WorldWideScience

Sample records for two-dimensional electrophoretic technique

  1. Two-dimensional electrophoretic analysis of nuclear matrix proteins in human colon adenocarcinoma.

    Science.gov (United States)

    Toumpanaki, A; Baltatzis, G E; Gaitanarou, E; Seretis, E; Toumpanakis, C; Aroni, K; Kittas, Christos; Voloudakis-Baltatzis, I E

    2009-01-01

    The aim of the present study was to observe possible qualitative and quantitative expression differences between nuclear matrix proteins (NMPs) of human colon adenocarcinoma and their mirror biopsies, using the technique of two-dimensional gel electrophoresis, in order to identify the existence of specific NMP fingerprints for colon cancer. Colon tissues were examined ultrastructurally and NMPs were isolated biochemically, by serial extraction of lipids, soluble proteins, DNA, RNA, and intermediate filaments and were separated according to their isoelectric point (pI) and their molecular weight (MW) by high-resolution two-dimensional electrophoresis (2D). By comparing the 2D electropherograms of colon cancer tissues and mirror biopsy tissues we observed qualitative and quantitative expression differences between their NMPs but also a differentiation of NMP composition between the stages of malignancy. Moreover, despite the similarities between mirror biopsy samples, a highlight percentage of exception was observed. Electrophoretic results provided in this study demonstrated that the examined NMPs could be further investigated as potential markers for detection of colorectal cancer in an early stage, for the assessment of the disease progression, as well as useful tools for individual therapy and for preventing a possible recurrence of cancer and metastasis.

  2. Three-dimensional fluorescence analysis of chernozem humic acids and their electrophoretic fractions

    Science.gov (United States)

    Trubetskoi, O. A.; Trubetskaya, O. E.

    2017-09-01

    Polyacrylamide gel electrophoresis in combination with size-exclusion chromatography (SEC-PAGE) has been used to obtain stable electrophoretic fractions of different molecular size (MS) from chernozem humic acids (HAs). Three-dimensional fluorescence charts of chernozem HAs and their fractions have been obtained for the first time, and all fluorescence excitation-emission maxima have been identified in the excitation wavelength range of 250-500 nm. It has been found that fractionation by the SEC-PAGE method results in a nonuniform distribution of protein- and humin-like fluorescence of the original HA preparation among the electrophoretic fractions. The electrophoretic fractions of the highest and medium MSs have only the main protein-like fluorescence maximum and traces of humin-like fluorescence. In the electrophoretic fraction of the lowest MS, the intensity of protein-like fluorescence is low, but the major part of humin-like fluorescence is localized there. Relationships between the intensity of protein-like fluorescence and the weight distribution of amino acids have been revealed, as well as between the degree of aromaticity and the intensity of humin-like fluorescence in electrophoretic fractions of different MSs. The obtained relationships can be useful in the interpretation of the spatial structural organization and ecological functions of soil HAs.

  3. Patched Green's function techniques for two-dimensional systems

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...

  4. A new integrated statistical approach to the diagnostic use of two-dimensional maps.

    Science.gov (United States)

    Marengo, Emilio; Robotti, Elisa; Gianotti, Valentina; Righetti, Pier Giorgio; Cecconi, Daniela; Domenici, Enrico

    2003-01-01

    Two-dimensional (2-D) electrophoresis is a very useful technique for the analysis of proteins in biological tissues. The complexity of the 2-D maps obtained causes many difficulties in the comparison of different samples. A new method is proposed for comparing different 2-D maps, based on five steps: (i) the digitalisation of the image; (ii) the transformation of the digitalised map in a fuzzy entity, in order to consider the variability of the 2-D electrophoretic separation; (iii) the calculation of a similarity index for each pair of maps; (iv) the analysis by multidimensional scaling of the previously obtained similarity matrix; (v) the analysis by classification or cluster analysis techniques of the resulting map co-ordinates. The method adopted was first tested on some simulated samples in order to evaluate its sensitivity to small changes in the spots position and size. The optimal setting of the method parameters was also investigated. Finally, the method was successfully applied to a series of real samples corresponding to the electrophoretic bidimensional analysis of sera from normal and nicotine-treated rats. Multidimensional scaling allowed the separation of the two classes of samples without any misclassification.

  5. Mapping of 34 minisatellite loci resolved by two-dimensional DNA typing

    DEFF Research Database (Denmark)

    Børglum, Anders; Nyegaard, Mette; Kvistgaard, AB

    1997-01-01

    Two-dimensional (2-D) DNA typing is based on electrophoretic separation of genomic DNA fragments in two dimensions according to independent criteria (size and base-pair sequence), followed by hybridization analysis using multilocus probes. The technique allows simultaneous visualization of several...... could be deduced, showing no evidence of clustering. In the analysis of spot patterns, use was made of a computerized image analysis system specifically designed for 2-D DNA typing. Since experimental variations between different separation patterns were automatically corrected for with this program......, rapid and reliable scorings could be obtained. The results presented demonstrate the availability of reliable genetic information throughout the 2-D separation pattern. Adding the use of semiautomated computerized pattern analysis, this study further substantiates the applicability of 2-D DNA typing...

  6. Determination of structure of oriented samples using two-dimensional solid state NMR techniques

    International Nuclear Information System (INIS)

    Jin Hong; Harbison, G.S.

    1990-01-01

    One dimensional and two-dimensional MAS techniques can give detailed information about the structure and dynamics of oriented systems. We describe the application of such techniques to the liquid-crystalline polymer poly(p-phenyleneterphtalimide) (PPTA), and thence deduce the solid-state structure of the material. (author). 9 refs.; 6 figs

  7. Two Dimensional Electrophoresis of Galactosidase Relating to the Disappearance of Bombyx Lectin Activity

    OpenAIRE

    カトウ, ヤスオ; Yasuo, Kato

    2004-01-01

    "Two dimensional polyacrylamide gel electroporesis (2 D-PAGE) analysis on the haemolymph of Bombyx mori was performed using the Mini-PROTEAN mini tube gel two dimensional polyacrylamide gel electrophoresis system (Bio-Rad Laboratories, Inc.). The result on various electrophoretical conditions using the haemolymph-protein showed the possibility that the haemolymph-protein was separated actually by means of this method. Moreover, the result of 2 D-PAGE analysis on Fraction II obtained by gel fi...

  8. Reduction of multi-dimensional laboratory data to a two-dimensional plot: a novel technique for the identification of laboratory error.

    Science.gov (United States)

    Kazmierczak, Steven C; Leen, Todd K; Erdogmus, Deniz; Carreira-Perpinan, Miguel A

    2007-01-01

    The clinical laboratory generates large amounts of patient-specific data. Detection of errors that arise during pre-analytical, analytical, and post-analytical processes is difficult. We performed a pilot study, utilizing a multidimensional data reduction technique, to assess the utility of this method for identifying errors in laboratory data. We evaluated 13,670 individual patient records collected over a 2-month period from hospital inpatients and outpatients. We utilized those patient records that contained a complete set of 14 different biochemical analytes. We used two-dimensional generative topographic mapping to project the 14-dimensional record to a two-dimensional space. The use of a two-dimensional generative topographic mapping technique to plot multi-analyte patient data as a two-dimensional graph allows for the rapid identification of potentially anomalous data. Although we performed a retrospective analysis, this technique has the benefit of being able to assess laboratory-generated data in real time, allowing for the rapid identification and correction of anomalous data before they are released to the physician. In addition, serial laboratory multi-analyte data for an individual patient can also be plotted as a two-dimensional plot. This tool might also be useful for assessing patient wellbeing and prognosis.

  9. Characterization of Dickeya and Pectobacterium species by capillary electrophoretic techniques and MALDI-TOF MS

    Czech Academy of Sciences Publication Activity Database

    Šalplachta, Jiří; Kubesová, Anna; Horký, J.; Matoušková, H.; Tesařová, Marie; Horká, Marie

    2015-01-01

    Roč. 407, č. 25 (2015), s. 7625-7635 ISSN 1618-2642 R&D Projects: GA MV VG20112015021 Institutional support: RVO:68081715 Keywords : bacteria * electrophoretic techniques * MALDI Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.125, year: 2015 http://hdl.handle.net/11104/0250090

  10. Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.

    Science.gov (United States)

    Latha, Indu; Reichenbach, Stephen E; Tao, Qingping

    2011-09-23

    Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Electrophoretic and zymographic techniques for production monitoring of two lipase forms from Candida antarctica DSM 70725

    Directory of Open Access Journals (Sweden)

    Dimitrijević Aleksandra S.

    2012-01-01

    Full Text Available Yeast Candida antarctica produces two lipase forms, which are widely used as catalysts in variety of organic reactions, many of which are applied on a large scale. In this work, production of two forms of lipase from C. antarctica DSM 70725 (CAL A and CAL B was monitored during seven days of cultivation in the optimal medium using different electrophoretic and zymographic techniques. According to electrophoresis after silver staining, C. antarctica lipase A (molecular mass 45 kDa was produced starting from the second day of cultivation. C. antarctica lipase B (CAL B was also produced starting from the second day, but protein was present in the fermentation broth predominantly as dimer (molecular weight 66 kDa, while presence of monomeric form of CAL B (molecular weight of 33 kDa was observed starting from the fourth day of cultivation. Both types of zymograms (based on hydrolysis and synthesis reactions were used for detection of lipase activity in the fermentation broth. C. antarctica lipase A showed activity only in hydrolytic zymogram, when α-naphtyl butyrate was used as substrate. In the same zymogram, with α-naphtyl acetate as substrate no CAL A activity was detected. Similarly, CAL A showed no activity in synthesis based zymograms towards oleic acid and octanol as substrates, indicating that CAL A is not active towards very short or long-chain substrates. As opposite of CAL A, both monomeric and dimeric form of CAL B were detected in the all zymograms, suggesting that CAL B is active towards wide range of substrates, regardless to the chain length. Thus, zymogram based on hydrolysis of α-naphtyl butyrate represents a simple method for monitoring the production of two forms of lipase from C. antarctica, that greatly differ in their characteristics.

  12. Reliability of tunnel angle in ACL reconstruction: two-dimensional versus three-dimensional guide technique.

    Science.gov (United States)

    Leiter, Jeff R S; de Korompay, Nevin; Macdonald, Lindsey; McRae, Sheila; Froese, Warren; Macdonald, Peter B

    2011-08-01

    To compare the reliability of tibial tunnel position and angle produced with a standard ACL guide (two-dimensional guide) or Howell 65° Guide (three-dimensional guide) in the coronal and sagittal planes. In the sagittal plane, the dependent variables were the angle of the tibial tunnel relative to the tibial plateau and the position of the tibial tunnel with respect to the most posterior aspect of the tibia. In the coronal plane, the dependent variables were the angle of the tunnel with respect to the medial joint line of the tibia and the medial and lateral placement of the tibial tunnel relative to the most medial aspect of the tibia. The position and angle of the tibial tunnel in the coronal and sagittal planes were determined from anteroposterior and lateral radiographs, respectively, taken 2-6 months postoperatively. The two-dimensional and three-dimensional guide groups included 28 and 24 sets of radiographs, respectively. Tibial tunnel position was identified, and tunnel angle measurements were completed. Multiple investigators measured the position and angle of the tunnel 3 times, at least 7 days apart. The angle of the tibial tunnel in the coronal plane using a two-dimensional guide (61.3 ± 4.8°) was more horizontal (P guide (64.7 ± 6.2°). The position of the tibial tunnel in the sagittal plane was more anterior (P guide group compared to the three-dimensional guide group (43.3 ± 2.9%). The Howell Tibial Guide allows for reliable placement of the tibial tunnel in the coronal plane at an angle of 65°. Tibial tunnels were within the anatomical footprint of the ACL with either technique. Future studies should investigate the effects of tibial tunnel angle on knee function and patient quality of life. Case-control retrospective comparative study, Level III.

  13. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-06

    The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  14. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    Science.gov (United States)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  15. Molecular phylogeny of the hominoid primates as indicated by two-dimensional protein electrophoresis

    International Nuclear Information System (INIS)

    Goldman, D.; Giri, P.R.; O'Brien, J.O.

    1987-01-01

    A molecular phylogeny for the hominoid primates was constructed by using genetic distances from a survey of 383 radiolabeled fibroblast polypeptides resolved by two-dimensional electrophoresis (2DE). An internally consistent matrix of Nei genetic distances was generated on the basis of variants in electrophoretic position. The derived phylogenetic tree indicated a branching sequence, from oldest to most recent, of cercopithecoids (Macaca fascicularis), gibbon-siamang, orangutan, gorilla, and human-chimpanzee. A cladistic analysis of 240 electrophoretic characters that varied between ape species produced an identical tree. Genetic distance measures obtained by 2DE are largely consistent with those generated by other molecular procedures. In addition, the 2DE data set appears to resolve the human-chimpanzee-gorilla trichotomy in favor of a more recent association of chimpanzees and humans

  16. Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data

    Science.gov (United States)

    Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.

    2017-10-01

    The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.

  17. Development of the resolution theory for electrophoretic exclusion.

    Science.gov (United States)

    Kenyon, Stacy M; Keebaugh, Michael W; Hayes, Mark A

    2014-09-01

    Electrophoretic exclusion, a technique that differentiates species in bulk solution near a channel entrance, has been demonstrated on benchtop and microdevice designs. In these systems, separation occurs when the electrophoretic velocity of one species is greater than the opposing hydrodynamic flow, while the velocity of the other species is less than that flow. Although exclusion has been demonstrated in multiple systems for a range of analytes, a theoretical assessment of resolution has not been addressed. To compare the results of these calculations to traditional techniques, the performance is expressed in terms of smallest difference in electrophoretic mobilities that can be completely separated (R = 1.5). The calculations indicate that closest resolvable species (Δμmin ) differ by approximately 10(-13) m(2) /Vs and peak capacity (nc ) is 1000. Published experimental data were compared to these calculated results. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Hsu Kimberly K

    2005-06-01

    Full Text Available Abstract Background The analysis of hydrophobic membrane proteins by two-dimensional gel electrophoresis has long been hampered by the concept of inherent difficulty due to solubility issues. We have optimized extraction protocols by varying the detergent composition of the solubilization buffer with a variety of commercially available non-ionic and zwitterionic detergents and detergent-like phospholipids. Results After initial analyses by one-dimensional SDS-PAGE, quantitative two-dimensional analyses of human erythrocyte membranes, mouse liver membranes, and mouse brain membranes, extracted with buffers that included the zwitterionic detergent MEGA 10 (decanoyl-N-methylglucamide and the zwitterionic lipid LPC (1-lauroyl lysophosphatidylcholine, showed selective improvement over extraction with the common 2-DE detergent CHAPS (3 [(3-cholamidopropyldimethylammonio]-1-propanesulfonate. Mixtures of the three detergents showed additive improvements in spot number, density, and resolution. Substantial improvements in the analysis of a brain membrane proteome were observed. Conclusion This study demonstrates that an optimized detergent mix, coupled with rigorous sample handling and electrophoretic protocols, enables simple and effective analysis of membrane proteomes using two-dimensional electrophoresis.

  19. Frequency of electrophoretic changes consistent with feline infectious peritonitis in two different time periods (2004-2009 vs 2013-2014).

    Science.gov (United States)

    Stranieri, Angelica; Giordano, Alessia; Bo, Stefano; Braghiroli, Chiara; Paltrinieri, Saverio

    2017-08-01

    Objectives The aim of this study was to evaluate whether the frequency of electrophoretic changes in serum of cats with feline infectious peritonitis (FIP) changed in recent years vs past years. Methods Agarose gel electrophoresis (AGE) and capillary zone electrophoresis (CZE) from cats with FIP and healthy cats recorded in the periods 2004-2009 and 2013-2014 were retrospectively analysed. Relative and absolute values of each electrophoretic fraction were recorded and the number of cats showing single or combined electrophoretic changes consistent with FIP (hypoalbuminaemia, inverted albumin to globulin [A:G] ratio, increased total protein, total globulin, alpha [α] 2 -globulin and gamma [γ]-globulin concentration) were counted. Additionally, a visual analysis of electrophoretograms was also performed. Results for the two time periods were statistically compared. Results The details of 91 AGE procedures (41 from cats with FIP and 50 from healthy cats) and 45 CZE procedures (26 from cats with FIP and 19 from healthy cats) were obtained from the database. No significant differences between the two time periods were found both in FIP and in healthy cats analysed with CZE and in healthy cats analysed with AGE. Compared with 2004-2009, cats with FIP sampled in 2013-2014 with AGE showed a significantly lower concentration of total protein, γ-globulins and total globulins, and a significantly higher A:G ratio and percentage of albumin and α 2 -globulins. Using both AGE and CZE, in recent years the proportion of cats with high α2-globulins without gammopathy and the proportion of cats with gammopathy alone decreased. With a visual approach, the number of patterns considered as dubious increased in the second period with AGE (non-statistically significant). Conclusions and relevance The frequency of electrophoretic abnormalities in cats with FIP decreased in recent years, independently of the technique employed. Although the mechanism responsible for this change was

  20. Electrochemical performances of proton-conducting SOFC with La-Sr-Fe-O cathode fabricated by electrophoretic deposition techniques

    International Nuclear Information System (INIS)

    Asamoto, Makiko; Miyake, Shinji; Yonei, Yuka; Yamaura, Hiroyuki; Yahiro, Hidenori

    2009-01-01

    The electrochemical performances of Proton-conducting SOFC with La 0.7 Sr 0.3 FeO 3 (LSF) cathode fabricated by the electrophoretic deposition (EPD) technique were investigated. The EPD technique provided the uniform layer of LSF cathode with constant thickness and can easily control the thickness by changing an applied voltage. The power density of the SOFC cell was dependent on the thickness of LSF cathode. The activation energy was measured to elucidate the rate-determining step for LSF cathode reaction. (author)

  1. Diamond electrophoretic microchips-Joule heating effects

    International Nuclear Information System (INIS)

    Karczemska, Anna T.; Witkowski, Dariusz; Ralchenko, Victor; Bolshakov, Andrey; Sovyk, Dmitry; Lysko, Jan M.; Fijalkowski, Mateusz; Bodzenta, Jerzy; Hassard, John

    2011-01-01

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare TM was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  2. Diamond electrophoretic microchips-Joule heating effects

    Energy Technology Data Exchange (ETDEWEB)

    Karczemska, Anna T., E-mail: anna.karczemska@p.lodz.pl [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Witkowski, Dariusz [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Ralchenko, Victor, E-mail: ralchenko@nsc.gpi.ru [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Bolshakov, Andrey; Sovyk, Dmitry [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Lysko, Jan M., E-mail: jmlysko@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Fijalkowski, Mateusz, E-mail: petr.louda@vslib.cz [Technical University of Liberec, Faculty of Mechanical Engineering (Czech Republic); Bodzenta, Jerzy, E-mail: jerzy.bodzenta@polsl.pl [Silesian University of Technology, Institute of Physics, 2 Krzywoustego str., 44-100 Gliwice (Poland); Hassard, John, E-mail: j.hassard@imperial.ac.uk [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    2011-03-15

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare{sup TM} was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  3. Development of two dimensional electrophoresis method using single chain DNA

    International Nuclear Information System (INIS)

    Ikeda, Junichi; Hidaka, So

    1998-01-01

    By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)

  4. New approach based on fuzzy logic and principal component analysis for the classification of two-dimensional maps in health and disease. Application to lymphomas.

    Science.gov (United States)

    Marengo, Emilio; Robotti, Elisa; Righetti, Pier Giorgio; Antonucci, Francesca

    2003-07-04

    Two-dimensional (2D) electrophoresis is the most wide spread technique for the separation of proteins in biological systems. This technique produces 2D maps of high complexity, which creates difficulties in the comparison of different samples. The method proposed in this paper for the comparison of different 2D maps can be summarised in four steps: (a) digitalisation of the image; (b) fuzzyfication of the digitalised map in order to consider the variability of the two-dimensional electrophoretic separation; (c) decoding by principal component analysis of the previously obtained fuzzy maps, in order to reduce the system dimensionality; (d) classification analysis (linear discriminant analysis), in order to separate the samples contained in the dataset according to the classes present in said dataset. This method was applied to a dataset constituted by eight samples: four belonging to healthy human lymph-nodes and four deriving from non-Hodgkin lymphomas. The amount of fuzzyfication of the original map is governed by the sigma parameter. The larger the value, the more fuzzy theresulting transformed map. The effect of the fuzzyfication parameter was investigated, the optimal results being obtained for sigma = 1.75 and 2.25. Principal component analysis and linear discriminant analysis allowed the separation of the two classes of samples without any misclassification.

  5. Simplification and improvement of protein detection in two-dimensional electrophoresis gels with SERVA HPE™ lightning red.

    Science.gov (United States)

    Griebel, Anja; Obermaier, Christian; Westermeier, Reiner; Moche, Martin; Büttner, Knut

    2013-07-01

    A new fluorescent amino-reactive dye has been tested for both labelling proteins prior to electrophoretic separations and between the two steps of two-dimensional electrophoresis. A series of experiments showed, that the labelling of lysines with this dye is compatible with all standard additives used for sample preparation, including reducing substances and carrier ampholytes. Using this dye for pre-labelling considerably simplifies the electrophoresis and detection workflow and provides highly sensitive and quantitative visualisation of proteins.

  6. Particle separations by electrophoretic techniques

    International Nuclear Information System (INIS)

    Ballou, N.E.; Petersen, S.L.; Ducatte, G.R.; Remcho, V.T.

    1996-03-01

    A new method for particle separations based on capillary electrophoresis has been developed and characterized. It uniquely separates particles according to their chemical nature. Separations have been demonstrated with chemically modified latex particles and with inorganic oxide and silicate particles. Separations have been shown both experimentally and theoretically to be essentially independent of particle size in the range of about 0.2 μm to 10 μm. The method has been applied to separations of U0 2 particles from environmental particulate material. For this, an integrated method was developed for capillary electrophoretic separation, collection of separated fractions, and determinations of U0 2 and environmental particles in each fraction. Experimental runs with the integrated method on mixtures of UO 2 particles and environmental particulate material demonstrated enrichment factors of 20 for UO 2 particles in respect to environmental particles in the U0 2 containing fractions. This enrichment factor reduces the costs and time for processing particulate samples by the lexan process by a factor of about 20

  7. Applications of two- and three-dimensional microstructures formed by soft lithographic techniques

    Science.gov (United States)

    Jackman, Rebecca Jane

    This thesis describes the development of several soft lithographic techniques. Each of these techniques has applications in two- and three-dimensional microfabrication or in the design of microreactor systems. All soft lithographic techniques make use of an elastomeric element that is formed by casting and curing a prepolymer against a planar substrate having three-dimensional (3D) relief. Chapters 1--3 (and Appendices I--VII) describe the use of a soft lithographic technique, microcontact printing (muCP), to produce patterns with micron-scale resolution on both planar and non-planar substrates. Electrodeposition transforms patterns produced by muCP into functional, 3D structures. It is an additive method that: (i) strengthens the metallic patterns; (ii) increases the conductivity of the structures; (iii) enables high-strain deformations to be performed on the structures; and (iv) welds non-connected structures. Applications for cylindrical microstructures, formed by the combination of muCP and electroplating, are presented. Some important classes of materials---biological macromolecules, gels, sol-gels, some polymers, low molecular weight organic and organometallic species---are often incompatible with conventional patterning techniques. Chapters 4 and 5 describe the use of elastomeric membranes as dry resists or as masks in dry lift-off to produce simple features as small as 5 mum from these and other materials on both planar and non-planar surfaces. These procedures are "dry" because the membranes conformed and sealed reversibly to surfaces without the use of solvents. This technique, for example, produced a simple electroluminescent device. By using two membranes simultaneously, multicolored, photoluminescent patterns of organic materials were created. Membranes were also used in sequential, dry-lift off steps to produce patterns with greater complexity. Chapter 6 (and Appendix XII) demonstrates that the ability to mold elastomers enables the fabrication of

  8. Electrophoretic transfer protein zymography.

    Science.gov (United States)

    Pan, Daniel; Hill, Adam P; Kashou, Anthony; Wilson, Karl A; Tan-Wilson, Anna

    2011-04-15

    Zymography detects and characterizes proteolytic enzymes by electrophoresis of protease-containing samples into a nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel containing a copolymerized protein substrate. The usefulness of zymography for molecular weight determination and proteomic analysis is hampered by the fact that some proteases exhibit slower migration through a gel that contains substrate protein. This article introduces electrophoretic transfer protein zymography as one solution to this problem. In this technique, samples containing proteolytic enzymes are first resolved in nonreducing SDS-PAGE on a gel without protein substrate. The proteins in the resolving gel are then electrophoretically transferred to a receiving gel previously prepared with a copolymerized protein substrate. The receiving gel is then developed as a zymogram to visualize clear or lightly stained bands in a dark background. Band intensities are linearly related to the amount of protease, extending the usefulness of the technique so long as conditions for transfer and development of the zymogram are kept constant. Conditions of transfer, such as the pore sizes of resolving and receiving gels and the transfer time relative to the molecular weight of the protease, are explored. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Incremental value of live/real time three-dimensional transesophageal echocardiography over the two-dimensional technique in the assessment of primary cardiac malignant fibrous histiocytoma.

    Science.gov (United States)

    Gok, Gulay; Elsayed, Mahmoud; Thind, Munveer; Uygur, Begum; Abtahi, Firoozeh; Chahwala, Jugal R; Yıldırımtürk, Özlem; Kayacıoğlu, İlyas; Pehlivanoğlu, Seçkin; Nanda, Navin C

    2015-07-01

    We describe a case of primary cardiac malignant fibrous histiocytoma where live/real time three-dimensional transesophageal echocardiography added incremental value to the two-dimensional modalities. Specifically, the three-dimensional technique allowed us to delineate the true extent and infiltration of the tumor, to identify characteristics of the tumor mass suggestive of its malignant nature, and to quantitatively assess the total tumor burden. © 2015, Wiley Periodicals, Inc.

  10. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry.

    Science.gov (United States)

    Holtkamp, Hannah; Grabmann, Gerlinde; Hartinger, Christian G

    2016-04-01

    Electrophoretic methods have been widely applied in research on the roles of metal complexes in biological systems. In particular, CE, often hyphenated to a sensitive MS detector, has provided valuable information on the modes of action of metal-based pharmaceuticals, and more recently new methods have been added to the electrophoretic toolbox. The range of applications continues to expand as a result of enhanced CE-to-MS interfacing, with sensitivity often at picomolar level, and evolved separation modes allowing for innovative sample analysis. This article is a followup to previous reviews about CE methods in metallodrug research (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis, 2007, 28, 3436-3446; Electrophoresis, 2012, 33, 622-634), also providing a comprehensive overview of metal species studied by electrophoretic methods hyphenated to MS. It highlights the latest CE developments, takes a sneak peek into gel electrophoresis, traces biomolecule labeling, and focuses on the importance of early-stage drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electrophoretic deposition of sol-gel-derived ceramic coatings

    International Nuclear Information System (INIS)

    Zhang, Y.; Crooks, R.M.

    1992-01-01

    In this paper the physical, optical, and chemical characteristics of electrophoretically and dip-coated sol-gel ceramic films are compared. The results indicate that electrophoresis may allow a higher level of control over the chemistry and structure of ceramic coatings than dip-coating techniques. For example, controlled-thickness sol-gel coatings can be prepared by adjusting the deposition time or voltage. Additionally, electrophoretic coatings can be prepared in a four-component alumino-borosilicate sol display interesting optical characteristics. For example, the ellipsometrically-measured refractive indices of electrophoretic coatings are higher than the refractive indices of dip-coated films cast from identical sols, and they are also higher than any of the individual sol components. This result suggests that there are physical and/or chemical differences between films prepared by dip-coating and electrophoresis

  12. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.

  13. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    International Nuclear Information System (INIS)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs

  14. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  15. Reagent-Free Electrophoretic Synthesis of Few-Atom-Thick Metal Oxide Nanosheets

    DEFF Research Database (Denmark)

    Hou, Chengyi; Zhang, Minwei; Zhang, Lili

    2017-01-01

    Engineering traditional materials into the new form of atomic and free-standing two-dimensional structures is of both fundamental interest and practical significance, but it is in general facing challenges especially for metal oxide semiconductors. We herein report an ultragreen method for the cost......-effective and fast preparation of atomic metal oxide nanosheets that can be further transformed into nanofilms. The method combines top-down building block synthesis and bottom-up electrophoretic assembly in water under ambient conditions, using only bulk metal and Milli-Q water without involving any additional...

  16. X-ray and visible light transmission as two-dimensional, full-field moisture-sensing techniques: A preliminary comparison

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Glass, R.J.

    1992-01-01

    Two independent high-resolution moisture-sensing techniques, x-ray absorption and light transmission, have been developed for use in two-dimensional, thin-slab experimental systems. The techniques yield full-field measurement capabilities with exceptional resolution of moisture content in time and space. These techniques represent powerful tools for the experimentalist to investigate processes governing unsaturated flow and transport through fractured and nonfractured porous media. Evaluation of these techniques has been accomplished by direct comparison of data obtained by means of the x-ray and light techniques as well as comparison with data collected by gravimetric and gamma-ray densitometry techniques. Results show excellent agreement between data collected by the four moisture-content measurement techniques. This program was established to support the Yucca Mountain Site Characterization Project

  17. Proteomic study of muscle sarcoplasmic proteins using AUT-PAGE/SDS-PAGE as two-dimensional gel electrophoresis.

    Science.gov (United States)

    Picariello, Gianluca; De Martino, Alessandra; Mamone, Gianfranco; Ferranti, Pasquale; Addeo, Francesco; Faccia, Michele; Spagnamusso, Salvatore; Di Luccia, Aldo

    2006-03-20

    In the present study, an alternative procedure for two-dimensional (2D) electrophoretic analysis in proteomic investigation of the most represented basic muscle water-soluble proteins is suggested. Our method consists of Acetic acid-Urea-Triton polyacrylamide gel (AUT-PAGE) analysis in the first dimension and standard sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) in the second dimension. Although standard two-dimensional Immobilized pH Gradient-Sodium Dodecyl-Sulphate (2D IPG-SDS) gel electrophoresis has been successfully used to study these proteins, most of the water-soluble proteins are spread on the alkaline part of the 2D map and are poorly focused. Furthermore, the similarity in their molecular weights impairs resolution of the classical approach. The addition of Triton X-100, a non-ionic detergent, into the gel induces a differential electrophoretic mobility of proteins as a result of the formation of mixed micelles between the detergent and the hydrophobic moieties of polypeptides, separating basic proteins with a criterion similar to reversed phase chromatography based on their hydrophobicity. The acid pH induces positive net charges, increasing with the isoelectric point of proteins, thus allowing enhanced resolution in the separation. By using 2D AUT-PAGE/SDS electrophoresis approach to separate water-soluble proteins from fresh pork and from dry-cured products, we could spread proteins over a greater area, achieving a greater resolution than that obtained by IPG in the pH range 3-10 and 6-11. Sarcoplasmic proteins undergoing proteolysis during the ripening of products were identified by Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-ToF) mass spectrometry peptide mass fingerprinting in a easier and more effective way. Two-dimensional AUT-PAGE/SDS electrophoresis has allowed to simplify separation of sarcoplasmic protein mixtures making this technique suitable in the defining of quality of dry-cured pork products by immediate

  18. Electrophoretic Detection and Confocal Microscopic Imaging of Tyrosine Nitrated Proteins in Plant Tissue.

    Science.gov (United States)

    Arora, Dhara; Singh, Neha; Bhatla, Satish C

    2018-01-01

    Tyrosine nitrated proteins can be detected in plant cells electrophoretically and their distribution can be monitored by confocal laser scanning microscopy (CLSM) imaging. One-dimensional polyacrylamide gel electrophoresis (1D PAGE) followed by Western blotting using polyclonal antibody against 3-nitrotyrosine residues enables detection of tyrosine nitrated proteins in plant cells. Here we describe detection of tyrosine nitrated proteins in the homogenates derived from sunflower (Helianthus annuus L.) seedling cotyledons. Total soluble proteins obtained from tissue homogenates are resolved using vertical gel electrophoresis followed by their electrophoretic transfer on to a microporous membrane support for immunodetection. Spatial distribution of tyrosine nitrated proteins can be visualized using an antibody against 3-nitrotyrosine residues. Immunofluorescent localization is performed by cutting 7 μm thick wax sections of tissue followed by incubation in primary anti-nitrotyrosine antibody (dilution 1:200) and secondary Cy-3 labeled anti-rabbit IgG antibody (dilution 1:1500). Confocal laser scanning microscopy analysis is undertaken using argon lasers (ex: 530-550 nm and em: 570 nm) at pinhole 1. Modulation in the abundance and spatial localization of tyrosine nitrated proteins in plant tissues can be monitored using these techniques.

  19. NMR studies of electrophoretic mobility in surfactant systems

    International Nuclear Information System (INIS)

    Conveney, F.M.; Strange, J.H.; Smith, A.L.; Smith, E.G.

    1989-01-01

    An experimental technique is described in which the flow of electrically charged micelles is measured in the presence of an applied electric field using an NMR technique. The method is used to determine the electrophoretic mobility at ambient temperature of a 5% aqueous solution of sodium dodecyl sulphate and is shown to provide a new technique for the study of electrophoresis in surfactant solutions. (author). 8 refs.; 4 figs

  20. Stabilization of green bodies via sacrificial gelling agent during electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kuntz, Joshua D.; Rose, Klint A.

    2016-03-22

    In one embodiment, a method for electrophoretic deposition of a three-dimensionally patterned green body includes suspending a first material in a gelling agent above a patterned electrode of an electrophoretic deposition (EPD) chamber, and gelling the suspension while applying a first electric field to the suspension to cause desired patterning of the first material in a resulting gelation. In another embodiment, a ceramic, metal, or cermet includes a plurality of layers, wherein each layer includes a gradient in composition, microstructure, and/or density in an x-y plane oriented parallel to a plane of deposition of the plurality of layers along a predetermined distance in a z-direction perpendicular to the plane of deposition.

  1. Two dimensional nonlinear spectral estimation techniques for breast cancer localization

    International Nuclear Information System (INIS)

    Stathaki, P.T.; Constantinides, A.G.

    1994-01-01

    In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging

  2. Nano-structured yttria-stabilized zirconia coating by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maleki-Ghaleh, H., E-mail: H_Maleki@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Rekabeslami, M. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shakeri, M.S. [Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Siadati, M.H. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Javidi, M. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Talebian, S.H. [Faculty of Petroleum Engineering, Universiti Technologi Petronas, Perak (Malaysia); Aghajani, H. [Department of Materials Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2013-09-01

    The most important role of thermal barrier coatings is to reduce the temperature of the substrate in high temperature applications. Nanoparticle zirconia might be a suitable choice for improving the efficiency of thermal barrier coatings. Nanostructured coatings have lower thermal conduction, higher thermal expansion and lower dimensional variations at higher temperatures in comparison with the microstructured coatings. Electrophoretic deposition has been preferred for thermal barrier coatings due to its simplicity, controllability and low cost. In the present study, three different suspensions of ZrO{sub 2}–8 wt%Y{sub 2}O{sub 3} (40 nm) made with ethanol, acetone and acetyl acetone were used. Electrophoretic deposition was conducted at a fixed voltage of 60 V for 120 s on aluminized Inconel 738-LC, and then heat treated at 1100{sup o}C for 4 h in air atmosphere. The coating morphology and elemental distribution were studied using scanning electron microscopy. It was observed that suspension media have an important effect on the quality of the final product. Acetyl acetone showed better dispersion of particles than the other two media. Consequently, deposition from acetyl acetone resulted in uniform and crack-free layers while those from ethanol and acetone were completely non-uniform due to agglomeration and low viscosity, respectively.

  3. µE: Electrophoretic mobility

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. µE: Electrophoretic mobility. µE: Electrophoretic mobility. E: Intensity of electric field. H: Total height. h: Distance from the top surface of bottom chamber (slug height). N: Cell concentration × Volume of the chamber.

  4. FPGA Implementation of one-dimensional and two-dimensional cellular automata

    International Nuclear Information System (INIS)

    D'Antone, I.

    1999-01-01

    This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA)

  5. Suitability of two-dimensional electrophoretic protein separations for quantitative detection of mutations

    International Nuclear Information System (INIS)

    Taylor, J.; Anderson, N.L.; Anderson, N.G.; Gemmell, A.; Giometti, C.S.; Nance, S.L.; Tollaksen, S.L.

    1986-01-01

    Separation of proteins by two-dimensional electrophoresis (2DE) provides a powerful method for mutagenesis studies, since hundreds of proteins can be monitored simultaneously. In previous mutation studies in which 2DE has been used, only qualitative protein differences were monitored; quantitative protein variations were not evaluated. Although significant differences in protein abundance can be detected by eye, the large number of protein spots present in 2DE patterns together with the large number of individual patterns required for a mutagenesis study would necessitate the use of a computerized analysis system to detect the rare quantitative protein changes indicative of gene deletions or inactivation of genes by point mutations in regulatory genes. A pilot study to search for heritable mutations induced by treatment of mice with either ethylnitrosourea or gamma radiation is underway. Samples are being monitored for quantitative changes that reduce the amount of protein by about 50%. The results of this study indicate that the key methods to improve the application of 2DE to mutation screening are to increase the number of measurable spots (i.e., improve stain sensitivity) and to decrease the spread of values for the volume measurements. Even small improvements in these areas could greatly increase the number of monitorable spots. 9 refs., 4 figs

  6. Two dimensional nonlinear spectral estimation techniques for breast cancer localization

    Energy Technology Data Exchange (ETDEWEB)

    Stathaki, P T; Constantinides, A G [Signal Processing Section, Department of Electrical and Electronic Engineering, Imperial College, Exhibition Road, London SW7 2BT, UK (United Kingdom)

    1994-12-31

    In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging. 7 refs, 2 figs.

  7. Two- and three-dimensional evaluation of the acetabulum in the pediatric patient

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Sponseller, P.D.

    1987-01-01

    Complex anatomic structures such as the hip and acetabulum are best evaluated with the use of two- and three-dimensional reconstruction techniques and standard transaxial CT data. CT scans of children with various hip pathologies, including congenital hip dislocation, slipped capital femoral epiphyses, hip dysplasias, dwarfism, and acetabular fractures, were reviewed to determine the value of two- and three-dimensional imaging. The advantages of two-dimensional imaging techniques (sequential coronal/sagittal reconstruction) and three-dimensional valumetric imaging techniques (using real-time video display) are illustrated with specific examples

  8. Atomic resolution holography using advanced reconstruction techniques for two-dimensional detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marko, M; Szakal, A; Cser, L [Neutron Spectroscopy Department, Research Institute for Solid State Physics and Optics, PO Box 49, H-1525 Budapest (Hungary); Krexner, G [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria); Schefer, J, E-mail: marko@szfki.h [Laboratory for Neutron Scattering (LNS), Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2010-06-15

    Atomic resolution holography is based on two concepts. Either the emitter of the radiation used is embedded in the sample (internal source concept) or, on account of the optical reciprocity law, the detector forms part of the sample (internal detector concept). In many cases, holographic objects (atoms and nuclei) simultaneously adopt the roles of both source and detector. Thus, the recorded image contains a mixture of both inside source and inside detector holograms. When reconstructing one type of hologram, the presence of the other hologram causes serious distortions. In the present work, we propose a new method, the so-called double reconstruction (DR), which not only suppresses the mutual distortions but also exploits the information content of the measured hologram more effectively. This novel approach also decreases the level of distortion arising from diffraction and statistical noise. The efficiency of the DR technique is significantly enhanced by employing two-dimensional (2D) area detectors. The power of the method is illustrated here by applying it to a real measurement on a palladium-hydrogen sample.

  9. Determination and optimization of the ζ potential in boron electrophoretic deposition on aluminium substrates

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.; Pino, E.S.

