with Kerr medium
International Nuclear Information System (INIS)
Aghdami, M.; Mostafavi, D.; Mokhtari, F.; Keradmand, R.
2012-01-01
In this theoretical work propagation of the Gaussian beam through a two dimensional waveguides array is numerically investigated, in which each waveguide contains medium with Kerr nonlinearity considering coupling to vertical, horizontal and diagonal neighbor through light electric field. Different values of intensity, nonlinear coefficient Kerr and Gaussian beam width of incident Gaussian beam are examined and finally suitable parameters for providing central spatial solitons are obtained.
GEPOIS: a two dimensional nonuniform mesh Poisson solver
International Nuclear Information System (INIS)
Quintenz, J.P.; Freeman, J.R.
1979-06-01
A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces
Acoustic transparency in two-dimensional sonic crystals
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Dehesa, Jose; Torrent, Daniel [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/ Camino de Vera s/n, E-46022 Valencia (Spain); Cai Liangwu [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)], E-mail: jsdehesa@upvnet.upv.es
2009-01-15
Acoustic transparency is studied in two-dimensional sonic crystals consisting of hexagonal distributions of cylinders with continuously varying properties. The transparency condition is achieved by selectively closing the acoustic bandgaps, which are governed by the structure factor of the cylindrical scatterers. It is shown here that cylindrical scatterers with the proposed continuously varying properties are physically realizable by using metafluids based on sonic crystals. The feasibility of this proposal is analyzed by a numerical experiment based on multiple scattering theory.
Two-dimensional manifolds with metrics of revolution
International Nuclear Information System (INIS)
Sabitov, I Kh
2000-01-01
This is a study of the topological and metric structure of two-dimensional manifolds with a metric that is locally a metric of revolution. In the case of compact manifolds this problem can be thoroughly investigated, and in particular it is explained why there are no closed analytic surfaces of revolution in R 3 other than a sphere and a torus (moreover, in the smoothness class C ∞ such surfaces, understood in a certain generalized sense, exist in any topological class)
Warranty menu design for a two-dimensional warranty
International Nuclear Information System (INIS)
Ye, Zhi-Sheng; Murthy, D.N. Pra
2016-01-01
Fierce competitions in the commercial product market have forced manufacturers to provide customer-friendly warranties with a view to achieving higher customer satisfaction and increasing the market share. This study proposes a strategy that offers customers a two-dimensional warranty menu with a number of warranty choices, called a flexible warranty policy. We investigate the design of a flexible two-dimensional warranty policy that contains a number of rectangular regions. This warranty policy is obtained by dividing customers into several groups according to their use rates and providing each group a germane warranty region. Consumers choose a favorable one from the menu according to their usage behaviors. Evidently, this flexible warranty policy is attractive to users of different usage behaviors, and thus, it gives the manufacturer a good position in advertising the product. When consumers are unaware about their use rates upon purchase, we consider a fixed two-dimensional warranty policy with a stair-case warranty region and show that it is equivalent to the flexible policy. Such an equivalence reveals the inherent relationship between the rectangular warranty policy, the L-shape warranty policy, the step-stair warranty policy and the iso-probability of failure warranty policy that were extensively discussed in the literature. - Highlights: • We design a two-dimensional warranty menu with a number of warranty choices. • Consumers can choose a favorable one from the menu as per their usage behavior. • We further consider a fixed 2D warranty policy with a stair-case warranty region. • We show the equivalence of the two warranty policies.
Two-dimensional simulation of the MHD stability, (1)
International Nuclear Information System (INIS)
Kurita, Gen-ichi; Amano, Tsuneo.
1976-03-01
The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)
Two-dimensional analysis of trapped-ion eigenmodes
International Nuclear Information System (INIS)
Marchand, R.; Tang, W.M.; Rewoldt, G.
1979-11-01
A fully two-dimensional eigenmode analysis of the trapped-ion instability in axisymmetric toroidal geometry is presented. The calculations also takes into account the basic dynamics associated with other low frequency modes such as the trapped-electron instability and the ion-temperature-gradient instability. The poloidal structure of the mode is taken into account by Fourier expanding the perturbed electrostatic potential, PHI, in theta
Analysis of two dimensional signals via curvelet transform
Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.
2007-04-01
This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.
Two-dimensional shielding benchmarks for iron at YAYOI, (1)
International Nuclear Information System (INIS)
Oka, Yoshiaki; An, Shigehiro; Kasai, Shigeru; Miyasaka, Shun-ichi; Koyama, Kinji.
The aim of this work is to assess the collapsed neutron and gamma multigroup cross sections for two dimensional discrete ordinate transport code. Two dimensional distributions of neutron flux and gamma ray dose through a 70cm thick and 94cm square iron shield were measured at the fast neutron source reactor ''YAYOI''. The iron shield was placed over the lead reflector in the vertical experimental column surrounded by heavy concrete wall. The detectors used in this experiment were threshold detectors In, Ni, Al, Mg, Fe and Zn, sandwitch resonance detectors Au, W and Co, activation foils Au for neutrons and thermoluminescence detectors for gamma ray dose. The experimental results were compared with the calculated ones by the discrete ordinate transport code ANISN and TWOTRAN. The region-wise, coupled neutron-gamma multigroup cross-sections (100n+20gamma, EURLIB structure) were generated from ENDF/B-IV library for neutrons and POPOP4 library for gamma-ray production cross-sections by using the code system RADHEAT. The effective microscopic neutron cross sections were obtained from the infinite dilution values applying ABBN type self-shielding factors. The gamma ray production multigroup cross-sections were calculated from these effective microscopic neutron cross-sections. For two-dimensional calculations the group constants were collapsed into 10 neutron groups and 3 gamma groups by using ANISN. (auth.)
Electromagnetically induced two-dimensional grating assisted by incoherent pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn
2017-04-25
We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.
Procedures for two-dimensional electrophoresis of proteins
Energy Technology Data Exchange (ETDEWEB)
Tollaksen, S.L.; Giometti, C.S.
1996-10-01
High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.
Experimental two-dimensional quantum walk on a photonic chip.
Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min
2018-05-01
Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.
Automated Processing of Two-Dimensional Correlation Spectra
Sengstschmid; Sterk; Freeman
1998-04-01
An automated scheme is described which locates the centers of cross peaks in two-dimensional correlation spectra, even under conditions of severe overlap. Double-quantum-filtered correlation (DQ-COSY) spectra have been investigated, but the method is also applicable to TOCSY and NOESY spectra. The search criterion is the intrinsic symmetry (or antisymmetry) of cross-peak multiplets. An initial global search provides the preliminary information to build up a two-dimensional "chemical shift grid." All genuine cross peaks must be centered at intersections of this grid, a fact that reduces the extent of the subsequent search program enormously. The program recognizes cross peaks by examining the symmetry of signals in a test zone centered at a grid intersection. This "symmetry filter" employs a "lowest value algorithm" to discriminate against overlapping responses from adjacent multiplets. A progressive multiplet subtraction scheme provides further suppression of overlap effects. The processed two-dimensional correlation spectrum represents cross peaks as points at the chemical shift coordinates, with some indication of their relative intensities. Alternatively, the information is presented in the form of a correlation table. The authenticity of a given cross peak is judged by a set of "confidence criteria" expressed as numerical parameters. Experimental results are presented for the 400-MHz double-quantum-filtered COSY spectrum of 4-androsten-3,17-dione, a case where there is severe overlap. Copyright 1998 Academic Press.
Quantum oscillations in quasi-two-dimensional conductors
Galbova, O
2002-01-01
The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...
