Screening in two-dimensional gauge theories
Korcyl, Piotr
2012-01-01
We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED2 as a warm-up for the non-abelian models we show the mechanism of the string breaking, in particular the vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the string tension between arbitrarily-charged fermions in the massive Schwinger model.
Screening in two-dimensional gauge theories
Energy Technology Data Exchange (ETDEWEB)
Korcyl, Piotr [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koren, Mateusz [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki
2012-12-15
We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED{sub 2} as a warmup for the non-abelian models we show the mechanism of the string breaking, in particular the vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the string tension between arbitrarily-charged fermions in the massive Schwinger model.
Complex Saddles in Two-dimensional Gauge Theory
Buividovich, P V; Valgushev, S N
2015-01-01
We study numerically the saddle point structure of two-dimensional (2D) lattice gauge theory, represented by the Gross-Witten-Wadia unitary matrix model. The saddle points are in general complex-valued, even though the original integration variables and action are real. We confirm the trans-series/instanton gas structure in the weak-coupling phase, and identify a new complex-saddle interpretation of non-perturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is driven by saddle condensation.
Two-dimensional lattice gauge theories with superconducting quantum circuits
Energy Technology Data Exchange (ETDEWEB)
Marcos, D., E-mail: david.marcos@me.com [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Widmer, P. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Rico, E. [IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg (France); Hafezi, M. [Joint Quantum Institute, NIST/University of Maryland, College Park 20742 (United States); Department of Electrical Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Rabl, P. [Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Wiese, U.-J. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Zoller, P. [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)
2014-12-15
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.
Complex Path Integrals and Saddles in Two-Dimensional Gauge Theory.
Buividovich, P V; Dunne, Gerald V; Valgushev, S N
2016-04-01
We study numerically the saddle point structure of two-dimensional lattice gauge theory, represented by the Gross-Witten-Wadia unitary matrix model. The saddle points are, in general, complex valued, even though the original integration variables and action are real. We confirm the trans-series and instanton gas structure in the weak-coupling phase, and we identify a new complex-saddle interpretation of nonperturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is driven by saddle condensation.
Cluster algorithm for two-dimensional U(1) lattice gauge theory
Sinclair, R.
1992-03-01
We use gauge fixing to rewrite the two-dimensional U(1) pure gauge model with Wilson action and periodic boundary conditions as a nonfrustrated XY model on a closed chain. The Wolff single-cluster algorithm is then applied, eliminating critical slowing down of topological modes and Polyakov loops.
Vector meson masses in two-dimensional SU(NC) lattice gauge theory with massive quarks
Institute of Scientific and Technical Information of China (English)
JIANG Jun-Qin
2008-01-01
Using an improved lattice Hamiltonian with massive Wilson quarks a variational method is applied to study the dependence of the vector meson mass Mv on the quark mass m and the Wilson parameter r in in the scaling window 1 ≤ 1/g2 ≤ 2, Mv/g is approximately linear in m, but Mv/g obviously does not depend on r (this differs from the quark condensate). Particularly for m → 0 our numerical results agree very well with Bhattacharya's analytical strong coupling result in the continuum, and the value of ((e)Mv/(e)m) |mm=0 in two-dimensional SU(NC) lattice gauge theory is very close to that in Schwinger model.
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Towards complete integrability of two dimensional Poincar\\'e gauge gravity
Mielke, E W; Obukhov, Yu N; Tresguerres, R; Hehl, F W
1993-01-01
It is shown that gravity on the line can be described by the two dimensional (2D) Hilbert-Einstein Lagrangian supplemented by a kinetic term for the coframe and a translational {\\it boundary} term. The resulting model is equivalent to a Yang-Mills theory of local {\\it translations} and frozen Lorentz gauge degrees. We will show that this restricted Poincar\\'e gauge model in 2 dimensions is completely integrable. {\\it Exact} wave, charged black hole, and `dilaton' solutions are then readily found. In vacuum, the integrability of the {\\it general} 2D Poincar\\'e gauge theory is formally proved along the same line of reasoning.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Novel Symmetries in Two Dimensional Proca Theory
Bhanja, T; Malik, R P
2013-01-01
By exploiting the Stueckelberg's approach, we obtain a gauge theory for the two (1+1)-dimensional (2D) Proca theory and demonstrate that this theory is endowed with, in addition to the usual Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries, the on-shell nilpotent (anti-)co-BRST symmetries, under which, the total gauge-fixing term remains invariant. The anticommutator of the BRST and co-BRST (as well as anti-BRST and anti-co-BRST) symmetries define a unique bosonic symmetry in the theory, under which, the ghost part of the Lagrangian density remains invariant. To establish connections of the above symmetries with the Hodge theory, we invoke a pseudo-scalar field in the theory. Ultimately, we demonstrate that the full theory provides a field theoretic example for the Hodge theory where the continuous symmetry transformations provide a physical realization of the de Rham cohomological operators and discrete symmetries of the theory lead to the physical realization of the Hodge duality operation of diffe...
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Gauge theory and little gauge theory
Koizumi, Kozo
2016-01-01
The gauge theory is the most important type of the field theory, in which the interactions of the elementary particles are described by the exchange of the gauge bosons.In this article, the gauge theory is reexamined as geometry of the vector space, and a new concept of "little gauge theory" is introduced. A key peculiarity of the little gauge theory is that the theory is able to give a restriction for form of the connection field. Based on the little gauge theory, Cartan geometry, a charged boson and the Dirac fermion field theory are investigated. In particular, the Dirac fermion field theory leads to an extension of Sogami's covariant derivative. And it is interpreted that Higgs bosons are included in new fields introduced in this article.
de Wild Propitius, M.D.F.; Bais, F.A.
1999-01-01
In these lectures, we present a self-contained treatment of planar gauge theories broken down to some finite residual gauge group $H$ via the Higgs mechanism. The main focus is on the discrete $H$ gauge theory describing the long distance physics of such a model. The spectrum features global $H$ cha
The gauging of two-dimensional bosonic sigma models on world-sheets with defects
Gawedzki, Krzysztof; Waldorf, Konrad
2013-01-01
We extend our analysis of the gauging of rigid symmetries in bosonic two-dimensional sigma models with Wess-Zumino terms in the action to the case of world-sheets with defects. A structure that permits a non-anomalous coupling of such sigma models to world-sheet gauge fields of arbitrary topology is analysed, together with obstructions to its existence, and the classification of its inequivalent choices.
Non perturbative methods in two dimensional quantum field theory
Abdalla, Elcio; Rothe, Klaus D
1991-01-01
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
A geometrical approach to two-dimensional Conformal Field Theory
Dijkgraaf, Robertus Henricus
1989-09-01
manifold obtained as the quotient of a smooth manifold by a discrete group. In Chapter 6 our considerations will be of a somewhat complementary nature. We will investigate models with central charge c = 1 by deformation techniques. The central charge is a fundamental parameter in any conformal invariant model, and the value c = 1 is of considerable interest, since it forms in many ways a threshold value. For c 1 is still very much terra incognita. Our results give a partial classification for the intermediate case of c = 1 models. The formulation of these c = 1 CFT's on surfaces of arbitrary topology is central in Chapter 7. Here we will provide many explicit results that provide illustrations for our more abstract discussions of higher genus quantities in Chapters 3 and 1. Unfortunately, our calculations will become at this point rather technical, since we have to make extensive use of the mathematics of Riemann surfaces and their coverings. Finally, in Chapter 8 we leave the two-dimensional point of view that we have been so loyal to up to then , and ascend to threedimensions where we meet topological gauge theories. These so-called Chern-Simons theories encode in a very economic way much of the structure of two-dimensional (rational) conformal field theories, and this direction is generally seen to be very promising. We will show in particular how many of our results of Chapter 5 have a natural interpretation in three dimensions.
Generalized Higher Gauge Theory
Ritter, Patricia; Schmidt, Lennart
2015-01-01
We study a generalization of higher gauge theory which makes use of generalized geometry and seems to be closely related to double field theory. The local kinematical data of this theory is captured by morphisms of graded manifolds between the canonical exact Courant Lie 2-algebroid $TM\\oplus T^*M$ over some manifold $M$ and a semistrict gauge Lie 2-algebra. We discuss generalized curvatures and their infinitesimal gauge transformations. Finite gauge transformation as well as global kinematical data are then obtained from principal 2-bundles over 2-spaces. As dynamical principle, we consider first the canonical Chern-Simons action for such a gauge theory. We then show that a previously proposed 3-Lie algebra model for the six-dimensional (2,0) theory is very naturally interpreted as a generalized higher gauge theory.
Supergravity from Gauge Theory
Berkowitz, Evan
2016-01-01
Gauge/gravity duality is the conjecture that string theories have dual descriptions as gauge theories. Weakly-coupled gravity is dual to strongly-coupled gauge theories, ideal for lattice calculations. I will show precision lattice calculations that confirm large-N continuum D0-brane quantum mechanics correctly reproduces the leading-order supergravity prediction for a black hole's internal energy---the first leading-order test of the duality---and constrains stringy corrections.
Two-Dimensional Thermal Boundary Layer Corrections for Convective Heat Flux Gauges
Kandula, Max; Haddad, George
2007-01-01
This work presents a CFD (Computational Fluid Dynamics) study of two-dimensional thermal boundary layer correction factors for convective heat flux gauges mounted in flat plate subjected to a surface temperature discontinuity with variable properties taken into account. A two-equation k - omega turbulence model is considered. Results are obtained for a wide range of Mach numbers (1 to 5), gauge radius ratio, and wall temperature discontinuity. Comparisons are made for correction factors with constant properties and variable properties. It is shown that the variable-property effects on the heat flux correction factors become significant
Topological gauge theories and group cohomology
Dijkgraaf, Robbert; Witten, Edward
1990-04-01
We show that three dimensional Chern-Simons gauge theories with a compact gauge group G (not necessarily connected or simply connected) can be classified by the integer cohomology group H 4( BG, Z). In a similar way, possible Wess-Zumino interactions of such a group G are classified by H 3( G, Z). The relation between three dimensional Chern-Simons gauge theory and two dimensional sigma models involves a certain natural map from H 4( BG, Z) to H 3( G, Z). We generalize this correspondence to topological “spin” theories, which are defined on three manifolds with spin structure, and are related to what might be called Z 2 graded chiral algebras (or chiral superalgebras) in two dimensions. Finally we discuss in some detail the formulation of these topological gauge theories for the special case of a finite group, establishing links with two dimensional (holomorphic) orbifold models.
The partition function of two-dimensional string theory
Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen
1993-04-01
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.
The partition function of two-dimensional string theory
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))
1993-04-12
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity
Canonical quantization of a two-dimensional model with anomalous breaking of gauge invariance
Girotti, Horacio Oscar; Rothe, Heinz J.; Rothe, Klaus D.
1986-01-01
We investigate in detail the operator quantum dynamics of a two-dimensional model exhibiting anomalous breaking of gauge invariance. The equal-time algebra is systematically obtained by using the Dirac-bracket formalism for constrained systems. For certain values of the regularization parameter the system is shown to undergo drastic changes. For the value of the parameter corresponding to the chiral Schwinger model no operator solutions are found to exist.
Chung, Daniel J H
2016-01-01
We reformulate gauge theories in analogy with the vierbein formalism of general relativity. More specifically, we reformulate gauge theories such that their gauge dynamical degrees of freedom are local fields that transform linearly under the dual representation of the charged matter field. These local fields, which naively have the interpretation of non-local operators similar to Wilson lines, satisfy constraint equations. A set of basis tensor fields are used to solve these constraint equations, and their field theory is constructed. A new local symmetry in terms of the basis tensor fields is used to make this field theory local and maintain a Hamiltonian that is bounded from below. The field theory of the basis tensor fields is what we call the basis tensor gauge theory.
Healey, Richard
Those looking for holism in contemporary physics have focused their attention primarily on quantum entanglement. But some gauge theories arguably also manifest the related phenomenon of nonseparability. While the argument is strong for the classical gauge theory describing electromagnetic interactions with quantum "particles", it fails in the case of general relativity even though that theory may also be formulated in terms of a connection on a principal fiber bundle. Anandan has highlighted the key difference in his analysis of a supposed gravitational analog to the Aharonov-Bohm effect. By contrast with electromagnetism in the original Aharonov-Bohm effect, gravitation is separable and exhibits no novel holism in this case. Whether the nonseparability of classical gauge theories of nongravitational interactions is associated with holism depends on what counts as the relevant part-whole relation. Loop representations of quantized gauge theories of nongravitational interactions suggest that these conclusions about holism and nonseparability may extend also to quantum theories of the associated fields.
Maas, Axel
2012-01-01
QCD can be formulated using any gauge group. One particular interesting choice is to replace SU(3) by the exceptional group G2. Conceptually, this group is the simplest group with a trivial center. It thus permits to study the conjectured relevance of center degrees of freedom for QCD. Practically, since all its representation are real, it is possible to perform lattice simulations for this theory also at finite baryon densities. It is thus an excellent environment to test methods and to investigate general properties of gauge theories at finite densities. We review the status of our understanding of gauge theories with the gauge group G2, including Yang-Mills theory, Yang-Mills-Higgs theory, and QCD both in the vacuum and in the phase diagram.
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
Batalin-Vilkovisky algebras and two-dimensional topological field theories
Getzler, E
1994-01-01
Batalin-Vilkovisky algebras are a new type of algebraic structure on graded vector spaces, which first arose in the work of Batalin and Vilkovisky on gauge fixing in quantum field theory. In this article, we show that there is a natural structure of a Batalin-Vilkovisky algebra on the cohomology of a topological field theory in two dimensions. Lian and Zuckerman have constructed this Batalin-Vilkovisky structure, in the setting of topological chiral field theories, and shown that the structure is non-trivial in two-dimensional string theory. Our approach is to use algebraic topology, whereas their proofs have a more algebraic character.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
Tricritical behavior in a two-dimensional field theory
Hamber, Herbert
1980-05-01
The critical behavior of a two-dimensional scalar Euclidean field theory with a potential term that allows for three minima is analyzed using an approximate position-space renormalization-group transformation on the equivalent quantum spin Hamiltonian. The global phase diagram shows a tricritical point separating a critical line from a line of first-order transitions. Other critical properties are examined, and good agreement is found with results on classical spin models belonging to the same universality class.
Digital lattice gauge theories
Zohar, Erez; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...
Blagojević, Milutin
2012-01-01
During the last five decades, gravity, as one of the fundamental forces of nature, has been formulated as a gauge field theory of the Weyl-Cartan-Yang-Mills type. The resulting theory, the Poincar\\'e gauge theory of gravity, encompasses Einstein's gravitational theory as well as the teleparallel theory of gravity as subcases. In general, the spacetime structure is enriched by Cartan's torsion and the new theory can accommodate fermionic matter and its spin in a perfectly natural way. The present reprint volume contains articles from the most prominent proponents of the theory and is supplemented by detailed commentaries of the editors. This guided tour starts from special relativity and leads, in its first part, to general relativity and its gauge type extensions a la Weyl and Cartan. Subsequent stopping points are the theories of Yang-Mills and Utiyama and, as a particular vantage point, the theory of Sciama and Kibble. Later, the Poincar\\'e gauge theory and its generalizations are explored and specific topi...
Frampton, Paul H
2008-01-01
This third edition on the classic Gauge Field Theories is an ideal reference for researchers starting work with the Large Hadron Collider and the future International Linear Collider. This latest title continues to offer an up to date reference containing revised chapters on electroweak interactions and model building including a completely new chapter on conformality. Within this essential reference logical organization of the material on gauge invariance, quantization, and renormalization is also discussed providing necessary reading for Cosmologists and Particle Astrophysicists
Entanglement in a two-dimensional string theory
Donnelly, William
2016-01-01
What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider entanglement entropy in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large $N$. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space, giving a precise state-counting interpretation to the entropy, including its leading $O(N^2)$ piece. In the process we reinterpret the sphere partition function as a thermal ensemble of of open strings whose endpoints are anchored to an object at the entangling surface that we call an E-brane.
Two-dimensional conformal field theory and the butterfly effect
Roberts, Daniel A
2014-01-01
We study chaotic dynamics in two-dimensional conformal field theory through out-of-time order thermal correlators of the form $\\langle W(t)VW(t)V\\rangle$. We reproduce bulk calculations similar to those of [1], by studying the large $c$ Virasoro identity block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of $\\sim t_* - \\frac{\\beta}{2\\pi}\\log \\beta^2E_w E_v$, where $t_*$ is the scrambling time $\\frac{\\beta}{2\\pi}\\log c$, and $E_w,E_v$ are the energy scales of the $W,V$ operators.
Consistent theory of turbulent transport in two-dimensional magnetohydrodynamics.
Kim, Eun-jin
2006-03-03
A theory of turbulent transport is presented in two-dimensional magnetohydrodynamics with background shear and magnetic fields. We provide theoretical predictions for the transport of magnetic flux, momentum, and particles and turbulent intensities, which show stronger reduction compared with the hydrodynamic case, with different dependences on shearing rate, magnetic field, and values of viscosity, Ohmic diffusion, and particle diffusivity. In particular, particle transport is more severely suppressed than momentum transport, effectively leading to a more efficient momentum transport. The role of magnetic fields in quenching transport without altering the amplitude of flow velocity and in inhibiting the generation of shear flows is elucidated. Implications of the results are discussed.
Spin from defects in two-dimensional quantum field theory
Novak, Sebastian
2015-01-01
We build two-dimensional quantum field theories on spin surfaces starting from theories on oriented surfaces with networks of topological defect lines and junctions. The construction uses a combinatorial description of the spin structure in terms of a triangulation equipped with extra data. The amplitude for the spin surfaces is defined to be the amplitude for the underlying oriented surface together with a defect network dual to the triangulation. Independence of the triangulation and of the other choices follows if the line defect and junctions are obtained from a Delta-separable Frobenius algebra with involutive Nakayama automorphism in the monoidal category of topological defects. For rational conformal field theory we can give a more explicit description of the defect category, and we work out two examples related to free fermions in detail: the Ising model and the so(n) WZW model at level 1.
Modesto, Leonardo; Piva, Marco; Rachwał, Lesław
2016-07-01
We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).
Spectroscopy of two dimensional N=2 Super Yang Mills theory
August, Daniel; Wipf, Andreas
2016-01-01
Albeit the standard model is the most successful model of particles physics, it still has some theoretical shortcomings, for instance the hierarchy problem, the absence of dark matter, etc. Supersymmetric extensions of the standard model could be a possible solution to these problems. One of the building blocks of these supersymmetric models are supersymmetric gauge theories. It is expected that they exhibit interesting features like confinement, chiral symmetry breaking, magnetic monopoles and the like. We present new results on N=2 Super Yang Mills theory in two dimensions. The lattice action is derived by a dimensional reduction of the N=1 Super Yang Mills theory in four dimensions. By preserving the R symmetry of the four dimensional model we can exploit Ward identities to fine tune our parameters of the model to obtain the chiral and supersymmetric continuum limit. This allows us to calculate the mass spectrum at the physical point and compare these results with effective field theories.
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2010-01-01
We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged in s.......e. they are independent on the specific matter representation.......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Weisz, Peter; Majumdar, Pushan
2012-03-01
Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.
Recursion equations in gauge field theories
Migdal, A. A.
An approximate recursion equation is formulated, describing the scale transformation of the effective action of a gauge field. In two-dimensional space-time the equation becomes exact. In four-dimensional theories it reproduces asymptotic freedom to an accuracy of 30% in the coefficients of the β-function. In the strong-coupling region the β-function remains negative and this results in an asymptotic prison in the infrared region. Possible generalizations and applications to the quark-gluon gauge theory are discussed.
Topological Strings, Two-Dimensional Yang-Mills Theory and Chern-Simons Theory on Torus Bundles
Caporaso, N; Griguolo, L; Pasquetti, S; Seminara, D; Szabó, R J
2006-01-01
We study the relations between two-dimensional Yang-Mills theory on the torus, topological string theory on a Calabi-Yau threefold whose local geometry is the sum of two line bundles over the torus, and Chern-Simons theory on torus bundles. The chiral partition function of the Yang-Mills gauge theory in the large N limit is shown to coincide with the topological string amplitude computed by topological vertex techniques. We use Yang-Mills theory as an efficient tool for the computation of Gromov-Witten invariants and derive explicitly their relation with Hurwitz numbers of the torus. We calculate the Gopakumar-Vafa invariants, whose integrality gives a non-trivial confirmation of the conjectured nonperturbative relation between two-dimensional Yang-Mills theory and topological string theory. We also demonstrate how the gauge theory leads to a simple combinatorial solution for the Donaldson-Thomas theory of the Calabi-Yau background. We match the instanton representation of Yang-Mills theory on the torus with ...
Novel symmetries in the modified version of two dimensional Proca theory
Bhanja, T.; Shukla, D.; Malik, R. P.
2013-08-01
By exploiting Stueckelberg's approach, we obtain a gauge theory for the two-dimensional, that is, (1+1)-dimensional (2D) Proca theory and demonstrate that this theory is endowed with, in addition to the usual Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries, the on-shell nilpotent (anti-)co-BRST symmetries, under which the total gauge-fixing term remains invariant. The anticommutator of the BRST and co-BRST (as well as anti-BRST and anti-co-BRST) symmetries define a unique bosonic symmetry in the theory, under which the ghost part of the Lagrangian density remains invariant. To establish connections of the above symmetries with the Hodge theory, we invoke a pseudo-scalar field in the theory. Ultimately, we demonstrate that the full theory provides a field theoretic example for the Hodge theory where the continuous symmetry transformations provide a physical realization of the de Rham cohomological operators and discrete symmetries of the theory lead to the physical realization of the Hodge duality operation of differential geometry. We also mention the physical implications and utility of our present investigation.
Bershtein, Mikhail; Ronzani, Massimiliano; Tanzini, Alessandro
2016-01-01
We show that equivariant Donaldson polynomials of compact toric surfaces can be calculated as residues of suitable combinations of Virasoro conformal blocks, by building on AGT correspondence between N = 2 supersymmetric gauge theories and two-dimensional conformal field theory.
Topological gauge theories and group cohomology
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. (Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica); Witten, E. (Institute for Advanced Study, Princeton, NJ (USA). School of Natural Sciences)
1990-04-01
We show that three dimensional Chern-Simons gauge theories with a compact gauge group G (not necessarily connected or simply connected) can be classified by the integer cohomology group H{sup 4}(BG, Z). In a similar way, possible Wess-Zumino interactions of such a group G are classified by H{sup 3}(G, Z). The relation between three dimensional Chern-Simons gauge theory and two dimensional sigma models involves a certain natural map from H{sup 4}(BG, Z) to H{sup 3}(G, Z). We generalize this correspondence to topological 'spin' theories, which are defined on three manifolds with spin structure, and are related to what might be called Z{sub 2} graded chiral algebras (or chiral superalgebras) in two dimensions. Finally we discuss in some detail the formulation of these topological gauge theories for the special case of a finite group, establishing links with two dimensional (holomorphic) orbifold models. (orig.).
Algebraic aspects of gauge theories
Zharinov, V. V.
2014-08-01
Gauge theories are primary tools in modern elementary particle physics. The generally recognized mathematical foundations of these theories are in differential geometry, namely, in the theory of connections in a principal fiber bundle. We propose another approach to the mathematical description of gauge theories based on a combination of algebraic and geometric methods.
Institute of Scientific and Technical Information of China (English)
LIN Ming-Xi; QI Sheng-Wen; LIU Yu-Liang
2006-01-01
@@ Based on a two-dimensional electron system with pure gauge field, we demonstrate that the long range order of the electron pairing order parameter can be destroyed by the gauge fluctuation for both s-wave and d-wave symmetric Cooper pair parameters, even if the pure gauge field mediates attractive interaction between the spinup and spin-down electrons, while the signal of the Meissner effect is observable. This model can be used to explain the recent experimental data of the high Tc cuprate superconductors observed.
Mojaza, Matin; Sannino, Francesco
2010-01-01
We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We show that the reduced free energy changes sign, at the second, fifth and sixth order in the coupling, when decreasing the number of flavors from the upper end of the conformal window. If the change in sign is interpreted as signal of an instability of the system then we infer a critical number of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary o...
An Analysis of the First Order Form of Gauge Theories
Kiriushcheva, N; McKeon, D G C
2011-01-01
The first order form of a Maxwell theory and U(1) gauge theory in which a gauge invariant mass term appears is analyzed using the Dirac procedure. The form of the gauge transformation which leaves the action invariant is derived from the constraints present. A non-Abelian generalization is similarly analyzed. This first order three dimensional massive gauge theory is rewritten in terms of two interacting vector fields. The constraint structure when using light-cone coordinates is considered. The relationship between first and second order forms of the two-dimensional Einstein-Hilbert action is explored where a Lagrange multiplier is used to ensure their equivalence.
Theories on Frustrated Electrons in Two-Dimensional Organic Solids
Directory of Open Access Journals (Sweden)
Chisa Hotta
2012-08-01
Full Text Available Two-dimensional quarter-filled organic solids are a promising class of materials to realize the strongly correlated insulating states called dimer Mott insulator and charge order. In their conducting layer, the molecules form anisotropic triangular lattices, harboring geometrical frustration effect, which could give rise to many interesting states of matter in the two insulators and in the metals adjacent to them. This review is concerned with the theoretical studies on such issue over the past ten years, and provides the systematic understanding on exotic metals, dielectrics, and spin liquids, which are the consequences of the competing correlation and fluctuation under frustration.
Two-dimensional nonlinear nonequilibrium kinetic theory under steady heat conduction.
Hyeon-Deuk, Kim
2005-04-01
The two-dimensional steady-state Boltzmann equation for hard-disk molecules in the presence of a temperature gradient has been solved explicitly to second order in density and the temperature gradient. The two-dimensional equation of state and some physical quantities are calculated from it and compared with those for the two-dimensional steady-state Bhatnagar-Gross-Krook equation and information theory. We have found that the same kind of qualitative differences as the three-dimensional case among these theories still appear in the two-dimensional case.
Gauge theories and integrable lattice models
Witten, Edward
1989-08-01
Investigations of new knot polynomials discovered in the last few years have shown them to be intimately connected with soluble models of two dimensional lattice statistical mechanics. In this paper, these results, which in time may illuminate the whole question of why integrable lattice models exist, are reconsidered from the point of view of three dimensional gauge theory. Expectation values of Wilson lines in three dimensional Chern-Simons gauge theories can be computed by evaluating the partition functions of certain lattice models on finite graphs obtained by projecting the Wilson lines to the plane. The models in question — previously considered in both the knot theory and statistical mechanics — are IRF models in which the local Boltzmann weights are the matrix elements of braiding matrices in rational conformal field theories. These matrix elements, in turn, can be presented in three dimensional gauge theory in terms of the expectation value of a certain tetrahedral configuration of Wilson lines. This representation makes manifest a surprising symmetry of the braiding matrix elements in conformal field theory.
Introduction to Supersymmetric Gauge Theories
Piguet, O
1997-01-01
In these lectures I present a basic introduction to supersymmetry, especially to N=1 supersymmetric gauge theories and their renormalization, in the Wess-Zumino gauge. I also discuss the various ways supersymmetry may be broken in order to account for the lack of exact supersymmetry in the actual world of elementary particles.
Institute of Scientific and Technical Information of China (English)
寇谡鹏
2002-01-01
Used the dimensional reduction in the sense of Parisi and Sourlas, the gauge fixing term of the four-dimensionalYang-Mills field without the theta term is reduced to a two-dimensional principal chiral model. By adding the θ term(θ = π), the two-dimensional principal chiral model changes into the two-dimensional level 1 Wess-Zumino-Novikov-Witten model. The non-trivial fixed point indicates that Yang-Mills theory at θ = π is a critical theory without massgap and confinement.
Toward semistrict higher gauge theory
Zucchini, Roberto
2011-01-01
We work out a formulation of higher gauge theory, whose symmetry is encoded in a semistrict Lie 2-algebra v and which we call semistrict. We view v as a 2-term L-infinity algebra, a special case of strong homotopy Lie algebra generalizing an ordinary Lie algebra by allowing the Lie bracket to have a non trivial Jacobiator. Fields are v-valued and gauge transformations are special Aut(v)-valued maps organized as an ordinary group and acting on them. The global behaviour of fields is controlled by appropriate gauge transformation 1-cocycles. Using the BV quantization method in the AKSZ geometrical version, we write down a 3-dimensional semistrict higher BF gauge theory generalizing ordinary BF theory, carry out its gauge fixing and obtain as end result a semistrict higher topological gauge field theory of the Witten type. We also introduce a related 4-dimensional semistrict higher Chern--Simons gauge theory. We discuss merits and weaknesses of our formulation in relations to other approaches.
Theory of two-dimensional ESR with nuclear modulation
Gamliel, Dan; Freed, Jack H.
A formalism for computing 2D ESR lineshapes with nuclear modulation is developed in a form which is useful for planning phase cycles for particular purposes. A simple method of processing spectra, utilizing quadrature detection, is shown to enhance the selectivity of the phase cycling techniques. Computed ESR-COSY, ESR-SECSY, and 2D ELDOR lineshapes are presented for several kinds of polycrystalline and single-crystal samples which exhibit nuclear modulation, due to one or several nuclei. The two-dimensional methods are found to give more detailed structural information than the corresponding ESEEM spectra. New phase cycles are found to eliminate completely all transverse and axial peaks in 2D ELDOR and in ESR-COSY, and at the same time eliminate all artifacts arising from incomplete image rejection. Other phase cycles are presented for selecting in those experiments only axial peaks, for measuring T1. It is also shown how selective phase cycles may help to distinguish between coherent and exchange cross peaks. In the special case of nitroxides in typical Zeeman fields, there are no significant nuclear modulation effects from the 14N nuclear spin interaction, but those from the protons (or deuterons) will, in general, be significant.
Minimal lectures on two-dimensional conformal field theory
Ribault, Sylvain
2016-01-01
We provide a brief but self-contained review of conformal field theory on the Riemann sphere. We first introduce general axioms such as local conformal invariance, and derive Ward identities and BPZ equations. We then define Liouville theory and minimal models by specific axioms on their spectrums and degenerate fields. We solve these theories by computing three- and four-point functions, and discuss their existence and uniqueness.
Gauge Mediation in String Theory
Kawano, Teruhiko; Ooguri, Hirosi; Ookouchi, Yutaka
2007-01-01
We show that a large class of phenomenologically viable models for gauge mediation of supersymmetry breaking based on meta-stable vacua can be realized in local Calabi–Yau compactifications of string theory.
A geometrical approach to two-dimensional Conformal Field Theory
Dijkgraaf, Robertus Henricus
1989-01-01
This thesis is organized in the following way. In Chapter 2 we will give a brief introduction to conformal field theory along the lines of standard quantum field theory, without any claims to originality. We introduce the important concepts of the stress-energy tensor, the Virasoro algebra, and prim
Molecular rattling in two-dimensional fluids: Simulations and theory
Variyar, Jayasankar E.; Kivelson, Daniel; Tarjus, Gilles; Talbot, Julian
1992-01-01
We have carried out molecular dynamic simulations over a range of densities for two-dimensional fluids consisting of hard, soft, and Lennard-Jones disks. For comparison we have also carried out simulations for the corresponding systems in which all but one particle are frozen in position. We have studied the velocity autocorrelation functions and the closely related velocity-sign autocorrelation functions, and have examined the probabilities per unit time that a particle will undergo a first velocity sign reversal after an elapsed time t measured alternately from the last velocity reversal or from a given arbitrary time. At all densities studied, the first of these probabilities per unit time is zero at t=0 and rises to a maximum at a later time, but as the hardness of the disks is increased, the maximum moves in toward t→0. This maximum can be correlated with the ``negative'' dip observed in the velocity correlation functions when plotted versus time. Our conclusion is that all these phenomena can be explained qualitatively on the basis of a model where memory does not extend back beyond the last velocity reversal. However, at high density, the velocity-sign-autocorrelation function not only shows a negative dip (which is explained by the model) but also a second ``oscillation'' which is not described, even qualitatively, by the model. We conclude that the first dip in the velocity and velocity-sign correlation functions can occur even if there are no correlated or coherent librations, but the existence of a ``second'' oscillation is a better indication of such correlations.
Gauge Theories of Vector Particles
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
The Classification of Two-Dimensional Extended Topological Field Theories
Schommer-Pries, Christopher J
2011-01-01
We provide a complete generators and relations presentation of the 2-dimensional extended unoriented and oriented bordism bicategories as symmetric monoidal bicategories. Thereby we classify these types of 2-dimensional extended topological field theories with arbitrary target bicategory. As an immediate corollary we obtain a concrete classification when the target is the symmetric monoidal bicategory of algebras, bimodules, and intertwiners over a fixed commutative ground ring. In the oriented case, such an extended topological field theory is equivalent to specifying a (non-commutative) separable symmetric Frobenius algebra. We review the notion of symmetric monoidal bicategory, giving also a precise notion of generators and relations in this context. We provide several supporting lemmas, one of which provides a simple list of criteria for determining when a morphism of symmetric monoidal bicategories is an equivalence. We introduce the symmetric monoidal bicategory of bordisms with structure, where the all...
Quantum principal bundles and corresponding gauge theories
Durdevic, M
1995-01-01
A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.
Gauge theory loop operators and Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-10-15
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
Entanglement hamiltonians in two-dimensional conformal field theory
Cardy, John
2016-01-01
We enumerate the cases in 2d conformal field theory where the logarithm of the reduced density matrix (the entanglement or modular hamiltonian) may be written as an integral over the energy-momentum tensor times a local weight. These include known examples and new ones corresponding to the time-dependent scenarios of a global and local quench. In these latter cases the entanglement hamiltonian depends on the momentum density as well as the energy density. In all cases the entanglement spectrum is that of the appropriate boundary CFT. We emphasize the role of boundary conditions at the entangling surface and the appearance of boundary entropies as universal O(1) terms in the entanglement entropy.
Local gauge theory and coarse graining
Zapata, Jose A
2012-01-01
Within the discrete gauge theory which is the basis of spin foam models, the problem of macroscopically faithful coarse graining is studied. Macroscopic data is identified; it contains the holonomy evaluation along a discrete set of loops and the homotopy classes of certain maps. When two configurations share this data they are related by a local deformation. The interpretation is that such configurations differ by "microscopic details". In many cases the homotopy type of the relevant maps is trivial for every connection; two important cases in which the homotopy data is composed by a set of integer numbers are: (i) a two dimensional base manifold and structure group U(1), (ii) a four dimensional base manifold and structure group SU(2). These cases are relevant for spin foam models of two dimensional gravity and four dimensional gravity respectively. This result suggests that if spin foam models for two-dimensional and four-dimensional gravity are modified to include all the relevant macroscopic degrees of fr...
Gravity: a gauge theory perspective
Nester, James M
2016-01-01
The evolution of a generally covariant theory is under-determined. One hundred years ago such dynamics had never before been considered; its ramifications were perplexing, its future important role for all the fundamental interactions under the name gauge principle could not be foreseen. We recount some history regarding Einstein, Hilbert, Klein and Noether and the novel features of gravitational energy that led to Noether's two theorems. Under-determined evolution is best revealed in the Hamiltonian formulation. We developed a covariant Hamiltonian formulation. The Hamiltonian boundary term gives covariant expressions for the quasi-local energy, momentum and angular momentum. Gravity can be considered as a gauge theory of the local Poincar\\'e group. The dynamical potentials of the Poincar\\'e gauge theory of gravity are the frame and the connection. The spacetime geometry has in general both curvature and torsion. Torsion naturally couples to spin; it could have a significant magnitude and yet not be noticed,...
Gauge Theories, Tessellations & Riemann Surfaces
He, Yang-Hui
2014-01-01
We study and classify regular and semi-regular tessellations of Riemann surfaces of various genera and investigate their corresponding supersymmetric gauge theories. These tessellations are generalizations of brane tilings, or bipartite graphs on the torus as well as the Platonic and Archimedean solids on the sphere. On higher genus they give rise to intricate patterns. Special attention will be paid to the master space and the moduli space of vacua of the gauge theory and to how their geometry is determined by the tessellations.
Gauge theories, tessellations & Riemann surfaces
Energy Technology Data Exchange (ETDEWEB)
He, Yang-Hui [Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); School of Physics, NanKai University,Tianjin, 300071 (China); Merton College, University of Oxford,Oxford, OX1 4JD (United Kingdom); Loon, Mark van [Merton College, University of Oxford,Oxford, OX1 4JD (United Kingdom)
2014-06-10
We study and classify regular and semi-regular tessellations of Riemann surfaces of various genera and investigate their corresponding supersymmetric gauge theories. These tessellations are generalizations of brane tilings, or bipartite graphs on the torus as well as the Platonic and Archimedean solids on the sphere. On higher genus they give rise to intricate patterns. Special attention will be paid to the master space and the moduli space of vacua of the gauge theory and to how their geometry is determined by the tessellations.
The inaction approach to gauge theories
Pivovarov, Grigorii
2012-01-01
The inaction approach introduced previously for phi^4 is generalized to gauge theories. It combines the advantages of the effective field theory and causal approaches to quantum fields. Also, it suggests ways to generalizing gauge theories.
Geometric Formulation of Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WUNing; ZHANGDa-Hua; RUANTu-Nan
2003-01-01
DitTerential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantum gauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to study the relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curved space, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence between quantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gauge theory of gravity is studied.
Ultraviolet finiteness of Chiral Perturbation Theory for two-dimensional Quantum Electrodynamics
Paston, S A; Franke, V A
2003-01-01
We consider the perturbation theory in the fermion mass (chiral perturbation theory) for the two-dimensional quantum electrodynamics. With this aim, we rewrite the theory in the equivalent bosonic form in which the interaction is exponential and the fermion mass becomes the coupling constant. We reformulate the bosonic perturbation theory in the superpropagator language and analyze its ultraviolet behavior. We show that the boson Green's functions without vacuum loops remain finite in all orders of the perturbation theory in the fermion mass.
Belhaj, A.; Saidi, E. H.
2001-01-01
Using a geometric realization of the SU(2)R symmetry and a factorization of the gauge and SU(2)R charges, we study the small instanton singularities of the Higgs branch of supersymmetric U(1)r gauge theories with eight supercharges. We derive new solutions for the moduli space of vacua preserving manifestly the eight supercharges. In particular, we obtain an extension of the ordinary ADE singularities for hyper-Kähler manifolds and show that the classical moduli space of vacua is, in general, given by cotangent bundles of compact weighted projective spaces describing new models which flow in the infrared to two-dimensional (2D) N = (4,4) scale-invariant models. We also study the N = 4 conformal Liouville description near an An singularity of the metric of the 2D N = 4 Higgs branch using a field-theoretical approach.