    1991-05-01

    In this work we present an introduction of the electrophoretic process followed by a detailed experimental treatment of the technique used in the determination and optimization of the ζ-potential, mainly as a function of the electrolyte concentration, in a high purity boron electrophoretics deposition on aluminium substrates used as electrodes in neutron detectors. (author)

  10. Physicochemical and structural characterization of a two-dimensional polymer performed by using the Langmuir-Blodgett technique

    International Nuclear Information System (INIS)

    Lefevre, Didier

    1995-01-01

    This research thesis addresses the physicochemical and structural characterization of two-dimensional polymer made of polymerizable macro-cycles pre-organised in-plane by using the Langmuir-Blodgett technique. Macro-cycles are porphyrins with four acetylenic functions which bind in both plane directions by formation of diacetylenic covalent bonds. These porphyrins are adsorbed under a single layer of dihexadecyl-phosphoric acid to build up a monomer amphiphilic film. The author reports the characterization of the Langmuir film by the study of compression isotherms and by Brewster angle microscopy. Other techniques are used (UV, visible and infrared spectroscopy, Raman spectroscopy) to highlight the polymerization in LB film. X photo-electronic spectroscopy and secondary ion mass spectroscopy are also used. The author reports the study of the orientation of macro-cycles before and after polymerization by using linear dichroism, electronic paramagnetic resonance and X ray diffraction. The in-plane LB film structure is studied by transmission X ray diffraction, atomic force microscopy in correlation with molecular simulation. The two-dimensional feature of the polymer formed at the water surface is highlighted. The membrane is visualized by electronic and optic microscopy, and characterized by EDXS and electronic diffraction [fr

  11. Application of tomographic techniques to two-dimensional surface analysis using the Harwell nuclear microprobe

    International Nuclear Information System (INIS)

    Huddleston, J.; Hutchinson, I.G.; Pierce, T.B.

    1983-01-01

    Nuclear methods of surface analysis are discussed briefly, and the circumstances are described in which a two-dimensional analysis of the sample surface is desirable to enable the surface composition to be mapped accurately. Tomographic techniques of data manipulation are outlined. Data acquisition in the present case is performed by moving the sample in a defined sequence of positions, at each of which analytical data are gathered by the proton microprobe. The method and equipment are outlined. Data processing leading to the reconstruction of the image is summarised. (U.K.)

  12. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuanhu [Univ. of California, Berkeley, CA (United States)

    1997-09-01

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  13. Use of electrophoretic techniques and MALDI–TOF MS for rapid and reliable characterization of bacteria: analysis of intact cells, cell lysates, and “washed pellets”

    Czech Academy of Sciences Publication Activity Database

    Šalplachta, Jiří; Kubesová, Anna; Moravcová, Dana; Vykydalová, Marie; Süle, S.; Matoušková, H.; Horký, J.; Horká, Marie

    2013-01-01

    Roč. 405, č. 10 (2013), s. 3165-3175 ISSN 1618-2642 R&D Projects: GA MV VG20112015021; GA MV VG20102015023 Institutional support: RVO:68081715 Keywords : bacteria * electrophoretic techniques * MALDI Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.578, year: 2013

  14. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

    Science.gov (United States)

    Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng

    2012-12-01

    This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.

  15. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

    International Nuclear Information System (INIS)

    Zhang Tie-Yan; Zhao Yan; Xie Xiang-Peng

    2012-01-01

    This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach. (general)

  16. Validation for chromatographic and electrophoretic methods

    OpenAIRE

    Ribani, Marcelo; Bottoli, Carla Beatriz Grespan; Collins, Carol H.; Jardim, Isabel Cristina Sales Fontes; Melo, Lúcio Flávio Costa

    2004-01-01

    The validation of an analytical method is fundamental to implementing a quality control system in any analytical laboratory. As the separation techniques, GC, HPLC and CE, are often the principal tools used in such determinations, procedure validation is a necessity. The objective of this review is to describe the main aspects of validation in chromatographic and electrophoretic analysis, showing, in a general way, the similarities and differences between the guidelines established by the dif...

  17. Two-dimensional analysis of metabolically and cell surface radiolabeled proteins of some human lymphoid and myeloid leukemia cell lines. II. Glycosylated and phosphorylated proteins

    Energy Technology Data Exchange (ETDEWEB)

    Chorvath, B; Duraj, J; Sedlak, J; Pleskova, I

    1986-01-01

    Cell surface glycoproteins, radiolabelled by the sodium metaperiodate/tritiated borohydride technique, and cell phosphoproteins, metabolically radiolabelled with /sup 32/P-orthophosphate were analyzed by two-dimensional electrophoretic analysis in some myeloid and lymphoid leukemia cell lines. Some markedly expressed major glycoproteins were predominant in some of the cell lines (such as 95k and 100k glycoproteins with marked charge heterogeneity in non-T, non-B acute lymphoblastic leukemia cell lines NALM 6 and NALM 16), but markedly quantitatively reduced in other examined cell lines, such as lymphoblastoid cell line UHKT 34/2. /sup 32/P-orthophosphate radiolabelled phosphoprotein two-dimensional patterns of the examined lymphoid leukemia cell lines were essentially similar, with some minor differences, in examined lymphoid and myeloid leukemia cell lines, such as marked expression of a series of large phosphoproteins in the molecular weight range 80-100k in lymphoid cell lines and almost complete absence of these phosphoproteins on the examined myeloid leukemia cell lines. Another configuration of acidic phosphoproteins (30-35k) exhibited individual cell line variability and differences between both individual myeloid leukemia cell lines and between the lymphoid and myeloid cell lines examined. (author) 2 figs., 15 refs.

  18. Two-dimensional filtering of SPECT images using the Metz and Wiener filters

    International Nuclear Information System (INIS)

    King, M.A.; Schwinger, R.B.; Penney, B.C.; Doherty, P.W.

    1984-01-01

    Presently, single photon emission computed tomographic (SPECT) images are usually reconstructed by arbitrarily selecting a one-dimensional ''window'' function for use in reconstruction. A better method would be to automatically choose among a family of two-dimensional image restoration filters in such a way as to produce ''optimum'' image quality. Two-dimensional image processing techniques offer the advantages of a larger statistical sampling of the data for better noise reduction, and two-dimensional image deconvolution to correct for blurring during acquisition. An investigation of two such ''optimal'' digital image restoration techniques (the count-dependent Metz filter and the Wiener filter) was made. They were applied both as two-dimensional ''window'' functions for preprocessing SPECT images, and for filtering reconstructed images. Their performance was compared by measuring image contrast and per cent fractional standard deviation (% FSD) in multiple-acquisitions of the Jaszczak SPECT phantom at two different count levels. A statistically significant increase in image contrast and decrease in % FSD was observed with these techniques when compared to the results of reconstruction with a ramp filter. The adaptability of the techniques was manifested in a lesser % reduction in % FSD at the high count level coupled with a greater enhancement in image contrast. Using an array processor, processing time was 0.2 sec per image for the Metz filter and 3 sec for the Wiener filter. It is concluded that two-dimensional digital image restoration with these techniques can produce a significant increase in SPECT image quality

  19. Determination of stability constants of iron(III and chromium(III-nitrilotriacetate-methyl cysteine mixed complexes by electrophoretic technique

    Directory of Open Access Journals (Sweden)

    Brij Bhushan Tewari

    2004-06-01

    Full Text Available The stability constants of Fe(III and Cr(III with methyl cysteine and nitrilotriacetate (NTA were determined by paper electrophoretic technique. Beside binary ternary complexes have also been studied, in which nitrilotriacetate and methyl cysteine acts as primary and secondary ligand, respectively. The stability constants of mixed ligand complexes metal (M-nitrilotriacetate-methyl cysteine have been found to be 5.72 plus or minus 0.09 and 5.54 plus or minus 0.11 (log K values for Fe(III and Cr(III complexes, respectively, at 35 oC and ionic strength 0.1 M.

  20. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  1. Electrophoretic Porosimetry of Sol-Gels

    Science.gov (United States)

    Snow, L. A.; Smith, D. D.; Sibille, L.; Hunt, A. J.; Ng, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    It has been hypothesized that gravity has an effect on the formation and resulting microstructure of sol-gels. In order to more clearly resolve the effect of gravity, pores may be non-destructively analyzed in the wet gel, circumventing the shrinkage and coarsening associated with the drying procedure. We discuss the development of an electrophoretic technique, analogous to affinity chromatography, for the determination of pore size distribution and its application to silica gels. Specifically a monodisperse charged dye is monitored by an optical densitometer as it moves through the wet gel under the influence of an electric field. The transmittance data (output) represents the convolution of the dye concentration profile at the beginning of the run (input) with the pore size distribution (transfer function), i.e. linear systems theory applies. Because of the practical difficulty in producing a delta function input dye profile we prefer instead to use a step function. Average pore size is then related to the velocity of this dye front, while the pore size distribution is related to the spreading of the front. Preliminary results of this electrophoretic porosimetry and its application to ground and space-grown samples will be discussed.

  2. Assessment of Carbon- and Metal-Based Nanoparticle DNA Damage with Microfluidic Electrophoretic Separation Technology.

    Science.gov (United States)

    Schrand, Amanda M; Powell, Thomas; Robertson, Tiffany; Hussain, Saber M

    2015-02-01

    In this study, we examined the feasibility of extracting DNA from whole cell lysates exposed to nanoparticles using two different methodologies for evaluation of fragmentation with microfluidic electrophoretic separation. Human lung macrophages were exposed to five different carbon- and metal-based nanoparticles at two different time points (2 h, 24 h) and two different doses (5 µg/ml, 100 µg/ml). The primary difference in the banding patterns after 2 h of nanoparticle exposure is more DNA fragmentation at the higher NP concentration when examining cells exposed to nanoparticles of the same composition. However, higher doses of carbon and silver nanoparticles at both short and long dosing periods can contribute to erroneous or incomplete data with this technique. Also comparing DNA isolation methodologies, we recommend the centrifugation extraction technique, which provides more consistent banding patterns in the control samples compared to the spooling technique. Here we demonstrate that multi-walled carbon nanotubes, 15 nm silver nanoparticles and the positive control cadmium oxide cause similar DNA fragmentation at the short time point of 2 h with the centrifugation extraction technique. Therefore, the results of these studies contribute to elucidating the relationship between nanoparticle physicochemical properties and DNA fragmentation results while providing the pros and cons of altering the DNA isolation methodology. Overall, this technique provides a high throughput way to analyze subcellular alterations in DNA profiles of cells exposed to nanomaterials to aid in understanding the consequences of exposure and mechanistic effects. Future studies in microfluidic electrophoretic separation technologies should be investigated to determine the utility of protein or other assays applicable to cellular systems exposed to nanoparticles.

  3. Properties of electrophoretically deposited single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Lim, Junyoung; Jalali, Maryam; Campbell, Stephen A.

    2015-01-01

    This paper describes techniques for rapidly producing a carbon nanotube thin film by electrophoretic deposition at room temperature and determines the film mass density and electrical/mechanical properties of such films. The mechanism of electrophoretic deposition of thin layers is explained with experimental data. Also, film thickness is measured as a function of time, electrical field and suspension concentration. We use Rutherford backscattering spectroscopy to determine the film mass density. Films created in this manner have a resistivity of 2.14 × 10 −3 Ω·cm, a mass density that varies with thickness from 0.12 to 0.54 g/cm 3 , and a Young's modulus between 4.72 and 5.67 GPa. The latter was found to be independent of thickness from 77 to 134 nm. We also report on fabricating free-standing films by removing the metal seed layer under the CNT film, and selectively etching a sacrificial layer. This method could be extended to flexible photovoltaic devices or high frequency RF MEMS devices. - Highlights: • We explain the electrophoretic deposition process and mechanism of thin SWCNT film deposition. • Characterization of the SWCNT film properties including density, resistivity, transmittance, and Young's modulus. • The film density and resistivity are found to be a function of the film thickness. • Techniques developed to create free standing layers of SW-CNTs for flexible electronics and mechanical actuators

  4. Third sound in one and two dimensional modulated structures

    International Nuclear Information System (INIS)

    Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.

    1996-01-01

    An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction

  5. Applications of one-dimensional or two-dimensional nuclear magnetic resonance to the structural and conformational study of oligosaccharides. Design and adjustment of new techniques

    International Nuclear Information System (INIS)

    Berthault, Patrick

    1988-01-01

    Oligosaccharides are natural compounds of huge importance as they intervene in all metabolic processes of cell life. Before the determination of structure-activity relationships, a precise knowledge of their chemical nature is therefore required. Thus, this research thesis aims at describing various experiments of high resolution nuclear magnetic resonance (NMR), and at demonstrating their applications on four oligosaccharides. After a brief description of NMR principles by using a conventional description and also a formalism derived from quantum mechanics, the author outlines the weaknesses of old NMR techniques, and introduces new techniques by using scalar couplings, by processing magnetization transfers with one-dimensional hetero-nuclear experiments. General principles of two-dimensional experiments are then presented and developed in terms of simple correlations, multiple correlations, correlations via double quantum coherencies. Experiments with light water are then described, and different experiments are performed to determine the structure and conformation of each unit. Bipolar interactions are then addressed to highlight proximities between atoms [fr

  6. Correlation of acidic and basic carrier ampholyte and immobilized pH gradient two-dimensional gel electrophoresis patterns based on mass spectrometric protein identification

    DEFF Research Database (Denmark)

    Nawrocki, A; Larsen, Martin Røssel; Podtelejnikov, A V

    1998-01-01

    Separation of proteins on either carrier ampholyte-based or immobilized pH gradient-based two-dimensional (2-D) gels gives rise to electrophoretic patterns that are difficult to compare visually. In this paper we have used matrix-assisted laser desorption/ionization mass spectrometry (MALDI......-MS) to determine the identities of 335 protein spots in these two 2-D gel systems, including a substantial number of basic proteins which had never been identified before. Proteins that were identified in both gel systems allowed us to cross-reference the gel patterns. Vector analysis of these cross...

  7. Comparison of various spring analogy related mesh deformation techniques in two-dimensional airfoil design optimization

    Science.gov (United States)

    Yang, Y.; Özgen, S.

    2017-06-01

    During the last few decades, CFD (Computational Fluid Dynamics) has developed greatly and has become a more reliable tool for the conceptual phase of aircraft design. This tool is generally combined with an optimization algorithm. In the optimization phase, the need for regenerating the computational mesh might become cumbersome, especially when the number of design parameters is high. For this reason, several mesh generation and deformation techniques have been developed in the past decades. One of the most widely used techniques is the Spring Analogy. There are numerous spring analogy related techniques reported in the literature: linear spring analogy, torsional spring analogy, semitorsional spring analogy, and ball vertex spring analogy. This paper gives the explanation of linear spring analogy method and angle inclusion in the spring analogy method. In the latter case, two di¨erent solution methods are proposed. The best feasible method will later be used for two-dimensional (2D) Airfoil Design Optimization with objective function being to minimize sectional drag for a required lift coe©cient at di¨erent speeds. Design variables used in the optimization include camber and thickness distribution of the airfoil. SU2 CFD is chosen as the §ow solver during the optimization procedure. The optimization is done by using Phoenix ModelCenter Optimization Tool.

  8. Chiral ionic liquids in chromatographic and electrophoretic separations.

    Science.gov (United States)

    Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C

    2014-10-10

    This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Field in field technique in two-dimensional planning for whole brain irradiation; Tecnica field in field em planejamentos bidimensionais para irradiacao de cerebro total

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.L.S.; Campos, T.P.R., E-mail: radioterapia.andre@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear

    2016-11-01

    Radiotherapy is the most used clinical method used for brain metastases treatment, the most frequent secondary tumors provided by breast, lung and melanomas as primary origin. The protocols often use high daily doses and, depending on the irradiation technique there is high probability of complications in health tissues. In order to minimize adverse effects, it is important the dosimetric analysis of three-dimensional radiotherapy planning through tomographic images or, concerning to the 2D simulations, by the application of techniques that optimize dose distribution by increasing the homogeneity. The study aimed to compare the 2D and 3D conformal planning for total brain irradiation in a individual equivalent situation and evaluate the progress of these planning applying the field in field technique. The methodology consisted of simulating a two-dimensional planning, reproduce it on a set of tomographic images and compare it with the conformal plan for two fields and four fields (field in field). The results showed no significant difference between 2D and 3D planning for whole brain irradiation, and the field in field technique significantly improved the dose distribution in brain volume compared with two fields for the proposal situation. As conclusion, the two-dimensional plane for the four fields described was viable for whole brain irradiation in the treatment of brain metastases at the proposal situation. (author)

  10. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  11. Structural organization of the human glucocorticoid receptor determined by one- and two-dimensional gel electrophoresis of proteolytic receptor fragments

    International Nuclear Information System (INIS)

    Smith, A.C.; Harmon, J.M.

    1987-01-01

    The structural organization of the steroid-binding protein of the IM-9 cell glucocorticoid receptor was investigated by using one- and two-dimensional gel electrophoresis of proteolytic receptor fragments. One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of receptor fragments isolated after trypsin digestion of immunopurified [ 3 H]dexamethasone 21-mesylate ([ 3 H]DM-) labeled receptor revealed the presence of a stable 26.5-kilodalton (kDa) steroid-containing non-DNA-binding fragment, derived from a larger, less stable, 29-kDa fragment. The 26.5-kDa tryptic fragment appeared to be completely contained within a 41-kDa, steroid-containing, DNA-binding species isolated after chymotrypsin digestion of the intact protein. Two-dimensional electrophoretic analysis of the [ 3 H]DM-labeled tryptic fragments resolved two 26.5-kDa and two 29-kDa components. This was the same number of isoforms seen in the intact protein, indicating that the charge heterogeneity of the steroid-binding protein is the result of modification within the steroid-containing, non-DNA-binding, 26.5-kDa tryptic fragment. Two-dimensional analysis of the 41-kDa [ 3 H]DM-labeled chymotryptic species revealed a pattern of isoforms more complex than that seen either in the intact protein or in the steroid-containing tryptic fragments. These results suggest that the 41-kDa [ 3 H]DM-labeled species resolved by one-dimensional SDS-PAGE after chymotrypsin digestion may be composed of several distinct proteolytic fragments

  12. Problems with multiple use of transfer buffer in protein electrophoretic transfer.

    Science.gov (United States)

    Dorri, Yaser; Kurien, Biji T; Scofield, R Hal

    2010-04-01

    Two-dimensional gel electrophoresis (2DE) and SDS-PAGE are the two most useful methods in protein separation. Proteins separated by 2DE or SDS-PAGE are usually transferred to membranes using a variety of methods, such as electrophoretic transfer, heat-mediated transfer, or nonelectrophoretic transfer, for specific protein detection and/or analysis. In a recent study, Pettegrew et al. claim to reuse transfer buffer containing methanol for at least five times for transferring proteins from SDS-PAGE to polyvinylidene difluoride. They add 150-200 ml fresh transfer solution each time for extended use as a result of loss of transfer buffer. Finally, they test efficiency of each protein transfer by chemiluminescence detection. Here, we comment on this report, as we believe this method is not accurate and useful for protein analysis, and it can cause background binding as well as inaccurate protein analysis.

  13. Theories to support method development in comprehensive two-dimensional liquid chromatography - A review

    NARCIS (Netherlands)

    Bedani, F.; Schoenmakers, P.J.; Janssen, H.-G.

    2012-01-01

    On-line comprehensive two-dimensional liquid chromatography techniques promise to resolve samples that current one-dimensional liquid chromatography methods cannot adequately deal with. To make full use of the potential of two-dimensional liquid chromatography, optimization is required. Optimization

  14. Survival rate of eukaryotic cells following electrophoretic nanoinjection

    OpenAIRE

    Simonis, Matthias; H?bner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-01

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for...

  15. Two-dimensional correlation spectroscopy in polymer study

    Science.gov (United States)

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2015-01-01

    This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286

  16. Analysis of Two-Dimensional Electrophoresis Gel Images

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2002-01-01

    This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...

  17. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  18. Two-Dimensional Zymography of Proteases from Steatotic Duck Liver.

    Science.gov (United States)

    Wilkesman, Jeff; Padrón, María Fernanda; Kurz, Liliana; Rémignon, Hervé

    2017-01-01

    Protease activity present in liver cells with steatosis can be electrophoretically characterized. Zymographic techniques allow semi-quantitative results, successfully detecting cathepsin and metalloprotease activity using polyacrylamide gels copolymerized with gelatin and quantified by densitometry. By using specific inhibitors, the identity of the proteases can be confirmed. 2D zymography allows the determination of both M r. and pI of the metalloprotease and cathepsin activity present in the homogenates. The analysis of liver proteases activities in force fed ducks may elucidate the mechanisms behind steatosis development.

  19. A novel method for the preparation of electrophoretic display microcapsules

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao-Meng; He, Jing; Liu, Sheng-Yun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Jian-Feng [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Le, Yuan, E-mail: leyuan@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-07-01

    Highlights: • The electrophoretic display microcapsules were prepared by coaxial jet method aided by gas spray. • The positions of inner tube, liquid and gas flow rate of the process were investigated. • The size and shell thickness of the prepared microcapsules were controllable. • The prepared microcapsules had high coating ratio and exhibit reversible response to DC field. - Abstract: The narrow distributed electrophoretic display microcapsules containing electrophoretic ink were prepared using coaxial jet method aided by gas spray. Experimental results showed the size and shell thickness of the microcapsules could be controlled by adjusting flow rates of core and shell fluids as well as gas. The as-prepared white and red microcapsules, with average size of 100 and 200 μm respectively, had high coating ratio (above 90%) and exhibited reversible response to DC electric field. Compared with the approach of other microencapsulation methods, the new technique not only has a simple procedure but also provides a more effective way of size control. This novel method is expected to prepare microcapsules with potential application in the fields of electronic paper and other material science.

  20. On-line stacking techniques for the nonaqueous capillary electrophoretic determination of acrylamide in processed food

    International Nuclear Information System (INIS)

    Tezcan, Filiz; Erim, F. Bedia

    2008-01-01

    In the present study, field amplified sample stacking (FASS) techniques in the nonaqueous capillary electrophoresis method (NACE) were introduced for the on-line concentration of the acrylamide to improve acrylamide detection at 210 nm by diode-array detection. Acetonitrile (ACN) as a nonaqueous solvent permits acrylamide to be protonated through the change of its acid-base chemistry, allowing capillary electrophoretic separation of this compound. Choosing 30 mmol L -1 HClO 4 , 20 mmol L -1 NaClO 4 , 218 mmol L -1 CH 3 COOH in ACN as the separation electrolyte and employing sample stacking methods, the LOD value of acrylamide was decreased to 2.6 ng mL -1 with electrokinetic injection and 4.4 ng mL -1 with hydrodynamic injection. Optimized stacking conditions were applied to the determination of acrylamide in several foodstuffs. The method is simple, rapid, inexpensive, and widely applicable for the determination of acrylamide in food samples

  1. Comparing nanostructured hydroxyapatite coating on AZ91 alloy samples via sol-gel and electrophoretic deposition for biomedical applications.

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2014-12-01

    Magnesium is one of the most critical elements in hard tissues regeneration and therefore causes speeding up the restoration of harmed bones, while high deterioration rate of magnesium in body fluid restricts it to be used as biodegradable implants. Alloying magnesium with some relatively nobler metals such as aluminium, zinc, rare earth elements, magnesium-bioceramics composites, and surface modification techniques are some of the routes to control magnesium corrosion rate. In this study AZ91 magnesium alloy had been coated by nanostructured hydroxyapatite via sol-gel dip coating and electrophoretical methods to survey the final barricade properties of the obtained coatings. In order to perform electrophoretic coating, powders were prepared by sol-gel method, and then the powders deposited on substrates utilizing direct current electricity. Zeta potentials of the electrophoresis suspensions were measured to determine a best mode for good quality coatings. Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) were used to confirm nanoscale dimension, and the uniformity of the nanostructured hydroxyapatite coating, respectively. Fourier Transform-Infrared and X-ray diffraction analysis were utilized for functional group and phase structure evaluation of the prepared coatings, correspondingly. Electrochemical corrosion tests were performed in SBF at 37±1 (°)C which revealed considerable increase in corrosion protection resistivity and corrosion current density for electrophoretic coated specimens versus sol-gel coated specimens. Results showed that both sol-gel and electrophoretical techniques seem to be suitable to coat magnesium alloys for biomedical applications but electrophoretic coating technique is a better choice due to the more homogeneity and more crystalline structure of the coating.

  2. Procedures for two-dimensional electrophoresis of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  3. Mechanical exfoliation of two-dimensional materials

    Science.gov (United States)

    Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping

    2018-06-01

    Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.

  4. Two-dimensional analysis of human lymphocyte proteins. III. Preliminary report on a marker for the early detection and diagnosis of infectious mononucleosis

    International Nuclear Information System (INIS)

    Willard, K.E.

    1982-01-01

    Two-dimensional gel electrophoretic patterns of human peripheral blood leukocytes from 12 patients with infectious mononucleosis were prepared by use of the ISO-DALT system. Before the two-dimensional separation, the leukocytes were purified by Ficoll-Paque gradient centrifugation and labeled overnight with [ 35 S] methionine. Quantitative increases in two proteins were detected in the patterns of infected leukocytes from the patients as compared with controls. Fluorescence-activated cell sorting of leukocytes from normal human peripheral blood before subsequent two-dimensional gel analysis revealed that the dramatic increase in one of these proteins (Inmono:2) could be due to shifts in the population ratios of lymphocytes, monocytes, and granulocytes. In contrast, the appearance in the infected leukocytes of a second protein, Inmono:1, could not be accounted for by cell-population shifts. Increased amounts of these two proteins have been found in every patient studied who had clinically detectable infectious mononucleosis. In addition, a patient who displayed symptoms of infectious mononucleosis but who did not have a positive result in the MONOSPOT test (Ortho) until three weeks after our analysis also demonstrated increased relative amounts of these proteins in his leukocyte pattern

  5. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  6. Dynamic three-dimensional display of common congenital cardiac defects from reconstruction of two-dimensional echocardiographic images.

    Science.gov (United States)

    Hsieh, K S; Lin, C C; Liu, W S; Chen, F L

    1996-01-01

    Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.

  7. Fabrication of a three-dimensional micro-manipulator by laser irradiation and electrochemical techniques and the effect of electrolytes on its performance

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T.; Akiyama, Y.; Ueda, M.; Sakairi, M.; Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-Ku, Sapporo (Japan)

    2007-03-20

    Ribbon type and three-dimensional micro-actuators, consisting of three-layer structure of acrylic acid resin/Au/polypyrrole, were fabricated by aluminum anodizing, laser irradiation, and electrochemical techniques, and their performance was examined. Anodized aluminum specimens were irradiated with a pulsed Nd-YAG laser to remove anodic oxide films locally, and then an Au layer was deposited at the area where film had been removed. The subsequent electrophoretic deposition of acrylic acid resin on the Au layer, dissolution of anodic oxide film and the metal substrate, and deposition of polypyrrole on backside of Au layer by electro-polymerization enabled the fabrication of a three-layer actuator. Cyclic voltammetry of the ribbon type actuator in different electrolyte solutions showed that redox reactions of polypyrrole is accompanied with doping and dedoping of hydrated cations, and that the redox reaction strongly depends on the valency of cations in the solutions. The three-dimensional micro-actuator showed good performance as a manipulator, gripping and moving objects of several milligram in solutions. (author)

  8. Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows

    NARCIS (Netherlands)

    Viazzi, S.; Bahr, C.; Hertem, van T.; Schlageter-Tello, A.; Romanini, C.E.B.; Halachmi, I.; Lokhorst, C.; Berckmans, D.

    2014-01-01

    In this study, two different computer vision techniques to automatically measure the back posture in dairy cows were tested and evaluated. A two-dimensional and a three-dimensional camera system were used to extract the back posture from walking cows, which is one measurement used by experts to

  9. Laser sheet dropsizing based on two-dimensional Raman and Mie scattering.

    Science.gov (United States)

    Malarski, Anna; Schürer, Benedikt; Schmitz, Ingo; Zigan, Lars; Flügel, Alexandre; Leipertz, Alfred

    2009-04-01

    The imaging and quantification of droplet sizes in sprays is a challenging task for optical scientists and engineers. Laser sheet dropsizing (LSDS) combines the two-dimensional information of two different optical processes, one that is proportional to the droplet volume and one that depends on the droplet surface, e.g., Mie scattering. Besides Mie scattering, here we use two-dimensional Raman scattering as the volume-dependent measurement technique. Two different calibration strategies are presented and discussed. Two-dimensional droplet size distributions in a spray have been validated in comparison with the results of point-resolved phase Doppler anemometry (PDA) measurements.

  10. Laser sheet dropsizing based on two-dimensional Raman and Mie scattering

    International Nuclear Information System (INIS)

    Malarski, Anna; Schuerer, Benedikt; Schmitz, Ingo; Zigan, Lars; Fluegel, Alexandre; Leipertz, Alfred

    2009-01-01

    The imaging and quantification of droplet sizes in sprays is a challenging task for optical scientists and engineers. Laser sheet dropsizing (LSDS) combines the two-dimensional information of two different optical processes, one that is proportional to the droplet volume and one that depends on the droplet surface, e.g., Mie scattering. Besides Mie scattering, here we use two-dimensional Raman scattering as the volume-dependent measurement technique. Two different calibration strategies are presented and discussed. Two-dimensional droplet size distributions in a spray have been validated in comparison with the results of point-resolved phase Doppler anemometry (PDA) measurements

  11. Electrophoretic transport of biomolecules across liquid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Thomas; Hardt, Steffen [Center of Smart Interfaces, TU Darmstadt, Petersenstrasse 32, D-64287 Darmstadt (Germany); Muenchow, Goetz, E-mail: hardt@csi.tu-darmstadt.de [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, D-55129 Mainz (Germany)

    2011-05-11

    The mass transfer resistance of a liquid-liquid interface in an aqueous two-phase system composed of poly(ethylene glycol) and dextran is investigated. Different types of proteins and DNA stained with fluorescent dyes serve as probes to study the transport processes close to the interface. A microfluidic device is employed to enable the electrophoretic transport of biomolecules from one phase to another. The results obtained for proteins can be explained solely via the different electrophoretic mobilities and different affinities of the molecules to the two phases, without any indications of a significant mass transfer resistance of the liquid-liquid interface. By contrast, DNA molecules adsorb to the interface and only desorb under an increased electric field strength. The desorption process carries the signature of a thermally activated escape from a metastable state, as reflected in the exponential decay of the fluorescence intensity at the interface as a function of time.

  12. Application of Fluorescence Two-Dimensional Difference In-Gel Electrophoresis as a Proteomic Biomarker Discovery Tool in Muscular Dystrophy Research

    Science.gov (United States)

    Carberry, Steven; Zweyer, Margit; Swandulla, Dieter; Ohlendieck, Kay

    2013-01-01

    In this article, we illustrate the application of difference in-gel electrophoresis for the proteomic analysis of dystrophic skeletal muscle. The mdx diaphragm was used as a tissue model of dystrophinopathy. Two-dimensional gel electrophoresis is a widely employed protein separation method in proteomic investigations. Although two-dimensional gels usually underestimate the cellular presence of very high molecular mass proteins, integral membrane proteins and low copy number proteins, this method is extremely powerful in the comprehensive analysis of contractile proteins, metabolic enzymes, structural proteins and molecular chaperones. This gives rise to two-dimensional gel electrophoretic separation as the method of choice for studying contractile tissues in health and disease. For comparative studies, fluorescence difference in-gel electrophoresis has been shown to provide an excellent biomarker discovery tool. Since aged diaphragm fibres from the mdx mouse model of Duchenne muscular dystrophy closely resemble the human pathology, we have carried out a mass spectrometry-based comparison of the naturally aged diaphragm versus the senescent dystrophic diaphragm. The proteomic comparison of wild type versus mdx diaphragm resulted in the identification of 84 altered protein species. Novel molecular insights into dystrophic changes suggest increased cellular stress, impaired calcium buffering, cytostructural alterations and disturbances of mitochondrial metabolism in dystrophin-deficient muscle tissue. PMID:24833232

  13. Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques.

    Science.gov (United States)

    Kim, Hyun-joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p chondromalacia patella.

  14. Survival rate of eukaryotic cells following electrophoretic nanoinjection.

    Science.gov (United States)

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-25

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells.

  15. Survival rate of eukaryotic cells following electrophoretic nanoinjection

    Science.gov (United States)

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-01

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells. PMID:28120926

  16. Chromatographic and electrophoretic approaches in ink analysis.

    Science.gov (United States)

    Zlotnick, J A; Smith, F P

    1999-10-15

    Inks are manufactured from a wide variety of substances that exhibit very different chemical behaviors. Inks designed for use in different writing instruments or printing methods have quite dissimilar components. Since the 1950s chromatographic and electrophoretic methods have played important roles in the analysis of inks, where compositional information may have bearing on the investigation of counterfeiting, fraud, forgery, and other crimes. Techniques such as paper chromatography and electrophoresis, thin-layer chromatography, high-performance liquid chromatography, gas chromatography, gel electrophoresis, and the relatively new technique of capillary electrophoresis have all been explored as possible avenues for the separation of components of inks. This paper reviews the components of different types of inks and applications of the above separation methods are reviewed.

  17. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  18. Two- and three-dimensional CT evaluation of sacral and pelvic anomalies

    International Nuclear Information System (INIS)

    Kuhlman, J.E.; Fishman, E.K.; Magid, D.

    1988-01-01

    Pelvic anomalies are difficult to evaluate with standard techniques. Detailed knowledge of the existing pelvic structures and musculature is essential for successful repair. The authors evaluated 12 patients with complex malformations of the pelvis using two- and three-dimensional imaging. The anomalies included bladder exstrophy (n = 4), cloacal exstrophy (n = 1), duplicated and absent sacrum (n = 3), myelomeningoceles (n = 2), and diastrophic dwarfism (n = 2). The two-dimensional images consisted of sequential coronal and sagittal reconstructions that could be reviewed dynamically on screen. Three-dimensional images were generated on the Pixar imaging computer with use of volumetric rendering. Two- and three-dimensional CT proved complementary in the evaluation of pelvic anomalies, providing optimal information from transaxial CT data

  19. Electrophoretic mobilities of dissolved polyelectrolyte charging agent and suspended non-colloidal titanium during electrophoretic deposition

    International Nuclear Information System (INIS)

    Lau, Kok-Tee; Sorrell, C.C.

    2011-01-01

    Coarse (≤20 μm) titanium particles were deposited on low-carbon steel substrates by cathodic electrophoretic deposition (EPD) with ethanol as suspension medium and poly(diallyldimethylammonium chloride) (PDADMAC) as polymeric charging agent. Preliminary data on the electrophoretic mobilities and electrical conductivities on the suspensions of these soft particles as well as the solutions themselves as a function of PDADMAC level were used as the basis for the investigation of the EPD parameters in terms of the deposition yield as a function of five experimental parameters: (a) PDADMAC addition level, (b) solids loading, (c) deposition time, (d) applied voltage, and (e) electrode separation. These data were supported by particle sizing by laser diffraction and deposit surface morphology by scanning electron microscopy (SEM). The preceding data demonstrated that Ti particles of ∼1-12 μm size, electrosterically modified by the PDADMAC charging agent, acted effectively as colloidal particles during EPD. Owing to the non-colloidal nature of the particles and the stabilization of the Ti particles by electrosteric forces, the relevance of the zeta potential is questionable, so the more fundamental parameter of electrophoretic mobility was used. A key finding from the present work is the importance of assessing the electrophoretic mobilities of both the suspensions and solutions since the latter, which normally is overlooked, plays a critical role in the ability to interpret the results meaningfully. Further, algebraic uncoupling of these data plus determination of the deposit yield as a function of charging agent addition allow discrimination between the three main mechanistic stages of the electrokinetics of the process, which are: (1) surface saturation; (2) compression of the diffuse layer, growth of polymer-rich layer, and/or competition between the mobility of Ti and PDADMAC; and (3) little or no decrease in electrophoretic mobility of Ti, establishment of

  20. Electrophoretic mobilities of dissolved polyelectrolyte charging agent and suspended non-colloidal titanium during electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Kok-Tee [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76109 Durian Tunggal, Melaka (Malaysia); Sorrell, C.C., E-mail: C.Sorrell@unsw.edu.au [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2011-03-25

    Coarse ({<=}20 {mu}m) titanium particles were deposited on low-carbon steel substrates by cathodic electrophoretic deposition (EPD) with ethanol as suspension medium and poly(diallyldimethylammonium chloride) (PDADMAC) as polymeric charging agent. Preliminary data on the electrophoretic mobilities and electrical conductivities on the suspensions of these soft particles as well as the solutions themselves as a function of PDADMAC level were used as the basis for the investigation of the EPD parameters in terms of the deposition yield as a function of five experimental parameters: (a) PDADMAC addition level, (b) solids loading, (c) deposition time, (d) applied voltage, and (e) electrode separation. These data were supported by particle sizing by laser diffraction and deposit surface morphology by scanning electron microscopy (SEM). The preceding data demonstrated that Ti particles of {approx}1-12 {mu}m size, electrosterically modified by the PDADMAC charging agent, acted effectively as colloidal particles during EPD. Owing to the non-colloidal nature of the particles and the stabilization of the Ti particles by electrosteric forces, the relevance of the zeta potential is questionable, so the more fundamental parameter of electrophoretic mobility was used. A key finding from the present work is the importance of assessing the electrophoretic mobilities of both the suspensions and solutions since the latter, which normally is overlooked, plays a critical role in the ability to interpret the results meaningfully. Further, algebraic uncoupling of these data plus determination of the deposit yield as a function of charging agent addition allow discrimination between the three main mechanistic stages of the electrokinetics of the process, which are: (1) surface saturation; (2) compression of the diffuse layer, growth of polymer-rich layer, and/or competition between the mobility of Ti and PDADMAC; and (3) little or no decrease in electrophoretic mobility of Ti

  1. Electrophoretic analysis of proteins from Mycoplasma hominis strains detected by SDS-PAGE, two-dimensional gel electrophoresis and immunoblotting

    DEFF Research Database (Denmark)

    Andersen, H; Birkelund, Svend; Christiansen, Gunna

    1987-01-01

    The proteins of 14 strains of Mycoplasma hominis were compared by SDS-PAGE in gradient gels, by two-dimensional (2D) gel electrophoresis of extracts of 35S-labelled cells and by immunoblot analysis of cell proteins. The strains examined included the M. hominis type strain PG21 and 13 others...... isolated variously from genital tract, mouth, blood, upper urinary tract and a wound. These 14 strains shared 76-99% of proteins in SDS-gradient gel analysis and 41-72% in the 2D gels. As expected, the immunoblot analysis likewise revealed the existence of an extensive common protein pattern in M. hominis...

  2. Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques

    International Nuclear Information System (INIS)

    Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.