Directory of Open Access Journals (Sweden)
D. A. Fetisov
2015-01-01
Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved
International Nuclear Information System (INIS)
Fujiwara, Yasuhiro; Yamaguchi, Isao; Ookoshi, Yusuke; Ootani, Yuriko; Matsuda, Tsuyoshi; Ishimori, Yoshiyuki; Hayashi, Hiroyuki; Miyati, Tosiaki; Kimura, Hirohiko
2007-01-01
The purpose of this study was to decrease vascular artifacts caused by the in-flow effect in three-dimensional inversion recovery prepared fast spoiled gradient recalled acquisition in the steady state (3D IR FSPGR) at 3.0 Tesla. We developed 3D double IR FSPGR and investigated the signal characteristics of the new sequence. The 3D double IR FSPGR sequence uses two inversion pulses, the first for obtaining tissue contrast and the second for nulling vascular signal, which is applied at the time of the first IR period at the neck region. We have optimized scan parameters based on both phantom and in-vivo study. As a result, optimized parameters (1st TI=700 ms, 2nd TI=400 ms) successfully have produced much less vessel signal at reduction than conventional 3D IR FSPGR over a wide imaging range, while preserving the signal-to-noise ratio (SNR) and gray/white matter contrast. Moreover, the decreased artifact was also confirmed by visual inspection of the images obtained in vivo using those parameters. Thus, 3D double IR FSPGR was a useful sequence for the acquisition of T1-weighted images at 3.0 Tesla. (author)
Directory of Open Access Journals (Sweden)
Dinesh Kumar
2013-11-01
Full Text Available This paper deals with the study of two-dimensional Saigo-Maeda operators of Weyl type associated with Aleph function defined in this paper. Two theorems on these defined operators are established. Some interesting results associated with the H-functions and generalized Mittag-Leffler functions are deduced from the derived results. One dimensional analog of the derived results is also obtained.
Two-dimensional polyacrylamide gel electrophoresis of intracellular proteins
International Nuclear Information System (INIS)
Ojima, N.; Sakamoto, T.; Yamashita, M.
1996-01-01
Since two-dimensional electrophoresis was established by O'Farrell for analysis of intracellular proteins of Escherichia coli, it has been applied to separation of proteins of animal cells and tissues, and especially to identification of stress proteins. Using this technique, proteins are separated by isoelectric focusing containing 8 m urea in the first dimension and by SDS-PAGE in the second dimension. The gels are stained with Coomassie Blue R-250 dye, followed by silver staining. In the case of radio-labeled proteins, the gels are dried and then autoradiographed. In order to identify a specific protein separated by two-dimensional electrophoresis, a technique determining the N-terminal amino acid sequence of the protein has been developed recently. After the proteins in the gel were electrotransferred to a polyvinylidene difluoride membrane, the membrane was stained for protein with Commassie Blue and a stained membrane fragment was applied to a protein sequencer. Our recent studies demonstrated that fish cells newly synthesized various proteins in response to heat shock, cold nd osmotic stresses. For example, when cellular proteins extracted from cold-treated rainbow trout cells were subjected to two-dimensional gel electrophoresis, the 70 kDa protein was found to be synthesized during the cold-treatment. N-Terminal sequence analysis showed that the cold-inducible protein was a homolog of mammalian valosin-containing protein and yeast cell division cycle gene product CDC48p. Furthermore, the sequence data were useful for preparing PCR primers and a rabbit antibody against a synthetic peptide to analyze a role for the protein in the function of trout cells and mechanisms for regulation
Statistical mechanics of two-dimensional and geophysical flows
International Nuclear Information System (INIS)
Bouchet, Freddy; Venaille, Antoine
2012-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.
Introduction to two dimensional conformal and superconformal field theory
International Nuclear Information System (INIS)
Shenker, S.H.
1986-01-01
Some of the basic properties of conformal and superconformal field theories in two dimensions are discussed in connection with the string and superstring theories built from them. In the first lecture the stress-energy tensor, the Virasoro algebra, highest weight states, primary fields, operator products coefficients, bootstrap ideas, and unitary and degenerate representations of the Virasoro algebra are discussed. In the second lecture the basic structure of superconformal two dimensional field theory is sketched and then the Ramond Neveu-Schwarz formulation of the superstring is described. Some of the issues involved in constructing the fermion vertex in this formalism are discussed
Quasi-integrability and two-dimensional QCD
International Nuclear Information System (INIS)
Abdalla, E.; Mohayaee, R.
1996-10-01
The notion of integrability in two-dimensional QCD is discussed. We show that in spite of an infinite number of conserved charges, particle production is not entirely suppressed. This phenomenon, which we call quasi-integrability, is explained in terms of quantum corrections to the combined algebra of higher-conserved and spectrum-generating currents. We predict the qualitative form of particle production probabilities and verify that they are in agreement with numerical data. We also discuss four-dimensional self-dual Yang-Mills theory in the light of our results. (author). 25 refs, 4 figs, 1 tab
Two dimensional hybrid simulation of a curved bow shock
International Nuclear Information System (INIS)
Thomas, V.A.; Winske, D.
1990-01-01
Results are presented from two dimensional hybrid simulations of curved collisionless supercritical shocks, retaining both quasi-perpendicular and quasi-parallel sections of the shock in order to study the character and origin of the foreshock ion population. The simulations demonstrate that the foreshock ion population is dominated by ions impinging upon the quasi-parallel side of the shock, while nonlocal transport from the quasi-perpendicular side of the shock into the foreshock region is minimal. Further, it is shown that the ions gain energy by drifting significantly in the direction of the convection electric field through multiple shock encounters
Focused two-dimensional antiscatter grid for mammography
International Nuclear Information System (INIS)
Makarova, O.V.; Moldovan, N.; Tang, C.-M.; Mancini, D.C.; Divan, R.; Zyryanov, V.N.; Ryding, D.C.; Yaeger, J.; Liu, C.
2002-01-01
We are developing freestanding high-aspect-ratio, focused, two-dimensional antiscatter grids for mammography using deep x-ray lithography and copper electroforming. The exposure is performed using x-rays from bending magnet beamline 2-BM at the Advanced Photon Source (APS) of Argonne National Laboratory. A 2.8-mm-thick prototype freestanding copper antiscatter grid with 25 (micro)m-wide parallel cell walls and 550 (micro)m periodicity has been fabricated. The progress in developing a dynamic double-exposure technique to create the grid with the cell walls aligned to a point x-ray source of the mammography system is discussed
Two-dimensional 220 MHz Fourier transform EPR imaging
International Nuclear Information System (INIS)
Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello
1998-01-01
In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)
Voltage quantization by ballistic vortices in two-dimensional superconductors
International Nuclear Information System (INIS)
Orlando, T.P.; Delin, K.A.
1991-01-01
The voltage generated by moving ballistic vortices with a mass m ν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions
Two-dimensional beam profiles and one-dimensional projections
Findlay, D. J. S.; Jones, B.; Adams, D. J.
2018-05-01
One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.
Two-dimensionally confined topological edge states in photonic crystals
International Nuclear Information System (INIS)
Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-01-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters. (paper)
Nonlinear aerodynamics of two-dimensional airfoils in severe maneuver
Scott, Matthew T.; Mccune, James E.
1988-01-01
This paper presents a nonlinear theory of forces and moment acting on a two-dimensional airfoil in unsteady potential flow. Results are obtained for cases of both large and small amplitude motion. The analysis, which is based on an extension of Wagner's integral equation to the nonlinear regime, takes full advantage of the trailing wake's tendency to deform under local velocities. Interactive computational results are presented that show examples of wake-induced lift and moment augmentation on the order of 20 percent of quasi-static values. The expandability and flexibility of the present computational method are noted, as well as the relative speed with which solutions are obtained.