Entwinement in discretely gauged theories
Balasubramanian, V.; Bernamonti, A.; Craps, B.; De Jonckheere, T.; Galli, F.
2016-12-01
We develop the notion of "entwinement" to characterize the amount of quantum entanglement between internal, discretely gauged degrees of freedom in a quantum field theory. This concept originated in the program of reconstructing spacetime from entanglement in holographic duality. We define entwinement formally in terms of a novel replica method which uses twist operators charged in a representation of the discrete gauge group. In terms of these twist operators we define a non-local, gauge-invariant object whose expectation value computes entwinement in a standard replica limit. We apply our method to the computation of entwinement in symmetric orbifold conformal field theories in 1+1 dimensions, which have an S N gauging. Such a theory appears in the weak coupling limit of the D1-D5 string theory which is dual to AdS3 at strong coupling. In this context, we show how certain kinds of entwinement measure the lengths, in units of the AdS scale, of non-minimal geodesics present in certain excited states of the system which are gravitationally described as conical defects and the M = 0 BTZ black hole. The possible types of entwinement that can be computed define a very large new class of quantities characterizing the fine structure of quantum wavefunctions.
Entwinement in discretely gauged theories
Balasubramanian, V; Craps, B; De Jonckheere, T; Galli, F
2016-01-01
We develop the notion of entwinement to characterize the amount of quantum entanglement between internal, discretely gauged degrees of freedom in a quantum field theory. This concept originated in the program of reconstructing spacetime from entanglement in holographic duality. We define entwinement formally in terms of a novel replica method which uses twist operators charged in a representation of the discrete gauge group. In terms of these twist operators we define a non-local, gauge-invariant object whose expectation value computes entwinement in a standard replica limit. We apply our method to the computation of entwinement in symmetric orbifold conformal field theories in 1+1 dimensions, which have an $S_N$ gauging. Such a theory appears in the weak coupling limit of the D1-D5 string theory which is dual to AdS$_3$ at strong coupling. In this context, we show how certain kinds of entwinement measure the lengths, in units of the AdS scale, of non-minimal geodesics present in certain excited states of the...
Differential renormalization of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Aguila, F. del; Perez-Victoria, M. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain)
1998-10-01
The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author) 9 refs, 1 fig., 1 tab
Ochiai, Tetsuyuki
2016-01-01
Synthetic gauge field and pseudospin-orbit interaction are implemented in the stacked two-dimensional ring network model proposed by the present author. The model was introduced to simulate light propagation in the corresponding ring-resonator network, and is thus completely bosonic. Without these two items, the system exhibits Floquet-Weyl and Floquet-topological-insulator phases with topologically gapless and gapped band structures, respectively. The synthetic magnetic field implemented in the model results in a three-dimensional Hofstadter-butterfly-type spectrum in a photonic platform. The resulting gaps are characterization by the winding number of relevant S-matrices together with the Chern number of the bulk bands. The pseudospin-orbit interaction is defined as the mixing term between two pseudospin degrees of freedom in the rings, namely, the clockwise and counter-clockwise modes in the rings. It destroys the Floquet-topological-insulator phases, while the Floquet-Weyl phase with multiple Weyl points ...
2d Gauge Theories and Generalized Geometry
Kotov, Alexei; Strobl, Thomas
2014-01-01
We show that in the context of two-dimensional sigma models minimal coupling of an ordinary rigid symmetry Lie algebra $\\mathfrak{g}$ leads naturally to the appearance of the "generalized tangent bundle" $\\mathbb{T}M \\equiv TM \\oplus T^*M$ by means of composite fields. Gauge transformations of the composite fields follow the Courant bracket, closing upon the choice of a Dirac structure $D \\subset \\mathbb{T}M$ (or, more generally, the choide of a "small Dirac-Rinehart sheaf" $\\cal{D}$), in which the fields as well as the symmetry parameters are to take values. In these new variables, the gauge theory takes the form of a (non-topological) Dirac sigma model, which is applicable in a more general context and proves to be universal in two space-time dimensions: A gauging of $\\mathfrak{g}$ of a standard sigma model with Wess-Zumino term exists, \\emph{iff} there is a prolongation of the rigid symmetry to a Lie algebroid morphism from the action Lie algebroid $M \\times \\mathfrak{g}\\to M$ into $D\\to M$ (or the algebra...
Noncommutative Gauge Theories: Model for Hodge theory
Upadhyay, Sudhaker
2013-01-01
The nilpotent BRST, anti-BRST, dual-BRST and anti-dual-BRST symmetry transformations are constructed in the context of noncommutative (NC) 1-form as well as 2-form gauge theories. The corresponding Noether's charges for these symmetries on the Moyal plane are shown to satisfy the same algebra as by the de Rham cohomological operators of differential geometry. The Hodge decomposition theorem on compact manifold is also studied. We show that noncommutative gauge theories are field theoretic models for Hodge theory.
An introduction to gauge theories
Cabibbo, Nicola; Benhar, Omar
2017-01-01
Written by three of the world's leading experts on particle physics and the standard model, including an award-winning former director general of CERN, this book provides a completely up-to-date account of gauge theories. Starting from Feynman’s path integrals, Feynman rules are derived, gauge fixing and Faddeev-Popov ghosts are discussed, and renormalization group equations are derived. Several important applications to quantum electrodynamics and quantum chromodynamics (QCD) are discussed, including the one-loop derivation of asymptotic freedom for QCD.
Gauge theory and variational principles
Bleecker, David
2005-01-01
This text provides a framework for describing and organizing the basic forces of nature and the interactions of subatomic particles. A detailed and self-contained mathematical account of gauge theory, it is geared toward beginning graduate students and advanced undergraduates in mathematics and physics. This well-organized treatment supplements its rigor with intuitive ideas.Starting with an examination of principal fiber bundles and connections, the text explores curvature; particle fields, Lagrangians, and gauge invariance; Lagrange's equation for particle fields; and the inhomogeneous field
Introduction to lattice gauge theory
Gupta, R.
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.
Ochiai, Tetsuyuki
2017-02-01
We study the effects of a synthetic gauge field and pseudospin-orbit interaction in a stacked two-dimensional ring-network model. The model was introduced to simulate light propagation in the corresponding ring-resonator lattice, and is thus completely bosonic. Without these two items, the model exhibits Floquet-Weyl and Floquet-topological-insulator phases with topologically gapless and gapped band structures, respectively. The synthetic magnetic field implemented in the model results in a three-dimensional Hofstadter-butterfly-type spectrum in a photonic platform. The resulting gaps are characterized by the winding number of relevant S-matrices together with the Chern number of the bulk bands. The pseudospin-orbit interaction is defined as the mixing term between two pseudospin degrees of freedom in the rings, namely, the clockwise and counter-clockwise modes. It destroys the Floquet-topological-insulator phases, while the Floquet-Weyl phase with multiple Weyl points can be preserved by breaking the space-inversion symmetry. Implementing both the synthetic gauge field and pseudospin-orbit interaction requires a certain nonreciprocity.
Supersymmetric Gauge Theories with Matters, Toric Geometries and Random Partitions
Noma, Y
2006-01-01
We derive the relation between the Hilbert space of certain geometries under the Bohr-Sommerfeld quantization and the perturbative prepotentials for the supersymmetric five-dimensional SU(N) gauge theories with massive fundamental matters and with one massive adjoint matter. The gauge theory with one adjoint matter shows interesting features. A five-dimensional generalization of Nekrasov's partition function can be written as a correlation function of two-dimensional chiral bosons and as a partition function of a statistical model of partitions. From a ground state of the statistical model we reproduce the polyhedron which characterizes the Hilbert space.
Gauge-fixing approach to lattice chiral gauge theories
Bock, W; Shamir, Y; Bock, Wolfgang; Golterman, Maarten F.L.; Shamir, Yigal
1998-01-01
We review the status of our recent work on the gauge-fixing approach to lattice chiral gauge theories. New numerical results in the reduced version of a model with a U(1) gauge symmetry are presented which strongly indicate that the factorization of the correlation functions of the left-handed neutral and right-handed charged fermion fields, which we established before in perturbation theory, holds also nonperturbatively.
Low energy gauge unification theory
Li Tian Jun
2002-01-01
Because of the problems arising from the fermion unification in the traditional Grand Unified Theory and the mass hierarchy between the 4-dimensional Planck scale and weak scale, we suggest the low energy gauge unification theory with low high-dimensional Planck scale. We discuss the non-supersymmetric SU(5) model on M sup 4 xS sup 1 /Z sub 2 xS sup 1 /Z sub 2 and the supersymmetric SU(5) model on M sup 4 xS sup 1 /(Z sub 2 xZ sub 2 ')xS sup 1 /(Z sub 2 xZ sub 2 ')xS sup 1 /(Z sub 2 xZ sub 2 '). The SU(5) gauge symmetry is broken by the orbifold projection for the zero modes, and the gauge unification is accelerated due to the SU(5) asymmetric light KK states. In our models, we forbid the proton decay, still keep the charge quantization, and automatically solve the fermion mass problem. We also comment on the anomaly cancellation and other possible scenarios for low energy gauge unification.
Asymptotically Free Gauge Theories. I
Wilczek, Frank; Gross, David J.
1973-07-01
Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.
Renormalisation group flows for gauge theories in axial gauges
Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.
2002-01-01
Gauge theories in axial gauges are studied using Exact Renormalisation Group flows. We introduce a background field in the infrared regulator, but not in the gauge fixing, in contrast to the usual background field gauge. It is shown how heat-kernel methods can be used to obtain approximate solutions to the flow and the corresponding Ward identities. Expansion schemes are discussed, which are not applicable in covariant gauges. As an application, we derive the one-loop effective action for covariantly constant field strength, and the one-loop beta-function for arbitrary regulator.
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Weak interactions and gauge theories
Energy Technology Data Exchange (ETDEWEB)
Gaillard, M.K.
1979-12-01
The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and ..sqrt..(5/3)g' of SU(3)/sub c/ x SU(2)/sub 2/ x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and it takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures. (RWR)
Narayanan, Rajamani
2008-01-01
Wilson loops in large N gauge theory exhibit a weak to strong coupling transition as the loop is dilated. A multiplicative matrix model captures the universal behavior associated with this transition. A universal scaling function is obtained in a double scaling limit. Numerical studies show that both large N QCD in three dimensions and the SU(N) principal chiral model in two dimensions are in the same universality class.
On magnetohydrodynamic gauge field theory
Webb, G. M.; Anco, S. C.
2017-06-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.
Gravity: A gauge theory perspective
Nester, James M.; Chen, Chiang-Mei
2016-07-01
The evolution of a generally covariant theory is under-determined. One hundred years ago such dynamics had never before been considered; its ramifications were perplexing, its future important role for all the fundamental interactions under the name gauge principle could not be foreseen. We recount some history regarding Einstein, Hilbert, Klein and Noether and the novel features of gravitational energy that led to Noether’s two theorems. Under-determined evolution is best revealed in the Hamiltonian formulation. We developed a covariant Hamiltonian formulation. The Hamiltonian boundary term gives covariant expressions for the quasi-local energy, momentum and angular momentum. Gravity can be considered as a gauge theory of the local Poincaré group. The dynamical potentials of the Poincaré gauge theory of gravity are the frame and the connection. The spacetime geometry has in general both curvature and torsion. Torsion naturally couples to spin; it could have a significant magnitude and yet not be noticed, except on a cosmological scale where it could have significant effects.
Expectation value of composite field $T{\\bar T}$ in two-dimensional quantum field theory
Zamolodchikov, Alexander B.
2004-01-01
I show that the expectation value of the composite field $T{\\bar T}$, built from the components of the energy-momentum tensor, is expressed exactly through the expectation value of the energy-momentum tensor itself. The relation is derived in two-dimensional quantum field theory under broad assumptions, and does not require integrability.
Theorems for Asymptotic Safety of Gauge Theories
Bond, Andrew D
2016-01-01
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasized. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.
Renormalizable Quantum Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning
2002-01-01
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.
Theorems for asymptotic safety of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-06-15
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)
Local gauge coupling running in supersymmetric gauge theories on orbifolds
Energy Technology Data Exchange (ETDEWEB)
Hillenbach, M.
2007-11-21
By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Bipartite entanglement entropy in massive two-dimensional quantum field theory.
Doyon, Benjamin
2009-01-23
Recently, Cardy, Castro Alvaredo, and the author obtained the first exponential correction to saturation of the bipartite entanglement entropy at large region lengths in massive two-dimensional integrable quantum field theory. It depends only on the particle content of the model, and not on the way particles scatter. Based on general analyticity arguments for form factors, we propose that this result is universal, and holds for any massive two-dimensional model (also out of integrability). We suggest a link of this result with counting pair creations far in the past.
On non-trivial spectra of trivial gauge theories
Energy Technology Data Exchange (ETDEWEB)
Korcyl, Piotr [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jagiellonian Univ., Krakow (Poland). M. Smoluchowski Inst. of Physics; Koren, Mateusz; Wosiek, Jacek [Jagiellonian Univ., Krakow (Poland). M. Smoluchowski Inst. of Physics
2012-08-15
In this Letter we point out that the analytic solution of the two dimensional U(1) gauge theory, on a finite lattice, reveals in the continuum limit the renowned Manton's spectrum of topological electric fluxes together with their effective hamiltonian and wave functions. We extend this result for the system with strings and external charges providing also a novel interpretation of the {Theta} parameter. Some further generalizations are also outlined.
Technicolor and Lattice Gauge Theory
Chivukula, R Sekhar
2010-01-01
Technicolor and other theories of dynamical electroweak symmetry breaking invoke chiral symmetry breaking triggered by strong gauge-dynamics, analogous to that found in QCD, to explain the observed W, Z, and fermion masses. In this talk we describe why a realistic theory of dynamical electroweak symmetry breaking must, relative to QCD, produce an enhanced fermion condensate. We quantify the degree to which the technicolor condensate must be enhanced in order to yield the observed quark masses, and still be consistent with phenomenological constraints on flavor-changing neutral-currents. Lattice studies of technicolor and related theories provide the only way to demonstrate that such enhancements are possible and, hopefully, to discover viable candidate models. We comment briefly on the current status of non-perturbative investigations of dynamical electroweak symmetry breaking, and provide a "wish-list" of phenomenologically-relevant properties that are important to calculate in these theories
Vibrational wave packet induced oscillations in two-dimensional electronic spectra. II. Theory
Mancal, Tomas; Milota, Franz; Lukes, Vladimir; Kauffmann, Harald F; Sperling, Jaroslaw
2010-01-01
We present a theory of vibrational modulation of two-dimensional coherent Fourier transformed electronic spectra. Based on an expansion of the system's energy gap correlation function in terms of Huang-Rhys factors, we explain the time-dependent oscillatory behavior of the absorptive and dispersive parts of two-dimensional spectra of a two-level electronic system, weakly coupled to intramolecular vibrational modes. The theory predicts oscillations in the relative amplitudes of the rephasing and non-rephasing parts of the two-dimensional spectra, and enables to analyze time dependent two-dimensional spectra in terms of simple elementary components whose line-shapes are dictated by the interaction of the system with the solvent only. The theory is applicable to both low and high energy (with respect to solvent induced line broadening) vibrations. The results of this paper enable to qualitatively explain experimental observations on low energy vibrations presented in the preceding paper [A. Nemeth et al, arXiv:1...
A nilpotent symmetry of quantum gauge theories
Lahiri, Amitabha
2001-09-01
For the Becchi-Rouet-Stora-Tyutin invariant extended action for any gauge theory, there exists another off-shell nilpotent symmetry. For linear gauges, it can be elevated to a symmetry of the quantum theory and used in the construction of the quantum effective action. Generalizations for nonlinear gauges and actions with higher-order ghost terms are also possible.
BRST symmetry in the general gauge theories
Hyuk-Jae, Lee; Jae, Hyung, Yee
1994-01-01
By using the residual gauge symmetry interpretation of BRST invariance we have constructed a new BRST formulation for general gauge theories including those with open algebras. For theories with open gauge algebra the formulation leads to a BRST invariant effective action which does not contain any higher order terms in the ghost fields.
Invariance, symmetry and periodicity in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Jackiw, R
1980-02-01
The interplay between gauge transformations and coordinate transformations is discussed; the theory will aid in understanding the mixing of space-time and internal degrees of freedom. The subject is presented under the following headings: coordinate transformation laws for arbitrary fields, coordinate transformation laws for gauge fields, properties of symmetric gauge fields, construction of symmetric gauge fields, physical significance of gauge transformations, and magnetic monopole topology without Higgs fields. The paper ends with conclusions and suggestions for further research. (RWR)
Transport properties of cascading gauge theories
Buchel, A
2005-01-01
Cascading gauge theories of Klebanov et.al. provide a model within a framework of gauge theory/string theory duality for a four dimensional non-conformal gauge theory with a spontaneously generated mass scale. Using the dual supergravity description we study sound wave propagation in strongly coupled cascading gauge theory plasma. We analytically compute the speed of sound and the bulk viscosity of cascading gauge theory plasma at a temperature much larger than the strong coupling scale of the theory. The sound wave dispersion relation is obtained from the hydrodynamic pole in the stress-energy tensor two-point correlation function. The speed of sound extracted from the pole of the correlation function agrees with its value computed in [hep-th/0506002] using the equation of state. We find that the bulk viscosity of the hot cascading gauge theory plasma is non-zero at the leading order in the deviation from conformality.
Geometric Formulation of Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning; ZHANG Da-Hua; RUAN Tu-Nan
2003-01-01
Differential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantumgauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to studythe relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curvedspace, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence betweenquantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gaugetheory of gravity is studied.
Superpotentials for Quiver Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Aspinwall, Paul S.; /Stanford U., Phys. Dept. /SLAC /Duke U., CGTP; Fidkowski, Lukasz M.; /Stanford U., Phys. Dept.
2005-06-10
We compute superpotentials for quiver gauge theories arising from marginal D-Brane decay on collapsed del Pezzo cycles S in a Calabi-Yau X. This is done using the machinery of A{sub {infinity}} products in the derived category of coherent sheaves of X, which in turn is related to the derived category of S and quiver path algebras. We confirm that the superpotential is what one might have guessed from analyzing the moduli space, i.e., it is linear in the fields corresponding to the Exts of the quiver and that each such Ext multiplies a polynomial in Exts equal to precisely the relation represented by the Ext.
Gauge theories in local causal perturbation theory
Boas, F M
1999-01-01
In this thesis quantum gauge theories are considered in the framework of local, causal perturbation theory. Gauge invariance is described in terms of the BRS formalism. Local interacting field operators are constructed perturbatively and field equations are established. A nilpotent BRS transformation is defined on the local algebra of fields. It allows the definition of the algebra of local observables as an operator cohomology. This algebra of local observables can be represented in a Hilbert space. The interacting field operators are defined in terms of time ordered products of free field operators. For the results above to hold the time ordered products must satisfy certain normalization conditions. To formulate these conditions also for field operators that contain a spacetime derivative a suitable mathematical description of time ordered products is developed. Among the normalization conditions are Ward identities for the ghost current and the BRS current. The latter are generalizations of a normalizatio...
Testing gauge-invariant perturbation theory
Törek, Pascal
2016-01-01
Gauge-invariant perturbation theory for theories with a Brout-Englert-Higgs effect, as developed by Fr\\"ohlich, Morchio and Strocchi, starts out from physical, exactly gauge-invariant quantities as initial and final states. These are composite operators, and can thus be considered as bound states. In case of the standard model, this reduces almost entirely to conventional perturbation theory. This explains the success of conventional perturbation theory for the standard model. However, this is due to the special structure of the standard model, and it is not guaranteed to be the case for other theories. Here, we review gauge-invariant perturbation theory. Especially, we show how it can be applied and that it is little more complicated than conventional perturbation theory, and that it is often possible to utilize existing results of conventional perturbation theory. Finally, we present tests of the predictions of gauge-invariant perturbation theory, using lattice gauge theory, in three different settings. In ...
Gauge Theories in the Twentieth Century
2001-01-01
By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories , characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups
Gauge Invariants and Correlators in Flavoured Quiver Gauge Theories
Mattioli, Paolo
2016-01-01
In this paper we study the construction of holomorphic gauge invariant operators for general quiver gauge theories with flavour symmetries. Using a characterisation of the gauge invariants in terms of equivalence classes generated by permutation actions, along with representation theory results in symmetric groups and unitary groups, we give a diagonal basis for the 2-point functions of holomorphic and anti-holomorphic operators. This involves a generalisation of the previously constructed Quiver Restricted Schur operators to the flavoured case. The 3-point functions are derived and shown to be given in terms of networks of symmetric group branching coefficients. The networks are constructed through cutting and gluing operations on the quivers.
Predicting adsorption isotherms using a two-dimensional statistical associating fluid theory
Martinez, Alejandro; Castro, Martin; McCabe, Clare; Gil-Villegas, Alejandro
2007-02-01
A molecular thermodynamics approach is developed in order to describe the adsorption of fluids on solid surfaces. The new theory is based on the statistical associating fluid theory for potentials of variable range [A. Gil-Villegas et al., J. Chem. Phys. 106, 4168 (1997)] and uses a quasi-two-dimensional approximation to describe the properties of adsorbed fluids. The theory is tested against Gibbs ensemble Monte Carlo simulations and excellent agreement with the theoretical predictions is achieved. Additionally the authors use the new approach to describe the adsorption isotherms for nitrogen and methane on dry activated carbon.
On the string actions for the generalized two-dimensional Yang-Mills theories
Sugawara, Y
1996-01-01
We study the structures of partition functions of the large N generalized two-dimensional Yang-Mills theories (gYM_2) by recasting the higher Casimirs. We clarify the appropriate interpretations of them and try to extend the Cordes-Moore-Ramgoolam's topological string model describing the ordinary YM_2 \\cite{CMR} to those describing gYM_2. The concept of ''deformed gravitational descendants'' will be introduced for this purpose.
$\\Phi$-derivable approximations in gauge theories
Arrizabalaga, A
2003-01-01
We discuss the method of $\\Phi$-derivable approximations in gauge theories. There, two complications arise, namely the violation of Bose symmetry in correlation functions and the gauge dependence. For the latter we argue that the error introduced by the gauge dependent terms is controlled, therefore not invalidating the method.
Lattice gauge theories and Monte Carlo simulations
Rebbi, Claudio
1983-01-01
This volume is the most up-to-date review on Lattice Gauge Theories and Monte Carlo Simulations. It consists of two parts. Part one is an introductory lecture on the lattice gauge theories in general, Monte Carlo techniques and on the results to date. Part two consists of important original papers in this field. These selected reprints involve the following: Lattice Gauge Theories, General Formalism and Expansion Techniques, Monte Carlo Simulations. Phase Structures, Observables in Pure Gauge Theories, Systems with Bosonic Matter Fields, Simulation of Systems with Fermions.
Gauge Invariant Cosmological Perturbation Theory
Durrer, R
1993-01-01
After an introduction to the problem of cosmological structure formation, we develop gauge invariant cosmological perturbation theory. We derive the first order perturbation equations of Einstein's equations and energy momentum ``conservation''. Furthermore, the perturbations of Liouville's equation for collisionless particles and Boltzmann's equation for Compton scattering are worked out. We fully discuss the propagation of photons in a perturbed Friedmann universe, calculating the Sachs--Wolfe effect and light deflection. The perturbation equations are extended to accommodate also perturbations induced by seeds. With these general results we discuss some of the main aspects of the texture model for the formation of large scale structure in the Universe (galaxies, clusters, sheets, voids). In this model, perturbations in the dark matter are induced by texture seeds. The gravitational effects of a spherically symmetric collapsing texture on dark matter, baryonic matter and photons are calculated in first orde...
Gauge Theory and Langlands Duality
Frenkel, Edward
2009-01-01
The Langlands Program was launched in the late 60s with the goal of relating Galois representations and automorphic forms. In recent years a geometric version has been developed which leads to a mysterious duality between certain categories of sheaves on moduli spaces of (flat) bundles on algebraic curves. Three years ago, in a groundbreaking advance, Kapustin and Witten have linked the geometric Langlands correspondence to the S-duality of 4D supersymmetric gauge theories. This and subsequent works have already led to striking new insights into the geometric Langlands Program, which in particular involve the Homological Mirror Symmetry of the Hitchin moduli spaces of Higgs bundles on algebraic curves associated to two Langlands dual Lie groups.
Lattice Gauge Theories and Spin Models
Mathur, Manu
2016-01-01
The Wegner $Z_2$ gauge theory-$Z_2$ Ising spin model duality in $(2+1)$ dimensions is revisited and derived through a series of canonical transformations. These $Z_2$ results are directly generalized to SU(N) lattice gauge theory in $(2+1)$ dimensions to obtain a dual SU(N) spin model in terms of the SU(N) magnetic fields and electric scalar potentials. The gauge-spin duality naturally leads to a new gauge invariant disorder operator for SU(N) lattice gauge theory. A variational ground state of the dual SU(2) spin model with only nearest neighbour interactions is constructed to analyze SU(2) lattice gauge theory.
G_2 gauge theory at finite temperature
Cossu, Guido; Di Giacomo, Adriano; Lucini, Biagio; Pica, Claudio
2007-01-01
The gauge group being centreless, $G_2$ gauge theory is a good laboratory for studying the role of the centre of the group for colour confinement in Yang-Mills gauge theories. In this paper, we investigate $G_2$ pure gauge theory at finite temperature on the lattice. By studying the finite size scaling of the plaquette, the Polyakov loop and their susceptibilities, we show that a deconfinement phase transition takes place. The analysis of the pseudocritical exponents give strong evidence of the deconfinement transition being first order. Implications of our findings for scenarios of colour confinement are discussed.
Exact formulas in noncommutative gauge theories
Wallet, Jean-Christophe
2016-01-01
The noncommutative space $\\mathbb{R}^3_\\lambda$, a deformation of $\\mathbb{R}^3$, supports a $3$-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of $\\mathbb{R}^3_\\lambda$. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
Vortex dynamics in superfluids governed by an interacting gauge theory
Butera, Salvatore; Valiente, Manuel; Öhberg, Patrik
2016-08-01
We study the dynamics of a vortex in a quasi two-dimensional Bose gas consisting of light-matter coupled atoms forming two-component pseudo spins. The gas is subject to a density dependent gauge potential, hence governed by an interacting gauge theory, which stems from a collisionally induced detuning between the incident laser frequency and the atomic energy levels. This provides a back-action between the synthetic gauge potential and the matter field. A Lagrangian approach is used to derive an expression for the force acting on a vortex in such a gas. We discuss the similarities between this force and the one predicted by Iordanskii, Lifshitz and Pitaevskii when scattering between a superfluid vortex and the thermal component is taken into account.
Two Dimensional Kodaira-Spencer Theory and Three Dimensional Chern-Simons Gravity
Dijkgraaf, Robbert
2007-01-01
Motivated by the six dimensional formulation of Kodaira-Spencer theory for Calabi-Yau threefolds, we formulate a two dimensional version and argue that this is the relevant field theory for the target space of local topological B-model with a geometry based on a Riemann surface. We show that the Ward identities of this quantum theory is equivalent to recursion relations recently proposed by Eynard and Orantin to solve the topological B model. Our derivation provides a conceptual explanation of this link and reveals a hidden affine SL(2,R) symmetry. Moreover we argue that our results provide the strongest evidence yet of the existence of topological M theory in one higher dimension, which in this case can be closely related to SL(2,R)Chern-Simons formulation of three dimensional gravity.
Dislocation patterning in a two-dimensional continuum theory of dislocations
Groma, István; Zaiser, Michael; Ispánovity, Péter Dusán
2016-06-01
Understanding the spontaneous emergence of dislocation patterns during plastic deformation is a long standing challenge in dislocation theory. During the past decades several phenomenological continuum models of dislocation patterning were proposed, but few of them (if any) are derived from microscopic considerations through systematic and controlled averaging procedures. In this paper we present a two-dimensional continuum theory that is obtained by systematic averaging of the equations of motion of discrete dislocations. It is shown that in the evolution equations of the dislocation densities diffusionlike terms neglected in earlier considerations play a crucial role in the length scale selection of the dislocation density fluctuations. It is also shown that the formulated continuum theory can be derived from an averaged energy functional using the framework of phase field theories. However, in order to account for the flow stress one has in that case to introduce a nontrivial dislocation mobility function, which proves to be crucial for the instability leading to patterning.
An improvement of the lattice theory of dislocation for a two-dimensional triangular crystal
Institute of Scientific and Technical Information of China (English)
Wang Shao-Feng
2005-01-01
The structure of dislocation in a two-dimensional triangular crystal has been studied theoretically on the basis of atomic interaction and lattice statics. The theory presented in this paper is an improvement to that published previously.Within a reasonable interaction approximation, a new dislocation equation is obtained, which remedies a fault existing in the lattice theory of dislocation. A better simplification of non-diagonal terms of the kernel is given. The solution of the new dislocation equation asymptotically becomes the same as that obtained in the elastic theory, and agrees with experimental data. It is found that the solution is formally identical with that proposed phenomenologically by Foreman et al, where the parameter can be chosen freely, but cannot uniquely determined from theory. Indeed, if the parameter in the expression of the solution is selected suitably, the expression can be well applied to describe the fine structure of the dislocation.
Kinetic Theory of a Confined Quasi-Two-Dimensional Gas of Hard Spheres
Directory of Open Access Journals (Sweden)
J. Javier Brey
2017-02-01
Full Text Available The dynamics of a system of hard spheres enclosed between two parallel plates separated a distance smaller than two particle diameters is described at the level of kinetic theory. The interest focuses on the behavior of the quasi-two-dimensional fluid seen when looking at the system from above or below. In the first part, a collisional model for the effective two-dimensional dynamics is analyzed. Although it is able to describe quite well the homogeneous evolution observed in the experiments, it is shown that it fails to predict the existence of non-equilibrium phase transitions, and in particular, the bimodal regime exhibited by the real system. A critical revision analysis of the model is presented , and as a starting point to get a more accurate description, the Boltzmann equation for the quasi-two-dimensional gas has been derived. In the elastic case, the solutions of the equation verify an H-theorem implying a monotonic tendency to a non-uniform steady state. As an example of application of the kinetic equation, here the evolution equations for the vertical and horizontal temperatures of the system are derived in the homogeneous approximation, and the results compared with molecular dynamics simulation results.
Superfield quantization of general gauge theories
Lavrov, P M
1995-01-01
A superfield version on superspace (x^\\mu,\\theta^a) is proposed for the Sp(2)-- covariant Lagrangian quantization of general gauge theories. The BRST- and antiBRST- transformations are realized on superfields as supertranslations in the \\theta^a-- directions. A new (geometric) interpretation of the Ward identities in the quantum gauge theory is given.
Functional integration and gauge ambiguities in generalized abelian gauge theories
Kelnhofer, Gerald
2007-01-01
We consider the covariant quantization of generalized abelian gauge theories on a closed and compact n-dimensional manifold whose space of gauge invariant fields is the abelian group of Cheeger-Simons differential characters. The space of gauge fields is shown to be a non-trivial bundle over the orbits of the subgroup of smooth Cheeger-Simons differential characters. Furthermore each orbit itself has the structure of a bundle over a multi-dimensional torus. As a consequence there is a topological obstruction to the existence of a global gauge fixing condition. A functional integral measure is proposed on the space of gauge fields which takes this problem into account and provides a regularization of the gauge degrees of freedom. For the generalized p-form Maxwell theory closed expressions for all physical observables are obtained. The Greens functions are shown to be affected by the non-trivial bundle structure. Finally the vacuum expectation values of circle-valued homomorphisms, including the Wilson operato...
Invariant Regularization of Supersymmetric Chiral Gauge Theory
Suzuki, H
1999-01-01
We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We present several applications: The minimal consistent gauge anomaly; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and an anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
A Nonperturbative Regulator for Chiral Gauge Theories
Grabowska, Dorota M
2015-01-01
We propose a nonperturbative gauge invariant regulator for $d$-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in $d+1$ dimensions with quantum gauge fields that reside on one $d$-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local $d$-dimensional interpretation if and only if the chiral fermion representation is anomaly free. A physical realization of this construction leads to mirror fermions in the Standard Model with soft form factors for gauge fields and gravity. These mirror particles could evade detection except by sensitive probes at extremely low energy, and yet still affect vacuum topology, and could gravitate differently than conventional matter.
Entanglement of Distillation for Lattice Gauge Theories
Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B.; Verstraete, Frank
2016-09-01
We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws—including a topological correction—emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.
Graph Zeta function and gauge theories
He, Yang-Hui
2011-03-01
Along the recently trodden path of studying certain number theoretic properties of gauge theories, especially supersymmetric theories whose vacuum manifolds are non-trivial, we investigate Ihara's Graph Zeta Function for large classes of quiver theories and periodic tilings by bi-partite graphs. In particular, we examine issues such as the spectra of the adjacency and whether the gauge theory satisfies the strong and weak versions of the graph theoretical analogue of the Riemann Hypothesis.
Gauge field theories: various mathematical approaches
Jordan, François; Thierry, Masson
2014-01-01
This paper presents relevant modern mathematical formulations for (classical) gauge field theories, namely, ordinary differential geometry, noncommutative geometry, and transitive Lie algebroids. They provide rigorous frameworks to describe Yang-Mills-Higgs theories or gravitation theories, and each of them improves the paradigm of gauge field theories. A brief comparison between them is carried out, essentially due to the various notions of connection. However they reveal a compelling common mathematical pattern on which the paper concludes.
Exact two-body solutions and quantum defect theory of two-dimensional dipolar quantum gas
Jie, Jianwen; Qi, Ran
2016-10-01
In this paper, we provide the two-body exact solutions of the two-dimensional (2D) Schrödinger equation with isotropic +/- 1/{r}3 interactions. An analytic quantum defect theory is constructed based on these solutions and it is applied to investigate the scattering properties as well as two-body bound states of an ultracold polar molecules confined in a quasi-2D geometry. Interestingly, we find that for the attractive case, the scattering resonance happens simultaneously in all partial waves, which has not been observed in other systems. The effect of this feature on the scattering phase shift across such resonances is also illustrated.
Global anomalies in Chiral Lattice Gauge Theory
Bär, Oliver; Campos, Isabel
As first realized by Witten an SU(2) gauge theory coupled to a single Weyl fermion suffers from a global anomaly. This problem is addressed here in the context of the recent developments on chiral gauge theories on the lattice. We find Witten's anomaly manifests in the impossibility of defining globally a fermion measure that reproduces the proper continuum limit. Moreover, following Witten's original argument, we check numerically the crossing of the lowest eigenvalues of Neuberger's operator along a path connecting two gauge fields that differ by a topologically non-trivial gauge transformation.
Scattering Amplitudes in Gauge Theories
Schubert, Ulrich
2014-01-01
This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...
Gauge dependence in Chern-Simons theory
Dilkes, F A; McKeon, D G C; Sherry, T N
1996-01-01
We compute the contribution to the modulus of the one-loop effective action in pure non-Abelian Chern-Simons theory in an arbitrary covariant gauge. We find that the results are dependent on both the gauge parameter (\\alpha) and the metric required in the gauge fixing. A contribution arises that has not been previously encountered; it is of the form (\\alpha / \\sqrt{p^2}) \\epsilon _{\\mu \\lambda \
Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond
Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei
2017-08-01
Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.
Higher Gauge Theory and M-Theory
Palmer, Sam
2014-01-01
In this thesis, the emerging field of higher gauge theory will be discussed, particularly in relation to problems arising in M-theory, such as selfdual strings and the so-called (2,0) theory. This thesis will begin with a Nahm-like construction for selfdual strings using loop space, the space of loops on spacetime. This construction maps solutions of the Basu-Harvey equation, the BPS equation arising in the description of multiple M2-branes, to solutions of a selfdual string equation on loop space. Furthermore, all ingredients of the construction reduce to those of the ordinary Nahm construction when compactified on a circle with all loops restricted to those wrapping the circle. The rest of this thesis, however, will not involve loop space. We will see a Nahm-like construction for the case of infinitely many selfdual strings, suspended between two M5-branes. This is possible since the limit taken renders the fields describing the M5-branes abelian. This avoids the problem which the rest of this thesis focuse...
Bassetto, A.; Nardelli, G.; Torrielli, A.
2002-10-01
Commutative Yang-Mills theories in 1+1 dimensions exhibit an interesting interplay between geometrical properties and U(N) gauge structures: in the exact expression of a Wilson loop with n windings a nontrivial scaling intertwines n and N. In the noncommutative case the interplay becomes tighter owing to the merging of space-time and ``internal'' symmetries in a larger gauge group U(∞). We perform an explicit perturbative calculation of such a loop up to O(g6) rather surprisingly, we find that in the contribution from the crossed graphs (the genuine noncommutative terms) the scaling we mentioned occurs for large n and N in the limit of maximal noncommutativity θ=∞. We present arguments in favor of the persistence of such a scaling at any perturbative order and succeed in summing the related perturbative series.
Motion in gauge theories of gravity
Tresguerres, Romualdo
2012-01-01
A description of motion is proposed, adapted to the composite bundle interpretation of Poincar\\'e Gauge Theory. Reference frames, relative positions and time evolution are characterized in gauge-theoretical terms. The approach is illustrated by an appropriate formulation of the familiar example of orbital motion induced by Schwarzschild spacetime.
Quantization of Two-Dimensional Gravity with Dynamical Torsion
Lavrov, P M
1999-01-01
We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.
N = 2 gauge theories, instanton moduli spaces and geometric representation theory
Szabo, Richard J.
2016-11-01
We survey some of the AGT relations between N = 2 gauge theories in four dimensions and geometric representations of symmetry algebras of two-dimensional conformal field theory on the equivariant cohomology of their instanton moduli spaces. We treat the cases of gauge theories on both flat space and ALE spaces in some detail, and with emphasis on the implications arising from embedding them into supersymmetric theories in six dimensions. Along the way we construct new toric noncommutative ALE spaces using the general theory of complex algebraic deformations of toric varieties, and indicate how to generalize the construction of instanton moduli spaces. We also compute the equivariant partition functions of topologically twisted six-dimensional Yang-Mills theory with maximal supersymmetry in a general Ω-background, and use the construction to obtain novel reductions to theories in four dimensions.
Reducible gauge theories in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, 208016, Kanpur (India)
2015-12-14
In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb–Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb–Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin–Vilkovisy (BV) formulation in VSR.
Reducible gauge theories in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India)
2015-12-15
In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb-Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb-Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin-Vilkovisy (BV) formulation in VSR. (orig.)