    2005-01-01

    In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300 s was demonstrated. Also, the system could track an object with a velocity of up to 35 000 μm/s (175 diameters/s), which is significantly faster than swimming micro-organisms

  3. Dimensional Accuracy of Hydrophilic and Hydrophobic VPS Impression Materials Using Different Impression Techniques - An Invitro Study

    Science.gov (United States)

    Pilla, Ajai; Pathipaka, Suman

    2016-01-01

    Introduction The dimensional stability of the impression material could have an influence on the accuracy of the final restoration. Vinyl Polysiloxane Impression materials (VPS) are most frequently used as the impression material in fixed prosthodontics. As VPS is hydrophobic when it is poured with gypsum products, manufacturers added intrinsic surfactants and marketed as hydrophilic VPS. These hydrophilic VPS have shown increased wettability with gypsum slurries. VPS are available in different viscosities ranging from very low to very high for usage under different impression techniques. Aim To compare the dimensional accuracy of hydrophilic VPS and hydrophobic VPS using monophase, one step and two step putty wash impression techniques. Materials and Methods To test the dimensional accuracy of the impression materials a stainless steel die was fabricated as prescribed by ADA specification no. 19 for elastomeric impression materials. A total of 60 impressions were made. The materials were divided into two groups, Group1 hydrophilic VPS (Aquasil) and Group 2 hydrophobic VPS (Variotime). These were further divided into three subgroups A, B, C for monophase, one-step and two-step putty wash technique with 10 samples in each subgroup. The dimensional accuracy of the impressions was evaluated after 24 hours using vertical profile projector with lens magnification range of 20X-125X illumination. The study was analyzed through one-way ANOVA, post-hoc Tukey HSD test and unpaired t-test for mean comparison between groups. Results Results showed that the three different impression techniques (monophase, 1-step, 2-step putty wash techniques) did cause significant change in dimensional accuracy between hydrophilic VPS and hydrophobic VPS impression materials. One-way ANOVA disclosed, mean dimensional change and SD for hydrophilic VPS varied between 0.56% and 0.16%, which were low, suggesting hydrophilic VPS was satisfactory with all three impression techniques. However, mean

  4. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng; Li, Henan; Li, Lain-Jong

    2014-01-01

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  5. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng

    2014-10-20

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  6. Three dimensional imaging technique for laser-plasma diagnostics

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Liu Zhongli

    2001-01-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments

  7. Three dimensional imaging technique for laser-plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shaoen, Jiang; Zhijian, Zheng; Zhongli, Liu [China Academy of Engineering Physics, Chengdu (China)

    2001-04-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments.

  8. Hall Conductivity in a Quasi-Two-Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANG Yong-Hong; WANG Yong-Gang; LIU Mei

    2002-01-01

    By making use of the diagrammatic techniques in perturbation theory,we have investigated the Hall effect in a quasi-two-dimensional disordered electron system.In the weakly localized regime,the analytical expression for quantum correction to Hall conductivity has been obtained using the Kubo formalism and quasiclassical approximation.The relevant dimensional crossover behavior from three dimensions to two dimensions with decreasing the interlayer hopping energy is discussed.The quantum interference effect is shown to have a vanishing correction t,o the Hall coefficient.

  9. Two-dimensional J-resolved nuclear magnetic resonance spectral study of two bromobenzene glutathione conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, J.A.; Highet, R.J.; Pohl, L.R.; Monks, T.J.; Hinson, J.A.

    1985-09-01

    The application of two-dimensional J-resolved nuclear magnetic resonance spectroscopy to determine the structure of two bile metabolites isolated from rats injected interperitoneally with bromobenzene is described. The structures of the two molecules are obtained unambiguously from the proton-proton spin coupling constants. The paper discusses the fundamentals of the technique and demonstrates the resolution of small long-range coupling constants.

  10. A novel two-dimensional dynamic anal ultrasonography technique to assess anismus comparing with three-dimensional echodefecography.

    Science.gov (United States)

    Murad-Regadas, S M; Regadas, F S P; Barreto, R G L; Rodrigues, L V; de Souza, M H L P

    2009-10-01

    The aim of this prospective study was to test two-dimensional dynamic anorectal ultrasonography (2D-DAUS) in the assessment of anismus and compare it with echodefecography (ECD). Fifty consecutive female patients with outlet delay were submitted to 2D and 3D-DAUS, measuring the relaxing or contracting puborectalis muscle angle during straining. The patients were assigned to one of two groups based on ECD findings. Group I consisted of 29 patients without anismus and group II included 21 patients diagnosed with anismus. Subsequently 2D-DAUS images were checked for anismus and compared with ECD findings. Upon straining, the angle produced by the movement of the puborectalis muscle decreased in 26 out of the 29 (89.6%) patients of group I and increased 19 out of the 21 (90.4%) patients of group II. The mean angle during straining differed significantly between group I and group II. The index of agreement between the two scanning modes was 89.6% (26/29) for group I (Kappa: 0.796; CI: 95%; range: 0.51-1.0) and 90.4% (19/21) for group II (Kappa: 0.796; CI: 95%; range: 0.51-1.0). Two-dimensional dynamic anal ultrasonography can be used as an alternative method to assess patients with anismus, although the 3-D modality is more precise to evaluate the PR angle as the sphincters integrity as the whole muscle length is clearly visualized.

  11. Two-dimensional void reconstruction by neutron transmission

    International Nuclear Information System (INIS)

    Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.

    1978-01-01

    Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data

  12. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    Science.gov (United States)

    Aoki, Michio; Juang, Jia-Yang

    2018-02-01

    Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.

  13. Association of electrophoretic karyotype of Candida stellatoidea with virulence for mice

    International Nuclear Information System (INIS)

    Kwon-Chung, K.J.; Wickes, B.L.; Merz, W.G.

    1988-01-01

    Seven isolates of Candida stellatoidea were studied for their electrophoretic karyotype, virulence for mice, sensitivity to UV radiation, growth rate in vitro, reaction on cycloheximide-indicator medium, and proteinase activity. The isolates exhibited one of two distinct electrophoretic karyotypes as determined by orthogonal field alternating gel electrophoresis (OFAGE). Four isolates, including the type culture of C. stellatoidea, belonged to electrophoretic karyotype type I by OFAGE, showing eight to nine bands of which at least two bands were less than 1,000 kilobases in size as estimated by comparison with the DNA bands of Saccharomyces cerevisiae. These isolates failed to produce fatal infection in mice within 20 days when 5 X 10(5) cells were injected intravenously. The yeasts were cleared from the kidneys of two of three mice tested by day 30. Type I showed proteinase activity on bovine serum albumin agar at pH 3.8 and produced a negative reaction on cycloheximide-bromcresol green medium within 48 h. The three grouped in type II by OFAGE showed banding patterns similar to those of a well-characterized isolate of Candida albicans. The isolates of type II had an electrophoretic karyotype of six to seven bands approximately 1,200 kilobases or greater in size. All three type II isolates were highly virulent for mice, producing fatality curves similar to those of a previously studied C. albicans isolate. From 80 to 90% of the mice injected with 5 X 10(5) cells intravenously died within 20 days. The type II isolates produced a positive reaction on cycloheximide-bromcresol green agar and showed no proteinase activity on bovine serum albumin agar at the low pH. In addition, the type II isolates grew faster and were significantly more resistant to UV irradiation than the type I isolates

  14. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  15. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2011-02-15

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  16. Three-dimensional investigation of the two-phase flow structure in a bubbly pipe flow

    International Nuclear Information System (INIS)

    Schmidl, W.; Hassan, Y.A.; Ortiz-Villafuerte, J.

    1996-01-01

    Particle image velocimetry (PIV) is a nonintrusive measurement technique that can be used to study the structure of various fluid flows. PIV is used to measure the time-varying, full-field velocity data of a particle-seeded flow field within either a two-dimensional plane or three-dimensional volume. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. The quantitative spatial velocity information can be further processed into information of flow parameters such as vorticity and turbulence over extended areas. The objective of this study was to apply recent advances and improvements in the PIV flow measurement technique to the full-field, nonintrusive analysis of a three-dimensional, two-phase fluid flow system in such a manner that both components of the two-phase system could be experimentally quantified

  17. Integration of fringe projection and two-dimensional digital image correlation for three-dimensional displacements measurements

    Science.gov (United States)

    Felipe-Sesé, Luis; López-Alba, Elías; Siegmann, Philip; Díaz, Francisco A.

    2016-12-01

    A low-cost approach for three-dimensional (3-D) full-field displacement measurement is applied for the analysis of large displacements involved in two different mechanical events. The method is based on a combination of fringe projection and two-dimensional digital image correlation (DIC) techniques. The two techniques have been employed simultaneously using an RGB camera and a color encoding method; therefore, it is possible to measure in-plane and out-of-plane displacements at the same time with only one camera even at high speed rates. The potential of the proposed methodology has been employed for the analysis of large displacements during contact experiments in a soft material block. Displacement results have been successfully compared with those obtained using a 3D-DIC commercial system. Moreover, the analysis of displacements during an impact test on a metal plate was performed to emphasize the application of the methodology for dynamics events. Results show a good level of agreement, highlighting the potential of FP + 2D DIC as low-cost alternative for the analysis of large deformations problems.

  18. Laboratory two-dimensional X-ray microdiffraction technique: a support for authentication of an unknown Ghirlandaio painting

    International Nuclear Information System (INIS)

    Bontempi, E.; Benedetti, D.; Zacco, A.; Borgese, L.; Depero, L.E.; Massardi, A.

    2008-01-01

    Europe has a very rich and diversified cultural heritage of art works, including buildings, monuments and objects of all sizes, involving a great variety of materials. The continuous discovery of new art works opens the problem of their authentication. Advanced analytical techniques can be fundamental to understand the way of life, the culture and the technical and intellectual know-how of the artists. Indeed, the authentication of an art work involves the identification of the used materials, their production techniques and procedures used for the work realization. It is possible to know the origin and provenance of materials, including the location of the natural sources. Advanced analytical techniques also help one to understand degradation processes, corrosion, weathering, and preservation-conservation protocols. In this paper we present a painting attributed to Domenico Ghirlandaio. Ghirlandaio is a well-known artist of fifteenth century who contributes to the apprenticeship of Michelangelo Buonarroti. The study of the pigments used in this painting, which belongs to a private collection, has been supported mainly by means of laboratory two-dimensional X-ray microdiffraction (μXRD 2 ). The possibility to obtain information about not only the phase, but also microstructure allows one to extract interesting consideration and to obtain evidence of the painter's style and intention. (orig.)

  19. A wavenumber-partitioning scheme for two-dimensional statistical closures

    International Nuclear Information System (INIS)

    Bowman, J.C.

    1994-11-01

    One of the principal advantages of statistical closure approximations for fluid turbulence is that they involve smoothly varying functions of wavenumber. This suggests the possibility of modeling a flow by following the evolution of only a few representative wavenumbers. This work presents two new techniques for the implementation of two-dimensional isotropic statistical closures that for the first time allows the inertial-range scalings of these approximation to be numerically demonstrated. A technique of wavenumber partitioning that conserves both energy and enstrophy is developed for two-dimensional statistical closures. Coupled with a new time-stepping scheme based on a variable integrating factor, this advance facilitates the computation of energy spectra over seven wavenumber decades, a task that will clearly remain outside the realm of conventional numerical simulations for the foreseeable future. Within the context of the test-field model, the method is used to demonstrate Kraichnan's logarithmically-corrected scaling for the enstrophy inertial range and to make a quantitative assessment of the effect of replacing the physical Laplacian viscosity with an enhanced hyperviscosity

  20. Efficient processing of two-dimensional arrays with C or C++

    Science.gov (United States)

    Donato, David I.

    2017-07-20

    Because fast and efficient serial processing of raster-graphic images and other two-dimensional arrays is a requirement in land-change modeling and other applications, the effects of 10 factors on the runtimes for processing two-dimensional arrays with C and C++ are evaluated in a comparative factorial study. This study’s factors include the choice among three C or C++ source-code techniques for array processing; the choice of Microsoft Windows 7 or a Linux operating system; the choice of 4-byte or 8-byte array elements and indexes; and the choice of 32-bit or 64-bit memory addressing. This study demonstrates how programmer choices can reduce runtimes by 75 percent or more, even after compiler optimizations. Ten points of practical advice for faster processing of two-dimensional arrays are offered to C and C++ programmers. Further study and the development of a C and C++ software test suite are recommended.Key words: array processing, C, C++, compiler, computational speed, land-change modeling, raster-graphic image, two-dimensional array, software efficiency

  1. The three dimensional X-ray diffraction technique

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte; Poulsen, Henning Friis

    2012-01-01

    This introductory tutorial describes the so called 3 dimensional X-ray diffraction (3DXRD) technique, which allows bulk non-destructive structural characterizations of crystalline materials. The motivations and history behind the development of this technique are described and its potentials...

  2. Two- to three-dimensional crossover in a dense electron liquid in silicon

    Science.gov (United States)

    Matmon, Guy; Ginossar, Eran; Villis, Byron J.; Kölker, Alex; Lim, Tingbin; Solanki, Hari; Schofield, Steven R.; Curson, Neil J.; Li, Juerong; Murdin, Ben N.; Fisher, Andrew J.; Aeppli, Gabriel

    2018-04-01

    Doping of silicon via phosphine exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8 ×1014 cm-2) disordered two-dimensional array of P atoms, the full field magnitude and angle-dependent magnetotransport is remarkably well described by classic weak localization theory with no corrections due to interaction. The two- to three-dimensional crossover seen upon warming can also be interpreted using scaling concepts developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.

  3. Topological field theories and two-dimensional instantons

    International Nuclear Information System (INIS)

    Schaposnik, F.A.

    1990-01-01

    In this paper, the author discusses some topics related to the recently developed Topological Field Theories (TFTs). The first part is devoted to a discussion on how a TFT can be quantized using techniques which are well-known from the study of gauge theories. Then the author describes the results that we have obtained in collaboration with George Thompson in the study of a two-dimensional TFT related to the Abelian Higgs model

  4. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  5. Mass spectrometric analysis of electrophoretically separated allergens and proteases in grass pollen diffusates

    Directory of Open Access Journals (Sweden)

    Geczy Carolyn L

    2003-09-01

    Full Text Available Abstract Background Pollens are important triggers for allergic asthma and seasonal rhinitis, and proteases released by major allergenic pollens can injure airway epithelial cells in vitro. Disruption of mucosal epithelial integrity by proteases released by inhaled pollens could promote allergic sensitisation. Methods Pollen diffusates from Kentucky blue grass (Poa pratensis, rye grass (Lolium perenne and Bermuda grass (Cynodon dactylon were assessed for peptidase activity using a fluorogenic substrate, as well as by gelatin zymography. Following one- or two-dimensional gel electrophoresis, Coomassie-stained individual bands/spots were excised, subjected to tryptic digestion and analysed by mass spectrometry, either MALDI reflectron TOF or microcapillary liquid chromatography MS-MS. Database searches were used to identify allergens and other plant proteins in pollen diffusates. Results All pollen diffusates tested exhibited peptidase activity. Gelatin zymography revealed high Mr proteolytic activity at ~ 95,000 in all diffusates and additional proteolytic bands in rye and Bermuda grass diffusates, which appeared to be serine proteases on the basis of inhibition studies. A proteolytic band at Mr ~ 35,000 in Bermuda grass diffusate, which corresponded to an intense band detected by Western blotting using a monoclonal antibody to the timothy grass (Phleum pratense group 1 allergen Phl p 1, was identified by mass spectrometric analysis as the group 1 allergen Cyn d 1. Two-dimensional analysis similarly demonstrated proteolytic activity corresponding to protein spots identified as Cyn d 1. Conclusion One- and two-dimensional electrophoretic separation, combined with analysis by mass spectrometry, is useful for rapid determination of the identities of pollen proteins. A component of the proteolytic activity in Bermuda grass diffusate is likely to be related to the allergen Cyn d 1.

  6. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    Science.gov (United States)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  7. Two-dimensional metamaterial optics

    International Nuclear Information System (INIS)

    Smolyaninov, I I

    2010-01-01

    While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes

  8. Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, Lyda La Torre; Soto, Keyla; Tryk, Donald A; Cabrera, Carlos R [Department of Chemistry and Center of Nanoscale Materials, University of Puerto Rico, Rio Piedras, PO Box 23346 San Juan, PR 00931-3346 (Puerto Rico)

    2007-04-15

    We carried out chemical purification of commercially available diamond nanoparticles by refluxing in aqueous HNO{sub 3} and characterized the samples by spectroscopic and surface techniques before and after purification. As a first step in the preparation of electrodes for electrochemistry, we have electrophoretically deposited thin, highly uniform films of controlled thickness (1-8 {mu}m) on silicon substrates using the purified diamond nanoparticles. These have been characterized by scanning electron microscopy (SEM). All films obtained were homogeneous in thickness and without macroscopic holes or cracks. Such structures could also be used in many other applications such as fuel cells or lithium batteries. We have performed cyclic voltammetry experiments with these electrodes. The voltammograms of diamond nanoparticles electrophoretically deposited on silicon indicate hydrogen evolution. This demonstrates that the material is useful as electrocatalitic support. This conclusion is supported by the cyclic voltammograms obtained using ferrycyanide (III) chloride and hexaamineruthenium (III) chloride complexes as redox probes. However, these redox probes showed very small peak currents. This behavior could be improved by doping the diamond nanoparticles with an impurity such as boron.

  9. Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles

    International Nuclear Information System (INIS)

    Riveros, Lyda La Torre; Soto, Keyla; Tryk, Donald A; Cabrera, Carlos R

    2007-01-01

    We carried out chemical purification of commercially available diamond nanoparticles by refluxing in aqueous HNO 3 and characterized the samples by spectroscopic and surface techniques before and after purification. As a first step in the preparation of electrodes for electrochemistry, we have electrophoretically deposited thin, highly uniform films of controlled thickness (1-8 μm) on silicon substrates using the purified diamond nanoparticles. These have been characterized by scanning electron microscopy (SEM). All films obtained were homogeneous in thickness and without macroscopic holes or cracks. Such structures could also be used in many other applications such as fuel cells or lithium batteries. We have performed cyclic voltammetry experiments with these electrodes. The voltammograms of diamond nanoparticles electrophoretically deposited on silicon indicate hydrogen evolution. This demonstrates that the material is useful as electrocatalitic support. This conclusion is supported by the cyclic voltammograms obtained using ferrycyanide (III) chloride and hexaamineruthenium (III) chloride complexes as redox probes. However, these redox probes showed very small peak currents. This behavior could be improved by doping the diamond nanoparticles with an impurity such as boron

  10. Path-integral bosonization of two-dimensional massive Q.C.D

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.

    1984-01-01

    The fermionic determinant for two-dimensional QCD with massive fermions by means of Seeley's technique is evaluated. Apart from a gluon-mass term this determinant contains a Wess-Zumino anomaly term and a non-abelian extension of the Sine-Gordon. (Author) [pt

  11. Detecting low-dimensional chaos by the “noise titration” technique: Possible problems and remedies

    International Nuclear Information System (INIS)

    Gao Jianbo; Hu Jing; Mao Xiang; Tung Wenwen

    2012-01-01

    Highlights: ► Distinguishing low-dimensional chaos from noise is an important issue. ► Noise titration technique is one of the main approaches on the issue. ► Problems of noise titration technique are systematically discussed. ► Solutions to the problems of noise titration technique are provided. - Abstract: Distinguishing low-dimensional chaos from noise is an important issue in time series analysis. Among the many methods proposed for this purpose is the noise titration technique, which quantifies the amount of noise that needs to be added to the signal to fully destroy its nonlinearity. Two groups of researchers recently have questioned the validity of the technique. In this paper, we report a broad range of situations where the noise titration technique fails, and offer solutions to fix the problems identified.

  12. Two-dimensional polyacrylamide gel electrophoresis of intracellular proteins

    International Nuclear Information System (INIS)

    Ojima, N.; Sakamoto, T.; Yamashita, M.

    1996-01-01

    Since two-dimensional electrophoresis was established by O'Farrell for analysis of intracellular proteins of Escherichia coli, it has been applied to separation of proteins of animal cells and tissues, and especially to identification of stress proteins. Using this technique, proteins are separated by isoelectric focusing containing 8 m urea in the first dimension and by SDS-PAGE in the second dimension. The gels are stained with Coomassie Blue R-250 dye, followed by silver staining. In the case of radio-labeled proteins, the gels are dried and then autoradiographed. In order to identify a specific protein separated by two-dimensional electrophoresis, a technique determining the N-terminal amino acid sequence of the protein has been developed recently. After the proteins in the gel were electrotransferred to a polyvinylidene difluoride membrane, the membrane was stained for protein with Commassie Blue and a stained membrane fragment was applied to a protein sequencer. Our recent studies demonstrated that fish cells newly synthesized various proteins in response to heat shock, cold nd osmotic stresses. For example, when cellular proteins extracted from cold-treated rainbow trout cells were subjected to two-dimensional gel electrophoresis, the 70 kDa protein was found to be synthesized during the cold-treatment. N-Terminal sequence analysis showed that the cold-inducible protein was a homolog of mammalian valosin-containing protein and yeast cell division cycle gene product CDC48p. Furthermore, the sequence data were useful for preparing PCR primers and a rabbit antibody against a synthetic peptide to analyze a role for the protein in the function of trout cells and mechanisms for regulation

  13. A two-dimensional adaptive numerical grids generation method and its realization

    International Nuclear Information System (INIS)

    Xu Tao; Shui Hongshou

    1998-12-01

    A two-dimensional adaptive numerical grids generation method and its particular realization is discussed. This method is effective and easy to realize if the control functions are given continuously, and the grids for some regions is showed in this case. For Computational Fluid Dynamics, because the control values of adaptive grids-numerical solution is given in dispersed form, it is needed to interpolate these values to get the continuous control functions. These interpolation techniques are discussed, and some efficient adaptive grids are given. A two-dimensional fluid dynamics example was also given

  14. Progress in two-dimensional polyacrylamide gel electrophoresis and application in radiation research

    International Nuclear Information System (INIS)

    Wang Zhidong; Chen Xiaohua

    2003-01-01

    Two-dimensional polyacrylamide gel electrophoresis is the key separation technique in proteomics research, which is designed by protein character: molecular weight and PI. Some progress has been made in disease mechanism detection, tumor indicator research and drug development. This technique also has some potential application in radiation research

  15. Evaluation of aqueductal patency in patients with hydrocephalus: Three-dimensional high-sampling efficiency technique(SPACE) versus two-dimensional turbo spin echo at 3 Tesla

    International Nuclear Information System (INIS)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut

    2014-01-01

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  16. Evaluation of aqueductal patency in patients with hydrocephalus: Three-dimensional high-sampling efficiency technique(SPACE) versus two-dimensional turbo spin echo at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut [School of Medicine, Gazi University, Ankara (Turkey)

    2014-12-15

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  17. A rapid technique for estimating the depth and width of a two-dimensional plate from self-potential data

    International Nuclear Information System (INIS)

    Mehanee, Salah; Smith, Paul D; Essa, Khalid S

    2011-01-01

    Rapid techniques for self-potential (SP) data interpretation are of prime importance in engineering and exploration geophysics. Parameters (e.g. depth, width) estimation of the ore bodies has also been of paramount concern in mineral prospecting. In many cases, it is useful to assume that the SP anomaly is due to an ore body of simple geometric shape and to use the data to determine its parameters. In light of this, we describe a rapid approach to determine the depth and horizontal width of a two-dimensional plate from the SP anomaly. The rationale behind the scheme proposed in this paper is that, unlike the two- (2D) and three-dimensional (3D) SP rigorous source current inversions, it does not demand a priori information about the subsurface resistivity distribution nor high computational resources. We apply the second-order moving average operator on the SP anomaly to remove the unwanted (regional) effect, represented by up to a third-order polynomial, using filters of successive window lengths. By defining a function F at a fixed window length (s) in terms of the filtered anomaly computed at two points symmetrically distributed about the origin point of the causative body, the depth (z) corresponding to each half-width (w) is estimated by solving a nonlinear equation in the form ξ(s, w, z) = 0. The estimated depths are then plotted against their corresponding half-widths on a graph representing a continuous curve for this window length. This procedure is then repeated for each available window length. The depth and half-width solution of the buried structure is read at the common intersection of these various curves. The improvement of this method over the published first-order moving average technique for SP data is demonstrated on a synthetic data set. It is then verified on noisy synthetic data, complicated structures and successfully applied to three field examples for mineral exploration and we have found that the estimated depth is in good agreement with

  18. Cooperation in two-dimensional mixed-games

    International Nuclear Information System (INIS)

    Amaral, Marco A; Silva, Jafferson K L da; Wardil, Lucas

    2015-01-01

    Evolutionary game theory is a common framework to study the evolution of cooperation, where it is usually assumed that the same game is played in all interactions. Here, we investigate a model where the game that is played by two individuals is uniformly drawn from a sample of two different games. Using the master equation approach we show that the random mixture of two games is equivalent to play the average game when (i) the strategies are statistically independent of the game distribution and (ii) the transition rates are linear functions of the payoffs. We also use Monte-Carlo simulations in a two-dimensional lattice and mean-field techniques to investigate the scenario when the two above conditions do not hold. We find that even outside of such conditions, several quantities characterizing the mixed-games are still the same as the ones obtained in the average game when the two games are not very different. (paper)

  19. Two- and three dimensional electrons and photons and their supersymmetric partners

    International Nuclear Information System (INIS)

    Steringa, J.J.

    1989-01-01

    This thesis contains a study of supersymmetric gauge theories in two and tree spacetime dimensions. Supersymmetric gauge theories in less than four spacetime dimensions are useful for trying out field theoretical methods which ultimately will be applied to realistic models. In ch. 1 all the aspects of field theory that are necessary for later chapters are treated. In ch. 2 sypersymmetry in two- and three-dimensional space time is treated, and superfields and superspace techniques are introduced. With these a simple Abelian supersymmetric gauge theory in two spacetime dimensions is constructed, the Schwinger model. Ch. 3 deals with general properties and a perturbative analysis of the model. Ch. 4 contains a non-perturbative analysis by means of Dyson-Schwinger equations. A supersummetric extension of theSalam-Delbourgo Gauge Technique is presented and is applied with some seccess to the supersymmetric Schwinger model. In ch. 5 prperties of three-dimensional supersymmetric gauge theories are investigated. (author). 55 refs.; 7 figs.; schemes

  20. Advances in zymography techniques and patents regarding protease analysis.

    Science.gov (United States)

    Wilkesman, Jeff; Kurz, Liliana

    2012-08-01

    Detection of enzymatic activity on gel electrophoresis, namely zymography, is a technique that has received increasing attention in the last 10 years, according to the number of articles published. A growing amount of enzymes, mainly proteases, are now routinely detected by zymography. Detailed analytical studies are beginning to be published, as well as new patents have been developed. This new article updates the information covered in our last review, condensing the recent publications dealing with the identification of proteolytic enzymes in electrophoretic gel supports and its variations. The new advances of this method are basically focused towards two dimensional zymography and transfer zymography. Though comparatively fewer patents have been published, they basically coincide in the study of matrix metalloproteases. The tendency is foreseen to be very productive in the area of zymoproteomics, combining electrophoresis and mass spectrometry for the analysis of proteases.

  1. On the two-dimensional Saigo-Maeda fractional calculus asociated with two-dimensional Aleph TRANSFORM

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2013-11-01

    Full Text Available This paper deals with the study of two-dimensional Saigo-Maeda operators of Weyl type associated with Aleph function defined in this paper. Two theorems on these defined operators are established. Some interesting results associated with the H-functions and generalized Mittag-Leffler functions are deduced from the derived results. One dimensional analog of the derived results is also obtained.

  2. Advancements of two dimensional correlation spectroscopy in protein researches

    Science.gov (United States)

    Tao, Yanchun; Wu, Yuqing; Zhang, Liping

    2018-05-01

    The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well.

  3. High Dimensional Modulation and MIMO Techniques for Access Networks

    DEFF Research Database (Denmark)

    Binti Othman, Maisara

    Exploration of advanced modulation formats and multiplexing techniques for next generation optical access networks are of interest as promising solutions for delivering multiple services to end-users. This thesis addresses this from two different angles: high dimensionality carrierless...... the capacity per wavelength of the femto-cell network. Bit rate up to 1.59 Gbps with fiber-wireless transmission over 1 m air distance is demonstrated. The results presented in this thesis demonstrate the feasibility of high dimensionality CAP in increasing the number of dimensions and their potentially......) optical access network. 2 X 2 MIMO RoF employing orthogonal frequency division multiplexing (OFDM) with 5.6 GHz RoF signaling over all-vertical cavity surface emitting lasers (VCSEL) WDM passive optical networks (PONs). We have employed polarization division multiplexing (PDM) to further increase...

  4. Three-dimensional accuracy of different impression techniques for dental implants

    Directory of Open Access Journals (Sweden)

    Mohammadreza Nakhaei

    2015-01-01

    Full Text Available Background: Accurate impression making is an essential prerequisite for achieving a passive fit between the implant and the superstructure. The aim of this in vitro study was to compare the three-dimensional accuracy of open-tray and three closed-tray impression techniques. Materials and Methods: Three acrylic resin mandibular master models with four parallel implants were used: Biohorizons (BIO, Straumann tissue-level (STL, and Straumann bone-level (SBL. Forty-two putty/wash polyvinyl siloxane impressions of the models were made using open-tray and closed-tray techniques. Closed-tray impressions were made using snap-on (STL model, transfer coping (TC (BIO model and TC plus plastic cap (TC-Cap (SBL model. The impressions were poured with type IV stone, and the positional accuracy of the implant analog heads in each dimension (x, y and z axes, and the linear displacement (ΔR were evaluated using a coordinate measuring machine. Data were analyzed using ANOVA and post-hoc Tukey tests (α = 0.05. Results: The ΔR values of the snap-on technique were significantly lower than those of TC and TC-Cap techniques (P < 0.001. No significant differences were found between closed and open impression techniques for STL in Δx, Δy, Δz and ΔR values (P = 0.444, P = 0.181, P = 0.835 and P = 0.911, respectively. Conclusion: Considering the limitations of this study, the snap-on implant-level impression technique resulted in more three-dimensional accuracy than TC and TC-Cap, but it was similar to the open-tray technique.

  5. Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique

    DEFF Research Database (Denmark)

    Carli, Lorenzo; Genta, G; Cantatore, Angela

    2011-01-01

    3D-SEM is a method, based on the stereophotogrammetry technique, which obtains three-dimensional topographic reconstructions starting typically from two SEM images, called the stereo-pair. In this work, a theoretical uncertainty evaluation of the stereo-pair technique, according to GUM (Guide to ...

  6. Two-dimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Bax, A.; Lerner, L.

    1986-01-01

    Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures

  7. Evaluation of combined intracoronary two-dimensional and doppler ultransound techniques in the relaxation function of coronary microcirculation

    International Nuclear Information System (INIS)

    Qi Chunmei; Li Dongye; Pan Defeng; Zhu Hong

    2005-01-01

    Objective: To observe the value of detecting the relaxation function of coronary microcirculation by using combined intracoronary two-dimensional (IVUS) and Doppler interventional ultransound (ICD) techniques with mean arteries pressure. Methods: Fourteen healthy male swines were divided into two groups randomly: eight swines fed with 1% cholesterol-rich diet for 12 weeks as a model of early atherosclerosis were classified as the experimental group; six swines fed with standard diet were classified as control group. All the swines were undergone cardiovascular catheterization examination after 12 weeks. Combined IVUS and ICD techniques were taken to calculate the change of coronary blood flow (CBF) after the administration of acetylcholine and nitroglycerin. The pressure of the root of aorta and then the relaxation function of coronary microcirculation can be accessed with coronary resistance index (RI). At last, all of the examed coronary arteries and related coronary microcirculation were undergone pathological examinations. Results: The pathological examinations demonstrated that the average intima thickness in experimental group was increased more evidently than that of control group (74.80 μm ± 17.60 μm vs 7.60 μm ± 4.27 μm P<0.001). The intima thickness increase can not be seen in the coronary microcirculation. Acetylcholine induced increase in RI in experimental group compared with control group (-0.18 ± 0.09 vs 0.29 ± 0.18, P<0.05). Nitroglycerin induced a decrease in RI for both groups (-0.40 ± 0.13 vs -0.34 ± 0.20). Conclusions: Using IVUS and ICD techniques combined mean arterial pressure can identify the endothelium-mediated dysfunction on coronary microcirculation in the early stage of AS. (authors)

  8. Numerical simulation of transient, adiabatic, two-dimensional two-phase flow using the two-fluid model

    International Nuclear Information System (INIS)

    Neves Conti, T. das.

    1983-01-01

    A numerical method is developed to simulate adiabatic, transient, two-dimensional two-phase flow. The two-fluid model is used to obtain the mass and momentum conservation equations. These are solved by an iterative algorithm emphoying a time-marching scheme. Based on the corrective procedure of Hirt and Harlow a poisson equation is derived for the pressure field. This equation is finite-differenced and solved by a suitable matrix inversion technique. In the absence of experiment results several numerical tests were made in order to chec accuracy, convergence and stability of the proposed method. Several tests were also performed to check whether the behavior of void fraction and phasic velocities conforms with previous observations. (Author) [pt

  9. Enhanced resolution of DNA restriction fragments: A procedure by two-dimensional electrophoresis and double-labeling

    International Nuclear Information System (INIS)

    Yi, M.; Au, L.C.; Ichikawa, N.; Ts'o, P.O.

    1990-01-01

    A probe-free method was developed to detect DNA rearrangement in bacteria based on the electrophoretic separation of twice-digested restriction fragments of genomic DNA into a two-dimensional (2-D) pattern. The first restriction enzyme digestion was done in solution, followed by electrophoresis of the restriction fragments in one dimension. A second restriction enzyme digestion was carried out in situ in the gel, followed by electrophoresis in a second dimension perpendicular to the first electrophoresis. The 2-D pattern provides for the resolution of 300-400 spots, which are defined and indexed by an x,y coordinate system with size markers. This approach has greatly increased the resolution power over conventional one-dimensional (1-D) electrophoresis. To study DNA rearrangement, a 2-D pattern from a test strain was compared with the 2-D pattern from a reference strain. After the first digestion, genomic DNA fragments from the test strain were labeled with 35S, while those from the reference strain were labeled with 32P. This was done to utilize the difference in the energy emission of 35S and 32P isotopes for autoradiography when two x-ray films were exposed simultaneously on top of the gel after the 2-D electrophoresis. The irradiation from the decay of 35S exposed only the lower film, whereas the irradiation from the decay of 32P exposed both the lower and upper films. Different DNA fragments existed in the test DNA compared with the reference DNA can be identified unambiguously by the differential two 2-D patterns produced on two films upon exposure to the 35S and 32P fragments in the same gel. An appropriate photographic procedure further simplified the process, allowing only the difference in DNA fragments between these two patterns to be shown in the map

  10. Two-dimensional and three-dimensional models used for teaching Human Evolution in Secondary Schools. Learning proficiency assessment. A Case Study

    Directory of Open Access Journals (Sweden)

    Ulisses Dardon

    2016-06-01

    Full Text Available The evolution of the human species is a topic of extreme importance reported in the “Parâmetros Curriculares Nacionais do Ensino Médio – PCNEM” (National Curriculum Standards of Secondary Education, although it is not often taught as part of basic education. This work presents the results of an experimental work performed with 31 students of a religious high school of State of Rio de Janeiro. Learning proficiency was assessed by using two-dimensional (2D and three-dimensional (3D illustration techniques of hominids skulls and a Pongidae for teaching Human Evolution. The teaching-learning process using these methodologies was more effective with the application of three-dimensional (3D illustration techniques. The group of students that used 3D illustrations were able to observe similarities and differences between the presented taxonomic models, and formulate hypotheses about their palaeobiology more consistently than the students that used 2D models. Results of this work indicate that the use of three-dimensional techniques (3D provides an excellent support to teaching-learning process in basic education, captivating and stimulating new interests of students during the educational process.

  11. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    International Nuclear Information System (INIS)

    Quan, Xu; Qiang, Tian

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi–Pasta–Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather. (condensed matter: structure, thermal and mechanical properties)

  12. Two-dimensional models

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2005-02-01

    It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)

  13. Near-field three-dimensional radar imaging techniques and applications.

    Science.gov (United States)

    Sheen, David; McMakin, Douglas; Hall, Thomas

    2010-07-01

    Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100 MHz to in excess of 350 GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  14. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  15. Two-dimensional beam profiles and one-dimensional projections

    Science.gov (United States)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  16. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition

    International Nuclear Information System (INIS)

    Wang, H-W; Ting, C-F; Hung, M-K; Chiou, C-H; Liu, Y-L; Liu Zongwen; Ratinac, Kyle R; Ringer, Simon P

    2009-01-01

    Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversion efficiency. Two approaches were employed to create the arrays of ITO (indium-tin-oxide) nanowires or arrays of ITO/TiO 2 core-shell nanowires; both methods were based on electrophoretic deposition (EPD) within a polycarbonate template. The 3D electrodes for solar cells were constructed by using a doctor-blade for coating TiO 2 layers onto the ITO or ITO/TiO 2 nanowire arrays. A photoelectric conversion efficiency as high as 4.3% was achieved in the DSSCs made from ITO nanowires; this performance was better than that of ITO/TiO 2 core-shell nanowires or pristine TiO 2 films. Cyclic voltammetry confirmed that the reaction current was significantly enhanced when a 3D ITO-nanowire electrode was used. Better separation of charge carriers and improved charge transport, due to the enlarged interfacial area, are thought to be the major advantages of using 3D nanowire electrodes for the optimization of DSSCs.

  17. Finite volume model for two-dimensional shallow environmental flow

    Science.gov (United States)

    Simoes, F.J.M.

    2011-01-01

    This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.

  18. Lie algebra contractions on two-dimensional hyperboloid

    International Nuclear Information System (INIS)

    Pogosyan, G. S.; Yakhno, A.

    2010-01-01

    The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.

  19. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  20. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition.

    Science.gov (United States)

    Rhee, Ye-Kyu; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin

    2015-12-01

    The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (Pimpression and the smallest difference was seen between dual-arch and full-arch impression. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P.05).

  1. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  2. Traditional Semiconductors in the Two-Dimensional Limit.

    Science.gov (United States)

    Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B

    2018-02-23

    Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.

  3. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  4. Topotactic transformations of superstructures: from thin films to two-dimensional networks to nested two-dimensional networks.

    Science.gov (United States)

    Guo, Chuan Fei; Cao, Sihai; Zhang, Jianming; Tang, Haoying; Guo, Shengming; Tian, Ye; Liu, Qian

    2011-06-01

    Design and synthesis of super-nanostructures is one of the key and prominent topics in nanotechnology. Here we propose a novel methodology for synthesizing complex hierarchical superstructures using sacrificial templates composed of ordered two-dimensional (2D) nanostructures through lattice-directed topotactic transformations. The fabricated superstructures are nested 2D orthogonal Bi(2)S(3) networks composed of nanorods. Further investigation indicates that the lattice matching between the product and sacrificial template is the dominant mechanism for the formation of the superstructures, which agrees well with the simulation results based on an anisotropic nucleation and growth analysis. Our approach may provide a promising way toward a lattice-directed nonlithographic nanofabrication technique for making functional porous nanoarchitectures and electronic devices. © 2011 American Chemical Society

  5. Focused two-dimensional antiscatter grid for mammography

    International Nuclear Information System (INIS)

    Makarova, O.V.; Moldovan, N.; Tang, C.-M.; Mancini, D.C.; Divan, R.; Zyryanov, V.N.; Ryding, D.C.; Yaeger, J.; Liu, C.