Two-dimensional unsteady lift problems in supersonic flight
Heaslet, Max A; Lomax, Harvard
1949-01-01
The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.
Engineering topological edge states in two dimensional magnetic photonic crystal
Yang, Bing; Wu, Tong; Zhang, Xiangdong
2017-01-01
Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
Energy Technology Data Exchange (ETDEWEB)
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.
2015-12-17
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...
Wigner functions from the two-dimensional wavelet group.
Ali, S T; Krasowska, A E; Murenzi, R
2000-12-01
Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.
Pattern formation in two-dimensional square-shoulder systems
International Nuclear Information System (INIS)
Fornleitner, Julia; Kahl, Gerhard
2010-01-01
Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.
Pattern formation in two-dimensional square-shoulder systems
Energy Technology Data Exchange (ETDEWEB)
Fornleitner, Julia [Institut fuer Festkoerperforschung, Forschungsszentrum Juelich, D-52425 Juelich (Germany); Kahl, Gerhard, E-mail: fornleitner@cmt.tuwien.ac.a [Institut fuer Theoretische Physik and Centre for Computational Materials Science (CMS), Technische Universitaet Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien (Austria)
2010-03-17
Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.
Decay of homogeneous two-dimensional quantum turbulence
Baggaley, Andrew W.; Barenghi, Carlo F.
2018-03-01
We numerically simulate the free decay of two-dimensional quantum turbulence in a large, homogeneous Bose-Einstein condensate. The large number of vortices, the uniformity of the density profile, and the absence of boundaries (where vortices can drift out of the condensate) isolate the annihilation of vortex-antivortex pairs as the only mechanism which reduces the number of vortices, Nv, during the turbulence decay. The results clearly reveal that vortex annihilation is a four-vortex process, confirming the decay law Nv˜t-1 /3 where t is time, which was inferred from experiments with relatively few vortices in small harmonically trapped condensates.
Human muscle proteins: analysis by two-dimensional electrophoresis
Energy Technology Data Exchange (ETDEWEB)
Giometti, C.S.; Danon, M.J.; Anderson, N.G.
1983-09-01
Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.
Cavalier perspective plots of two-dimensional matrices. Program Stereo
International Nuclear Information System (INIS)
Los Arcos Merino, J.M.
1978-01-01
The program Stereo allows representation of a two-dimensional matrix containing numerical data, in the form of a cavalier perspective, isometric or not, with an angle variable between 0 deg and 180 deg. The representation is in histogram form for each matrix row and those curves which fall behind higher curves and therefore would not be seen are suppressed. It has been written in Fortran V for a Calcomp-936 digital plotter operating off-line with a Univac 1106 computer. Drawing method, subroutine structure and running instructions are described in this paper. (author)
Bosonization in a two-dimensional Riemann Cartan geometry
International Nuclear Information System (INIS)
Denardo, G.; Spallucci, E.
1987-01-01
We study the vacuum functional for a Dirac field in a two dimensional Riemann-Cartan geometry. Torsion is treated as a quantum variable while the metric is considered as a classical background field. Decoupling spinors from the non-Riemannian part of the geometry introduces a chiral Jacobian into the vacuum generating functional. We compute this functional Jacobian determinant by means of the Alvarez method. Finally, we show that the effective action for the background geometry is of the Liouville type and does not preserve any memory of the initial torsion field. (author)
Periodic trajectories for two-dimensional nonintegrable Hamiltonians
International Nuclear Information System (INIS)
Davies, K.T.R.
1990-02-01
I want to report on some calculations of classical periodic trajectories in a two-dimensional nonintegrable potential. After a brief introduction, I will present some details of the theory. The main part of this report will be devoted to showing pictures of the various families of trajectories and to discussing the topology (in E-τ space) and branching behavior of these families. Then I will demonstrate the connection between periodic trajectories and ''nearby'' nonperiodic trajectories, which nicely illustrates the relationship of this work to chaos. Finally, I will discuss very briefly how periodic trajectories can be used to calculate tori. 12 refs., 40 figs
Optical Two Dimensional Fourier Transform Spectroscopy of Layered Metal Dichalcogenides
Dey, P.; Paul, J.; Stevens, C. E.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.; Shan, J.; Karaiskaj, D.; Z. D. Kovalyuk; Z. R. Kudrynskyi Collaboration; A. H. Romero Collaboration; A. Cantarero Collaboration; D. J. Hilton Collaboration; J. Shan Collaboration
2015-03-01
Nonlinear two-dimensional Fourier transform (2DFT) measurements were used to study the mechanism of excitonic dephasing and probe the electronic structure of the excitonic ground state in layered metal dichalcogenides. Temperature-dependent 2DFT measurements were performed to probe exciton-phonon interactions. Excitation density dependent 2DFT measurements reveal exciton-exciton and exciton-carrier scattering, and the lower limit for the homogeneous linewidth of excitons on positively and negatively doped samples. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0012635.
Repulsion of polarized particles from two-dimensional materials
Rodríguez-Fortuño, Francisco J.; Picardi, Michela F.; Zayats, Anatoly V.
2018-05-01
Repulsion of nanoparticles, molecules, and atoms from surfaces can have important applications in nanomechanical devices, microfluidics, optical manipulation, and atom optics. Here, through the solution of a classical scattering problem, we show that a dipole source oscillating at a frequency ω can experience a robust and strong repulsive force when its near-field interacts with a two-dimensional material. As an example, the case of graphene is considered, showing that a broad bandwidth of repulsion can be obtained at frequencies for which propagation of plasmon modes is allowed 0 chemical potential tunable electrically or by chemical doping.
Two-dimensional collapse calculations of cylindrical clouds
International Nuclear Information System (INIS)
Bastien, P.; Mitalas, R.
1979-01-01
A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)
Graphene and Two-Dimensional Materials for Optoelectronic Applications
Directory of Open Access Journals (Sweden)
Andreas Bablich
2016-03-01
Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.
Poincare' maps of impulsed oscillators and two-dimensional dynamics
International Nuclear Information System (INIS)
Lupini, R.; Lenci, S.; Gardini, L.; Urbino Univ.
1996-01-01
The Poincare' map of one-dimensional linear oscillators subject to periodic, non-linear and time-delayed impulses is shown to reduce to a family of plane maps with possible non-uniqueness of the inverse. By restricting the analysis to a convenient form of the impulse function, a variety of interesting dynamical behaviours in this family are pointed out, including multistability and homoclinic bifurcations. Critical curves of two-dimensional endomorphisms are used to identify the structure of absorbing areas and their bifurcations
Inverse radiative transfer problems in two-dimensional heterogeneous media
International Nuclear Information System (INIS)
Tito, Mariella Janette Berrocal
2001-01-01
The analysis of inverse problems in participating media where emission, absorption and scattering take place has several relevant applications in engineering and medicine. Some of the techniques developed for the solution of inverse problems have as a first step the solution of the direct problem. In this work the discrete ordinates method has been used for the solution of the linearized Boltzmann equation in two dimensional cartesian geometry. The Levenberg - Marquardt method has been used for the solution of the inverse problem of internal source and absorption and scattering coefficient estimation. (author)
Two-Dimensional One-Component Plasma on Flamm's Paraboloid
Fantoni, Riccardo; Téllez, Gabriel
2008-11-01
We study the classical non-relativistic two-dimensional one-component plasma at Coulomb coupling Γ=2 on the Riemannian surface known as Flamm's paraboloid which is obtained from the spatial part of the Schwarzschild metric. At this special value of the coupling constant, the statistical mechanics of the system are exactly solvable analytically. The Helmholtz free energy asymptotic expansion for the large system has been found. The density of the plasma, in the thermodynamic limit, has been carefully studied in various situations.