Invariant Regularization of Supersymmetric Chiral Gauge Theory
Hayashi, T; Okuyama, K; Suzuki, H; Hayashi, Takuya; Ohshima, Yoshihisa; Okuyama, Kiyoshi; Suzuki, Hiroshi
1998-01-01
We formulate a manifestly supersymmetric gauge-covariant regularization of supersymmetric chiral gauge theories. In our scheme, the effective action in the superfield background-field method above one-loop is always supersymmetric and gauge invariant. The gauge anomaly has the covariant form and can emerge only in one-loop diagrams with all the external lines are the background gauge superfield. We also present several illustrative applications in the one-loop approximation: The self-energy part of the chiral multiplet and the gauge multiplet; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and the anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.
Gauge Theories on the Light-Front
Brodsky, S J
2004-01-01
The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitary, and a trivial vacuum. The light-front Hamiltonian form of QCD provides an alternative to lattice gauge theory for the computation of nonperturbative quantities such as the hadronic spectrum and the corresponding eigenfunctions. In the case of the electroweak theory, spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field. Light-front quantization then leads to an elegant ghost-free theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions, as well as the Goldstone boson equivalence theorem.
Introduction to dualities in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Kneipp, Marco A.C. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: kneipp@cbpf.br
2000-12-01
These notes present a pedagogical introduction to magnetic monopoles, supersymmetry and dualities in gauge theories. They are based on lectures given at the X Jorge Andre Swieca Summer School on Particles and Fields. (author)
Gauge/string duality in confining theories
Energy Technology Data Exchange (ETDEWEB)
Edelstein, J.D. [Departamento de Fi sica de Particulas, Universidade de Santiago de Compostela and Instituto Galego de Fisica de Altas Enerxias (IGFAE), 15782 Santiago de Compostela (Spain); Instituto de Fisica de La Plata (IFLP), Universidad Nacional de La Plata, La Plata (Argentina); Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Portugues, R. [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)
2006-07-03
This is the content of a set of lectures given at the ''XIII Jorge Andre Swieca Summer School on Particles and Fields'', Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Gauge/String Duality in Confining Theories
Edelstein, J D; Edelstein, Jose D.; Portugues, Ruben
2006-01-01
This is the content of a set of lectures given at the XIII Jorge Andre Swieca Summer School on Particles and Fields, held in Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity.
Classification of N=2 Superconformal Field Theories with Two-Dimensional Coulomb Branches, II
Argyres, P C; Argyres, Philip C.; Wittig, John R.
2005-01-01
We continue the classification of 2-dimensional scale-invariant rigid special Kahler (RSK) geometries. This classification was begun in [hep-th/0504070] where singularities corresponding to curves of the form y^2=x^6 with a fixed canonical basis of holomorphic one forms were analyzed. Here we perform the analysis for the y^2=x^5 type singularities. (The final maximal singularity type, y^2=x^3(x-1)^3, will be analyzed in a later paper.) These singularities potentially describe the Coulomb branches of N=2 supersymmetric field theories in four dimensions. We show that there are only 13 solutions satisfying the integrability condition (enforcing the RSK geometry of the Coulomb branch) and the Z-consistency condition (requiring massless charged states at singularities). Of these solutions, one has a marginal deformation, and corresponds to the known solution for certain Sp(2) gauge theories, while the rest correspond to isolated strongly interacting conformal field theories.
Hidden simplicity of gauge theory amplitudes
Energy Technology Data Exchange (ETDEWEB)
Drummond, J M, E-mail: drummond@lapp.in2p3.f [LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, Cedex (France)
2010-11-07
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in N=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
Hidden simplicity of gauge theory amplitudes
Drummond, J. M.
2010-11-01
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in \\ {N}=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
Gauge theory origins of supergravity causal structure
Kabat, D; Kabat, Daniel; Lifschytz, Gilad
1999-01-01
We discuss the gauge theory mechanisms which are responsible for the causal structure of the dual supergravity. For D-brane probes we show that the light cone structure and Killing horizons of supergravity emerge dynamically. They are associated with the appearance of new light degrees of freedom in the gauge theory, which we explicitly identify. This provides a picture of physics at the horizon of a black hole as seen by a D-brane probe.
Integrable Lattice Models From Gauge Theory
Witten, Edward
2016-01-01
These notes provide an introduction to recent work by Kevin Costello in which integrable lattice models of classical statistical mechanics in two dimensions are understood in terms of quantum gauge theory in four dimensions. This construction will be compared to the more familiar relationship between quantum knot invariants in three dimensions and Chern-Simons gauge theory. (Based on a Whittaker Colloquium at the University of Edinburgh and a lecture at Strings 2016 in Beijing.)
Beatification: Flattening the Poisson Bracket for Two-Dimensional Fluid and Plasma Theories
Viscondi, Thiago F; Morrison, Philip J
2016-01-01
A perturbative method called beatification is presented for a class of two-dimensional fluid and plasma theories. The Hamiltonian systems considered, namely the Euler, Vlasov-Poisson, Hasegawa-Mima, and modified Hasegawa-Mima equations, are naturally described in terms of noncanonical variables. The beatification procedure amounts to finding the correct transformation that removes the explicit variable dependence from a noncanonical Poisson bracket and replaces it with a fixed dependence on a chosen state in phase space. As such, beatification is a major step toward casting the Hamiltonian system in its canonical form, thus enabling or facilitating the use of analytical and numerical techniques that require or favor a representation in terms of canonical, or beatified, Hamiltonian variables.
Relative entropy of excited states in two dimensional conformal field theories
Sárosi, Gábor
2016-01-01
We study the relative entropy and the trace square distance, both of which measure the distance between reduced density matrices of two excited states in two dimensional conformal field theories. We find a general formula for the relative entropy between two primary states with the same conformal dimension in the limit of a single small interval and find that in this case the relative entropy is proportional to the trace square distance. We check our general formulae by calculating the relative entropy between two generalized free fields and the trace square distance between the spin and disorder operators of the critical Ising model. We also give the leading term of the relative entropy in the small interval expansion when the two operators have different conformal dimensions. This turns out to be universal when the CFT has no primaires lighter than the stress tensor. The result reproduces the previously known special cases.
Theory of the vortex-clustering transition in a confined two-dimensional quantum fluid
Yu, Xiaoquan; Nian, Jun; Reeves, Matthew T; Bradley, Ashton S
2016-01-01
Clustering of like-sign vortices in a planar bounded domain is known to occur at negative temperature, a phenomenon that Onsager demonstrated to be a consequence of bounded phase space. In a confined superfluid, quantized vortices can support such an ordered phase, provided they evolve as an almost isolated subsystem containing sufficient energy. A detailed theoretical understanding of the statistical mechanics of such states thus requires a microcanonical approach. Here we develop an analytical theory of the vortex clustering transition in a neutral system of quantum vortices confined to a two-dimensional disk geometry, within the microcanonical ensemble. As the system energy increases above a critical value, the system develops global order via the emergence of a macroscopic dipole structure from the homogeneous phase of vortices, spontaneously breaking the Z2 symmetry associated with invariance under vortex circulation exchange, and the rotational SO(2) symmetry due to the disk geometry. The dipole structu...
Softly Broken Supersymmetric Gauge Theories through Compactifications
Takenaga, K
1998-01-01
Effects of boundary conditions of fields for compactified space directions on the supersymmetric gauge theories are discussed. For general and possible boundary conditions the supersymmetry is explicitly broken to yield universal soft supersymmetry breaking terms, and the gauge symmetry of the theory can also be broken through the dynamics of non-integrable phases, depending on number and the representation under the gauge group of matters. The 4-dimensional supersymmetric QCD is studied as a toy model when one of the space coordinates is compactified on $S^1$.
Lattice gauge theories and spin models
Mathur, Manu; Sreeraj, T. P.
2016-10-01
The Wegner Z2 gauge theory-Z2 Ising spin model duality in (2 +1 ) dimensions is revisited and derived through a series of canonical transformations. The Kramers-Wannier duality is similarly obtained. The Wegner Z2 gauge-spin duality is directly generalized to SU(N) lattice gauge theory in (2 +1 ) dimensions to obtain the SU(N) spin model in terms of the SU(N) magnetic fields and their conjugate SU(N) electric scalar potentials. The exact and complete solutions of the Z2, U(1), SU(N) Gauss law constraints in terms of the corresponding spin or dual potential operators are given. The gauge-spin duality naturally leads to a new gauge invariant magnetic disorder operator for SU(N) lattice gauge theory which produces a magnetic vortex on the plaquette. A variational ground state of the SU(2) spin model with nearest neighbor interactions is constructed to analyze SU(2) gauge theory.
Gauge theories of gravity: the nonlinear framework
Tiemblo, A
2004-01-01
Nonlinear realizations of spacetime groups are presented as a versatile mathematical tool providing a common foundation for quite different formulations of gauge theories of gravity. We apply nonlinear realizations in particular to both the Poincar\\'e and the affine group in order to develop Poincar\\'e gauge theory (PGT) and metric-affine gravity (MAG) respectively. Regarding PGT, two alternative nonlinear treatments of the Poincar\\'e group are developed, one of them being suitable to deal with the Lagrangian and the other one with the Hamiltonian version of the same gauge theory. We argue that our Hamiltonian approach to PGT is closely related to Ashtekar's approach to gravity. On the other hand, a brief survey on MAG clarifies the role played by the metric--affine metric tensor as a Goldsone field. All gravitational quantities in fact --the metric as much as the coframes and connections-- are shown to acquire a simple gauge--theoretical interpretation in the nonlinear framework.
Quantum Critical Behaviour of Semisimple Gauge Theories
DEFF Research Database (Denmark)
Kamuk Esbensen, Jacob; Ryttov, Thomas A.; Sannino, Francesco
2016-01-01
We study the perturbative phase diagram of semi-simple fermionic gauge theories resembling the Standard Model. We investigate an $SU(N)$ gauge theory with $M$ Dirac flavors where we gauge first an $SU(M)_L$ and then an $SU(2)_L \\subset SU(M)_L$ of the original global symmetry $SU(M)_L\\times SU......(M)_R \\times U(1) $ of the theory. To avoid gauge anomalies we add lepton-like particles. At the two-loops level an intriguing phase diagram appears. We uncover phases in which one, two or three fixed points exist and discuss the associated flows of the coupling constants. We discover a phase featuring...
Tovbin, Yu. K.
2016-08-01
A molecular statistical theory for calculating the linear tension of small multicomponent droplets in two-dimensional adsorption systems is developed. The theory describes discrete distributions of molecules in space (on a scale comparable to molecular size) and continuous distributions of molecules (at short distances inside cells) in their translational and vibrational motions. Pair intermolecular interaction potentials (the Mie type potential) in several coordination spheres are considered. For simplicity, it is assumed that distinctions in the sizes of mixture components are slight and comparable to the sizes of adsorbent adsorption centers. Expressions for the pressure tensor components inside small droplets on the heterogeneous surface of an adsorbent are obtained, allowing calculations of the thermodynamic characteristics of a vapor-fluid interface, including linear tension. Problems in refining the molecular theory are discussed: describing the properties of small droplets using a coordination model of their structure, considering the effect an adsorbate has on the state of a near-surface adsorbent region, and the surface heterogeneity factor in the conditions for the formation of droplets.
A gauge-invariant reorganization of thermal gauge theory
Energy Technology Data Exchange (ETDEWEB)
Su, Nan
2010-07-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
Wilson Loops in 2D Noncommutative Euclidean Gauge Theory: 1. Perturbative Expansion
Ambjørn, Jan; Makeenko, Y
2004-01-01
We calculate quantum averages of Wilson loops (holonomies) in gauge theories on the Euclidean noncommutative plane, using a path-integral representation of the star-product. We show how the perturbative expansion emerges from a concise general formula and demonstrate its anomalous behavior at large parameter of noncommutativity for the simplest nonplanar diagram of genus 1. We discuss various UV/IR regularizations of the two-dimensional noncommutative gauge theory in the axial gauge and, using the noncommutative loop equation, construct a consistent regularization.
Zarei, Mohammad Hossein
2016-01-01
Although creating a unified theory in Elementary Particles Physics is still an open problem, there are a lot of attempts for unifying other fields of physics. Following such unifications, we regard a two dimensional (2D) classical $\\Phi^{4}$ field theory model to study several field theories with different symmetries in various dimensions. While the completeness of this model has been already proved by a mapping between statistical mechanics and quantum information theory, here, we take into account a fundamental systematic approach with purely mathematical basis to re-derive such completeness in a general manner. Due to simplicity and generality, we believe that our method leads to a general approach which can be understood by other physical communities as well as quantum information theorists. Furthermore, our proof of the completeness is not only a proof-of-principle, but also an interesting algorithmic proof. We consider a discrete version of a general field theory as an arbitrary polynomial function of f...
Topological resolution of gauge theory singularities
Energy Technology Data Exchange (ETDEWEB)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-21
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
Topological resolution of gauge theory singularities
Saracco, Fabio; Torroba, Gonzalo
2013-01-01
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high energy metric (that would exhibit the singularity) and a regular singularity-free low energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
Algebraic formulation of higher gauge theory
Zucchini, Roberto
2017-06-01
In this paper, we present a purely algebraic formulation of higher gauge theory and gauged sigma models based on the abstract theory of graded commutative algebras and their morphisms. The formulation incorporates naturally Becchi - Rouet -Stora - Tyutin (BRST) symmetry and is also suitable for Alexandrov - Kontsevich - Schwartz-Zaboronsky (AKSZ) type constructions. It is also shown that for a full-fledged Batalin-Vilkovisky formulation including ghost degrees of freedom, higher gauge and gauged sigma model fields must be viewed as internal smooth functions on the shifted tangent bundle of a space-time manifold valued in a shifted L∞-algebroid encoding symmetry. The relationship to other formulations where the L∞-algebroid arises from a higher Lie groupoid by Lie differentiation is highlighted.
Origin of gauge invariance in string theory
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Origin of gauge invariance in string theory
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Gauge theory of phase and scale
PAW\\LOWSKI, Marek
1999-01-01
Old Weyl's the idea of scale recalibration freedom and Infeld's and van der Waerden's (IW) ideas concerning geometrical interpretation of natural spinor phase gauge symmetry are discussed in the context of modern models of fundamental particle interactions. It is argued that (IW) gauge symmetry can be naturaly identified with the U(1) symmetry of the Weinberg-Salam model. It is also argued that there are no serious reasons to reject Weyl's gauge theory from consid...
Gravitational Goldstone fields from affine gauge theory
Tresguerres, R
2000-01-01
In order to facilitate the application of standard renormalization techniques, gravitation should be decribed, if possible, in pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincare or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring the "hidden" piece responsible for this behavior within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide a general mathematical scheme clarifying the foundations of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the aff...
Topological Charge of Lattice Abelian Gauge Theory
Fujiwara, T; Wu, K
2001-01-01
Configuration space of abelian gauge theory on a periodic lattice becomes topologically disconnected by excising exceptional gauge field configurations. It is possible to define a U(1) bundle from the nonexceptional link variables by a smooth interpolation of the transition functions. The lattice analogue of Chern character obtained by a cohomological technique based on the noncommutative differential calculus is shown to give a topological charge related to the topological winding number of the U(1) bundle.
String theory duals of Lifshitz-Chern-Simons gauge theories
Balasubramanian, Koushik
2011-01-01
We propose candidate gravity duals for a class of non-Abelian z=2 Lifshitz Chern-Simons (LCS) gauge theories studied by Mulligan, Kachru and Nayak. These are nonrelativistic gauge theories in 2+1 dimensions in which parity and time-reversal symmetries are explicitly broken by the presence of a Chern-Simons term. We show that these field theories can be realized as deformations of DLCQ N=4 super Yang-Mills theory. Using the holographic dictionary, we identify the bulk fields that are dual to these deformations. The geometry describing the groundstate of the non-Abelian LCS gauge theory realized here ends smoothly in the infrared region. This is a signal for confinement in the dual field theory, suggesting that non-Abelian Lifshitz gauge theories can indeed flow to strongly-coupled confining theories.
Bedani, F.; Schoenmakers, P.J.; Janssen, H.-G.
2012-01-01
On-line comprehensive two-dimensional liquid chromatography techniques promise to resolve samples that current one-dimensional liquid chromatography methods cannot adequately deal with. To make full use of the potential of two-dimensional liquid chromatography, optimization is required. Optimization
Universally finite gravitational and gauge theories
Directory of Open Access Journals (Sweden)
Leonardo Modesto
2015-11-01
Full Text Available It is well known that standard gauge theories are renormalizable in D=4 while Einstein gravity is renormalizable in D=2. This is where the research in the field of two derivatives theories is currently standing. We hereby present a class of weakly non-local higher derivative gravitational and gauge theories universally consistent at quantum level in any spacetime dimension. These theories are unitary (ghost-free and perturbatively renormalizable. Moreover, we can always find a simple extension of these theories that is super-renormalizable or finite at quantum level in even and odd spacetime dimensions. Finally, we propose a super-renormalizable or finite theory for gravity coupled to matter laying the groundwork for a “finite standard model of particle physics” and/or a grand unified theory of all fundamental interactions.
Theory of the vortex-clustering transition in a confined two-dimensional quantum fluid
Yu, Xiaoquan; Billam, Thomas P.; Nian, Jun; Reeves, Matthew T.; Bradley, Ashton S.
2016-08-01
Clustering of like-sign vortices in a planar bounded domain is known to occur at negative temperature, a phenomenon that Onsager demonstrated to be a consequence of bounded phase space. In a confined superfluid, quantized vortices can support such an ordered phase, provided they evolve as an almost isolated subsystem containing sufficient energy. A detailed theoretical understanding of the statistical mechanics of such states thus requires a microcanonical approach. Here we develop an analytical theory of the vortex clustering transition in a neutral system of quantum vortices confined to a two-dimensional disk geometry, within the microcanonical ensemble. The choice of ensemble is essential for identifying the correct thermodynamic limit of the system, enabling a rigorous description of clustering in the language of critical phenomena. As the system energy increases above a critical value, the system develops global order via the emergence of a macroscopic dipole structure from the homogeneous phase of vortices, spontaneously breaking the Z2 symmetry associated with invariance under vortex circulation exchange, and the rotational SO (2 ) symmetry due to the disk geometry. The dipole structure emerges characterized by the continuous growth of the macroscopic dipole moment which serves as a global order parameter, resembling a continuous phase transition. The critical temperature of the transition, and the critical exponent associated with the dipole moment, are obtained exactly within mean-field theory. The clustering transition is shown to be distinct from the final state reached at high energy, known as supercondensation. The dipole moment develops via two macroscopic vortex clusters and the cluster locations are found analytically, both near the clustering transition and in the supercondensation limit. The microcanonical theory shows excellent agreement with Monte Carlo simulations, and signatures of the transition are apparent even for a modest system of 100
Two-dimensional Kagome phosphorus and its edge magnetism: a density functional theory study.
Yu, Guodong; Jiang, Liwei; Zheng, Yisong
2015-07-01
By means of density functional theory calculations, we predict a new two-dimensional phosphorus allotrope with the Kagome-like lattice(Kagome-P). It is an indirect gap semiconductor with a band gap of 1.64 eV. The gap decreases sensitively with the compressive strain. In particular, shrinking the lattice beyond 13% can drive it into metallic state. In addition, both the AA and AB stacked Kagome-P multi-layer structures exhibit a bandgap much smaller than 1.64 eV. Edges in the Kagome-P monolayer probably suffer from the edge reconstruction. An isolated zigzag edge can induce antiferromagnetic (AF) ordering with a magnetic transition temperature of 23 K. More importantly, when applying a stretching strain beyond 4%, such an edge turns to possess a ferromagnetic ground state. A very narrow zigzag-edged Kagome-P ribbon displays the spin moment distribution similar to the zigzag-edged graphene nanoribbon because of the coupling between the opposites edges. But the inter-edge coupling in the Kagome-P ribbon vanishes more rapidly as the ribbon width increases. These properties make it a promising material in spintronics.
Two-dimensional Kagome phosphorus and its edge magnetism: a density functional theory study
Yu, Guodong; Jiang, Liwei; Zheng, Yisong
2015-06-01
By means of density functional theory calculations, we predict a new two-dimensional phosphorus allotrope with the Kagome-like lattice(Kagome-P). It is an indirect gap semiconductor with a band gap of 1.64 eV. The gap decreases sensitively with the compressive strain. In particular, shrinking the lattice beyond 13% can drive it into metallic state. In addition, both the AA and AB stacked Kagome-P multi-layer structures exhibit a bandgap much smaller than 1.64 eV. Edges in the Kagome-P monolayer probably suffer from the edge reconstruction. An isolated zigzag edge can induce antiferromagnetic (AF) ordering with a magnetic transition temperature of 23 K. More importantly, when applying a stretching strain beyond 4%, such an edge turns to possess a ferromagnetic ground state. A very narrow zigzag-edged Kagome-P ribbon displays the spin moment distribution similar to the zigzag-edged graphene nanoribbon because of the coupling between the opposites edges. But the inter-edge coupling in the Kagome-P ribbon vanishes more rapidly as the ribbon width increases. These properties make it a promising material in spintronics.
Sikdar, Debabrata; Kornyshev, Alexei A.
2016-01-01
Two-dimensional arrays of plasmonic nanoparticles at interfaces are promising candidates for novel optical metamaterials. Such systems materialise from ‘top–down’ patterning or ‘bottom–up’ self-assembly of nanoparticles at liquid/liquid or liquid/solid interfaces. Here, we present a comprehensive analysis of an extended effective quasi-static four-layer-stack model for the description of plasmon-resonance-enhanced optical responses of such systems. We investigate in detail the effects of the size of nanoparticles, average interparticle separation, dielectric constants of the media constituting the interface, and the nanoparticle position relative to the interface. Interesting interplays of these different factors are explored first for normally incident light. For off-normal incidence, the strong effects of the polarisation of light are found at large incident angles, which allows to dynamically tune the reflectance spectra. All the predictions of the theory are tested against full-wave simulations, proving this simplistic model to be adequate within the quasi-static limit. The model takes seconds to calculate the system’s optical response and makes it easy to unravel the effect of each system parameter. This helps rapid rationalization of experimental data and understanding of the optical signals from these novel ‘metamaterials’, optimised for light reflection or harvesting. PMID:27652788
Direct test of defect-mediated laser-induced melting theory for two-dimensional solids.
Chaudhuri, Debasish; Sengupta, Surajit
2006-01-01
We investigate by direct numerical solution of appropriate renormalization flow equations the validity of a recent dislocation unbinding theory for laser-induced freezing and melting in two dimensions. The bare elastic moduli and dislocation fugacities are obtained for three different two-dimensional systems namely, the hard disk, inverse 12th power, and Derjaguin-Landau-Verwey-Overbeek potentials. A restricted Monte Carlo simulation sampling only configurations without dislocations is used to obtain these quantities. These are then used as inputs to the flow equations. Numerical solution of the flow equations then yields the phase diagrams. We conclude that (a) the flow equations need to be correct at least up to third order in defect fugacity to reproduce meaningful results, (b) there is excellent quantitative agreement between our results and earlier conventional Monte Carlo simulations for the hard disk system, and (c) while the qualitative form of the phase diagram is reproduced for systems with soft potentials there is some quantitative discrepancy which we explain.
Curving Yang-Mills-Higgs Gauge Theories
Kotov, Alexei
2015-01-01
Established fundamental physics can be described by fields, which are maps. The source of such a map is space-time, which can be curved due to gravity. The map itself needs to be curved in its gauge field part so as to describe interaction forces like those mediated by photons and gluons. In the present article, we permit non-zero curvature also on the internal space, the target of the field map. The action functional and the symmetries are constructed in such a way that they reduce to those of standard Yang-Mills-Higgs (YMH) gauge theories precisely when the curvature on the target of the fields is turned off. For curved targets one obtains a new theory, a curved YMH gauge theory. It realizes in a mathematically consistent manner an old wish in the community: replacing structures constants by functions depending on the scalars of the theory. In addition, we provide a simple 4d toy model, where the gauge symmetry is abelian, but turning off the gauge fields, no rigid symmetry remains---another possible manife...
Local Poincaré Symmetry in Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
MA Jian-Feng; MA Yong-Ge
2009-01-01
It is well known that the Poincaré gauge theories of gravity do not have the structure of a standard gauge theory. Nevertheless, we show that a general form of action for the gravitational gauge fields in the gauge theory does possess local Poincaré invariance.
A gauge theory of massive spin one particles
Vyas, Vivek M
2015-01-01
An Abelian gauge theory describing dynamics of massive spin one bosons is constructed. This is achieved by appending to the Maxwell action, a gauge invariant mass term. The theory is quantised in temporal as well as Lorentz gauge, and the corresponding Hilbert spaces are constructed. In both the gauges, it is found that, the theory respects Lorentz invariance, locality, causality and unitarity.
Renormalizable supersymmetric gauge theory in six dimensions
Energy Technology Data Exchange (ETDEWEB)
Ivanov, E.A. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation)]. E-mail: eivanov@theor.jinr.ru; Smilga, A.V. [SUBATECH, Universite de Nantes, 4 rue Alfred Kastler, BP 20722, Nantes 44307 (France)]. E-mail: smilga@subatech.in2p3.fr; Zupnik, B.M. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation)]. E-mail: zupnik@theor.jinr.ru
2005-10-17
We construct and discuss a 6D supersymmetric gauge theory involving four derivatives in the action. The theory involves a dimensionless coupling constant and is renormalizable. At the tree level, it enjoys N=(1,0) superconformal symmetry, but the latter is broken by quantum anomaly. Our study should be considered as preparatory for seeking an extended version of this theory which would hopefully preserve conformal symmetry at the full quantum level and be ultraviolet-finite.
Classical Loop Actions of Gauge Theories
Armand-Ugon, D; Griego, J R; Setaro, L; Armand-Ugon, Daniel; Gambini, Rodolfo; Griego, Jorge; Setaro, Leonardo
1994-01-01
Since the first attempts to quantize Gauge Theories and Gravity in the loop representation, the problem of the determination of the corresponding classical actions has been raised. Here we propose a general procedure to determine these actions and we explicitly apply it in the case of electromagnetism. Going to the lattice we show that the electromagnetic action in terms of loops is equivalent to the Wilson action, allowing to do Montecarlo calculations in a gauge invariant way. In the continuum these actions need to be regularized and they are the natural candidates to describe the theory in a ``confining phase''.
Jarzynski's theorem for lattice gauge theory
Caselle, Michele; Nada, Alessandro; Panero, Marco; Toniato, Arianna
2016-01-01
Jarzynski's theorem is a well-known equality in statistical mechanics, which relates fluctuations in the work performed during a non-equilibrium transformation of a system, to the free-energy difference between two equilibrium states. In this article, we extend Jarzynski's theorem to lattice gauge theory, and present examples of applications for two challenging computational problems, namely the calculation of interface free energies and the determination of the equation of state. We conclude with a discussion of further applications of interest in QCD and in other strongly coupled gauge theories, in particular for the Schroedinger functional and for simulations at finite density using reweighting techniques.
Supersymmetric gauge theories, intersecting branes and free fermions
Dijkgraaf, Robbert; Hollands, Lotte; Sułkowski, Piotr; Vafa, Cumrun
2008-02-01
We show that various holomorphic quantities in supersymmetric gauge theories can be conveniently computed by configurations of D4-branes and D6-branes. These D-branes intersect along a Riemann surface that is described by a holomorphic curve in a complex surface. The resulting I-brane carries two-dimensional chiral fermions on its world-volume. This system can be mapped directly to the topological string on a large class of non-compact Calabi-Yau manifolds. Inclusion of the string coupling constant corresponds to turning on a constant B-field on the complex surface, which makes this space non-commutative. Including all string loop corrections the free fermion theory is elegantly formulated in terms of holonomic D-modules that replace the classical holomorphic curve in the quantum case.
Supersymmetric Gauge Theories, Intersecting Branes and Free Fermions
Dijkgraaf, Robbert; Sulkowski, Piotr; Vafa, Cumrun
2008-01-01
We show that various holomorphic quantities in supersymmetric gauge theories can be conveniently computed by configurations of D4-branes and D6-branes. These D-branes intersect along a Riemann surface that is described by a holomorphic curve in a complex surface. The resulting I-brane carries two-dimensional chiral fermions on its world-volume. This system can be mapped directly to the topological string on a large class of non-compact Calabi-Yau manifolds. Inclusion of the string coupling constant corresponds to turning on a constant B-field on the complex surface, which makes this space non-commutative. Including all string loop corrections the free fermion theory is elegantly formulated in terms of holonomic D-modules that replace the classical holomorphic curve in the quantum case.
National Computational Infrastructure for Lattice Gauge Theory
Energy Technology Data Exchange (ETDEWEB)
Brower, Richard C.
2014-04-15
SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io
Higher Gauge Theory with String 2-Groups
Demessie, Getachew Alemu
2016-01-01
We give a complete and explicit description of the kinematical data of higher gauge theory on principal 2-bundles with the string 2-group model of Schommer-Pries as structure 2-group. We start with a self-contained review of the weak 2-category Bibun of Lie groupoids, bibundles and bibundle morphisms. We then construct categories internal to Bibun, which allow us to define principal 2-bundles with 2-groups internal to Bibun as structure 2-groups. Using these, we Lie-differentiate the 2-group model of the string group and we obtain the well-known string Lie 2-algebra. Generalizing the differentiation process, we find Maurer-Cartan forms leading us to higher non-abelian Deligne cohomology, encoding the kinematical data of higher gauge theory together with their (finite) gauge symmetries. We end by discussing an example of non-abelian self-dual strings in this setting.
Local subsystems in gauge theory and gravity
Donnelly, William
2016-01-01
We consider the problem of defining localized subsystems in gauge theory and gravity. Such systems are associated to spacelike hypersurfaces with boundaries and provide the natural setting for studying entanglement entropy of regions of space. We present a general formalism to associate a gauge-invariant classical phase space to a spatial slice with boundary by introducing new degrees of freedom on the boundary. In Yang-Mills theory the new degrees of freedom are a choice of gauge on the boundary, transformations of which are generated by the normal component of the nonabelian electric field. In general relativity the new degrees of freedom are the location of a codimension-2 surface and a choice of conformal normal frame. These degrees of freedom transform under a group of surface symmetries, consisting of diffeomorphisms of the codimension-2 boundary, and position-dependent linear deformations of its normal plane. We find the observables which generate these symmetries, consisting of the conformal normal me...
Gauge Field Theories, 2nd Edition
Frampton, Paul H.
2000-08-01
The first edition of Gauge Field Theories, published in 1985, quickly became widely used in universities and other institutions of higher learning around the world. Written by well-known physicist Paul Frampton, the new edition continues to offer a first-rate mathematical treatment of gauge field theories, while thoroughly updating all chapters to keep pace with developments in the field. Frampton emphasizes formalism rather than experiments and provides sufficient detail for readers wishing to do their own calculations or pursue theoretical physics research. Special features of the Second Edition include: * Improved, logical organization of the material on gauge invariance, quantization, and renormalization * Major revision of the chapter on electroweak interactions, incorporating the latest precision data and discovery of the top quark * Discussions of renormalization group and quantum chromodynamics * A completely new chapter on model building
Holography of charges in gauge theories
Julia, B L
2001-01-01
In this short review we compare the rigid Noether charges to topological gauge charges. One important extension is that one should consider each boundary component of spacetime independently. The argument that relates bulk charges to surface terms can be adapted to the perfect fluid situation where one can recognise the helicity and enstrophies as Noether charges. More generally a forcing procedure that increases for instance any Noether charge is demonstrated. In the gauge theory situation, the key idea can be summarized by one sentence: ``go to infinity and stay there''. A new variational formulation of Einstein's gravity is given that allows for local GL(D,R) invariance. The a priori indeterminacy of the Noether charges is emphasized and a covariant ansatz due to S. Silva for the surface charges of gauge theories is analysed, it replaces the (non-covariant) Regge-Teitelboim procedure.
Topologically Massive Gauge Theory: A Lorentzian Solution
Saygili, K
2006-01-01
We obtain a lorentzian solution for the topologically massive non-abelian gauge theory on AdS space by means of a SU(1, 1) gauge transformation of the previously found abelian solution. There exists a natural scale of length which is determined by the inverse topological mass. The topological mass is proportional to the square of the gauge coupling constant. In the topologically massive electrodynamics the field strength locally determines the gauge potential up to a closed 1-form via the (anti-)self-duality equation. We introduce a transformation of the gauge potential using the dual field strength which can be identified with an abelian gauge transformation. Then we present the map from the AdS space to the pseudo-sphere including the topological mass. This is the lorentzian analog of the Hopf map. This map yields a global decomposition of the AdS space as a trivial circle bundle over the upper portion of the pseudo-sphere which is the the Hyperboloid model for the Lobachevski geometry. This leads to a redu...
Unification of Non-Abelian SU(N) Gauge Theory and Gravitational Gauge Theory
Institute of Scientific and Technical Information of China (English)
WU Ning
2002-01-01
In this paper, a general theory on unification of non-Abelian SU(N) gauge interactions and gravitationalinteractions is discussed. SU(N) gauge interactions and gravitational interactions are formulated on the similar basisand are unified in a semi-direct product group GSU(N). Based on this model, we can discuss unification of fundamentalinteractions of Nature.
New Dualities in Supersymmetric Chiral Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Craig, Nathaniel; /Princeton, Inst. Advanced Study /Rutgers U., Piscataway; Essig, Rouven; Hook, Anson; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC
2011-08-15
We analyze the phase structure of supersymmetric chiral gauge theories with gauge group SU(N), an antisymmetric, and F {le} N + 3 flavors, in the presence of a cubic superpotential. When F = N + 3 the theory flows to a superconformal fixed point in the infrared, and new dual descriptions of this theory are uncovered. The theory with odd N admits a self-dual magnetic description. For general N, we find an infinite family of magnetic dual descriptions, characterized by arbitrarily large gauge groups and additional classical global symmetries that are truncated by nonperturbative effects. The infrared dynamics of these theories are analyzed using a-maximization, which supports the claim that all these theories flow to the same superconformal fixed point. A very rich phase structure is found when the number of flavors is reduced below N + 3, including a new self-dual point, transitions from conformal to confining, and a nonperturbative instability for F {le} N. We also give examples of chiral theories with antisymmetrics that have nonchiral duals.
Recent advances in lattice gauge theories
Indian Academy of Sciences (India)
R V Gavai
2000-04-01
Recent progress in the ﬁeld of lattice gauge theories is brieﬂy reviewed for a nonspecialist audience. While the emphasis is on the latest and more deﬁnitive results that have emerged prior to this symposium, an effort has been made to provide them with minimal technicalities.
Compositeness Condition for Dynamically Induced Gauge Theories
Akama, K; Akama, Keiichi; Hattori, Takashi
1997-01-01
We show that the compositeness condition for the induced gauge boson in the four-fermion interaction theory actually works beyond the one-loop approximation. The next-to-leading contributions are calculated, and turn out to be reasonably suppressed, so that the leading-order approximation is justified.
Unified Gauge Field Theory and Topological Transitions
Patwardhan, A
2004-01-01
The search for a Unified description of all interactions has created many developments of mathematics and physics. The role of geometric effects in the Quantum Theory of particles and fields and spacetime has been an active topic of research. This paper attempts to obtain the conditions for a Unified Gauge Field Theory, including gravity. In the Yang Mills type of theories with compactifications from a 10 or 11 dimensional space to a spacetime of 4 dimensions, the Kaluza Klein and the Holonomy approach has been used. In the compactifications of Calabi Yau spaces and sub manifolds, the Euler number Topological Index is used to label the allowed states and the transitions. With a SU(2) or SL(2,C) connection for gravity and the U(1)*SU(2)*SU(3) or SU(5) gauge connection for the other interactions, a Unified gauge field theory is expressed in the 10 or 11 dimension space. Partition functions for the sum over all possible configurations of sub spaces labeled by the Euler number index and the Action for gauge and m...
M-theory and gauged supergravities
Roest, D
2005-01-01
We present a pedagogical discussion of the emergence of gauged supergravities from M-theory. First, a review of maximal supergravity and its global symmetries and supersymmetric solutions is given. Next, different procedures of dimensional reduction are explained: reductions over a torus, a group ma
Vanishing Vierbein in Gauge Theories of Gravitation
Jadczyk, A
1999-01-01
We discuss the problem of a degenerate vierbein in the framework of gauge theories of gravitation (thus including torsion). We discuss two examples: Hanson-Regge gravitational instanton and Einstein-Rose bridge.We argue that a region of space-time with vanishing vierbein but smooth principal connection can be, in principle, detected by scattering experiments.
M-theory and Gauged Supergravities
Roest, D.
2004-01-01
Abstract: We present a pedagogical discussion of the emergence of gauged supergravities from M-theory. First, a review of maximal supergravity and its global symmetries and supersymmetric solutions is given. Next, different procedures of dimensional reduction are explained: reductions over a torus,
M-theory and Gauged Supergravities
Roest, D.
2004-01-01
Abstract: We present a pedagogical discussion of the emergence of gauged supergravities from M-theory. First, a review of maximal supergravity and its global symmetries and supersymmetric solutions is given. Next, different procedures of dimensional reduction are explained: reductions over a torus,
Short distance properties of cascading gauge theories
Aharony, O; Yarom, A; Aharony, Ofer; Buchel, Alex; Yarom, Amos
2006-01-01
We study the short distance (large momentum) properties of correlation functions of cascading gauge theories by performing a tree-level computation in their dual gravitational background. We prove that these theories are holographically renormalizable; the correlators have only analytic ultraviolet divergences, which may be removed by appropriate local counterterms. We find that n-point correlation functions of properly normalized operators have the expected scaling in the semi-classical gravity (large N) limit: they scale as N_{eff}^{2-n} with N_{eff} proportional to ln(k/Lambda) where k is a typical momentum. Our analysis thus confirms the interpretation of the cascading gauge theories as renormalizable four-dimensional quantum field theories with an effective number of degrees of freedom which logarithmically increases with the energy.
Coset space dimensional reduction of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (Physik Dept., Technische Univ. Muenchen, Garching (Germany)); Zoupanos, G. (CERN, Geneva (Switzerland))
1992-10-01
We review the attempts to construct unified theories defined in higher dimensions which are dimensionally reduced over coset spaces. We employ the coset space dimensional reduction scheme, which permits the detailed study of the resulting four-dimensional gauge theories. In the context of this scheme we present the difficulties and the suggested ways out in the attempts to describe the observed interactions in a realistic way. (orig.).