    2002-01-01

    We are developing freestanding high-aspect-ratio, focused, two-dimensional antiscatter grids for mammography using deep x-ray lithography and copper electroforming. The exposure is performed using x-rays from bending magnet beamline 2-BM at the Advanced Photon Source (APS) of Argonne National Laboratory. A 2.8-mm-thick prototype freestanding copper antiscatter grid with 25 (micro)m-wide parallel cell walls and 550 (micro)m periodicity has been fabricated. The progress in developing a dynamic double-exposure technique to create the grid with the cell walls aligned to a point x-ray source of the mammography system is discussed

  6. Application of the electrophoretic deposition technique for obtaining Yttria-stabilized zirconia tubes; Aplicacao da tecnica de deposicao eletroforetica para a obtencao de tubos ceramicos de zirconia-itria

    Energy Technology Data Exchange (ETDEWEB)

    Caproni, E.; Muccillo, R., E-mail: ecaproni@gmail.com, E-mail: muccillo@usp.br [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-01-15

    The electrophoretic deposition (EPD) is recognized as the most versatile technique for processing particulate materials, due to low cost, deposition in minutes and forming of pieces with complex geometry shapes. In this work an experimental setup for the simultaneous conformation of 16 ceramic tubes by EPD was built. Bimodal submicron Yttria-stabilized zirconia particles were deposited into graphite electrodes, after suitably adjusting the rheological characteristics of the suspension in isopropanol. After graphite burning and YSZ sintering at 1500 deg C, the ceramic tubes were characterized by X-ray diffraction, scanning probe microscope, impedance spectroscopy and electrical response as a function of oxygen content. Small dense one end-closed ceramic tubes, fully stabilized in the cubic phase, were successfully obtained by the EPD technique, showing the ability of that technique for processing large quantities of tubular solid electrolytes with electrical response to different amounts of oxygen according to the Nernst law (author)

  7. Two-dimensional electrophoretic analysis of transformation-sensitive polypeptides during chemically, spontaneously, and oncogene-induced transformation of rat liver epithelial cells

    DEFF Research Database (Denmark)

    Wirth, P J; Luo, L D; Fujimoto, Y

    1992-01-01

    ; AFB), spontaneously, and oncogene (v-Ha-ras, v-raf, and v-myc/v-raf)-induced transformation of RLE cells. Two-dimensional mapping of [35S]methionine-labeled whole cell lysate, cell-free in vitro translation products and [32P]orthophosphate-labeled polypeptides revealed subsets of polypeptides specific...... for each transformation modality. A search of the RLE protein database indicated the specific subcellular location for the majority of these transformation-sensitive proteins. Significant alterations in the expression of the extracellular matrix protein, fibronectin, as well as tropomyosin......- and intermediate filament-related polypeptides (vimentin, beta-tubulin, the cytokeratins, and actin) were observed among the various transformant cell lines. Immunoprecipitation and Western immunoblot analysis of tropomyosin expression in four individual AFB-, as well as four spontaneously induced, and each...

  8. Electrophoretic deposition (EPD) of multi-walled carbon nano tubes (MWCNT) onto indium-tin-oxide (ITO) glass substrates

    International Nuclear Information System (INIS)

    Mohd Roslie Ali; Shahrul Nizam Mohd Salleh

    2009-01-01

    Full text: Multi-Walled Carbon Nano tubes (MWCNT) were deposited onto Indium-Tin-Oxide (ITO)-coated glass substrates by introducing the use of Electrophoretic Deposition (EPD) as the method. The Multi-Walled Carbon Nano tubes (MWCNT) were dispersed ultrasonically in ethanol and sodium hydroxide (NaOH) to form stable suspension. The addition of Sodium Hydroxide in ethanol can stabilize the suspension, which was very important step before the deposition take place. Two substrates of Indium-Tin-Oxide(ITO)-coated glass placed in parallel facing each other (conductive side) into the suspension. The deposition occurs at room temperature, which the distance fixed at 1 cm between both electrodes and the voltage level applied was fixed at 400 V, respectively. The deposition time also was fixed at 30 minutes. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) will be characterized using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and Raman Microscope. The images of SEM shows that the Multi -Walled Carbon Nano tubes (MWCNT) were distributed uniformly onto the surface of ITO-Glass. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) could be the potential material in various practical applications such as field emission devices, fuel cells, and super capacitors. Electrophoretic deposition (EPD) technique was found to be an efficient technique in forming well distribution of Multi-Walled Carbon Nano tubes (MWCNT) onto ITO-Glass substrates, as proved in characterization methods, in which the optimum conditions will play the major role. (author)

  9. Electrophoretic Retardation of Colloidal Particles in Nonpolar Liquids

    Directory of Open Access Journals (Sweden)

    Filip Strubbe

    2013-04-01

    Full Text Available We have measured the electrophoretic mobility of single, optically trapped colloidal particles, while gradually depleting the co-ions and counterions in the liquid around the particle by applying a dc voltage. This is achieved in a nonpolar liquid, where charged reverse micelles act as co-ions and counterions. By increasing the dc voltage, the mobility first increases when the concentrations of co-ions and counterions near the particle start to decrease. At sufficiently high dc voltage (around 2 V, the mobility reaches a saturation value when the co-ions and counterions are fully separated. The increase in mobility is larger when the equilibrium ionic strength is higher. The dependence of the experimental data on the equilibrium ionic strength and on the applied voltage is in good agreement with the standard theory of electrophoretic retardation, assuming that the bare particle charge remains constant. This method is useful for studying the electrophoretic retardation effect and charging mechanisms for nonpolar colloids, and it sheds light on previously unexplained particle acceleration in electronic ink devices.

  10. Two-dimensional flexible nanoelectronics

    Science.gov (United States)

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-01

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  11. Incremental Value of Three-Dimensional Transesophageal Echocardiography over the Two-Dimensional Technique in the Assessment of a Thrombus in Transit through a Patent Foramen Ovale.

    Science.gov (United States)

    Thind, Munveer; Ahmed, Mustafa I; Gok, Gulay; Joson, Marisa; Elsayed, Mahmoud; Tuck, Benjamin C; Townsley, Matthew M; Klas, Berthold; McGiffin, David C; Nanda, Navin C

    2015-05-01

    We report a case of a right atrial thrombus traversing a patent foramen ovale into the left atrium, where three-dimensional transesophageal echocardiography provided considerable incremental value over two-dimensional transesophageal echocardiography in its assessment. As well as allowing us to better spatially characterize the thrombus, three-dimensional transesophageal echocardiography provided a more quantitative assessment through estimation of total thrombus burden. © 2015, Wiley Periodicals, Inc.

  12. Two- and three-dimensional accuracy of dental impression materials: effects of storage time and moisture contamination.

    Science.gov (United States)

    Chandran, Deepa T; Jagger, Daryll C; Jagger, Robert G; Barbour, Michele E

    2010-01-01

    Dental impression materials are used to create an inverse replica of the dental hard and soft tissues, and are used in processes such as the fabrication of crowns and bridges. The accuracy and dimensional stability of impression materials are of paramount importance to the accuracy of fit of the resultant prosthesis. Conventional methods for assessing the dimensional stability of impression materials are two-dimensional (2D), and assess shrinkage or expansion between selected fixed points on the impression. In this study, dimensional changes in four impression materials were assessed using an established 2D and an experimental three-dimensional (3D) technique. The former involved measurement of the distance between reference points on the impression; the latter a contact scanning method for producing a computer map of the impression surface showing localised expansion, contraction and warpage. Dimensional changes were assessed as a function of storage times and moisture contamination comparable to that found in clinical situations. It was evident that dimensional changes observed using the 3D technique were not always apparent using the 2D technique, and that the former offers certain advantages in terms of assessing dimensional accuracy and predictability of impression methods. There are, however, drawbacks associated with 3D techniques such as the more time-consuming nature of the data acquisition and difficulty in statistically analysing the data.

  13. Two-dimensional sparse wavenumber recovery for guided wavefields

    Science.gov (United States)

    Sabeti, Soroosh; Harley, Joel B.

    2018-04-01

    The multi-modal and dispersive behavior of guided waves is often characterized by their dispersion curves, which describe their frequency-wavenumber behavior. In prior work, compressive sensing based techniques, such as sparse wavenumber analysis (SWA), have been capable of recovering dispersion curves from limited data samples. A major limitation of SWA, however, is the assumption that the structure is isotropic. As a result, SWA fails when applied to composites and other anisotropic structures. There have been efforts to address this issue in the literature, but they either are not easily generalizable or do not sufficiently express the data. In this paper, we enhance the existing approaches by employing a two-dimensional wavenumber model to account for direction-dependent velocities in anisotropic media. We integrate this model with tools from compressive sensing to reconstruct a wavefield from incomplete data. Specifically, we create a modified two-dimensional orthogonal matching pursuit algorithm that takes an undersampled wavefield image, with specified unknown elements, and determines its sparse wavenumber characteristics. We then recover the entire wavefield from the sparse representations obtained with our small number of data samples.

  14. Two-dimensional echocardiographic and RI angiographic features of aneurysm of the ascending aorta in patients with annuloaortic ectasia

    International Nuclear Information System (INIS)

    Nakamura, Kenji; Suzuki, Shin; Satomi, Gengi

    1981-01-01

    The purpose of this study was to compare the diagnostic value of two-dimensional echocardiography with that of other methods in the detection and localization of aneurysm involving the ascending aorta in patients with annuloaortic ectasia. Two-dimensional echocardiography, RI angiography, CT scan and aortography were performed in 19 patients (12 patients with Marfan's syndrome, 4 with aortitis syndrome and 3 with postoperative perivalvular aneurysm). Eight of 12 patients with Marfan's syndrome had dissection in the ascending aorta which was confirmed at surgery or autopsy. The following observations were obtained. 1) Dissection of the ascending aorta was clearly demonstrated on the two-dimensional echocardiogram in 7 patients by recording the intinal tear and flap, and in these cases the short axis two-dimensional echocardiogram of the ascending aorta was more useful in identifying the site and extent of dissection. 2) In patients with postoperative perivalvular aneurysms, RI angiography proved to be a more useful and sensitive technique in differentiating a leakage into the aneurysm from clots in the aneurysm. 3) CT scanning proved to be an insensitive technique to detect dissection of the ascending aneurysm and to differentiate a leakage from clots in the perivalvular aneurysm. From these observations, we concluded that two-dimensional echocardiography and RI angiography proved to be sensitive techniques in detecting dissection of the ascending aneurysm and evaluating a postoperative aneurysm in patients with annuloaortic ectasia. (author)

  15. Two dimensional numerical simulation of gas discharges: comparison between particle-in-cell and FCT techniques

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Hoyo, C; Castellanos, A [Departamento de Electronica y Electromagnetismo, Facultad de Fisica, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de Fisica Aplicada II, EUAT, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)], E-mail: cshoyo@us.es

    2008-10-21

    Two different numerical techniques have been applied to the numerical integration of equations modelling gas discharges: a finite-difference flux corrected transport (FD-FCT) technique and a particle-in-cell (PIC) technique. The PIC technique here implemented has been specifically designed for the simulation of 2D electrical discharges using cylindrical coordinates. The development and propagation of a streamer between two parallel electrodes has been used as a convenient test to compare the performance of both techniques. In particular, the phase velocity of the cathode directed streamer has been used to check the internal consistency of the numerical simulations. The results obtained from the two techniques are in reasonable agreement with each other, and both techniques have proved their ability to follow the high gradients of charge density and electric field present in this type of problems. Moreover, the streamer velocities predicted by the simulation are in accordance with the typical experimental values.

  16. Two dimensional numerical simulation of gas discharges: comparison between particle-in-cell and FCT techniques

    International Nuclear Information System (INIS)

    Soria-Hoyo, C; Castellanos, A; Pontiga, F

    2008-01-01

    Two different numerical techniques have been applied to the numerical integration of equations modelling gas discharges: a finite-difference flux corrected transport (FD-FCT) technique and a particle-in-cell (PIC) technique. The PIC technique here implemented has been specifically designed for the simulation of 2D electrical discharges using cylindrical coordinates. The development and propagation of a streamer between two parallel electrodes has been used as a convenient test to compare the performance of both techniques. In particular, the phase velocity of the cathode directed streamer has been used to check the internal consistency of the numerical simulations. The results obtained from the two techniques are in reasonable agreement with each other, and both techniques have proved their ability to follow the high gradients of charge density and electric field present in this type of problems. Moreover, the streamer velocities predicted by the simulation are in accordance with the typical experimental values.

  17. Cu2+-assisted two dimensional charge-mass double focusing gel electrophoresis and mass spectrometric analysis of histone variants.

    Science.gov (United States)

    Zhang, Wenyang; Tang, Xuemei; Ding, Mengjie; Zhong, Hongying

    2014-12-10

    Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu(2+) with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton-acid-urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu(2+) chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu(2+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Approximate solutions for the two-dimensional integral transport equation. Solution of complex two-dimensional transport problems

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr

  19. A SAMPLE STUDY ON THE IMPORTANCE AND THE EVALUATION OF THREE DIMENSIONAL EXPRESSION TECHNIQUES IN THE EDUCATION OF PLANTING DESIGN

    Directory of Open Access Journals (Sweden)

    Banu Çiçek Kurdoğlu

    2008-04-01

    Full Text Available :Drafts developed in graphical expression techniques and models formed in abstract manners and gradually becoming concrete are used for the exhibition of the targeted images in the design process, which is also a mental improvement process. Among the biggest difficulty beginner architecture students face is failing to make comments on the products they design in architecture design process; their spatial relationships and express them in two or three-dimensional models. Expression and modelling techniques to be used in this process are very important. In this study, a lesson programme enriched with two and three – dimensional model expression techniques for planting design education, which is of vital significance in landscape architecture departments, was developed and applied. Advantages and disadvantages of the programme were evaluated and some suggestions were offered. Consequently, importance of three dimensional expression techniques and need for them were re-emphasized and the efficiency of the modelling technique used in the study was determined under today’s and Turkey’s conditions.

  20. Two-dimensional topological field theories coupled to four-dimensional BF theory

    International Nuclear Information System (INIS)

    Montesinos, Merced; Perez, Alejandro

    2008-01-01

    Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level

  1. Marginal microleakage of cervical composite resin restorations bonded using etch-and-rinse and self-etch adhesives: two dimensional vs. three dimensional methods

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2016-05-01

    Full Text Available Objectives This study was evaluated the marginal microleakage of two different adhesive systems before and after aging with two different dye penetration techniques. Materials and Methods Class V cavities were prepared on the buccal and lingual surfaces of 48 human molars. Clearfil SE Bond and Single Bond (self-etching and etch-and-rinse systems, respectively were applied, each to half of the prepared cavities, which were restored with composite resin. Half of the specimens in each group underwent 10,000 cycles of thermocycling. Microleakage was evaluated using two dimensional (2D and three dimensional (3D dye penetration techniques separately for each half of each specimen. Data were analyzed with SPSS 11.5 (SPSS Inc., using the Kruskal-Wallis and Mann-Whitney U tests (α = 0.05. Results The difference between the 2D and 3D microleakage evaluation techniques was significant at the occlusal margins of Single bond groups (p = 0.002. The differences between 2D and 3D microleakage evaluation techniques were significant at both the occlusal and cervical margins of Clearfil SE Bond groups (p = 0.017 and p = 0.002, respectively. The difference between the 2D and 3D techniques was significant at the occlusal margins of non-aged groups (p = 0.003. The difference between these two techniques was significant at the occlusal margins of the aged groups (p = 0.001. The Mann-Whitney test showed significant differences between the two techniques only at the occlusal margins in all specimens. Conclusions Under the limitations of the present study, it can be concluded that the 3D technique has the capacity to detect occlusal microleakage more precisely than the 2D technique.

  2. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

    Science.gov (United States)

    Rhee, Ye-Kyu

    2015-01-01

    PURPOSE The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (Pimpression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P.05). PMID:26816576

  3. K-FIX: a computer program for transient, two-dimensional, two-fluid flow

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1976-11-01

    The transient dynamics of two-dimensional, two-phase flow with interfacial exchange are calculated at all flow speeds using the K-FIX program. Each phase is described in terms of its own density, velocity, and temperature. The six field equations for the two phases couple through mass, momentum, and energy exchange. The equations are solved using an Eulerian finite difference technique that implicitly couples the rates of phase transitions, momentum, and energy exchange to determination of the pressure, density, and velocity fields. The implicit solution is accomplished iteratively without linearizing the equations, thus eliminating the need for numerous derivative terms. K-FIX is written in a highly modular form to be easily adaptable to a variety of problems. It is applied to growth of an isolated steam bubble in a superheated water pool

  4. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition

    International Nuclear Information System (INIS)

    Du Chunsheng; Pan Ning

    2006-01-01

    Carbon nanotube thin films have been successfully fabricated by the electrophoretic deposition technique. The supercapacitors built from such thin film electrodes have a very small equivalent series resistance, and a high specific power density over 20 kW kg -1 was thus obtained. More importantly, the supercapacitors showed superior frequency response. Our study also demonstrated that these carbon nanotube thin films can serve as coating layers over ordinary current collectors to drastically enhance the electrode performance, indicating a huge potential in supercapacitor and battery manufacturing

  5. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  6. Two-dimensional thermofield bosonization

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2005-01-01

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized

  7. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  8. Effects of cooking methods on electrophoretic patterns of rainbow trout

    Directory of Open Access Journals (Sweden)

    Yasemen Yanar

    2011-07-01

    Full Text Available The aim of this study was to determine the effects of different cooking methods on the electrophoretic patterns of rainbow trout (Oncorhynchus mykiss fillets using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Raw rainbow trout were deep-fried, microwaved, grilled, and baked and then monitored for changes in the electrophoretic pattern. All cooking methods resulted in significant moisture loss when compared to the raw sample (P

  9. Measurement of two-dimensional bubble velocity by Using tri-fiber-optical Probe

    International Nuclear Information System (INIS)

    Yang Ruichang; Zheng Rongchuan; Zhou Fanling; Liu Ruolei

    2009-01-01

    In this study, an advanced measuring system with a tri-single-fiber-optical-probe has been developed to measure two-dimensional vapor/gas bubble velocity. The use of beam splitting devices instead of beam splitting lens simplifies the optical system, so the system becomes more compact and economic, and more easy to adjust. Corresponding to using triple-optical probe for measuring two-dimensional bubble velocity, a data processing method has been developed, including processing of bubble signals, cancelling of unrelated signals, determining of bubble velocity with cross correlation technique and so on. Using the developed two-dimensional bubble velocity measuring method, the rising velocity of air bubbles in gravitational field was measured. The measured bubble velocities were compared with the empirical correlation available. Deviation was in the range of ±30%. The bubble diameter obtained by data processing is in good accordance with that observed with a synchro-scope and a camera. This shows that the method developed here is reliable.

  10. Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis.

    Science.gov (United States)

    Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen

    2015-11-01

    Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.

  11. Growth and characterization of two-dimensional nanostructures

    International Nuclear Information System (INIS)

    Herrera Sancho, Oscar Andrey

    2008-01-01

    Two dimensional nanostructures of palladium, nickel, silver and gadolinium were grown by means of physical evaporation in atmospheres of high vacuum and ultra high vacuum. The qualitative characterization, in situ, of the nanostructures was carried out with techniques of surface analysis: Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS). The model for the quantification of contaminants in the nanostructures, was proposed by Seah and Shirley, and was made using the spectra XPS measured in situ in the atmospheres of vacuum. For the two-dimensional nanostructures of gadolinium of thicknesses 8 Å, 16 Å, 24 Å, 32 Å, 36 Å, 44 Å, 50 Å, 61 Å, 77 Å, 81 Å, 92 Å and 101 Å, were obtained optical spectra of transmission measured in situ. An band of absorption centered at approximately 2,40 eV is obtained by an increase in the dynamic conductivity from the optical constants, i.e. refractive index and extinction coefficient, of the nanostructure of gadolinium. In addition, the optical constants for the gadolinium nanostructures have presented a maximum of 80 Å of thickness and then it was continued a decreasing tendency toward the values that were reported in the literature for bulk of gadolinium. (author) [es

  12. Terahertz magneto-optical spectroscopy of a two-dimensional hole gas

    Energy Technology Data Exchange (ETDEWEB)

    Kamaraju, N., E-mail: nkamaraju@lanl.gov; Taylor, A. J.; Prasankumar, R. P., E-mail: rpprasan@lanl.gov [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Pan, W.; Reno, J. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Ekenberg, U. [Semiconsultants, Brunnsgrnd 12, SE-18773 Täby (Sweden); Gvozdić, D. M. [School of Electrical Engineering, University of Belgrade, Belgrade 11120 (Serbia); Boubanga-Tombet, S. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai (Japan); Upadhya, P. C. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Laboratory for Electro-Optics Systems, Indian Space Research Organization, Bangalore 560058 (India)

    2015-01-19

    Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG, in contrast with the dominance of superradiant damping in two-dimensional electron gases. Our results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.

  13. Leaf proteome analysis of clematis chinensis: a traditional chinese medicine (tcm) by two-dimensional electrophoresis technique

    International Nuclear Information System (INIS)

    Ishtiaq, M.; Maqbool, M.; Hussaini, T.; Azami, S.

    2014-01-01

    Leaf proteome of Clematis chinensis, a traditional Chinese medicine (TCM) was analyzed by two-dimensional electrophoresis (2-DE) technique. The samples were extracted by phenol-SDS method (PSM) with high protein quantity i.e. 2.35, 0.345 mg/g (yield/dw). Proteins were visualized by staining of gels by silver stain and CBB. The gel images of each species were compared by Image Master 2D Platinum software for analytical purpose. The 2-DE profile depicted distribution of 1085 spots and out of these only 255 protein spots (23.5%) were common to all analyzed taxa. The visualized protein spots showed pI range from 3.0 to 10.0 (pH) and Mr of 7 kDa to 70 kDa. Twelve proteins were exclusively specific to C. chinensis when compared with its allies, C. finetiana and C. armandii, which may be used as biomarkers. Thirteen proteins were up-regulated in C. finetiana (0.75-0.95 fold) and twelve proteins in C. armandii (1.05-1.66 fold) whilst seven proteins down-regulated (0.66-0.94 fold) in former and three proteins (1.07-1.20 fold) in later one in comparison with C. chinensis. Twenty five differential and similar protein spots were picked and analyzed by LC-MS/MS technique. Identified proteins are related to energy metabolism (ATP synthesis), photosynthesis. environmental stimuli, regulating RNA metabolism, growth hormone regulators, evolutionary trends and gene expression. The efficiency and applicability of proteomic approach as biomarker for identification of C. chinensis is discussed in its quality control (QC) perspectives. Leaf proteins of Clematis plants are explored for the first time by 2-DE technique and debated for their metabolic role. (author)

  14. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  16. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  17. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  18. Two-dimensional echocardiographic and RI angiographic features of aneurysm of the ascending aorta in patients with annuloaortic ectasia

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K.; Suzuki, S.; Satomi, G. (Tokyo Women' s Medical Coll. (Japan). Heart Inst. and Hospital)

    1981-03-01

    The purpose of this study was to compare the diagnostic value of two-dimensional echocardiography with that of other methods in the detection and localization of aneurysm involving the ascending aorta in patients with annuloaortic ectasia. Two-dimensional echocardiography, RI angiography, CT scan and aortography were performed in 19 patients (12 patients with Marfan's syndrome, 4 with aortitis syndrome and 3 with postoperative perivalvular aneurysm). Eight of 12 patients with Marfan's syndrome had dissection in the ascending aorta which was confirmed at surgery or autopsy. The following observations were obtained. 1) Dissection of the ascending aorta was clearly demonstrated on the two-dimensional echocardiogram in 7 patients by recording the intinal tear and flap, and in these cases the short axis two-dimensional echocardiogram of the ascending aorta was more useful in identifying the site and extent of dissection. 2) In patients with postoperative perivalvular aneurysms, RI angiography proved to be a more useful and sensitive technique in differentiating a leakage into the aneurysm from clots in the aneurysm. 3) CT scanning proved to be an insensitive technique to detect dissection of the ascending aneurysm and to differentiate a leakage from clots in the perivalvular aneurysm. From these observations, we concluded that two-dimensional echocardiography and RI angiography proved to be sensitive techniques in detecting dissection of the ascending aneurysm and evaluating a postoperative aneurysm in patients with annuloaortic ectasia.

  19. Strategies for the capillary electrophoretic separation of indole alkaloids in Psilocybe semilanceata.

    Science.gov (United States)

    Pedersen-Bjergaard, S; Rasmussen, K E; Sannes, E

    1998-01-01

    While the hallucinogenic mushrooms Psilocybe semilanceata have previously been analyzed for the indole alkaloids psilocybin and baeocystin by capillary zone electrophoresis (CZE) at pH 11.5, the present work focused on the development of an alternative and complementary capillary electrophoretic method for their identification. Owing to their structural similarity and zwitterionic nature, the compounds were difficult to resolve based on different interactions with cationic or anionic micelles. However, while the attempts with micellar electrokinetic chromatography (MEKC) were unsuccessful, rapid derivatization with propyl chloroformate and reanalysis by CZE at pH 11.5 was effective to support identification of the two indole alkaloids. Psilocin was difficult to analyze by CZE at pH 11.5 owing to comigration with the electroosmotic flow. For this compound, the pH of the running buffer was reduced to 7.2 to effectively enhance the electrophoretic mobility.

  20. A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Khoo Sze-Wei

    2016-09-01

    Full Text Available Among the full-field optical measurement methods, the Digital Image Correlation (DIC is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.

  1. X-ray imaging device for one-dimensional and two-dimensional radioscopy

    International Nuclear Information System (INIS)

    1978-01-01

    The X-ray imaging device for the selectable one-dimensional or two-dimensional pictures of objects illuminated by X-rays, comprising an X-ray source, an X-ray screen, and an opto-electrical picture development device placed behind the screen, is characterized by an anamorphotic optical system, which is positioned with a one-dimensional illumination between the X-ray screen and the opto-electrical device and that a two-dimensional illumination will be developed, and that in view of the lens system which forms part of the opto-electrical device, there is placed an X-ray screen in a specified beam direction so that a magnified image may be formed by equalisation of the distance between the X-ray screen and the lens system. (G.C.)

  2. Two dimensional, two fluid model for sodium boiling in LMFBR fuel assemblies

    International Nuclear Information System (INIS)

    Granziera, M.R.; Kazimi, M.S.

    1980-05-01

    A two dimensional numerical model for the simulation of sodium boiling transient was developed using the two fluid set of conservation equations. A semiimplicit numerical differencing scheme capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid problems was used, which took advantage of the dumping effect of the exchange terms. Of particular interest in the development of the model was the identification of the numerical problems caused by the strong disparity between the axial and radial dimensions of fuel assemblies. A solution to this problem was found which uses the particular geometry of fuel assemblies to accelerate the convergence of the iterative technique used in the model. Three sodium boiling experiments were simulated with the model, with good agreement between the experimental results and the model predictions

  3. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  4. Novel target design algorithm for two-dimensional optical storage (TwoDOS)

    NARCIS (Netherlands)

    Huang, Li; Chong, T.C.; Vijaya Kumar, B.V.K.; Kobori, H.

    2004-01-01

    In this paper we introduce the Hankel transform based channel model of Two-Dimensional Optical Storage (TwoDOS) system. Based on this model, the two-dimensional (2D) minimum mean-square error (MMSE) equalizer has been derived and applied to some simple but common cases. The performance of the 2D

  5. Electrophoretic deposition of ultrasonicated and functionalized nanomaterials for multifunctional composites

    Science.gov (United States)

    An, Qi

    Recent advances in the synthesis and characterization of nanostructured composite materials have enabled a broad range of opportunities for engineering the properties of polymer-matrix materials. Carbon nanotubes (CNTs) are known to have exceptional mechanical, electrical and thermal properties. Because of their small size, CNTs can occupy regions between traditional micro-scale reinforcements and create a hierarchical micro/nano structure spanning several orders of magnitude. Since CNTs possess critical reinforcement dimensions below 100 nm, new opportunities exist for tailoring the fiber/matrix interphase regions and ultimately the mechanical and electrical performance of advanced fiber-composites with minimal impact on the fiber-dominated properties. This growing interest in nanoscale hybridization with conventional fiber reinforcement has highlighted the need to develop new processing techniques for successful CNT integration. In this work, a novel and industrially scalable approach for producing multi-scale hybrid carbon nanotube/fiber composites using an electrophoretic deposition (EPD) technique has been studied as an alternative to in situ chemical vapor deposition growth (CVD). EPD is a widely used industrial coating process employed in areas ranging from automotive to electronics production. The method has a number of benefits which include low energy use and the ability to homogenously coat complex shapes with well adhered films of controlled thickness and density. A stable aqueous dispersion of multi-walled carbon nanotubes (MWCNTs) was produced using a novel ozonolysis and ultrasonication (USO) technique that results in dispersion and functionalization in a single step. Networks of CNTs span between adjacent fibers and the resulting composites exhibit significant increases in electrical conductivity and considerable improvements in the interlaminar shear strength and fracture toughness. In order to better understand the underlying mechanisms behind the

  6. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  7. Crystallization of SHARPIN using an automated two-dimensional grid screen for optimization

    International Nuclear Information System (INIS)

    Stieglitz, Benjamin; Rittinger, Katrin; Haire, Lesley F.

    2012-01-01

    The expression, purification and crystallization of an N-terminal fragment of SHARPIN are reported. Diffraction-quality crystals were obtained using a two-dimensional grid-screen seeding technique. An N-terminal fragment of human SHARPIN was recombinantly expressed in Escherichia coli, purified and crystallized. Crystals suitable for X-ray diffraction were obtained by a one-step optimization of seed dilution and protein concentration using a two-dimensional grid screen. The crystals belonged to the primitive tetragonal space group P4 3 2 1 2, with unit-cell parameters a = b = 61.55, c = 222.81 Å. Complete data sets were collected from native and selenomethionine-substituted protein crystals at 100 K to 2.6 and 2.0 Å resolution, respectively

  8. Reparametrization BRS cohomology in two-dimensional gravity and non-critical string theories

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo.

    1989-07-01

    Various anomalies related to the gravitational BRS current in two-dimensional theories are explained from the view point of the path integral formalism, and the algebraic properties of composite operators are confirmed by the operator product technique. The implications of the reparametrization BRS cohomology on possible non-critical string theory are illustrated by using the string field theoretical technique. The appearance of the Higgs (or Stueckelberg)-like mechanism due to the Liouville freedom is shown. (author)

  9. Electrophoretic separations on paper: Past, present, and future-A review.

    Science.gov (United States)

    Nanthasurasak, Pavisara; Cabot, Joan Marc; See, Hong Heng; Guijt, Rosanne M; Breadmore, Michael C

    2017-09-08

    Point-of-collection (POC) devices aim for a fast, on-site detection for medical and environmental purposes. In this area, microfluidic Paper-based Analytical Devices (μPADs) have recently gained popularity because these are potentially cheap and environmentally friendly to produce, and easy to use. From an analytical perspective, paper is well known for its use as a substrate for chromatography, but less known for its use in electrophoretic separations. With the recent interest in μPADs, most applications are based on rather simple assays with relatively few applications incorporating an analytical separation. The focus of this review is on paper-based electrophoresis, originating with the key developments in the 1940s and 1950s as well as the recent developments of electrophoretic μPADs, and concluding with a critical discussion of the opportunities and challenges for electrophoretic μPADS in the future. Copyright © 2017. Published by Elsevier B.V.

  10. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  11. Micromechanical exfoliation of two-dimensional materials by a polymeric stamp

    International Nuclear Information System (INIS)

    Costa, M C Ferraz da; Ribeiro, H B; Kessler, F; Souza, E A T de; Fechine, G J M

    2016-01-01

    In this work, an alternative technique to the traditional micromechanical exfoliation of two-dimensional materials is proposed, consisting of isolated flakes of graphite and molybdenum disulphide onto polymeric surfaces films. The set made up of polymer and flakes is fabricated by using a hot-press machine called polymeric stamp. The polymeric stamp was used to allocate flakes and also to allow the exfoliation process to take place just in one face of isolated flake. Optical microscopy, Raman spectroscopy and photoluminescence spectroscopy results showed that multilayers, bilayers and single layers of graphene and MoS 2 were obtained by using a polymeric stamp as tool for micromechanical exfoliation. These crystals were more easily found because the exfoliation process concentrates them in well-defined locations. The results prove the effectiveness of the method by embedding two-dimensional materials into polymers to fabricate fewer layers crystals in a fast, economic and clean way. (paper)

  12. Micromechanical exfoliation of two-dimensional materials by a polymeric stamp

    Science.gov (United States)

    Ferraz da Costa, M. C.; Ribeiro, H. B.; Kessler, F.; de Souza, E. A. T.; Fechine, G. J. M.

    2016-02-01

    In this work, an alternative technique to the traditional micromechanical exfoliation of two-dimensional materials is proposed, consisting of isolated flakes of graphite and molybdenum disulphide onto polymeric surfaces films. The set made up of polymer and flakes is fabricated by using a hot-press machine called polymeric stamp. The polymeric stamp was used to allocate flakes and also to allow the exfoliation process to take place just in one face of isolated flake. Optical microscopy, Raman spectroscopy and photoluminescence spectroscopy results showed that multilayers, bilayers and single layers of graphene and MoS2 were obtained by using a polymeric stamp as tool for micromechanical exfoliation. These crystals were more easily found because the exfoliation process concentrates them in well-defined locations. The results prove the effectiveness of the method by embedding two-dimensional materials into polymers to fabricate fewer layers crystals in a fast, economic and clean way.

  13. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  14. Phase transitions in two-dimensional systems

    International Nuclear Information System (INIS)

    Salinas, S.R.A.

    1983-01-01

    Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt

  15. Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method

    Science.gov (United States)

    Kodera, Masako; Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Yoshioka, Akira; Sugiyama, Toru; Hamamoto, Takeshi; Miyashita, Naoto

    2018-04-01

    Recently, we have developed a two-dimensional (2D) fast-Fourier-transform (FFT) sampling Moiré technique to visually and quantitatively determine the locations of minute defects in a transmission electron microscopy (TEM) image. We applied this technique for defect detection with GaN high electron mobility transistor (HEMT) devices, and successfully and clearly visualized atom-size defects in AlGaN/GaN crystalline structures. The defect density obtained in the AlGaN/GaN structures is ∼1013 counts/cm2. In addition, we have successfully confirmed that the distribution and number of defects closely depend on the process conditions. Thus, this technique is quite useful for a device development. Moreover, the strain fields in an AlGaN/GaN crystal were effectively calculated with nm-scale resolution using this method. We also demonstrated that this sampling Moiré technique is applicable to silicon devices, which have principal directions different from those of AlGaN/GaN crystals. As a result, we believe that the 2D FFT sampling Moiré method has great potential applications to the discovery of new as yet unknown phenomena occurring between the characteristics of a crystalline material and device performance.

  16. Two-dimensional divertor modeling and scaling laws

    International Nuclear Information System (INIS)

    Catto, P.J.; Connor, J.W.; Knoll, D.A.

    1996-01-01

    Two-dimensional numerical models of divertors contain large numbers of dimensionless parameters that must be varied to investigate all operating regimes of interest. To simplify the task and gain insight into divertor operation, we employ similarity techniques to investigate whether model systems of equations plus boundary conditions in the steady state admit scaling transformations that lead to useful divertor similarity scaling laws. A short mean free path neutral-plasma model of the divertor region below the x-point is adopted in which all perpendicular transport is due to the neutrals. We illustrate how the results can be used to benchmark large computer simulations by employing a modified version of UEDGE which contains a neutral fluid model. (orig.)

  17. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  18. Two-dimensional goodness-of-fit testing in astronomy

    International Nuclear Information System (INIS)

    Peacock, J.A

    1983-01-01

    This paper deals with the techniques available to test for consistency between the empirical distribution of data points on a plane and a hypothetical density law. Two new statistical tests are developed. The first is a two-dimensional version of the Kolmogorov-Smirnov test, for which the distribution of the test statistic is investigated using a Monte Carlo method. This test is found in practice to be very nearly distribution-free, and empirical formulae for the confidence levels are given. Secondly, the method of power-spectrum analysis is extended to deal with cases in which the null hypothesis is not a uniform distribution. These methods are illustrated by application to the distribution of quasar candidates found on an objective-prism plate of the Virgo Cluster. (author)

  19. Two-dimensional electron flow in pulsed power transmission lines and plasma opening switches

    International Nuclear Information System (INIS)

    Church, B.W.; Longcope, D.W.; Ng, C.K.; Sudan, R.N.

    1991-01-01

    The operation of magnetically insulated transmission lines (MITL) and the interruption of current in a plasma opening switch (POS) are determined by the physics of the electrons emitted by the cathode surface. A mathematical model describes the self-consistent two-dimensional flow of an electron fluid. A finite element code, FERUS, has been developed to solve the two equations which describe Poisson's and Ampere's law in two dimensions. The solutions from this code are obtained for parameters where the electron orbits are considerably modified by the self-magnetic field of the current. Next, the self-insulated electron flow in a MITL with a step change in cross-section is studied using a conventional two-dimensional fully electromagnetic particle-in-cell code, MASK. The equations governing two-dimensional quasi-static electron flow are solved numerically by a third technique which is suitable for predicting current interruption in a POS. The object of the study is to determine the critical load impedance, Z CL , required for current interruption for a given applied voltage, cathode voltage and plasma length. (author). 9 refs, 5 figs

  20. Electrophoretic properties of BSA-coated quantum dots.

    Science.gov (United States)

    Bücking, Wendelin; Massadeh, Salam; Merkulov, Alexei; Xu, Shu; Nann, Thomas

    2010-02-01

    Low toxic InP/ZnS quantum dots (QDs), ZnS:Mn(2+)/ZnS nanocrystals and CdSe/ZnS nanoparticles were rendered water-dispersible by different ligand-exchange methods. Eventually, they were coated with bovine serum albumin (BSA) as a model protein. All particles were characterised by isotachophoresis (ITP), laser Doppler velocimetry (LDV) and agarose gel electrophoresis. It was found that the electrophoretic mobility and colloidal stability of ZnS:Mn(2+)/ZnS and CdSe/ZnS nanoparticles, which bore short-chain surface ligands, was primarily governed by charges on the nanoparticles, whereas InP/ZnS nanocrystals were not charged per se. BSA-coated nanoparticles showed lower electrophoretic mobility, which was attributed to their larger size and smaller overall charge. However, these particles were colloidally stable. This stability was probably caused by steric stabilisation of the BSA coating.

  1. The non-commutative topology of two-dimensional dirty superconductors

    Science.gov (United States)

    De Nittis, Giuseppe; Schulz-Baldes, Hermann

    2018-01-01

    Non-commutative analysis tools have successfully been applied to the integer quantum Hall effect, in particular for a proof of the stability of the Hall conductance in an Anderson localization regime and of the bulk-boundary correspondence. In this work, these techniques are implemented to study two-dimensional dirty superconductors described by Bogoliubov-de Gennes Hamiltonians. After a thorough presentation of the basic framework and the topological invariants, Kubo formulas for the thermal, thermoelectric and spin Hall conductance are analyzed together with the corresponding edge currents.

  2. Two-dimensional versus three-dimensional treatment planning of tangential breast irradiation

    International Nuclear Information System (INIS)

    Damen, E.M.F.; Bruinvis, I.A.D.; Mijnheer, B.J.

    1995-01-01

    Purpose: Full three-dimensional (3-D) treatment planning requires 3-D patient contours and density information, derived either from CT scanning or from other 3-D contouring methods. These contouring techniques are time consuming, and are often not available or cannot be used. Two-dimensional (2-D) treatment planning can be performed using only a few patient contours, made with much simpler techniques, in combination with simulator images for estimating the lung position. In order to investigate the need for full 3-D planning, we compared the performance of both a 2-D and a 3-D planning system in calculating absolute dose values and relative dose distributions in tangential breast irradiation. Methods: Two breast-shaped phantoms were used in this study. The first phantom consists of a polyethylene mould, filled with water and cork to mimic the lung. An ionization chamber can be inserted in the phantom at fixed positions. The second phantom is made of 25 transverse slices of polystyrene and cork, made with a computerized milling machine from CT information. In this phantom, films can be inserted in three sagittal planes. Both phantoms have been irradiated with two tangential 8 MV photon beams. The measured dose distribution has been compared with the dose distribution predicted by the two planning systems. Results: In the central plane, the 3-D planning system predicts the absolute dose with an accuracy of 0.5 - 4%. The dose at the isocentre of the beams agrees within 0.5% with the measured dose. The 2-D system predicts the dose with an accuracy of 0.9 - 3%. The dose calculated at the isocentre is 2.6% higher than the measured dose, because missing lateral scatter is not taken into account in this planning system. In off-axis planes, the calculated absolute dose agrees with the measured dose within 4% for the 2-D system and within 6% for the 3-D system. However, the relative dose distribution is predicted better by the 3-D planning system. Conclusions: This study

  3. Sialic acid accelerates the electrophoretic velocity of injured dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Chen-xu Li

    2015-01-01

    Full Text Available Peripheral nerve injury has been shown to result in ectopic spontaneous discharges on soma and injured sites of sensory neurons, thereby inducing neuropathic pain. With the increase of membrane proteins on soma and injured site neurons, the negatively charged sialic acids bind to the external domains of membrane proteins, resulting in an increase of this charge. We therefore speculate that the electrophoretic velocity of injured neurons may be faster than non-injured neurons. The present study established rat models of neuropathic pain via chronic constriction injury. Results of the cell electrophoresis test revealed that the electrophoretic velocity of injured neuronal cells was faster than that of non-injured (control cells. We then treated cells with divalent cations of Ca 2+ and organic compounds with positive charges, polylysine to counteract the negatively charged sialic acids, or neuraminidase to specifically remove sialic acids from the membrane surface of injured neurons. All three treatments significantly reduced the electrophoretic velocity of injured neuronal cells. These findings suggest that enhanced sialic acids on injured neurons may accelerate the electrophoretic velocity of injured neurons.