Morphology of bipolar planetary nebulae. I. Two-dimensional spectrophotometry
International Nuclear Information System (INIS)
Pascoli, G.
1990-01-01
Two-dimensional spectrophotometric observations of bipolar planetary nebulae were performed by using a CCD detector mounted at the Cassegrain focus of either 1.54 m Danish Telescope or 2.2 m German Telescope at La Silla (ESO) in Chile. Emission lines have been selected with the help of narrow band-pass interference filters (Δλ∼ 10 - 20 A). Isophotal maps in various lines Hα, [NII] λ 6584, [OIII] λ 5007 and [SII] λλ 6717-6731 are presented. Particular attention has been given to scrutinize the symmetries inside a few bipolar planetary nebulae, in order to subsequently investigate their space structure
Gibbs perturbations of a two-dimensional gauge field
International Nuclear Information System (INIS)
Petrova, E.N.
1981-01-01
Small Gibbs perturbations of random fields have been investigated up to now for a few initial fields only. Among them there are independent fields, Gaussian fields and some others. The possibility for the investigation of Gibbs modifications of a random field depends essentially on the existence of good estimates for semiinvariants of this field. This is the reason why the class of random fields for which the investigation of Gibbs perturbations with arbitrary potential of bounded support is possible is rather small. The author takes as initial a well-known model: a two-dimensional gauge field. (Auth.)
Saddle-points of a two dimensional random lattice theory
International Nuclear Information System (INIS)
Pertermann, D.
1985-07-01
A two dimensional random lattice theory with a free massless scalar field is considered. We analyse the field theoretic generating functional for any given choice of positions of the lattice sites. Asking for saddle-points of this generating functional with respect to the positions we find the hexagonal lattice and a triangulated version of the hypercubic lattice as candidates. The investigation of the neighbourhood of a single lattice site yields triangulated rectangles and regular polygons extremizing the above generating functional on the local level. (author)
Minimal quantization of two-dimensional models with chiral anomalies
International Nuclear Information System (INIS)
Ilieva, N.
1987-01-01
Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis
Two-dimensional N = 2 Super-Yang-Mills Theory
August, Daniel; Wellegehausen, Björn; Wipf, Andreas
2018-03-01
Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (SYM) theory with gauge group SU(2) dimensionally reduced to two-dimensional N = 2 SYM theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.
Mixed-symmetry superconductivity in two-dimensional Fermi liquids
International Nuclear Information System (INIS)
Musaelian, K.A.; Betouras, J.; Chubukov, A.V.; Joynt, R.
1996-01-01
We consider a two-dimensional (2D) isotropic Fermi liquid with attraction in both s and d channels and examine the possibility of a superconducting state with mixed s and d symmetry of the gap function. We show that both in the weak-coupling limit and at strong coupling, a mixed s+id symmetry state is realized in a certain range of interaction. Phase transitions between the mixed and the pure symmetry states are second order. We also show that there is no stable mixed s+d symmetry state at any coupling. copyright 1996 The American Physical Society
Magnus force in discrete and continuous two-dimensional superfluids
International Nuclear Information System (INIS)
Gecse, Z.; Khlebnikov, S.
2005-01-01
Motion of vortices in two-dimensional superfluids in the classical limit is studied by solving the Gross-Pitaevskii equation numerically on a uniform lattice. We find that, in the presence of a superflow directed along one of the main lattice periods, vortices move with the superflow on fine lattices but perpendicular to it on coarse ones. We interpret this result as a transition from the full Magnus force in a Galilean-invariant limit to vanishing effective Magnus force in a discrete system, in agreement with the existing experiments on vortex motion in Josephson junction arrays
Network patterns in exponentially growing two-dimensional biofilms
Zachreson, Cameron; Yap, Xinhui; Gloag, Erin S.; Shimoni, Raz; Whitchurch, Cynthia B.; Toth, Milos
2017-10-01
Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. The underlying mechanism relies on path formation through physical deformation of the enclosing environment.
Two dimensional topological insulator in quantizing magnetic fields
Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.
2018-05-01
The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.
Anisotropic mass density by two-dimensional acoustic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera s/n, E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es
2008-02-15
We show that specially designed two-dimensional arrangements of full elastic cylinders embedded in a nonviscous fluid or gas define (in the homogenization limit) a new class of acoustic metamaterials characterized by a dynamical effective mass density that is anisotropic. Here, analytic expressions for the dynamical mass density and the effective sound velocity tensors are derived in the long wavelength limit. Both show an explicit dependence on the lattice filling fraction, the elastic properties of cylinders relative to the background, their positions in the unit cell, and their multiple scattering interactions. Several examples of these metamaterials are reported and discussed.
The Penalty Cost Functional for the Two-Dimensional
Directory of Open Access Journals (Sweden)
Victor Onomza WAZIRI
2006-07-01
Full Text Available This paper constructs the penalty cost functional for optimizing the two-dimensional control operator of the energized wave equation. In some multiplier methods such as the Lagrange multipliers and Pontrygean maximum principle, the cost of merging the constraint equation to the integral quadratic objective functional to obtain an unconstraint equation is normally guessed or obtained from the first partial derivatives of the unconstrained equation. The Extended Conjugate Gradient Method (ECGM necessitates that the penalty cost be sequentially obtained algebraically. The ECGM problem contains a functional which is completely given in terms of state and time spatial dependent variables.
Wave dispersion relations in two-dimensional Yukawa systems
International Nuclear Information System (INIS)
Liu Yanhong; Liu Bin; Chen Yanping; Yang Size; Wang Long; Wang Xiaogang
2003-01-01
Collective modes in a two-dimensional Yukawa system are investigated by molecular dynamics simulation in a wide range of coupling parameter Γ and screening strength κ. The dispersion relations and sound speeds of the transverse and longitudinal waves obtained for hexagonal lattice are in agreement with the theoretical results. The negative dispersion of the longitudinal wave is demonstrated. Frequency gaps are found on the dispersion curves of the transverse wave due to scattering of the waves on lattice defects for proper values of Γ. The common frequency of transverse and longitudinal waves drops dramatically with the increasing screening strength κ
Two-dimensional simulations of magnetically-driven instabilities
International Nuclear Information System (INIS)
Peterson, D.; Bowers, R.; Greene, A.E.; Brownell, J.
1986-01-01
A two-dimensional Eulerian MHD code is used to study the evolution of magnetically-driven instabilities in cylindrical geometry. The code incorporates an equation of state, resistivity, and radiative cooling model appropriate for an aluminum plasma. The simulations explore the effects of initial perturbations, electrical resistivity, and radiative cooling on the growth and saturation of the instabilities. Comparisons are made between the 2-D simulations, previous 1-D simulations, and results from the Pioneer experiments of the Los Alamos foil implosion program
Autocorrelation based reconstruction of two-dimensional binary objects
International Nuclear Information System (INIS)
Mejia-Barbosa, Y.; Castaneda, R.
2005-10-01
A method for reconstructing two-dimensional binary objects from its autocorrelation function is discussed. The objects consist of a finite set of identical elements. The reconstruction algorithm is based on the concept of class of element pairs, defined as the set of element pairs with the same separation vector. This concept allows to solve the redundancy introduced by the element pairs of each class. It is also shown that different objects, consisting of an equal number of elements and the same classes of pairs, provide Fraunhofer diffraction patterns with identical intensity distributions. However, the method predicts all the possible objects that produce the same Fraunhofer pattern. (author)
Linear and nonlinear viscous flow in two-dimensional fluids
International Nuclear Information System (INIS)
Gravina, D.; Ciccotti, G.; Holian, B.L.