Loop Equations in Abelian Gauge Theories
Di Bartolo, C; Pe~na, F; Bartolo, Cayetano Di; Leal, Lorenzo; Peña, Francisco
2005-01-01
The equations obeyed by the vacuum expectation value of the Wilson loop of Abelian gauge theories are considered from the point of view of the loop-space. An approximative scheme for studying these loop-equations for lattice Maxwell theory is presented. The approximation leads to a partial difference equation in the area and length variables of the loop, and certain physically motivated ansatz is seen to reproduce the mean field results from a geometrical perspective.
Theory of two-dimensional Fourier transform electron spin resonance for ordered and viscous fluids
Lee, Sanghyuk; Budil, David E.; Freed, Jack H.
1994-10-01
A comprehensive theory for interpreting two-dimensional Fourier transform (2D-FT) electron spin resonance (ESR) experiments that is based on the stochastic Liouville equation is presented. It encompasses the full range of motional rates from fast through very slow motions, and it also provides for microscopic as well as macroscopic molecular ordering. In these respects it is as sophisticated in its treatment of molecular dynamics as the theory currently employed for analyzing cw ESR spectra. The general properties of the pulse propagator superoperator, which describes the microwave pulses in Liouville space, are analyzed in terms of the coherence transfer pathways appropriate for COSY (correlation spectroscopy), SECSY (spin-echo correlation spectroscopy), and 2D-ELDOR (electron-electron double resonance) sequences wherein either the free-induction decay (FID) or echo decay is sampled. Important distinctions are made among the sources of inhomogeneous broadening, which include (a) incomplete spectral averaging in the slow-motional regime, (b) unresolved superhyperfine structure and related sources, and (c) microscopic molecular ordering but macroscopic disorder (MOMD). The differing effects these sources of inhomogeneous broadening have on the two mirror image coherence pathways observed in the dual quadrature 2D experiments, as well as on the auto vs crosspeaks of 2D-ELDOR, is described. The theory is applied to simulate experiments of nitroxide spin labels in complex fluids such as membrane vesicles, where the MOMD model applies and these distinctions are particularly relevant, in order to extract dynamic and ordering parameters. The recovery of homogeneous linewidths from FID-based COSY experiments on complex fluids with significant inhomogeneous broadening is also described. The theory is applied to the ultraslow motional regime, and a simple method is developed to determine rotational rates from the broadening of the autopeaks of the 2D-ELDOR spectra as a
Two dimensional black-hole as a topological coset model of c=1 string theory
Mukhi, S
1993-01-01
We show that a special superconformal coset (with $\\hat c =3$) is equivalent to $c=1$ matter coupled to two dimensional gravity. This identification allows a direct computation of the correlation functions of the $c=1$ non-critical string to all genus, and at nonzero cosmological constant, directly from the continuum approach. The results agree with those of the matrix model. Moreover we connect our coset with a twisted version of a Euclidean two dimensional black hole, in which the ghost and matter systems are mixed.
The shear viscosity of gauge theory plasma with chemical potentials
Benincasa, P; Naryshkin, R; Benincasa, Paolo; Buchel, Alex; Naryshkin, Roman
2007-01-01
We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.
The shear viscosity of gauge theory plasma with chemical potentials
Benincasa, Paolo; Buchel, Alex; Naryshkin, Roman
2007-02-01
We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.
Quiver gauge theories and integrable lattice models
Yagi, Junya
2015-01-01
We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d $\\mathcal{N} = 1$ theories known as brane box and brane tilling models, 3d $\\mathcal{N} = 2$ and 2d $\\mathcal{N} = (2,2)$ theories obtained from them by compactification, and 2d $\\mathcal{N} = (0,2)$ theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.
Quiver gauge theories and integrable lattice models
Energy Technology Data Exchange (ETDEWEB)
Yagi, Junya [International School for Advanced Studies (SISSA),via Bonomea 265, 34136 Trieste (Italy); INFN - Sezione di Trieste,via Valerio 2, 34149 Trieste (Italy)
2015-10-09
We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.
Gauge Theory On The Fuzzy Torus
Bigatti, D
2001-01-01
In this paper a formulation of U(1) gauge theory on a fuzzy torus is discussed. The theory is regulated in both the infrared and ultraviolet. It can be thought of as a non-commutative version of lattice gauge theory on a periodic lattice. The construction of Wilson loops is particularly transparent in this formulation. Following Ishibashi, Iso, Kawai and Kitazawa, we show that certain Fourier modes of open Wilson lines are gauge invariant. We also introduce charged matter fields which can be thought of as fundamentals of the gauge group. These particles behave like charges in a strong magnetic field and are frozen into the lowest Landau levels. The resulting system is a simple matrix quantum mechanics which should reflect much of the physics of charged particles in strong magnetic fields. The present results were first presented as a talk at the Institute for Mathematical Science, Chennai, India; the author wishes to thank Prof. T. R. Govindarajan and the IMS for hospitality and financial support, and the aud...
Planar Zeros in Gauge Theories and Gravity
Jimenez, Diego Medrano; Vazquez-Mozo, Miguel A
2016-01-01
Planar zeros are studied in the context of the five-point scattering amplitude for gauge bosons and gravitons. In the case of gauge theories, it is found that planar zeros are determined by an algebraic curve in the projective plane spanned by the three stereographic coordinates labelling the direction of the outgoing momenta. This curve depends on the values of six independent color structures. Considering the gauge group SU(N) with N=2,3,5 and fixed color indices, the class of curves obtained gets broader by increasing the rank of the group. For the five-graviton scattering, on the other hand, we show that the amplitude vanishes whenever the process is planar, without imposing further kinematic conditions. A rationale for this result is provided using color-kinematics duality.
Entanglement in Weakly Coupled Lattice Gauge Theories
Radicevic, Djordje
2015-01-01
We present a direct lattice gauge theory computation that, without using dualities, demonstrates that the entanglement entropy of Yang-Mills theories with arbitrary gauge group $G$ contains a generic logarithmic term at sufficiently weak coupling $e$. In two spatial dimensions, for a region of linear size $r$, this term equals $\\frac{1}{2} \\dim(G) \\log\\left(e^2 r\\right)$ and it dominates the universal part of the entanglement entropy. Such logarithmic terms arise from the entanglement of the softest mode in the entangling region with the environment. For Maxwell theory in two spatial dimensions, our results agree with those obtained by dualizing to a compact scalar with spontaneous symmetry breaking.
Integrability in N=2 superconformal gauge theorie
Energy Technology Data Exchange (ETDEWEB)
Pomoni, Elli [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; National Technical Univ. of Athens (Greece). Physics Div.
2013-10-15
Any N=2 superconformal gauge theory (including N=4 SYM) contains a set of local operators made only out of fields in the N=2 vector multiplet that is closed under renormalization to all loops, namely the SU(2,1 vertical stroke 2) sector. For planar N=4 SYM the spectrum of local operators can be obtained by mapping the problem to an integrable model (a spin chain in perturbation theory), in principle for any value of the coupling constant. We present a diagrammatic argument that for any planar N=2 superconformal gauge theory the SU(2,1 vertical stroke 2) Hamiltonian acting on infinite spin chains is identical to all loops to that of N=4 SYM, up to a redefinition of the coupling constant. Thus, this sector is integrable and anomalous dimensions can be, in principle, read off from the N=4 ones up to this redefinition.
Xin, Jun-Li
2010-01-01
We study the quantum-classical correspondence in terms of coherent wave functions of a charged particle in two-dimensional central-scalar-potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level-space of angular momentum being greater or less than $\\hbar$ is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily $2\\pi$-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The quantum mechanical model of anyon proposed by Wilczek (Phys. Rev. Lette. 48, 1144) becomes a special case of th...
Xin, Jun-Li; Liang, Jiu-Qing
2012-04-01
We study quantum—classical correspondence in terms of the coherent wave functions of a charged particle in two-dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than ħ is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 2π-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization, where the classical orbits are 2π-periodic.
Gravity, Gauge Theories and Geometric Algebra
Lasenby, A; Gull, S F; Lasenby, Anthony; Doran, Chris; Gull, Stephen
1998-01-01
A new gauge theory of gravity is presented. The theory is constructed in a flat background spacetime and employs gauge fields to ensure that all relations between physical quantities are independent of the positions and orientations of the matter fields. In this manner all properties of the background spacetime are removed from physics, and what remains are a set of `intrinsic' relations between physical fields. The properties of the gravitational gauge fields are derived from both classical and quantum viewpoints. Field equations are then derived from an action principle, and consistency with the minimal coupling procedure selects an action that is unique up to the possible inclusion of a cosmological constant. This in turn singles out a unique form of spin-torsion interaction. A new method for solving the field equations is outlined and applied to the case of a time-dependent, spherically-symmetric perfect fluid. A gauge is found which reduces the physics to a set of essentially Newtonian equations. These e...
Conformal field theory with gauge symmetry
Ueno, Kenji
2008-01-01
This book presents a systematic approach to conformal field theory with gauge symmetry from the point of view of complex algebraic geometry. After presenting the basic facts of the theory of compact Riemann surfaces and the representation theory of affine Lie algebras in Chapters 1 and 2, conformal blocks for pointed Riemann surfaces with coordinates are constructed in Chapter 3. In Chapter 4 the sheaf of conformal blocks associated to a family of pointed Riemann surfaces with coordinates is constructed, and in Chapter 5 it is shown that this sheaf supports a projective flat connection-one of
Light-Front Quantization of Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Brodskey, Stanley
2002-12-01
Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.
Torrielli, Alessandro
2003-01-01
The results of our research on noncommutative perturbative quantum field theory and its relation to string theory are exposed with details. 1) We give an introduction to noncommutative quantum field theory and its derivation from open string theory in an antisymmetric background. 2) We perform a perturbative Wilson loop calculation for 2D NCYM. We compare the LCG results for the WML and the PV prescription. With WML the loop is well-defined and regular in the commutative limit. With PV the result is singular. This is intriguing: in the commutative theory their difference is related to topological excitations, moreover PV provides a point-like potential. 3) Commutative 2D YM exhibits an interplay between geometrical and U(N) gauge properties: in the exact expression of a Wilson loop with n windings a scaling intertwines n and N. In the NC case the interplay becomes tighter due to the merging of space-time and ``internal'' symmetries. Surprisingly, in our up to O(g^6) (and beyond) crossed graphs calculations the scaling we mentioned occurs for large n, N and theta. 4) We discuss the breakdown of perturbative unitarity of noncommutative electric-type QFT in the light of strings. We consider the analytic structure of string loop two-point functions suitably continuing them off-shell, and then study the Seiberg-Witten limit. In this way we pick up how the unphysical tachyonic branch cut appears in the NC field theory.
Large-Nc Gauge Theory and Chiral Random Matrix Theory
Hanada, Masanori; Lee, Jong-Wan; Yamada, Norikazu
Effective theory approaches and the large-Nc limit are useful for studying the strongly coupled gauge theories. In this talk we consider how the chiral random matrix theory (χRMT) can be used in the study of large-Nc gauge theories. It turns out the parameter regions, in which each of these two approaches are valid, are different. Still, however, we show that the breakdown of chiral symmetry can be detected by combining the large-Nc argument and the χRMT with some cares. As a demonstration, we numerically study the four dimensional SU(Nc) gauge theory with Nf = 2 heavy adjoint fermions on a 24 lattice by using Monte-Carlo simulations, which is related to the infinite volume lattice through the Eguchi-Kawai equivalence.
Analytic Variational Investigation of Euclidean SU(3) Gauge Theory
Dass, N D H
1993-01-01
Analytic variational techniques for lattice gauge theories based on the Rayleigh-Ritz(RR) method were previously developed for euclidean SU(2) gauge theories in 3 and 4 dimensions. Their extensions to SU(3) gauge theory including applications to correlation functions and mass gaps are presented here.
Holographic Entanglement in a Noncommutative Gauge Theory
Fischler, Willy; Kundu, Sandipan
2014-01-01
In this article we investigate aspects of entanglement entropy and mutual information in a large-N strongly coupled noncommutative gauge theory, both at zero and at finite temperature. Using the gauge-gravity duality and the Ryu-Takayanagi (RT) prescription, we adopt a scheme for defining spatial regions on such noncommutative geometries and subsequently compute the corresponding entanglement entropy. We observe that for regions which do not lie entirely in the noncommutative plane, the RT-prescription yields sensible results. In order to make sense of the divergence structure of the corresponding entanglement entropy, it is essential to introduce an additional cut-off in the theory. For regions which lie entirely in the noncommutative plane, the corresponding minimal area surfaces can only be defined at this cut-off and they have distinctly peculiar properties.
Holographic entanglement in a noncommutative gauge theory
Energy Technology Data Exchange (ETDEWEB)
Fischler, Willy [Theory Group, Department of Physics, University of Texas,Austin, TX 78712 (United States); Texas Cosmology Center, University of Texas,Austin, TX 78712 (United States); Kundu, Arnab [Theory Group, Department of Physics, University of Texas,Austin, TX 78712 (United States); Kundu, Sandipan [Theory Group, Department of Physics, University of Texas,Austin, TX 78712 (United States); Texas Cosmology Center, University of Texas,Austin, TX 78712 (United States)
2014-01-24
In this article we investigate aspects of entanglement entropy and mutual information in a large-N strongly coupled noncommutative gauge theory, both at zero and at finite temperature. Using the gauge-gravity duality and the Ryu-Takayanagi (RT) prescription, we adopt a scheme for defining spatial regions on such noncommutative geometries and subsequently compute the corresponding entanglement entropy. We observe that for regions which do not lie entirely in the noncommutative plane, the RT-prescription yields sensible results. In order to make sense of the divergence structure of the corresponding entanglement entropy, it is essential to introduce an additional cut-off in the theory. For regions which lie entirely in the noncommutative plane, the corresponding minimal area surfaces can only be defined at this cut-off and they have distinctly peculiar properties.
Instantons, Fluxons and Open Gauge String Theory
Griguolo, L; Szabó, R J; Griguolo, Luca; Seminara, Domenico; Szabo, Richard J.
2004-01-01
We use the exact instanton expansion to illustrate various string characteristics of noncommutative gauge theory in two dimensions. We analyse the spectrum of the model and present some evidence in favour of Hagedorn and fractal behaviours. The decompactification limit of noncommutative torus instantons is shown to map in a very precise way, at both the classical and quantum level, onto fluxon solutions on the noncommutative plane. The weak-coupling singularities of the usual Gross-Taylor string partition function for QCD on the torus are studied in the instanton representation and its double scaling limit, appropriate for the mapping onto noncommutative gauge theory, is shown to be a generating function for the volumes of the principal moduli spaces of holomorphic differentials. The noncommutative deformation of this moduli space geometry is described and appropriate open string interpretations are proposed in terms of the fluxon expansion.
Planar Gravitational Corrections For Supersymmetric Gauge Theories
Dijkgraaf, R; Ooguri, H; Vafa, C; Zanon, D
2004-01-01
In this paper we discuss the contribution of planar diagrams to gravitational F-terms for N=1 supersymmetric gauge theories admitting a large N description. We show how the planar diagrams lead to a universal contribution at the extremum of the glueball superpotential, leaving only the genus one contributions, as was previously conjectured. We also discuss the physical meaning of gravitational F-terms.
The Dyon Charge in Noncommutative Gauge Theories
Directory of Open Access Journals (Sweden)
L. Cieri
2008-01-01
Full Text Available We construct a dyon solution for the noncommutative version of the Yang-Mills-Higgs model with a ϑ-term. Extending the Noether method to the case of a noncommutative gauge theory, we analyze the effect of CP violation induced both by the ϑ-term and by noncommutativity proving that the Witten effect formula for the dyon charge remains the same as in ordinary space.
Noncommutative Geometric Gauge Theory from Superconnections
Lee, Chang-Yeong
1996-01-01
Noncommutative geometric gauge theory is reconstructed based on the superconnection concept. The bosonic action of the Connes-Lott model including the symmetry breaking Higgs sector is obtained by using a new generalized derivative, which consists of the usual 1-form exterior derivative plus an extra element called the matrix derivative, for the curvatures. We first derive the matrix derivative based on superconnections and then show how the matrix derivative can give rise to spontaneous symm...
Chiral symmetry and lattice gauge theory
Creutz, M
1994-01-01
I review the problem of formulating chiral symmetry in lattice gauge theory. I discuss recent approaches involving an infinite tower of additional heavy states to absorb Fermion doublers. For hadronic physics this provides a natural scheme for taking quark masses to zero without requiring a precise tuning of parameters. A mirror Fermion variation provides a possible way of extending the picture to chirally coupled light Fermions. Talk presented at "Quark Confinement and the Hadron Spectrum," Como, Italy, 20-24 June 1994.
Constraining differential renormalization in abelian gauge theories
del Águila, F; Tapia, R M; Pérez-Victoria, M
1998-01-01
We present a procedure of differential renormalization at the one loop level which avoids introducing unnecessary renormalization constants and automatically preserves abelian gauge invariance. The amplitudes are expressed in terms of a basis of singular functions. The local terms appearing in the renormalization of these functions are determined by requiring consistency with the propagator equation. Previous results in abelian theories, with and without supersymmetry, are discussed in this context.
Gauge theories with non-trivial backgrounds
Binosi, Daniele
2014-01-01
We review our most recent results in formulating gauge theories in the presence of a background field on the basis of symmetry arguments only. In particular we show how one can gain full control over the dependence on the background field of the effective action, and how the so-called background field method emerges naturally from the requirement of invariance under the BRST and antiBRST symmetries.
2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement
Energy Technology Data Exchange (ETDEWEB)
Anber, Mohamed M.; Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.
2012-08-16
We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.
Torrielli, A
2003-01-01
The results of our research on noncommutative perturbative quantum field theory and its relation to string theory are exposed with details. 1) We give an introduction to noncommutative quantum field theory and its derivation from open string theory in an antisymmetric background. 2) We perform a perturbative Wilson loop calculation for 2D NCYM. We compare the LCG results for the WML and the PV prescription. With WML the loop is well-defined and regular in the commutative limit. With PV the result is singular. This is intriguing: in the commutative theory their difference is related to topological excitations, moreover PV provides a point-like potential. 3) Commutative 2D YM exhibits an interplay between geometrical and U(N) gauge properties: in the exact expression of a Wilson loop with n windings a scaling intertwines n and N. In the NC case the interplay becomes tighter due to the merging of space-time and ``internal'' symmetries. Surprisingly, in our up to O(g^6) (and beyond) crossed graphs calculations th...
Dark matter in the hidden gauge theory
Yamanaka, Nodoka; Gongyo, Shinya; Iida, Hideaki
2014-01-01
The cosmological scenario of the dark matter generated in the hidden gauge theory based on the grand unification is discussed. It is found that the stability of the dark matter halo of our Galaxy and the cosmic ray observation constrain, respectively, the dark matter mass and the unification scale between the standard model and the hidden gauge theory sectors. To obtain a phenomenologically consistent thermal evolution, the entropy of the standard model sector needs to be increased. We therefore propose a scenario where the mini-inflation is induced from the potential coupled to the Standard model sector, in particular the Higgs sector. This scenario makes consistent the current dark matter density as well as the baryon-to-photon ratio for the case of pion dark matter. For the glueball or heavy pion of hidden gauge theory, an additional mini-inflation in the standard model sector before the leptogenesis is required. We also propose the possibility to confirm this scenario by known prospective experimental app...
Dynamical symmetry breaking in chiral gauge theories with direct-product gauge groups
Shi, Yan-Liang; Shrock, Robert
2016-09-01
We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups G . If the gauge coupling for a factor group Gi⊂G becomes sufficiently strong, it can produce bilinear fermion condensates that break the Gi symmetry itself and/or break other gauge symmetries Gj⊂G . Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of G and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.
Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups
Shi, Yan-Liang
2016-01-01
We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.
N=2 gauge theories and degenerate fields of Toda theory
Kanno, Shoichi; Shiba, Shotaro; Tachikawa, Yuji
2009-01-01
We discuss the correspondence between degenerate fields of the W_N algebra and punctures of Gaiotto's description of the Seiberg-Witten curve of N=2 superconformal gauge theories. Namely, we find that the type of degenerate fields of the W_N algebra, with null states at level one, is classified by Young diagrams with N boxes, and that the singular behavior of the Seiberg-Witten curve near the puncture agrees with that of W_N generators. We also find how to translate mass parameters of the gauge theory to the momenta of the Toda theory.
Nonequilibrium formulation of abelian gauge theories
Energy Technology Data Exchange (ETDEWEB)
Zoeller, Thorsten
2013-09-01
This work is about a formulation of abelian gauge theories out-of-equilibrium. In contrast to thermal equilibrium, systems out-of-equilibrium are not constant in time, and the interesting questions in such systems refer to time evolution problems. After a short introduction to quantum electrodynamics (QED), the two-particle irreducible (2PI) effective action is introduced as an essential technique for the study of quantum field theories out-of-equilibrium. The equations of motion (EOMs) for the propagators of the theory are then derived from it. It follows a discussion of the physical degrees of freedom (DOFs) of the theory, in particular with respect to the photons, since in covariant formulations of gauge theories unphysical DOFs are necessarily contained. After that the EOMs for the photon propagator are examined more closely. It turns out that they are structurally complicated, and a reformulation of the equations is presented which for the untruncated theory leads to an essential structural simplification of the EOMs. After providing the initial conditions which are necessary in order to solve the EOMs, the free photon EOMs are solved with the help of the reformulated equations. It turns out that the solutions diverge in time, i.e. they are secular. This is a manifestation of the fact that gauge theories contain unphysical DOFs. It is reasoned that these secularities exist only in the free case and are therefore ''artificial''. It is however emphasized that they may not be a problem in principle, but certainly are in practice, in particular for the numerical solution of the EOMs. Further, the origin of the secularities, for which there exists an illustrative explanation, is discussed in more detail. Another characteristic feature of 2PI formulations of gauge theories is the fact that quantities calculated from approximations of the 2PI effective action, which are gauge invariant in the exact theory as well as in an approximated theory at
Gauge theory and defects in solids
Edelen, DGB
2012-01-01
This new series Mechanics and Physics of Discrete Systems aims to provide a coherent picture of the modern development of discrete physical systems. Each volume will offer an orderly perspective of disciplines such as molecular dynamics, crystal mechanics and/or physics, dislocation, etc. Emphasized in particular are the fundamentals of mechanics and physics that play an essential role in engineering applications.Volume 1, Gauge Theory and Defects in Solids, presents a detailed development of a rational theory of the dynamics of defects and damage in solids. Solutions to field e
Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I
Energy Technology Data Exchange (ETDEWEB)
Gaiotto, D. [Institute for Advanced Study (IAS), Princeton, NJ (United States); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-03-15
Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on S{sup 4}. (orig.)
Exceptional Confinement in G(2) Gauge Theory
Holland, K; Pepé, M; Wiese, U J
2003-01-01
We study theories with the exceptional gauge group G(2). The 14 adjoint "gluons" of a G(2) gauge theory transform as {3}, {3bar} and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a "quark" in the {7} representation of G(2) can be screened by "gluons". As a result, in G(2) Yang-Mills theory the string between a pair of static "quarks" can break. In G(2) QCD there is a hybrid consisting of one "quark" and three "gluons". In supersymmetric G(2) Yang-Mills theory with a {14} Majorana "gluino" the chiral symmetry is Z(4)_\\chi. Chiral symmetry breaking gives rise to distinct confined phases separated by confined-confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, wher...
Chremmos, Ioannis; Giamalaki, Melpomeni; Yannopapas, Vassilios; Paspalakis, Emmanuel
2014-01-01
We present a formulation for deriving effective medium properties of infinitely periodic two-dimensional metamaterial lattice structures beyond the static and quasi-static limits. We utilize the multipole expansions, where the polarization currents associated with the supported Bloch modes are expressed via the electric dipole, magnetic dipole, and electric quadrupole moments per unit length. We then propose a method to calculate the Bloch modes based on the lattice geometry and individual unit element structure. The results revert to well-known formulas in the quasistatic limit and are useful for the homogenization of nanorod-type metamaterials which are frequently used in optical applications.
Flavour singlets in gauge theory as Permutations
Kimura, Yusuke; Suzuki, Ryo
2016-01-01
Gauge-invariant operators can be specified by equivalence classes of permutations. We develop this idea concretely for the singlets of the flavour group $SO(N_f)$ in $U(N_c)$ gauge theory by using Gelfand pairs and Schur-Weyl duality. The singlet operators, when specialised at $N_f =6$, belong to the scalar sector of ${\\cal N}=4$ SYM. A simple formula is given for the two-point functions in the free field limit of $g_{YM}^2 =0$. The free two-point functions are shown to be equal to the partition function on a 2-complex with boundaries and a defect, in a topological field theory of permutations. The permutation equivalence classes are Fourier transformed to a representation basis which is orthogonal for the two-point functions at finite $N_c , N_f$. Counting formulae for the gauge-invariant operators are described. The one-loop mixing matrix is derived as a linear operator on the permutation equivalence classes.
Matrix product states for gauge field theories.
Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank
2014-08-29
The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field.
Higher-dimensional gauge theories from string theory
Energy Technology Data Exchange (ETDEWEB)
Tomasiello, Alessandro [Dipartimento di Fisica, Universita di Milano-Bicocca, Milano (Italy); INFN, Sezione di Milano-Bicocca, Milano (Italy)
2016-04-15
We review some recent developments regarding supersymmetric field theories in six and five dimensions. In particular, we will describe the classification of supersymmetric six-dimensional theories with a holographic IIA dual; they are ''linear quivers'' consisting of chains of many SU (or SO/Sp) gauge groups connected by hypermultiplets and tensor multiplets. We will also describe the wider classification of supersymmetric six-dimensional theories that can be engineered in F-theory; these are also chains, but they include exceptional gauge groups and copies of a more exotic ''E-string'' theory with a single tensor and E{sub 8} flavor symmetry. Finally we discuss some properties of these theories under compactification to lower dimensions. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Jao, C.-S.; Hau, L.-N.
2016-11-01
Electrostatic streaming instabilities have been proposed as the generation mechanism for the electrostatic solitary waves observed in various space plasma environments. Past studies on the subject have been mostly based on the kinetic theory and particle simulations. In this paper, we extend our recent study based on one-dimensional fluid theory and particle simulations to two-dimensional regimes for both bi-streaming and bump-on-tail streaming instabilities in electron-ion plasmas. Both linear fluid theory and kinetic simulations show that for bi-streaming instability, the oblique unstable modes tend to be suppressed by the increasing background magnetic field, while for bump-on-tail instability, the growth rates of unstable oblique modes are increased with increasing background magnetic field. For both instabilities, the fluid theory gives rise to the linear growth rates and the wavelengths of unstable modes in good agreement with those obtained from the kinetic simulations. For unmagnetized and weakly magnetized systems, the formed electrostatic structures tend to diminish after the long evolution, while for relatively stronger magnetic field cases, the solitary waves may merge and evolve to steady one-dimensional structures. Comparisons between one and two-dimensional results are made and the effects of the ion-to-electron mass ratio are also examined based on the fluid theory and kinetic simulations. The study concludes that the fluid theory plays crucial seeding roles in the kinetic evolution of electrostatic streaming instabilities.
N=1 Supersymmetry, Deconstruction, and Bosonic Gauge Theories
Dijkgraaf, R; Dijkgraaf, Robbert; Vafa, Cumrun
2003-01-01
We show how the full holomorphic geometry of local Calabi-Yau threefold compactifications with N=1 supersymmetry can be obtained from matrix models. In particular for the conifold geometry we relate F-terms to the general amplitudes of c=1 non-critical bosonic string theory, and express them in a quiver or, equivalently, super matrix model. Moreover we relate, by deconstruction, the uncompactified c=1 theory to the six-dimensional conformal (2,0) theory. Furthermore, we show how we can use the idea of deconstruction to connect 4+k dimensional supersymmetric gauge theories to a k-dimensional internal bosonic gauge theory, generalizing the relation between 4d theories and matrix models. Examples of such bosonic systems include unitary matrix models and gauged matrix quantum mechanics, which deconstruct 5-dimensional supersymmetric gauge theories, and Chern-Simons gauge theories, which deconstruct gauge theories living on branes wrapped over cycles in Calabi-Yau threefolds.
Strong Coupling Gauge Theories in LHC ERA
Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.
2011-01-01
AdS/QCD, light-front holography, and the nonperturbative running coupling / Stanley J. Brodsky, Guy de Teramond and Alexandre Deur -- New results on non-abelian vortices - Further insights into monopole, vortex and confinement / K. Konishi -- Study on exotic hadrons at B-factories / Toru Iijima -- Cold compressed baryonic matter with hidden local symmetry and holography / Mannque Rho -- Aspects of baryons in holographic QCD / T. Sakai -- Nuclear force from string theory / K. Hashimoto -- Integrating out holographic QCD back to hidden local symmetry / Masayasu Harada, Shinya Matsuzaki and Koichi Yamawaki -- Holographic heavy quarks and the giant Polyakov loop / Gianluca Grignani, Joanna Karczmarek and Gordon W. Semenoff -- Effect of vector-axial-vector mixing to dilepton spectrum in hot and/or dense matter / Masayasu Harada and Chihiro Sasaki -- Infrared behavior of ghost and gluon propagators compatible with color confinement in Yang-Mills theory with the Gribov horizon / Kei-Ichi Kondo -- Chiral symmetry breaking on the lattice / Hidenori Fukaya [for JLQCD and TWQCD collaborations] -- Gauge-Higgs unification: Stable Higgs bosons as cold dark matter / Yutaka Hosotani -- The limits of custodial symmetry / R. Sekhar Chivukula ... [et al.] -- Higgs searches at the tevatron / Kazuhiro Yamamoto [for the CDF and D[symbol] collaborations] -- The top triangle moose / R. S. Chivukula ... [et al.] -- Conformal phase transition in QCD like theories and beyond / V. A. Miransky -- Gauge-Higgs unification at LHC / Nobuhito Maru and Nobuchika Okada -- W[symbol]W[symbol] scattering in Higgsless models: Identifying better effective theories / Alexander S. Belyaev ... [et al.] -- Holographic estimate of Muon g - 2 / Deog Ki Hong -- Gauge-Higgs dark matter / T. Yamashita -- Topological and curvature effects in a multi-fermion interaction model / T. Inagaki and M. Hayashi -- A model of soft mass generation / J. Hosek -- TeV physics and conformality / Thomas Appelquist -- Conformal
Four-Fermion Limit of Gauge-Yukawa Theories
DEFF Research Database (Denmark)
Krog, Jens; Mojaza, Matin; Sannino, Francesco
2015-01-01
perturbative gauge-Yukawa theories can have a strongly coupled limit at high-energy, that can be mapped into a four-fermion theory. Interestingly, we are able to precisely carve out a region of the perturbative parameter space supporting such a composite limit. This has interesting implications on our current......We elucidate and extend the conditions that map gauge-Yukawa theories at low energies into time-honoured gauged four-fermion interactions at high energies. These compositeness conditions permit to investigate theories of composite dynamics through gauge-Yukawa theories. Here we investigate whether...... view on models of particle physics. As a template model we use an $SU(N_C)$ gauge theory with $N_F$ Dirac fermions transforming according to the fundamental representation of the gauge group. The fermions further interact with a gauge singlet complex $N_F\\times N_F$ Higgs that ceases to be a physical...
On the Structure of Quantum Gauge Theories with External Fields
Falkenberg, S; Lavrov, P M; Moshin, P
1998-01-01
We consider generating functionals of Green's functions with external fields in the framework of BV and BLT quantization schemes for general gauge theories. The corresponding Ward identities are obtained, and the gauge dependence is studied.
The Gribov ambiguity for maximal abelian and center gauges in SU(2) lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Stack, John D.; Tucker, William W
2001-03-01
We present results for the fundamental string tension in SU(2) lattice gauge theory after projection to maximal abelian and direct maximal center gauges. We generate 20 Gribov copies/configuration. Abelian and center projected string tensions slowly decrease as higher values of the gauge functionals are reached.
TWO-DIMENSIONAL APPROXIMATION OF EIGENVALUE PROBLEMS IN SHELL THEORY: FLEXURAL SHELLS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The eigenvalue problem for a thin linearly elastic shell, of thickness 2e, clamped along its lateral surface is considered. Under the geometric assumption on the middle surface of the shell that the space of inextensional displacements is non-trivial, the authors obtain, as ε→0,the eigenvalue problem for the two-dimensional"flexural shell"model if the dimension of the space is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the spectra of both flexural and membrane shells. The method consists of rescaling the variables and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable a priori estimates for the scaled eigenvalues.
Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes
Trushin, Maxim; Kelleher, Edmund J. R.; Hasan, Tawfique
2016-10-01
We develop an analytical model to describe sub-band-gap optical absorption in two-dimensional semiconducting transition metal dichalcogenide (s-TMD) nanoflakes. The material system represents an array of few-layer molybdenum disulfide crystals, randomly orientated in a polymer matrix. We propose that optical absorption involves direct transitions between electronic edge states and bulk bands, depends strongly on the carrier population, and is saturable with sufficient fluence. For excitation energies above half the band gap, the excess energy is absorbed by the edge-state electrons, elevating their effective temperature. Our analytical expressions for the linear and nonlinear absorption could prove useful tools in the design of practical photonic devices based on s-TMDs.
Exceptional Deconfinement in G(2) Gauge Theory
Pepé, M
2006-01-01
The Z(N) center symmetry plays an important role in the deconfinement phase transition of SU(N) Yang-Mills theory at finite temperature. The exceptional group G(2) is the smallest simply connected gauge group with a trivial center. Hence, there is no symmetry reason why the low- and high-temperature regimes in G(2) Yang-Mills theory should be separated by a phase transition. Still, we present numerical evidence for the presence of a first order deconfinement phase transition at finite temperature. Via the Higgs mechanism, G(2) breaks to its SU(3) subgroup when a scalar field in the fundamental {7} representation acquires a vacuum expectation value v. Varying v we investigate how the G(2) deconfinement transition is related to the one in SU(3) Yang-Mills theory. Interestingly, the two transitions seem to be disconnected. We also discuss a potential dynamical mechanism that may explain this behavior.
Dualities in all-order finite N=1 gauge theories
Energy Technology Data Exchange (ETDEWEB)
Karch, A.; Luest, D.; Zoupanos, G. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
1998-09-28
We search for dual gauge theories of all-loop finite, N=1 supersymmetric gauge theories. It is shown how to find explicitly the dual gauge theories of almost all chiral, N=1, all-loop finite gauge theories, while several models have been discussed in detail, including a realistic finite SU(5) unified theory. Out of our search only one all-loop, N=1 finite SO(10) theory emerges, so far, as a candidate for exhibiting also S-duality. (orig.) 60 refs.
Lattice gauge theories and Monte Carlo algorithms
Energy Technology Data Exchange (ETDEWEB)
Creutz, M. (Brookhaven National Lab., Upton, NY (USA). Physics Dept.)
1989-07-01
Lattice gauge theory has become the primary tool for non-perturbative calculations in quantum field theory. These lectures review some of the foundations of this subject. The first lecture reviews the basic definition of the theory in terms of invariant integrals over group elements on lattice bonds. The lattice represents an ultraviolet cutoff, and renormalization group arguments show how the bare coupling must be varied to obtain the continuum limit. Expansions in the inverse of the coupling constant demonstrate quark confinement in the strong coupling limit. The second lecture turns to numerical simulation, which has become an important approach to calculating hadronic properties. Here I discuss the basic algorithms for obtaining appropriately weighted gauge field configurations. The third lecture turns to algorithms for treating fermionic fields, which still require considerably more computer time than needed for purely bosonic simulations. Some particularly promising recent approaches are based on global accept-reject steps and should display a rather favorable dependence of computer time on the system volume. (orig.).
Gauge fixing and BRST formalism in non-Abelian gauge theories
Ghiotti, Marco; Williams, A G
2007-01-01
In this Thesis we present a comprehensive study of perturbative and non-perturbative non-Abelian gauge theories in the light of gauge-fixing procedures, focusing our attention on the BRST formalism in Yang-Mills theory. We propose first a model to re-write the Faddeev-Popov quantisation method in terms of group-theoretical techniques and then we give a possible way to solve the no-go theorem of Neuberger for lattice Yang-Mills theory with double BRST symmetry. In the final part we present a study of the Batalin-Vilkovisky quantisation method for non-linear gauges in non-Abelian gauge theories.
Noncompact lattice formulation of gauge theories
Friedberg, R; Pang, Y; Ren, H C
1995-01-01
We expand the gauge field in terms of a suitably constructed complete set of Bloch wave functions, each labeled by a band designation \\,n\\, and a wave number \\,\\vec K\\, restricted to the Brillouin zone. A noncompact formulation of lattice QCD (or QED) can be derived by restricting the expansion only to the \\,0^{th}-band (\\,n = 0\\,) functions, which are simple continuum interpolations of discrete values associated with sites or links on a lattice. The exact continuum theory can be reached through the inclusion of all \\,n = 0\\, and \\,n \
Lattice Gauge Field Theory and Prismatic Sets
DEFF Research Database (Denmark)
Akyar, Bedia; Dupont, Johan Louis
as and in particular the latter we use to study lattice gauge theory in the sense of Phillips and Stone. Thus for a Lie group and a set of parallel transport functions defining the transition over faces of the simplices, we define a classifying map from the prismatic star to a prismatic version of the classifying......We study prismatic sets analogously to simplicial sets except that realization involves prisms, i.e., products of simplices rather than just simplices. Particular examples are the prismatic subdivision of a simplicial set and the prismatic star of . Both have the same homotopy type...
Parallel supercomputers for lattice gauge theory.
Brown, F R; Christ, N H
1988-03-18
During the past 10 years, particle physicists have increasingly employed numerical simulation to answer fundamental theoretical questions about the properties of quarks and gluons. The enormous computer resources required by quantum chromodynamic calculations have inspired the design and construction of very powerful, highly parallel, dedicated computers optimized for this work. This article gives a brief description of the numerical structure and current status of these large-scale lattice gauge theory calculations, with emphasis on the computational demands they make. The architecture, present state, and potential of these special-purpose supercomputers is described. It is argued that a numerical solution of low energy quantum chromodynamics may well be achieved by these machines.
Nonperturbative Solution of Yukawa Theory and Gauge Theories
Hiller, John R.