  4. Optimization of the southern electrophoretic transfer method

    International Nuclear Information System (INIS)

    Allison, M.A.; Fujimura, R.K.

    1987-01-01

    The technique of separating DNA fragments using agarose gel electrophoresis is essential in the analysis of nucleic acids. Further, after the method of transferring specific DNA fragments from those agarose gels to cellulose nitrate membranes was developed in 1975, a method was developed to transfer DNA, RNA, protein and ribonucleoprotein particles from various gels onto diazobenzyloxymethyl (DBM) paper using electrophoresis as well. This paper describes the optimum conditions for quantitative electrophoretic transfer of DNA onto nylon membranes. This method exemplifies the ability to hybridize the membrane more than once with specific RNA probes by providing sufficient retention of the DNA. Furthermore, the intrinsic properties of the nylon membrane allow for an increase in the efficiency and resolution of transfer while using somewhat harsh alkaline conditions. The use of alkaline conditions is of critical importance since we can now denature the DNA during transfer and thus only a short pre-treatment in acid is required for depurination. 9 refs., 7 figs

  5. Two- and three-dimensional CT analysis of ankle fractures

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.

    1988-01-01

    CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem

  6. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  7. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  8. Inverse radiative transfer problems in two-dimensional heterogeneous media

    International Nuclear Information System (INIS)

    Tito, Mariella Janette Berrocal

    2001-01-01

    The analysis of inverse problems in participating media where emission, absorption and scattering take place has several relevant applications in engineering and medicine. Some of the techniques developed for the solution of inverse problems have as a first step the solution of the direct problem. In this work the discrete ordinates method has been used for the solution of the linearized Boltzmann equation in two dimensional cartesian geometry. The Levenberg - Marquardt method has been used for the solution of the inverse problem of internal source and absorption and scattering coefficient estimation. (author)

  9. ELECTROPHORETIC MOBILITY OF MYCOBACTERIUM AVIUM COMPLEX ORGANISMS

    Science.gov (United States)

    The electrophoretic mobilities (EPMs) of thirty Mycobacterium avium Complex (MAC) organisms were measured. The EPMs of fifteen clinical isolates ranged from -1.9 to -5.0 µm cm V-1s-1, and the EPMs of fifteen environmental isolates ranged from -1...

  10. A Model for the Two-dimensional no Isolated Bits Constraint

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2006-01-01

    A stationary model is presented for the two-dimensional (2-D) no isolated bits (n.i.b.) constraint over an extended alphabet defined by the elements within 1 by 2 blocks. This block-wise model is based on a set of sufficient conditions for a Pickard random field (PRF) over an m-ary alphabet....... Iterative techniques are applied as part of determining the model parameters. Given two Markov chains describing a boundary, an algorithm is presented which determines whether a certain PRF consistent with the boundary exists. Iterative scaling is used as part of the algorithm, which also determines...

  11. Multi-perspective views of students’ difficulties with one-dimensional vector and two-dimensional vector

    Science.gov (United States)

    Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno

    2017-01-01

    Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.

  12. Optimizing separations in online comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.

  13. A comparison of two efficient nonlinear heat conduction methodologies using a two-dimensional time-dependent benchmark problem

    International Nuclear Information System (INIS)

    Wilson, G.L.; Rydin, R.A.; Orivuori, S.

    1988-01-01

    Two highly efficient nonlinear time-dependent heat conduction methodologies, the nonlinear time-dependent nodal integral technique (NTDNT) and IVOHEAT are compared using one- and two-dimensional time-dependent benchmark problems. The NTDNT is completely based on newly developed time-dependent nodal integral methods, whereas IVOHEAT is based on finite elements in space and Crank-Nicholson finite differences in time. IVOHEAT contains the geometric flexibility of the finite element approach, whereas the nodal integral method is constrained at present to Cartesian geometry. For test problems where both methods are equally applicable, the nodal integral method is approximately six times more efficient per dimension than IVOHEAT when a comparable overall accuracy is chosen. This translates to a factor of 200 for a three-dimensional problem having relatively homogeneous regions, and to a smaller advantage as the degree of heterogeneity increases

  14. Two-dimensional imaging of edge plasma electron density and temperature by the passive helium emission ratio technique in TJ-II

    International Nuclear Information System (INIS)

    De la Cal, E; Guasp, J

    2011-01-01

    An intensified visible camera looks tangentially at a poloidal limiter where helium recycles, acting as a wide neutral source, and the atomic line emission due to plasma excitation becomes strongly localized there. It includes a bifurcated coherent bundle, each end with a different interference filter to select helium atomic lines, so that two simultaneous filtered images are captured in one single frame. The object of the proposed technique is to apply the well-known helium-beam line-ratio technique to obtain from selected filtered images the two-dimensional (2D) edge plasma n e and T e . The code EIRENE was used to demonstrate that the helium emission from recycling neutrals dominates the emission for the lines of view passing close above the limiter. Since these chords are nearly parallel to magnetic field lines in the emission region, the images can be approximated to poloidal cuts of the plasma emission within the tolerances discussed in the paper. The absolute radial profiles of T e and n e obtained with the method presented here were checked in the TJ-II stellarator to be in relatively good agreement with other diagnostics within a wide range of plasma parameters for both ECRH and NBI plasmas. The method is finally used to get 2D images of edge plasma T e and n e .

  15. Three dimensional image presentation techniques in medical imaging

    International Nuclear Information System (INIS)

    Pizer, S.M.; Fuchs, H.

    1987-01-01

    Medical images can be presented three-dimensionally by techniques that either calculate the effect of reflections from surfaces predefined from slices or project a three-space of luminosities computed from voxel intensities onto the visual receptors. Sliced-based reflective displays are the most common type. Means of producing surface descriptions both via voxel sets and via slice contours are reviewed. Advantages of and means of transparent display to allow the appreciation of the 3D relationships among objects are set forth. Ways to produce additional depth cues by stereoscopy and the kinetic depth effect are discussed, and the importance of interactive modification of viewpoint, clipping plane, displayed objects, etc. are explained. A new device, UNC's Pixel-planes, for accomplishing this in real time are illustrated. Voxel intensity based display methods avoid the need for time-consuming predefinition of object surfaces and thus can allow exploration of 3D image data. Varifocal mirror hardware and fast computation of one or more projections based on object probabilities are two of the more important approaches. While 3D display provides important information about 3D relationships, it cannot provide the kind of appreciation of subtle grey-scale changes that 2D display can. Methods that can combine these two kinds of information by superimposing 2D grey-scale slices on or in the context of 3D displays are discussed. Applications of these techniques for both diagnosis and radiotherapy planning are used as illustrations and guides to the usefulness of these techniques with CT, MRI, and other 3D medical imaging modalities. 24 refs.; 5 figs

  16. An introduction to integrable techniques in one-dimensional quantum systems

    CERN Document Server

    Franchini, Fabio

    2017-01-01

    This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and t...

  17. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    -dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...

  18. Two-dimensional simulation of sintering process

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.

    1996-01-01

    The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)

  19. Two new types of solvability of the one-dimensional anharmonic oscillators

    International Nuclear Information System (INIS)

    Znojil, M.

    1989-01-01

    In the Schroedinger picture, we propose a new modification of the so-called Hill-determinant technique. It is shown to guarantee a proper matching of the two underlying power series Ψ(x) at x=0. In the Heisenberg picture, an evolution of the same one-dimensional polynomially anharmonic oscillator is considered. A modified Peano-Baker method is applied and shown to define the explicit solutions by recurrences. 11 refs

  20. One- and two-dimensional chemical exchange nuclear magnetic resonance studies of the creatine kinase catalyzed reaction

    International Nuclear Information System (INIS)

    Gober, J.R.

    1988-01-01

    The equilibrium chemical exchange dynamics of the creatine kinase enzyme system were studied by one- and two-dimensional 31 P NMR techniques. Pseudo-first-order reaction rate constants were measured by the saturation transfer method under an array of experimental conditions of pH and temperature. Quantitative one-dimensional spectra were collected under the same conditions in order to calculate the forward and reverse reaction rates, the K eq , the hydrogen ion stoichiometry, and the standard thermodynamic functions. The pure absorption mode in four quadrant two-dimensional chemical exchange experiment was employed so that the complete kinetic matrix showing all of the chemical exchange process could be realized

  1. Chaotic dynamics in two-dimensional noninvertible maps

    CERN Document Server

    Mira, Christian; Cathala, Jean-Claude; Gardini, Laura

    1996-01-01

    This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this resea

  2. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  3. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  4. Representative measurement of two-dimensional reactive phosphate distributions and co-distributed iron(II) and sulfide in seagrass sediment porewaters

    DEFF Research Database (Denmark)

    Pagès, Anaïs; Teasdale, Peter R.; Robertson, David

    2011-01-01

    The high degree of heterogeneity within sediments can make interpreting one-dimensional measurements difficult. The recent development and use of in situ techniques that measure two-dimensional distributions of porewater solutes have facilitated investigation of the role of spatial heterogeneity ...

  5. Two-dimensional analytic weighting functions for limb scattering

    Science.gov (United States)

    Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.

    2017-10-01

    Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.

  6. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals.

    Science.gov (United States)

    Mathew, Dennis; Bhardwaj, Garima; Wang, Qi; Sun, Linlin; Ercan, Batur; Geetha, Manisavagam; Webster, Thomas J

    2014-01-01

    Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significantly increases hydroxyapatite crystal growth into the nonbiologically inspired micron regime. There has been a push to create nanotopographies on implant surfaces to mimic the physiological nanostructure of native bone and, thus, improve osteoblast (bone-forming cell) functions and inhibit bacteria functions. Among the several techniques that have been adopted to develop nanocoatings, electrophoretic deposition (EPD) is an attractive, versatile, and effective material-processing technique. The in vitro study reported here aimed to determine for the first time bacteria responses to hydroxyapatite coated on Ti via EPD. There were six and three times more osteoblasts on the electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 5 days of culture, respectively. Impressively, there were 2.9 and 31.7 times less Staphylococcus aureus on electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 18 hours of culture, respectively. Compared with uncoated Ti and plasma-sprayed hydroxyapatite coated on Ti, the results provided significant promise for the use of EPD to improve bone-cell density and be used as an antibacterial coating without resorting to the use of antibiotics.

  7. Thermoelectric power and topological transitions in quasi-two-dimensional electronic systems

    International Nuclear Information System (INIS)

    Blanter, Ya.M.; Pantsulaya, A.V.; Varlamov, A.A.

    1991-05-01

    Electron-impurity relaxation time and the thermoelectric power (TEP) of quasi-two-dimensional electron gas are calculated. Two cases are discussed: the isotropic spectrum and the electronic topological transition (ETT) of the ''neck-breaking'' type. Methods of thermal diagramatic technique are used for the calculation. It is found that the TEP in the vicinity of the ETT greatly exceeds its background value. The results of experimental investigations of the TEP in the metal-oxide-semiconductor structures are compared with the predictions of the proposed theory. (author). 17 refs, 5 figs

  8. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings

    International Nuclear Information System (INIS)

    Pang Xin; Zhitomirsky, Igor

    2007-01-01

    Cathodic electrophoretic deposition has been utilized for the fabrication of composite hydroxyapatite-chitosan coatings on 316L stainless steel substrates. The addition of chitosan to the hydroxyapatite suspensions promoted the electrophoretic deposition of the hydroxyapatite nanoparticles and resulted in the formation of composite coatings. The obtained coatings were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. It was shown that the deposit composition can be changed by a variation of the chitosan or hydroxyapatite concentration in the solutions. Experimental conditions were developed for the fabrication of hydroxyapatite-chitosan nanocomposites containing 40.9-89.8 wt.% hydroxyapatite. The method enabled the formation of adherent and uniform coatings of thicknesses up to 60 μm. X-ray studies revealed that the preferred orientation of the hydroxyapatite nanoparticles in the chitosan matrix increases with decreasing hydroxyapatite content in the composite coatings. The obtained coatings provided the corrosion protection for the 316L stainless steel substrates

  9. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    Science.gov (United States)

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  10. The electrophoretic mobility shift assay (EMSA)

    OpenAIRE

    sprotocols

    2015-01-01

    The electrophoretic mobility shift assay (EMSA), also known as “gel shift assay”, is used to examine the binding parameters and relative affinities of protein and DNA interactions. We produced recombinant CCA1 protein and tested its binding affinity for the promoter fragments that contain CBS (AAAAATCT) or evening element (EE, AAAATATCT) (1) using a modified procedure adopted from published protocols (2,3).

  11. Magnetization and spin gap in two-dimensional organic ferrimagnet BIPNNBNO

    International Nuclear Information System (INIS)

    Ovchinnikov, A S; Sinitsyn, V E; Bostrem, I G; Hosokoshi, Y; Inoue, K

    2012-01-01

    A magnetization process in the two-dimensional ferrimagnet BIPNNBNO is analyzed. The compound consists of ferrimagnetic (1,1/2) chains coupled by two sorts of antiferromagnetic interaction. Whereas the behavior of the magnetization curve in higher magnetic fields can be understood within a process for the separate ferrimagnetic chain, the appearance of the singlet plateau at lower fields is an example of non-Lieb-Mattis type ferrimagnetism. By using the exact diagonalization technique for finite clusters of size 4 × 6, 4 × 8 and 4 × 10 we show that the interchain frustration coupling plays an essential role in stabilization of the singlet phase. These results are complemented by an analysis of four cylindrically coupled ferrimagnetic (1,1/2) chains via an Abelian bosonization technique and an effective theory based on the XXZ spin-1/2 Heisenberg model when the interchain interactions are sufficiently weak/strong, respectively. (paper)

  12. Two numerical methods for the solution of two-dimensional eddy current problems

    International Nuclear Information System (INIS)

    Biddlecombe, C.S.

    1978-07-01

    A general method for the solution of eddy current problems in two dimensions - one component of current density and two of magnetic field, is reported. After examining analytical methods two numerical methods are presented. Both solve the two dimensional, low frequency limit of Maxwell's equations for transient eddy currents in conducting material, which may be permeable, in the presence of other non-conducting permeable material. Both solutions are expressed in terms of the magnetic vector potential. The first is an integral equation method, using zero order elements in the discretisation of the unknown source regions. The other is a differential equation method, using a first order finite element mesh, and the Galerkin weighted residual procedure. The resulting equations are solved as initial-value problems. Results from programs based on each method are presented showing the power and limitations of the methods and the range of problems solvable. The methods are compared and recommendations are made for choosing between them. Suggestions are made for improving both methods, involving boundary integral techniques. (author)

  13. Polyacrylamide medium for the electrophoretic separation of biomolecules

    Science.gov (United States)

    Madabhushi, Ramakrishna S.; Gammon, Stuart A.

    2003-11-11

    A polyacryalmide medium for the electrophoretic separation of biomolecules. The polyacryalmide medium comprises high molecular weight polyacrylamides (PAAm) having a viscosity average molecular weight (M.sub.v) of about 675-725 kDa were synthesized by conventional red-ox polymerization technique. Using this separation medium, capillary electrophoresis of BigDye DNA sequencing standard was performed. A single base resolution of .about.725 bases was achieved in .about.60 minute in a non-covalently coated capillary of 50 .mu.m i.d., 40 cm effective length, and a filed of 160 V/cm at 40.degree. C. The resolution achieved with this formulation to separate DNA under identical conditions is much superior (725 bases vs. 625 bases) and faster (60 min. vs. 75 min.) to the commercially available PAAm, such as supplied by Amersham. The formulation method employed here to synthesize PAAm is straight-forward, simple and does not require cumbersome methods such as emulsion polymerizaiton in order to achieve very high molecular weights. Also, the formulation here does not require separation of PAAm from the reaction mixture prior to reconstituting the polymer to a final concentration. Furthermore, the formulation here is prepared from a single average mol. wt. PAAm as opposed to the mixture of two different average mo. wt. PAAm previously required to achieve high resolution.

  14. Functional inks and printing of two-dimensional materials.

    Science.gov (United States)

    Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique

    2018-05-08

    Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.

  15. K-FIX: a computer program for transient, two-dimensional, two-fluid flow. THREED: an extension of the K-FIX code for three-dimensional calculations

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1978-10-01

    The transient, two-dimensional, two-fluid code K-FIX has been extended to perform three-dimensional calculations. This capability is achieved by adding five modification sets of FORTRAN statements to the basic two-dimensional code. The modifications are listed and described, and a complete listing of the three-dimensional code is provided. Results of an example problem are provided for verification

  16. Electrophoretic detection of protein p53 in human leukocytes

    International Nuclear Information System (INIS)

    Paponov, V.D.; Kupsik, E.G.; Shcheglova, E.G.; Yarullin, N.N.

    1986-01-01

    The authors have found an acid-soluble protein with mol. wt. of about 53 kD in peripheral blood leukocytes of persons with Down's syndrome. It was present in different quantities in all 20 patients tested, but was virtually not discovered in 12 healthy blood donors. This paper determines the possible identity of this protein with protein p53 from mouse ascites carcinoma by comparing their electrophoretic mobilities, because the accuracy of electrophoretic determination of the molecular weight of proteins is not sufficient to identify them. The paper also describes experiments to detect a protein with electrophoretic mobility identical with that of a protein in the leukocytes of patients with Down's syndrome in leukocytes of patients with leukemia. To discover if protein p53 is involved in cell proliferation, the protein composition of leukocytes from healthy blood donors, cultured in the presence and absence of phytohemagglutinin (PHA), was compared. Increased incorporation of H 3-thymidine by leukocytes of patients with Down's syndrome is explained by the presence of a population of immature leukocytes actively synthesizing DNA in the peripheral blood of these patients, and this can also explain the presence of protein p53 in the leukocytes of these patients

  17. A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations

    Science.gov (United States)

    Chen, Hao; Lv, Wen; Zhang, Tongtong

    2018-05-01

    We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.

  18. Three-dimensional vs. two-dimensional shear-wave elastography of the testes - preliminary study on a healthy collective.

    Science.gov (United States)

    Marcon, J; Trottmann, M; Rübenthaler, J; D'Anastasi, M; Stief, C G; Reiser, M F; Clevert, D A

    2016-01-01

    Shear wave elastography (SWE) and its derivative Supersonic Shear Imaging (SSI) are newer techniques for the determination of tissue elasticity by measuring the velocity of generated shear waves (SWV), which correlates positively with tissue stiffness.The techniques are integrated into many modern ultrasound systems and have been examined in the evaluation of viscoelastic properties of different organ systems. Two-dimensional shear wave elastography (2D SWE) of the testes has been found to be a useful tool in recent studies which included the determination of standard values in healthy volunteers. Three-dimensional shear wave elastography (3D SWE) is the latest development in elastography and is made possible by generation of a multiplanar three-dimensional map via volumetric acquisition with a special ultrasound transducer. This technique allows the assessment of tissue elasticity in a three-dimensional, fully accessible organ map.The aim of this preliminary study was to both evaluate the feasibility of 3D SWE and to compare 2D and 3D SWE standard values in the testes of healthy subjects. We examined the testes of healthy male volunteers (n = 32) with a mean age of 51.06±17.75 years (range 25-77 years) by B-mode ultrasound, 2D and 3D SWE techniques in September of 2016. Volunteers with a history of testicular pathologies were excluded. For all imaging procedures the SL15-4 linear transducer (bandwidth 4-15 MHz) as well as the SLV16-4 volumetric probe (bandwidth 4-16 MHz) of the Aixplorer® ultrasound device (SuperSonic Imagine, Aix-en-Provence, France) were used. Seven regions of interest (ROI, Q-Box®) within the testes were evaluated for SWV using both procedures. SWV values were described in m/s. Results were statistically evaluated using univariateanalysis. Mean SWV values were 1.05 m/s for the 2D SWE and 1.12 m/s for the 3D SWE.Comparisons of local areas delivered no statistically significant differences (p = 0.11 to p = 0.66), except for

  19. Electrophoretic deposition of 9-YSZ solid electrolyte on Ni- YSZ composite

    International Nuclear Information System (INIS)

    Santos, F.S.; Yoshito, W.K.; Lazar, D.R.R.; Ussui, V.

    2010-01-01

    9-YSZ ceramic and Ni-YSZ metal/ceramic composite are the more commonly used materials for the fabrication of solid oxide fuel cell electrolyte and anode, respectively. The main challenges for these applications are the forming of both materials as superposed double thin layers. In the present work ceramic powder of 9- YSZ was synthesized by a coprecipitation technique and the Ni O-YSZ composite by a combustion technique. The later was formed by uniaxial pressing as cylindrical pellets of 15 mm diameter. Thin ceramic layers of 9-YSZ were deposited on composite pellets from a suspension with 10% solid content by an Electrophoretic Deposition technique. Applied voltage varied in the range of 30 to 200 V and deposition time from 15 to 90 seconds, evaluating the deposited mass, porosity on the interface and adhesion of layers. Resulted ceramics were characterized by X-ray diffraction and were observed in a scanning electron microscope. Results showed that deposited layers are thin (∼20μm), dense and have good adhesion on the surface of composite substrate. (author)

  20. Effect of AOT Microemulsion Composition on the Hydrodynamic Diameter and Electrophoretic Mobility of Titanium Oxide Nanoparticles

    Science.gov (United States)

    Shaparenko, N. O.; Beketova, D. I.; Demidova, M. G.; Bulavchenko, A. I.

    2018-05-01

    The hydrodynamic diameter and electrophoretic mobility of titania nanoparticles in AOT microemulsions are studied depending on their water content (from 0 to 1.5 vol %), chloroform content in n-decane-chloroform mixture (from 0 to 30 vol %) and temperature (from 0 to 60°C). Considerable changes in diameter (from 20 to 400 nm) are detected upon adding water to the microemulsion. The electrophoretic mobility grows by 2-3 times upon adding chloroform, or as the temperature falls. The observed features allow us to halve the time of electrophoretic concentration for 140 nm TiO2 nanoparticles, and to concentrate 14 nm nanoparticles that do not exhibit electrophoretic mobility in the absence of chloroform.

  1. Numerically-quantified two dimensionality of microstructure evolution accompanying variant selection of FePd

    International Nuclear Information System (INIS)

    Ueshima, N; Yoshiya, M; Yasuda, H; Fukuda, T; Kakeshita, T

    2015-01-01

    Through three-dimensional (3D) simulations of microstructure evolution by phase-field modeling (PFM), microstructures have been quantified during their time evolution by an image processing technique with particular attention to the shape of variants in the course of variant selection. It is found that the emerging variants exhibit planar shapes rather than 3D shapes due to the elastic field around the variants arising upon disorder-to-order transition to the L1 0 phase. The two-dimensionality is more pronounced as variant selection proceeds. Although three equivalent variants compete for dominance under an external field, one of the three variants vanishes before final competition occurs between the remaining variants, which can be explained by the elastic strain energy. These numerical analyses provide better understanding of the microstructure evolution in a more quantitative manner, including the small influence of the third variant, and the results obtained confirm that the understanding of variant selection obtained from two-dimensional (2D) simulations by PFM is valid. (paper)

  2. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  3. Mastering data warehouse design relational and dimensional techniques

    CERN Document Server

    Imhoff, Claudia; Geiger, Jonathan G

    2003-01-01

    A cutting-edge response to Ralph Kimball''s challenge to the data warehouse community that answers some tough questions about the effectiveness of the relational approach to data warehousingWritten by one of the best-known exponents of the Bill Inmon approach to data warehousingAddresses head-on the tough issues raised by Kimball and explains how to choose the best modeling technique for solving common data warehouse design problemsWeighs the pros and cons of relational vs. dimensional modeling techniquesFocuses on tough modeling problems, including creating and maintaining keys and modeling c

  4. Fabrication and characterization of one- and two-dimensional regular patterns produced employing multiple exposure holographic lithography

    DEFF Research Database (Denmark)

    Tamulevičius, S.; Jurkevičiute, A.; Armakavičius, N.

    2017-01-01

    In this paper we describe fabrication and characterization methods of two-dimensional periodic microstructures in photoresist with pitch of 1.2 urn and lattice constant 1.2-4.8 μm, formed using two-beam multiple exposure holographic lithography technique. The regular structures were recorded empl...

  5. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  6. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

    International Nuclear Information System (INIS)

    Xie Hai-Qiong; Zeng Zhong; Zhang Liang-Qi

    2016-01-01

    We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. (paper)

  7. Two dimensional neutral transport analysis in tokamak plasma

    International Nuclear Information System (INIS)

    Shimizu, Katsuhiro; Azumi, Masafumi

    1987-02-01

    Neutral particle influences the particle and energy balance, and play an important role on sputtering impurity and the charge exchange loss of neutral beam injection. In order to study neutral particle behaviour including the effects of asymmetric source and divertor configuration, the two dimensional neutral transport code has been developed using the Monte-Carlo techniques. This code includes the calculation of the H α radiation intensity based on the collisional-radiation model. The particle confinement time of the joule heated plasma in JT-60 tokamak is evaluated by comparing the calculated H α radiation intensity with the experimental data. The effect of the equilibrium on the neutral density profile in high-β plasma is also investigated. (author)

  8. Resistive transition in two-dimensional array of proximity-coupled superconducting weak links

    International Nuclear Information System (INIS)

    Gao Peng; Yu Zheng; Wei Wang; Yao Xi-xian

    1988-01-01

    The Kosterlitz Thouless transition in two-dimensional arrays of proximity-coupled superconducting weak links has been studied in this paper. The samples were prepared by application of the vacuum-evaporation/photoengraving/chemical-etching technique. The experimental results of measurements on some samples of array film showed the existence of the K-T transition in these samples and were consistent with the theory of Lobb, Abraham, and Tinkham

  9. Standardization of MIP technique in three-dimensional CT portography: usefulness in evaluation of portosystemic collaterals in cirrhotic patients

    International Nuclear Information System (INIS)

    Kim, Jong Gi; Kim, Yong; Kim, Chang Won; Lee, Jun Woo; Lee, Suk Hong

    2003-01-01

    To assess the usefulness of three-dimensional CT portography using a standardized maximum intensity projection (MIP) technique for the evaluation of portosystemic collaterals in cirrhotic patients. In 25 cirrhotic patients with portosystemic collaterals, three-phase CT using a multide-tector-row helical CT scanner was performed to evaluate liver disease. Late arterial-phase images were transferred to an Advantage Windows 3.1 workstation (Gener Electric). Axial images were reconstructed by means of three-dimensional CT portography, using both a standardized and a non-standardized MIP technique, and the respective reconstruction times were determined. Three-dimensional CT portography with the standardized technique involved eight planes, namely the spleno-portal confluence axis (coronal, lordotic coronal, lordotic coronal RAO 30 .deg. C, and lordotic coronal LAO 30 .deg. C), the left renal vein axis (lordotic coronal), and axial MIP images (lower esophagus level, gastric fundus level and splenic hilum). The eight MIP images obtained in each case were interpreted by two radiologists, who reached a consensus in their evaluation. The portosystemic collaterals evaluated were as follows: left gastric vein dilatation; esophageal, paraesophageal, gastric, and splenic varix; paraumbilical vein dilatation; gastro-renal, spleno-renal, and gastro-spleno-renal shunt; mesenteric, retroperitoneal, and omental collaterals. The average reconstruction time using the non-standardized MIP technique was 11 minutes 23 seconds, and with the standardized technique, the time was 6 minutes 5 seconds. Three-dimensional CT portography with the standardized technique demonstrated left gastric vein dilatation (n=25), esophageal varix (n=18), paraesophageal varix (n=13), gastric varix (n=4), splenic varix (n=4), paraumbilical vein dilatation (n=4), gastro-renal shunt (n=3), spleno-renal shunt (n=3), and gastro-spleno-renal shunt (n=1). Using three-dimensional CT protography and the non

  10. Three-dimensional investigation of the two-phase flow structure in a bubbly pipe flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.

    1997-01-01

    Particle Image Velocimetry (PIV) is a non-intrusive measurement technique, which can be used to study the structure of various fluid flows. PIV is used to measure the time varying full field velocity data of a particle-seeded flow field within either a two-dimensional plane or three-dimensional volume. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. This information can be further processed into information such as vorticity and pathlines. Other flow measurement techniques (Laser Doppler Velocimetry, Hot Wire Anemometry, etc...) only provide quantitative information at a single point. PIV can be used to study turbulence structures if a sufficient amount of data can be acquired and analyzed, and it can also be extended to study two-phase flows if both phases can be distinguished. In this study, the flow structure around a bubble rising in a pipe filled with water was studied in three-dimensions. The velocity of the rising bubble and the velocity field of the surrounding water was measured. Then the turbulence intensities and Reynolds stresses were calculated from the experimental data. (author)

  11. Two-stage neural-network-based technique for Urdu character two-dimensional shape representation, classification, and recognition

    Science.gov (United States)

    Megherbi, Dalila B.; Lodhi, S. M.; Boulenouar, A. J.

    2001-03-01

    This work is in the field of automated document processing. This work addresses the problem of representation and recognition of Urdu characters using Fourier representation and a Neural Network architecture. In particular, we show that a two-stage Neural Network scheme is used here to make classification of 36 Urdu characters into seven sub-classes namely subclasses characterized by seven proposed and defined fuzzy features specifically related to Urdu characters. We show that here Fourier Descriptors and Neural Network provide a remarkably simple way to draw definite conclusions from vague, ambiguous, noisy or imprecise information. In particular, we illustrate the concept of interest regions and describe a framing method that provides a way to make the proposed technique for Urdu characters recognition robust and invariant to scaling and translation. We also show that a given character rotation is dealt with by using the Hotelling transform. This transform is based upon the eigenvalue decomposition of the covariance matrix of an image, providing a method of determining the orientation of the major axis of an object within an image. Finally experimental results are presented to show the power and robustness of the proposed two-stage Neural Network based technique for Urdu character recognition, its fault tolerance, and high recognition accuracy.

  12. High-resolution slab gel isoelectric focusing: methods for quantitative electrophoretic transfer and immunodetection of proteins as applied to the study of the multiple isoelectric forms of ornithine decarboxylase.

    Science.gov (United States)

    Reddy, S G; Cochran, B J; Worth, L L; Knutson, V P; Haddox, M K

    1994-04-01

    A high-resolution isoelectric focusing vertical slab gel method which can resolve proteins which differ by a single charge was developed and this method was applied to the study of the multiple isoelectric forms of ornithine decarboxylase. Separation of proteins at this high level of resolution was achieved by increasing the ampholyte concentration in the gels to 6%. Various lots of ampholytes, from the same or different commercial sources, differed significantly in their protein binding capacity. Ampholytes bound to proteins interfered both with the electrophoretic transfer of proteins from the gel to immunoblotting membranes and with the ability of antibodies to interact with proteins on the immunoblotting membranes. Increasing the amount of protein loaded into a gel lane also decreased the efficiency of the electrophoretic transfer and immunodetection. To overcome these problems, both gel washing and gel electrophoretic transfer protocols for disrupting the ampholyte-protein binding and enabling a quantitative electrophoretic transfer of proteins were developed. Two gel washing procedures, with either thiocyanate or borate buffers, and a two-step electrophoretic transfer method are described. The choice of which method to use to optimally disrupt the ampholyte-protein binding was found to vary with each lot of ampholytes employed.

  13. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  14. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  15. Two-dimensional model of a freely expanding plasma

    International Nuclear Information System (INIS)

    Khalid, Q.

    1975-01-01

    The free expansion of an initially confined plasma is studied by the computer experiment technique. The research is an extension to two dimensions of earlier work on the free expansion of a collisionless plasma in one dimension. In the two-dimensional rod model, developed in this research, the plasma particles, electrons and ions are modeled as infinitely long line charges or rods. The line charges move freely in two dimensions normal to their parallel axes, subject only to a self-consistent electric field. Two approximations, the grid approximation and the periodic boundary condition are made in order to reduce the computation time. In the grid approximation, the space occupied by the plasma at a given time is divided into boxes. The particles are subject to an average electric field calculated for that box assuming that the total charge within each box is located at the center of the box. However, the motion of each particle is exactly followed. The periodic boundary condition allows us to consider only one-fourth of the total number of particles of the plasma, representing the remaining three-fourths of the particles as symmetrically placed images of those whose positions are calculated. This approximation follows from the expected azimuthal symmetry of the plasma. The dynamics of the expansion are analyzed in terms of average ion and electron positions, average velocities, oscillation frequencies and relative distribution of energy between thermal, flow and electric field energies. Comparison is made with previous calculations of one-dimensional models which employed plane, spherical or cylindrical sheets as charged particles. In order to analyze the effect of the grid approximation, the model is solved for two different grid sizes and for each grid size the plasma dynamics is determined. For the initial phase of expansion, the agreement for the two grid sizes is found to be good

  16. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  17. Growth and electronic properties of two-dimensional systems on (110) oriented GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F.

    2005-07-01

    As the only non-polar plane the (110) surface has a unique role in GaAs. Together with Silicon as a dopant it is an important substrate orientation for the growth of n-type or p-type heterostructures. As a consequence, this thesis will concentrate on growth and research on that surface. In the course of this work we were able to realize two-dimensional electron systems with the highest mobilities reported so far on this orientation. Therefore, we review the necessary growth conditions and the accompanying molecular process. The two-dimensional electron systems allowed the study of a new, intriguing transport anisotropy not explained by current theory. Moreover, we were the first growing a two-dimensional hole gas on (110) GaAs with Si as dopant. For this purpose we invented a new growth modulation technique necessary to retrieve high mobility systems. In addition, we discovered and studied the metal-insulator transition in thin bulk p-type layers on (110) GaAs. Besides we investigated the activation process related to the conduction in the valence band and a parallelly conducting hopping band. The new two-dimensional hole gases revealed interesting physics. We studied the zero B-field spin splitting in these systems and compared it with the known theory. Furthermore, we investigated the anisotropy of the mobility. As opposed to the expectations we observed a strong persistent photoconductivity in our samples. Landau levels for two dimensional hole systems are non-linear and can show anticrossings. For the first time we were able to resolve anticrossings in a transport experiment and study the corresponding activation process. Finally, we compared these striking results with theoretical calculations. (orig.)

  18. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; van Heijst, G.J.F.

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  19. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; Heijst, van G.J.F.

    2009-01-01

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  20. Milgrom Relation Models for Spiral Galaxies from Two-Dimensional Velocity Maps

    OpenAIRE

    Barnes, Eric I.; Kosowsky, Arthur; Sellwood, Jerry A.

    2007-01-01

    Using two-dimensional velocity maps and I-band photometry, we have created mass models of 40 spiral galaxies using the Milgrom relation (the basis of modified Newtonian dynamics, or MOND) to complement previous work. A Bayesian technique is employed to compare several different dark matter halo models to Milgrom and Newtonian models. Pseudo-isothermal dark matter halos provide the best statistical fits to the data in a majority of cases, while the Milgrom relation generally provides good fits...

  1. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao; Zhang, Hua

    2015-01-01

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards

  2. Applying recursive numerical integration techniques for solving high dimensional integrals

    International Nuclear Information System (INIS)

    Ammon, Andreas; Genz, Alan; Hartung, Tobias; Jansen, Karl; Volmer, Julia; Leoevey, Hernan

    2016-11-01

    The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with N samples behaves like 1/√(N). This scaling makes it often very time intensive to reduce the error of computed observables, in particular for applications in lattice QCD. It is therefore highly desirable to have alternative methods at hand which show an improved error scaling. One candidate for such an alternative integration technique is the method of recursive numerical integration (RNI). The basic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaussian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann weights. We present the application of such an algorithm to the topological rotor and the anharmonic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate that the RNI technique shows an error scaling in the number of integration points m that is at least exponential.

  3. Applying recursive numerical integration techniques for solving high dimensional integrals

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Andreas [IVU Traffic Technologies AG, Berlin (Germany); Genz, Alan [Washington State Univ., Pullman, WA (United States). Dept. of Mathematics; Hartung, Tobias [King' s College, London (United Kingdom). Dept. of Mathematics; Jansen, Karl; Volmer, Julia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leoevey, Hernan [Humboldt Univ. Berlin (Germany). Inst. fuer Mathematik

    2016-11-15

    The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with N samples behaves like 1/√(N). This scaling makes it often very time intensive to reduce the error of computed observables, in particular for applications in lattice QCD. It is therefore highly desirable to have alternative methods at hand which show an improved error scaling. One candidate for such an alternative integration technique is the method of recursive numerical integration (RNI). The basic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaussian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann weights. We present the application of such an algorithm to the topological rotor and the anharmonic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate that the RNI technique shows an error scaling in the number of integration points m that is at least exponential.

  4. Three-dimensional display techniques: description and critique of methods

    International Nuclear Information System (INIS)

    Budinger, T.F.

    1982-01-01

    The recent advances in non invasive medical imaging of 3 dimensional spatial distribution of radionuclides, X-ray attenuation coefficients, and nuclear magnetic resonance parameters necessitate development of a general method for displaying these data. The objective of this paper is to give a systematic description and comparison of known methods for displaying three dimensional data. The discussion of display methods is divided into two major categories: 1) computer-graphics methods which use a two dimensional display screen; and 2) optical methods (such as holography, stereopsis and vari-focal systems)

  5. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    CERN Document Server

    García, Marcos Fernández; Echeverría, Richard Jaramillo; Moll, Michael; Santos, Raúl Montero; Moya, David; Pinto, Rogelio Palomo; Vila, Iván

    2016-01-01

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  6. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    Energy Technology Data Exchange (ETDEWEB)

    García, Marcos Fernández; Sánchez, Javier González; Echeverría, Richard Jaramillo [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Moll, Michael [CERN, Organisation europénne pour la recherche nucléaire, CH-1211 Genéve 23 (Switzerland); Santos, Raúl Montero [SGIker Laser Facility, UPV/EHU, Sarriena, s/n - 48940 Leioa-Bizkaia (Spain); Moya, David [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Pinto, Rogelio Palomo [Departamento de Ingeniería Electrónica, Escuela Superior de Ingenieros Universidad de Sevilla (Spain); Vila, Iván [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain)

    2017-02-11

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  7. Two and three dimensional imaging of compact toroid plasmas using fast photography

    International Nuclear Information System (INIS)

    Englert, S.E.; Bell, D.E.; Coffey, S.K.

    1992-01-01

    As is discussed in a companion paper, Degnan el al, fast photography is used as a visual diagnostic tool for high energy plasma research at the Phillips Laboratory. Both, two dimensional and three dimensional images, are gathered by using nanosecond and microsecond range fast photography techniques. A set of microchannel plate cameras and a fast framing camera are used to record images of a compact toroid plasma during formation and acceleration stages. These images are subsequently digitized and enhanced to bring out detailed information of interest. This spatial information is combined with other diagnostic results as well as theoretical models in order to build a more complete picture of the fundamental physics associated with high-energy plasmas

  8. Field inversion gel electrophoretic analysis of Legionella pneumophila strains associated with nosocomial legionellosis in children.