1995-01-01
We report on molecular dynamics simulations of shear viscosity η of a dense two-dimensional fluid as a function of the shear rate γ. We find an analytic dependence of η on γ, and do not find any evidence whatsoever of divergence in the Green-Kubo (GK) value that would be caused by the well-known long-time tail for the shear-stress autocorrelation function, as predicted by the mode-coupling theory. In accordance with the linear response theory, the GK value of η agrees remarkably well with nonequilibrium values at small shear rates. (c) 1995 The American Physical Society
BRST quantization of Polyakov's two-dimensional gravity
International Nuclear Information System (INIS)
Itoh, Katsumi
1990-01-01
Two-dimensional gravity coupled to minimal models is quantized in the chiral gauge by the BRST method. By using the Wakimoto construction for the gravity sector, we show how the quartet mechanism of Kugo and Ojima works and solve the physical state condition. As a result the positive semi-definiteness of the physical subspace is shown. The formula of Knizhnik et al. for gravitational scaling dimensions is rederived from the physical state condition. We also observe a relation between the chiral gauge and the conformal gauge. (orig.)
Confinement and dynamical regulation in two-dimensional convective turbulence
DEFF Research Database (Denmark)
Bian, N.H.; Garcia, O.E.
2003-01-01
In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...
Two-dimensional approach to relativistic positioning systems
International Nuclear Information System (INIS)
Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio
2006-01-01
A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... of the impurity. Transforming the equation to the noninertial frame of reference coupled with the center of mass we investigate the soliton behavior in the close vicinity of the impurity. With the help of the lens transformation we show that the soliton width is governed by an Ermakov-Pinney equation. We also...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
International Nuclear Information System (INIS)
Quan, Xu; Qiang, Tian
2009-01-01
This paper discusses the two-dimensional discrete monatomic Fermi–Pasta–Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather. (condensed matter: structure, thermal and mechanical properties)
A microprocessor based on a two-dimensional semiconductor
Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas
2017-04-01
The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.
Growth and characterization of two-dimensional nanostructures
International Nuclear Information System (INIS)
Herrera Sancho, Oscar Andrey
2008-01-01
Two dimensional nanostructures of palladium, nickel, silver and gadolinium were grown by means of physical evaporation in atmospheres of high vacuum and ultra high vacuum. The qualitative characterization, in situ, of the nanostructures was carried out with techniques of surface analysis: Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS). The model for the quantification of contaminants in the nanostructures, was proposed by Seah and Shirley, and was made using the spectra XPS measured in situ in the atmospheres of vacuum. For the two-dimensional nanostructures of gadolinium of thicknesses 8 Å, 16 Å, 24 Å, 32 Å, 36 Å, 44 Å, 50 Å, 61 Å, 77 Å, 81 Å, 92 Å and 101 Å, were obtained optical spectra of transmission measured in situ. An band of absorption centered at approximately 2,40 eV is obtained by an increase in the dynamic conductivity from the optical constants, i.e. refractive index and extinction coefficient, of the nanostructure of gadolinium. In addition, the optical constants for the gadolinium nanostructures have presented a maximum of 80 Å of thickness and then it was continued a decreasing tendency toward the values that were reported in the literature for bulk of gadolinium. (author) [es
Strain-engineered growth of two-dimensional materials.
Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali
2017-09-20
The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.
Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal
International Nuclear Information System (INIS)
Konno, R; Hatayama, N; Takahashi, Y; Nakano, H
2009-01-01
Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.
Emergence of geometry: A two-dimensional toy model
International Nuclear Information System (INIS)
Alfaro, Jorge; Espriu, Domene; Puigdomenech, Daniel
2010-01-01
We review the similarities between the effective chiral Lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D)xGL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zweibein is generated from a topological theory without any preexisting metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several nonstandard features this simple toy model appears to be renormalizable and at long distances is described by an effective Lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared regulator. The low-energy expansion is valid for momenta k>M, i.e. for supra-horizon scales. We briefly discuss a possible implementation of a similar mechanism in four dimensions.
Chimera patterns in two-dimensional networks of coupled neurons
Schmidt, Alexander; Kasimatis, Theodoros; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp
2017-03-01
We discuss synchronization patterns in networks of FitzHugh-Nagumo and leaky integrate-and-fire oscillators coupled in a two-dimensional toroidal geometry. A common feature between the two models is the presence of fast and slow dynamics, a typical characteristic of neurons. Earlier studies have demonstrated that both models when coupled nonlocally in one-dimensional ring networks produce chimera states for a large range of parameter values. In this study, we give evidence of a plethora of two-dimensional chimera patterns of various shapes, including spots, rings, stripes, and grids, observed in both models, as well as additional patterns found mainly in the FitzHugh-Nagumo system. Both systems exhibit multistability: For the same parameter values, different initial conditions give rise to different dynamical states. Transitions occur between various patterns when the parameters (coupling range, coupling strength, refractory period, and coupling phase) are varied. Many patterns observed in the two models follow similar rules. For example, the diameter of the rings grows linearly with the coupling radius.
Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.
Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun
2016-04-15
Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.
Evidence for two-dimensional ising structure in atomic nuclei
International Nuclear Information System (INIS)
MacGregor, M.H.
1976-01-01
Although the unpaired nucleons in an atomic nucleus exhibit pronounced shell-model-like behavior, the situation with respect to the paired-off ''core region'' nucleons is considerably more obscure. Several recent ''multi-alpha knockout'' and ''quasi-fission'' experiments indicate that nucleon clustering is prevalent throughout the core region of the nucleus; this same conclusion is suggested by nuclear-binding-energy systematics, by the evidence for a ''neutron halo'' in heavy nuclei and by the magnetic-moment systematics of low-mass odd-A nuclei. A number of arguments suggests, in turn, that this nucleon clustering is not spherical or spheroidal in shape, as has generally been assumed, but instead is in the form of two-dimensional Ising-like layers, with the layers arrayed perpendicular to the symmetry axis of the nucleus. The effects of this two-dimensional layering are observed most clearly in low-energy-induced fission, where nuclei with an even (odd) number of Ising layers fission symmetrically (asymmetrically). This picture of the nucleus gives an immediate quantitative explanation for the observed asymmetry in the fission of uranium, and also for the transition from symmetric to asymmetric and back to symmetric fission as the atomic number of the fissioning nuclues increase from A = 197 up to A = 258. These results suggest that, in the shell model formulation of the atomic nucleus, the basis states for the paired-off nucleon core region should be modified so as to contain laminar nucleon cluster correlations
Two dimensional kinetic analysis of electrostatic harmonic plasma waves
Energy Technology Data Exchange (ETDEWEB)
Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.
Aspects of jamming in two-dimensional athermal frictionless systems.
Reichhardt, C; Reichhardt, C J Olson
2014-05-07
In this work we provide an overview of jamming transitions in two dimensional systems focusing on the limit of frictionless particle interactions in the absence of thermal fluctuations. We first discuss jamming in systems with short range repulsive interactions, where the onset of jamming occurs at a critical packing density and where certain quantities show a divergence indicative of critical behavior. We describe how aspects of the dynamics change as the jamming density is approached and how these dynamics can be explored using externally driven probes. Different particle shapes can produce jamming densities much lower than those observed for disk-shaped particles, and we show how jamming exhibits fragility for some shapes while for other shapes this is absent. Next we describe the effects of long range interactions and jamming behavior in systems such as charged colloids, vortices in type-II superconductors, and dislocations. We consider the effect of adding obstacles to frictionless jamming systems and discuss connections between this type of jamming and systems that exhibit depinning transitions. Finally, we discuss open questions such as whether the jamming transition in all these different systems can be described by the same or a small subset of universal behaviors, as well as future directions for studies of jamming transitions in two dimensional systems, such as jamming in self-driven or active matter systems.