2004-11-01
Recent progress in the nonperturbative solution of (3+1)-dimensional Yukawa theory and quantum electrodynamics (QED) and (1+1)-dimensional super Yang-Mills (SYM) theory will be summarized. The work on Yukawa theory has been extended to include two-boson contributions to the dressed fermion state and has inspired similar work on QED, where Feynman gauge has been found surprisingly convenient. In both cases, the theories are regulated in the ultraviolet by the inclusion of Pauli-Villars particles. For SYM theory, new high-resolution calculations of spectra have been used to obtain thermodynamic functions and improved results for a stress-energy correlator.
Superstring theories as low-energy limit of supergroup gauge theories
Popov, Alexander D
2016-01-01
We consider Yang-Mills theory with $N=2$ super translation group in $d=10$ auxiliary dimensions as the structure group. The gauge theory is defined on a direct product manifold $\\Sigma_2\\times H^2$, where $\\Sigma_2$ is a two-dimensional Lorentzian manifold and $H^2$ is the open disc in $\\mathbb{R}^2$ with the boundary $S^1=\\partial H^2$. We show that in the adiabatic limit, when the metric on $H^2$ is scaled down, the Yang-Mills action supplemented by the $d=5$ Chern-Simons term becomes the Green-Schwarz superstring action. More concretely, the Yang-Mills action in the infrared limit flows to the kinetic part of the superstring action and the $d=5$ Chern-Simons action, defined on a 5-manifold with the boundary $\\Sigma_2\\times H^2$, flows to the Wess-Zumino part of the superstring action. The same kind of duality between gauge fields and strings is established for type IIB superstring on AdS$_5\\times S^5$ background and a supergroup gauge theory with PSU(2,2$|$4) as the structure group.
The shear viscosity of gauge theory plasma with chemical potentials
Energy Technology Data Exchange (ETDEWEB)
Benincasa, Paolo [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Buchel, Alex [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada) and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9 (Canada)]. E-mail: abuchel@perimeterinstitute.ca; Naryshkin, Roman [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Physics Department, Taras Shevchenko Kiev National University, Prosp. Glushkova 6, Kiev 03022 (Ukraine)
2007-02-08
We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.
Three Instanton Computations In Gauge Theory And String Theory
Beasley, C E
2005-01-01
We employ a variety of ideas from geometry and topology to perform three new instanton computations in gauge theory and string theory. First, we consider supersymmetric QCD with gauge group SU( Nc) and with Nf flavors. In this theory, it is well known that instantons generate a superpotential if Nf = Nc − 1 and deform the moduli space of supersymmetric vacua if Nf = Nc. We extend these results to supersymmetric QCD with Nf > Nc flavors, for which we show that instantons generate a hierarchy of new, multi- fermion F-terms in the effective action. Second, we revisit the question of which Calabi-Yau compactifications of the heterotic string are stable under worldsheet instanton corrections to the effective space-time superpotential. For instance, compactifications described by (0, 2) linear sigma models are believed to be stable, suggesting a remarkable cancellation among the instanton effects in these theories. We show that this cancellation follows directly from a residue theorem, whose proof relie...
Wang, Mengen; Zhong, Jianqiang; Boscoboinik, Jorge Anibal; Lu, Deyu
Zeolites are important industrial catalysts with porous three-dimensional structures. The catalytically active sites are located inside the pores, thus rendering them inaccessible for surface science measurements. We synthesized a two-dimensional (2D) zeolite model system, consisting of an (alumino)silicate bilayer weakly bound to a Ru (0001) surface. The 2D zeolite is suitable for surface science studies; it allows a detailed characterization of the atomic structure of the active site and interrogation of the model system during the catalytic reaction. As an initial step, we use Ar adsorption to obtain a better understanding of the atomic structure of the 2D zeolite. In addition, atomic level studies of rare gas adsorption and separation by zeolite are important for its potential application in nuclear waste sequestration. Experimental studies found that Ar atoms can be trapped inside the 2D-zeolite, raising an interesting question on whether Ar atoms are trapped inside the hexagonal prism nano-cages or at the interface between the (alumino)silicate bilayer and Ru(0001), or both. DFT calculations using van der Waals density functionals were carried out to determine the preferred Ar adsorption sites and the corresponding adsorption energies. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.
Classification of N=2 Superconformal Field Theories with Two-Dimensional Coulomb Branches
Argyres, P C; Shapere, A D; Wittig, J R; Argyres, Philip C.; Crescimanno, Michael; Shapere, Alfred D.; Wittig, John R.
2005-01-01
We study the classification of 2-dimensional scale-invariant rigid special Kahler (RSK) geometries, which potentially describe the Coulomb branches of N=2 supersymmetric field theories in four dimensions. We show that this classification is equivalent to the solution of a set of polynomial equations by using an integrability condition for the central charge, scale invariance, constraints coming from demanding single-valuedness of physical quantities on the Coulomb branch, and properties of massless BPS states at singularities. We find solutions corresponding to lagrangian scale invariant theories--including the scale invariant G_2 theory not found before in the literature--as well as many new isolated solutions (having no marginal deformations). All our scale-invariant RSK geometries are consistent with an interpretation as effective theories of N=2 superconformal field theories, and, where we can check, turn out to exist as quantum field theories.
Frobenius-Chern-Simons gauge theory
Bonezzi, Roberto; Boulanger, Nicolas; Sezgin, Ergin; Sundell, Per
2017-02-01
Given a set of differential forms on an odd-dimensional noncommutative manifold valued in an internal associative algebra H , we show that the most general cubic covariant Hamiltonian action, without mass terms, is controlled by an {{{Z}}2} -graded associative algebra F with a graded symmetric nondegenerate bilinear form. The resulting class of models provide a natural generalization of the Frobenius-Chern-Simons model (FCS) that was proposed in (arXiv:1505.04957) as an off-shell formulation of the minimal bosonic four-dimensional higher spin gravity theory. If F is unital and the {{{Z}}2} -grading is induced from a Klein operator that is outer to a proper Frobenius subalgebra, then the action can be written on a form akin to topological open string field theory in terms of a superconnection valued in H\\otimes F . We give a new model of this type based on a twisting of {C}≤ft[{{{Z}}2}× {{{Z}}4}\\right] , which leads to self-dual complexified gauge fields on AdS 4. If F is 3-graded, the FCS model can be truncated consistently as to contain no zero-form constraints on-shell. Two examples thereof are a twisting of {C}[{{({{{Z}}2})}3}] that yields the original model, and the Clifford algebra C{{\\ell}2n} which provides an FCS formulation of the bosonic Konstein-Vasiliev model with gauge algebra hu≤ft({{4}n-1},0\\right) .
Algebraic differential calculus for gauge theories
Energy Technology Data Exchange (ETDEWEB)
Landi, G.; Marmo, G. (Naples Univ. (Italy). Dipt. di Scienze Fisiche Istituto Nazionale di Fisica Nucleare, Naples (Italy))
1990-12-01
The guiding idea in this paper is that, from the point of view of physics, functions and fields are more important than the (space time) manifold over which they are defined. The line pursued in these notes belongs to the general framework of ideas that replaces the space M by the ring of functions on it. Our essential observation, underlying this work, is that much of mathematical physics requires only a few differential operators (Lie derivative, d, {delta}) operating on modules of sections of suitable bundles. A connection (=gauge potential) can be described by a lift of vector fields from the base to the total space of a principal bundle. Much of the information can be encoded in the lift without reference to the bundle structures. In this manner, one arrives at an 'algebraic differential calculus' and its graded generalization that we are going to discuss. We are going to give an exposition of 'algebraic gauge theory' in both ungraded and graded versions. We show how to deal with the essential features of electromagnetism, Dirac, Kaluza-Klein and 't Hooft-Polyakov monopoles. We also show how to break the symmetry from SU(2) to U(1) without Higgs field. We briefly show how to deal with tests particles in external fields and with the Lagrangian formulation of field theories. (orig./HSI).
Gravitational Quantum Foam and Supersymmetric Gauge Theories
Maeda, T; Noma, Y; Tamakoshi, T; Maeda, Takashi; Nakatsu, Toshio; Noma, Yui; Tamakoshi, Takeshi
2005-01-01
We study K\\"{a}hler gravity on local SU(N) geometry and describe precise correspondence with certain supersymmetric gauge theories and random plane partitions. The local geometry is discretized, via the geometric quantization, to a foam of an infinite number of gravitational quanta. We count these quanta in a relative manner by measuring a deviation of the local geometry from a singular Calabi-Yau threefold, that is a A_{N-1} singularity fibred over \\mathbb{P}^1. With such a regularization prescription, the number of the gravitational quanta becomes finite and turns to be the perturbative prepotential for five-dimensional \\mathcal{N}=1 supersymmetric SU(N) Yang-Mills. These quanta are labelled by lattice points in a certain convex polyhedron on \\mathbb{R}^3. The polyhedron becomes obtainable from a plane partition which is the ground state of a statistical model of random plane partition that describes the exact partition function for the gauge theory. Each gravitational quantum of the local geometry is shown...
Chaos in Chiral Condensates in Gauge Theories
Hashimoto, Koji; Murata, Keiju; Yoshida, Kentaroh
2016-12-01
Assigning a chaos index for dynamics of generic quantum field theories is a challenging problem because the notion of a Lyapunov exponent, which is useful for singling out chaotic behavior, works only in classical systems. We address the issue by using the AdS /CFT correspondence, as the large Nc limit provides a classicalization (other than the standard ℏ→0 ) while keeping nontrivial quantum condensation. We demonstrate the chaos in the dynamics of quantum gauge theories: The time evolution of homogeneous quark condensates ⟨q ¯q ⟩ and ⟨q ¯γ5q ⟩ in an N =2 supersymmetric QCD with the S U (Nc) gauge group at large Nc and at a large 't Hooft coupling λ ≡NcgYM2 exhibits a positive Lyapunov exponent. The chaos dominates the phase space for energy density E ≳(6 ×1 02)×mq4(Nc/λ2), where mq is the quark mass. We evaluate the largest Lyapunov exponent as a function of (Nc,λ ,E ) and find that the N =2 supersymmetric QCD is more chaotic for smaller Nc.
Dai, Daoxin; He, Sailing
2004-12-01
An accurate two-dimensional (2D) model is introduced for the simulation of an arrayed-waveguide grating (AWG) demultiplexer by integrating the field distribution along the vertical direction. The equivalent 2D model has almost the same accuracy as the original three-dimensional model and is more accurate for the AWG considered here than the conventional 2D model based on the effective-index method. To further improve the computational efficiency, the reciprocity theory is applied to the optimal design of a flat-top AWG demultiplexer with a special input structure.
Chiral expansion and Macdonald deformation of two-dimensional Yang-Mills theory
Kokenyesi, Zoltan; Szabo, Richard J
2016-01-01
We derive the analog of the large $N$ Gross-Taylor holomorphic string expansion for the refinement of $q$-deformed $U(N)$ Yang-Mills theory on a compact oriented Riemann surface. The derivation combines Schur-Weyl duality for quantum groups with the Etingof-Kirillov theory of generalized quantum characters which are related to Macdonald polynomials. In the unrefined limit we reproduce the chiral expansion of $q$-deformed Yang-Mills theory derived by de Haro, Ramgoolam and Torrielli. In the classical limit $q=1$, the expansion defines a new $\\beta$-deformation of Hurwitz theory wherein the refined partition function is a generating function for certain parameterized Euler characters, which reduce in the unrefined limit $\\beta=1$ to the orbifold Euler characteristics of Hurwitz spaces of holomorphic maps. We discuss the geometrical meaning of our expansions in relation to quantum spectral curves and $\\beta$-ensembles of matrix models arising in refined topological string theory.
Gauge invariance and radiative corrections in an extra dimensional theory
Novales-Sánchez, H.; Toscano, J. J.
2011-04-01
The gauge structure of the four dimensional effective theory originated in a pure five dimensional Yang-Mills theory compactified on the orbifold S1 /Z2, is discussed on the basis of the BRST symmetry. If gauge parameters propagate in the bulk, the excited Kaluza-Klein (KK) modes are gauge fields and the four dimensional theory is gauge invariant only if the compactification is carried out by using curvatures as fundamental objects. The four dimensional theory is governed by two types of gauge transformations, one determined by the KK zero modes of the gauge parameters and the other by the excited ones. Within this context, a gauge-fixing procedure to quantize the KK modes that is covariant under the first type of gauge transformations is shown and the ghost sector induced by the gauge-fixing functions is presented. If the gauge parameters are confined to the usual four dimensional space-time, the known result in the literature is reproduced with some minor variants, although it is emphasized that the excited KK modes are not gauge fields, but matter fields transforming under the adjoint representation of SU4(N). A calculation of the one-loop contributions of the excited KK modes of the SUL(2) gauge group on the off-shell W+W-V, with V a photon or a Z boson, is exhibited. Such contributions are free of ultraviolet divergences and well-behaved at high energies.
Wilson loop expectations in $SU(N)$ lattice gauge theory
Jafarov, Jafar
2016-01-01
This article gives a rigorous formulation and proof of the $1/N$ expansion for Wilson loop expectations in strongly coupled $SU(N)$ lattice gauge theory in any dimension. The coefficients of the expansion are represented as absolutely convergent sums over trajectories in a string theory on the lattice, establishing a kind of gauge-string duality. Moreover, it is shown that in large $N$ limit, calculations in $SU(N)$ lattice gauge theory with coupling strength $2\\beta$ corresponds to those in $SO(N)$ lattice gauge theory with coupling strength $\\beta$ when $|\\beta|$ is sufficiently small.
Quantum Cohomology and Quantum Hydrodynamics from Supersymmetric Quiver Gauge Theories
Bonelli, Giulio; Tanzini, Alessandro; Vasko, Petr
2015-01-01
We study the connection between N = 2 supersymmetric gauge theories, quantum cohomology and quantum integrable systems of hydrodynamic type. We consider gauge theories on ALE spaces of A and D-type and discuss how they describe the quantum cohomology of the corresponding Nakajima's quiver varieties. We also discuss how the exact evaluation of local BPS observables in the gauge theory can be used to calculate the spectrum of quantum Hamiltonians of spin Calogero integrable systems and spin Intermediate Long Wave hydrodynamics. This is explicitly obtained by a Bethe Ansatz Equation provided by the quiver gauge theory in terms of its adjacency matrix.
Quantum cohomology and quantum hydrodynamics from supersymmetric quiver gauge theories
Bonelli, Giulio; Sciarappa, Antonio; Tanzini, Alessandro; Vasko, Petr
2016-11-01
We study the connection between N = 2 supersymmetric gauge theories, quantum cohomology and quantum integrable systems of hydrodynamic type. We consider gauge theories on ALE spaces of A and D-type and discuss how they describe the quantum cohomology of the corresponding Nakajima's quiver varieties. We also discuss how the exact evaluation of local BPS observables in the gauge theory can be used to calculate the spectrum of quantum Hamiltonians of spin Calogero integrable systems and spin Intermediate Long Wave hydrodynamics. This is explicitly obtained by a Bethe Ansatz Equation provided by the quiver gauge theory in terms of its adjacency matrix.
He, Huan; von Keyserlingk, Curt
2016-01-01
Dijkgraaf-Witten (DW) theories are of recent interest to the condensed matter community, in part because they represent topological phases of matter, but also because they characterize the response theory of certain symmetry protected topological (SPT) phases. However, as yet there has not been a comprehensive treatment of the spectra of these models in the field theoretic setting -- the goal of this work is to fill the gap in the literature, at least for a selection of DW models with abelian gauge groups but non-abelian topological order. As applications, various correlation functions and fusion rules of line operators are calculated. We discuss for example the appearance of non-abelian statistics in DW theories with abelian gauge groups.
Chiral expansion and Macdonald deformation of two-dimensional Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Koekenyesi, Zoltan; Sinkovics, Annamaria [Institute of Theoretical Physics, MTA-ELTE Theoretical Research Group, Eoetvoes Lorand University, 1117, Budapest, Pazmany, s. 1/A (Hungary); Szabo, Richard J. [Heriot-Watt Univ., Edinburgh (United Kingdom). Dept. of Mathematics; Maxwell Institute for Mathematical Sciences, Edinburgh (United Kingdom); The Higgs Centre for Theoretical Physics, Edinburgh (United Kingdom)
2016-11-15
We derive the analog of the large N Gross-Taylor holomorphic string expansion for the refinement of q-deformed U(N) Yang-Mills theory on a compact oriented Riemann surface. The derivation combines Schur-Weyl duality for quantum groups with the Etingof-Kirillov theory of generalized quantum characters which are related to Macdonald polynomials. In the unrefined limit we reproduce the chiral expansion of q-deformed Yang-Mills theory derived by de Haro, Ramgoolam and Torrielli. In the classical limit q = 1, the expansion defines a new β-deformation of Hurwitz theory wherein the refined partition function is a generating function for certain parameterized Euler characters, which reduce in the unrefined limit β = 1 to the orbifold Euler characteristics of Hurwitz spaces of holomorphic maps. We discuss the geometrical meaning of our expansions in relation to quantum spectral curves and β-ensembles of matrix models arising in refined topological string theory. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
A gauge field theory of fermionic continuous-spin particles
Directory of Open Access Journals (Sweden)
X. Bekaert
2016-09-01
Full Text Available In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs. The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.
From lattice gauge theories to hydrogen atoms
Directory of Open Access Journals (Sweden)
Manu Mathur
2015-10-01
Full Text Available We construct canonical transformations to obtain a complete and most economical realization of the physical Hilbert space Hp of pure SU(22+1 lattice gauge theory in terms of Wigner coupled Hilbert spaces of hydrogen atoms. One hydrogen atom is assigned to every plaquette of the lattice. A complete orthonormal description of the Wilson loop basis in Hp is obtained by all possible angular momentum Wigner couplings of hydrogen atom energy eigenstates |n l m〉 describing electric fluxes on the loops. The SU(2 gauge invariance implies that the total angular momenta of all hydrogen atoms vanish. The canonical transformations also enable us to rewrite the Kogut–Susskind Hamiltonian in terms of fundamental Wilson loop operators and their conjugate electric fields. The resulting loop Hamiltonian has a global SU(2 invariance and a simple weak coupling (g2→0 continuum limit. The canonical transformations leading to the loop Hamiltonian are valid for any SU(N. The ideas and techniques can also be extended to higher dimension.
Modularity and 4D-2D spectral equivalences for large-N gauge theories with adjoint matter
Başar, Gökçe; Dienes, Keith R; McGady, David A
2015-01-01
In recent work, we demonstrated that the confined-phase spectrum of non-supersymmetric pure Yang-Mills theory coincides with the spectrum of the chiral sector of a two-dimensional conformal field theory in the large-$N$ limit. This was done within the tractable setting in which the gauge theory is compactified on a three-sphere whose radius is small compared to the strong length scale. In this paper, we generalize these observations by demonstrating that similar results continue to hold even when massless adjoint matter fields are introduced. These results hold for both thermal and $(-1)^F$-twisted partition functions, and collectively suggest that the spectra of large-$N$ confining gauge theories are organized by the symmetries of two-dimensional conformal field theories.
A two dimensional theory for two phase detonation of liquid films.
Rao, C. S. R.; Sichel, M.; Nicholls, J. A.
1972-01-01
A theory for the propagation of detonations through tubes coated with a thin fuel film is developed. Vaporization is assumed as the rate limiting process dominating the detonation structure. Inclusion of the boundary layer displacement effect resulted in better agreement between computed and measured propagation speed, pressure ratio, and reaction zone length than was obtained in an earlier theory in which this effect was neglected. New film detonation data is presented covering a wide range of fuel air ratios. A general Chapman-Jouguet condition is formulated for film detonations, and use of the plane of complete film vaporization as the Chapman-Jouguet plane is justified in the case of thin films.
A Formulation of Lattice Gauge Theories for Quantum Simulations
Zohar, Erez
2014-01-01
We examine the Kogut-Susskind formulation of lattice gauge theories under the light of fermionic and bosonic degrees of freedom that provide a description useful to the development of quantum simulators of gauge invariant models. We consider both discrete and continuous gauge groups and adopt a realistic multi-component Fock space for the definition of matter degrees of freedom. In particular, we express the Hamiltonian of the gauge theory and the Gauss law in terms of Fock operators. The gauge fields are described in two different bases, based on either group elements or group representations. This formulation allows for a natural scheme to achieve a consistent truncation of the Hilbert space for continuous groups, and provides helpful tools to study the connections of gauge theories with topological quantum double and string-net models for discrete groups. Several examples, including the case of the discrete $D_3$ gauge group, are presented.
Remarks on quiver gauge theories from open topological string theory
Carqueville, Nils
2009-01-01
We study effective quiver gauge theories arising from a stack of D3-branes on certain Calabi-Yau singularities. Our point of view is a first principle approach via open topological string theory. This means that we construct the natural A-infinity-structure of open string amplitudes in the associated D-brane category. Then we show that it precisely reproduces the results of the method of brane tilings, without having to resort to any effective field theory computations. In particular, we prove a general and simple formula for effective superpotentials.
Dimensionally continued multi-loop gauge theory
Broadhurst, D J
1999-01-01
A dimensionally continued background-field method makes the rationality of the 4-loop quenched QED beta function far more reasonable than had previously appeared. After 33 years of quest, dating from Rosner's discovery of 3-loop rationality, one finally sees cancellation of zeta values by the trace structure of individual diagrams. At 4-loops, diagram-by-diagram cancellation of $\\zeta(5)$ does not even rely on the values of integrals at d=4. Rather, it is a property of the rational functions of $d$ that multiply elements of the full d-dimensional basis. We prove a lemma: the basis consists of slices of wheels. We explain the previously mysterious suppression of $\\pi^4$ in massless gauge theory. The 4-loop QED result $\\beta_4=-46$ is obtained by setting d=4 in a precisely defined rational polynomial of d, with degree 11. The other 5 rational functions vanish at d=4.
Quantum Critical Behaviour of Semisimple Gauge Theories
DEFF Research Database (Denmark)
Esbensen, Jacob Kamuk; Ryttov, Thomas A.; Sannino, Francesco
2016-01-01
(M)_R \\times U(1) $ of the theory. To avoid gauge anomalies we add lepton-like particles. At the two-loops level an intriguing phase diagram appears. We uncover phases in which one, two or three fixed points exist and discuss the associated flows of the coupling constants. We discover a phase featuring...... complete asymptotic freedom and simultaneously an interacting infrared fixed point in both couplings. The analysis further reveals special renormalisation group trajectories along which one coupling displays asymptotic freedom and the other asymptotic safety, while both flowing in the infrared...... to an interacting fixed point. These are \\emph{safety free} trajectories. We briefly sketch out possible phenomenological implications, among which an independent way to generate near-conformal dynamics a l\\'a walking is investigated....
Mross, David F; Senthil, T
2012-06-29
We construct a theory of continuous stripe melting quantum phase transitions in two-dimensional metals and the associated Fermi surface reconstruction. Such phase transitions are strongly coupled but yet theoretically tractable in situations where the stripe ordering is destroyed by proliferating doubled dislocations of the charge stripe order. The resulting non-Landau quantum critical point has strong stripe fluctuations which we show decouple dynamically from the Fermi surface even though static stripe ordering reconstructs the Fermi surface. We discuss connections to various stripe phenomena in the cuprates. We point out several puzzling aspects of old experimental results [G. Aeppli et al., Science 278, 1432 (1997)] on singular stripe fluctuations in the cuprates, and provide a possible explanation within our theory. These results may thus have been the first observation of non-Landau quantum criticality in an experiment.
Soliton solutions in two-dimensional Lorentz-violating higher derivative scalar theory
Passos, E; Brito, F A; Menezes, R; Mota-Silva, J C; Santos, J R L
2016-01-01
This paper shows a new approach to obtain analytical topological defects for a 2D Myers-Pospelov Lagrangian for two scalar fields. Such a Lagrangian presents higher-order kinetic terms, which lead us to equations of motion which are non-trivial to be integrated. Here we describe three possible scenarios for the equations of motion, named by time-like, space-like and light-like respectively. We started our investigation with a kink-like travelling wave Ansatz for the free theory, which led us to constraints for the dispersion relations of each scenario. We also introduced a method to obtain analytical solution for the general theory in the three mentioned scenarios. We exemplified the method and discussed the behavior of the defects solutions.
Matrix Product Approximations to Multipoint Functions in Two-Dimensional Conformal Field Theory
König, Robert; Scholz, Volkher B.
2016-09-01
Matrix product states (MPSs) illustrate the suitability of tensor networks for the description of interacting many-body systems: ground states of gapped 1D systems are approximable by MPSs, as shown by Hastings [M. B. Hastings, J. Stat. Mech. (2007) P08024]. By contrast, whether MPSs and more general tensor networks can accurately reproduce correlations in critical quantum systems or quantum field theories has not been established rigorously. Ample evidence exists: entropic considerations provide restrictions on the form of suitable ansatz states, and numerical studies show that certain tensor networks can indeed approximate the associated correlation functions. Here, we provide a complete positive answer to this question in the case of MPSs and 2D conformal field theory: we give quantitative estimates for the approximation error when approximating correlation functions by MPSs. Our work is constructive and yields an explicit MPS, thus providing both suitable initial values and a rigorous justification of variational methods.
Scattering of Discrete States in Two Dimensional Open String Field Theory
Sevic, B U
1993-01-01
This is the second in a series of papers devoted to open string field theory in two dimensions. In this paper we aim to clarify the origin and the role of discrete physical states in the theory. To this end, we study interactions of discrete states and generic tachyons. In particular, we discuss at length four point amplitudes. We show that behavior of the correlation functions is governed by the number of generic tachyons involved and values of the kinematic invariants $s$, $t$ and $u$. Divergence of certain classes of correlators is shown to be the consequence of the fact certain kinematic invariants are non--positive integers in that case. Explicit examples are included. We check our results by standard conformal technique.
1986-01-01
formulation was presented along with the details of the solution in terms of state variables . Then using a series of assumptions, the rigorous theory is...figure the blur funcion , whih plays the role of the structuring element in,.. the transformation, is a disk, though other shapes are easily accommodated...Fringes of Variable Spatial Frequency," presented at 1985 Annual Meeting of the Optical Society of America, Washington, D.C., October 1985. 2. E. S
A Mathematical Theory of the Gauged Linear Sigma Model
Fan, Huijun; Ruan, Yongbin
2015-01-01
We construct a rigorous mathematical theory of Witten's Gauged Linear Sigma Model (GLSM). Our theory applies to a wide range of examples, including many cases with non-Abelian gauge group. Both the Gromov-Witten theory of a Calabi-Yau complete intersection X and the Landau-Ginzburg dual (FJRW-theory) of X can be expressed as gauged linear sigma models. Furthermore, the Landau-Ginzburg/Calabi-Yau correspondence can be interpreted as a variation of the moment map or a deformation of GIT in the GLSM. This paper focuses primarily on the algebraic theory, while a companion article will treat the analytic theory.
Gauge dependence of the fermion quasiparticle poles in hot gauge theories
Wang, Shang-Yung
2004-09-01
The gauge dependence of the complex fermion quasiparticle poles corresponding to soft collective excitations is studied in hot gauge theories at one-loop order and next-to-leading order in the high-temperature expansion, with a view towards going beyond the leading order hard thermal loops and resummations thereof. We find that for collective excitations of momenta k˜eT the dispersion relations are gauge independent, but the corresponding damping rates are gauge dependent. For k≪eT and in the k→0 limit, both the dispersion relations and the damping rates are found to be gauge dependent. The gauge dependence of the position of the complex quasiparticle poles signals the need for resummation. Possible cancellation of the leading gauge dependence at two-loop order in the case of QED is briefly discussed.
On the definition of entanglement entropy in lattice gauge theories
Aoki, Sinya; Iritani, Takumi; Nozaki, Masahiro; Numasawa, Tokiro; Shiba, Noburo; Tasaki, Hal
2015-06-01
We focus on the issue of proper definition of entanglement entropy in lattice gauge theories, and examine a naive definition where gauge invariant states are viewed as elements of an extended Hilbert space which contains gauge non-invariant states as well. Working in the extended Hilbert space, we can define entanglement entropy associated with an arbitrary subset of links, not only for abelian but also for non-abelian theories. We then derive the associated replica formula. We also discuss the issue of gauge invariance of the entanglement entropy. In the Z N gauge theories in arbitrary space dimensions, we show that all the standard properties of the entanglement entropy, e.g. the strong subadditivity, hold in our definition. We study the entanglement entropy for special states, including the topological states for the Z N gauge theories in arbitrary dimensions. We discuss relations of our definition to other proposals.
On the definition of entanglement entropy in lattice gauge theories
Aoki, Sinya; Nozaki, Masahiro; Numasawa, Tokiro; Shiba, Noburo; Tasaki, Hal
2015-01-01
We focus on the issue of proper definition of entanglement entropy in lattice gauge theories, and examine a naive definition where gauge invariant states are viewed as elements of an extended Hilbert space which contain gauge non-invariant states as well. Working in the extended Hilbert space, we can define entanglement entropy associated with an arbitrary subset of links, not only for abelian but also for non-abelian theories. We then derive the associated replica formula. We also discuss the issue of gauge invariance of the entanglement entropy. In the $Z_N$ gauge theories in arbitrary space dimensions, we show that all the standard properties of the entanglement entropy, e.g. the strong subadditivity, hold in our definition. We study the entanglement entropy for special states, including the topological states for the $Z_N$ gauge theories in arbitrary dimensions. We discuss relations of our definition to other proposals.
Gauge theories for gravity on a line
Jackiw, Roman W
1992-01-01
Professor M. C. Polivanov and I met only a few times, during my infrequent visits to the-then Soviet Union in the 1970's and 1980's. His hospitality at the Moscow Steclov Institute made the trips a pleasure, while the scientific environment that he provided made them professionally valuable. But it is the human contact that I remember most vividly and shall now miss after his death. At a time when issues of conscience were both pressing for attention and difficult/dangerous to confront, Professor Polivanov made a deep impression with his quiet but adamant commitment to justice. I can only guess at the satisfaction he must have felt when his goal of gaining freedom for Yuri Orlov was attained, and even more so these days when human rights became defensible in his country; it is regrettable that he cannot now enjoy the future that he strived to attain. One of our joint interests was the Liouville theory,$^{1,\\,2}$ which in turn can be viewed as a model for gravity in two-dimensional space-time. Some recent deve...
Exact partition functions for gauge theories on Rλ3
Directory of Open Access Journals (Sweden)
Jean-Christophe Wallet
2016-11-01
Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
Exact partition functions for gauge theories on Rλ3
Wallet, Jean-Christophe
2016-11-01
The noncommutative space R,SUB>λ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of R&x03bb;3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
Integrable Models, SUSY Gauge Theories, and String Theory
Nam, S
1996-01-01
We consider the close relation between duality in N=2 SUSY gauge theories and integrable models. Vario us integrable models ranging from Toda lattices, Calogero models, spinning tops, and spin chains are re lated to the quantum moduli space of vacua of N=2 SUSY gauge theories. In particular, SU(3) gauge t heories with two flavors of massless quarks in the fundamental representation can be related to the spec tral curve of the Goryachev-Chaplygin top, which is a Nahm's equation in disguise. This can be generaliz ed to the cases with massive quarks, and N_f = 0,1,2, where a system with seven dimensional phas e space has the relevant hyperelliptic curve appear in the Painlevé test. To understand the stringy o rigin of the integrability of these theories we obtain exact nonperturbative point particle limit of ty pe II string compactified on a Calabi-Yau manifold, which gives the hyperelliptic curve of SU(2) QCD w ith N_f =1 hypermultiplet.
Strings, branes, and gravity duals of gauge theories
Lovis, K J
2002-01-01
We study the correspondence between certain supersymmetric gauge theories and their dual supergravity descriptions. Using low-energy brane probes of the supergravity geometries we find moduli spaces of vacua, as expected from considering the dual gauge theories. The metrics on these spaces can be put into a form consistent with field theory expectations. This provides a non-trivial check on the supergravity solutions, in addition to strong-coupling predictions for the gauge theories. In the case of N = 2 supersymmetric gauge theory, proposed supergravity duals have previously been shown, using brane probe techniques, to display the 'enhancon mechanism'. In particular, the supergravity geometries correctly reproduce the perturbative behaviour of the gauge theory. We calculate exact non-perturbative results at low-energies using the method of Seiberg and Witten. These correctly reproduce the perturbative results in the supergravity limit, but also make predictions for when the supergravity approximation is not ...
Axial Anomaly in Lattice Abelian Gauge Theory in Arbitrary Dimensions
Fujiwara, T; Wu, K; Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke
1999-01-01
Axial anomaly of lattice abelian gauge theory in hyper-cubic regular lattice in arbitrary even dimensions is investigated by applying the method of exterior differential calculus. The topological invariance, gauge invariance and locality of the axial anomaly determine the explicit form of the topological part. The anomaly is obtained up to a multiplicative constant for finite lattice spacing and can be interpreted as the Chern character of the abelian lattice gauge theory.
Vacuum structure of bifundamental gauge theories at finite topological angles
Tanizaki, Yuya; Kikuchi, Yuta
2017-06-01
We discuss possible vacuum structures of SU( n) × SU( n) gauge theories with bifundamental matters at finite θ angles. In order to give a precise constraint, a mixed 't Hooft anomaly is studied in detail by gauging the center ℤ n one-form symmetry of the bifundamental gauge theory. We propose phase diagrams that are consistent with the con-straints, and also give a heuristic explanation of the result based on the dual superconductor scenario of confinement.
Sohier, Thibault; Calandra, Matteo; Mauri, Francesco
2017-08-01
The ability to perform first-principles calculations of electronic and vibrational properties of two-dimensional heterostructures in a field-effect setup is crucial for the understanding and design of next-generation devices. We present here an implementation of density functional perturbation theories tailored for the case of two-dimensional heterostructures in field-effect configuration. Key ingredients are the inclusion of a truncated Coulomb interaction in the direction perpendicular to the slab and the possibility of simulating charging of the slab via field effects. With this implementation we can access total energies, force and stress tensors, the vibrational properties and the electron-phonon interaction. We demonstrate the relevance of the method by studying flexural acoustic phonons and their coupling to electrons in graphene doped by field effect. In particular, we show that while the electron-phonon coupling to those phonons can be significant in neutral graphene, it is strongly screened and negligible in doped graphene, in disagreement with other recent first-principles reports. Consequently, the gate-induced coupling with flexural acoustic modes would not be detectable in transport measurements on doped graphene.
New families of flows between two-dimensional conformal field theories
Dorey, P; Tateo, R; Dorey, Patrick; Dunning, Clare; Tateo, Roberto
2000-01-01
We present evidence for the existence of infinitely-many new families of renormalisation group flows between the nonunitary minimal models of conformal field theory. These are associated with perturbations by the $\\phi_{21}$ and In all of the new flows, the finite-volume effective central charge is a non-monotonic function of the system size. The evolution of this effective central charge is studied by means of a nonlinear integral equation, a massless variant of an equation recently found to describe certain massive perturbations of these same models. We also observe that a similar non-monotonicity arises in the more familiar $\\phi_{13}$ perturbations, when the flows induced are between nonunitary minimal models.
The renormalization group and two dimensional multicritical effective scalar field theory
Morris, T R
1995-01-01
Direct verification of the existence of an infinite set of multicritical non-perturbative FPs (Fixed Points) for a single scalar field in two dimensions, is in practice well outside the capabilities of the present standard approximate non-perturbative methods. We apply a derivative expansion of the exact RG (Renormalization Group) equations in a form which allows the corresponding FP equations to appear as non-linear eigenvalue equations for the anomalous scaling dimension \\eta. At zeroth order, only continuum limits based on critical sine-Gordon models, are accessible. At second order in derivatives, we perform a general search over all \\eta\\ge.02, finding the expected first ten FPs, and {\\sl only} these. For each of these we verify the correct relevant qualitative behaviour, and compute critical exponents, and the dimensions of up to the first ten lowest dimension operators. Depending on the quantity, our lowest order approximate description agrees with CFT (Conformal Field Theory) with an accuracy between ...
Two-dimensional light-front $\\phi^4$ theory in a symmetric polynomial basis
Burkardt, M; Hiller, J R
2016-01-01
We study the lowest-mass eigenstates of $\\phi^4_{1+1}$ theory with both odd and even numbers of constituents. The calculation is carried out as a diagonalization of the light-front Hamiltonian in a Fock-space representation. In each Fock sector a fully symmetric polynomial basis is used to represent the Fock wave function. Convergence is investigated with respect to the number of basis polynomials in each sector and with respect to the number of sectors. The dependence of the spectrum on the coupling strength is used to estimate the critical coupling for the positive-mass-squared case. An apparent discrepancy with equal-time calculations of the critical coupling is resolved by an appropriate mass renormalization.
Sulejmanpasic, Tin; Sandvik, Anders; Unsal, Mithat
2016-01-01
In a spontaneously dimerized quantum antiferromagnet (a valence-bond-solid, VBS) in two or three dimensions, elementary spin-1/2 excitations (spinons) are confined by strings akin to the strings confining quarks in non-abelian gauge theories. The VBS has multiple degenerate ground states (vacua) and domain walls between regions of inequivalent vacua. Here we demonstrate that, if the number of vacua is two, the spinons become liberated (deconfined) on the domain wall. This is in close analogy to supersymmetric gauge theories, where quarks deconfine on domain walls separating two vacua, as first conjecture by Rey and Witten. We show that the confinement mechanism in the VBS and Super-Yang-Mills theory are identical in certain regimes. This remarkable close analogy opens doors to improving our understanding of confinement by computational and experimental studies in quantum magnetism. As an illustration, we present a numerical demonstration of spinon deconfinement on domain walls in a two-dimensional quantum mag...
Three dimensional finite temperature SU(3) gauge theory near the phase transition
Bialas, Piotr; Morel, Andre; Petersson, Bengt
2012-01-01
We have measured the correlation function of Polyakov loops on the lattice in three dimensional SU(3) gauge theory near its finite temperature phase transition. Using a new and powerful application of finite size scaling, we furthermore extend the measurements of the critical couplings to considerably larger values of the lattice sizes, both in the temperature and space directions, than was investigated earlier in this theory. With the help of these measurements we perform a detailed finite size scaling analysis, showing that for the critical exponents of the two dimensional three state Potts model the mass and the susceptibility fall on unique scaling curves. This strongly supports the expectation that the gauge theory is in the same universality class. The Nambu-Goto string model on the other hand predicts that the exponent \
On higher holonomy invariants in higher gauge theory I
Zucchini, Roberto
2015-01-01
This is the first of a series of two technical papers devoted to the analysis of holonomy invariants in strict higher gauge theory with end applications in higher Chern--Simons theory. For a flat 2--connection, we define the 2-holonomy of surface knots of arbitrary genus and determine its covariance properties under 1--gauge transformation and change of base data.
Two-loop beta functions for supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Jack, I. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)
1984-11-15
The two-loop ..beta.. functions in the dimensional regularisation framework for a general gauge theory coupled to scalar and spinor fields are presented and by means of a finite transformation of the couplings are converted into a form which vanishes for special cases corresponding to supersymmetric gauge theories.
Conformal Gauge-Yukawa Theories away From Four Dimensions
DEFF Research Database (Denmark)
Codello, Alessandro; Langaeble, Kasper; Litim, Daniel
2016-01-01
We present the phase diagram and associated fixed points for a wide class of Gauge-Yukawa theories in $d=4+\\epsilon$ dimensions. The theories we investigate involve non-abelian gauge fields, fermions and scalars in the Veneziano-Witten limit. The analysis is performed in steps, we start with QCD...
CERN Theory Institute: Future directions in lattice gauge theory
2010-01-01
The main goal of the Institute is to bring together researchers in lattice gauge theory and in its applications to phenomenology to discuss interesting future directions of research. The focus will be on new ideas rather than on the latest computation of the usual quantities. The aim is to identify calculations in QCD, flavour physics, other strongly-interacting theories, etc. which are of high physics interest, and to clarify the theoretical and technical difficulties which, at present, prevent us from carrying them out.
Frobenius-Chern-Simons gauge theory
Bonezzi, Roberto; Sezgin, Ergin; Sundell, Per
2016-01-01
Given a set of differential forms on an odd-dimensional noncommutative manifold valued in an internal associative algebra H, we show that the most general cubic covariant Hamiltonian action, without mass terms, is controlled by an Z_2-graded associative algebra F with a graded symmetric nondegenerate bilinear form. The resulting class of models provide a natural generalization of the Frobenius-Chern-Simons model (FCS) that was proposed in arXiv:1505.04957 as an off-shell formulation of the minimal bosonic four-dimensional higher spin gravity theory. If F is unital and the Z_2-grading is induced from a Klein operator that is outer to a proper Frobenius subalgebra, then the action can be written on a form akin to topological open string field theory in terms of a superconnection valued in the direct product of H and F. We give a new model of this type based on a twisting of C[Z_2 x Z_4], which leads to self-dual complexified gauge fields on AdS_4. If F is 3-graded, the FCS model can be truncated consistently as...
Invariant Regularization of Supersymmetric Chiral Gauge Theory, 2
Hayashi, T; Okuyama, K; Suzuki, H; Hayashi, Takuya; Ohshima, Yoshihisa; Okuyama, Kiyoshi; Suzuki, Hiroshi
1998-01-01
By supplementing additional analyses postponed in the previous paper, we complete our construction of manifestly supersymmetric gauge-covariant regularization of supersymmetric chiral gauge theories. We present: An evaluation of the covariant gauge anomaly; the proof of integrability of the covariant gauge current in anomaly-free cases; a calculation of one-loop superconformal anomaly in the gauge supermultiplet sector. On the last point, we find that the ghost-anti-ghost supermultiplet and the Nakanishi-Lautrup supermultiplet give rise to BRST exact contributions which, due to the Slavnov-Taylor identities in our regularization scheme, can safely be neglected.
Duality and Superconvergence Relation in Supersymmetric Gauge Theories
Tachibana, M
1998-01-01
We investigate the phase structures of various N=1 supersymmetric gauge theories including even the exceptional gauge group from the viewpoint of superconvergence of the gauge field propagator. Especially we analyze in detail whether a new type of duality recently discovered by Oehme in $SU(N_c)$ gauge theory coupled to fundamental matter fields can be found in more general gauge theories with more general matter representations or not. The result is that in the cases of theories including matter fields in only the fundamental representation, Oehme's duality holds but otherwise it does not. In the former case, superconvergence relation might give good criterion to describe the interacting non-Abelian Coulomb phase without using some information from dual magnetic theory.
6d strings from new chiral gauge theories
Kim, Hee-Cheol; Park, Jaemo
2016-01-01
We study the 6d $\\mathcal{N}=(1,0)$ superconformal field theory with smallest non-Higgsable gauge symmetry $SU(3)$. In particular, we propose new 2d gauge theory descriptions of its self-dual strings in the tensor branch. We use our gauge theories to compute the elliptic genera of the self-dual strings, which completely agree with the partial data known from topological strings. We further study the strings of the $(E_6,E_6)$ conformal matter by generalizing our 2d gauge theories. We also show that anomalies of all our gauge theories agree with the self-dual string anomalies computed by inflows from 6d.
Holographic R\\'enyi entropy for two-dimensional $\\mathcal{N}$=(2,2) superconformal field theory
Li, Zhibin
2016-01-01
We investigate the holographic R\\'enyi entropy for two-dimensional $\\mathcal N=(2,2)$ superconformal field theory (SCFT), which is dual to $\\mathcal N=2$ supergravity in AdS$_3$ background. In SCFT we have the stress tensor, current, and their supersymmetric partners, and in supergravity we have the graviton, vector field, and two gravitinos. We get the R\\'enyi mutual information of two short intervals on complex plane in expansion by the cross ratio $x$ to order $x^4$, and R\\'enyi entropy of one interval on torus in expansion by $q=\\exp(-2\\pi\\beta/L)$, with $\\beta$ being the inverse temperature and $L$ being the spatial period, to order $q^2$. We calculate in both the supergravity and SCFT sides, and find matches of the results.
Institute of Scientific and Technical Information of China (English)
Chen Chen; Zhihua Xiong; Yisheng Zhong
2014-01-01
Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) and model predictive control (MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By min-imizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as wel as faster convergence speed can be achieved than traditional proportion type (P-type) ILC despite the model error and disturbances.
Unified (p,q;α,γ,l)-deformation of oscillator algebra and two-dimensional conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Burban, I.M., E-mail: burban@bitp.kiev.ua
2013-11-29
The unified (p,q;α,γ,l)-deformation of a number of well-known deformed oscillator algebras is introduced. The deformation is constructed by imputing new free parameters into the structure functions and by generalizing the defining relations of these algebras. The generalized Jordan–Schwinger and Holstein–Primakoff realizations of the U{sub pq}{sup αγl}(su(2)) algebra by the generalized (p,q;α,γ,l)-deformed operators are found. The generalized (p,q;α,γ,l)-deformation of the two-dimensional conformal field theory is established. By introducing the (p,q;α,γ,l)-operator product expansion (OPE) between the energy–momentum tensor and primary fields, we obtain the (p,q;α,γ,l)-deformed centerless Virasoro algebra. The two-point correlation function of the primary generalized (p,q;α,γ,l)-deformed fields is calculated.
Non-Abelian discrete gauge symmetries in F-theory
Grimm, Thomas W; Regalado, Diego
2015-01-01
The presence of non-Abelian discrete gauge symmetries in four-dimensional F-theory compactifications is investigated. Such symmetries are shown to arise from seven-brane configurations in genuine F-theory settings without a weak string coupling description. Gauge fields on mutually non-local seven-branes are argued to gauge both R-R and NS-NS two-form bulk axions. The gauging is completed into a generalisation of the Heisenberg group with either additional seven-brane gauge fields or R-R bulk gauge fields. The former case relies on having seven-brane fluxes, while the latter case requires torsion cohomology and is analysed in detail through the M-theory dual. Remarkably, the M-theory reduction yields an Abelian theory that becomes non-Abelian when translated into the correct duality frame to perform the F-theory limit. The reduction shows that the gauge coupling function depends on the gauged scalars and transforms non-trivially as required for the groups encountered. This field dependence agrees with the exp...
Holism and structuralism in U(1) gauge theory
Lyre, Holger
After decades of neglect philosophers of physics have discovered gauge theories-arguably the paradigm of modern field physics-as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism-in the eyes of its proponents the best suited realist position towards modern physics-has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories-in particular U (1) gauge theory. In the first part of the paper the framework of fiber bundle gauge theories is briefly presented and the interpretation of local gauge symmetry will be examined. In the second part, an ontological underdetermination of gauge theories is carved out by considering the various kinds of non-locality involved in such typical effects as the Aharonov-Bohm effect. The analysis shows that the peculiar form of non-separability figuring in gauge theories is a variant of spatiotemporal holism and can be distinguished from quantum theoretic holism. In the last part of the paper the arguments for a gauge theoretic support of structural realism are laid out and discussed.
Twisted gauge theories in 3D Walker-Wang models
Wang, Zitao
2016-01-01
Three dimensional gauge theories with a discrete gauge group can emerge from spin models as a gapped topological phase with fractional point excitations (gauge charge) and loop excitations (gauge flux). It is known that 3D gauge theories can be "twisted", in the sense that the gauge flux loops can have nontrivial braiding statistics among themselves and such twisted gauge theories are realized in models discovered by Dijkgraaf and Witten. A different framework to systematically construct three dimensional topological phases was proposed by Walker and Wang and a series of examples have been studied. Can the Walker Wang construction be used to realize the topological order in twisted gauge theories? This is not immediately clear because the Walker-Wang construction is based on a loop condensation picture while the Dijkgraaf-Witten theory is based on a membrane condensation picture. In this paper, we show that the answer to this question is Yes, by presenting an explicit construction of the Walker Wang models wh...
Sadri, D; Sadri, Darius
2006-01-01
We consider $N=1, D=4$ superconformal $U(N)^{pq}$ Yang-Mills theories dual to AdS_5xS^5/Z_pxZ_q orbifolds. We construct the dilatation operator of this superconformal gauge theory at one-loop planar level. We demonstrate that a specific sector of this dilatation operator can be thought of as the transfer matrix for a two-dimensional statistical mechanical system, related to an integrable SU(3) anti-ferromagnetic spin chain system, which in turn is equivalent to a 2+1-dimensional string theory where the spatial slices are discretized on a triangular lattice. This is an extension of the SO(6) spin chain picture of N=4 super Yang-Mills theory. We comment on the integrability of this N=1 gauge theory and hence the corresponding three-dimensional statistical mechanical system, its connection to three-dimensional lattice gauge theories, extensions to six-dimensional string theories, AdS/CFT type dualities and finally their construction via orbifolds and brane-box models. In the process we discover a new class of al...
Phase structure and critical properties of an abelian gauge theory
Energy Technology Data Exchange (ETDEWEB)
Mo, Sjur
2001-12-01
The main new results are presented in the form of three papers at the end of this thesis. The main topic is Monte-Carlo studies of the phase structure and critical properties of the phenomenological Ginzburg-Landau model, i.e. an abelian gauge theory. However, the first paper is totally different and deals with microscopic theory for lattice-fermions in a magnetic field. Paper I is about ''Fermion-pairing on a square lattice in extreme magnetic fields''. We consider the Cooper-problem on a two-dimensional, square lattice with a uniform, perpendicular magnetic field. Only rational flux fractions are considered. An extended (real-space) Hubbard model including nearest and next nearest neighbor interactions is transformed to ''k-space'', or more precisely, to the space of eigenfunctions of Harper's equation, which constitute basis functions of the magnetic translation group for the lattice. A BCS-like truncation of the interaction term is performed. Expanding the interactions in the basis functions of the irreducible representations of the point group C{sub 4{nu}} of the square lattice simplify calculations. The numerical results indicate enhanced binding compared to zero magnetic field, and thus re-entrant superconducting pairing at extreme magnetic fields, well beyond the point where the usual semi-classical treatment of the magnetic field breaks down. Paper II is about the ''Hausdorff dimension of critical fluctuations in abelian gauge theories''. Here we analyze the geometric properties of the line-like critical fluctuations (vortex loops) in the Ginzburg-Landau model in zero magnetic background field. By using a dual description, we obtain scaling relations between exponents of geometric arid thermodynamic nature. In particular we connect the anomalous scaling dimension {eta} of the dual matter field to the Hausdorff or fractal dimension D{sub H} of the critical fluctuations, in the original model
Gauge fluxes in F-theory compactifications
Energy Technology Data Exchange (ETDEWEB)
Lin, Ling
2016-07-13
In this thesis, we study the geometry and physics of gauge fluxes in F-theory compactifications to four dimensions. Motivated by the phenomenological requirement of chiral matter in realistic model building scenarios, we develop methods for a systematic analysis of primary vertical G{sub 4}-fluxes on torus-fibred Calabi-Yau fourfolds. In particular, we extend the well-known description of fluxes on elliptic fibrations with sections to the more general set-up of genus-one fibrations with multi-sections. The latter are known to give rise to discrete abelian symmetries in F-theory. We test our proposal for constructing fluxes in such geometries on an explicit model with SU(5) x Z{sub 2} symmetry, which is connected to an ordinary elliptic fibration with SU(5) x U(1) symmetry by a conifold transition. With our methods we systematically verify anomaly cancellation and tadpole matching in both models. Along the way, we find a novel way of understanding anomaly cancellation in 4D F-theory in purely geometric terms. This observation is further strengthened by a similar analysis of an SU(3) x SU(2) x U(1){sup 2} model. The obvious connection of this particular model with the Standard Model is then investigated in a more phenomenologically motivated survey. There, we will first provide possible matchings of the geometric spectrum with the Standard Model states, which highlights the role of the additional U(1) factor as a selection rule. In a second step, we then utilise our novel methods on flux computations to set up a search algorithm for semi-realistic chiral spectra in our Standard- Model-like fibrations over specific base manifolds B. As a demonstration, we scan over three choices P{sup 3}, Bl{sub 1}P{sup 3} and Bl{sub 2}P{sup 3} for the base. As a result we find a consistent flux that gives the chiral Standard Model spectrum with a vector-like triplet exotic, which may be lifted by a Higgs mechanism.
Perturbative Gravity and Gauge Theory Relations: A Review
Directory of Open Access Journals (Sweden)
Thomas Søndergaard
2012-01-01
Full Text Available This paper is dedicated to the amazing Kawai-Lewellen-Tye relations, connecting perturbative gravity and gauge theories at tree level. The main focus is on n-point derivations and general properties both from a string theory and pure field theory point of view. In particular, the field theory part is based on some very recent developments.
Gauge theory renormalizations from the open bosonic string
Di Vecchia, P; Magnea, L; Marotta, R; Di Vecchia, P; Lerda, A; Magnea, L; Marotta, R
1995-01-01
We present a unified point of view on the different methods available in the literature to extract gauge theory renormalization constants from the low-energy limit of string theory. The Bern-Kosower method, based on an off-shell continuation of string theory amplitudes, and the construction of low-energy string theory effective actions for gauge particles, can both be understood in terms of strings interacting with background gauge fields, and thus reproduce, in the low-energy limit, the field theory results of the background field method. We present in particular a consistent off-shell continuation of the one-loop gluon amplitudes in the open bosonic string that reproduces exactly the results of the background field method in the Feynman gauge.
Ordinary matter in nonlinear affine gauge theories of gravitation
Tiemblo, A; Tiemblo, A; Tresguerres, R
1994-01-01
We present a general framework to include ordinary fermionic matter in the metric--affine gauge theories of gravity. It is based on a nonlinear gauge realization of the affine group, with the Lorentz group as the classification subgroup of the matter and gravitational fields.
A non-perturbative study of massive gauge theories
DEFF Research Database (Denmark)
Della Morte, Michele; Hernandez, Pilar
2013-01-01
We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists and the ...
Ong, Zhun-Yong; Cai, Yongqing; Zhang, Gang
2016-10-01
We present a theory of the phononic thermal (Kapitza) resistance at the interface between graphene or another single-layer two-dimensional (2D) crystal (e.g., MoS2) and a flat substrate, based on a modified version of the cross-plane heat transfer model by Persson, Volokitin, and Ueba [J. Phys.: Condens. Matter 23, 045009 (2011), 10.1088/0953-8984/23/4/045009]. We show how intrinsic flexural phonon damping is necessary for obtaining a finite Kapitza resistance and also generalize the theory to encased single-layer 2D crystals with a superstrate. We illustrate our model by computing the thermal boundary conductance (TBC) for bare and SiO2-encased single-layer graphene and MoS2 on a SiO2 substrate, using input parameters from first-principles calculation. The estimated room temperatures TBC for bare (encased) graphene and MoS2 on SiO2 are 34.6 (105) and 3.10 (5.07) MWK -1m-2 , respectively. The theory predicts the existence of a phonon frequency crossover point, below which the low-frequency flexural phonons in the bare 2D crystal do not dissipate energy efficiently to the substrate. We explain within the framework of our theory how the encasement of graphene with a top SiO2 layer introduces new low-frequency transmission channels, which significantly reduce the graphene-substrate Kapitza resistance. We emphasize that the distinction between bare and encased 2D crystals must be made in the analysis of cross-plane heat dissipation to the substrate.
Deformed supersymmetric gauge theories from the fluxtrap background
Orlando, Domenico
2013-01-01
The fluxtrap background of string theory provides a transparent and algorithmic way of constructing supersymmetric gauge theories with both mass and Omega-type deformations in various dimensions. In this article, we review a number of deformed supersymmetric gauge theories in two and four dimensions which can be obtained via the fluxtrap background from string or M-theory. Such theories, the most well-known being Omega-deformed super Yang-Mills theory in four dimensions, have met with a lot of interest in the recent literature. The string theory treatment offers many new avenues of analysis and applications, such as for example the study of the gravity duals for deformed N=4 gauge theories.
Gauge origin independence in finite basis sets and perturbation theory
Sørensen, Lasse Kragh; Lindh, Roland; Lundberg, Marcus
2017-09-01
We show that origin independence in finite basis sets for the oscillator strengths is possibly in any gauge contrary to what is stated in literature. This is proved from a discussion of the consequences in perturbation theory when the exact eigenfunctions and eigenvalues to the zeroth order Hamiltonian H0 cannot be found. We demonstrate that the erroneous conclusion for the lack of gauge origin independence in the length gauge stems from not transforming the magnetic terms in the multipole expansion leading to the use of a mixed gauge. Numerical examples of exact origin dependence are shown.
E8 Gauge Theory and Gerbes in String Theory
Sati, H
2006-01-01
The reduction of the E8 gauge theory to ten dimensions leads to a loop group, which in relation to twisted K-theory has a Dixmier-Douady class identified with the Neveu-Schwarz H-field. We give an interpretation of the degree two part of the eta-form by comparing the adiabatic limit of the eta invariant with the one loop term in type IIA. More generally, starting with a G-bundle, the comparison for manifolds with String Structure identifies G with E8 and the representation as the adjoint, due to an interesting appearance of the dual Coxeter number. This makes possible a description in terms of a generalized WZW model at the critical level. We also discuss the relation to the index gerbe, the possibility of obtaining such bundles from loop space, and the symmetry breaking to finite-dimensional bundles. We discuss the implications of this and we give several proposals.
Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia
2011-11-01
This issue aims to serve as an introduction to our current understanding of the structure of scattering amplitudes in gauge theory, an area which has seen particularly rapid advances in recent years following decades of steady progress. The articles contained herein provide a snapshot of the latest developments which we hope will serve as a valuable resource for graduate students and other scientists wishing to learn about the current state of the field, even if our continually evolving understanding of the subject might soon render this compilation incomplete. Why the fascination with scattering amplitudes, which have attracted the imagination and dedicated effort of so many physicists? Part of it stems from the belief, supported now by numerous examples, that unexpected simplifications of otherwise apparently complicated calculations do not happen by accident. Instead they provide a strong motivation to seek out an underlying explanation. The insight thereby gained can subsequently be used to make the next class of seemingly impossible calculations not only possible, but in some cases even trivial. This two-pronged strategy of exploring and exploiting the structure of gauge theory amplitudes appeals to a wide audience from formal theorists interested in mathematical structure for the sake of its own beauty to more phenomenologically-minded physicists eager to speed up the next generation of analysis software. Understandably it is the maximally supersymmetric 𝒩 = 4 Yang-Mills theory (SYM) which has the simplest structure and has correspondingly received the most attention. Rarely in theoretical physics are we fortunate enough to encounter a toy model which is simple enough to be solved completely yet rich enough to possess interesting non-trivial structure while simultaneously, and most importantly, being applicable (even if only as a good approximation) to a wide range of 'real' systems. The canonical example in quantum mechanics is of course the harmonic
Topological and differential geometrical gauge field theory
Saaty, Joseph
between bosons (quantized) and fermions (not quantized). Thus I produced results that were previously unobtainable. Furthermore, since topological charge takes place in Flat Spacetime, I investigated the quantization of the Curved Spacetime version of topological charge (Differential Geometrical Charge) by developing the differential geometrical Gauge Field Theory. It should be noted that the homotopy classification method is not at all applicable to Curved Spacetime. I also modified the Dirac equation in Curved Spacetime by using Einstein's field equation in order to account for the presence of matter. As a result, my method has allowed me to address four cases of topological charge (both spinless and spin one- half, in both Flat and in Curved Spacetime) whereas earlier methods had been blind to all but one of these cases (spinless in Flat Spacetime). (Abstract shortened by UMI.)
Bassetto, A; Torrielli, A
2002-01-01
Commutative Yang-Mills theories in 1+1 dimensions exhibit an interesting interplay between geometrical properties and U(N) gauge structures: in the exact expression of a Wilson loop with $n$ windings a non trivial scaling intertwines $n$ and $N$. In the non-commutative case the interplay becomes tighter owing to the merging of space-time and ``internal'' symmetries in a larger group $U(\\infty)$. We perform an explicit perturbative calculation of such a loop up to ${\\cal O}(g^6)$; rather surprisingly, we find that in the contribution from the crossed graphs (the genuine non-commutative terms) the scaling we mentioned occurs for large $n$ and $N$ in the limit of maximal non-commutativity $\\theta=\\infty$. We present arguments in favour of the persistence of such a scaling at any perturbative order and succeed in summing the related perturbative series.
Extended Nambu models: Their relation to gauge theories
Escobar, C. A.; Urrutia, L. F.
2017-05-01
Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach.
Higher Gauge Theory and Gravity in (2+1) Dimensions
Mann, R B; Popescu, Eugeniu M.
2006-01-01
Non-abelian higher gauge theory has recently emerged as a generalization of standard gauge theory to higher dimensional (2-dimensional in the present context) connection forms, and as such, it has been successfully applied to the non-abelian generalizations of the Yang-Mills theory and 2-form electrodynamics. (2+1)-dimensional gravity, on the other hand, has been a fertile testing ground for many concepts related to classical and quantum gravity, and it is therefore only natural to investigate whether we can find an application of higher gauge theory in this latter context. In the present paper we investigate the possibility of applying the formalism of higher gauge theory to gravity in (2+1) dimensions, and we show that a nontrivial model of (2+1)-dimensional gravity coupled to scalar and tensorial matter fields - the $\\Sigma\\Phi EA$ model - can be formulated both as a standard gauge theory and as a higher gauge theory. Since the model has a very rich structure - it admits as solutions black-hole BTZ-like ge...
Thermalization and confinement in strongly coupled gauge theories
Ishii, Takaaki; Rosen, Christopher
2016-01-01
Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which "real world" theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory's confinement scale on these results, as well as the appearance ...
Next-to-Maximal Helicity Violating Amplitudes in Gauge Theory
Kosower, D A
2004-01-01
Using the novel diagrammatic rules recently proposed by Cachazo, Svrcek, and Witten, I give a compact, manifestly Lorentz-invariant form for tree-level gauge-theory amplitudes with three opposite helicities.
Gauge Natural Formulation of Conformal Theory of Gravity
Campigotto, M.; Fatibene, L.
2014-01-01
We consider conformal gravity as a gauge natural theory. We study its conservation laws and superpotentials. We also consider the Mannheim and Kazanas spherically symmetric vacuum solution and discuss conserved quantities associated to conformal and diffeomorphism symmetries.
Dirac equation in gauge and affine-metric gravitation theories
Giachetta, G
1995-01-01
We show that the covariant derivative of Dirac fermion fields in the presence of a general linear connection on a world manifold is universal for Einstein's, gauge and affine-metric gravitation theories.
Multi-flux warped throats and cascading gauge theories
Franco, S; Uranga, Angel M; Franco, Sebastian; Hanany, Amihay; Uranga, Angel M.
2005-01-01
We describe duality cascades and their infrared behavior for systems of D3-branes at singularities given by complex cones over del Pezzo surfaces (and related examples), in the presence of fractional branes. From the gauge field theory viewpoint, we show that D3-branes probing the infrared theory have a quantum deformed moduli space, given by a complex deformation of the initial geometry to a simpler one. This implies that for the dual supergravity viewpoint, the gauge theory strong infrared dynamics smoothes out the naked singularities of the recently constructed warped throat solutions with 3-form fluxes, describing the cascading RG flow of the gauge theory. This behavior thus generalizes the Klebanov-Strassler deformation of the conifold. We describe several explicit examples, including models with several scales of strong gauge dynamics. In the regime of widely separated scales, the dual supergravity solutions should correspond to throats with several radial regions with different exponential warp factors...
Dark matter in the nonabelian hidden gauge theory
Yamanaka, Nodoka; Gongyo, Shinya; Iida, Hideaki
2015-01-01
We discuss the dark matter in the hidden gauge theory. We propose a scenario where the mini-inflation dilutes the dark matter density. This scenario is consistent with the current baryon number asymmetry.
Two-color gauge theory with novel infrared behavior.
Appelquist, T; Brower, R C; Buchoff, M I; Cheng, M; Fleming, G T; Kiskis, J; Lin, M F; Neil, E T; Osborn, J C; Rebbi, C; Schaich, D; Schroeder, C; Syritsyn, S; Voronov, G; Vranas, P; Witzel, O
2014-03-21
Using lattice simulations, we study the infrared behavior of a particularly interesting SU(2) gauge theory, with six massless Dirac fermions in the fundamental representation. We compute the running gauge coupling derived nonperturbatively from the Schrödinger functional of the theory, finding no evidence for an infrared fixed point up through gauge couplings g(2) of order 20. This implies that the theory either is governed in the infrared by a fixed point of considerable strength, unseen so far in nonsupersymmetric gauge theories, or breaks its global chiral symmetries producing a large number of composite Nambu-Goldstone bosons relative to the number of underlying degrees of freedom. Thus either of these phases exhibits novel behavior.
Framed sheaves on root stacks and supersymmetric gauge theories on ALE spaces
Bruzzo, Ugo; Sala, Francesco; Szabo, Richard J
2016-01-01
We develop a new approach to the study of supersymmetric gauge theories on ALE spaces using the theory of framed sheaves on root toric stacks, which illuminates relations with gauge theories on $\\mathbb{R}^4$ and with two-dimensional conformal field theory. We construct a stacky compactification of a minimal resolution $X_k$ of the $A_{k-1}$ toric singularity $\\mathbb{C}^2/\\mathbb{Z}_k$, which is a projective toric orbifold $\\mathscr{X}_k$ such that $\\mathscr{X}_k\\setminus X_k$ is a $\\mathbb{Z}_k$-gerbe. We construct moduli spaces of torsion free sheaves on $\\mathscr{X}_k$ which are framed along the compactification gerbe. We prove that this moduli space is a smooth quasi-projective variety, compute its dimension, and classify its fixed points under the natural induced toric action. We use this construction to compute the partition functions and correlators of chiral BPS operators for $\\mathcal{N}=2$ quiver gauge theories on $X_k$ with nontrivial holonomies at infinity. The partition functions are computed wi...
Generally covariant vs. gauge structure for conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Campigotto, M., E-mail: martacostanza.campigotto@to.infn.it [Dipartimento di Fisica, University of Torino, Via P. Giuria 1, 10125, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Via P. Giuria 1, 10125, Torino (Italy); Fatibene, L. [Dipartimento di Matematica, University of Torino, Via C. Alberto 10, 10123, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Via P. Giuria 1, 10125, Torino (Italy)
2015-11-15
We introduce the natural lift of spacetime diffeomorphisms for conformal gravity and discuss the physical equivalence between the natural and gauge natural structure of the theory. Accordingly, we argue that conformal transformations must be introduced as gauge transformations (affecting fields but not spacetime point) and then discuss special structures implied by the splitting of the conformal group. -- Highlights: •Both a natural and a gauge natural structure for conformal gravity are defined. •Global properties and natural lift of spacetime transformations are described. •The possible definitions of physical state are considered and discussed. •The gauge natural theory has less physical states than the corresponding natural one. •The dynamics forces to prefer the gauge natural structure over the natural one.
Hamiltonian Formulation of Jackiw-Pi 3-Dimensional Gauge Theories
Dayi, O F
1998-01-01
A 3-dimensional non-abelian gauge theory was proposed by Jackiw and Pi to create mass for the gauge fields. However, the set of gauge invariances of the quadratic action obtained by switching off the non-abelian interactions is larger than the original one. This inconsistency in the gauge invariances causes some problems in quantization. Jackiw and Pi proposed another action by enlarging the space of states whose gauge invariances are consistent with the quadratic part. It is shown that all of these theories yield the same number of physical degrees of freedom in the hamiltonian framework. Hence, as far as the physical states are considered there is no inconsistency. Nevertheless, perturbation expansion is still problamatic.
Geometrical hyperbolic systems for general relativity and gauge theories
Abrahams, A M; Choquet-Bruhat, Y; York, J W
1996-01-01
The evolution equations of Einstein's theory and of Maxwell's theory---the latter used as a simple model to illustrate the former--- are written in gauge covariant first order symmetric hyperbolic form with only physically natural characteristic directions and speeds for the dynamical variables. Quantities representing gauge degrees of freedom [the spatial shift vector \\beta^{i}(t,x^{j}) and the spatial scalar potential \\phi(t,x^{j}), respectively] are not among the dynamical variables: the gauge and the physical quantities in the evolution equations are effectively decoupled. For example, the gauge quantities could be obtained as functions of (t,x^{j}) from subsidiary equations that are not part of the evolution equations. Propagation of certain (``radiative'') dynamical variables along the physical light cone is gauge invariant while the remaining dynamical variables are dragged along the axes orthogonal to the spacelike time slices by the propagating variables. We obtain these results by (1) taking a furth...
Cabra, D C; Rossini, L; Schaposnik, F A; Fradkin, Eduardo
1995-01-01
We discuss the behavior of theories of fermions coupled to Chern-Simons gauge fields with a non-abelian gauge group in three dimensions and at finite temperature. Using non-perturbative arguments and gauge invariance, and in contradiction with perturbative results, we show that the coefficient of the Chern-Simons term of the effective actions for the gauge fields at finite temperature can be {\\it at most} an integer function of the temperature. This is in a sense a generalized no-renormalization theorem. We also discuss the case of abelian theories and give indications that a similar condition should hold there too. We discuss consequences of our results to the thermodynamics of anyon superfluids and fractional quantum Hall systems.
Bloch Waves in Minimal Landau Gauge and the Infinite-Volume Limit of Lattice Gauge Theory
Cucchieri, Attilio; Mendes, Tereza
2017-05-01
By exploiting the similarity between Bloch's theorem for electrons in crystalline solids and the problem of Landau gauge fixing in Yang-Mills theory on a "replicated" lattice, we show that large-volume results can be reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger [Nucl. Phys. B412, 657 (1994), 10.1016/0550-3213(94)90396-4], corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite, and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.
Large field inflation models from higher-dimensional gauge theories
Furuuchi, Kazuyuki; Koyama, Yoji
2015-02-01
Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher-dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante's Inferno model turns out to be the most preferred model in this framework.
Large field inflation models from higher-dimensional gauge theories
Energy Technology Data Exchange (ETDEWEB)
Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University, Manipal, Karnataka 576104 (India); Koyama, Yoji [Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan R.O.C. (China)
2015-02-23
Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher-dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante’s Inferno model turns out to be the most preferred model in this framework.
Seiberg Duality, Quiver Gauge Theories, and Ihara Zeta Function
Zhou, Da; He, Yang-Hui
2015-01-01
We study Ihara zeta function for graphs in the context of quivers arising from gauge theories, especially under Seiberg duality transformations. The distribution of poles is studied as we proceed along the duality tree, in light of the weak and strong graph versions of the Riemann Hypothesis. As a by-product, we find a refined version of Ihara zeta function to be the generating function for the generic superpotential of the gauge theory.
Closed String Amplitudes from Gauge Fixed String Field Theory
Drukker, Nadav
2002-01-01
Closed string diagrams are derived from cubic open string field theory using a gauge fixed kinetic operator. The basic idea is to use a string propagator that does not generate a boundary to the world sheet. Using this propagator and the closed string vertex, the moduli space of closed string surfaces is covered, so closed string scattering amplitudes should be reproduced. This kinetic operator could be a gauge fixed form of the string field theory action around the closed string vacuum.
Noncommuting electric fields and algebraic consistency in noncommutative gauge theories
Banerjee, Rabin
2003-05-01
We show that noncommuting electric fields occur naturally in θ-expanded noncommutative gauge theories. Using this noncommutativity, which is field dependent, and a Hamiltonian generalization of the Seiberg-Witten map, the algebraic consistency in the Lagrangian and Hamiltonian formulations of these theories is established. A comparison of results in different descriptions shows that this generalized map acts as a canonical transformation in the physical subspace only. Finally, we apply the Hamiltonian formulation to derive the gauge symmetries of the action.
Closed String Amplitudes from Gauge Fixed String Field Theory
Drukker, Nadav
2002-01-01
Closed string diagrams are derived from cubic open string field theory using a gauge fixed kinetic operator. The basic idea is to use a string propagator that does not generate a boundary to the world sheet. Using this propagator and the closed string vertex, the moduli space of closed string surfaces is covered, so closed string scattering amplitudes should be reproduced. This kinetic operator could be a gauge fixed form of the string field theory action around the closed string vacuum.
Large Field Inflations from Higher Dimensional Gauge Theories
Furuuchi, Kazuyuki
2015-01-01
Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante's Inferno model appears as the most promising model in this framework.
Gurarie, V
2004-01-01
We examine two-dimensional conformal field theories (CFTs) at central charge c=0. These arise typically in the description of critical systems with quenched disorder, but also in other contexts including dilute self-avoiding polymers and percolation. We show that such CFTs must in general possess, in addition to their stress energy tensor T(z), an extra field whose holomorphic part, t(z), has conformal weight two. The singular part of the Operator Product Expansion (OPE) between T(z) and t(z) is uniquely fixed up to a single number b, defining a new `anomaly' which is a characteristic of any c=0 CFT, and which may be used to distinguish between different such CFTs. The extra field t(z) is not primary (unless b=0), and is a so-called `logarithmic operator' except in special cases which include affine (Kac-Moody) Lie-super current algebras. The number b controls the question of whether Virasoro null-vectors arising at certain conformal weights contained in the c=0 Kac table may be set to zero or not, in these n...
Energy Technology Data Exchange (ETDEWEB)
Chair, Noureddine, E-mail: n.chair@ju.edu.jo
2014-02-15
We have recently developed methods for obtaining exact two-point resistance of the complete graph minus N edges. We use these methods to obtain closed formulas of certain trigonometrical sums that arise in connection with one-dimensional lattice, in proving Scott’s conjecture on permanent of Cauchy matrix, and in the perturbative chiral Potts model. The generalized trigonometrical sums of the chiral Potts model are shown to satisfy recursion formulas that are transparent and direct, and differ from those of Gervois and Mehta. By making a change of variables in these recursion formulas, the dimension of the space of conformal blocks of SU(2) and SO(3) WZW models may be computed recursively. Our methods are then extended to compute the corner-to-corner resistance, and the Kirchhoff index of the first non-trivial two-dimensional resistor network, 2×N. Finally, we obtain new closed formulas for variant of trigonometrical sums, some of which appear in connection with number theory. -- Highlights: • Alternative derivation of certain trigonometrical sums of the chiral Potts model are given. • Generalization of these trigonometrical sums satisfy recursion formulas. • The dimension of the space of conformal blocks may be computed from these recursions. • Exact corner-to-corner resistance, the Kirchhoff index of 2×N are given.
Gauge Invariant Effective Action in Abelian Chiral Gauge Theory on the Lattice
Suzuki, H
1999-01-01
Lüscher's recent formulation of Abelian chiral gauge theories on the lattice, in the vacuum (or perturbative) sector in infinite lattice volume, is re-interpreted in terms of the lattice covariant regularization. The gauge invariance of the effective action and the integrability of the gauge current in anomaly-free cases become transparent then. The real part of the effective action is simply one-half of that of the Dirac fermion and, when the Dirac operator has proper properties in the continuum limit, the imaginary part in the continuum limit reproduces the $\\eta$-invariant.}
Compactified D=11 supermembranes and symplectic noncommutative gauge theories
Martín, I.; Ovalle, J.; Restuccia, A.
2001-08-01
It is shown that a double compactified D=11 supermembrane with nontrivial wrapping may be formulated as a symplectic noncommutative gauge theory on the world volume. The symplectic noncommutative structure is intrinsically obtained from the symplectic two-form on the world volume defined by the minimal configuration of its Hamiltonian. The gauge transformations on the symplectic fibration are generated by the area preserving diffeomorphisms on the world volume. Geometrically, this gauge theory corresponds to a symplectic fibration over a compact Riemann surface with a symplectic connection.
Compactified D=11 supermembranes and symplectic noncommutative gauge theories
Energy Technology Data Exchange (ETDEWEB)
Martin, I.; Ovalle, J.; Restuccia, A.
2001-08-15
It is shown that a double compactified D=11 supermembrane with nontrivial wrapping may be formulated as a symplectic noncommutative gauge theory on the world volume. The symplectic noncommutative structure is intrinsically obtained from the symplectic two-form on the world volume defined by the minimal configuration of its Hamiltonian. The gauge transformations on the symplectic fibration are generated by the area preserving diffeomorphisms on the world volume. Geometrically, this gauge theory corresponds to a symplectic fibration over a compact Riemann surface with a symplectic connection.
Gauge and motion in perturbation theory
Pound, Adam
2015-01-01
Through second order in perturbative general relativity, a small compact object in an external vacuum spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external background geometry, it is in free fall with respect to a certain \\emph{effective} vacuum geometry. However, this single principle takes very different mathematical forms, with very different behaviors, depending on how one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald approximation, can be derived from a second, called the self-consistent approximation. I next present a general treatment of smooth gauge transformations in both approximations, in which I emphasise that the approximations' governing equations can be formulated in an invariant manner...
The Gauge Integral Theory in HOL4
Directory of Open Access Journals (Sweden)
Zhiping Shi
2013-01-01
Full Text Available The integral is one of the most important foundations for modeling dynamical systems. The gauge integral is a generalization of the Riemann integral and the Lebesgue integral and applies to a much wider class of functions. In this paper, we formalize the operational properties which contain the linearity, monotonicity, integration by parts, the Cauchy-type integrability criterion, and other important theorems of the gauge integral in higher-order logic 4 (HOL4 and then use them to verify an inverting integrator. The formalized theorem library has been accepted by the HOL4 authority and will appear in HOL4 Kananaskis-9.
Integrating over the Coulomb branch in N=2 gauge theory
Marino, Marcos; Moore, Gregory
1997-01-01
We review the relation of certain integrals over the Coulomb phase of $d=4$, N=2 SO(3) supersymmetric Yang-Mills theory with Donaldson-Witten theory. We describe a new way to write an important contact term in the theory and show how the integrals generalize to higher rank gauge groups.
String organization of field theories duality and gauge invariance
Feng, Y J; Feng, Y J; Lam, C S
1994-01-01
String theories should reduce to ordinary four-dimensional field theories at low energies. Yet the formulation of the two are so different that such a connection, if it exists, is not immediately obvious. With the Schwinger proper-time representation, and the spinor helicity technique, it has been shown that field theories can indeed be written in a string-like manner, thus resulting in simplifications in practical calculations, and providing novel insights into gauge and gravitational theories. This paper continues the study of string organization of field theories by focusing on the question of local duality. It is shown that a single expression for the sum of many diagrams can indeed be written for QED, thereby simulating the duality property in strings. The relation between a single diagram and the dual sum is somewhat analogous to the relation between a old- fashioned perturbation diagram and a Feynman diagram. Dual expressions are particularly significant for gauge theories because they are gauge invari...
Quantum Critical Behaviour of Semi-Simple Gauge Theories
DEFF Research Database (Denmark)
Esbensen, Jacob Kamuk; Ryttov, Thomas A.; Sannino, Francesco
2016-01-01
We study the perturbative phase diagram of semi-simple fermionic gauge theories resembling the Standard Model. We investigate an $SU(N)$ gauge theory with $M$ Dirac flavors where we gauge first an $SU(M)_L$ and then an $SU(2)_L \\subset SU(M)_L$ of the original global symmetry $SU(M)_L\\times SU......(M)_R \\times U(1) $ of the theory. To avoid gauge anomalies we add lepton-like particles. At the two-loops level an intriguing phase diagram appears. We uncover phases in which one, two or three fixed points exist and discuss the associated flows of the coupling constants. We discover a phase featuring...
Hamiltonian Poincaré gauge theory of gravitation
Tiemblo, A
1996-01-01
We develop a Hamiltonian formalism suitable to be applied to gauge theories in the presence of Gravitation, and to Gravity itself when considered as a gauge theory. It is based on a nonlinear realization of the Poincar\\'e group, taken as the local spacetime group of the gravitational gauge theory, with SO(3) as the classification subgroup. The Wigner--like rotation induced by the nonlinear approach singularizes out the role of time and allows to deal with ordinary SO(3) vectors. We apply the general results to the Einstein--Cartan action. We study the constraints and we obtain Einstein's classical equations in the extremely simple form of time evolution equations of the coframe. As a consequence of our approach, we identify the gauge--theoretical origin of the Ashtekar variables.
Multigrid methods for propagators in lattice gauge theories
Kalkreuter, T
1994-01-01
Multigrid methods were invented for the solution of discretized partial differential equations in ordered systems. The slowness of traditional algorithms is overcome by updates on various length scales. In this article we discuss generalizations of multigrid methods for disordered systems, in particular for propagators in lattice gauge theories. A discretized nonabelian gauge theory can be formulated as a system of statistical mechanics where the gauge field degrees of freedom are SU(N) matrices on the links of the lattice. These SU(N) matrices appear as random coefficients in Dirac equations. We aim at finding an efficient method by which one can solve Dirac equations without critical slowing down. If this could be achieved, Monte Carlo simulations of Quantum Chromodynamics (the theory of the strong interaction) would be accelerated considerably. In principle, however, the methods discussed can be used in arbitrary space-time dimension and for arbitrary gauge group. Moreover, there are applications in multig...
Hydrodynamics of strongly coupled gauge theories from gravity
Energy Technology Data Exchange (ETDEWEB)
Benincasa, P. [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada)
2007-09-15
In this talk we review some recent developments in the analysis of gauge theories from a holographic perspective. We focus on the transport properties of strongly coupled gauge theories. In particular, we discuss the results for two specific non-conformal models: the N=2* supersymmetric SU(N{sub c}) Yang-Mills theory and the Sakai-Sugimoto model. Finally, we discuss the hydrodynamic picture for the N=4SU(N{sub c}) SYM theory when the leading correction in the inverse 't Hooft coupling is taken into account.
Hydrodynamics of strongly coupled gauge theories from gravity
Benincasa, P.
2007-09-01
In this talk we review some recent developments in the analysis of gauge theories from a holographic perspective. We focus on the transport properties of strongly coupled gauge theories. In particular, we discuss the results for two specific non-conformal models: the N=2 supersymmetric SU( Nc) Yang-Mills theory and the Sakai-Sugimoto model. Finally, we discuss the hydrodynamic picture for the N=4SU( Nc) SYM theory when the leading correction in the inverse 't Hooft coupling is taken into account.
Lectures on the antifield-BRST formalism for gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henneaux, M. (Universite Libre de Bruxelles (Belgium). Faculte des Sciences Centro de Estudios Cientificos, Santiago (Chile))
1990-12-01
The Lagrangian approach to the BRST symmetry based on the antifield formalism is reviewed. First, the concept of 'open algebra' is clarified. It is then explicitly indicated how gauge invariance is incorporated in the theory through the BRST cohomology at ghost number zero. This result holds for both the non-gauge fixed and gauge fixed versions of the BRST symmetry in Lagrangian form. The properties of the Lagrangian integration measure are discussed and the role of the Schwinger-Dyson equation is stressed. The problem of spacetime locality of the gauge fixed action is also briefly addressed. The discussion is illustrated in the cases of electromagnetism and of free p-form gauge fields. (orig.).
Gravitational Shielding Effect in Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning
2004-01-01
In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.
Gauge and motion in perturbation theory
Pound, Adam
2015-08-01
Through second order in perturbative general relativity, a small compact object in an external vacuum spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external background geometry, it is in free fall with respect to a certain effective vacuum geometry. However, this single principle takes very different mathematical forms, with very different behaviors, depending on how one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald approximation, can be derived from a second, called the self-consistent approximation. I next present a general treatment of smooth gauge transformations in both approximations, in which I emphasize that the approximations' governing equations can be formulated in an invariant manner. All of these analyses are carried through second perturbative order, but the methods are general enough to go to any order. Furthermore, the tools I develop, and many of the results, should have broad applicability to any description of perturbed motion, including osculating-geodesic and two-timescale descriptions.
Relational mechanics as a gauge theory
Ferraro, Rafael
2016-02-01
Absolute space is eliminated from the body of mechanics by gauging translations and rotations in the Lagrangian of a classical system. The procedure implies the addition of compensating terms to the kinetic energy, in such a way that the resulting equations of motion are valid in any frame. The compensating terms provide inertial forces depending on the total momentum P, intrinsic angular momentum J and intrinsic inertia tensor I. Therefore, the privileged frames where Newton's equations are valid ( Newtonian frames) are completely determined by the matter distribution of the universe ( Machianization). At the Hamiltonian level, the gauge invariance leads to first class constraints that remove those degrees of freedom that make no sense once the absolute space has been eliminated. This reformulation of classical mechanics is entirely relational, since it is a dynamics for the distances between particles. It is also Machian, since the rotation of the rest of the universe produces centrifugal effects. It then provides a new perspective to consider the foundational ideas of general relativity, like Mach's principle and the weak equivalence principle. With regard to the concept of time, the absence of an absolute time is known to be a characteristic of parametrized systems. Furthermore, the scale invariance of those parametrized systems whose potentials are inversely proportional to the squared distances can be also gauged by introducing another compensating term associated with the intrinsic virial G ( shape-dynamics).
Vector potentials in gauge theories in flat spacetime
Wong, C W
2015-01-01
A recent suggestion that vector potentials in electrodynamics (ED) are nontensorial objects under 4D frame rotations is found to be both unnecessary and confusing. As traditionally used in ED, a vector potential $A$ always transforms homogeneously under 4D rotations in spacetime, but if the gauge is changed by the rotation, one can restore the gauge back to the original gauge by adding an inhomogeneous term. It is then "not a 4-vector", but two: one for rotation and one for translation. For such a gauge, it is much more important to preserve {\\it explicit} homogeneous Lorentz covariance by simply skipping the troublesome gauge-restoration step. A gauge-independent separation of $A$ into a dynamical term and a non-dynamical term in Abelian gauge theories is re-defined more generally as the terms caused by the presence and absence respectively of the 4-current term in the inhomogeneous Maxwell equations for $A$. Such a separation {\\it cannot} in general be extended to non-Abelian theories where $A$ satisfies no...
Variational Calculation in SU(3) Lattice Gauge Theory
Institute of Scientific and Technical Information of China (English)
YANG Chun; ZHANG Qi-Ren; GAO Chun-Yuan
2001-01-01
Using the Hamiltonian lattice gauge theory, we perform some variational calculations to obtain the ground-state energy of SU(3) gauge field and scalar (0++) glueball mass. The agreement of our data with the strong and weak expansion results in the corresponding limits indicates that this method can provide us with reliable information in the most interesting medium region. The trial wavefunction used in our variational method is also proven to be a good first approximation of the ground-state of the SU(3) gauge field. Upgrading this function according to correlations of adjacent plaquettes may mean better results.
Non-Abelian Lattice Gauge Theories in Superconducting Circuits
Mezzacapo, A; Sabín, C; Egusquiza, I L; Lamata, L; Solano, E
2015-01-01
We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure $SU(2)$ gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms.
Geometrodynamics of gauge fields on the geometry of Yang-Mills and gravitational gauge theories
Mielke, Eckehard W
2016-01-01
This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang-Mills theories, instanton solutions and topological invariants are included. By transferring these concepts to local space-time symmetries, generalizations of Einstein's theory of gravity arise in a Riemann-Cartan space with curvature and torsion. It provides the framework in which the (broken) Poincaré gauge theory, the Rainich geometrization of the Einstein-Maxwell system, and higher-dimensional, non-abelian Kaluza-Klein theories are developed. Since the discovery of the Higgs boson, concepts of spontaneous symmetry breaking in gravity have come again into focus, and, in this revised edition, these will be exposed in geometric terms. Quantizing gravity remains an open issue: formulating it as a de Sitter t...
A review of non-commutative gauge theories
Indian Academy of Sciences (India)
N G Deshpande
2003-02-01
Construction of quantum ﬁeld theory based on operators that are functions of non-commutative space-time operators is reviewed. Examples of 4 theory and QED are then discussed. Problems of extending the theories to () gauge theories and arbitrary charges in QED are considered. Construction of standard model on non-commutative space is then brieﬂy discussed. The phenomenological implications are then considered. Limits on non-commutativity from atomic physics as well as accelerator experiments are presented.
Gravitational Duality in MacDowell-Mansouri Gauge Theory
García-Compéan, H; Ramírez, C
1998-01-01
Strong-weak duality invariance can only be defined for particular sectors of supersymmetric Yang-Mills theories. Nevertheless, for full non-Abelian non-supersymmetric theories, dual theories with inverted couplings, have been found. We show that an analogous procedure allows to find the dual action to the gauge theory of gravity constructed by the MacDowell-Mansouri model plus the superposition of a $\\Theta$ term.
Phase diagrams of exceptional and supersymmetric lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Wellegehausen, Bjoern-Hendrik
2012-07-10
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
Heavy-quarkonium potential with input from lattice gauge theory
Serenone, Willian Matioli
2014-01-01
In this dissertation we study potential models incorporating a nonperturbative propagator obtained from lattice simulations of a pure gauge theory. Initially we review general aspects of gauge theories, the principles of the lattice formulation of quantum chromodynamics (QCD) and some properties of heavy quarkonia, i.e. bound states of a heavy quark and its antiquark. As an illustration of Monte Carlo simulations of lattice models, we present applications in the case of the harmonic oscillator and SU(2) gauge theory. We then study the effect of using a gluon propagator from lattice simulations of pure SU(2) theory as an input in a potential model for the description of quarkonium, in the case of bottomonium and charmonium. We use, in both cases, a numerical approach to evaluate masses of quarkonium states. The resulting spectra are compared to calculations using the Coulomb plus linear (or Cornell) potential.
Resurgent Analysis of Localizable Observables in Supersymmetric Gauge Theories
Aniceto, Inês; Schiappa, Ricardo
2015-01-01
Localization methods have recently led to a plethora of new exact results in supersymmetric gauge theories, as certain observables may be computed in terms of matrix integrals. These can then be evaluated by making use of standard large N techniques, or else via perturbative expansions in the gauge coupling. Either approximation often leads to observables given in terms of asymptotic series, which need to be properly defined in order to obtain nonperturbative results. At the same time, resurgent analysis has recently been successfully applied to several problems, e.g., in quantum, field and string theories, precisely to overcome this issue and construct nonperturbative answers out of asymptotic perturbative expansions. The present work uses exact results from supersymmetric localization to address the resurgent structure of the free energy and partition function of Chern-Simons and ABJM gauge theories in three dimensions, and of N=2 supersymmetric Yang-Mills theories in four dimensions. For each case, the com...
Comparison of SO(3) and SU(2) lattice gauge theory
De Forcrand, Philippe; Forcrand, Philippe de; Jahn, Oliver
2003-01-01
The Villain form of SO(3) lattice gauge theory is studied and compared to Wilson's SU(2) theory. The topological invariants in SO(3) which correspond to twisted boundary conditions in SU(2) are discussed and lattice observables are introduced for them. An apparent SO(3) phase with negative adjoint Polyakov loop is explained in terms of these observables. The electric twist free energy, an order parameter for the confinement-deconfinement transition, is measured in both theories to calibrate the temperature. The results indicate that lattices with about 700^4 sites or larger will be needed to study the SO(3) confined phase. Alternative actions are discussed and an analytic path connecting SO(3) and SU(2) lattice gauge theory at weak coupling is exhibited. The relevance for confinement of the centre of the gauge group is discussed.
The Seiberg-Witten Map for Noncommutative Gauge Theories
Cerchiai, B L; Zumino, B
2002-01-01
The Seiberg-Witten map for noncommutative Yang-Mills theories is studied and methods for its explicit construction are discussed which are valid for any gauge group. In particular the use of the evolution equation is described in some detail and its relation to the cohomological approach is elucidated. Cohomological methods which are applicable to gauge theories requiring the Batalin-Vilkoviskii antifield formalism are briefly mentioned. Also, the analogy of the Weyl-Moyal star product with the star product of open bosonic string field theory and possible ramifications of this analogy are briefly mentioned.
N=2 supersymmetric gauge theories and quantum integrable systems
Energy Technology Data Exchange (ETDEWEB)
Luo, Yuan; Tan, Meng-Chwan [Department of Physics, National University of Singapore 2 Science Drive 3, 117551 (Singapore); Yagi, Junya [Department of Physics, National University of Singapore 2 Science Drive 3, 117551 (Singapore); International School for Advanced Studies (SISSA) Via Bonomea, 265, 34136 Trieste (Italy); INFN, Sezione di Trieste Via Valerio, 2, 34149 Trieste (Italy)
2014-03-20
We study N=2 supersymmetric gauge theories on the product of a two-sphere and a cylinder. We show that the low-energy dynamics of a BPS sector of such a theory is described by a quantum integrable system, with the Planck constant set by the inverse of the radius of the sphere. If the sphere is replaced with a hemisphere, then our system reduces to an integrable system of the type studied by Nekrasov and Shatashvili. In this case we establish a correspondence between the effective prepotential of the gauge theory and the Yang-Yang function of the integrable system.
GMOR-like relation in IR-conformal gauge theories
Patella, Agostino
2011-01-01
A generalization of the GMOR relation to the case of infrared-conformal gauge theories is discussed. The starting point is the chiral Ward identity connecting the isovector pseudoscalar susceptibility to the chiral condensate, in a mass-deformed theory. A renormalization-group analysis shows that the pseudoscalar susceptibility is not saturated by the lightest state, but a contribution from the continuum part of the spectrum survives in the chiral limit. The computation also shows how infrared-conformal gauge theories behave differently, depending on whether the anomalous dimension of the chiral condensate be smaller or larger than 1.
Difficulties in inducing a gauge theory at large N
Balakrishna, B. S.
1994-01-01
The recently proposed Kazakov-Migdal model appears to be trivial as an induced gauge theory at large N, at least in the strong coupling regime. It is enough to know only the trivial Wilson loops that are treelike, just a constant part of the induced gauge action, to compute the free energy at large N. This is a consequence of the fact that the model is solvable by a saddle-point method that is known to sum only the tree graphs.
Infinite coupling duals of N=2 gauge theories and new rank 1 superconformal field theories
Argyres, Philip C.; Wittig, John R.
2007-01-01
We show that a proposed duality [arXiv:0711.0054] between infinitely coupled gauge theories and superconformal field theories (SCFTs) with weakly gauged flavor groups predicts the existence of new rank 1 SCFTs. These superconformal fixed point theories have the same Coulomb branch singularities as the rank 1 E_6, E_7, and E_8 SCFTs, but have smaller flavor symmetry algebras and different central charges. Gauging various subalgebras of the flavor algebras of these rank 1 SCFTs provides many ex...
N=2 SUSY gauge theories on S^4
Hosomichi, Kazuo
2016-01-01
We review exact results in N=2 supersymmetric gauge theories defined on S^4 and its deformation. We first summarize the construction of rigid SUSY theories on curved backgrounds based on off-shell supergravity, then explain how to apply localization principle to supersymmetric path integrals. Closed formulae for partition function as well as expectation values of non-local BPS observables are presented.
Introduction to gauge theories and the Standard Model
de Wit, Bernard
1995-01-01
The conceptual basis of gauge theories is introduced to enable the construction of generic models.Spontaneous symmetry breaking is dicussed and its relevance for the renormalization of theories with massive vector field is explained. Subsequently a d standard model. When time permits we will address more practical questions that arise in the evaluation of quantum corrections.
Noncommuting Electric Fields and Algebraic Consistency in Noncommutative Gauge theories
Banerjee, R
2003-01-01
We show that noncommuting electric fields occur naturally in noncommutative gauge theories. Using this noncommutativity, which is field dependent, and a hamiltonian generalisation of the Seiberg-Witten Map, the algebraic consistency in the lagrangian and hamiltonian formulations of these theories, is established. The stability of the Poisson algebra, under this generalised map, is studied.
A New Approach to Lower Dimensional Gauge Theories
Muñoz-Tàpia, R
1992-01-01
We apply the method of differential renormalization to two and three dimensional abelian gauge theories. The method is especially well suited for these theories as the problems of defining the antisymmetric tensor are avoided and the calculus involved is impressively simple. The topological and dynamical photon masses are obtained.
Gauge invariant unitary theory for pion photoproduction
Energy Technology Data Exchange (ETDEWEB)
van Antwerpen, C.H.M.; Afnan, I.R. [Department of Physics, The Flinders University of South Australia, Bedford Park, South Australia, 5042 (Australia)
1995-08-01
The Ward-Takahashi identities are central to the gauge invariance of the photoproduction amplitude. Here we demonstrate that unitarity and in particular the inclusion of both the {pi}{ital N} and {gamma}{pi}{ital N} thresholds on equal footing yields a photoproduction amplitude that satisfies both two-body unitarity and the generalized Ward-Takahashi identities. The final amplitude is a solution of a set of coupled channel integral equations for the reactions {pi}{ital N}{r_arrow}{pi}{ital N} and {gamma}{ital N}{r_arrow}{pi}{ital N}.
Gauge invariant unitary theory for pion photoproduction
van Antwerpen, C. H. M.; Afnan, I. R.
1995-08-01
The Ward-Takahashi identities are central to the gauge invariance of the photoproduction amplitude. Here we demonstrate that unitarity and in particular the inclusion of both the πN and γπN thresholds on equal footing yields a photoproduction amplitude that satisfies both two-body unitarity and the generalized Ward-Takahashi identities. The final amplitude is a solution of a set of coupled channel integral equations for the reactions πN-->πN and γN-->πN.
Quiver Gauge theories from Lie Superalgebras
Belhaj, A
2012-01-01
We discuss quiver gauge models with matter fields based on Dynkin diagrams of Lie superalgebra structures. We focus on A(1,0) case and we find first that it can be related to intersecting complex cycles with genus $g$. Using toric geometry, A(1,0) quivers are analyzed in some details and it is shown that A(1,0) can be used to incorporate fundamental fields to a product of two unitary factor groups. We expect that this approach can be applied to other kinds of Lie superalgebras;
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Gusynin, VP; Khveshchenko, DV; Reenders, M
2003-01-01
We use the radial gauge to calculate the recently proposed ansatz for the physical electron propagator in such effective models of strongly correlated electron systems as the QED(3) theory of the pseudogap phase of the cuprates. The results of our analysis help to settle the recent dispute about the
Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Torsten
2009-05-13
The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)
RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20
Energy Technology Data Exchange (ETDEWEB)
VAN BAAL,P.; ORLAND,P.; PISARSKI,R.
2000-06-01
This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.
RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20
Energy Technology Data Exchange (ETDEWEB)
VAN BAAL,P.; ORLAND,P.; PISARSKI,R.
2000-06-01
This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.
Conformal Gauge-Yukawa Theories away From Four Dimensions
DEFF Research Database (Denmark)
Codello, Alessandro; Langaeble, Kasper; Litim, Daniel;
2016-01-01
We present the phase diagram and associated fixed points for a wide class of Gauge-Yukawa theories in $d=4+\\epsilon$ dimensions. The theories we investigate involve non-abelian gauge fields, fermions and scalars in the Veneziano-Witten limit. The analysis is performed in steps, we start with QCD...... fixed points. We argue for a very rich phase diagram in three dimensions while in dimensions higher than four certain Gauge-Yukawa theories are ultraviolet complete because of the emergence of an asymptotically safe fixed point.......$_d$ and then we add Yukawa interactions and scalars which we study at next-to- and next-to-next-to-leading order. Interacting infrared fixed points naturally emerge in dimensions lower than four while ultraviolet ones appear above four. We also analyse the stability of the scalar potential for the discovered...
U (3 ) gauge theory on fuzzy extra dimensions
Kürkçüoǧlu, S.; Ünal, G.
2016-08-01
In this article, we explore the low energy structure of a U (3 ) gauge theory over spaces with fuzzy sphere(s) as extra dimensions. In particular, we determine the equivariant parametrization of the gauge fields, which transform either invariantly or as vectors under the combined action of S U (2 ) rotations of the fuzzy spheres and those U (3 ) gauge transformations generated by S U (2 )⊂U (3 ) carrying the spin 1 irreducible representation of S U (2 ). The cases of a single fuzzy sphere SF2 and a particular direct sum of concentric fuzzy spheres, SF2 Int , covering the monopole bundle sectors with windings ±1 are treated in full and the low energy degrees of freedom for the gauge fields are obtained. Employing the parametrizations of the fields in the former case, we determine a low energy action by tracing over the fuzzy sphere and show that the emerging model is Abelian Higgs type with U (1 )×U (1 ) gauge symmetry and possesses vortex solutions on R2, which we discuss in some detail. Generalization of our formulation to the equivariant parametrization of gauge fields in U (n ) theories is also briefly addressed.
Institute of Scientific and Technical Information of China (English)
Xin Jun-Li; Liang Jiu-Qing
2012-01-01
We study quantum-classical correspondence in terms of the coherent wave functions of a charged particle in twodimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits.For both closed and open classical orbits,the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than h is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions,which is not necessarily 2π-periodic.The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value,which results in a common topological phase for all wave functions in the given model.The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization,where the classical orbits are 2π-periodic.
Real Representation in Chiral Gauge Theories on the Lattice
Suzuki, H
2000-01-01
The Weyl fermion belonging to the real representation of the gauge group provides a simple illustrative example for L\\"uscher's gauge-invariant lattice formulation of chiral gauge theories. We can explicitly construct the fermion integration measure globally over the gauge-field configuration space in the arbitrary topological sector; there is no global obstruction corresponding to the Witten anomaly. It is shown that this Weyl formulation is equivalent to a lattice formulation based on the Majorana (left--right-symmetric) fermion, in which the fermion partition function is given by the Pfaffian with a definite sign, up to physically irrelevant contact terms. This observation suggests a natural relative normalization of the fermion measure in different topological sectors for the Weyl fermion belonging to the complex representation.
Gauge Fixing of Modified Cubic Open Superstring Field Theory
Kohriki, Maiko; Kunitomo, Hiroshi
2011-01-01
The gauge-fixing problem of modified cubic open superstring field theory is discussed in detail both for the Ramond and Neveu-Schwarz sectors in the Batalin-Vilkovisky (BV) framework. We prove for the first time that the same form of action as the classical gauge-invariant one with the ghost-number constraint on the string field relaxed gives the master action satisfying the BV master equation. This is achieved by identifying independent component fields based on the analysis of the kernel structure of the inverse picture changing operator. The explicit gauge-fixing conditions for the component fields are discussed. In a kind of $b_0=0$ gauge, we explicitly obtain the NS propagator which has poles at the zeros of the Virasoro operator $L_0$.
Gauge theory on Aloff-Wallach spaces
Ball, Gavin
2016-01-01
For gauge groups $U(1)$ and $SO(3)$ we classify invariant $G_2$-instantons for homogeneous coclosed $G_2$-structures on Aloff-Wallach spaces $X_{k,l}$. As a consequence, we give examples where $G_2$-instantons can be used to distinguish between different strictly nearly parallel $G_2$-structures on the same Aloff-Wallach space. In addition to this, we find that while certain $G_2$-instantons exist for the strictly nearly parallel $G_2$-structure on $X_{1,1}$, no such $G_2$-instantons exist for the tri-Sasakian one. As a further consequence of the classification, we produce examples of some other interesting phenomena, such as: irreducible $G_2$-instantons that, as the structure varies, merge into the same reducible and obstructed one; and $G_2$-instantons on nearly parallel $G_2$-manifolds that are not locally energy minimizing.
On higher holonomy invariants in higher gauge theory II
Zucchini, Roberto
2015-01-01
This is the second of a series of two technical papers devoted to the analysis of holonomy invariants in strict higher gauge theory with end applications in higher Chern--Simons theory. We provide a definition of trace over a crossed module such to yield surface knot invariants upon application to 2-holonomies. We show further that the properties of the trace are best described using the theory quandle crossed modules.
On Elliptic Algebras and Large-n Supersymmetric Gauge Theories
Koroteev, Peter
2016-01-01
In this note we further develop the duality between supersymmetric gauge theories in various dimensions and elliptic integrable systems such as Ruijsenaars-Schneider model and periodic intermediate long wave hydrodynamics. These models arise in instanton counting problems and are described by certain elliptic algebras. We discuss the correspondence between the two types of models by employing the large-n limit of the dual gauge theory. In particular we provide non-Abelian generalization of our previous result on the intermediate long wave model.
Chern-Simons theory with finite gauge group
Freed, Daniel S.; Quinn, Frank
1993-10-01
We construct in detail a 2+1 dimensional gauge field theory with finite gauge group. In this case the path integral reduces to a finite sum, so there are no analytic problems with the quantization. The theory was originally introduced by Dijkgraaf and Witten without details. The point of working it out carefully is to focus on the algebraic structure, and particularly the construction of quantum Hilbert spaces on closed surfaces by cutting and pasting. This includes the “Verlinde formula”. The careful development may serve as a model for dealing with similar issues in more complicated cases.
Applications of Jarzynski's relation in lattice gauge theories
Nada, Alessandro; Costagliola, Gianluca; Panero, Marco; Toniato, Arianna
2016-01-01
Jarzynski's equality is a well-known result in statistical mechanics, relating free-energy differences between equilibrium ensembles with fluctuations in the work performed during non-equilibrium transformations from one ensemble to the other. In this work, an extension of this relation to lattice gauge theory will be presented, along with numerical results for the $\\mathbb{Z}_2$ gauge model in three dimensions and for the equation of state in $\\mathrm{SU}(2)$ Yang-Mills theory in four dimensions. Then, further applications will be discussed, in particular for the Schr\\"odinger functional and for the study of QCD in strong magnetic fields.
Cirafici, M.; Sinkovics, A.; Szabo, R.J.
2009-01-01
We study the relation between Donaldson–Thomas theory of Calabi–Yau threefolds and a six-dimensional topological Yang–Mills theory. Our main example is the topological U(N) gauge theory on flat space in its Coulomb branch. To evaluate its partition function we use equivariant localization techniques
New dualities of supersymmetric gauge theories
2016-01-01
This book reviews a number of spectacular advances that have been made in the study of supersymmetric quantum field theories in the last few years. Highlights include exact calculations of Wilson loop expectation values, and highly nontrivial quantitative checks of the long-standing electric-magnetic duality conjectures. The book starts with an introductory article presenting a survey of recent advances, aimed at a wide audience with a background and interest in theoretical physics. The following articles are written for advanced students and researchers in quantum field theory, string theory and mathematical physics, our goal being to familiarize these readers with the forefront of current research. The topics covered include recent advances in the classification and vacuum structure of large families of N=2 supersymmetric field theories, followed by an extensive discussion of the localisation method, one of the most powerful tools for exact studies of supersymmetric field theories. The quantities that have ...
Energy Technology Data Exchange (ETDEWEB)
Metzger, St
2005-12-15
This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G{sub 2}-manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G{sub 2}-manifold is known. Here we construct families of metrics on compact weak G{sub 2}-manifolds, which contain two conical singularities. Weak G{sub 2}-manifolds have properties that are similar to the ones of proper G{sub 2}-manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E{sub 8} x E{sub 8}-heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the
Coulomb branches for rank 2 gauge groups in 3d N=4 gauge theories
Hanany, Amihay
2016-01-01
The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.
Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories
Energy Technology Data Exchange (ETDEWEB)
Hanany, Amihay [Theoretical Physics Group, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom); Sperling, Marcus [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany)
2016-08-02
The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.
Linear bosonic and fermionic quantum gauge theories on curved spacetimes
Energy Technology Data Exchange (ETDEWEB)
Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schenkel, Alexander [Bergische Univ., Wuppertal (Germany). Fachgruppe Physik
2012-05-15
We develop a general setting for the quantization of linear bosonic and fermionic field theories subject to local gauge invariance and show how standard examples such as linearized Yang-Mills theory and linearized general relativity fit into this framework. Our construction always leads to a well-defined and gauge-invariant quantum field algebra, the centre and representations of this algebra, however, have to be analysed on a case-by-case basis. We discuss an example of a fermionic gauge field theory where the necessary conditions for the existence of Hilbert space representations are not met on any spacetime. On the other hand, we prove that these conditions are met for the Rarita-Schwinger gauge field in linearized pure N=1 supergravity on certain spacetimes, including asymptotically flat spacetimes and classes of spacetimes with compact Cauchy surfaces. We also present an explicit example of a supergravity background on which the Rarita-Schwinger gauge field can not be consistently quantized.
Kitaev Lattice Models as a Hopf Algebra Gauge Theory
Meusburger, Catherine
2017-07-01
We prove that Kitaev's lattice model for a finite-dimensional semisimple Hopf algebra H is equivalent to the combinatorial quantisation of Chern-Simons theory for the Drinfeld double D( H). This shows that Kitaev models are a special case of the older and more general combinatorial models. This equivalence is an analogue of the relation between Turaev-Viro and Reshetikhin-Turaev TQFTs and relates them to the quantisation of moduli spaces of flat connections. We show that the topological invariants of the two models, the algebra of operators acting on the protected space of the Kitaev model and the quantum moduli algebra from the combinatorial quantisation formalism, are isomorphic. This is established in a gauge theoretical picture, in which both models appear as Hopf algebra valued lattice gauge theories. We first prove that the triangle operators of a Kitaev model form a module algebra over a Hopf algebra of gauge transformations and that this module algebra is isomorphic to the lattice algebra in the combinatorial formalism. Both algebras can be viewed as the algebra of functions on gauge fields in a Hopf algebra gauge theory. The isomorphism between them induces an algebra isomorphism between their subalgebras of invariants, which are interpreted as gauge invariant functions or observables. It also relates the curvatures in the two models, which are given as holonomies around the faces of the lattice. This yields an isomorphism between the subalgebras obtained by projecting out curvatures, which can be viewed as the algebras of functions on flat gauge fields and are the topological invariants of the two models.
Mattheakis, Marios; Valagiannopoulos, Constantinos A.; Kaxiras, Efthimios
2016-11-01
The electromagnetic response of a two-dimensional metal embedded in a periodic array of a dielectric host can give rise to a plasmonic Dirac point that emulates epsilon-near-zero (ENZ) behavior. This theoretical result is extremely sensitive to structural features like periodicity of the dielectric medium and thickness imperfections. We propose that such a device can actually be realized by using graphene as the two-dimensional metal and materials like the layered semiconducting transition-metal dichalcogenides or hexagonal boron nitride as the dielectric host. We propose a systematic approach, in terms of design characteristics, for constructing metamaterials with linear, elliptical, and hyperbolic dispersion relations which produce ENZ behavior, normal or negative diffraction.
Olson, L. E.; Dvorak, F. A.
1976-01-01
The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary-layer and potential-flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary-layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible.
Olson, L. E.; Dvorak, F. A.
1975-01-01
The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary layer and potential flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible.
Schwinger-Fronsdal Theory of Abelian Tensor Gauge Fields
Directory of Open Access Journals (Sweden)
Sebastian Guttenberg
2008-09-01
Full Text Available This review is devoted to the Schwinger and Fronsdal theory of Abelian tensor gauge fields. The theory describes the propagation of free massless gauge bosons of integer helicities and their interaction with external currents. Self-consistency of its equations requires only the traceless part of the current divergence to vanish. The essence of the theory is given by the fact that this weaker current conservation is enough to guarantee the unitarity of the theory. Physically this means that only waves with transverse polarizations are propagating very far from the sources. The question whether such currents exist should be answered by a fully interacting theory. We also suggest an equivalent representation of the corresponding action.
Background-Independence from the Perspective of Gauge Theory
Cartwright, Casey
2015-01-01
We consider two concepts often discussed as significant features of general relativity (particularly when contrasted with the other forces of the Standard Model): background independence and diffeomorphism invariance. We remind the reader of the role of backgrounds both as calculational tools and as part of the formulation of theories. Examining familiar gauge theory constructions, we are able to pinpoint when in the formulation of these theories they become background independent. We then discuss extending the gauge formulation to gravity. In doing so we are able to identify what makes general relativity a background independent theory. We also discuss/dispel suggestions that "active" diffeomorphism invariance is a feature unique to general relativity and we go on to argue against the claim that this symmetry is the origin of background independence of the theory.
Spin gauge field theory of electric and magnetic spinors
Energy Technology Data Exchange (ETDEWEB)
Chisholm, J.S.R.; Farwell, R.S. (Kent Univ., Canterbury (UK))
1981-06-05
In the first section, a gauge theory of an unquantized generalized electron interacting with the electromagnetic field through two vector potentials is formulated, based on invariance of the Lagrangian under an algebra of spin space transformations. The covariant derivative is essentially expressed in terms of spin space operators. It is not possible to define dual monopole spinors in a four-component theory. However, a modified eight-component generalized electron gauge theory transforms into a dual monopole theory by using a square root of the charge conjugation operator. The covariant derivatives of the two spinors are members of a continuous set, and define curvature and torsion in spin space corresponding to the two spinors. Physically important 'weak spin curvature' is closely related to the total electromagnetic field. Possible physical interpretations and extensions of the theory are discussed.
Gauging unbroken symmetries in F-theory
Ju, Chia-Yi; Siegel, Warren
2016-11-01
F-theory attempts to include all U-dualities manifestly. Unlike its T-dual manifest partner, which is based on string current algebra, F-theory is based on higher dimensional brane current algebra. Like the T-dual manifest theory, which has O (D -1 ,1 )2 unbroken symmetry, the F-theory vacuum also enjoys certain symmetries ("H "). One of its important and exotic properties is that worldvolume indices are also spacetime indices. This makes the global brane current algebra incompatible with H symmetry currents. The solution is to introduce worldvolume covariant derivatives, which depend on the H coordinates even in a "flat" background. We will also give as an explicit example the 5-brane case.
Gauging Unbroken Symmetries in F-theory
Ju, Chia-Yi
2016-01-01
F-theory attempts to include all U-dualities manifestly. Unlike its T-dual manifest partner, which is based on string current algebra, F-theory is based on higher dimensional brane current algebra. Like the T-dual manifest theory, which has $O(D-1,1)^2$ unbroken symmetry, the F-theory vacuum also enjoys certain symmetries ("$H$"). One of its important and exotic properties is that worldvolume indices are also spacetime indices. This makes the global brane current algebra incompatible with $H$ symmetry currents. The solution is to introduce worldvolume covariant derivatives, which depend on the $H$ coordinates even in a "flat" background. We will also give as an explicit example the 5-brane case.
Four Fermion Interactions in Non-Abelian Gauge Theory
Catterall, Simon
2013-01-01
We continue our earlier study of the phase structure of a SU(2) gauge theory whose action contains additional chirally invariant four fermion interactions. Our lattice theory uses a reduced staggered fermion formalism to generate two Dirac flavors in the continuum limit. In the current study we have tried to reduce lattice spacing and taste breaking effects by using an improved fermion action incorporating stout smeared links. As in our earlier study we observe two regimes; for weak gauge coupling the chiral condensate behaves as an order parameter differentiating a phase at small four fermi coupling where the condensate vanishes from a phase at strong four fermi coupling in which chiral symmetry is spontaneously broken. This picture changes qualitatively when the gauge coupling is strong enough to cause confinement; in this case we observe a first order phase transition for some critical value of the four fermi coupling associated with a strong enhancement of the chiral condensate. We observe that this criti...
Deconstructing six dimensional gauge theories with strongly coupled moose meshes
Gregoire, T; Gregoire, Thomas; Wacker, Jay G.
2002-01-01
It has recently been realized that five dimensional theories can be generated dynamically from asymptotically free, QCD-like four dimensional dynamics via ``deconstruction.'' In this paper we generalize this construction to six dimensional theories using a moose mesh with alternating weak and strong gauge groups. A new ingredient is the appearance of self couplings between the higher dimensional components of the gauge fields that appear as a potential for pseudo-Goldstone bosons in the deconstructed picture. We show that, in the limit where the weak gauge couplings are made large, such potentials are generated with appropriate size from finite one loop correction. Our construction has a number of applications, in particular to the constructions of ``little Higgs'' models of electroweak symmetry breaking.
Perturbation Theory in Supersymmetric QED: Infrared Divergences and Gauge Invariance
Dine, Michael; Haber, Howard E; Haskins, Laurel Stephenson
2016-01-01
We study some aspects of perturbation theory in $N=1$ supersymmetric abelian gauge theories with massive charged matter. In general gauges, infrared (IR) divergences and nonlocal behavior arise in 1PI diagrams, associated with a $1/k^4$ term in the propagator for the vector superfield. We examine this structure in supersymmetric QED. The IR divergences are gauge-dependent and must cancel in physical quantities like the electron pole mass. We demonstrate that cancellation takes place in a nontrivial way, amounting to a reorganization of the perturbative series from powers of $e^2$ to powers of $e$. We also show how these complications are avoided in cases where a Wilsonian effective action can be defined.
Cosmological Model Based on Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning
2005-01-01
A cosmological model based on gauge theory of gravity is proposed in this paper. Combining cosmological principle and field equation of gravitational gauge field, dynamical equations of the scale factor R(t) of our universe can be obtained. This set of equations has three different solutions. A prediction of the present model is that, if the energy density of the universe is not zero and the universe is expanding, the universe must be space-flat, the total energy density must be the critical density ρc of the universe. For space-flat case, this model gives the same solution as that of the Friedmann model. In other words, though they have different dynamics of gravitational interactions, general relativity and gauge theory of gravity give the same cosmological model.
Wang, Wenjun; Li, Peng; Jin, Feng
2016-09-01
A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.
Perturbative Quantum Gravity and its Relation to Gauge Theory
Directory of Open Access Journals (Sweden)
Bern Zvi
2002-01-01
Full Text Available In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on $D$-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input thegravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.
Thermalization and confinement in strongly coupled gauge theories
Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher
2016-11-01
Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which "real world" theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory's confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the "abrupt quench" limit.
Dark matter from one-flavor SU(2) gauge theory
Francis, Anthony; Lewis, Randy; Tulin, Sean
2016-01-01
SU(2) gauge theory with a single fermion in the fundamental representation is a minimal non-Abelian candidate for the dark matter sector, which is presently missing from the standard model. Having only a single flavor provides a natural mechanism for stabilizing dark matter on cosmological timescales. Preliminary lattice results are presented and discussed in the context of dark matter phenomenology.
Vacuum stability of asymptotically safe gauge-Yukawa theories
DEFF Research Database (Denmark)
Litim, Daniel F.; Mojaza, Matin; Sannino, Francesco
2016-01-01
We study the phase diagram and the stability of the ground state for certain four-dimensional gauge-Yukawa theories whose high-energy behaviour is controlled by an interacting fixed point. We also provide analytical and numerical results for running couplings, their crossover scales, the separatrix......, and the Coleman-Weinberg effective potential. Classical and quantum stability of the vacuum is established....
Structure of flux tube in SU(2) lattice gauge theory
Shiba, H
1994-01-01
The structure of the flux tube is studied in SU(2) QCD from the standpoint of the abelian projection theory. It is shown that the flux distributions of the orthogonal electric field and the magnetic field are produced by the effect that the abelian monopoles in the maximally abelian (MA) gauge are expelled from the string region.
Reflections on the renormalization procedure for gauge theories
Hooft, Gerard t
2016-01-01
Various pieces of insight were needed to formulate the rules for working with gauge theories of the electro-magnetic, weak and strong forces. First, it was needed to understand how to formulate the Feynman rules. We had to learn that there are many different ways to derive them, and it was needed to
Topology, rigid cosymmetries and linearization instability in higher gauge theories
Khavkine, I.
2013-01-01
We consider a class of non-linear PDE systems, whose equations possess Noether identities (the equations are redundant), including non-variational systems (not coming from Lagrangian field theories), where Noether identities and infinitesimal gauge transformations need not be in bijection. We also i
Gauge Theories on Open Lie Algebra Noncommutative Spaces
Agarwal, A.; Akant, L.
It is shown that noncommutative spaces, which are quotients of associative algebras by ideals generated by highly nonlinear relations of a particular type, admit extremely simple formulae for deformed or star products. Explicit construction of these star products is carried out. Quantum gauge theories are formulated on these spaces, and the Seiberg-Witten map is worked out in detail.
Lattice gauge theory simulations in the quantum information era
Dalmonte, M.; Montangero, S.
2016-07-01
The many-body problem is ubiquitous in the theoretical description of physical phenomena, ranging from the behaviour of elementary particles to the physics of electrons in solids. Most of our understanding of many-body systems comes from analysing the symmetric properties of Hamiltonian and states: the most striking examples are gauge theories such as quantum electrodynamics, where a local symmetry strongly constrains the microscopic dynamics. The physics of such gauge theories is relevant for the understanding of a diverse set of systems, including frustrated quantum magnets and the collective dynamics of elementary particles within the standard model. In the last few years, several approaches have been put forward to tackle the complex dynamics of gauge theories using quantum information concepts. In particular, quantum simulation platforms have been put forward for the realisation of synthetic gauge theories, and novel classical simulation algorithms based on quantum information concepts have been formulated. In this review, we present an introduction to these approaches, illustrating the basics concepts and highlighting the connections between apparently very different fields, and report the recent developments in this new thriving field of research.
Vacuum stability of asymptotically safe gauge-Yukawa theories
Litim, Daniel F; Sannino, Francesco
2016-01-01
We study the phase diagram and the stability of the ground state for certain four-dimensional gauge-Yukawa theories whose high-energy behaviour is controlled by an interacting fixed point. We also provide analytical and numerical results for running couplings, their crossover scales, the separatrix, and the Coleman-Weinberg effective potential. Classical and quantum stability of the vacuum is established.
Vacuum stability of asymptotically safe gauge-Yukawa theories
DEFF Research Database (Denmark)
Litim, Daniel F.; Mojaza, Matin; Sannino, Francesco
2016-01-01
We study the phase diagram and the stability of the ground state for certain four-dimensional gauge-Yukawa theories whose high-energy behaviour is controlled by an interacting fixed point. We also provide analytical and numerical results for running couplings, their crossover scales, the separatrix...
SU(2) Gauge Theory with Two Fundamental Flavours
DEFF Research Database (Denmark)
Arthur, Rudy; Drach, Vincent; Hansen, Martin;
2016-01-01
We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite (Golds...
Gauge theories of gravitation a reader with commentaries
Blagojevic, Milutin
2013-01-01
In the last five decades, the gauge approach to gravity has represented a research area of increasing importance for our understanding of the physics of fundamental interactions. A full clarification of the gauge dynamics of gravity is expected to be the last missing link to the hidden structure of a consistent unification of all the fundamental interactions, based on the gauge principle. The aim of the present reprint volume, with commentaries by Milutin Blagojevi & 263; and Friedrich W Hehl, is to introduce graduate and advanced undergraduate students of theoretical or mathematical physics, or any other interested researcher, to the field of classical gauge theories of gravity. This is not just an ordinary reprint volume; it is a guide to the literature on gauge theories of gravity. The reader is encouraged first to study the introductory commentaries and to become familiar with the basic content of the reprints and related ideas, then he/she can choose to read a specific reprint or reprints, and after ...
Prepotential formulation of SU(3) lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Anishetty, Ramesh [Institute of Mathematical Sciences, CIT-Campus, Taramani, Chennai 600 113 (India); Mathur, Manu; Raychowdhury, Indrakshi [S N Bose, National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700 098 (India)], E-mail: ramesha@imsc.res.in, E-mail: manu@bose.res.in, E-mail: indrakshi@bose.res.in
2010-01-22
The SU(3) lattice gauge theory is reformulated in terms of SU(3) prepotential harmonic oscillators. This reformulation has enlarged SU(3)xU(1)xU(1) gauge invariance under which the prepotential operators transform like matter fields. The Hilbert space of SU(3) lattice gauge theory is shown to be equivalent to the Hilbert space of the prepotential formulation satisfying certain color invariant Sp(2, R) constraints. The SU(3) irreducible prepotential operators which solve these Sp(2, R) constraints are used to construct SU(3) gauge invariant Hilbert spaces at every lattice site in terms of SU(3) gauge invariant vertex operators. The electric fields and the link operators are reconstructed in terms of these SU(3) irreducible prepotential operators. We show that all the SU(3) Mandelstam constraints become local and take a very simple form within this approach. We also discuss the construction of all possible linearly independent SU(3) loop states which solve the Mandelstam constraints. The techniques can be easily generalized to SU(N)
Monopole in the dilatonic gauge field theory
Karczewska, D
2000-01-01
A numerical study of coupled to the dilaton field, static, spherically symmetric monopole solutions inspired by the Kaluza-Klein theory with large extra dimensions are presented. The generalized Prasad-Sommerfield solution is obtained. We show that monopole may have also the dilaton cloud configurations.
Loop approaches to gauge field theory
Loll, R.
1992-01-01
Basic mathematical and physical concepts in loop- and path-dependent formulations of Yang-MiIls theory are reviewed and set into correspondence. We point out some problems peculiar to these non-local approaches, in particular those associated with defining structure on various kinds of loop
A gauge theory of gravity in curved phase-spaces
Castro, Carlos
2016-06-01
After a cursory introduction of the basic ideas behind Born’s Reciprocal Relativity theory, the geometry of the cotangent bundle of spacetime is studied via the introduction of nonlinear connections associated with certain nonholonomic modifications of Riemann-Cartan gravity within the context of Finsler geometry. A novel gauge theory of gravity in the 8D cotangent bundle T∗M of spacetime is explicitly constructed and based on the gauge group SO(6, 2) ×sR8 which acts on the tangent space to the cotangent bundle T(x,p)T∗M at each point (x,p). Several gravitational actions involving curvature and torsion tensors and associated with the geometry of curved phase-spaces are presented. We conclude with a brief discussion of the field equations, the geometrization of matter, quantum field theory (QFT) in accelerated frames, T-duality, double field theory, and generalized geometry.
IR fixed points in $SU(3)$ gauge Theories
Ishikawa, K -I; Nakayama, Yu; Yoshie, Y
2015-01-01
We propose a novel RG method to specify the location of the IR fixed point in lattice gauge theories and apply it to the $SU(3)$ gauge theories with $N_f$ fundamental fermions. It is based on the scaling behavior of the propagator through the RG analysis with a finite IR cut-off, which we cannot remove in the conformal field theories in sharp contrast with the confining theories. The method also enables us to estimate the anomalous mass dimension in the continuum limit at the IR fixed point. We perform the program for $N_f=16, 12, 8 $ and $N_f=7$ and indeed identify the location of the IR fixed points in all cases.
Parametric representation of Feynman amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Sars, Matthias Christiaan Bernhard
2015-09-01
In this thesis a systematic method is given for writing the amplitudes in (scalar) quantum electrodynamics and non-Abelian gauge theories in Schwinger parametric form. This is done by turning the numerator of the Feynman rules in momentum space into a differential operator. It acts then on the parametric integrand of the scalar theory. For QED it is the most straightforward, because the Leibniz rule is not involved here. In the case of sQED and non-Abelian gauge theories, the contributions from the Leibniz rule are satisfyingly related to 4-valent vertices. Another feature of this method is that in the used renormalization scheme, the subtractions for 1-scale graphs cause significant simplifications. Furthermore, the Ward identities for mentioned three theories are studied.
Orbifold Reduction and 2d (0,2) Gauge Theories
Franco, Sebastian; Seong, Rak-Kyeong
2016-01-01
We introduce Orbifold Reduction, a new method for generating $2d$ $(0,2)$ gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from $4d$ $\\mathcal{N}=1$ gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating $2d$ $(0,2)$ theories with a brane realization. We present three practical applications of the new algorithm: the connection between $4d$ Seiberg duality and $2d$ triality, a combinatorial method for generating theories related by triality and a $2d$ $(0,2)$ generalization of the Klebanov-Witten mass deformation.
D-branes, symplectomorphisms and noncommutative gauge theories
Energy Technology Data Exchange (ETDEWEB)
Martin, I.; Ovalle, J.; Restuccia, A
2001-09-01
It is shown that the dual of the double compactified D=11 Supermembrane and a suitable compactified D=10 Super 4D-brane with nontrivial wrapping on the target space may be formulated as non-commutative gauge theories. The Poisson bracket over the world-volume is intrinsically defined in terms of the minima of the hamiltonian of the theory, which may be expressed in terms of a non degenerate 2-form. A deformation of the Poisson bracket in terms of the Moyal brackets is then performed. A non-commutative gauge theory in terms of the Moyal star bracket is obtained. It is shown that all these theories may be described in terms of symplectic connections on symplectic fibrations, the world volume being its base manifold and the (sub)group of volume preserving diffeomorphisms, p = 2 (p > 2), generate the symplectomorphisms which preserve the (infinite dimensional) Poisson bracket of the fibration.
D-branes, symplectomorphisms and noncommutative gauge theories
Martín, I.; Ovalle, J.; Restuccia, A.
It is shown that the dual of the double compactified D=11 Supermembrane and a suitable compactified D=10 Super 4D-brane with nontrivial wrapping on the target space may be formulated as non-commutative gauge theories. The Poisson bracket over the world-volume is intrinsically defined in terms of the minima of the hamiltonian of the theory, which may be expressed in terms of a non degenerate 2-form. A deformation of the Poisson bracket in terms of the Moyal brackets is then performed. A non-commutative gauge theory in terms of the Moyal star bracket is obtained. It is shown that all these theories may be described in terms of symplectic connections on symplectic fibrations, the world volume being its base manifold and the (sub)group of volume preserving diffeomorphisms, p = 2 ( p > 2), generate the symplectomorphisms which preserve the (infinite dimensional) Poisson bracket of the fibration.
Langevin dynamics of the deconfinement transition for pure gauge theory
Fraga, E S; Krein, G; Fraga, Eduardo S.; Mizher, Ana J\\'ulia; Krein, Gast\\~ao
2007-01-01
We investigate the effects of dissipation in the deconfinement transition for pure SU(2) and SU(3) gauge theories. Using an effective theory for the order parameter, we study its Langevin evolution numerically. Noise effects are included for the case of SU(2). We find that both dissipation and noise have dramatic effects on the spinodal decomposition of the order parameter and delay considerably its thermalization. For SU(3) the effects of dissipation are even larger than for SU(2).
Langevin dynamics of the deconfinement transition for pure gauge theory
Mizher, Ana Júlia; Fraga, Eduardo S.; Krein, Gastão Inácio [UNESP
2006-01-01
We investigate the effects of dissipation in the deconfinement transition for pure SU(2) and SU(3) gauge theories. Using an effective theory for the order parameter, we study its Langevin evolution numerically. Noise effects are included for the case of SU(2). We find that both dissipation and noise have dramatic effects on the spinodal decomposition of the order parameter and delay considerably its thermalization. For SU(3) the effects of dissipation are even larger than for SU(2).
Langevin dynamics of the deconfinement transition for pure gauge theory
Energy Technology Data Exchange (ETDEWEB)
Mizher, Ana Julia; Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica; Krein, Gastao [Universidade Estadual Paulista (UNESP), Sao Paulo, SP (Brazil). Inst. de Fisica Teorica
2007-06-15
We investigate the effects of dissipation in the deconfinement transition for pure SU(2) and SU(3) gauge theories. Using an effective theory for the order parameter, we study its Langevin evolution numerically. Noise effects are included for the case of SU(2). We find that both dissipation and noise have dramatic effects on the spinodal decomposition of the order parameter and delay considerably its thermalization. For SU(3) the effects of dissipation are even larger than for SU(2). (author)
Higher-Loop Integrability in N=4 Gauge Theory
Beisert, N
2004-01-01
The dilatation operator measures scaling dimensions of local operator in a conformal field theory. Algebraic methods of constructing the dilatation operator in four-dimensional N=4 gauge theory are reviewed. These led to the discovery of novel integrable spin chain models in the planar limit. Making use of Bethe ansaetze, a superficial discrepancy in the AdS/CFT correspondence was found, we discuss this issue and give a possible resolution.
Gauge Theories on the Coulomb Branch
Schwarz, John H.
We construct the world-volume action of a probe D3-brane in AdS5 × S5 with N units of flux. It has the field content, symmetries, and dualities of the U(1) factor of 𝒩 = 4 U(N + 1) super Yang-Mills theory, spontaneously broken to U(N) × U(1) by being on the Coulomb branch, with the massive fields integrated out. This motivates the conjecture that it is the exact effective action, called a highly effective action (HEA). We construct an SL(2, Z) multiplet of BPS soliton solutions of the D3-brane theory (the conjectured HEA) and show that they reproduce the electrically charged massive states that have been integrated out as well as magnetic monopoles and dyons. Their charges are uniformly spread on a spherical surface, called a soliton bubble, which is interpreted as a phase boundary.
Gauge Theories on the Coulomb branch
Schwarz, John H
2014-01-01
We construct the world-volume action of a probe D3-brane in $AdS_5 \\times S^5$ with $N$ units of flux. It has the field content, symmetries, and dualities of the $U(1)$ factor of ${\\cal N} =4$ $U(N+1)$ super Yang--Mills theory, spontaneously broken to $U(N) \\times U(1)$ by being on the Coulomb branch, with the massive fields integrated out. This motivates the conjecture that it is the exact effective action, called a `highly effective action' (HEA). We construct an $SL(2,Z)$ multiplet of BPS soliton solutions of the D3-brane theory (the conjectured HEA) and show that it reproduces the electrically charged massive states that have been integrated out as well as magnetic monopoles and dyons. Their charges are uniformly spread on a spherical surface, called a `soliton bubble', which is interpreted as a phase boundary.
Stringy Instantons and Quiver Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Florea, Bogdan; Kachru, Shamit; McGreevy, John; Saulina, Natalia
2006-10-24
We explore contributions to the 4D effective superpotential which arise from Euclidean D3 branes (''instantons'') that intersect space-filling D-branes. These effects can perturb the effective field theory on the space-filling branes by nontrivial operators composed of charged matter fields, changing the vacuum structure in a qualitative way in some examples. Our considerations are exemplified throughout by a careful study of a fractional brane configuration on a del Pezzo surface.
Consistent quantization and symmetry structure of a non-Abelian chiral gauge theory
Shizuya, Ken-Ichi
1989-08-01
The SU(N) chiral Schwinger model with a Wess-Zumino term is studied by use of non-Abelian bosonization, the Becchi-Rouet-Stora formalism, and a dual transformation, and it is confirmed that this model is a sensible quantum theory in a certain range of the anomaly parameter a. The SU(N) gauge symmetry restored by the inclusion of the Wess-Zumino term gets spontaneously broken and the gauge field becomes massive. Left-handed fermions are found to be confined while right-handed fermions remain free and massless. For the specific value a=2, the symmetry of the model enlarges [to a U(N)×U(N) Kac-Moody symmetry]. It is shown by fermionization of the Wess-Zumino field that for a=2 this model is equivalent to massless two-dimensional QCD (QCD2) in the sense that they share the same gauge field and the same left-handed fermions. A dual transformation is used to cast the model into an equivalent nonlinear system of scalar fields only, which reveals the particle spectrum of the model.
Thermalization and confinement in strongly coupled gauge theories
Directory of Open Access Journals (Sweden)
Ishii Takaaki
2016-01-01
Full Text Available Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which “real world” theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory’s confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the “abrupt quench” limit.
Gauge theories from D7-branes over vanishing 4-cycles
Energy Technology Data Exchange (ETDEWEB)
Franco, Sebastian; /Santa Barbara, KITP; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.
2010-12-16
We study quiver gauge theories on D7-branes wrapped over vanishing holomorphic 4-cycles. We investigate how to incorporate O7-planes and/or flavor D7-branes, which are necessary to cancel anomalies. These theories are chiral, preserve four supercharges and exhibit very rich infrared dynamics. Geometric transitions and duality in the presence of O-planes are analyzed. We study the Higgs branch of these quiver theories, showing the emergence of fuzzy internal dimensions. This branch is related to noncommutative instantons on the divisor wrapped by the seven-branes. Our results have a natural application to the recently introduced F(uzz) limit of F-theory.
The Standard Model is Natural as Magnetic Gauge Theory
DEFF Research Database (Denmark)
Sannino, Francesco
2011-01-01
matter. The absence of scalars in the electric theory indicates that the associated magnetic theory is free from quadratic divergences. Our novel solution to the Standard Model hierarchy problem leads also to a new insight on the mystery of the observed number of fundamental fermion generations......We suggest that the Standard Model can be viewed as the magnetic dual of a gauge theory featuring only fermionic matter content. We show this by first introducing a Pati-Salam like extension of the Standard Model and then relating it to a possible dual electric theory featuring only fermionic...
Infinite coupling duals of N=2 gauge theories and new rank 1 superconformal field theories
Argyres, Philip C
2008-01-01
We show that a proposed duality [arXiv:0711.0054] between infinitely coupled gauge theories and superconformal field theories (SCFTs) with weakly gauged flavor groups predicts the existence of new rank 1 SCFTs. These superconformal fixed point theories have the same Coulomb branch singularities as the rank 1 E_6, E_7, and E_8 SCFTs, but have smaller flavor symmetry algebras and different central charges. Gauging various subalgebras of the flavor algebras of these rank 1 SCFTs provides many examples of infinite-coupling dualities, satisfying an intricate set of consistency checks. They also provide examples of N=2 conformal theories with marginal couplings but no weak-coupling limits.
On the Renormalizability of Theories with Gauge Anomalies
Casana, Rodolfo; Dias, Sebastião A.
We consider the detailed renormalization of two (1+1)-dimensional gauge theories which are quantized without preserving gauge invariance: the chiral and the ``anomalous'' Schwinger models. By regularizing the nonperturbative divergences that appear in fermionic Green functions of both models, we show that the ``tree level'' photon propagator is ill defined, thus forcing one to use the complete photon propagator in the loop expansion of these functions. We perform the renormalization of these divergences in both models to one-loop level, defining it in a consistent and semiperturbative sense that we propose in this paper.
QCD axion from a higher dimensional gauge field theory.
Choi, Kiwoon
2004-03-12
We point out that a QCD axion solving the strong CP problem can arise naturally from a parity-odd gauge field in five-dimensional (5D) orbifold field theory. The required axion coupling to the QCD anomaly comes from the 5D Chern-Simons coupling, and all other unwanted U(1)PQ breaking axion couplings can be avoided naturally by the 5D gauge symmetry and locality. If the fifth dimension is warped, the resulting axion scale is suppressed by a small warp factor compared to the Planck scale, thereby the model can generate naturally an intermediate axion scale fa = 10(10)-10(12) GeV.
Universal structure of subleading infrared poles in gauge theory amplitudes
Dixon, Lance J; Sterman, George
2008-01-01
We study the origin of subleading soft and collinear poles of form factors and amplitudes in dimensionally-regulated massless gauge theories. In the case of form factors of fundamental fields, these poles originate from a single function of the coupling, denoted G(alpha_s), depending on both the spin and gauge quantum numbers of the field. We relate G(alpha_s) to gauge-theory matrix elements involving the gluon field strength. We then show that G(alpha_s) is the sum of three terms: a universal eikonal anomalous dimension, a universal non-eikonal contribution, given by the coefficient B_delta (alpha_s) of delta(1 - z) in the collinear evolution kernel, and a process-dependent short-distance coefficient function, which does not contribute to infrared poles. Using general results on the factorization of soft and collinear singularities in fixed-angle massless gauge theory amplitudes, we conclude that all such singularities are captured by the eikonal approximation, supplemented only by the knowledge of B_delta (...
Quantum Critical Behaviour of Semi-Simple Gauge Theories
Esbensen, Jacob Kamuk; Sannino, Francesco
2015-01-01
We study the perturbative phase diagram of semi-simple fermionic gauge theories resembling the Standard Model. We investigate an $SU(N)$ gauge theory with $M$ Dirac flavors where we gauge first an $SU(M)_L$ and then an $SU(2)_L \\subset SU(M)_L$ of the original global symmetry $SU(M)_L\\times SU(M)_R \\times U(1) $ of the theory. To avoid gauge anomalies we add lepton-like particles. At the two-loops level an intriguing phase diagram appears. We uncover phases in which one, two or three fixed points exist and discuss the associated flows of the coupling constants. We discover a phase featuring complete asymptotic freedom and simultaneously an interacting infrared fixed point in both couplings. The analysis further reveals special renormalisation group trajectories along which one coupling displays asymptotic freedom and the other asymptotic safety, while both flowing in the infrared to an interacting fixed point. These are \\emph{safety free} trajectories. We briefly sketch out possible phenomenological implicati...
Euclidean quantum field theory: Curved spacetimes and gauge fields
Ritter, William Gordon
This thesis presents a new formulation of quantum field theory (QFT) on curved spacetimes, with definite advantages over previous formulations, and an introduction to the millennium prize problem on four-dimensional gauge theory. Our constructions are completely rigorous, making QFT on curved spacetimes into a subfield of mathematics, and we achieve the first analytic control over nonperturbative aspects of interacting theories on curved spacetimes. The success of Euclidean path integrals to capture nonperturbative aspects of QFT has been striking. The Euclidean path integral is the most accurate method of calculating strong-coupling effects in gauge theory (such as glueball masses). Euclidean methods are also useful in the study of black holes, as evidenced by the Hartle-Hawking calculation of black-hole radiance. From a mathematical point of view, on flat spacetimes the Euclidean functional integral provides the most elegant method of constructing examples of interacting relativistic field theories. Yet until now, the incredibly-useful Euclidean path integral had never been given a definitive mathematical treatment on curved backgrounds. It is our aim to rectify this situation. Along the way, we discover that the Dirac operator on an arbitrary Clifford bundle has a resolvent kernel which is the Laplace transform of a positive measure. In studying spacetime symmetries, we discover a new way of constructing unitary representations of noncompact Lie groups. We also define and explore an interesting notion of convergence for Laplacians. The same mathematical framework applies to scalar fields, fermions, and gauge fields. The later chapters are devoted to gauge theory. We present a rigorous, self-contained introduction to the subject, aimed at mathematicians and using the language of modern mathematics, with a view towards nonperturbative renormalization in four dimensions. The latter ideas are unfinished. A completion of the final chapter would imply the construction
More On Gauge Theory And Geometric Langlands
Witten, Edward
2015-01-01
The geometric Langlands correspondence was described some years ago in terms of $S$-duality of $\\N=4$ super Yang-Mills theory. Some additional matters relevant to this story are described here. The main goal is to explain directly why an $A$-brane of a certain simple kind can be an eigenbrane for the action of 't Hooft operators. To set the stage, we review some facts about Higgs bundles and the Hitchin fibration. We consider only the simplest examples, in which many technical questions can be avoided.
Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories
Hwang, J
2002-01-01
We present cosmological perturbations of kinetic components based on relativistic Boltzmann equations in the context of generalized gravity theories. Our general theory considers an arbitrary number of scalar fields generally coupled with the gravity, an arbitrary number of mutually interacting hydrodynamic fluids, and components described by the relativistic Boltzmann equations like massive/massless collisionless particles and the photon. The model includes the general background spatial curvature and the cosmological constant. We consider three different types of perturbations, and all the scalar-type perturbation equations are arranged in a gauge-ready form so that one can implement easily the convenient gauge conditions depending on the situation. In the numerical calculation of the Boltzmann equations we found two new gauge conditions (the uniform-expansion gauge and the uniform-curvature gauge) which show better behavior than the previously employed gauge conditions in the literature. In particular, we ...
Fusion basis for lattice gauge theory and loop quantum gravity
Delcamp, Clement; Dittrich, Bianca; Riello, Aldo
2017-02-01
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2 + 1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel'd double of the gauge group, and can be readily "fused" together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2 + 1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
Flavour-mixing gauge field theory of massive Majorana neutrinos
Marsch, Eckart
2012-01-01
A gauge-field theory for massive neutral particles is developed on the basis of the real four-component Majorana equation. By use of its spin operator, a purely imaginary representation of the SU(2) algebra can be defined, which gives a covariant derivative that is real. Such a coupling to the gauge field preserves the real nature of the Majorana equation even when including interactions. As the associated isospin is four-dimensional, this procedure introduces four intrinsic degrees of freedom to the Majorana field, which may be related to four flavours. The main aim is to describe here the mathematical possibility for coupling Majorana particles with a gauge field which resembles that of the weak interaction. By adding a fourth member to the family, flavour could become a dynamic trait of the neutral Majorana particles, and thus lead to a dynamic understanding of mixing.
Tadpoles and Symmetries in Higgs-Gauge Unification Theories
Quirós, Mariano
2005-01-01
In theories with extra dimensions the Standard Model Higgs fields can be identified with internal components of bulk gauge fields (Higgs-gauge unification). The bulk gauge symmetry protects the Higgs mass from quadratic divergences, but at the fixed points localized tadpoles can be radiatively generated if U(1) subgroups are conserved, making the Higgs mass UV sensitive. We show that a global symmetry, remnant of the internal rotation group after orbifold projection, can prevent the generation of such tadpoles. In particular we consider the classes of orbifold compactifications T^d/Z_N (d even, N>2) and T^d/Z_2 (arbitrary d) and show that in the first case tadpoles are always allowed, while in the second they can appear only for d=2 (six dimensions).
Cosmological perturbation theory in the synchronous and conformal newtonian gauges
Ma Chung Pei; Ma, Chung Pei; Bertschinger, Edmund
1995-01-01
This paper presents a systematic treatment of the linear theory of scalar gravitational perturbations in the synchronous gauge and the conformal Newtonian (or longitudinal) gauge. It differs from others in the literature in that we give, in both gauges, a complete discussion of all particle species that are relevant to any flat cold dark matter (CDM), hot dark matter (HDM), or CDM+HDM models (including a possible cosmological constant). The particles considered include CDM, baryons, photons, massless neutrinos, and massive neutrinos (an HDM candidate), where the CDM and baryons are treated as fluids while a detailed phase-space description is given to the photons and neutrinos. Particular care is applied to the massive neutrino component, which has been either ignored or approximated crudely in previous works. Isentropic initial conditions on super-horizon scales are derived. The coupled, linearized Boltzmann, Einstein and fluid equations that govern the evolution of the metric and density perturbations are t...
Interaction of wilson loops in the SU(N) gauge theory
Dubin, A Yu
1994-01-01
Abstract. The average of two Wilson loops is expressed in terms of gauge invariant field strength correlators. Assuming the existence of finite correlation length T_g and taking into account the absence of a fixed direction in colour space, we generalize the area law asymptotics for the case of the average of two Wilson loops embedded into the same plane. The results are presented in terms of averaged single Wilson loop operators in irreducible representations which correspond to the geometry of the contours. A special reduction of our results (obtained for arbitrary dimensionality of space-time) to the case of two-dimensional SU(N) theory is performed and the connection to the results existing in literature is established.
Phase transitions in strongly coupled 3d Z(N) lattice gauge theories at finite temperature
Borisenko, O; Cortese, G; Fiore, R; Gravina, M; Papa, A; Surzhikov, I
2012-01-01
We perform an analytical and numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4. In the strong coupling limit these models are equivalent to a generalized version of the vector Potts models in two dimensions, where Polyakov loops play the role of Z(N) spins. The effective couplings of these two-dimensional spin models are calculated explicitly. It is argued that the effective spin models have two phase transitions of BKT type. This is confirmed by large-scale Monte Carlo simulations. Using a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the helicity modulus, the average action and the specific heat. A scaling formula for the critical points with N is proposed.
Critical behaviour of the compact 3d U(1) gauge theory at finite temperature
Borisenko, Oleg; Gravina, Mario; Papa, Alessandro
2010-01-01
Critical properties of the compact three-dimensional U(1) lattice gauge theory are explored at finite temperatures. The critical point of the deconfinement phase transition, critical indices and the string tension are studied numerically on lattices with temporal extension N_t = 8 and spatial extension ranging from L = 32 to L = 256. The critical indices, which govern the behaviour across the deconfinement phase transition, are generally expected to coincide with the critical indices of the two-dimensional XY model. It is found that the determination of the infinite volume critical point differs from the pseudo-critical coupling at L = 32, found earlier in the literature and implicitly assumed as the onset value of the deconfined phase. The critical index $\
Integrable Structure in SUSY Gauge Theories, and String Duality
Nam, S
1996-01-01
There is a close relation between duality in $N=2$ SUSY gauge theories and integrable models. In particular, the quantum moduli space of vacua of $N=2$ SUSY $SU(3)$ gauge theories coupled to two flavors of massless quarks in the fundamental representation can be related to the spectral curve of the Goryachev-Chaplygin top. Generalizing this to the cases with {\\it massive} quarks, and $N_f = 0,1,2$, we find a corresponding integrable system in seven dimensional phase space where a hyperelliptic curve appears in the Painlevé test. To understand the stringy origin of the integrability of these theories we obtain exact nonperturbative point particle limit of type II string compactified on a Calabi-Yau manifold, which gives the hyperelliptic curve of $SU(2)$ QCD with $N_f =1$ hypermultiplet.
Independent Plaquette Trial Action for 4-Dimensional Lattice Gauge Theory
Institute of Scientific and Technical Information of China (English)
LIU Jin-Ming
2001-01-01
Based on the explicit expressions of the plaquette formulations, the independent plaquette trial action for 4-dimensional lattice gauge theory is introduced. As an example, the mean plaquette energy EP for the SU(2) lattice gauge theory is calculated by using action variational approach with the independent trial action. The results are in good agreement with the Monte Carlo results in the strong coupling and the crossover region, and the curve is smooth in the whole region, which show that 4-dimensional SU(2) theory has only a single, confining phase. The unwanted discontinuity of EP given by the single link trial action, which is used in the earlier variational calculations has been avoided.
Sasakian quiver gauge theories and instantons on the conifold
Geipel, Jakob C; Popov, Alexander D; Szabo, Richard J
2016-01-01
We consider Spin(4)-equivariant dimensional reduction of Yang-Mills theory on manifolds of the form $M^d \\times T^{1,1}$, where $M^d$ is a smooth manifold and $T^{1,1}$ is a five-dimensional Sasaki-Einstein manifold Spin(4)/U(1). We obtain new quiver gauge theories on $M^d$ extending those induced via reduction over the leaf spaces $\\mathbb{C}P^1 \\times \\mathbb{C}P^1$ in $T^{1,1}$. We describe the Higgs branches of these quiver gauge theories as moduli spaces of Spin(4)-equivariant instantons on the conifold which is realized as the metric cone over $T^{1,1}$. We give an explicit construction of these moduli spaces as K\\"ahler quotients.
Symanzik improvement of the gradient flow in lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Ramos, Alberto [PH-TH, CERN, Geneva (Switzerland); Sint, Stefan [Trinity College Dublin, School of Mathematics, Dublin (Ireland)
2016-01-15
We apply the Symanzik improvement programme to the 4 + 1-dimensional local re-formulation of the gradient flow in pure SU(N) lattice gauge theories. We show that the classical nature of the flow equation allows one to eliminate all cutoff effects at O(a{sup 2}), which originate either from the discretised gradient flow equation or from the gradient flow observable. All the remaining O(a{sup 2}) effects can be understood in terms of local counterterms at the zero flow-time boundary. We classify these counterterms and provide a complete set as required for on-shell improvement. Compared to the 4-dimensional pure gauge theory only a single additional counterterm is required, which corresponds to a modified initial condition for the flow equation. A consistency test in perturbation theory is passed and allows one to determine all counterterm coefficients to lowest non-trivial order in the coupling. (orig.)
Spontaneous parity violation and SUSY strong gauge theory
Energy Technology Data Exchange (ETDEWEB)
Haba, Naoyuki; Ohki, Hiroshi [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya, Aichi 464-8602 (Japan)
2012-07-27
We suggest simple models of spontaneous parity violation in supersymmetric strong gauge theory. We focus on left-right symmetric model and investigate vacuum with spontaneous parity violation. Non-perturbative effects are calculable in supersymmetric gauge theory, and we suggest new models. Our models show confinement, so that we try to understand them by using a dual description of the theory. The left-right symmetry breaking and electroweak symmetry breaking are simultaneously occurred with the suitable energy scale hierarchy. This structure has several advantages compared to the MSSM. The scale of the Higgs mass (left-right breaking scale) and that of VEVs are different, so the SUSY little hierarchy problems are absent. The second model also induces spontaneous supersymmetry breaking.
Noncommutative electromagnetism as a large N gauge theory
Energy Technology Data Exchange (ETDEWEB)
Yang, Hyun Seok [Humboldt Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Korea Institute for Advanced Study, School of Physics, Seoul (Korea)
2009-12-15
We map noncommutative (NC) U(1) gauge theory on R{sub C} {sup d} x R{sub NC} {sup 2n} to U(N {yields}{infinity}) Yang-Mills theory on R{sub C} {sup d}, where R{sub C} {sup d} is a d-dimensional commutative spacetime while R{sub NC} {sup 2n} is a 2n-dimensional NC space. The resulting U(N) Yang-Mills theory on R{sub C} {sup d} is equivalent to that obtained by the dimensional reduction of (d+2n)-dimensional U(N) Yang-Mills theory onto R{sub C} {sup d}. We show that the gauge-Higgs system (A{sub {mu}}, {phi} {sup a}) in the U(N {yields}{infinity}) Yang-Mills theory on R{sub C} {sup d} leads to an emergent geometry in the (d+2n)-dimensional spacetime whose metric was determined by Ward a long time ago. In particular, the 10-dimensional gravity for d=4 and n=3 corresponds to the emergent geometry arising from the 4-dimensional N=4 vector multiplet in the AdS/CFT duality. We further elucidate the emergent gravity by showing that the gauge-Higgs system (A{sub {mu}}, {phi} {sup a}) in half-BPS configurations describes self-dual Einstein gravity. (orig.)
On the notion of gauge symmetries of generic Lagrangian field theory
Giachetta, G; Sardanashvily, G
2008-01-01
Treating gauge theories in a general setting, one meets the following problems: (i) any Lagrangian possesses gauge symmetries which therefore should be separated into the trivial and non-trivial ones, (ii) there is no intrinsic definition of higher-stage gauge symmetries, (iii) gauge and higher-stage gauge symmetries need not form an algebra. We define gauge symmetries as those associated to the Noether identities. Generic Lagrangian theory of even and odd fields on an arbitrary smooth manifold is considered. Under certain conditions, its non-trivial Noether and higher-stage Noether identities are well defined by constructing the antifield Koszul--Tate complex. The inverse second Noether theorem associates to this complex the cochain sequence of ghosts whose ascent operator provides all non-trivial gauge and higher-stage gauge symmetries of Lagrangian theory. This ascent operator, called the gauge operator, is not nilpotent, unless gauge symmetries are abelian. We replace a condition that gauge symmetries for...