    Science.gov (United States)

    Green, M; Wald, E R; Dashefsky, B; Barbadora, K; Wadowsky, R M

    1996-01-01

    Two nosocomial cases of Legionnaires' disease occurred in children. Legionella pneumophila serogroup 1 was isolated from both patients and 30 of 39 plumbing system sites in the hospital. The patient and hospital environmental isolates yielded identical field inversion gel electrophoretic patterns which differed from patterns observed with epidemiologically unrelated strains.

  9. Solution of the two-dimensional spectral factorization problem

    Science.gov (United States)

    Lawton, W. M.

    1985-01-01

    An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.

  10. Canonical Groups for Quantization on the Two-Dimensional Sphere and One-Dimensional Complex Projective Space

    International Nuclear Information System (INIS)

    Sumadi A H A; H, Zainuddin

    2014-01-01

    Using Isham's group-theoretic quantization scheme, we construct the canonical groups of the systems on the two-dimensional sphere and one-dimensional complex projective space, which are homeomorphic. In the first case, we take SO(3) as the natural canonical Lie group of rotations of the two-sphere and find all the possible Hamiltonian vector fields, and followed by verifying the commutator and Poisson bracket algebra correspondences with the Lie algebra of the group. In the second case, the same technique is resumed to define the Lie group, in this case SU (2), of CP'.We show that one can simply use a coordinate transformation from S 2 to CP 1 to obtain all the Hamiltonian vector fields of CP 1 . We explicitly show that the Lie algebra structures of both canonical groups are locally homomorphic. On the other hand, globally their corresponding canonical groups are acting on different geometries, the latter of which is almost complex. Thus the canonical group for CP 1 is the double-covering group of SO(3), namely SU(2). The relevance of the proposed formalism is to understand the idea of CP 1 as a space of where the qubit lives which is known as a Bloch sphere

  11. Development of a three-dimensional PIV measurement technique for the experimental study of air bubble collapse phenomena

    International Nuclear Information System (INIS)

    Yang, Y.H.; Hassan, Y.A.; Schmidl, W.D.

    1995-01-01

    Particle image velocimetry (PIV) is a quantitative flow measurement technique. The objective of this study is to develop a new three-dimensional PIV technique for the experimental study of air bubble collapse phenomena. A three-dimensional measurement technique is necessary since bubble collapse is a three-dimensional phenomenon. The investigation of the velocity flow field around a collapsing air bubble can provide detailed three-dimensional quantitative information to help improve the understanding of the related heat transfer processes

  12. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  13. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    OpenAIRE

    Nikola Stefanović

    2007-01-01

    In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic ...

  14. Coherent structures and flow topology of transitional separated-reattached flow over two and three dimensional geometrical shapes

    Science.gov (United States)

    Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah

    2017-09-01

    Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.

  15. Infrared magneto-spectroscopy of two-dimensional and three-dimensional massless fermions: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Orlita, M., E-mail: milan.orlita@lncmi.cnrs.fr [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Faugeras, C.; Barra, A.-L.; Martinez, G.; Potemski, M. [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Basko, D. M. [LPMMC UMR 5493, Université Grenoble 1/CNRS, B.P. 166, 38042 Grenoble (France); Zholudev, M. S. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Gavrilenko, V. I. [Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Mikhailov, N. N.; Dvoretskii, S. A. [A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Neugebauer, P. [Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, C. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Institut Néel/CNRS-UJF BP 166, F-38042 Grenoble Cedex 9 (France); Heer, W. A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-21

    Here, we report on a magneto-optical study of two distinct systems hosting massless fermions—two-dimensional graphene and three-dimensional HgCdTe tuned to the zero band gap condition at the point of the semiconductor-to-semimetal topological transition. Both materials exhibit, in the quantum regime, a fairly rich magneto-optical response, which is composed from a series of intra- and interband inter-Landau level resonances with for massless fermions typical √(B) dependence. The impact of the system's dimensionality and of the strength of the spin-orbit interaction on the optical response is also discussed.

  16. One-dimensional versus two-dimensional electronic states in vicinal surfaces

    International Nuclear Information System (INIS)

    Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F

    2005-01-01

    Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d

  17. Densis. Densimetric representation of two-dimensional matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.

    1978-01-01

    Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)

  18. Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.

    Science.gov (United States)

    Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K

    1995-07-01

    The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.

  19. Nanolithographic Fabrication and Heterogeneous Reaction Studies ofTwo-Dimensional Platinum Model Catalyst Systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Anthony Marshall [Univ. of California, Berkeley, CA (United States)

    2006-05-20

    In order to better understand the fundamental components that govern catalytic activity, two-dimensional model platinum nanocatalyst arrays have been designed and fabricated. These catalysts arrays are meant to model the interplay of the metal and support important to industrial heterogeneous catalytic reactions. Photolithography and sub-lithographic techniques such as electron beam lithography, size reduction lithography and nanoimprint lithography have been employed to create these platinum nanoarrays. Both in-situ and ex-situ surface science techniques and catalytic reaction measurements were used to correlate the structural parameters of the system to catalytic activity.

  20. A computer program for generating two-dimensional boundary-fitted orthogonal curvilinear coordinate systems

    Energy Technology Data Exchange (ETDEWEB)

    Barbaro, M. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dipt. Innovazione

    1997-11-01

    A numerical method is described which generates an orthogonal curvilinear mesh, subject to the constraint that mesh lines are matched to all boundaries of a closed, simply connected two-dimensional region of arbitrary shape. The method is based on the solution, by an iterative finite-difference technique, of an elliptic differential system of equations for the Cartesian coordinates of the orthogonal grid nodes. The interior grid distribution is controlled by a technique which ensures that coordinate lines can be concentrated as desired. Examples of orthogonal meshes inscribed in various geometrical figures are included.

  1. High voltage electrophoretic deposition for electrochemical energy storage and other applications

    Science.gov (United States)

    Santhanagopalan, Sunand

    High voltage electrophoretic deposition (HVEPD) has been developed as a novel technique to obtain vertically aligned forests of one-dimensional nanomaterials for efficient energy storage. The ability to control and manipulate nanomaterials is critical for their effective usage in a variety of applications. Oriented structures of one-dimensional nanomaterials provide a unique opportunity to take full advantage of their excellent mechanical and electrochemical properties. However, it is still a significant challenge to obtain such oriented structures with great process flexibility, ease of processing under mild conditions and the capability to scale up, especially in context of efficient device fabrication and system packaging. This work presents HVEPD as a simple, versatile and generic technique to obtain vertically aligned forests of different one-dimensional nanomaterials on flexible, transparent and scalable substrates. Improvements on material chemistry and reduction of contact resistance have enabled the fabrication of high power supercapacitor electrodes using the HVEPD method. The investigations have also paved the way for further enhancements of performance by employing hybrid material systems and AC/DC pulsed deposition. Multi-walled carbon nanotubes (MWCNTs) were used as the starting material to demonstrate the HVEPD technique. A comprehensive study of the key parameters was conducted to better understand the working mechanism of the HVEPD process. It has been confirmed that HVEPD was enabled by three key factors: high deposition voltage for alignment, low dispersion concentration to avoid aggregation and simultaneous formation of holding layer by electrodeposition for reinforcement of nanoforests. A set of suitable parameters were found to obtain vertically aligned forests of MWCNTs. Compared with their randomly oriented counterparts, the aligned MWCNT forests showed better electrochemical performance, lower electrical resistance and a capability to

  2. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, Serge, E-mail: serge.zhuiykov@ugent.be [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of); Kawaguchi, Toshikazu [Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Graduate School of Environmental Science, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M. [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of)

    2017-01-15

    Highlights: • Advantages of atomic layer deposition technology (ALD) for two-dimensional nano-crystals. • Conformation of ALD technique and chemistry of precursors. • ALD of semiconductor oxide thin films. • Ultra-thin (∼1.47 nm thick) ALD-developed tungsten oxide nano-crystals on large area. - Abstract: Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique’s capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO{sub 3}) over the large area of standard 4” Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  3. Neutron beam applications; development of texture measuring technique using 1-dimensional PSD

    Energy Technology Data Exchange (ETDEWEB)

    Park, No Jin; Lee, Moon Kyu; Joung, Tae Won; Lee, In Sung [Kumoh National University of Technology, Kumi (Korea)

    2002-03-01

    The new developed materials have often a low crystal symmetry or/and multi-phase state. Because the diffraction patterns of those materials are very complex and some peaks are overlapped, the measured pole figures with a conventional detector (0-dimensional detector) are not sufficient to use for the texture analysis. And also the widely broaden diffraction patterns caused by sever deformation, can only measured with lots of measuring errors using 0-dimensional detector. In this study the 1-dimensional and 2-dimensional position sensitive detector(PSD) is used such pattern to analyse. With PSD the more accurate pole figures can be measured, and the texture analysis, the estimation of the properties are determined more precisely. The measurement using PSD needs special technique for the analysis of the measured pattern. In this study the measuring and analysing technique is developed and compared with the conventional detector. 11 refs., 92 figs., 21 tabs. (Author)

  4. Resonance fluorescence based two- and three-dimensional atom localization

    Science.gov (United States)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  5. Toward two-dimensional search engines

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L; Chepelianskii, A D

    2012-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)

  6. Subjective figure reversal in two- and three-dimensional perceptual space.

    Science.gov (United States)

    Radilová, J; Radil-Weiss, T

    1984-08-01

    A permanently illuminated pattern of Mach's truncated pyramid can be perceived according to the experimental instruction given, either as a three-dimensional reversible figure with spontaneously changing convex and concave interpretation (in one experiment), or as a two-dimensional reversible figure-ground pattern (in another experiment). The reversal rate was about twice as slow, without the subjects being aware of it, if it was perceived as a three-dimensional figure compared to the situation when it was perceived as two-dimensional. It may be hypothetized that in the three-dimensional case, the process of perception requires more sequential steps than in the two-dimensional one.

  7. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders

    Directory of Open Access Journals (Sweden)

    Yifeng Yun

    2015-03-01

    Full Text Available Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED data collection, namely automated diffraction tomography (ADT and rotation electron diffraction (RED, have been developed. Compared with X-ray diffraction (XRD and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni–Se–O–Cl crystals, zeolites, germanates, metal–organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional

  8. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    Science.gov (United States)

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods

  9. Liquid phase separation of proteins based on electrophoretic effects in an electrospray setup during sample introduction into a gas-phase electrophoretic mobility molecular analyzer (CE–GEMMA/CE–ES–DMA)

    Science.gov (United States)

    Weiss, Victor U.; Kerul, Lukas; Kallinger, Peter; Szymanski, Wladyslaw W.; Marchetti-Deschmann, Martina; Allmaier, Günter

    2014-01-01

    Nanoparticle characterization is gaining importance in food technology, biotechnology, medicine, and pharmaceutical industry. An instrument to determine particle electrophoretic mobility (EM) diameters in the single-digit to double-digit nanometer range receiving increased attention is the gas-phase electrophoretic mobility molecular analyzer (GEMMA) separating electrophoretically single charged analytes in the gas-phase at ambient pressure. A fused-silica capillary is used for analyte transfer to the gas-phase by means of a nano electrospray (ES) unit. The potential of this capillary to separate analytes electrophoretically in the liquid phase due to different mobilities is, at measurement conditions recommended by the manufacturer, eliminated due to elevated pressure applied for sample introduction. Measurements are carried out upon constant feeding of analytes to the system. Under these conditions, aggregate formation is observed for samples including high amounts of non-volatile components or complex samples. This makes the EM determination of individual species sometimes difficult, if not impossible. With the current study we demonstrate that liquid phase electrophoretic separation of proteins (as exemplary analytes) occurs in the capillary (capillary zone electrophoresis, CE) of the nano ES unit of the GEMMA. This finding was consecutively applied for on-line desalting allowing EM diameter determination of analytes despite a high salt concentration within samples. The present study is to our knowledge the first report on the use of the GEMMA to determine EM diameters of analytes solubilized in the ES incompatible electrolyte solutions by the intended use of electrophoresis (in the liquid phase) during sample delivery. Results demonstrate the proof of concept of such an approach and additionally illustrate the high potential of a future on-line coupling of a capillary electrophoresis to a GEMMA instrument. PMID:25109866

  10. Two multi-dimensional uncertainty relations

    International Nuclear Information System (INIS)

    Skala, L; Kapsa, V

    2008-01-01

    Two multi-dimensional uncertainty relations, one related to the probability density and the other one related to the probability density current, are derived and discussed. Both relations are stronger than the usual uncertainty relations for the coordinates and momentum

  11. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the martian atmosphere

    Science.gov (United States)

    Kleinböhl, Armin; Friedson, A. James; Schofield, John T.

    2017-01-01

    The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.

  12. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  13. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864...

  14. Template-based electrophoretic deposition of perovskite PZT nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nourmohammadi, A. [Solid Surfaces Analysis and Electron Microscopy Group, Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz (Germany); Semiconductors Department, Materials and Energy Research Center (MERC), 31779-83634 Karaj (Iran, Islamic Republic of); Bahrevar, M.A. [Semiconductors Department, Materials and Energy Research Center (MERC), 31779-83634 Karaj (Iran, Islamic Republic of)], E-mail: ma.bahrevar@yahoo.com; Hietschold, M. [Solid Surfaces Analysis and Electron Microscopy Group, Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz (Germany)

    2009-04-03

    Template-based electrophoretic deposition of perovskite lead zirconate titanate (PZT) nanotubes was achieved using anodic alumina (AA) membranes and sols, containing lead, zirconium and titanium precursors. The effect of various anodizing voltages on the size of the channels in the anodic alumina template was investigated. The prepared sol was driven into the channels under the influence of various electric fields and subsequently sintered at about 700 deg. C. The effects of the initial heating rates and the burn-out temperature on the phase evolution of the samples were studied and a modified firing process was employed. The effects of the electrophoretic voltage and the deposition time on the average wall thickness of the tubes were investigated. Scanning and transmission electron microscopy (SEM and TEM) revealed the efficiency of electrophoresis in the growth of lead zirconate titanate nanotubes in a close-packed array. The X-ray diffraction analyses indicated the presence of perovskite as the principal phase after a modified firing schedule.

  15. Incidental irradiation of internal mammary lymph nodes in breast cancer: conventional two-dimensional radiotherapy versus conformal three-dimensional radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Elton Trigo Teixeira; Ugino, Rafael Tsuneki; Lopes, Mauricio Russo; Pelosi, Edilson Lopes; Silva, Joao Luis Fernandes da, E-mail: eltontt@gmail.com [Hospital Sirio-Libanes, Sao paulo, SP (Brazil). Departamento de Radiologia e Oncologia; Santana, Marco Antonio; Ferreira, Denis Vasconcelos; Carvalho, Heloisa de Andrade [Universidade de Sao Paulo (FM/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Departamento de Radiologia e Oncologia

    2016-05-15

    Objective: to evaluate incidental irradiation of the internal mammary lymph nodes (IMLNs) through opposed tangential fields with conventional two-dimensional (2D) or three-dimensional (3D) radiotherapy techniques and to compare the results between the two techniques. Materials and Methods: This was a retrospective study of 80 breast cancer patients in whom radiotherapy of the IMLNs was not indicated: 40 underwent 2D radiotherapy with computed tomography for dosimetric control, and 40 underwent 3D radiotherapy. The total prescribed dose was 50.0 Gy or 50.4 Gy (2.0 or 1.8 Gy/day, respectively). We reviewed all plans and defined the IMLNs following the Radiation Therapy Oncology Group recommendations. For the IMLNs, we analyzed the proportion of the volume that received 45 Gy, the proportion of the volume that received 25 Gy, the dose to 95% of the volume, the dose to 50% of the volume, the mean dose, the minimum dose (Dmin), and the maximum dose (Dmax). Results: Left-sided treatments predominated in the 3D cohort. There were no differences between the 2D and 3D cohorts regarding tumor stage, type of surgery (mastectomy, breast-conserving surgery, or mastectomy with immediate reconstruction), or mean delineated IMLN volume (6.8 vs. 5.9 mL; p = 0.411). Except for the Dmin, all dosimetric parameters presented higher mean values in the 3D cohort (p < 0.05). The median Dmax in the 3D cohort was 50.34 Gy. However, the mean dose to the IMLNs was 7.93 Gy in the 2D cohort, compared with 20.64 Gy in the 3D cohort. Conclusion: Neither technique delivered enough doses to the IMLNs to achieve subclinical disease control. However, all of the dosimetric parameters were significantly higher for the 3D technique. (author)

  16. A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering

    Directory of Open Access Journals (Sweden)

    Qingzhen Xu

    2013-01-01

    Full Text Available Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.

  17. Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique

    KAUST Repository

    Adhikari, Aniruddha; Eliason, Jeffrey K.; Sun, Jingya; Bose, Riya; Flannigan, David J.; Mohammed, Omar F.

    2016-01-01

    Four-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent

  18. Aortoiliac stenooculusive disease and aneurysms. Screening with non-contrast enhanced two-dimensional cardiac gated cine phase contrast MR angiography with multiple velocity encoded values and cardiac gated two-dimensional time-of-flight MR angiography

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Koshikawa, Tokiko; Kato, Katsuhiko

    2001-01-01

    To evaluate the performance of two-dimensional cine phase contrast MRA with multi-velocity encoded values (multi-VENC cine PC) and ECG-gated two-dimensional time-of-flight MRA (ECG-2D-TOF) for the detection of stenoocclusive lesions and aneurysms in the aortoiliac area, when each method was used individually and when the two methods were used together. Forty-one patients were included in this study. Multi-VENC cine PC and ECG-2D-TOF were obtained first, then contrast enhanced three-dimensional magnetic resonance angiography (CE-3D-MRA) was performed as the standard of reference. Two observers reviewed the images separately without knowledge of patients' symptoms or histories. Sensitivities and specificities were obtained separately for stenooclusive lesions and aneurysms by two reviewers. When the two methods were applied together, high sensitivities (93.0 by observer 1 and 91.9% by observer 2) and adequate specificities (87.6 and 82.3%) were obtained for stenoocclusive lesions. For aneurysms, moderate to high sensitivities (91.1 and 71.1%) and high specificities (98.8 and 99.4%) were obtained. These results suggest that the performance of two non-contrast enhanced MRA techniques may be valuable as a screening tool when the two methods are applied together. (author)

  19. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  20. Image quality assessment using two-dimensional complex mel-cepstrum

    Science.gov (United States)

    Cakir, Serdar; Cetin, A. Enis

    2016-11-01

    Assessment of visual quality plays a crucial role in modeling, implementation, and optimization of image- and video-processing applications. The image quality assessment (IQA) techniques basically extract features from the images to generate objective scores. Feature-based IQA methods generally consist of two complementary phases: (1) feature extraction and (2) feature pooling. For feature extraction in the IQA framework, various algorithms have been used and recently, the two-dimensional (2-D) mel-cepstrum (2-DMC) feature extraction scheme has provided promising results in a feature-based IQA framework. However, the 2-DMC feature extraction scheme completely loses image-phase information that may contain high-frequency characteristics and important structural components of the image. In this work, "2-D complex mel-cepstrum" is proposed for feature extraction in an IQA framework. The method tries to integrate Fourier transform phase information into the 2-DMC, which was shown to be an efficient feature extraction scheme for assessment of image quality. Support vector regression is used for feature pooling that provides mapping between the proposed features and the subjective scores. Experimental results show that the proposed technique obtains promising results for the IQA problem by making use of the image-phase information.

  1. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces

    International Nuclear Information System (INIS)

    Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.

    2010-01-01

    We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.

  2. Application of design of experiment on electrophoretic deposition of ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Coating; electrophoretic deposition; glass-ceramic; design of experiment. 1. Introduction ... other chemicals used were of laboratory reagent grade. ... changes from 7⋅0 to 9⋅5 that adversely affects the deposi- tion efficiency and ...

  3. Quantum oscillations in quasi-two-dimensional conductors

    CERN Document Server

    Galbova, O

    2002-01-01

    The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...

  4. Application of Gaussian cubature to model two-dimensional population balances

    Directory of Open Access Journals (Sweden)

    Bałdyga Jerzy

    2017-09-01

    Full Text Available In many systems of engineering interest the moment transformation of population balance is applied. One of the methods to solve the transformed population balance equations is the quadrature method of moments. It is based on the approximation of the density function in the source term by the Gaussian quadrature so that it preserves the moments of the original distribution. In this work we propose another method to be applied to the multivariate population problem in chemical engineering, namely a Gaussian cubature (GC technique that applies linear programming for the approximation of the multivariate distribution. Examples of the application of the Gaussian cubature (GC are presented for four processes typical for chemical engineering applications. The first and second ones are devoted to crystallization modeling with direction-dependent two-dimensional and three-dimensional growth rates, the third one represents drop dispersion accompanied by mass transfer in liquid-liquid dispersions and finally the fourth case regards the aggregation and sintering of particle populations.

  5. Stress wave techniques for determining quality of dimensional lumber from switch ties

    Science.gov (United States)

    K. C. Schad; D. E. Kretschmann; K. A. McDonald; R. J. Ross; D. W. Green

    1995-01-01

    Researchers at the Forest Products Laboratory, USDA Forest Service, have been studying nondestructive techniques for evaluating the strength of wood. This report describes the results of a pilot study on using these techniques to determine the quality of large dimensional lumber cut from switch ties. First, pulse echo and dynamic (transverse vibration) techniques were...

  6. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.

    2018-01-01

    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  7. Differentiation of benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional shear-wave elastography.

    Science.gov (United States)

    Lee, Su Hyun; Chang, Jung Min; Kim, Won Hwa; Bae, Min Sun; Cho, Nariya; Yi, Ann; Koo, Hye Ryoung; Kim, Seung Ja; Kim, Jin You; Moon, Woo Kyung

    2013-04-01

    To prospectively compare the diagnostic performances of two-dimensional (2D) and three-dimensional (3D) shear-wave elastography (SWE) for differentiating benign from malignant breast masses. B-mode ultrasound and SWE were performed for 134 consecutive women with 144 breast masses before biopsy. Quantitative elasticity values (maximum and mean elasticity in the stiffest portion of mass, Emax and Emean; lesion-to-fat elasticity ratio, Erat) were measured with both 2D and 3D SWE. The area under the receiver operating characteristic curve (AUC), sensitivity and specificity of B-mode, 2D, 3D SWE and combined data of B-mode and SWE were compared. Sixty-seven of the 144 breast masses (47 %) were malignant. Overall, higher elasticity values of 3D SWE than 2D SWE were noted for both benign and malignant masses. The AUC for 2D and 3D SWE were not significantly different: Emean, 0.938 vs 0.928; Emax, 0.939 vs 0.930; Erat, 0.907 vs 0.871. Either 2D or 3D SWE significantly improved the specificity of B-mode ultrasound from 29.9 % (23 of 77) up to 71.4 % (55 of 77) and 63.6 % (49 of 77) without a significant change in sensitivity. Two-dimensional and 3D SWE performed equally in distinguishing benign from malignant masses and both techniques improved the specificity of B-mode ultrasound.

  8. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  9. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  10. Cellular distribution, purification and electrophoretic properties of malate dehydrogenase in Trichuris ovis and inhibition by benzimidazoles and pyrimidine derivatives.

    Science.gov (United States)

    Sanchez-Moreno, M; Ortega, J E; Valero, A

    1989-12-01

    High levels of malate dehydrogenase were found in Trichuris ovis. Two molecular forms of the enzyme, of different cellular location and electrophoretic pattern, were isolated and purified. The activity of soluble malate dehydrogenase was greater than that of mitochondrial malate dehydrogenase. Both forms also displayed different electrophoretic profiles in comparison with purified extracts from goat (Capra hircus) liver. Substrate concentration directly affected enzyme activity. Host and parasite malate dehydrogenase activity were both inhibited by a series of benzimidazoles and pyrimidine-derived compounds, some of which markedly reduced parasite enzyme activity, but not host enzyme activity. Percentage inhibition by some pyrimidine derivatives was greater than that produced by benzimidazoles.

  11. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.

    1985-01-01

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt

  12. A two-dimensional Zn coordination polymer with a three-dimensional supramolecular architecture

    Directory of Open Access Journals (Sweden)

    Fuhong Liu

    2017-10-01

    Full Text Available The title compound, poly[bis{μ2-4,4′-bis[(1,2,4-triazol-1-ylmethyl]biphenyl-κ2N4:N4′}bis(nitrato-κOzinc(II], [Zn(NO32(C18H16N62]n, is a two-dimensional zinc coordination polymer constructed from 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The ZnII cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl ligands, forming a distorted octahedral {ZnN4O2} coordination geometry. The linear 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl ligand links two ZnII cations, generating two-dimensional layers parallel to the crystallographic (132 plane. The parallel layers are connected by C—H...O, C—H...N, C—H...π and π–π stacking interactions, resulting in a three-dimensional supramolecular architecture.

  13. Development of three-dimensional radiotherapy techniques in breast cancer

    Science.gov (United States)

    Coles, Charlotte E.

    Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research

  14. Velocity and Dispersion for a Two-Dimensional Random Walk

    International Nuclear Information System (INIS)

    Li Jinghui

    2009-01-01

    In the paper, we consider the transport of a two-dimensional random walk. The velocity and the dispersion of this two-dimensional random walk are derived. It mainly show that: (i) by controlling the values of the transition rates, the direction of the random walk can be reversed; (ii) for some suitably selected transition rates, our two-dimensional random walk can be efficient in comparison with the one-dimensional random walk. Our work is motivated in part by the challenge to explain the unidirectional transport of motor proteins. When the motor proteins move at the turn points of their tracks (i.e., the cytoskeleton filaments and the DNA molecular tubes), some of our results in this paper can be used to deal with the problem. (general)

  15. Efficient coherent beam combination of two-dimensional phase-locked laser arrays

    International Nuclear Information System (INIS)

    Li, Bing; Yan, Aimin; Liu, Liren; Dai, Enwen; Sun, Jianfeng; Shen, Baoliang; Lv, Xiaoyu; Wu, Yapeng

    2011-01-01

    An efficient technique in which a two-dimensional (2D) phase-locked laser array can be coherently combined into a high power and high quality beam by using a conjugate Dammann grating (CDG) is presented. A theoretical model is established to provide a physical interpretation of the proposed scheme. Using this technique, we investigate analytically and numerically the coherent combination of 2D laser arrays such as 5 × 5 and 32 × 32 arrangements. Far-field distributions and the near-field pattern of the combined beam are calculated and compared with experimental results. A verification experiment with a simulated 5 × 5 2D laser array using an aperture mask has been performed. Calculations and experimental results show that the proposed technique in this paper is an efficient coherent beam combination method to obtain a high power and high quality beam from laser arrays

  16. Two-dimensional DFA scaling analysis applied to encrypted images

    Science.gov (United States)

    Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.

    2015-01-01

    The technique of detrended fluctuation analysis (DFA) has been widely used to unveil scaling properties of many different signals. In this paper, we determine scaling properties in the encrypted images by means of a two-dimensional DFA approach. To carry out the image encryption, we use an enhanced cryptosystem based on a rule-90 cellular automaton and we compare the results obtained with its unmodified version and the encryption system AES. The numerical results show that the encrypted images present a persistent behavior which is close to that of the 1/f-noise. These results point to the possibility that the DFA scaling exponent can be used to measure the quality of the encrypted image content.

  17. Suspension and simple optical characterization of two-dimensional membranes

    Science.gov (United States)

    Northeast, David B.; Knobel, Robert G.

    2018-03-01

    We report on a method for suspending two-dimensional crystal materials in an electronic circuit using an only photoresists and solvents. Graphene and NbSe2 are suspended tens of nanometers above metal electrodes with clamping diameters of several microns. The optical cavity formed from the membrane/air/metal structures enables a quick method to measure the number of layers and the gap separation using comparisons between the expected colour and optical microscope images. This characterization technique can be used with just an illuminated microscope with a digital camera which makes it adaptable to environments where other means of characterization are not possible, such as inside nitrogen glove boxes used in handling oxygen-sensitive materials.

  18. Measuring protein dynamics with ultrafast two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    Adamczyk, Katrin; Candelaresi, Marco; Hunt, Neil T; Robb, Kirsty; Hoskisson, Paul A; Tucker, Nicholas P; Gumiero, Andrea; Walsh, Martin A; Parker, Anthony W

    2012-01-01

    Recent advances in the methodology and application of ultrafast two-dimensional infrared (2D-IR) spectroscopy to biomolecular systems are reviewed. A description of the 2D-IR technique and the molecular contributions to the observed spectra are presented followed by a discussion of recent literature relating to the use of 2D-IR and associated approaches for measuring protein dynamics. In particular, these include the use of diatomic ligand groups for measuring haem protein dynamics, isotopic labelling strategies and the use of vibrational probe groups. The final section reports on the current state of the art regarding the use of 2D-IR methods to provide insights into biological reaction mechanisms. (topical review)

  19. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.

    Science.gov (United States)

    Sun, Guangfei; Ma, Jun; Zhang, Shengmin

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Theory of the one- and two-dimensional electron gas

    International Nuclear Information System (INIS)

    Emery, V.J.

    1987-01-01

    Two topics are discussed: (1) the competition between 2k/sub F/ and 4k/sub F/ charge state waves in a one-dimensional electron gas and (2) a two-dimensional model of high T/sub c/ superconductivity in the oxides

  1. An integrable (2+1)-dimensional Toda equation with two discrete variables

    International Nuclear Information System (INIS)

    Cao Cewen; Cao Jianli

    2007-01-01

    An integrable (2+1)-dimensional Toda equation with two discrete variables is presented from the compatible condition of a Lax triad composed of the ZS-AKNS (Zakharov, Shabat; Ablowitz, Kaup, Newell, Segur) eigenvalue problem and two discrete spectral problems. Through the nonlinearization technique, the Lax triad is transformed into a Hamiltonian system and two symplectic maps, respectively, which are integrable in the Liouville sense, sharing the same set of integrals, functionally independent and involutive with each other. In the Jacobi variety of the associated algebraic curve, both the continuous and the discrete flows are straightened out by the Abel-Jacobi coordinates, and are integrated by quadratures. An explicit algebraic-geometric solution in the original variable is obtained by the Riemann-Jacobi inversion

  2. Preparation of platinum-free tubular dye-sensitized solar cells by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Khwanchit Wongcharee

    2016-10-01

    Full Text Available Tubular dye-sensitized solar cells (DSSCs were developed by replacing expensive materials with lower cost materials as follows: (1 replacing conductive glass electrodes with titanium (Ti wires and (2 replacing platinum (Pt catalyst with the mixture of multi-walled carbon nanotubes, MWCNTs and Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate, PEDOT-PSS. Platinized counter electrodes were used as the standard counter electrodes for comparison. The effects of the chemical treatment of titanium wire substrate and electrophoretic deposition condition on the efficiency of DSSCs were also investigated. The chemical treatment of titanium wires was carried out by soaking the wires in HF-HNO3 solutions at three different concentrations of 0.8, 1.6 and 2.4 M and three different soaking durations of 5, 10 and 15 min. The optimum condition was found at HF-HNO3 concentration of 0.8 M and soaking duration of 10 min. Film coating on working electrodes was performed using electrophoretic technique at three different voltages of 5, 8 and 10 V and four different coating durations of 1, 3, 5 and 7 min. Then, the optimum condition at deposition voltage of 5 V and deposition duration of 5 min was applied for film deposition on counter electrodes. The efficiency of DSSC with CNTs/TiO2 counter electrode was 0.03%. The addition of PEDOT-PSS improved the efficiency of DSSC to 0.08%.

  3. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  4. Continuous electrophoretic purification of individual analytes from multicomponent mixtures.

    Science.gov (United States)

    McLaren, David G; Chen, David D Y

    2004-04-15

    Individual analytes can be isolated from multicomponent mixtures and collected in the outlet vial by carrying out electrophoretic purification through a capillary column. Desired analytes are allowed to migrate continuously through the column under the electric field while undesired analytes are confined to the inlet vial by application of a hydrodynamic counter pressure. Using pressure ramping and buffer replenishment techniques, 18% of the total amount present in a bulk sample can be purified when the resolution to the adjacent peak is approximately 3. With a higher resolution, the yield could be further improved. Additionally, by periodically introducing fresh buffer into the sample, changes in pH and conductivity can be mediated, allowing higher purity (>or=99.5%) to be preserved in the collected fractions. With an additional reversed cycle of flow counterbalanced capillary electrophoresis, any individual component in a sample mixture can be purified providing it can be separated in an electrophoresis system.

  5. One-dimensional nonlinear inverse heat conduction technique

    International Nuclear Information System (INIS)

    Hills, R.G.; Hensel, E.C. Jr.

    1986-01-01

    The one-dimensional nonlinear problem of heat conduction is considered. A noniterative space-marching finite-difference algorithm is developed to estimate the surface temperature and heat flux from temperature measurements at subsurface locations. The trade-off between resolution and variance of the estimates of the surface conditions is discussed quantitatively. The inverse algorithm is stabilized through the use of digital filters applied recursively. The effect of the filters on the resolution and variance of the surface estimates is quantified. Results are presented which indicate that the technique is capable of handling noisy measurement data

  6. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  7. Topological aspect of disclinations in two-dimensional crystals

    International Nuclear Information System (INIS)

    Wei-Kai, Qi; Tao, Zhu; Yong, Chen; Ji-Rong, Ren

    2009-01-01

    By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given. (the physics of elementary particles and fields)

  8. A Comparative Evaluation of the Linear Dimensional Accuracy of Four Impression Techniques using Polyether Impression Material.

    Science.gov (United States)

    Manoj, Smita Sara; Cherian, K P; Chitre, Vidya; Aras, Meena

    2013-12-01

    There is much discussion in the dental literature regarding the superiority of one impression technique over the other using addition silicone impression material. However, there is inadequate information available on the accuracy of different impression techniques using polyether. The purpose of this study was to assess the linear dimensional accuracy of four impression techniques using polyether on a laboratory model that simulates clinical practice. The impression material used was Impregum Soft™, 3 M ESPE and the four impression techniques used were (1) Monophase impression technique using medium body impression material. (2) One step double mix impression technique using heavy body and light body impression materials simultaneously. (3) Two step double mix impression technique using a cellophane spacer (heavy body material used as a preliminary impression to create a wash space with a cellophane spacer, followed by the use of light body material). (4) Matrix impression using a matrix of polyether occlusal registration material. The matrix is loaded with heavy body material followed by a pick-up impression in medium body material. For each technique, thirty impressions were made of a stainless steel master model that contained three complete crown abutment preparations, which were used as the positive control. Accuracy was assessed by measuring eight dimensions (mesiodistal, faciolingual and inter-abutment) on stone dies poured from impressions of the master model. A two-tailed t test was carried out to test the significance in difference of the distances between the master model and the stone models. One way analysis of variance (ANOVA) was used for multiple group comparison followed by the Bonferroni's test for pair wise comparison. The accuracy was tested at α = 0.05. In general, polyether impression material produced stone dies that were smaller except for the dies produced from the one step double mix impression technique. The ANOVA revealed a highly

  9. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  10. Finding two-dimensional peaks

    International Nuclear Information System (INIS)

    Silagadze, Z.K.

    2007-01-01

    Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems

  11. Automatic two- and three-dimensional mesh generation based on fuzzy knowledge processing

    Science.gov (United States)

    Yagawa, G.; Yoshimura, S.; Soneda, N.; Nakao, K.

    1992-09-01

    This paper describes the development of a novel automatic FEM mesh generation algorithm based on the fuzzy knowledge processing technique. A number of local nodal patterns are stored in a nodal pattern database of the mesh generation system. These nodal patterns are determined a priori based on certain theories or past experience of experts of FEM analyses. For example, such human experts can determine certain nodal patterns suitable for stress concentration analyses of cracks, corners, holes and so on. Each nodal pattern possesses a membership function and a procedure of node placement according to this function. In the cases of the nodal patterns for stress concentration regions, the membership function which is utilized in the fuzzy knowledge processing has two meanings, i.e. the “closeness” of nodal location to each stress concentration field as well as “nodal density”. This is attributed to the fact that a denser nodal pattern is required near a stress concentration field. What a user has to do in a practical mesh generation process are to choose several local nodal patterns properly and to designate the maximum nodal density of each pattern. After those simple operations by the user, the system places the chosen nodal patterns automatically in an analysis domain and on its boundary, and connects them smoothly by the fuzzy knowledge processing technique. Then triangular or tetrahedral elements are generated by means of the advancing front method. The key issue of the present algorithm is an easy control of complex two- or three-dimensional nodal density distribution by means of the fuzzy knowledge processing technique. To demonstrate fundamental performances of the present algorithm, a prototype system was constructed with one of object-oriented languages, Smalltalk-80 on a 32-bit microcomputer, Macintosh II. The mesh generation of several two- and three-dimensional domains with cracks, holes and junctions was presented as examples.

  12. Three-dimensional MR imaging of the cerebrospinal system with the RARE technique

    International Nuclear Information System (INIS)

    Hennig, J.; Ott, D.; Ylayasski, J.

    1987-01-01

    Three-dimensional RARE myelography is a fast technique for high-resolution imaging of the cerebrospinal fluid. A data set with 1 x 1 x 1-mm resolution can be generated with a 12-minute acquisition time. Sophisticated three-dimensional display algorithms allow reconstruction of planes at arbitrary angles and full three-dimensional displays, which yield extremely useful information for neurosurgical planning. Additionally, the injection of contrast agent can be simulated on the computer and communication pathways between structures of interest can be found noninvasively

  13. Two-dimensional polyacrylamide gel analysis of Plodia interpunctella granulosis virus

    International Nuclear Information System (INIS)

    Russell, D.L.; Consigli, R.A.

    1986-01-01

    The structural polypeptides of purified Plodia interpunctella granulosis virus were analyzed by three different two-dimensional gel systems. Isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of 53 acidic polypeptides in the enveloped nucleocapsid of the virus ranging in molecular weight from 97,300 to 8000. Nine of these polypeptides were shown to be glycoproteins by the technique of radiolabeled lectin blotting. Separation of the granulin in this system allowed resolution of five species, all of which have identical tryptic peptide maps. This matrix protein was demonstrated to be a phosphoglycoprotein by radiolabeled lectin blotting and acid phosphatase dephosphorylation. Nonequilibrium pH gel electrophoresis followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of the major basic protein of the virus, VP12, from a more acidic protein of the same molecular weight. Tryptic peptide analysis demonstrated that these two proteins were indeed different and acid urea gels followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed localization of the acidic protein to the envelope and the basic protein to the nucleocapsid of the virus. Finally, probing of the separated envelope nucleocapsid proteins in both the isoelectric focusing and nonequilibrium pH gel electrophoresis two-dimensional systems after transfer to nitrocellulose with iodinated, purified viral proteins allowed further insight into reactions which may be important in the maintenance of the virion structure

  14. Quantum Communication Through a Two-Dimensional Spin Network

    International Nuclear Information System (INIS)

    Wang Zhaoming; Gu Yongjian

    2012-01-01

    We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.

  15. Two-dimensional wave propagation in layered periodic media

    KAUST Repository

    Quezada de Luna, Manuel

    2014-09-16

    We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.

  16. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields.

    Science.gov (United States)

    Sadek, Samir H; Pimenta, Francisco; Pinho, Fernando T; Alves, Manuel A

    2017-04-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron-sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro-particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time-scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. © 2016 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lorentz covariant tempered distributions in two-dimensional space-time

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1989-01-01

    The problem of describing Lorentz covariant distributions without any spectral condition has hitherto remained unsolved even for two-dimensional space-time. Attempts to solve this problem have already been made. Zharinov obtained an integral representation for the Laplace transform of Lorentz invariant distributions with support in the product of two-dimensional future light cones. However, this integral representation does not make it possible to obtain a complete description of the corresponding Lorentz invariant distributions. In this paper the author gives a complete description of Lorentz covariant distributions for two-dimensional space-time. No spectral conditions is assumed

  18. Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, James Francis [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO)3 and CpFe(CO)2 have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO)5[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO)5 have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.

  19. Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin.