Two-dimensional nuclear magnetic resonance of quadrupolar systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Shuanhu [Univ. of California, Berkeley, CA (United States)
1997-09-01
This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.
Two-Dimensional Impact Reconstruction Method for Rail Defect Inspection
Directory of Open Access Journals (Sweden)
Jie Zhao
2014-01-01
Full Text Available The safety of train operating is seriously menaced by the rail defects, so it is of great significance to inspect rail defects dynamically while the train is operating. This paper presents a two-dimensional impact reconstruction method to realize the on-line inspection of rail defects. The proposed method utilizes preprocessing technology to convert time domain vertical vibration signals acquired by wireless sensor network to space signals. The modern time-frequency analysis method is improved to reconstruct the obtained multisensor information. Then, the image fusion processing technology based on spectrum threshold processing and node color labeling is proposed to reduce the noise, and blank the periodic impact signal caused by rail joints and locomotive running gear. This method can convert the aperiodic impact signals caused by rail defects to partial periodic impact signals, and locate the rail defects. An application indicates that the two-dimensional impact reconstruction method could display the impact caused by rail defects obviously, and is an effective on-line rail defects inspection method.
The emergence of geometry: a two-dimensional toy model
Alfaro, Jorge; Puigdomenech, Daniel
2010-01-01
We review the similarities between the effective chiral lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D) X GL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zwei-bein is generated from a topological theory without any pre-existing metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several non-standard features this simple toy model appears to be renormalizable and at long distances is described by an effective lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared re...
Two-dimensional sparse wavenumber recovery for guided wavefields
Sabeti, Soroosh; Harley, Joel B.
2018-04-01
The multi-modal and dispersive behavior of guided waves is often characterized by their dispersion curves, which describe their frequency-wavenumber behavior. In prior work, compressive sensing based techniques, such as sparse wavenumber analysis (SWA), have been capable of recovering dispersion curves from limited data samples. A major limitation of SWA, however, is the assumption that the structure is isotropic. As a result, SWA fails when applied to composites and other anisotropic structures. There have been efforts to address this issue in the literature, but they either are not easily generalizable or do not sufficiently express the data. In this paper, we enhance the existing approaches by employing a two-dimensional wavenumber model to account for direction-dependent velocities in anisotropic media. We integrate this model with tools from compressive sensing to reconstruct a wavefield from incomplete data. Specifically, we create a modified two-dimensional orthogonal matching pursuit algorithm that takes an undersampled wavefield image, with specified unknown elements, and determines its sparse wavenumber characteristics. We then recover the entire wavefield from the sparse representations obtained with our small number of data samples.
Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis
International Nuclear Information System (INIS)
Goldman, D.; Merril, C.R.
1983-01-01
A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of 14 C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses
Development of two dimensional electrophoresis method using single chain DNA
International Nuclear Information System (INIS)
Ikeda, Junichi; Hidaka, So
1998-01-01
By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)
Bayesian approach for peak detection in two-dimensional chromatography.
Vivó-Truyols, Gabriel
2012-03-20
A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual one-dimensional peaks have been originated from the same compound and should then be arranged in a two-dimensional peak. The merging algorithm is based on Bayesian inference. The user sets prior information about certain parameters (e.g., second-dimension retention time variability, first-dimension band broadening, chromatographic noise). On the basis of these priors, the algorithm calculates the probability of myriads of peak arrangements (i.e., ways of merging one-dimensional peaks), finding which of them holds the highest value. Uncertainty in each parameter can be accounted by adapting conveniently its probability distribution function, which in turn may change the final decision of the most probable peak arrangement. It has been demonstrated that the Bayesian approach presented in this paper follows the chromatographers' intuition. The algorithm has been applied and tested with LC × LC and GC × GC data and takes around 1 min to process chromatograms with several thousands of peaks.
International Nuclear Information System (INIS)
Matthaei, D.; Haase, A.; Henrich, D.; Duhmke, E.
1991-01-01
With fast MR imaging, chemical shift contract becomes available to the clinician in seconds. The purpose of this paper is to evaluate the combination of chemical shift selective (CHESS) MR imaging using the snapshot FLASH MR method with the inversion-recovery technique and to obtain information concerning the signal-to-noise and chemical shift with the presaturation method at different field strengths. Investigations with volunteers and experimental animals were done at 2 and 3 T (whole body) and in a 4.7-T animal image. For the inversion-recovery experiments, saturation was done before every snapshot FLASH image. With increasing field strength due to signal-to-noise and chemical shift advantages, the method performs better. Increasing T1 values are also important at high field strengths. The combined technique is useful only for T1 water images with fat saturation. It also allows fast quantification of T1 in water-containing organs and pathologic processes. At high field strengths, fast CHESS and T1 imaging promise fast quantitative information. This is a possible argument for clinical high-field-strength MR imagining along with MR spectroscopy
Optimal Padding for the Two-Dimensional Fast Fourier Transform
Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.
2011-01-01
One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that
Two dimensional neutral transport analysis in tokamak plasma
International Nuclear Information System (INIS)
Shimizu, Katsuhiro; Azumi, Masafumi
1987-02-01
Neutral particle influences the particle and energy balance, and play an important role on sputtering impurity and the charge exchange loss of neutral beam injection. In order to study neutral particle behaviour including the effects of asymmetric source and divertor configuration, the two dimensional neutral transport code has been developed using the Monte-Carlo techniques. This code includes the calculation of the H α radiation intensity based on the collisional-radiation model. The particle confinement time of the joule heated plasma in JT-60 tokamak is evaluated by comparing the calculated H α radiation intensity with the experimental data. The effect of the equilibrium on the neutral density profile in high-β plasma is also investigated. (author)
Nematic Equilibria on a Two-Dimensional Annulus
Lewis, A. H.; Aarts, D. G. A. L.; Howell, P. D.; Majumdar, A.
2017-01-01
We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.
Two-dimensional analysis of motion artifacts, including flow effects
International Nuclear Information System (INIS)
Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.
1990-01-01
The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously
Global geometry of two-dimensional charged black holes
International Nuclear Information System (INIS)
Frolov, Andrei V.; Kristjansson, Kristjan R.; Thorlacius, Larus
2006-01-01
The semiclassical geometry of charged black holes is studied in the context of a two-dimensional dilaton gravity model where effects due to pair-creation of charged particles can be included in a systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of the spacetime geometry. At the classical level, a static solution describing an eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black hole formation
Suspension and simple optical characterization of two-dimensional membranes
Northeast, David B.; Knobel, Robert G.
2018-03-01
We report on a method for suspending two-dimensional crystal materials in an electronic circuit using an only photoresists and solvents. Graphene and NbSe2 are suspended tens of nanometers above metal electrodes with clamping diameters of several microns. The optical cavity formed from the membrane/air/metal structures enables a quick method to measure the number of layers and the gap separation using comparisons between the expected colour and optical microscope images. This characterization technique can be used with just an illuminated microscope with a digital camera which makes it adaptable to environments where other means of characterization are not possible, such as inside nitrogen glove boxes used in handling oxygen-sensitive materials.