    Science.gov (United States)

    Floris, Federico; Chiron, Lionel; Lynch, Alice M; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B

    2018-06-04

    Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. Graphical Abstract Two-dimensional mass spectrometry, when applied to primary fragment ions from the source, allows deep-sequencing of the protein calmodulin.

  20. Interfacial nondegenerate doping of MoS2 and other two-dimensional semiconductors.

    Science.gov (United States)

    Behura, Sanjay; Berry, Vikas

    2015-03-24

    Controlled nondegenerate doping of two-dimensional semiconductors (2DSs) with their ultraconfined carriers, high quantum capacitance, and surface-sensitive electronics can enable tuning their Fermi levels for rational device design. However, doping techniques for three-dimensional semiconductors, such as ion implantation, cannot be directly applied to 2DSs because they inflict high defect density. In this issue of ACS Nano, Park et al. demonstrate that interfacing 2DSs with substrates having dopants can controllably inject carriers to achieve nondegenerate doping, thus significantly broadening 2DSs' functionality and applications. Futuristically, this can enable complex spatial patterning/contouring of energy levels in 2DSs to form p-n junctions, integrated logic, and opto/electronic devices. The process is also extendable to biocellular-interfaced devices, band-continuum structures, and intricate 2D circuitry.

  1. Solution-Based Processing and Applications of Two-Dimensional Heterostructures

    Science.gov (United States)

    Hersam, Mark

    Two-dimensional materials have emerged as promising candidates for next-generation electronics and optoelectronics, but advances in scalable nanomanufacturing are required to exploit this potential in real-world technology. This talk will explore methods for improving the uniformity of solution-processed two-dimensional materials with an eye toward realizing dispersions and inks that can be deposited into large-area thin-films. In particular, density gradient ultracentrifugation allows the solution-based isolation of graphene, boron nitride, montmorillonite, and transition metal dichalcogenides (e.g., MoS2, WS2, ReS2, MoSe2, WSe2) with homogeneous thickness down to the atomically thin limit. Similarly, two-dimensional black phosphorus is isolated in organic solvents or deoxygenated aqueous surfactant solutions with the resulting phosphorene nanosheets showing field-effect transistor mobilities and on/off ratios that are comparable to micromechanically exfoliated flakes. By adding cellulosic polymer stabilizers to these dispersions, the rheological properties can be tuned by orders of magnitude, thereby enabling two-dimensional material inks that are compatible with a range of additive manufacturing methods including inkjet, gravure, screen, and 3D printing. The resulting solution-processed two-dimensional heterostructures show promise in several device applications including photodiodes, anti-ambipolar transistors, gate-tunable memristors, and heterojunction photovoltaics.

  2. Inter-layer Cooper pairing of two-dimensional electrons

    International Nuclear Information System (INIS)

    Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo

    1987-01-01

    The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)

  3. Sample preparation guidelines for two-dimensional electrophoresis.

    Science.gov (United States)

    Posch, Anton

    2014-12-01

    Sample preparation is one of the key technologies for successful two-dimensional electrophoresis (2DE). Due to the great diversity of protein sample types and sources, no single sample preparation method works with all proteins; for any sample the optimum procedure must be determined empirically. This review is meant to provide a broad overview of the most important principles in sample preparation in order to avoid a multitude of possible pitfalls. Sample preparation protocols from the expert in the field were screened and evaluated. On the basis of these protocols and my own comprehensive practical experience important guidelines are given in this review. The presented guidelines will facilitate straightforward protocol development for researchers new to gel-based proteomics. In addition the available choices are rationalized in order to successfully prepare a protein sample for 2DE separations. The strategies described here are not limited to 2DE and can also be applied to other protein separation techniques.

  4. Finite-size scaling in two-dimensional superfluids

    International Nuclear Information System (INIS)

    Schultka, N.; Manousakis, E.

    1994-01-01

    Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two-dimensional superfluid on large-size square lattices LxL up to 400x400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of L values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization-group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson renormalization group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments

  5. Optical contrast for identifying the thickness of two-dimensional materials

    Science.gov (United States)

    Bing, Dan; Wang, Yingying; Bai, Jing; Du, Ruxia; Wu, Guoqing; Liu, Liyan

    2018-01-01

    One of the most intriguing properties of two-dimensional (2D) materials is their thickness dependent properties. A quick and precise technique to identify the layer number of 2D materials is therefore highly desirable. In this review, we will introduce the basic principle of using optical contrast to determine the thickness of 2D material and also its advantage as compared to other modern techniques. Different 2D materials, including graphene, graphene oxide, transitional metal dichalcogenides, black phosphorus, boron nitride, have been used as examples to demonstrate the capability of optical contrast methods. A simple and more efficient optical contrast image technique is also emphasized, which is suitable for quick and large-scale thickness identification. We have also discussed the factors that could affect the experimental results of optical contrast, including incident light angle, anisotropic nature of materials, and also the twisted angle between 2D layers. Finally, we give perspectives on future development of optical contrast methods for the study and application of 2D materials.

  6. Two-particle correlations in the one-dimensional Hubbard model: a ground-state analytical solution

    CERN Document Server

    Vallejo, E; Espinosa, J E

    2003-01-01

    A solution to the extended Hubbard Hamiltonian for the case of two-particles in an infinite one-dimensional lattice is presented, using a real-space mapping method and the Green function technique. This Hamiltonian considers the on-site (U) and the nearest-neighbor (V) interactions. The method is based on mapping the correlated many-body problem onto an equivalent site-impurity tight-binding one in a higher dimensional space. In this new space we obtained the analytical solution for the ground state binding energy. Results are in agreement with the numerical solution obtained previously [1], and with those obtained in the reciprocal space [2]. (Author)

  7. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    Science.gov (United States)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that

  8. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  9. Estimates of error introduced when one-dimensional inverse heat transfer techniques are applied to multi-dimensional problems

    International Nuclear Information System (INIS)

    Lopez, C.; Koski, J.A.; Razani, A.

    2000-01-01

    A study of the errors introduced when one-dimensional inverse heat conduction techniques are applied to problems involving two-dimensional heat transfer effects was performed. The geometry used for the study was a cylinder with similar dimensions as a typical container used for the transportation of radioactive materials. The finite element analysis code MSC P/Thermal was used to generate synthetic test data that was then used as input for an inverse heat conduction code. Four different problems were considered including one with uniform flux around the outer surface of the cylinder and three with non-uniform flux applied over 360 deg C, 180 deg C, and 90 deg C sections of the outer surface of the cylinder. The Sandia One-Dimensional Direct and Inverse Thermal (SODDIT) code was used to estimate the surface heat flux of all four cases. The error analysis was performed by comparing the results from SODDIT and the heat flux calculated based on the temperature results obtained from P/Thermal. Results showed an increase in error of the surface heat flux estimates as the applied heat became more localized. For the uniform case, SODDIT provided heat flux estimates with a maximum error of 0.5% whereas for the non-uniform cases, the maximum errors were found to be about 3%, 7%, and 18% for the 360 deg C, 180 deg C, and 90 deg C cases, respectively

  10. Quasi-integrability and two-dimensional QCD

    International Nuclear Information System (INIS)

    Abdalla, E.; Mohayaee, R.

    1996-10-01

    The notion of integrability in two-dimensional QCD is discussed. We show that in spite of an infinite number of conserved charges, particle production is not entirely suppressed. This phenomenon, which we call quasi-integrability, is explained in terms of quantum corrections to the combined algebra of higher-conserved and spectrum-generating currents. We predict the qualitative form of particle production probabilities and verify that they are in agreement with numerical data. We also discuss four-dimensional self-dual Yang-Mills theory in the light of our results. (author). 25 refs, 4 figs, 1 tab

  11. Two-dimensional QCD in the Coulomb gauge

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Nefed'ev, A.V.

    2002-01-01

    Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru

  12. Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials

    DEFF Research Database (Denmark)

    Boll, Mads; Lotz, Mikkel Rønne; Hansen, Ole

    2014-01-01

    We demonstrate that the quasi-one-dimensional (1D) current transport, experimentally observed in graphene as measured by a collinear four-point probe in two electrode configurations A and B, can be interpreted using the sensitivity functions of the two electrode configurations (configurations...... A and B represents different pairs of electrodes chosen for current sources and potential measurements). The measured sheet resistance in a four-point probe measurement is averaged over an area determined by the sensitivity function. For a two-dimensional conductor, the sensitivity functions for electrode...... configurations A and B are different. But when the current is forced to flow through a percolation network, e.g., graphene with high density of extended defects, the two sensitivity functions become identical. This is equivalent to a four-point measurement on a line resistor, hence quasi-1D transport...

  13. Generalized perturbation theory using two-dimensional, discrete ordinates transport theory

    International Nuclear Information System (INIS)

    Childs, R.L.

    1979-01-01

    Perturbation theory for changes in linear and bilinear functionals of the forward and adjoint fluxes in a critical reactor has been implemented using two-dimensional discrete ordinates transport theory. The computer program DOT IV was modified to calculate the generalized functions Λ and Λ*. Demonstration calculations were performed for changes in a reaction-rate ratio and a reactivity worth caused by system perturbations. The perturbation theory predictions agreed with direct calculations to within about 2%. A method has been developed for calculating higher lambda eigenvalues and eigenfunctions using techniques similar to those developed for generalized functions. Demonstration calculations have been performed to obtain these eigenfunctions

  14. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Yoav, Hadar, E-mail: benyoav@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Amzel, Tal [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Sternheim, Marek [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel); Belkin, Shimshon [Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Rubin, Adi [Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, 69978 (Israel); Shacham-Diamand, Yosi [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Freeman, Amihay [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel)

    2011-11-01

    Highlights: > We present an electrochemical whole-cell biochip that can apply electric fields. > We examine the integration of cells on a biochip using electrophoretic deposition. > The effect of electric fields on the whole-cell biosensor has been demonstrated. > Relatively short DC electric pulse improves the performance of whole-cell biosensors. > Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that relatively

  15. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    International Nuclear Information System (INIS)

    Ben-Yoav, Hadar; Amzel, Tal; Sternheim, Marek; Belkin, Shimshon; Rubin, Adi; Shacham-Diamand, Yosi; Freeman, Amihay

    2011-01-01

    Highlights: → We present an electrochemical whole-cell biochip that can apply electric fields. → We examine the integration of cells on a biochip using electrophoretic deposition. → The effect of electric fields on the whole-cell biosensor has been demonstrated. → Relatively short DC electric pulse improves the performance of whole-cell biosensors. → Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that

  16. Noise-induced drift in two-dimensional anisotropic systems

    Science.gov (United States)

    Farago, Oded

    2017-10-01

    We study the isothermal Brownian dynamics of a particle in a system with spatially varying diffusivity. Due to the heterogeneity of the system, the particle's mean displacement does not vanish even if it does not experience any physical force. This phenomenon has been termed "noise-induced drift," and has been extensively studied for one-dimensional systems. Here, we examine the noise-induced drift in a two-dimensional anisotropic system, characterized by a symmetric diffusion tensor with unequal diagonal elements. A general expression for the mean displacement vector is derived and presented as a sum of two vectors, depicting two distinct drifting effects. The first vector describes the tendency of the particle to drift toward the high diffusivity side in each orthogonal principal diffusion direction. This is a generalization of the well-known expression for the noise-induced drift in one-dimensional systems. The second vector represents a novel drifting effect, not found in one-dimensional systems, originating from the spatial rotation in the directions of the principal axes. The validity of the derived expressions is verified by using Langevin dynamics simulations. As a specific example, we consider the relative diffusion of two transmembrane proteins, and demonstrate that the average distance between them increases at a surprisingly fast rate of several tens of micrometers per second.

  17. On-capillary sample cleanup method for the electrophoretic determination of carbohydrates in juice samples.

    Science.gov (United States)

    Morales-Cid, Gabriel; Simonet, Bartolomé M; Cárdenas, Soledad; Valcárcel, Miguel

    2007-05-01

    On many occasions, sample treatment is a critical step in electrophoretic analysis. As an alternative to batch procedures, in this work, a new strategy is presented with a view to develop an on-capillary sample cleanup method. This strategy is based on the partial filling of the capillary with carboxylated single-walled carbon nanotube (c-SWNT). The nanoparticles retain interferences from the matrix allowing the determination and quantification of carbohydrates (viz glucose, maltose and fructose). The precision of the method for the analysis of real samples ranged from 5.3 to 6.4%. The proposed method was compared with a method based on a batch filtration of the juice sample through diatomaceous earth and further electrophoretic determination. This method was also validated in this work. The RSD for this other method ranged from 5.1 to 6%. The results obtained by both methods were statistically comparable demonstrating the accuracy of the proposed methods and their effectiveness. Electrophoretic separation of carbohydrates was achieved using 200 mM borate solution as a buffer at pH 9.5 and applying 15 kV. During separation, the capillary temperature was kept constant at 40 degrees C. For the on-capillary cleanup method, a solution containing 50 mg/L of c-SWNTs prepared in 300 mM borate solution at pH 9.5 was introduced for 60 s into the capillary just before sample introduction. For the electrophoretic analysis of samples cleaned in batch with diatomaceous earth, it is also recommended to introduce into the capillary, just before the sample, a 300 mM borate solution as it enhances the sensitivity and electrophoretic resolution.

  18. Travelling wave solutions of two-dimensional Korteweg-de Vries-Burgers and Kadomtsev-Petviashvili equations

    International Nuclear Information System (INIS)

    Estevez, P G; Kuru, S; Negro, J; Nieto, L M

    2006-01-01

    The travelling wave solutions of the two-dimensional Korteweg-de Vries-Burgers and Kadomtsev-Petviashvili equations are studied from two complementary points of view. The first one is an adaptation of the factorization technique that provides particular as well as general solutions. The second one applies the Painleve analysis to both equations, throwing light on some aspects of the first method and giving an explanation to some restriction on the coefficients, as well as the relation between factorizations and integrals of motion

  19. Three-dimensional echocardiography of normal and pathologic mitral valve: a comparison with two-dimensional transesophageal echocardiography

    NARCIS (Netherlands)

    Salustri, A.; Becker, A. E.; van Herwerden, L.; Vletter, W. B.; ten Cate, F. J.; Roelandt, J. R.

    1996-01-01

    This study was done to ascertain whether three-dimensional echocardiography can facilitate the diagnosis of mitral valve abnormalities. The value of the additional information provided by three-dimensional echocardiography compared with two-dimensional multiplane transesophageal echocardiography for

  20. Computer-assisted techniques to evaluate fringe patterns

    Science.gov (United States)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1992-01-01

    Strain measurement using interferometry requires an efficient way to extract the desired information from interferometric fringes. Availability of digital image processing systems makes it possible to use digital techniques for the analysis of fringes. In the past, there have been several developments in the area of one dimensional and two dimensional fringe analysis techniques, including the carrier fringe method (spatial heterodyning) and the phase stepping (quasi-heterodyning) technique. This paper presents some new developments in the area of two dimensional fringe analysis, including a phase stepping technique supplemented by the carrier fringe method and a two dimensional Fourier transform method to obtain the strain directly from the discontinuous phase contour map.

  1. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  2. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  3. Mathematical analysis of the dimensional scaling technique for the Schroedinger equation with power-law potentials

    International Nuclear Information System (INIS)

    Ding Zhonghai; Chen, Goong; Lin, Chang-Shou

    2010-01-01

    The dimensional scaling (D-scaling) technique is an innovative asymptotic expansion approach to study the multiparticle systems in molecular quantum mechanics. It enables the calculation of ground and excited state energies of quantum systems without having to solve the Schroedinger equation. In this paper, we present a mathematical analysis of the D-scaling technique for the Schroedinger equation with power-law potentials. By casting the D-scaling technique in an appropriate variational setting and studying the corresponding minimization problem, the D-scaling technique is justified rigorously. A new asymptotic dimensional expansion scheme is introduced to compute asymptotic expansions for ground state energies.

  4. Comparison of indium-111 platelet scintigraphy and two-dimensional echocardiography in the diagnosis of left ventricular thrombi

    International Nuclear Information System (INIS)

    Ezekowitz, M.D.; Wilson, D.A.; Smith, E.O.; Burow, R.D.; Harrison, L.H. Jr.; Parker, D.E.; Elkins, R.C.; Peyton, M.; Taylor, F.B.

    1982-01-01

    In a study comparing indium-111 platelet scintigraphy and two-dimensional echocardiography as methods of identifying left ventricular thrombi, the results obtained with both techniques were verified at surgery or autopsy in 53 patients-34 with left ventricular aneurysms, and 19 with mitral-valve disease. Left ventricular thrombi were found at surgery or autopsy in 14 of the patients with aneurysms and in none of those with mitral-valve disease. Thirteen of 53 echocardiograms (25%) were technically inadequate and excluded from the analysis. In the group with aneurysms, the sensitivity of scintigraphy in detecting thrombi was 71%, and that of echocardiography was 77%. The specificity of scintigraphy was 100%, and that of echocardiography was 93%. We conclude that indium-111 platelet scintigraphy and two-dimensional echocardiography have useful and complementary roles in the detection of left ventricular thrombi. Both these noninvasive techniques can be used to monitor therapy

  5. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.

    2001-01-01

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  6. Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner

    Science.gov (United States)

    Miyazaki, Daisuke; Kawanishi, Tsuyoshi; Nishimura, Yasuhiro; Matsushita, Kenji

    2001-11-01

    A new three-dimensional display system based on a volume-scanning method is demonstrated. To form a three-dimensional real image, an inclined two-dimensional image is rapidly moved with a mirror scanner while the cross-section patterns of a three-dimensional object are displayed sequentially. A vector-scan CRT display unit is used to obtain a high-resolution image. An optical scanning system is constructed with concave mirrors and a galvanometer mirror. It is confirmed that three-dimensional images, formed by the experimental system, satisfy all the criteria for human stereoscopic vision.

  7. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    Science.gov (United States)

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A genetic electrophoretic variant of high-sulfur hair proteins for forensic hair comparisons. I. Characterization of variant high-sulfur proteins of human hair.

    Science.gov (United States)

    Miyake, B

    1989-02-01

    In a survey of the proteins from human hair, a genetic electrophoretic variant has been observed in the high-sulfur protein region. S-carboxymethylated proteins were examined by 15% polyacrylamide gel electrophoresis at pH 8.9. Out of 150 unrelated samples of Japanese head hairs analyzed, 107 showed 6 major high-sulfur protein bands (normal) and the remaining 43 samples showed an additional high-sulfur protein band (variant). Of 21 Caucasian samples analyzed only one variant sample was found. Characterization of the proteins by two-dimensional electrophoresis evidenced a variant protein spot which showed an apparent molecular weight of 30 k Da. Isoelectric points of the high-sulfur proteins ranged from 3.25-3.55 and that of variant protein band from 3.3-3.4. Family studies of 21 matings resulting in 49 children indicated that this variant was inherited in an autosomal fashion.

  9. Dynamic critical phenomena in two-dimensional fully frustrated Coulomb gas model with disorder

    International Nuclear Information System (INIS)

    Zhang Wei; Luo Mengbo

    2008-01-01

    The dynamic critical phenomena near depinning transition in two-dimensional fully frustrated square lattice Coulomb gas model with disorders was studied using Monte Carlo technique. The ground state of the model system with disorder σ=0.3 is a disordered state. The dependence of charge current density J on electric field E was investigated at low temperatures. The nonlinear J-E behavior near critical depinning field can be described by a scaling function proposed for three-dimensional flux line system [M.B. Luo, X. Hu, Phys. Rev. Lett. 98 (2007) 267002]. We evaluated critical exponents and found an Arrhenius creep motion for field region E c /2 c . The scaling law of the depinning transition is also obtained from the scaling function

  10. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  11. A two-stage preventive maintenance optimization model incorporating two-dimensional extended warranty

    International Nuclear Information System (INIS)

    Su, Chun; Wang, Xiaolin

    2016-01-01

    In practice, customers can decide whether to buy an extended warranty or not, at the time of item sale or at the end of the basic warranty. In this paper, by taking into account the moments of customers purchasing two-dimensional extended warranty, the optimization of imperfect preventive maintenance for repairable items is investigated from the manufacturer's perspective. A two-dimensional preventive maintenance strategy is proposed, under which the item is preventively maintained according to a specified age interval or usage interval, whichever occurs first. It is highlighted that when the extended warranty is purchased upon the expiration of the basic warranty, the manufacturer faces a two-stage preventive maintenance optimization problem. Moreover, in the second stage, the possibility of reducing the servicing cost over the extended warranty period is explored by classifying customers on the basis of their usage rates and then providing them with customized preventive maintenance programs. Numerical examples show that offering customized preventive maintenance programs can reduce the manufacturer's warranty cost, while a larger saving in warranty cost comes from encouraging customers to buy the extended warranty at the time of item sale. - Highlights: • A two-dimensional PM strategy is investigated. • Imperfect PM strategy is optimized by considering both two-dimensional BW and EW. • Customers are categorized based on their usage rates throughout the BW period. • Servicing cost of the EW is reduced by offering customized PM programs. • Customers buying the EW at the time of sale is preferred for the manufacturer.

  12. Particle simulation of a two-dimensional electrostatic plasma

    International Nuclear Information System (INIS)

    Patel, K.

    1989-01-01

    Computer simulation is a growing field of research and plasma physics is one of the important areas where it is being applied today. This report describes the particle method of simulating a two-dimensional electrostatic plasma. The methods used to discretise the plasma equations and integrate the equations of motion are outlined. The algorithm used in building a simulation program is described. The program is applied to simulating the Two-stream Instability occurring within an infinite plasma. The results of the simulation are presented. The growth rate of the instability as simulated is in excellent agreement with the growth rate as calculated using linear theory. Diagnostic techniques used in interpreting the data generated by the simulation program are discussed. A comparison of the computing environment of the ND and PC from a user's viewpoint is presented. It is observed that the PC is an acceptable computing tool for certain (non-trivial) physics problems, and that more extensive use of its computing power should be made. (author). 5 figs

  13. Fetal cardiac stroke volume determination by four-dimensional ultrasound with spatio-temporal image correlation compared with two-dimensional and Doppler ultrasonography.

    Science.gov (United States)

    Rizzo, Giuseppe; Capponi, Alessandra; Cavicchioni, Ottavia; Vendola, Marianne; Arduini, Domenico

    2007-12-01

    To assess the agreement of stroke volume (SV) measured with two-dimensional (2D) ultrasonography with Doppler capability (vs) four-dimensional (4D) with spatiotemporal image correlation (STIC) in normal and growth restricted fetuses. 2D Doppler and 4D STIC were used to measure SV of 40 normal fetuses at 20 to 22 and 28 to 32 weeks, and 16 growth-restricted fetuses at 26 to 34 weeks of gestation. Intraclass correlation was used to evaluate the agreement between left and right SV obtained by the two techniques, and proportionate Bland-Altman plots constructed. The time necessary to obtain SV was analyzed. The intraclass correlation coefficient between 2D Doppler and 4D STIC measurements for the left ventricle were 0.977 and 0.980 for the right ventricle. The proportionate limits of agreement between the two methods were 18.7 to 23.9% for the left ventricle and - 20.9 to 21.7% for the right ventricle. The time necessary to measure SV was significantly shorter with 4D STIC (3.1 (vs) 7.9 min p < 0.0001) than with 2D Doppler. There is a good agreement between SV measured either by 2D Doppler or by 4D STIC. The 4D STIC represents a simple and rapid technique to estimate fetal SV and promises to become the method of choice. Copyright (c) 2007 John Wiley & Sons, Ltd.

  14. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...

  15. Two-dimensional turbulent flows on a bounded domain

    NARCIS (Netherlands)

    Kramer, W.

    2006-01-01

    Large-scale flows in the oceans and the atmosphere reveal strong similarities with purely two-dimensional flows. One of the most typical features is the cascade of energy from smaller flow scales towards larger scales. This is opposed to three-dimensional turbulence where larger flow structures

  16. Intrinsic two-dimensional states on the pristine surface of tellurium

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-05-01

    Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.

  17. Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation

    International Nuclear Information System (INIS)

    Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco

    2002-01-01

    In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S N equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS N method, which consists in the application of the Laplace transform to the set of nodal S N equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S N up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S N equations for N up to 16 and we begin the convergence of the S N nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)

  18. 't Hooft torons and two-dimensional θ functions

    International Nuclear Information System (INIS)

    Lebedev, D.P.; Polikarpov, M.I.; Roslyi, A.A.

    1989-01-01

    We present a regular method of constructing the most general self-dual solutions and twisted boundary conditions of the 't Hooft-type solutions for SU(N) gauge theory on the four-dimensional Euclidean hypercube. The proposed construction uses the technique of the geometry of complex tori. All of the necessary definitions and results are given in the text

  19. Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.

    2005-01-01

    Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications

  20. Construction of two-dimensional quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, S.; Kondracki, W.

    1987-12-01

    We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.

  1. Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting

    Energy Technology Data Exchange (ETDEWEB)

    Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)

    1995-09-01

    This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.

  2. A two-dimensional Zn coordination polymer with a three-dimensional supra-molecular architecture.

    Science.gov (United States)

    Liu, Fuhong; Ding, Yan; Li, Qiuyu; Zhang, Liping

    2017-10-01

    The title compound, poly[bis-{μ 2 -4,4'-bis-[(1,2,4-triazol-1-yl)meth-yl]biphenyl-κ 2 N 4 : N 4' }bis-(nitrato-κ O )zinc(II)], [Zn(NO 3 ) 2 (C 18 H 16 N 6 ) 2 ] n , is a two-dimensional zinc coordination polymer constructed from 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Zn II cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligands, forming a distorted octa-hedral {ZnN 4 O 2 } coordination geometry. The linear 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligand links two Zn II cations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C-H⋯O, C-H⋯N, C-H⋯π and π-π stacking inter-actions, resulting in a three-dimensional supra-molecular architecture.

  3. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  4. Noninteracting beams of ballistic two-dimensional electrons

    International Nuclear Information System (INIS)

    Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.

    1991-01-01

    We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels

  5. Two-dimensional fluid-hammer analysis by the method of nearcharacteristics

    International Nuclear Information System (INIS)

    Shin, Y.W.; Kot, C.A.

    1975-05-01

    A numerical technique based on the method of nearcharacteristics is considered for solving propagation of fluid-hammer waves in a two-dimensional geometry. The solution is constructed by relating flow conditions by compatibility equations along lines called nearcharacteristics. Three choices are considered in the numerical scheme that are accurate within an error of the order of magnitude of the time step. Since the nearcharacteristics lie in the coordinate planes, the technique provides an efficient method requiring only simple interpolations in the initial plane. On the other hand, the nearcharacteristics fall outside the characteristics cone. Thus the solution procedure directly refers to conditions outside the true domain of dependence. The effect of this is studied through numerical calculation of a simple example problem and comparison with results obtained by a bicharacteristic method. Comparison is also made with existing analytical solutions and experiments. Furthermore, the three solution schemes considered are examined for numerical stability by the vonNeumann test. Two of the schemes were found to be unstable; the third yielded a stability criterion equivalent to that of the bicharacteristic formulation. The stability-analysis results were confirmed by numerical experimentation. (auth)

  6. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  7. Separation of complex fringe patterns using two-dimensional continuous wavelet transform.

    Science.gov (United States)

    Pokorski, Krzysztof; Patorski, Krzysztof

    2012-12-10

    A method for processing fringe patterns containing additively superimposed multiple fringe sets is presented. It enables to analyze different fringe families present in a single image separately. The proposed method is based on a two-dimensional continuous wavelet transform. A robust ridge extraction algorithm for a single fringe set extraction is presented. The method is fully automatic and requires no user interference. Spectral separation of fringe families is not required. Simulations are presented to verify performance and advantage of the proposed method over the Fourier transform based technique. Method validity has been confirmed using experimental images.

  8. Equilibrium: two-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7

  9. Bioactive and Antibacterial Coatings Based on Zein/Bioactive Glass Composites by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Nima Meyer

    2018-01-01

    Full Text Available This study investigated the electrophoretic deposition (EPD of the natural polymer zein combined with bioactive glass (BG particles. Through the deposition of various BG compositions, namely 45S5 BG and Cu-doped BG, this work sought to demonstrate the ability of the films to potentiate the formation of hydroxyapatite (HA in contact with simulated body fluid (SBF. Following incubation in SBF, the physical and chemical surface properties of the EPD films were evaluated using different characterization techniques. The formation of HA at the surface of the coatings following immersion in SBF was confirmed using Fourier transform infrared spectroscopy (FTIR. The results demonstrated HA formation in all coatings after seven days of immersion in SBF. Coating morphology and degradation of the zein films were characterized using environmental scanning electron microscopy (ESEM. The results confirmed EPD as a very convenient room temperature technique for production of ion releasing, bioactive, and antibacterial coatings for potential application in orthopedics.

  10. Improvement in printing technique of spiral CT three-dimensional colour image

    International Nuclear Information System (INIS)

    Wang Yicheng; Liu Feng; Zhang Ling

    2005-01-01

    Objective: To investigate the printing technique of spiral CT three-dimensional (3D) colour image. Methods: The 3D colour images of 136 patients were printed, with the equipment of Marconi spiral CT, personnel computer, colour ink printer, and network switchboard. Results: All printed images were satisfied by this method. Conclusion: This technique is economic, simple, and useful, and can meet the need for clinical diagnosis and operation. (authors)

  11. Development of one-energy group, two-dimensional, frequency dependent detector adjoint function based on the nodal method

    International Nuclear Information System (INIS)

    Khericha, Soli T.

    2000-01-01

    One-energy group, two-dimensional computer code was developed to calculate the response of a detector to a vibrating absorber in a reactor core. A concept of local/global components, based on the frequency dependent detector adjoint function, and a nodalization technique were utilized. The frequency dependent detector adjoint functions presented by complex equations were expanded into real and imaginary parts. In the nodalization technique, the flux is expanded into polynomials about the center point of each node. The phase angle and the magnitude of the one-energy group detector adjoint function were calculated for a detector located in the center of a 200x200 cm reactor using a two-dimensional nodalization technique, the computer code EXTERMINATOR, and the analytical solution. The purpose of this research was to investigate the applicability of a polynomial nodal model technique to the calculations of the real and the imaginary parts of the detector adjoint function for one-energy group two-dimensional polynomial nodal model technique. From the results as discussed earlier, it is concluded that the nodal model technique can be used to calculate the detector adjoint function and the phase angle. Using the computer code developed for nodal model technique, the magnitude of one energy group frequency dependent detector adjoint function and the phase angle were calculated for the detector located in the center of a 200x200 cm homogenous reactor. The real part of the detector adjoint function was compared with the results obtained from the EXTERMINATOR computer code as well as the analytical solution based on a double sine series expansion using the classical Green's Function solution. The values were found to be less than 1% greater at 20 cm away from the source region and about 3% greater closer to the source compared to the values obtained from the analytical solution and the EXTERMINATOR code. The currents at the node interface matched within 1% of the average

  12. Extended Polymorphism of Two-Dimensional Material

    NARCIS (Netherlands)

    Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro

    When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from

  13. Two-dimensional nonlinear equations of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1985-01-01

    Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations

  14. Photogrammetry: applications of a three-dimensional remote measurement technique

    International Nuclear Information System (INIS)

    Peak, K.

    1988-01-01

    Photogrammetry is defined as the precise art of abstracting measurements from photographic images. Used for many years as a means to produce the world's maps, it has, in recent years, been applied in many engineering environments. The nuclear industry has, in particular, benefitted from the close range applications of photogrammetry. This paper sets out to describe the techniques involved, from the site photography through to the analytical data extraction. It will include a number of examples of where photogrammetry has been used in the nuclear industry as a remote measurement technique, from simple monitoring exercises to the compilation of complex three-dimensional as-built computer models. (author)

  15. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean [Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143-1708 (United States)

    2011-08-15

    Purpose: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. Methods: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. Results: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. Conclusions: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this

  16. Simulation of diffusion in a two-dimensional lattice gas cellular automaton: a test of mode-coupling theory

    NARCIS (Netherlands)

    Frenkel, D.; Ernst, M.H.

    1989-01-01

    We compute the velocity autocorrelation function of a tagged particle in a two-dimensional lattice-gas cellular automaton using a method that is about a million times more efficient than existing techniques. A t-1 algebraic tail in the tagged-particle velocity autocorrelation function is clearly

  17. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    International Nuclear Information System (INIS)

    Munjal, Sandeep; Khare, Neeraj

    2016-01-01

    We have synthesized CoFe 2 O 4 (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible in water and form a stable aqueous solution with high electrophoretic mobility.

  18. Two dimensional (4,0) supergravity in harmonic superspace. The action and the matter couplings

    International Nuclear Information System (INIS)

    Lhallabi, T.; Saidi, E.H.

    1988-08-01

    The superfield formulation of the two dimensional (4,0) supergravity is developed using the harmonic superspace techniques. The different sets of constraints are given and their solutions are expressed in terms of a SU(2) self dual torsion superfield and harmonic prepotentials. The pure auxiliary (4,0) Einstein action generalizing the (2,0) one is written down and the most general (4,0) matter couplings are given. (author). 24 refs

  19. Superintegrability on the two dimensional hyperboloid

    International Nuclear Information System (INIS)

    Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr

    1998-01-01

    This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out

  20. Few helium atoms in quasi two-dimensional space

    International Nuclear Information System (INIS)

    Kilic, Srecko; Vranjes, Leandra

    2003-01-01

    Two, three and four 3 He and 4 He atoms in quasi two-dimensional space above graphite and cesium surfaces and in 'harmonic' potential perpendicular to the surface have been studied. Using some previously examined variational wave functions and the Diffusion Monte Carlo procedure, it has been shown that all molecules: dimers, trimers and tetramers, are bound more strongly than in pure two- and three-dimensional space. The enhancement of binding with respect to unrestricted space is more pronounced on cesium than on graphite. Furthermore, for 3 He 3 ( 3 He 4 ) on all studied surfaces, there is an indication that the configuration of a dimer and a 'free' particle (two dimers) may be equivalently established

  1. Effect of Rotation for Two-Temperature Generalized Thermoelasticity of Two-Dimensional under Thermal Shock Problem

    Directory of Open Access Journals (Sweden)

    Kh. Lotfy

    2013-01-01

    Full Text Available The theory of two-temperature generalized thermoelasticity based on the theory of Youssef is used to solve boundary value problems of two-dimensional half-space. The governing equations are solved using normal mode method under the purview of the Lord-Şhulman (LS and the classical dynamical coupled theory (CD. The general solution obtained is applied to a specific problem of a half-space subjected to one type of heating, the thermal shock type. We study the influence of rotation on the total deformation of thermoelastic half-space and the interaction with each other under the influence of two temperature theory. The material is homogeneous isotropic elastic half-space. The methodology applied here is use of the normal mode analysis techniques that are used to solve the resulting nondimensional coupled field equations for the two theories. Numerical results for the displacement components, force stresses, and temperature distribution are presented graphically and discussed. The conductive temperature, the dynamical temperature, the stress, and the strain distributions are shown graphically with some comparisons.

  2. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.; Dey, P.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Tokumoto, T.; Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States); Reno, J. L. [CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-10-07

    The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.

  3. Comparison of surface extraction techniques performance in computed tomography for 3D complex micro-geometry dimensional measurements

    DEFF Research Database (Denmark)

    Torralba, Marta; Jiménez, Roberto; Yagüe-Fabra, José A.

    2018-01-01

    micro-geometries as well (i.e., in the sub-mm dimensional range). However, there are different factors that may influence the CT process performance, being one of them the surface extraction technique used. In this paper, two different extraction techniques are applied to measure a complex miniaturized......The number of industrial applications of computed tomography (CT) for dimensional metrology in 100–103 mm range has been continuously increasing, especially in the last years. Due to its specific characteristics, CT has the potential to be employed as a viable solution for measuring 3D complex...... dental file by CT in order to analyze its contribution to the final measurement uncertainty in complex geometries at the mm to sub-mm scales. The first method is based on a similarity analysis: the threshold determination; while the second one is based on a gradient or discontinuity analysis: the 3D...

  4. Symmetrical analysis of the defect level splitting in two-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Malkova, N; Kim, S; Gopalan, V

    2003-01-01

    In this paper doubly degenerate defect states in the band gap of the two-dimensional photonic crystal are studied. These states can be split by a convenient distortion of the lattice. Through analogy with the Jahn-Teller effect in solids, we present a group theoretical analysis of the lifting of the degeneracy of doubly degenerate states in a square lattice by different vibronic modes. The effect is supported by the supercell plane-wave model and by the finite difference time domain technique. We suggest ways for using the effect in photonic switching devices and waveguides

  5. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  6. On the ground state of the two-dimensional non-ideal Bose gas

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Yudson, V.I.

    1978-01-01

    The theory of the ground state of the two-dimensional non-ideal Bose gas is presented. The conditions for the validity of the ladder and the Bogolubov approximations are derived. These conditions ensure the existence of a Bose condensate in the ground state of two-dimensional systems. These conditions are different from the corresponding conditions for the three-dimensional case. The connection between the effective interaction and the two-dimensional scattering amplitude at some characteristic energy kappa 2 /2m (not equal to 0) is obtained (f(kappa = 0) = infinity in the two-dimensional case). (Auth.)

  7. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  8. Warranty menu design for a two-dimensional warranty

    International Nuclear Information System (INIS)

    Ye, Zhi-Sheng; Murthy, D.N. Pra

    2016-01-01

    Fierce competitions in the commercial product market have forced manufacturers to provide customer-friendly warranties with a view to achieving higher customer satisfaction and increasing the market share. This study proposes a strategy that offers customers a two-dimensional warranty menu with a number of warranty choices, called a flexible warranty policy. We investigate the design of a flexible two-dimensional warranty policy that contains a number of rectangular regions. This warranty policy is obtained by dividing customers into several groups according to their use rates and providing each group a germane warranty region. Consumers choose a favorable one from the menu according to their usage behaviors. Evidently, this flexible warranty policy is attractive to users of different usage behaviors, and thus, it gives the manufacturer a good position in advertising the product. When consumers are unaware about their use rates upon purchase, we consider a fixed two-dimensional warranty policy with a stair-case warranty region and show that it is equivalent to the flexible policy. Such an equivalence reveals the inherent relationship between the rectangular warranty policy, the L-shape warranty policy, the step-stair warranty policy and the iso-probability of failure warranty policy that were extensively discussed in the literature. - Highlights: • We design a two-dimensional warranty menu with a number of warranty choices. • Consumers can choose a favorable one from the menu as per their usage behavior. • We further consider a fixed 2D warranty policy with a stair-case warranty region. • We show the equivalence of the two warranty policies.

  9. Two-dimensional condensation of physi-sorbed methane on layer-like halides

    International Nuclear Information System (INIS)

    Nardon, Yves

    1972-01-01

    Two-dimensional condensation of methane in physi-sorbed layers has been studied from sets of stepped isotherms of methane on the cleavage plane of layer-like halides (FeCl 2 , CdCl 2 , NiBr 2 , CdBr 2 , FeI 2 , CaI 2 , CaI 2 and PbI 2 ) in most cases prepared by sublimation in a rapid current of inert gas. The vertical parts of the steps of adsorption isotherms correspond to the formation of successive monomolecular layers by two-dimensional condensation. Thermodynamic analysis of experimental results, has mainly emphasized the important effect of the potential relief of adsorbent surfaces, on both the structure of the physi-sorbed layers and the two-dimensional critical temperature. From its entropy, we conclude that the first layer is a (111) plane of f.c.c.: methane which becomes more loosely packed as the dimensional compatibility of the lattices of the adsorbent and adsorbate becomes poorer. Experimental values of the two-dimensional critical temperatures in the first, second and third layers have been determined, and interpreted on the following basis. An expansion of the layer induces a lowering of the two-dimensional critical temperature by decreasing the lateral interaction energy, while a localisation of the adsorbed molecules in potential wells, when possible, induces a rise of the two-dimensional critical temperature. (author) [fr

  10. Bifurcated equilibria in two-dimensional MHD with diamagnetic effects

    International Nuclear Information System (INIS)

    Ottaviani, M.; Tebaldi, C.