Disorder effect in two-dimensional topological insulators
International Nuclear Information System (INIS)
Zhang Xianglin; Feng Shiping; Guo Huaiming
2012-01-01
We conduct a systematic study on the disorder effect in two-dimensional (2D) topological insulators by calculating the Z 2 topological invariant. Starting from the trivial and nontrivial topological phases of the model describing HgTe/CdTe quantum wells (QWs), we introduce three different kinds of disorder into the system, including the fluctuations in the on-site potential, the hopping amplitude and the topological mass. These kinds of disorder commonly exist in HgTe/CdTe QWs grown experimentally. By explicit numerical calculations, we show that all three kinds of disorder have the similar effect: the topological phase in the system is not only robust to them, but also can be brought about by introducing them to the trivial insulator phase. These results make a further confirmation and extendability of the study on the interplay between the disorder and the topological phase.
Thermoelectric transport in two-dimensional giant Rashba systems
Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian
Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.
Two-dimensional DFA scaling analysis applied to encrypted images
Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.
2015-01-01
The technique of detrended fluctuation analysis (DFA) has been widely used to unveil scaling properties of many different signals. In this paper, we determine scaling properties in the encrypted images by means of a two-dimensional DFA approach. To carry out the image encryption, we use an enhanced cryptosystem based on a rule-90 cellular automaton and we compare the results obtained with its unmodified version and the encryption system AES. The numerical results show that the encrypted images present a persistent behavior which is close to that of the 1/f-noise. These results point to the possibility that the DFA scaling exponent can be used to measure the quality of the encrypted image content.
Spin precession in inversion-asymmetric two-dimensional systems
International Nuclear Information System (INIS)
Liu, M.-H.; Chang, C.-R.
2006-01-01
We present a theoretical method to calculate the expectation value of spin in an inversion-asymmetric two-dimensional (2D) system with respect to an arbitrarily spin-polarized electron state, injected via an ideal point contact. The 2D system is confined in a [0 0 1]-grown quantum well, where both the Rashba and the Dresselhaus spin-orbit couplings are taken into account. The obtained analytical results allow more concrete description of the spatial behaviors of the spin precession caused individually by the Rashba and the Dresselhaus terms. Applying the calculation on the Datta-Das spin-FET, whose original design considers only the Rashba effect inside the channel, we investigate the possible influence due to the Dresselhaus spin-orbit coupling. Concluded solution is the choice of ±[1±10], in particular [1 1 0], as the channel direction
Entropic Barriers for Two-Dimensional Quantum Memories
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
Sample preparation guidelines for two-dimensional electrophoresis.
Posch, Anton
2014-12-01
Sample preparation is one of the key technologies for successful two-dimensional electrophoresis (2DE). Due to the great diversity of protein sample types and sources, no single sample preparation method works with all proteins; for any sample the optimum procedure must be determined empirically. This review is meant to provide a broad overview of the most important principles in sample preparation in order to avoid a multitude of possible pitfalls. Sample preparation protocols from the expert in the field were screened and evaluated. On the basis of these protocols and my own comprehensive practical experience important guidelines are given in this review. The presented guidelines will facilitate straightforward protocol development for researchers new to gel-based proteomics. In addition the available choices are rationalized in order to successfully prepare a protein sample for 2DE separations. The strategies described here are not limited to 2DE and can also be applied to other protein separation techniques.
Two-dimensional divertor modeling and scaling laws
International Nuclear Information System (INIS)
Catto, P.J.; Connor, J.W.; Knoll, D.A.
1996-01-01
Two-dimensional numerical models of divertors contain large numbers of dimensionless parameters that must be varied to investigate all operating regimes of interest. To simplify the task and gain insight into divertor operation, we employ similarity techniques to investigate whether model systems of equations plus boundary conditions in the steady state admit scaling transformations that lead to useful divertor similarity scaling laws. A short mean free path neutral-plasma model of the divertor region below the x-point is adopted in which all perpendicular transport is due to the neutrals. We illustrate how the results can be used to benchmark large computer simulations by employing a modified version of UEDGE which contains a neutral fluid model. (orig.)
Two-dimensional spectrophotometry of planetary nebulae by CCD imaging
International Nuclear Information System (INIS)
Jacoby, G.H.; Africano, J.L.; Quigley, R.J.; Western Washington Univ., Bellingham, WA)
1987-01-01
The spatial distribution of the electron temperature and density and the ionic abundances of O(+), O(2+), N(+), and S(+) have been derived from CCD images of the planetary nebulae NGC 40 and NGC 6826 taken in the important emission lines of forbidden O II, forbidden O III, H-beta, forbidden N II, and forbidden S II. The steps required in the derivation of the absolute fluxes, line, ratios, and ionic abundances are outlined and then discussed in greater detail. The results show that the CCD imaging technique for two-dimensional spectrophotometry can effectively compete with classical spectrophotometry, providing the added benefits of complete spatial coverage at seeing-disk spatial resolution. The multiplexing in the spatial dimension, however, results in a loss of spectral information, since only one emission line is observed at any one time. 37 references
Two-dimensional neutron scintillation detector with optimal gamma discrimination
International Nuclear Information System (INIS)
Kanyo, M.; Reinartz, R.; Schelten, J.; Mueller, K.D.
1993-01-01
The gamma sensitivity of a two-dimensional scintillation neutron detector based on position sensitive photomultipliers (Hamamatsu R2387 PM) has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by ±25% a discrimination unit was developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. By this method narrow discriminator windows can be used to reduce the gamma background drastically without effecting the neutron sensitivity of the detector. The new discrimination method and its performance tested by neutron measurements will be described. Experimental results concerning spatial resolution and γ-sensitivity are presented
Mixing times in quantum walks on two-dimensional grids
International Nuclear Information System (INIS)
Marquezino, F. L.; Portugal, R.; Abal, G.
2010-01-01
Mixing properties of discrete-time quantum walks on two-dimensional grids with toruslike boundary conditions are analyzed, focusing on their connection to the complexity of the corresponding abstract search algorithm. In particular, an exact expression for the stationary distribution of the coherent walk over odd-sided lattices is obtained after solving the eigenproblem for the evolution operator for this particular graph. The limiting distribution and mixing time of a quantum walk with a coin operator modified as in the abstract search algorithm are obtained numerically. On the basis of these results, the relation between the mixing time of the modified walk and the running time of the corresponding abstract search algorithm is discussed.
Static and dynamic properties of two-dimensional Coulomb clusters.
Ash, Biswarup; Chakrabarti, J; Ghosal, Amit
2017-10-01
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
Few helium atoms in quasi two-dimensional space
International Nuclear Information System (INIS)
Kilic, Srecko; Vranjes, Leandra
2003-01-01
Two, three and four 3 He and 4 He atoms in quasi two-dimensional space above graphite and cesium surfaces and in 'harmonic' potential perpendicular to the surface have been studied. Using some previously examined variational wave functions and the Diffusion Monte Carlo procedure, it has been shown that all molecules: dimers, trimers and tetramers, are bound more strongly than in pure two- and three-dimensional space. The enhancement of binding with respect to unrestricted space is more pronounced on cesium than on graphite. Furthermore, for 3 He 3 ( 3 He 4 ) on all studied surfaces, there is an indication that the configuration of a dimer and a 'free' particle (two dimers) may be equivalently established
Two dimensional radiated power diagnostics on Alcator C-Mod
International Nuclear Information System (INIS)
Reinke, M. L.; Hutchinson, I. H.
2008-01-01
The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of P rad of nearly 50% by the diodes compared to P rad determined using resistive bolometers.
Superconductivity of the two-dimensional Penson-Kolb model
International Nuclear Information System (INIS)
Czart, W.R.; Robaszkiewicz, S.
2001-01-01
Two-dimensional (d = 2) Penson-Kolb model, i.e. the tight-binding model with the pair-hopping (intersite charge exchange) interaction, is considered and the effects of phase fluctuations on the s-wave superconductivity of this system are discussed within Kosterlitz-Thouless scenario. The London penetration depth λ at T = 0, the Kosterlitz Thouless critical temperature T c , and the Hartree-Fock approximation critical temperature T p are determined as a function of particle concentration and interaction. The Uemura type plots (T c vs. λ -2 (0)) are derived. Beyond weak coupling and for low concentrations they show the existence of universal scaling: T c ∼ 1/λ 2 (0), as it previously found for the attractive Hubbard model and for the models intersite electron pairing. (author)
Self-organized defect strings in two-dimensional crystals.
Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph
2013-12-01
Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.
Measuring protein dynamics with ultrafast two-dimensional infrared spectroscopy
International Nuclear Information System (INIS)
Adamczyk, Katrin; Candelaresi, Marco; Hunt, Neil T; Robb, Kirsty; Hoskisson, Paul A; Tucker, Nicholas P; Gumiero, Andrea; Walsh, Martin A; Parker, Anthony W
2012-01-01
Recent advances in the methodology and application of ultrafast two-dimensional infrared (2D-IR) spectroscopy to biomolecular systems are reviewed. A description of the 2D-IR technique and the molecular contributions to the observed spectra are presented followed by a discussion of recent literature relating to the use of 2D-IR and associated approaches for measuring protein dynamics. In particular, these include the use of diatomic ligand groups for measuring haem protein dynamics, isotopic labelling strategies and the use of vibrational probe groups. The final section reports on the current state of the art regarding the use of 2D-IR methods to provide insights into biological reaction mechanisms. (topical review)
Cooperation in two-dimensional mixed-games
International Nuclear Information System (INIS)
Amaral, Marco A; Silva, Jafferson K L da; Wardil, Lucas
2015-01-01
Evolutionary game theory is a common framework to study the evolution of cooperation, where it is usually assumed that the same game is played in all interactions. Here, we investigate a model where the game that is played by two individuals is uniformly drawn from a sample of two different games. Using the master equation approach we show that the random mixture of two games is equivalent to play the average game when (i) the strategies are statistically independent of the game distribution and (ii) the transition rates are linear functions of the payoffs. We also use Monte-Carlo simulations in a two-dimensional lattice and mean-field techniques to investigate the scenario when the two above conditions do not hold. We find that even outside of such conditions, several quantities characterizing the mixed-games are still the same as the ones obtained in the average game when the two games are not very different. (paper)
The first principle calculation of two-dimensional Dirac materials
Lu, Jin
2017-12-01
As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.
Quasi-Two-Dimensional Magnetism in Co-Based Shandites
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2016-06-01
We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.
Two-dimensional strain gradient damage modeling: a variational approach
Placidi, Luca; Misra, Anil; Barchiesi, Emilio
2018-06-01
In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.
Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis
Directory of Open Access Journals (Sweden)
Young S. Shin
1998-01-01
Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.
Advancements of two dimensional correlation spectroscopy in protein researches
Tao, Yanchun; Wu, Yuqing; Zhang, Liping
2018-05-01
The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well.
Superfluid response of two-dimensional parahydrogen clusters in confinement
Energy Technology Data Exchange (ETDEWEB)
Idowu, Saheed; Boninsegni, Massimo [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E7 (Canada)
2015-04-07
We study by computer simulations the effect of confinement on the superfluid properties of small two-dimensional (2D) parahydrogen clusters. For clusters of fewer than twenty molecules, the superfluid response in the low temperature limit is found to remain comparable in magnitude to that of free clusters, within a rather wide range of depth and size of the confining well. The resilience of the superfluid response is attributable to the “supersolid” character of these clusters. We investigate the possibility of establishing a bulk 2D superfluid “cluster crystal” phase of p-H{sub 2}, in which a global superfluid response would arise from tunnelling of molecules across adjacent unit cells. The computed energetics suggests that for clusters of about ten molecules, such a phase may be thermodynamically stable against the formation of the equilibrium insulating crystal, for values of the cluster crystal lattice constant possibly allowing tunnelling across adjacent unit cells.
Review—Two-Dimensional Layered Materials for Energy Storage Applications
Kumar, Pushpendra
2016-07-02
Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.
Two dimensional tunable photonic crystals and n doped semiconductor materials
International Nuclear Information System (INIS)
Elsayed, Hussein A.; El-Naggar, Sahar A.; Aly, Arafa H.
2015-01-01
In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications
Two-Dimensional Tellurene as Excellent Thermoelectric Material
Sharma, Sitansh
2018-04-20
We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high room temperature Seebeck coefficient (Sxx = 0.38 mV/K, Syy = 0.36 mV/K) is combined with anisotropic lattice thermal conductivity (κxxl = 0.43 W/m K, κyyl = 1.29 W/m K). Phonon band structures demonstrate a key role of optical phonons in the record low thermal conductivity that leads to excellent thermoelectric performance of tellurene. At room temperature and moderate hole doping of 1.2 × 10–11 cm–2, for example, a figure of merit of ZTxx = 0.8 is achieved.
Two-dimensional wave propagation in layered periodic media
Quezada de Luna, Manuel
2014-09-16
We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.
Bifurcated equilibria in two-dimensional MHD with diamagnetic effects
International Nuclear Information System (INIS)
Ottaviani, M.; Tebaldi, C.
1998-12-01
In this work we analyzed the sequence of bifurcated equilibria in two-dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied under the assumption of a constant equilibrium pressure gradient, not altered by the formation of the magnetic island. The formation of an island when the symmetric equilibrium becomes unstable is studied as a function of the tearing mode stability parameter Δ' and of the diamagnetic frequency, by employing fixed-points numerical techniques and an initial value code. At larger values of Δ' a tangent bifurcation takes place, above which no small island solutions exist. This bifurcation persists up to fairly large values of the diamagnetic frequency (of the order of one tenth of the Alfven frequency). The implications of this phenomenology for the intermittent MHD dynamics observed in tokamaks is discussed. (authors)
A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy
Energy Technology Data Exchange (ETDEWEB)
El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens, E-mail: bredenbeck@biophysik.uni-frankfurt.org, E-mail: bredenbeck@biophysik.uni-frankfurt.de [Institut für Biophysik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt (Germany)
2015-08-15
A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.
Critical behavior of the two-dimensional first passage time
International Nuclear Information System (INIS)
Chayes, J.T.; Chayes, L.; Durrett, R.
1986-01-01
We study the two-dimensional first passage problem in which bonds have zero and unit passage times with probability p and 1-p, respectively. We provide that as the zero-time bonds approach the percolation threshold p/sub c/, the first passage time exhibits the same critical behavior as the correlation function of the underlying percolation problem. In particular, if the correlation length obeys ξ(p)--chemical bondp-p/sub c/chemical bond/sup -//sup v/, then the first passage time constant satisfies μ(p)--chemical bondp-p/sub c/chemical bond/sup v/. At p/sub c/, where it has been asserted that the first passage time from 0 to x scales as chemical bondxchemical bond to a power psi with 0< psi<1, we show that the passage times grow like log chemical bondxchemical bond, i.e., the fluid spreads exponentially rapidly
Two-dimensional electronic spectroscopy with birefringent wedges
Energy Technology Data Exchange (ETDEWEB)
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2014-12-15
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.