    1998-12-01

    In this work we analyzed the sequence of bifurcated equilibria in two-dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied under the assumption of a constant equilibrium pressure gradient, not altered by the formation of the magnetic island. The formation of an island when the symmetric equilibrium becomes unstable is studied as a function of the tearing mode stability parameter Δ' and of the diamagnetic frequency, by employing fixed-points numerical techniques and an initial value code. At larger values of Δ' a tangent bifurcation takes place, above which no small island solutions exist. This bifurcation persists up to fairly large values of the diamagnetic frequency (of the order of one tenth of the Alfven frequency). The implications of this phenomenology for the intermittent MHD dynamics observed in tokamaks is discussed. (authors)

  11. Computing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuation

    Science.gov (United States)

    Charalampidis, E. G.; Kevrekidis, P. G.; Farrell, P. E.

    2018-01-01

    In this work we employ a recently proposed bifurcation analysis technique, the deflated continuation algorithm, to compute steady-state solitary waveforms in a one-component, two-dimensional nonlinear Schrödinger equation with a parabolic trap and repulsive interactions. Despite the fact that this system has been studied extensively, we discover a wide variety of previously unknown branches of solutions. We analyze the stability of the newly discovered branches and discuss the bifurcations that relate them to known solutions both in the near linear (Cartesian, as well as polar) and in the highly nonlinear regimes. While deflated continuation is not guaranteed to compute the full bifurcation diagram, this analysis is a potent demonstration that the algorithm can discover new nonlinear states and provide insights into the energy landscape of complex high-dimensional Hamiltonian dynamical systems.

  12. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    Science.gov (United States)

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  13. Two iridates, two models, and two approaches: A comparative study on magnetism in three-dimensional honeycomb materials

    Science.gov (United States)

    Lee, Eric Kin-Ho; Rau, Jeffrey G.; Kim, Yong Baek

    2016-05-01

    Two recent theoretical works studied the role of Kitaev interactions in the newly observed incommensurate magnetic order in the hyper-honeycomb (β -Li2IrO3 ) and stripy-honeycomb (γ -Li2IrO3 ) iridates. Each of these works analyzed a different model (J K Γ versus coupled zigzag chain model) using a contrasting method (classical versus soft-spin analysis). The lack of commonality between these works precludes meaningful comparisons and a proper understanding of these unusual orderings. In this study, we complete the unfinished picture initiated by these two works by solving both models with both approaches for both three-dimensional (3D) honeycomb iridates. Through comparisons between all combinations of models, techniques, and materials, we find that the bond-isotropic J K Γ model consistently predicts the experimental phase of β -Li2IrO3 regardless of the method used, while the experimental phase of γ -Li2IrO3 can be generated by the soft-spin approach with eigenmode mixing irrespective of the model used. To gain further insights, we solve a one-dimensional (1D) quantum spin-chain model related to both 3D models using the density matrix renormalization group method to form a benchmark. We discover that in the 1D model, incommensurate correlations in the classical and soft-spin analysis survive in the quantum limit only in the presence of the symmetric-off-diagonal exchange Γ found in the J K Γ model. The relevance of these results to the real materials is also discussed.

  14. Recent developments in comprehensive two-dimensional gas chromatography (GC X GC) I. Introduction and instrumental set-up

    NARCIS (Netherlands)

    Adahchour, M.; Beens, J.; Vreuls, R.J.J.; Brinkman, U.A.T.

    2006-01-01

    We review the literature on comprehensive two-dimensional gas chromatography (GC × GC), emphasizing developments in the period 2003-2005. The review opens with a general introduction, the principles of the technique and the set-up of GC × GC systems. It also discusses theoretical aspects, trends in

  15. Tridodecylamine, an efficient charge control agent in non-polar media for electrophoretic inks application

    Science.gov (United States)

    Noel, Amélie; Mirbel, Déborah; Cloutet, Eric; Fleury, Guillaume; Schatz, Christophe; Navarro, Christophe; Hadziioannou, Georges; CyrilBrochon

    2018-01-01

    In order to obtain efficient electrophoretic inks, Tridodecylamine (Dod3N), has been studied as charge control agent (CCA) in a non-polar paraffin solvent (Isopar G) for various inorganic pigments (TiO2 and Fe2O3). All hydrophobic mineral oxides, i.e. treated with octyltrimethoxysilane (C8) or dodecyltrimethoxysilane (C12), were found to be negatively charged in presence of Dod3N. The electrophoretic mobilities of inorganic pigments seemed to be strongly dependent of their isoelectric point (IEP) and also of the concentration of dod3N with an optimum range between 10 and 20 mM depending on the pigments. Finally, an electrophoretic ink constituted of hydrophobic mineral oxides in presence of Dod3N was tested in a device. Its efficiency as charge control agent to negatively charge hydrophobic particles was confirmed through good optical properties and fast response time (220 ms at 200 kV m-1).

  16. Tubulin-isotype analysis of two grass species-resistant to dinitroaniline herbicides.

    Science.gov (United States)

    Waldin, T R; Ellis, J R; Hussey, P J

    1992-09-01

    Trifluralin-resistant biotypes of Eleusine indica (L.) Gaertn. (goosegrass) and Setaria viridis (L.) Beauv. (green foxtail) exhibit cross-resistance to other dinitroaniline herbicides. Since microtubules are considered the primary target site for dinitroaniline herbicides we investigated whether the differential sensitivity of resistant and susceptible biotypes of these species results from modified tubulin polypeptides. One-dimensional and two-dimensional polyacrylamide gel electrophoresis combined with immunoblotting using well-characterised anti-tubulin monoclonal antibodies were used to display the family of tubulin isotypes in each species. Seedlings of E. indica exhibited four β-tubulin isotypes and one α-tubulin isotype, whereas those of S. viridis exhibited two β-tubulin and two α-tubulin isotypes. Comparison of the susceptible and resistant biotypes within each species revealed no differences in electrophoretic properties of the multiple tubulin isotypes. These results provide no evidence that resistance to dinitroaniline herbicides is associated with a modified tubulin polypeptide in these biotypes of E. indica or S. viridis.

  17. Conformal invariance and two-dimensional physics

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1993-01-01

    Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness

  18. Multisoliton formula for completely integrable two-dimensional systems

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1979-01-01

    For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations

  19. Localization and diagonalization. A review of functional integral techniques for low-dimensional gauge theories and topological field theories

    International Nuclear Information System (INIS)

    Blau, M.; Thompson, G.

    1995-01-01

    We review localization techniques for functional integrals which have recently been used to perform calculations in and gain insight into the structure of certain topological field theories and low-dimensional gauge theories. These are the functional integral counterparts of the Mathai-Quillen formalism, the Duistermaat-Heckman theorem, and the Weyl integral formula respectively. In each case, we first introduce the necessary mathematical background (Euler classes of vector bundles, equivariant cohomology, topology of Lie groups), and describe the finite dimensional integration formulae. We then discuss some applications to path integrals and give an overview of the relevant literature. The applications we deal with include supersymmetric quantum mechanics, cohomological field theories, phase space path integrals, and two-dimensional Yang-Mills theory. (author). 83 refs

  20. Three-dimensional demonstration of liver and spleen by computer graphics technique

    International Nuclear Information System (INIS)

    Kashiwagi, Toru; Azuma, Masayoshi; Katayama, Kazuhiro; Yoshioka, Hiroaki; Ishizu, Hiromi; Mitsutani, Natsuki; Koizumi, Takao; Takayama, Ichiro

    1987-01-01

    Three-dimensional demonstration system of the liver and spleen has been developed using computer graphics technique. Three-dimensional models were constructed from CT images of the organ surface. The three-dimensional images were displayed as wire-frame and/or solid models on the color CRT. The anatomical surface of the liver and spleen was realistically viewed from any direction. In liver cirrhosis, atrophy of the right lobe, hypertrophy of the left lobe and splenomegaly were displayed vividly. The liver and hepatoma were displayed as wire-frame and solid models respectively on the same image. This combined display clarified the intrahepatic location of hepatoma together with configuration of liver and hepatoma. Furthermore, superimposed display of three dimensional models and celiac angiogram enabled us to understand the location and configuration of lesions more easily than the original CT data or angiogram alone. Therefore, it is expected that this system is clinically useful for noninvasive evaluation of patho-morphological changes of the liver and spleen. (author)

  1. The blind student’s interpretation of two-dimensional shapes in geometry

    Science.gov (United States)

    Andriyani; Budayasa, I. K.; Juniati, D.

    2018-01-01

    The blind student’s interpretation of two-dimensional shapes represents the blind student’s mental image of two-dimensional shapes that they can’t visualize directly, which is related to illustration of the characteristics and number of edges and angles. The objective of this research is to identify the blind student’s interpretation of two-dimensional shapes. This research was an exploratory study with qualitative approach. A subject of this research is a sixth-grade student who experiencing total blind from the fifth grade of elementary school. Researchers interviewed the subject about his interpretation of two-dimensional shapes according to his thinking.The findings of this study show the uniqueness of blind students, who have been totally blind since school age, in knowing and illustrating the characteristics of edges and angles of two-dimensional shapes by utilizing visual experiences that were previously obtained before the blind. The result can inspire teachers to design further learning for development of blind student geometry concepts.

  2. An electrophoretical and immunological study of Pycnogonida, with phylogenetic considerations

    NARCIS (Netherlands)

    Munilla, Tomás; Haro, de Andrés

    1981-01-01

    An electrophoretical and immunological study is made of nine species of pycnogonids, representing seven families, from the Catalan coast. An electrophoretogram of each species is given and the antigenic properties of its protein bands are determined. Taking as comparative basis the serological

  3. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  4. Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Congjie [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Jiang, Bailing [School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816 (China); Liu, Ming [General Motors China Science Lab, Shanghai 201206 (China); Ge, Yanfeng [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2015-02-05

    Highlights: • A new protective composite coatings were prepared on AZ31B Mg alloy. • The E-coat locked into MAO coat by discharge channels forming a smoother and compact surface without defects. • Comparing with MAO coat, the MAOE composite coat could provide an excellent barrier for bare Mg against corrosion attack. - Abstract: A two layer composite coating system was applied on the surface of AZ31B magnesium alloy by Micro-arc Oxidation (MAO) plus electrophoretic coat (E-coat) technique. The Mg sample coated with MAO plus E-coat (MAOE) was compared with bare Mg and Mg sample coated by MAO only. The surface microstructure and cross section of bare and coated Mg before and after corrosion were examined by Scanning Electron Microscopy (SEM). The corrosion performance of bare and coated Mg was evaluated using electrochemical measurement and hydrogen evolution test. The results indicated that the corrosion resistance of AZ31B Mg alloy was significantly improved by MAOE composite coating. The corrosion mechanism of bare and coated Mg is discussed.

  5. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...

  6. Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems

    International Nuclear Information System (INIS)

    Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi

    2015-01-01

    Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima–Oikawa (YO) systems, which contain multi-short-wave components and single long-wave one, are presented by using the bilinear method. For two-dimensional system, the fundamental rational solution first describes the localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue waves can be obtained under certain parameter conditions and their behaviors are also classified to above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves are line localized waves which arise from the constant background with a line profile and then disappear into the constant background again. In particular, two-dimensional intermediate and dark counterparts of rogue wave are found with the different parameter requirements. We demonstrate that multirogue waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that the wave structures start from lump and then retreat back to it, and this transient wave possesses the patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional case is derived under the parameter constraints. - Highlights: • Exact explicit rational solutions of two-and one-dimensional multicomponent Yajima–Oikawa systems. • Two-dimensional rogue wave contains three different patterns: bright, intermediate and dark states. • Multi- and higher-order rogue waves exhibit distinct dynamic behaviors in two-dimensional case

  7. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  8. Trends in data processing of comprehensive two-dimensional chromatography: state of the art.

    Science.gov (United States)

    Matos, João T V; Duarte, Regina M B O; Duarte, Armando C

    2012-12-01

    The operation of advanced chromatographic systems, namely comprehensive two-dimensional (2D) chromatography coupled to multidimensional detectors, allows achieving a great deal of data that need special care to be processed in order to characterize and quantify as much as possible the analytes under study. The aim of this review is to identify the main trends, research needs and gaps on the techniques for data processing of multidimensional data sets obtained from comprehensive 2D chromatography. The following topics have been identified as the most promising for new developments in the near future: data acquisition and handling, peak detection and quantification, measurement of overlapping of 2D peaks, and data analysis software for 2D chromatography. The rational supporting most of the data processing techniques is based on the generalization of one-dimensional (1D) chromatography although algorithms, such as the inverted watershed algorithm, use the 2D chromatographic data as such. However, for processing more complex N-way data there is a need for using more sophisticated techniques. Apart from using other concepts from 1D chromatography, which have not been tested for 2D chromatography, there is still room for new improvements and developments in algorithms and software for dealing with 2D comprehensive chromatographic data. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Tyrosinase inhibitor screening in traditional Chinese medicines by electrophoretically mediated microanalysis.

    Science.gov (United States)

    Tang, Lilin; Zhang, Wenpeng; Zhao, Haiyan; Chen, Zilin

    2015-08-01

    A capillary-electrophoresis-based method for the screening of tyrosinase inhibitors in traditional Chinese medicines was developed. The method integrated electrophoretically mediated microanalysis with sandwich mode injection, partial filling, and rapid polarity switching techniques, and carried out on-column enzyme reaction and the separation of substrate and product. The conditions were optimized including the background electrolyte, mixing voltage, and the incubation time. Finally, the screening of nine standard natural compounds of traditional Chinese medicines was carried out. The inhibitors can be directly identified from the reduced peak area of the product compared to that obtained without any inhibitor. Chlorogenic acid (100 μM) showed inhibitory activity with the inhibitory percentage of 19.8%, while the other compounds showed no inhibitory activity. This method has great application potential in drug discovery from traditional Chinese medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-velocity two-phase flow two-dimensional modeling

    International Nuclear Information System (INIS)

    Mathes, R.; Alemany, A.; Thilbault, J.P.

    1995-01-01

    The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field

  11. Determination of γ-hydroxybutyrate in human urine samples by ion exclusion and ion exchange two-dimensional chromatography system.

    Science.gov (United States)

    Liu, Junwei; Deng, Zhifen; Zhu, Zuoyi; Wang, Yong; Wang, Guoqing; Sun, Yu-An; Zhu, Yan

    2017-12-15

    A two-dimensional ion chromatography system was developed for the determination of γ-hydroxybutyrate (GHB) in human urine samples. Ion exclusion chromatography was used in the first dimensional separation for elimination of urine matrices and detection of GHB above 10mgL -1 , ion exchange chromatography was used in the second dimensional separation via column-switching technique for detection of GHB above 0.08mgL -1 . Under the optimized chromatographic conditions, the ion exclusion and ion exchange chromatography separation system exhibited satisfactory repeatability (RSDchromatography system was convenient and practical for the determination of GHB in human urine samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    Energy Technology Data Exchange (ETDEWEB)

    Schultheis, M. [Université de Nice Sophia-Antipolis, CNRS, Observatoire de Côte d' Azur, Laboratoire Lagrange, 06304 Nice Cedex 4 (France); Zasowski, G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Allende Prieto, C. [Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Anders, F.; Chiappini, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Beaton, R. L.; García Pérez, A. E.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Beers, T. C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Bizyaev, D. [Apache Point Observatory, Sunspot, NM 88349 (United States); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Ge, J. [Astronomy Department, University of Florida, Gainesville, FL 32611 (United States); Hearty, F.; Schneider, D. P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); Muna, D. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, D. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shetrone, M., E-mail: mathias.schultheis@oca.eu, E-mail: gail.zasowski@gmail.com [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States)

    2014-07-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  13. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    International Nuclear Information System (INIS)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.; Anders, F.; Chiappini, C.; Beaton, R. L.; García Pérez, A. E.; Majewski, S. R.; Beers, T. C.; Bizyaev, D.; Frinchaboy, P. M.; Ge, J.; Hearty, F.; Schneider, D. P.; Holtzman, J.; Muna, D.; Nidever, D.; Shetrone, M.

    2014-01-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  14. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  15. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Sarkar, D.K., E-mail: dsarkar@uqac.ca; Chen, X-Grant

    2015-02-01

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  16. Temperature maxima in stable two-dimensional shock waves

    International Nuclear Information System (INIS)

    Kum, O.; Hoover, W.G.; Hoover, C.G.

    1997-01-01

    We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith model for strong shock waves in dilute three-dimensional gases. copyright 1997 The American Physical Society

  17. Tuning spin transport across two-dimensional organometallic junctions

    Science.gov (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping

    2018-01-01

    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.

  18. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  19. Advanced analytical techniques

    International Nuclear Information System (INIS)

    Mrochek, J.E.; Shumate, S.E.; Genung, R.K.; Bahner, C.T.; Lee, N.E.; Dinsmore, S.R.

    1976-01-01

    The development of several new analytical techniques for use in clinical diagnosis and biomedical research is reported. These include: high-resolution liquid chromatographic systems for the early detection of pathological molecular constituents in physiologic body fluids; gradient elution chromatography for the analysis of protein-bound carbohydrates in blood serum samples, with emphasis on changes in sera from breast cancer patients; electrophoretic separation techniques coupled with staining of specific proteins in cellular isoenzymes for the monitoring of genetic mutations and abnormal molecular constituents in blood samples; and the development of a centrifugal elution chromatographic technique for the assay of specific proteins and immunoglobulins in human blood serum samples

  20. Three-Dimensional X-Ray Diffraction Technique for Metals Science

    DEFF Research Database (Denmark)

    Zhang, Yubin; Fan, Guohua

    2017-01-01

    The three-dimensional X-ray diffraction (3DXRD) is a new, advanced technique for materials characterization. This technique utilizes high-energy synchrotron X-rays to characterize the 3D crystallographic structure and strain/stress state of bulk materials. As the measurement is non......-destructive, the microstructural evolution as a function of time can be followed, i.e. it allows 4D (x, y, z characterizations, t). The high brilliance of synchrotron X-rays ensures that diffraction signals from volumes of micrometer scale can be quickly detected and distinguished from the background noise, i.e. its spatial...... implemented in several large synchrotron facilities, e.g. the Advanced Photon Source (APS) in USA and the Spring-8 in Japan. Another family of 3DXRD technique that utilizes white beam synchrotron X-rays has also been developed in parallel in cooperation between Oak Ridge National Laboratory and APS...

  1. Layered ceramic composites via control of electrophoretic deposition kinetics

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Drdlík, D.; Chlup, Zdeněk; Maca, K.; Dlouhý, Ivo; Cihlář, J.

    2013-01-01

    Roč. 33, č. 12 (2013), s. 2305-2312 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GAP108/11/1644; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Alumina * Zirconia * Laminates * Electrophoretic deposition Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.307, year: 2013

  2. Three-dimensional carbon nanotube networks with a supported nickel oxide nanonet for high-performance supercapacitors.

    Science.gov (United States)

    Wu, Mao-Sung; Zheng, Yo-Ru; Lin, Guan-Wei

    2014-08-04

    A three-dimensional porous carbon nanotube film with a supported NiO nanonet was prepared by simple electrophoretic deposition and hydrothermal synthesis, which could deliver a high specific capacitance of 1511 F g(-1) at a high discharge current of 50 A g(-1) due to the significantly improved transport of the electrolyte and electrons.

  3. Automated Processing of Two-Dimensional Correlation Spectra

    Science.gov (United States)

    Sengstschmid; Sterk; Freeman

    1998-04-01

    An automated scheme is described which locates the centers of cross peaks in two-dimensional correlation spectra, even under conditions of severe overlap. Double-quantum-filtered correlation (DQ-COSY) spectra have been investigated, but the method is also applicable to TOCSY and NOESY spectra. The search criterion is the intrinsic symmetry (or antisymmetry) of cross-peak multiplets. An initial global search provides the preliminary information to build up a two-dimensional "chemical shift grid." All genuine cross peaks must be centered at intersections of this grid, a fact that reduces the extent of the subsequent search program enormously. The program recognizes cross peaks by examining the symmetry of signals in a test zone centered at a grid intersection. This "symmetry filter" employs a "lowest value algorithm" to discriminate against overlapping responses from adjacent multiplets. A progressive multiplet subtraction scheme provides further suppression of overlap effects. The processed two-dimensional correlation spectrum represents cross peaks as points at the chemical shift coordinates, with some indication of their relative intensities. Alternatively, the information is presented in the form of a correlation table. The authenticity of a given cross peak is judged by a set of "confidence criteria" expressed as numerical parameters. Experimental results are presented for the 400-MHz double-quantum-filtered COSY spectrum of 4-androsten-3,17-dione, a case where there is severe overlap. Copyright 1998 Academic Press.

  4. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly...

  5. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    International Nuclear Information System (INIS)

    Xiong, Kecai; Liu, Wei; Teat, Simon J.; An, Litao; Wang, Hao; Emge, Thomas J.; Li, Jing

    2015-01-01

    Two new hybrid lead halides (H 2 BDA)[PbI 4 ] (1) (H 2 BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI 3 ] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations

  6. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kecai; Liu, Wei [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Teat, Simon J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); An, Litao; Wang, Hao; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Li, Jing, E-mail: jingli@rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2015-10-15

    Two new hybrid lead halides (H{sub 2}BDA)[PbI{sub 4}] (1) (H{sub 2}BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI{sub 3}] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations.

  7. Pair Interaction of Dislocations in Two-Dimensional Crystals

    Science.gov (United States)

    Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.

    2005-10-01

    The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.

  8. Two-dimensional photon-echo spectroscopy at a conical intersection: A two-mode pyrazine model with dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Sala, Matthieu; Egorova, Dassia

    2016-12-20

    The multi-dimensional electronic spectroscopy of ultrafast nuclear dynamics at conical intersections (CI) is an emerging field of investigation, which profits also from the recent extension of the techniques to the UV domain. We present a detailed computational study of oscillatory signatures in two-dimensional (2D) photon-echo spectroscopy (also known as 2D electronic spectroscopy, 2DES) for the two-mode pyrazine model with dissipation. Conventional 2D signals as well as the resulting beating maps are considered. Although of a reduced character, the model captures quite well all the main signatures of the excited-state dynamics of the molecule. Due to the ultrafast relaxation via the CI and no excited-state absorption from the low-lying dark state, the oscillatory components of the signal are found to be predominantly determined by the ground state bleach contribution. They reflect, therefore, the ground-state vibrational coherence induced in the Raman active mode. Beating maps provide a way to experimentally differentiate between ground state bleach and stimulated emission oscillatory components. The ultrafast decay of the latter constitutes a clear indirect signature of the CI. In the considered model, because of the sign properties of the involved transition dipole moments, the dominance of the ground-state coherence leads to anti-correlated oscillations of cross peaks located at symmetric positions with respect to the main diagonal.

  9. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine D; Savran, Mona Meral; Konge, Lars

    2016-01-01

    were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...

  10. Two-dimensional spectrophotometry of planetary nebulae by CCD imaging

    International Nuclear Information System (INIS)

    Jacoby, G.H.; Africano, J.L.; Quigley, R.J.; Western Washington Univ., Bellingham, WA)

    1987-01-01

    The spatial distribution of the electron temperature and density and the ionic abundances of O(+), O(2+), N(+), and S(+) have been derived from CCD images of the planetary nebulae NGC 40 and NGC 6826 taken in the important emission lines of forbidden O II, forbidden O III, H-beta, forbidden N II, and forbidden S II. The steps required in the derivation of the absolute fluxes, line, ratios, and ionic abundances are outlined and then discussed in greater detail. The results show that the CCD imaging technique for two-dimensional spectrophotometry can effectively compete with classical spectrophotometry, providing the added benefits of complete spatial coverage at seeing-disk spatial resolution. The multiplexing in the spatial dimension, however, results in a loss of spectral information, since only one emission line is observed at any one time. 37 references

  11. Two-dimensional computer simulation of high intensity proton beams

    CERN Document Server

    Lapostolle, Pierre M

    1972-01-01

    A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).

  12. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  13. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  14. Finite-time barriers to front propagation in two-dimensional fluid flows

    Science.gov (United States)

    Mahoney, John R.; Mitchell, Kevin A.

    2015-08-01

    Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."

  15. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films

    Energy Technology Data Exchange (ETDEWEB)

    Deen, I. [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Zhitomirsky, I., E-mail: zhitom@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2014-02-15

    Highlights: ► Composite halloysite nanotubes–hydroxyapatite–hyaluronic acid films were prepared. ► Electrophoretic deposition method was used for deposition. ► Natural hyaluronic acid was used as a dispersing, charging and film forming agent. ► Film composition and deposition yield can be varied. ► The films can be used for biomedical implants with controlled release of drugs. -- Abstract: Electrophoretic deposition method has been developed for the deposition of biocomposite films containing halloysite nanotubes (HNTs), hydroxyapatite (HA) and hyaluronic acid. The method is based on the use of natural hyaluronate biopolymer as a dispersing and charging agent for HNT and HA and film forming agent for the fabrication of the composite films. The deposition kinetics was studied by the quartz crystal microbalance method. The composite films were studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis and electron microscopy. The composite films are promising materials for the fabrication of biomedical implants with advanced functional properties.

  16. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films

    International Nuclear Information System (INIS)

    Deen, I.; Zhitomirsky, I.

    2014-01-01

    Highlights: ► Composite halloysite nanotubes–hydroxyapatite–hyaluronic acid films were prepared. ► Electrophoretic deposition method was used for deposition. ► Natural hyaluronic acid was used as a dispersing, charging and film forming agent. ► Film composition and deposition yield can be varied. ► The films can be used for biomedical implants with controlled release of drugs. -- Abstract: Electrophoretic deposition method has been developed for the deposition of biocomposite films containing halloysite nanotubes (HNTs), hydroxyapatite (HA) and hyaluronic acid. The method is based on the use of natural hyaluronate biopolymer as a dispersing and charging agent for HNT and HA and film forming agent for the fabrication of the composite films. The deposition kinetics was studied by the quartz crystal microbalance method. The composite films were studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis and electron microscopy. The composite films are promising materials for the fabrication of biomedical implants with advanced functional properties

  17. Using FDFD Technique in Two-Dimensional TE Analysis for Modeling Clutter in Wall Penetrating Radar

    Directory of Open Access Journals (Sweden)

    David Insana

    2014-01-01

    Full Text Available Finite difference frequency domain (FDFD computational electromagnetic modeling is implemented to perform a two-dimensional TEz analysis for the application of wall penetrating radar (WPR. Resolving small targets of interest, embedded in a strong clutter environment of unknown configuration, is difficult. Field interaction between clutter elements will dominate the received fields back-scattered from the scene. Removing the effects of clutter ultimately relies on the accuracy of the model. Analysis starts with a simple model that continues to build based on the dominant scattering features of the scene. FDFD provides a steady state frequency response to a discrete excitation. Taking the fast Fourier transform of the wideband response of the scene, at several external transmit/receive locations, produces 2D images of the clutter, which are used to mature the model.

  18. Self-focusing instability of two-dimensional solitons and vortices

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Juul Rasmussen, J.

    1995-01-01

    The instability of two-dimensional solitons and vortices is demonstrated in the framework of the three-dimensional nonlinear Schrodinger equation (NLSE). The instability can be regarded as the analog of the Kadomtsev-Petviashvili instability [B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl...

  19. Scalable Clustering of High-Dimensional Data Technique Using SPCM with Ant Colony Optimization Intelligence

    Directory of Open Access Journals (Sweden)

    Thenmozhi Srinivasan

    2015-01-01

    Full Text Available Clusters of high-dimensional data techniques are emerging, according to data noisy and poor quality challenges. This paper has been developed to cluster data using high-dimensional similarity based PCM (SPCM, with ant colony optimization intelligence which is effective in clustering nonspatial data without getting knowledge about cluster number from the user. The PCM becomes similarity based by using mountain method with it. Though this is efficient clustering, it is checked for optimization using ant colony algorithm with swarm intelligence. Thus the scalable clustering technique is obtained and the evaluation results are checked with synthetic datasets.

  20. Theory for disordered phase in Heisenberg and non-Heisenberg two-dimensional S=1 ferromagnets

    International Nuclear Information System (INIS)

    Spirin, D.V.; Fridman, Yu.A.

    2003-01-01

    We apply a modification of self-consistent spin-wave theory to investigation of two-dimensional S=1 isotropic Heisenberg and non-Heisenberg ferromagnets at nonzero temperatures. We use Hubbard operators method and bosonization technique. We calculated chemical potential and found dependence of correlation length on temperature. Specific heat has Schottky-type peak and decreases at high temperatures. Disordered phase in non-Heisenberg ferromagnet is also studied. The results for such a model differ from those of Heisenberg one

  1. Quasi-two-dimensional thermoelectricity in SnSe

    Science.gov (United States)

    Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.

    2018-01-01

    Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.

  2. Acoustic phonon emission by two dimensional plasmons

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-06-01

    Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig

  3. Two-dimensional Lorentz-Weyl anomaly and gravitational Chern-Simons theory

    International Nuclear Information System (INIS)

    Chamseddine, A.H.; Froehlich, J.

    1992-01-01

    Two-dimensional chiral fermions and bosons, more generally conformal blocks of two-dimensional conformal field theories, exhibit Weyl-, Lorentz- and mixed Lorentz-Weyl anomalies. A novel way of computing these anomalies for a system of chiral bosons of arbitrary conformal spin j is sketched. It is shown that the Lorentz- and mixed Lorentz-Weyl anomalies of these theories can be cancelled by the anomalies of a three-dimensional classical Chern-Simons action for the spin connection, expressed in terms of the dreibein field. Some tentative applications of this result to string theory are indicated. (orig.)

  4. Bayesian approach for peak detection in two-dimensional chromatography

    NARCIS (Netherlands)

    Vivó-Truyols, G.

    2012-01-01

    A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual

  5. Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence

    Directory of Open Access Journals (Sweden)

    Ashton S. Bradley

    2012-10-01

    Full Text Available We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ. We show that, for the divergence-free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be decomposed into an ultraviolet regime (k≫ξ^{-1} having a universal k^{-3} scaling arising from the vortex core structure, and an infrared regime (k≪ξ^{-1} with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov k^{-5/3} power law, which is consistent with the existence of an inertial range. The presence of these k^{-3} and k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale k≈ξ^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.

  6. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...

  7. Two-dimensional atom localization via Raman-driven coherence

    Energy Technology Data Exchange (ETDEWEB)

    Rahmatullah,; Qamar, Sajid, E-mail: sajid_qamar@comsats.edu.pk

    2014-02-07

    A scheme for two-dimensional (2D) atom localization via Raman-driven coherence in a four-level diamond-configuration system is suggested. The atom interacts with two orthogonal standing-wave fields where each standing-wave field is constructed from the superposition of the two-standing wave fields along the corresponding directions. Due to the position-dependent atom–field interaction, the frequency of the spontaneously emitted photon carries the position information about the atom. We investigate the effect of the detunings and phase shifts associated with standing-wave fields. Unique position information of the single atom is obtained by properly adjusting the system parameters. This is an extension of our previous proposal for one-dimensional atom localization via Raman-driven coherence.

  8. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    Science.gov (United States)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  9. Studies of serial serum electrophoretic pattern for prognosis in various cancer patients during irradiation

    International Nuclear Information System (INIS)

    Ra, Woo Youn; Woo, Won Hyung

    1971-01-01

    During the period from June. 1969 to Dec. 1970, the serum protein electrophoretic patterns of 44 cases of various cancer patients have been studied to determine the alterations in serum protein fractions in patients who were responding to irradiation or those failing. The serum electrophoretic pattern could be observed as an indicator of prognosis or radiosensitivity. A blood sample was obtained prior to any treatment and the follow up sampling was performed 2 times during radiation therapy. Serum total protein was determined by the method of Wolfson and serum electrophoresis was carried out by using Spinoco Model R B electrophoresis system. The results were following: Seven cases out of cases of cervical cancer responding favorably to radiotherapy showed decreased in Alpha-2 globulin fraction were increased. A case whose third time serum electrophoretic pattern showed multiple myeloma type died 5 months after radiotherapy with bone metastasis. Four cases out of 9 cases of favorably responded breast cancer patients showed decreased in Alpha-2 globulin foraction compared with 2 cases of unfavorable response showed increased in Alpha-2 globulin fraction

  10. Studies of serial serum electrophoretic pattern for prognosis in various cancer patients during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ra, Woo Youn; Woo, Won Hyung [Kyungpook National University School of Medicine, Taegu (Korea, Republic of)

    1971-10-15

    During the period from June. 1969 to Dec. 1970, the serum protein electrophoretic patterns of 44 cases of various cancer patients have been studied to determine the alterations in serum protein fractions in patients who were responding to irradiation or those failing. The serum electrophoretic pattern could be observed as an indicator of prognosis or radiosensitivity. A blood sample was obtained prior to any treatment and the follow up sampling was performed 2 times during radiation therapy. Serum total protein was determined by the method of Wolfson and serum electrophoresis was carried out by using Spinoco Model R B electrophoresis system. The results were following: Seven cases out of cases of cervical cancer responding favorably to radiotherapy showed decreased in Alpha-2 globulin fraction were increased. A case whose third time serum electrophoretic pattern showed multiple myeloma type died 5 months after radiotherapy with bone metastasis. Four cases out of 9 cases of favorably responded breast cancer patients showed decreased in Alpha-2 globulin foraction compared with 2 cases of unfavorable response showed increased in Alpha-2 globulin fraction.

  11. Dynamical class of a two-dimensional plasmonic Dirac system.

    Science.gov (United States)

    Silva, Érica de Mello

    2015-10-01

    A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.

  12. Effect of different impression materials and techniques on the dimensional accuracy of implant definitive casts.

    Science.gov (United States)

    Ebadian, Behnaz; Rismanchian, Mansor; Dastgheib, Badrosadat; Bajoghli, Farshad

    2015-01-01

    Different factors such as impression techniques and materials can affect the passive fit between the superstructure and implant. The aim of this study was to determine the effect of different impression materials and techniques on the dimensional accuracy of implant definitive casts. Four internal hex implants (Biohorizons Ø4 mm) were placed on a metal maxillary model perpendicular to the horizontal plane in maxillary lateral incisors, right canine and left first premolar areas. Three impression techniques including open tray, closed tray using ball top screw abutments and closed tray using short impression copings and two impression materials (polyether and polyvinyl siloxane) were evaluated (n = 60). The changes in distances between implant analogues in mediolateral (x) and anteroposterior (y) directions and analogue angles in x/z and y/z directions in the horizontal plane on the definitive casts were measured by coordinate measuring machine. The data were analyzed by multivariate two-way analysis of variance and one sample t-test (α = 0.05). No statistical significant differences were observed between different impression techniques and materials. However, deviation and distortion of definitive casts had a significant difference with the master model when short impression copings and polyvinyl siloxane impression material were used (P impression materials (P impression techniques; however, less distortion and deviation were observed in the open tray technique. In the closed tray impression technique, ball top screw was more accurate than short impression copings.

  13. Three-dimensional laser scanning technique to quantify aggregate and ballast shape properties

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2013-06-01

    Full Text Available methods towards a more accurate and automated techniques to quantify aggregate shape properties. This paper validates a new flakiness index equation using three-dimensional (3-D) laser scanning data of aggregate and ballast materials obtained from...

  14. An orientation-space super sampling technique for six-dimensional diffraction contrast tomography

    NARCIS (Netherlands)

    N.R. Viganò (Nicola); K.J. Batenburg (Joost); W. Ludwig (Wolfgang)

    2016-01-01

    textabstractDiffraction contrast tomography (DCT) is an X-ray full-field imaging technique that allows for the non-destructive three-dimensional investigation of polycrystalline materials and the determination of the physical and morphological properties of their crystallographic domains, called

  15. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  16. Three-dimensional image reconstruction using rotational digital subtraction technique: the initial experience of the clinical application

    International Nuclear Information System (INIS)

    Ouyang Zhongnan; Tang Jun; He Jianjun; Lu Xiaohe; Xun Yanping

    2002-01-01

    Objective: To evaluate the benefit of three-dimensional (3D) reconstruction images with rotational digital subtraction technique for the clinical applications. Methods: Conventional two-dimensional digital substraction angiography (2D DSA) was obtained on A-P and lateral view. Three-dimensional digital subtraction angiography (3D DSA) images were obtained by reconstruction of a rotational acquisition on a C-arm (LCV +, GE Medical Systems) spinning at 40 degrees per second. 53 cases of cerebral angiographies were performed (32 men and 21 women; the age ranged from 19 to 72 years, mean 46.3 years). Results: In this series of 53 cases of cerebral angiographies, 5 cases of arteriovenous malformation were all correctly diagnosed by 3D DSA and 2D DSA. Seven cases were misdiagnosed as intracranial aneurysms at conventional 2D DSA but confirmed to be kinking of the vessel by 3D DSA. 41 cases were confirmed to be intracranial aneurysms. Of the 41 cases, 5 cases were diagnosed as normal at 2D DSA but confirmed to be intracranial aneurysms at 3D DSA. The total consistency rate of 3D DSA and 2D DSA for the diagnosis of intracranial aneurysm is 77.4% (41/53). The consistent test shows that there was consistency between the two modalities (chi-square test, χ 2 = 5.267, P < 0.05). 29 cases were treated with endovascular coil embolization. Among them only 3 cases of the aneurysm's neck could be best visualized by 2D DSA but 29 cases by 3D DSA. Conclusion: 3D reconstruction images with rotational digital subtraction technique is a useful tool to study the vascular diseases using less contrast agent and a lower radiation dose and shortening the examination process. It is replenishment for conventional 2D DSA. This technique enables better diagnosis for intracranial vascular lesion and visualization of complex vascular relationships and structures. It is valuable for surgical planning and interventional procedure

  17. Benchmark numerical solutions for radiative heat transfer in two-dimensional medium with graded index distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.H. [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)]. E-mail: lhliu@hit.edu.cn

    2006-11-15

    In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.

  18. Experimental technique for study on three-particle reactions in kinematically total experiments with usage of the two-processor complex on the M-400 computer basis

    International Nuclear Information System (INIS)

    Berezin, F.N.; Kisurin, V.A.; Nemets, O.F.; Ofengenden, R.G.; Pugach, V.M.; Pavlenko, Yu.N.; Patlan', Yu.V.; Savrasov, S.S.

    1981-01-01

    Experimental technique for investigation of three-particle nuclear reactions in kinematically total experiments is described. The technique provides the storage of one-dimensional and two- dimensional energy spectra from several detectors. A block diagram of the measuring system, using this technique, is presented. The measuring system consists of analog equipment for rapid-slow coincidences and of a two-processor complex on the base of the M-400 computer with a general bus. Application of a two-processor complex, each computer of which has a possibility of direct access to memory of another computer, permits to separate functions of data collection and data operational presentation and to perform necessary physical calculations. Software of the measuring complex which includes programs written using the ASSEMBLER language for the first computer and functional programs written using the BASIC language for the second computer, is considered. Software of the first computer includes the DISPETCHER dialog control program, driver package for control of external devices, of applied program package and system modules. The technique, described, is tested in experiment on investigation of d+ 10 B→α+α+α three- particle reaction at deutron energy of 13.6 MeV. The two-dimensional energy spectrum reaction obtained with the help of the technique described is presented [ru

  19. Effect of acids and bases on electrophoretic deposition of

    Czech Academy of Sciences Publication Activity Database

    Cihlář, J.; Drdlík, D.; Cihlářová, Z.; Hadraba, Hynek

    2013-01-01

    Roč. 33, č. 10 (2013), s. 1885-1892 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GD106/09/H035 Institutional support: RVO:68081723 Keywords : Electrophoretic deposition * Zirconia * Alumina * 2-Propanol * Electrosteric stabilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.307, year: 2013

  20. Two-dimensional transport of tokamak plasmas

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Jardin, S.C.

    1979-01-01

    A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape