Energy Technology Data Exchange (ETDEWEB)
Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.
1978-06-01
A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10/sup 8/ kg, with a corresponding kinetic energy of 1.88 x 10/sup 16/ J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references.
Computer-based training in two-dimensional echocardiography using an echocardiography simulator.
Weidenbach, Michael; Wild, Florentine; Scheer, Kathrin; Muth, Gerhard; Kreutter, Stefan; Grunst, Gernoth; Berlage, Thomas; Schneider, Peter
2005-04-01
Two-dimensional (2D) echocardiography is a user-dependent technique that poses some inherent problems to the beginner. The first problem for beginners is spatial orientation, especially the orientation of the scan plane in reference to the 3-dimensional (3D) geometry of the heart. The second problem for beginners is steering of the ultrasound probe. We have designed a simulator to teach these skills. On a computer screen a side-by-side presentation of a 3D virtual reality scene on the right side and a 2D echocardiographic view on the left side is given. The virtual scene consists of a 3D heart and an ultrasound probe with scan plane. The 2D echocardiographic image is calculated from 3D echocardiographic data sets that are registered with the heart model to achieve spatial and temporal congruency. The displayed 2D echocardiographic image is defined and controlled by the orientation of the virtual scan plane. To teach hand-eye coordination we equipped a dummy transducer with a 3D tracking system and placed it on a dummy torso. We have evaluated the usability of the simulator in an introductory course for final-year medical students. The simulator was graded realistic and easy to use. According to a subjective self-assessment by a standardized questionnaire the aforementioned skills were imparted effectively.
Computation and validation of two-dimensional PSF simulation based on physical optics
Tayabaly, K; Sironi, G; Canestrari, R; Lavagna, M; Pareschi, G
2016-01-01
The Point Spread Function (PSF) is a key figure of merit for specifying the angular resolution of optical systems and, as the demand for higher and higher angular resolution increases, the problem of surface finishing must be taken seriously even in optical telescopes. From the optical design of the instrument, reliable ray-tracing routines allow computing and display of the PSF based on geometrical optics. However, such an approach does not directly account for the scattering caused by surface microroughness, which is interferential in nature. Although the scattering effect can be separately modeled, its inclusion in the ray-tracing routine requires assumptions that are difficult to verify. In that context, a purely physical optics approach is more appropriate as it remains valid regardless of the shape and size of the defects appearing on the optical surface. Such a computation, when performed in two-dimensional consideration, is memory and time consuming because it requires one to process a surface map wit...
Lin, Yi-Chung; Haftka, Raphael T; Queipo, Nestor V; Fregly, Benjamin J
2009-04-01
Computational speed is a major limiting factor for performing design sensitivity and optimization studies of total knee replacements. Much of this limitation arises from extensive geometry calculations required by contact analyses. This study presents a novel surrogate contact modeling approach to address this limitation. The approach involves fitting contact forces from a computationally expensive contact model (e.g., a finite element model) as a function of the relative pose between the contacting bodies. Because contact forces are much more sensitive to displacements in some directions than others, standard surrogate sampling and modeling techniques do not work well, necessitating the development of special techniques for contact problems. We present a computational evaluation and practical application of the approach using dynamic wear simulation of a total knee replacement constrained to planar motion in a Stanmore machine. The sample points needed for surrogate model fitting were generated by an elastic foundation (EF) contact model. For the computational evaluation, we performed nine different dynamic wear simulations with both the surrogate contact model and the EF contact model. In all cases, the surrogate contact model accurately reproduced the contact force, motion, and wear volume results from the EF model, with computation time being reduced from 13 min to 13 s. For the practical application, we performed a series of Monte Carlo analyses to determine the sensitivity of predicted wear volume to Stanmore machine setup issues. Wear volume was highly sensitive to small variations in motion and load inputs, especially femoral flexion angle, but not to small variations in component placements. Computational speed was reduced from an estimated 230 h to 4 h per analysis. Surrogate contact modeling can significantly improve the computational speed of dynamic contact and wear simulations of total knee replacements and is appropriate for use in design sensitivity
Directory of Open Access Journals (Sweden)
Elzubier A. Salih
2009-01-01
Full Text Available Problem statement: Earlier research on ohmic heating technique focused on viscous food and foods containing solid particles. In this study, use of ohmic heating on sterilization of guava juice is carried out. Computational fluid dynamics was used to model and simulate the system. Investigate the buoyancy effect on the CFD simulation of continuous ohmic heating systems of fluid foods. Approach: A two-dimensional model describing the flow, temperature and electric field distribution of non-Newtonian power law guava juice fluid in a cylindrical continuous ohmic heating cell was developed. The electrical conductivity, thermo physical and rheological properties of the fluid was temperature dependent. Numerical simulation was carried out using FLUENT 6.1 software package. A user defined functions available in FLUENT 6.1 was employed for the electric field equation. The heating cell used consisted of a cylindrical tube of diameter 0.05 m, height 0.50 m and having three collinear electrodes of 0.02 m width separated by a distance of 0.22 m. The sample was subjected to zero voltage at the top and bottom of electrodes while electrical potential of 90 volts (AC 50-60 Hz was set at the middle electrode. The inlet velocity is 0.003 m sec-1 and the temperature is in the range of 30-90°C. Results: Simulation was carried with and without buoyancy driven force effect. The ohmic heating was successfully simulated using CFD and the results showed that the buoyancy had a strong effect in temperature profiles and flow pattern of the collinear electrodes configuration ohmic heating. A more uniform velocity and temperature profiles were obtained with the buoyancy effect included. Conclusion: For accurate results, the inclusion of buoyancy effect into the CFD simulation is important.
Augmented reality simulator for training in two-dimensional echocardiography.
Weidenbach, M; Wick, C; Pieper, S; Quast, K J; Fox, T; Grunst, G; Redel, D A
2000-02-01
In two-dimensional echocardiography the sonographer must synthesize multiple tomographic slices into a mental three-dimensional (3D) model of the heart. Computer graphics and virtual reality environments are ideal to visualize complex 3D spatial relationships. In augmented reality (AR) applications, real and virtual image data are linked, to increase the information content. In the presented AR simulator a 3D surface model of the human heart is linked with echocardiographic volume data sets. The 3D echocardiographic data sets are registered with the heart model to establish spatial and temporal congruence. The heart model, together with an animated ultrasound sector represents a reference scenario, which displays the currently selected two-dimensional echocardiographic cutting plane calculated from the volume data set. Modifications of the cutting plane within the echocardiographic data are transferred and visualized simultaneously and in real time within the reference scenario. The trainee can interactively explore the 3D heart model and the registered 3D echocardiographic data sets by an animated ultrasound probe, whose position is controlled by an electromagnetic tracking system. The tracking system is attached to a dummy transducer and placed on a plastic puppet to give a realistic impression of a two-dimensional echocardiographic examination.
Two Dimensional Nucleation Process by Monte Carlo Simulation
T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University
1997-01-01
Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...
Two dimensional simulation of high power laser-surface interaction
Energy Technology Data Exchange (ETDEWEB)
Goldman, S.R.; Wilke, M.D.; Green, R.E.L.; Johnson, R.P. [Los Alamos National Lab., NM (United States); Busch, G.E. [KMS Fusion, Inc., Ann Arbor, MI (United States)
1998-08-01
For laser intensities in the range of 10{sup 8}--10{sup 9} W/cm{sup 2}, and pulse lengths of order 10 {micro}sec or longer, the authors have modified the inertial confinement fusion code Lasnex to simulate gaseous and some dense material aspects of the laser-matter interaction. The unique aspect of their treatment consists of an ablation model which defines a dense material-vapor interface and then calculates the mass flow across this interface. The model treats the dense material as a rigid two-dimensional mass and heat reservoir suppressing all hydrodynamic motion in the dense material. The computer simulations and additional post-processors provide predictions for measurements including impulse given to the target, pressures at the target interface, electron temperatures and densities in the vapor-plasma plume region, and emission of radiation from the target. The authors will present an analysis of some relatively well diagnosed experiments which have been useful in developing their modeling. The simulations match experimentally obtained target impulses, pressures at the target surface inside the laser spot, and radiation emission from the target to within about 20%. Hence their simulational technique appears to form a useful basis for further investigation of laser-surface interaction in this intensity, pulse-width range. This work is useful in many technical areas such as materials processing.
TreePM Method for Two-Dimensional Cosmological Simulations
Indian Academy of Sciences (India)
Suryadeep Ray
2004-09-01
We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.
Quantum computation with two-dimensional graphene quantum dots
Institute of Scientific and Technical Information of China (English)
Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin
2012-01-01
We study an array of graphene nano sheets that form a two-dimensional S =1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets axe used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed.
Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation
Directory of Open Access Journals (Sweden)
Panjit MUSIK
2004-01-01
Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Computationally Driven Two-Dimensional Materials Design: What Is Next?
Energy Technology Data Exchange (ETDEWEB)
Pan, Jie [Materials Science; Lany, Stephan [Materials Science; Qi, Yue [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
2017-07-17
Two-dimensional (2D) materials offer many key advantages to innovative applications, such as spintronics and quantum information processing. Theoretical computations have accelerated 2D materials design. In this issue of ACS Nano, Kumar et al. report that ferromagnetism can be achieved in functionalized nitride MXene based on first-principles calculations. Their computational results shed light on a potentially vast group of materials for the realization of 2D magnets. In this Perspective, we briefly summarize the promising properties of 2D materials and the role theory has played in predicting these properties. In addition, we discuss challenges and opportunities to boost the power of computation for the prediction of the 'structure-property-process (synthesizability)' relationship of 2D materials.
Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.
Two-dimensional ion trap lattice on a microchip for quantum simulation
Sterling, R C; Weidt, S; Lake, K; Srinivasan, P; Webster, S C; Kraft, M; Hensinger, W K
2013-01-01
Using a controllable quantum system it is possible to simulate other highly complex quantum systems efficiently overcoming an in-principle limitation of classical computing. Trapped ions constitute such a highly controllable quantum system. So far, no dedicated architectures for the simulation of two-dimensional spin lattices using trapped ions in radio-frequency ion traps have been produced, limiting the possibility of carrying out such quantum simulations on a large scale. We report the operation of a two-dimensional ion trap lattice integrated in a microchip capable of implementing quantum simulations of two-dimensional spin lattices. Our device provides a scalable microfabricated architecture for trapping such ion lattices with coupling strengths between neighbouring ions sufficient to provide a powerful platform for the implementation of quantum simulations. In order to realize this device we developed a specialist fabrication process that allows for the application of very large voltages. We fabricated ...
Structure and computation of two-dimensional incompressible extended MHD
Grasso, D; Abdelhamid, H M; Morrison, P J
2016-01-01
A comprehensive study of a reduced version of Lust's equations, the extended magnetohydrodynamic (XMHD) model obtained from the two-fluid theory for electrons and ions with the enforcement of quasineutrality, is given. Starting from the Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional incompressible four-field model is derived. In this way energy conservation along with four families of Casimir invariants are naturally obtained. The construction facilitates various limits leading to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing are presented and interpreted using, in particular normal fields, a product of the Hamiltonian theory that gives rise to simplified equations of motion.
Structure and computation of two-dimensional incompressible extended MHD
Grasso, D.; Tassi, E.; Abdelhamid, H. M.; Morrison, P. J.
2017-01-01
A comprehensive study of the extended magnetohydrodynamic model obtained from the two-fluid theory for electrons and ions with the enforcement of quasineutrality is given. Starting from the Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional incompressible four-field model is derived. In this way, the energy conservation along with four families of Casimir invariants is naturally obtained. The construction facilitates various limits leading to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing are presented and interpreted using, in particular, normal fields, a product of the Hamiltonian theory that gives rise to simplified equations of motion.
Efficient computation method for two-dimensional nonlinear waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.
Molecular-dynamics simulation of two-dimensional thermophoresis
Paredes; Idler; Hasmy; Castells; Botet
2000-11-01
A numerical technique is presented for the thermal force exerted on a solid particle by a gaseous medium between two flat plates at different temperatures, in the free molecular or transition flow. This is a two-dimensional molecular-dynamics simulation of hard disks in a inhomogeneous thermal environment. All steady-state features exhibited by the compressible hard-disk gas are shown to be consistent with the expected behaviors. Moreover the thermal force experienced by a large solid disk is investigated, and compared to the analytical case of cylinders moving perpendicularly to the constant temperature gradient for an infinite Knudsen number and in an infinite medium. We show precise examples of how this technique can be used simply to investigate more difficult practical problems, in particluar the influence of nonlinear gradients for large applied differences of temperature, of proximity of the walls, and of smaller Knudsen numbers.
Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis
Directory of Open Access Journals (Sweden)
Young S. Shin
1998-01-01
Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.
Molecular rattling in two-dimensional fluids: Simulations and theory
Variyar, Jayasankar E.; Kivelson, Daniel; Tarjus, Gilles; Talbot, Julian
1992-01-01
We have carried out molecular dynamic simulations over a range of densities for two-dimensional fluids consisting of hard, soft, and Lennard-Jones disks. For comparison we have also carried out simulations for the corresponding systems in which all but one particle are frozen in position. We have studied the velocity autocorrelation functions and the closely related velocity-sign autocorrelation functions, and have examined the probabilities per unit time that a particle will undergo a first velocity sign reversal after an elapsed time t measured alternately from the last velocity reversal or from a given arbitrary time. At all densities studied, the first of these probabilities per unit time is zero at t=0 and rises to a maximum at a later time, but as the hardness of the disks is increased, the maximum moves in toward t→0. This maximum can be correlated with the ``negative'' dip observed in the velocity correlation functions when plotted versus time. Our conclusion is that all these phenomena can be explained qualitatively on the basis of a model where memory does not extend back beyond the last velocity reversal. However, at high density, the velocity-sign-autocorrelation function not only shows a negative dip (which is explained by the model) but also a second ``oscillation'' which is not described, even qualitatively, by the model. We conclude that the first dip in the velocity and velocity-sign correlation functions can occur even if there are no correlated or coherent librations, but the existence of a ``second'' oscillation is a better indication of such correlations.
Two-dimensional simulation of polymer electrolyte membrane fuel cells
Energy Technology Data Exchange (ETDEWEB)
Hum, B.; Li, X. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering
2002-07-01
Polymer electrolyte membrane (PEM) fuel cells have fast startup, are highly energy efficient and have high power density, rendering them very suitable for use in zero-emission vehicles and on-site power cogeneration. Before the PEM fuel cell can reach widespread commercial use, the performance has to be improved regarding the minimization of all transport resistances. This can be done by considering the electrochemical reactions in the catalyst layers along with the physical transport of reactant gas flows, product and process water, heat and the charged particles in the individual cells and stacks. This paper presents the results of a two-dimensional numerical simulation of a steady, isothermal, fully humidified PEM fuel cell which was conducted to examine what happens in the catalyst layers. The finite volume method was used together with the alternating direction implicit algorithm. It was determined that the cathode catalyst layer has more pronounced changes in potential, reaction rate and current density generation compared to the anode catalyst layer. This is because of the large cathode activation overpotential and the low diffusion coefficient of oxygen. It was demonstrated that catalyst layers, by nature, are 2 dimensional, particularly in areas of low reactant concentrations. Maximum power density is limited by the depletion of one of the reactants in the catalyst layer. Both the fuel and oxidant supply must be managed simultaneously for optimal cell performance. It was concluded that cell performance is not greatly affected by flow direction. It was noted that this analysis can also be used for more complex cell design, such as cross flow between reactant streams and practical serpentine flow channel design. 11 refs., 2 tabs., 10 figs.
Lyapunov Computational Method for Two-Dimensional Boussinesq Equation
Mabrouk, Anouar Ben
2010-01-01
A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.
Freely configurable quantum simulator based on a two-dimensional array of individually trapped ions
Mielenz, Manuel; Wittemer, Matthias; Hakelberg, Frederick; Schmied, Roman; Blain, Matthew; Maunz, Peter; Leibfried, Dietrich; Warring, Ulrich; Schaetz, Tobias
2015-01-01
A custom-built and precisely controlled quantum system may offer access to a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analog quantum simulator that makes the relevant observables, interactions, and states of a quantum model accessible could permit experimental insight into complex quantum dynamics that are intractable on conventional computers. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here we characterise two-dimensional arrays of three ions trapped by radio-frequency fields in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 micrometer. In our approach, which is scalable to arbitrary two dimensional lattices, we demonstrate individual control of the electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as tuning of crucial couplings be...
Nonlinear kinetic modeling and simulations of Raman scattering in a two-dimensional geometry
Directory of Open Access Journals (Sweden)
Bénisti Didier
2013-11-01
Full Text Available In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering (SRS by the means of envelope equations, whose coefficients have been derived using a mixture of perturbative and adiabatic calculations. First examples of the numerical resolution of these envelope equations in a two-dimensional homogeneous plasma are given, and the results are compared against those of particle-in-cell (PIC simulations. These preliminary comparisons are encouraging since our envelope code provides threshold intensities consistent with those of PIC simulations while requiring computational resources reduced by 4 to 5 orders of magnitude compared to full-kinetic codes.
Malkov, Ewgenij A.; Poleshkin, Sergey O.; Kudryavtsev, Alexey N.; Shershnev, Anton A.
2016-10-01
The paper presents the software implementation of the Boltzmann equation solver based on the deterministic finite-difference method. The solver allows one to carry out parallel computations of rarefied flows on a hybrid computational cluster with arbitrary number of central processor units (CPU) and graphical processor units (GPU). Employment of GPUs leads to a significant acceleration of the computations, which enables us to simulate two-dimensional flows with high resolution in a reasonable time. The developed numerical code was validated by comparing the obtained solutions with the Direct Simulation Monte Carlo (DSMC) data. For this purpose the supersonic flow past a flat plate at zero angle of attack is used as a test case.
The planiverse computer contact with a two-dimensional world
Dewdney, Alexander Keewatin
2000-01-01
When The Planiverse ?rst appeared 16 years ago, it caught more than a few readers off guard. The line between willing suspension of dis- lief and innocent acceptance, if it exists at all, is a thin one. There were those who wanted to believe, despite the tongue-in-cheek subtext, that we had made contact with a two-dimensional world called Arde, a di- shaped planet embedded in the skin of a vast, balloon-shaped space called the planiverse. It is tempting to imagine that those who believed, as well as those who suspended disbelief, did so because of a persuasive consistency in the cosmology and physics of this in?nitesimally thin universe, and x preface to the millennium edition in its bizarre but oddly workable organisms. This was not just your r- of-the-mill universe fashioned out of the whole cloth of wish-driven imagination. The planiverse is a weirder place than that precisely - cause so much of it was “worked out” by a virtual team of scientists and technologists. Reality, even the pseudoreality of su...
Two-dimensional Green`s function Poisson solution appropriate for cylindrical-symmetry simulations
Energy Technology Data Exchange (ETDEWEB)
Riley, M.E.
1998-04-01
This report describes the numerical procedure used to implement the Green`s function method for solving the Poisson equation in two-dimensional (r,z) cylindrical coordinates. The procedure can determine the solution to a problem with any or all of the applied voltage boundary conditions, dielectric media, floating (insulated) conducting media, dielectric surface charging, and volumetric space charge. The numerical solution is reasonably fast, and the dimension of the linear problem to be solved is that of the number of elements needed to represent the surfaces, not the whole computational volume. The method of solution is useful in the simulation of plasma particle motion in the vicinity of complex surface structures as found in microelectronics plasma processing applications. This report is a stand-alone supplement to the previous Sandia Technical Report SAND98-0537 presenting the two-dimensional Cartesian Poisson solver.
Two-Dimensional IIR Filter Design Using Simulated Annealing Based Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Supriya Dhabal
2014-01-01
Full Text Available We present a novel hybrid algorithm based on particle swarm optimization (PSO and simulated annealing (SA for the design of two-dimensional recursive digital filters. The proposed method, known as SA-PSO, integrates the global search ability of PSO with the local search ability of SA and offsets the weakness of each other. The acceptance criterion of Metropolis is included in the basic algorithm of PSO to increase the swarm’s diversity by accepting sometimes weaker solutions also. The experimental results reveal that the performance of the optimal filter designed by the proposed SA-PSO method is improved. Further, the convergence behavior as well as optimization accuracy of proposed method has been improved significantly and computational time is also reduced. In addition, the proposed SA-PSO method also produces the best optimal solution with lower mean and variance which indicates that the algorithm can be used more efficiently in realizing two-dimensional digital filters.
Energy Technology Data Exchange (ETDEWEB)
Goldberg, L.F. [Univ. of Minnesota, Minneapolis, MN (United States)
1990-08-01
The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year`s funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge.
Two-dimensional Block of Spatial Convolution Algorithm and Simulation
Mussa Mohamed Ahmed
2012-01-01
This paper proposes an algorithm based on sub image-segmentation strategy. The proposed scheme divides a grayscale image into overlapped 6×6 blocks each of which is segmented into four small 3x3 non-overlapped sub-images. A new spatial approach for efficiently computing 2-dimensional linear convolution or cross-correlation between suitable flipped and fixed filter coefficients (sub image for cross-correlation) and corresponding input sub image is presented. Computation of convolution is itera...
Stochastic Simulation of Chemical Exchange in Two Dimensional Infrared Spectroscopy
Sanda, F; Sanda, Frantisek; Mukamel, Shaul
2006-01-01
The stochastic Liouville equations are employed to investigate the combined signatures of chemical exchange (two-state-jump) and spectral diffusion (coupling to an overdamped Brownian oscillator) in the coherent response of an anharmonic vibration to three femtosecond infrared pulses. Simulations reproduce the main features recently observed in the OD stretch of phenol in benzene.
TWO DIMENSIONAL SIMULATION OF WIND-DRIVEN CIRCULATION IN RESERVOIR
Institute of Scientific and Technical Information of China (English)
Chen Jie-ren; Khalil I. Othman
2003-01-01
The development of a simplified 2-D numerical model was described for wind-driven circulation in reservoir using standard k-ε turbulence model to specify eddy viscosity distribution.The governing equations are transformed and solved on variable vertical grids, which allows refinement at the surface and bottom boundaries.The results of the model simulation for flow are compared with analytical solutions for laminar and turbulent flows, experimental data in a wind-flume and wind wave tank.The sensitivity analysis results show that use of large number of depth layers increases the accuracy for the bottom counter-current flow.Prediction of surface drift was not very sensitive to surface grid refinement.The model was also applied to Baisha reservoir for an assumed wind condition and showed to be able to simulate the general features of surface drift and return flow under variable flow depth.The model can serve as alternative means of studying wind-driven flow beside experiments.It also reduced the problem complexity associated with 3-D circulation models while faithfully reproducing the drift and near bottom return currents.
SAR IMAGING SIMULATION OF HORIZONTAL FULLY TWO-DIMENSIONAL INTERNAL WAVES
Institute of Scientific and Technical Information of China (English)
SHEN Hui; HE Yi-Jun
2006-01-01
Based on the research of Lynett and Liu, a new horizontal fully two-dimensional internal wave propagation model with rotation effect was deduced, which can be used to simulate the characteristics of internal waves in a horizontal fully two-dimensional plane. By combining the imaging mechanism of Synthetic Aperture Radar(SAR), a simulation procedure was fatherly acquired, which can simulate the propagation characteristics of oceanic internal waves into SAR images. In order to evaluate the validity of the proposed simulation procedure, case studies are performed in South China Sea and results from simulation procedure are analyzed in detail. A very good consistency was found between the simulation results and satellite images. The proposed simulation procedure will be a possible foundation for the quantitative interpretation of internal waves from fully two-dimensional satellite images.
Computation of two-dimensional isothermal flow in shell-and-tube heat exchangers
Energy Technology Data Exchange (ETDEWEB)
Carlucci, L.N.; Galpin, P.F.; Brown, J.D.; Frisina, V.
1983-07-01
A computational procedure is outlined whereby two-dimensional isothermal shell-side flow distributions can be calculated for tube bundles having arbitrary boundaries and flow blocking devices, such as sealing strips, defined in arbitrary locations. The procedure is described in some detail and several computed results are presented to illustrate the robustness and generality of the method. 11 figs.
Energy Technology Data Exchange (ETDEWEB)
Riley, M.E.
1998-03-01
This report describes the numerical procedure used to implement the Green`s function method for solving the Poisson equation in two-dimensional Cartesian coordinates. The procedure can determine the solution to a problem with any or all of applied voltage boundary conditions, dielectric media, floating (insulated) conducting media, dielectric surface charging, periodic (reflective) boundary conditions, and volumetric space charge. The numerical solution is reasonably fast, and the dimension of the linear problem to be solved is that of the number of elements needed to represent the surfaces, not the whole computational volume. The method of solution is useful in the simulation of plasma particle motion in the vicinity of complex surface structures as found in microelectronics plasma processing applications. A FORTRAN implementation of this procedure is available from the author.
Aerodynamic effects of simulated ice shapes on two-dimensional airfoils and a swept finite tail
Alansatan, Sait
An experimental study was conducted to investigate the effect of simulated glaze ice shapes on the aerodynamic performance characteristics of two-dimensional airfoils and a swept finite tail. The two dimensional tests involved two NACA 0011 airfoils with chords of 24 and 12 inches. Glaze ice shapes computed with the LEWICE code that were representative of 22.5-min and 45-min ice accretions were simulated with spoilers, which were sized to approximate the horn heights of the LEWICE ice shapes. Lift, drag, pitching moment, and surface pressure coefficients were obtained for a range of test conditions. Test variables included Reynolds number, geometric scaling, control deflection and the key glaze ice features, which were horn height, horn angle, and horn location. For the three-dimensional tests, a 25%-scale business jet empennage (BJE) with a T-tail configuration was used to study the effect of ice shapes on the aerodynamic performance of a swept horizontal tail. Simulated glaze ice shapes included the LEWICE and spoiler ice shapes to represent 9-min and 22.5-min ice accretions. Additional test variables included Reynolds number and elevator deflection. Lift, drag, hinge moment coefficients as well as boundary layer velocity profiles were obtained. The experimental results showed substantial degradation in aerodynamic performance of the airfoils and the swept horizontal tail due to the simulated ice shapes. For the two-dimensional airfoils, the largest aerodynamic penalties were obtained when the 3-in spoiler-ice, which was representative of 45-min glaze ice accretions, was set normal to the chord. Scale and Reynolds effects were not significant for lift and drag. However, pitching moments and pressure distributions showed great sensitivity to Reynolds number and geometric scaling. For the threedimensional study with the swept finite tail, the 22.5-min ice shapes resulted in greater aerodynamic performance degradation than the 9-min ice shapes. The addition of 24
Moment-based method for computing the two-dimensional discrete Hartley transform
Dong, Zhifang; Wu, Jiasong; Shu, Huazhong
2009-10-01
In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.
Quantum computing via defect states in two-dimensional antidot lattices.
Flindt, Christian; Mortensen, Niels Asger; Jauho, Antti-Pekka
2005-12-01
We propose a new structure suitable for quantum computing in a solid-state environment: designed defect states in antidot lattices superimposed on a two-dimensional electron gas at a semiconductor heterostructure. State manipulation can be obtained with gate control. Model calculations indicate that it is feasible to fabricate structures whose energy level structure is robust against thermal dephasing.
A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow
Hsu, Li-Chieh
The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.
Simulation of laser bistatic two-dimensional scattering imaging about lambertian cylinders
Gong, Yanjun; Li, Lang; Wang, Mingjun; Gong, Lei
2016-10-01
This paper deals with the simulation of laser bi-static scattering imaging about lambertian cylinders. Two-dimensional imaging of a target can reflect the shape of the target and material property on the surface of the target. Two-dimensional imaging has important significance for target recognition. Simulations results of laser bi-static two-dimensional scattering imaging of some cylinders are given. The laser bi-static scattering imaging of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. The scattering direction of laser bi-static scattering imaging is arbitrary direction. The scattering direction of backward two-dimensional scattering imaging is at opposite direction of the incident direction of laser. The backward two-dimensional scattering imaging is special case of bi-static two dimensional scattering imaging. The scattering intensity of a micro-element on the target could be obtained based on the laser radar equation. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the surface of cylinder. According to the incident direction of incident laser and normal of infinitesimal area, the local incidence angle can be calculated. According to the scattering direction and normal of infinitesimal area, the local angle of scattering can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get mathematical model of bi-static laser two dimensional scattering imaging about lambert cylinder. From the results given, one can see that the simulation results of laser bi-static scattering about lambert cylinder is correct.
Field computation for two-dimensional array transducers with limited diffraction array beams.
Lu, Jian-Yu; Cheng, Jiqi
2005-10-01
A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.
Numerical simulation of two-dimensional fluid flow with strong shocks
Energy Technology Data Exchange (ETDEWEB)
Woodward, P.; Colella, P.
1984-04-01
Results of an extensive comparison of numerical methods for simulating hydrodynamics are presented and discussed. This study focuses on the simulation of fluid flows with strong shocks in two dimensions. By ''strong shocks,'' we here refer to shocks in which there is substantial entropy production. For the case of shocks in air, we therefore refer to Mach numbers of three and greater. For flows containing such strong shocks we find that a careful treatment of flow discontinuities is of greatest importance in obtaining accurate numerical results. Three aproaches to treating discontinuities in the flow are discussed-artificial viscosity, blending of low- and high-order-accurate fluxes, and the use of nonlinear solutions to Riemann's problem. The advantages and disadvantages of each approach are discussed and illustrated by computed results for three test problems. In this comparison we have focused our attention entirely upon the performance of schemes for differencing the hydrodynamic equations. We have regarded the nature of the grid upon which such differencing schemes are applied as an independent issue outside the scope of this work. Therefore we have restricted our study to the case of uniform, square computational zones in Cartesian coordinates. For simplicity we have further restricted our attention to two-dimensional difference schemes which are built out of symmetrized products of one-dimensional difference operators.
Band Gap Computation of Two Dimensional Photonic Crystal for High Index Contrast Grating Application
Directory of Open Access Journals (Sweden)
Gagandeep Kaur
2014-05-01
Full Text Available Two Dimensional Photonic Crystal (PHc is convenient type of PHc, It refers to the fact that the dielectric is periodic in Two directions. The study of photonic structure by a simulation method is extremely momentous. At optical frequencies the optical density contained by two dimensional PHc changes periodically. They have the property to strong effect the propagation of light waves at these optical frequencies. A typical linearization method which solves the common nonlinear Eigen values difficulties has been used to achieve structures of the photonic band. There are two method plane wave expansion method (PWE and Finite Difference Time Domain method (FDTD. These Methods are most widely used for band gap calculation of PHc’s. FDTD Method has more smoothness and directness and can be explored effortlessly for simulation of the field circulation inside the photonic structure than PWE method so we have used FDTD Method for Two dimensional PHc’s calculation. In simulation of Two Dimensional band structures, silicon material has 0.543nm lattice constant and 1.46refractive index.
Hybrid simulation of whistler excitation by electron beams in two-dimensional non-periodic domains
Energy Technology Data Exchange (ETDEWEB)
Woodroffe, J.R., E-mail: woodrofj@erau.edu; Streltsov, A.V., E-mail: streltsa@erau.edu
2014-11-01
We present a two-dimensional hybrid fluid-PIC scheme for the simulation of whistler wave excitation by relativistic electron beams. This scheme includes a number of features which are novel to simulations of this type, including non-periodic boundary conditions and fresh particle injection. Results from our model suggest that non-periodicity of the simulation domain results in the development of fundamentally different wave characteristics than are observed in periodic domains.
Optimisation of interdigitated back contacts solar cells by two-dimensional numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Nichiporuk, O.; Kaminski, A.; Lemiti, M.; Fave, A. [Instituit National des Sciences Appliquees Lyon, Villeurbanne (France). Lab. de Physique de la Matiere; Skryshevsky, V. [National Taras Shevchenko Univ., Kiev (Ukraine). Radiophysics Dept.
2005-04-01
In this paper we present the results of the simulation of interdigitated back contacts solar cell on thin-film ({approx}{mu}m) silicon layer. The influence of several parameters (surface recombination rate, substrate thickness and type, diffusion length, device geometry, doping levels) on device characteristics are simulated using the accurate two-dimensional numerical simulator DESSIS that allows to optimise the cell design. (Author)
Li, Zhenyu; Abramavicius, Darius; Zhuang, Wei; Mukamel, Shaul
2007-11-15
The two dimensional (2D) photon echo spectrum of the amide ultraviolet (UV) bands of proteins are simulated. Two effective exciton Hamiltonian parameter sets developed by Woody and Hirst, which predict similar CD spectra, may be distinguished by their very different 2DUV spectra. These differences are enhanced in specific configurations of pulse polarizations which provide chirality-induced signals.
Jansen, Thomas la Cour; Knoester, Jasper
2007-01-01
We combine numerical Langevin simulations with numerical integration of the Schrodinger equation to calculate two-dimensional infrared spectra of ultrafast chemical exchange. This provides a tool to model and interpret such spectra of molecules undergoing chemical processes, such as isomerization an
Laser bistatic two-dimensional scattering imaging simulation of lambert cone
Gong, Yanjun; Zhu, Chongyue; Wang, Mingjun; Gong, Lei
2015-11-01
This paper deals with the laser bistatic two-dimensional scattering imaging simulation of lambert cone. Two-dimensional imaging is called as planar imaging. It can reflect the shape of the target and material properties. Two-dimensional imaging has important significance for target recognition. The expression of bistatic laser scattering intensity of lambert cone is obtained based on laser radar eauqtion. The scattering intensity of a micro-element on the target could be obtained. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the cone. According to the incident direction of laser, scattering direction and normal of infinitesimal area, the local incidence angle and scattering angle can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get Lambert cone bistatic laser two-dimensional scattering imaging simulation model. We analyze the effect of distinguishability, incident direction, observed direction and target size on the imaging. From the results, we can see that the scattering imaging simulation results of the lambert cone bistatic laser is correct.
Monte Carlo simulation of thermodynamic properties for two-dimensional Lennard-Jones fluids
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Canonical ensemble Monte Carlo simulations have been carried out to investigate the thermodynamic properties of two-dimensional fluids subjected to truncated Lennard-Jones 12-6 potential. The simulations of thermodynamic states sweep across liquid-vapor regime over a wide range of thermodynamic conditions. Simulated isotherms behave van der Waals loop-like characteristics in the liquid-vapor phase-transition region. It suggests a continuous isothermal phase transition in the case of micro system, in which the system size prohibits phase separation. Two-dimensional dimensionless van der Waals equation of states has been obtained from theoretical analysis. By fitting simulated data to this equation, temperature-dependent parameters in the equation have been determined.
Adaptivity techniques for the computation of two-dimensional viscous flows using structured meshes
Szmelter, J.; Evans, A.; Weatherill, N. P.
In this paper three different adaptivity techniques have been investigated on the base of structured meshes. All the techniques indicate the significance of using adaptivity for improving computational results. In particular, the technique of combining point enrichment and node movement strategies offers the best compromise. Although, the work presented here used two-dimensional structured meshes, the techniques can be readily applied to hybrid and unstructured meshes. Also, preliminary three-dimensional numerical results have been already obtained by coauthors.
Directory of Open Access Journals (Sweden)
Panu Danwanichakul
2014-01-01
Full Text Available Nanofibrous mats were obtained from electrospinning Nylon-6 solutions with concentrations of 30 and 35 wt% and were tested for filtration of polystyrene particles in suspension. Some experimental results were compared with the simulated ones. In the simulation, the two-dimensional structures were constructed by randomly depositing a nanofiber, which was assumed as an ellipse with an aspect ratio of 100, one by one. The nanofiber size is assumed to be polydisperse. The results showed that simulated configurations resembled real nanofibers with polydisperse diameters. Fibers from higher solution concentration were larger, resulting in larger pore size, which was confirmed with simulations. Varying the size distribution around the same average value did not make any difference to the surface coverage but it affected 2D pore areas for the systems at low fiber density. In addition, the probability for a particle to pass through the porous structure was less when the fiber density was higher and the particle diameter was larger, which was consistent with the filtration test. Lastly, water flux measurement could yield the void volume fraction as well as the volume-averaged pore diameter, which was found to be greater than the averaged 2D pore diameter from SEM micrographs by the quantity related to the fiber size.
Development of Particle-in-Cell Simulation in a Two Dimensional Trench Geometry
Lin, Tai-Lu
2016-01-01
A two dimensional electrostatic Particle-in-Cell simulation code is developed to investigate anisotropy of ions in a trench geometry for plasma etching. The numerical simulation results suggest that if the trench width is larger than Debye length scale, anisotropy can be lost due to potential development across the trench. Furthermore, the effects of ion charge build up on the trench bottom is investigated, which can degrade the anisotropy.
Transfer matrix computation of critical polynomials for two-dimensional Potts models
Lykke Jacobsen, Jesper; Scullard, Christian R.
2013-02-01
In our previous work [1] we have shown that critical manifolds of the q-state Potts model can be studied by means of a graph polynomial PB(q, v), henceforth referred to as the critical polynomial. This polynomial may be defined on any periodic two-dimensional lattice. It depends on a finite subgraph B, called the basis, and the manner in which B is tiled to construct the lattice. The real roots v = eK - 1 of PB(q, v) either give the exact critical points for the lattice, or provide approximations that, in principle, can be made arbitrarily accurate by increasing the size of B in an appropriate way. In earlier work, PB(q, v) was defined by a contraction-deletion identity, similar to that satisfied by the Tutte polynomial. Here, we give a probabilistic definition of PB(q, v), which facilitates its computation, using the transfer matrix, on much larger B than was previously possible. We present results for the critical polynomial on the (4, 82), kagome, and (3, 122) lattices for bases of up to respectively 96, 162, and 243 edges, compared to the limit of 36 edges with contraction-deletion. We discuss in detail the role of the symmetries and the embedding of B. The critical temperatures vc obtained for ferromagnetic (v > 0) Potts models are at least as precise as the best available results from Monte Carlo simulations or series expansions. For instance, with q = 3 we obtain vc(4, 82) = 3.742 489 (4), vc(kagome) = 1.876 459 7 (2), and vc(3, 122) = 5.033 078 49 (4), the precision being comparable or superior to the best simulation results. More generally, we trace the critical manifolds in the real (q, v) plane and discuss the intricate structure of the phase diagram in the antiferromagnetic (v < 0) region.
EMC/FDTD/MD simulation of carrier transport and electrodynamics in two-dimensional electron systems
Sule, N.; Willis, K. J.; Hagness, S. C.; Knezevic, I.
2014-01-01
We present the implementation and application of a multiphysics simulation technique to carrier dynamics under electromagnetic excitation in supported two-dimensional electronic systems. The technique combines ensemble Monte Carlo (EMC) for carrier transport with finite-difference time-domain (FDTD) for electrodynamics and molecular dynamics (MD) for short-range Coulomb interactions among particles. We demonstrate the use of this EMC/FDTD/MD technique by calculating the room-temperature dc an...
TESHIMA, Koji; NAKATSUJI, Hiroyuki
1987-01-01
Flowfields resulted from interaction of two equivalent freejets issued from two parallel two-dimensional sonic nozzles at various nozzle distances and at various values of the stagnation to ambient pressure ratio are investigated numerically and by visualization. A strong shear flow region appears between the two jets, which is observed by visualization, is simulated well by the present calculation. Agreements of the parameters representing the whole structure of the flowfield, such as the lo...
Kulikovsky, A. A.; Divisek, J.; Kornyshev, Yu. M.
2000-01-01
A two-dimensional numerical model of the direct methanol fuel cell with gas fuel is developed. Simulation of the cell with current collectors of conventional geometry reveal the formation of fuel-depleted, "shaded" regions in the cathode and anode catalyst layers. These regions are positioned in front of current collectors, farther from the gas channel windows. Another disadvantage of the conventional geometry is the concentration of electron current at the edges of current collectors. Based ...
Simulation of vortex motion in underdamped two-dimensional arrays of Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Bobbert, P.A. (Department of Applied Physics, Delft University of Technology, Lorentweg 1, 2628 CJ Delft (Netherlands) Department of Physics and Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States))
1992-04-01
We report numerical simulations of classical vortex motion in two-dimensional arrays of underdamped Josephson junctions. A very efficient algorithm was developed, using a piecewise linear approximation for the Josephson current. We find no indication for ballistic motion, in square arrays nor in triangular arrays. Instead, in the limit of very low damping, there appears to be an effective viscosity due to excitation of the lattice behind the moving vortex.
Quantum Monte Carlo simulation of a two-dimensional Majorana lattice model
Hayata, Tomoya; Yamamoto, Arata
2017-07-01
We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab initio quantum Monte Carlo simulation to the Majorana fermion system in which the path-integral measure is given by a semipositive Pfaffian. We discuss spontaneous breaking of time-reversal symmetry at finite temperatures.
Two-dimensional FSI simulation of closing dynamics of a tilting disc mechanical heart valve.
Govindarajan, V; Udaykumar, H S; Herbertson, L H; Deutsch, S; Manning, K B; Chandran, K B
2010-03-01
The fluid dynamics during valve closure resulting in high shear flows and large residence times of particles has been implicated in platelet activation and thrombus formation in mechanical heart valves. Our previous studies with bi-leaflet valves have shown that large shear stresses induced in the gap between the leaflet edge and the valve housing results in relatively high platelet activation levels whereas flow between the leaflets results in shed vortices not conducive to platelet damage. In this study we compare the result of closing dynamics of a tilting disc valve with that of a bi-leaflet valve. The two-dimensional fluid-structure interaction analysis of a tilting disc valve closure mechanics is performed with a fixed grid Cartesian mesh flow solver with local mesh refinement, and a Lagrangian particle dynamic analysis for computation of potential for platelet activation. Throughout the simulation the flow remains in the laminar regime and the flow through the gap width is marked by the development of a shear layer which separates from the leaflet downstream of the valve. Zones of re-circulation are observed in the gap between the leaflet edge and the valve housing on the major orifice region of the tilting disc valve and are seen to be migrating towards the minor orifice region. Jet flow is observed at the minor orifice region and a vortex is formed which sheds in the direction of fluid motion as observed in experiments using PIV measurements. The activation parameter computed for the tilting disc valve, at the time of closure was found to be 2.7 times greater than that of the bi-leaflet mechanical valve and was found to be in the vicinity of the minor orifice region mainly due to the migration of vortical structures from the major to the minor orifice region during the leaflet rebound of the closing phase.
Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas
Timofeev, I V
2012-01-01
Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.
Directory of Open Access Journals (Sweden)
Carlos Salinas
2011-05-01
Full Text Available The work was aimed at simulating two-dimensional wood drying stress using the control-volume finite element method (CVFEM. Stress/strain was modeled by moisture content gradients regarding shrinkage and mechanical sorption in a cross-section of wood. CVFEM was implemented with triangular finite elements and lineal interpolation of the independent variable which were programmed in Fortran 90 language. The model was validated by contrasting results with similar ones available in the specialised literature. The present model’s results came from isothermal (20ºC drying of quaking aspen (Populus tremuloides: two-dimensional distribution of stress/strain and water content, 40, 80, 130, 190 and 260 hour drying time and evolution of normal stress (2.5 <σ͓ ͓ < 1.2, MPa, from the interior to the exterior of wood.
Lefkoff, L.J.; Gorelick, S.M.
1987-01-01
A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)
Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon
Energy Technology Data Exchange (ETDEWEB)
Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham [Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 7 Engineering Drive 1, 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576 (Singapore); Shetty, Kishan Devappa; Meng, Lei; Hoex, Bram; Peters, Ian Marius [Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 7 Engineering Drive 1, 117574 (Singapore); Samudra, Ganesh S. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576 (Singapore); Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 7 Engineering Drive 1, 117574 (Singapore)
2014-11-14
Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boron diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.
NUMERICAL SIMULATION OF A TWO-DIMENSIONAL SQUARE MOVING NEAR FREE SURFACE
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The body moving near the free surface is a focus in fluid dynamicresearch. Many numerical methods were developed for the simulation of the induced flow field. In this paper, a two-dimensional square moving near the free surface was simulated by the volume of fluid method (VOF). The flow field and drag exerted on the square were studied. The drag would increase due to the presence of the free surface.The iteration factor of the pressure interpolation of surface cells was modified, and through this modification the iteration became more stable. The capability of dealing with the large deformation of the free surface was raised.
FUZZY MODEL FOR TWO-DIMENSIONAL RIVER WATER QUALITY SIMULATION UNDER SUDDEN POLLUTANTS DISCHARGED
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Based on the fuzziness and impreciseness of water environmental system, the fuzzy arithmetic was used to simulate the fuzzy and imprecise relations in modeling river water quality. By defining the parameters of water quality model as symmetrical triangular fuzzy numbers, a two-dimensional fuzzy water quality model for sudden pollutant discharge is established. From the fuzzy model, the pollutant concentrations, corresponding to the specified confidence level of α, can be obtained by means of the α-cut technique and arithmetic operations of triangular fuzzy numbers. Study results reveal that it is feasible in theory and reliable on calculation applying triangular fuzzy numbers to the simulation of river water quality.
Two-dimensional numerical simulation of flow around three-stranded rope
Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng
2016-08-01
Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.
Numerical simulation of two-dimensional spouted bed with draft plates by discrete element method
Institute of Scientific and Technical Information of China (English)
Yongzhi ZHAO; Yi CHENG; Maoqiang JIANG; Yong JIN
2008-01-01
A discrete element method (DEM)-computa-tional fluid dynamics (CFD) two-way coupling method was employed to simulate the hydrodynamics in a two-dimensional spouted bed with draft plates. The motion of particles was modeled by the DEM and the gas flow was modeled by the Navier-Stokes equation. The interactions between gas and particles were considered using a two-way coupling method. The motion of particles in the spouted bed with complex geometry was solved by com-bining DEM and boundary element method (BEM). The minimal spouted velocity was obtained by the BEM-DEM-CFD simulation and the variation of the flow pat-tern in the bed with different superficial gas velocity was studied. The relationship between the pressure drop of the spouted bed and the superficial gas velocity was achieved from the simulations. The radial profile of the averaged vertical velocities of particles and the profile of the aver-aged void fraction in the spout and the annulus were stat-istically analyzed. The flow characteristics of the gas-solid system in the two-dimensional spouted bed were clearly described by the simulation results.
Institute of Scientific and Technical Information of China (English)
Cheng Jia; Ji Linhong; Wang Kesheng; Han Chuankun; Shi Yixiang
2013-01-01
A two-dimensional axisymmetric inductively coupled plasma (ICP) model,and its implementation in the COMSOL multiphysical software,is described.The simulations are compared with the experimental results of argon discharge from the gaseous electronics conference RF reference cell in the inductively coupled plasma mode.The general trends of the number density and temperature of electrons with radial scanning are approximately correct.Finally,we discuss the reasons why the comparisons are not in agreement,and then propose an improvement in the assumptions of the Maxwellian electron energy distribution function and reaction rate.
Simulation of Dynamics in Two-Dimensional Vortex Systems in Random Media
Institute of Scientific and Technical Information of China (English)
ZHANG Wei; SUN Li-Zhen; LUO Meng-Bo
2009-01-01
Dynamics in two-dimensional vortex systems with random pinning centres is investigated using molecular dy-namical simulations. The driving force and temperature dependences of vortex velocity are investigated. Below the critical depinning force Fc, a creep motion of vortex is found at low temperature. At forces slightly above Fc, a part of vortices flow in winding channels at zero temperature. In the vortex channel flow region, we ob-serve the abnormal behaviour of vortex dynamics: the velocity is roughly independent of temperature or even decreases with temperature at low temperatures. A phase diagram that describes different dynamics of vortices is presented.
Substrate influence on two-dimensional solids and liquids: A Monte Carlo simulation study
DEFF Research Database (Denmark)
Vives, E.; Lindgård, Per-Anker
1991-01-01
A general model for two-dimensional solids and liquids on a substrate is studied by means of Monte Carlo simulation. The results can be applied to the case of adsorbed atoms or molecules on surfaces as well as intercalated compounds. We have focused on the study of the melting of a commensurate...... square-root 3 X square-root 3 structure on a triangular lattice with 1/3 coverage. The evolution of the energy, order parameters, and structure factor has been followed in a wide range of temperatures and substrate-potential strengths. The phase diagram exhibits a broad transition region between...
Simulated annealing applied to two-dimensional low-beta reduced magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Chikasue, Y., E-mail: chikasue@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561 (Japan); Furukawa, M., E-mail: furukawa@damp.tottori-u.ac.jp [Graduate School of Engineering, Tottori University, Minami 4-101, Koyama-cho, Tottori-shi, Tottori 680-8552 (Japan)
2015-02-15
The simulated annealing (SA) method is applied to two-dimensional (2D) low-beta reduced magnetohydrodynamics (R-MHD). We have successfully obtained stationary states of the system numerically by the SA method with Casimir invariants preserved. Since the 2D low-beta R-MHD has two fields, the relaxation process becomes complex compared to a single field system such as 2D Euler flow. The obtained stationary state can have fine structure. We have found that the fine structure appears because the relaxation processes are different between kinetic energy and magnetic energy.
Doi, Hideo; Yasuoka, Kenji
2017-05-01
Confined systems exhibit interesting properties that are applied to the fields of lubrication, adhesion and nanotechnology. The replica exchange molecular simulation method was applied to calculate the phase equilibrium points of Lennard-Jones particles in a two-dimensional confined system. The liquid-solid phase equilibrium points and the solid structure with a dependency of the slit width were determined and the order parameter of the solid structure was analyzed. Such confined systems are shown to be favorable for manipulation of the phase equilibrium points.
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
Energy Technology Data Exchange (ETDEWEB)
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.
Suppressing sampling noise in linear and two-dimensional spectral simulations
Kruiger, Johannes F.; van der Vegte, Cornelis P.; Jansen, Thomas L. C.
2015-02-01
We examine the problem of sampling noise encountered in time-domain simulations of linear and two-dimensional spectroscopies. A new adaptive apodization scheme based on physical arguments is devised for suppressing the noise in order to allow reducing the number of used disorder realisations, but introducing only a minimum of spectral aberrations and thus allowing a potential speed-up of these types of simulations. First, the method is demonstrated on an artificial dimer system, where the effect on slope analysis, typically used to study spectral dynamics, is analysed. It is, furthermore, tested on the simulated two-dimensional infrared spectra in the amide I region of the protein lysozyme. The cross polarisation component is investigated, particularly sensitive to sampling noise, because it relies on cancelling of the dominant diagonal spectral contributions. In all these cases, the adaptive apodization scheme is found to give more accurate results than the commonly used lifetime apodization scheme and in most cases better than the gaussian apodization scheme.
Directory of Open Access Journals (Sweden)
H. S. Shukla
2015-01-01
Full Text Available In this paper, a modified cubic B-spline differential quadrature method (MCB-DQM is employed for the numerical simulation of two-space dimensional nonlinear sine-Gordon equation with appropriate initial and boundary conditions. The modified cubic B-spline works as a basis function in the differential quadrature method to compute the weighting coefficients. Accordingly, two dimensional sine-Gordon equation is transformed into a system of second order ordinary differential equations (ODEs. The resultant system of ODEs is solved by employing an optimal five stage and fourth-order strong stability preserving Runge–Kutta scheme (SSP-RK54. Numerical simulation is discussed for both damped and undamped cases. Computational results are found to be in good agreement with the exact solution and other numerical results available in the literature.
Computer model of two-dimensional solute transport and dispersion in ground water
Konikow, Leonard F.; Bredehoeft, J.D.
1978-01-01
This report presents a model that simulates solute transport in flowing ground water. The model is both general and flexible in that it can be applied to a wide range of problem types. It is applicable to one- or two-dimensional problems involving steady-state or transient flow. The model computes changes in concentration over time caused by the processes of convective transport, hydrodynamic dispersion, and mixing (or dilution) from fluid sources. The model assumes that the solute is non-reactive and that gradients of fluid density, viscosity, and temperature do not affect the velocity distribution. However, the aquifer may be heterogeneous and (or) anisotropic. The model couples the ground-water flow equation with the solute-transport equation. The digital computer program uses an alternating-direction implicit procedure to solve a finite-difference approximation to the ground-water flow equation, and it uses the method of characteristics to solve the solute-transport equation. The latter uses a particle- tracking procedure to represent convective transport and a two-step explicit procedure to solve a finite-difference equation that describes the effects of hydrodynamic dispersion, fluid sources and sinks, and divergence of velocity. This explicit procedure has several stability criteria, but the consequent time-step limitations are automatically determined by the program. The report includes a listing of the computer program, which is written in FORTRAN IV and contains about 2,000 lines. The model is based on a rectangular, block-centered, finite difference grid. It allows the specification of any number of injection or withdrawal wells and of spatially varying diffuse recharge or discharge, saturated thickness, transmissivity, boundary conditions, and initial heads and concentrations. The program also permits the designation of up to five nodes as observation points, for which a summary table of head and concentration versus time is printed at the end of the
MULTI2D - a computer code for two-dimensional radiation hydrodynamics
Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.
2009-06-01
required. Nature of problem: In inertial confinement fusion and related experiments with lasers and particle beams, energy transport by thermal radiation becomes important. Under these conditions, the radiation field strongly interacts with the hydrodynamic motion through emission and absorption processes. Solution method: The equations of radiation transfer coupled with Lagrangian hydrodynamics, heat diffusion and beam tracing (laser or ions) are solved, in two-dimensional axial-symmetric geometry ( R-Z coordinates) using a fractional step scheme. Radiation transfer is solved with angular resolution. Matter properties are either interpolated from tables (equations-of-state and opacities) or computed by user routines (conductivities and beam attenuation). Restrictions: The code has been designed for typical conditions prevailing in inertial confinement fusion (ns time scale, matter states close to local thermodynamical equilibrium, negligible radiation pressure, …). Although a wider range of situations can be treated, extrapolations to regions beyond this design range need special care. Unusual features: A special computer language, called r94, is used at top levels of the code. These parts have to be converted to standard C by a translation program (supplied as part of the package). Due to the complexity of code (hydro-code, grid generation, user interface, graphic post-processor, translator program, installation scripts) extensive manuals are supplied as part of the package. Running time: 567 seconds for the example supplied.
INTERVAL FINITE VOLUME METHOD FOR UNCERTAINTY SIMULATION OF TWO-DIMENSIONAL RIVER WATER QUALITY
Institute of Scientific and Technical Information of China (English)
HE Li; ZENG Guang-ming; HUANG Guo-he; LU Hong-wei
2004-01-01
Under the interval uncertainties, by incorporating the discretization form of finite volume method and interval algebra theory, an Interval Finite Volume Method (IFVM) was developed to solve water quality simulation issues for two-dimensional river when lacking effective data of flow velocity and flow quantity. The IFVM was practically applied to a segment of the Xiangjiang River because the Project of Hunan Inland Waterway Multipurpose must be started working after the environmental impact assessment for it. The simulation results suggest that there exist rather apparent pollution zones of BOD5 downstream the Dongqiaogang discharger and that of COD downstream Xiaoxiangjie discharger, but the pollution sources have no impact on the safety of the three water plants located in this river segment. Although the developed IFVM is to be perfected, it is still a powerful tool under interval uncertainties for water environmental impact assessment, risk analysis, and water quality planning, etc. besides water quality simulation studied in this paper.
Two-Dimensional Simulation of Hydrogen Direct-Current Discharge Plasma
Institute of Scientific and Technical Information of China (English)
LIU Jingye; ZHANG Ming
2012-01-01
A two-dimensional model of a weakly-ionized hydrogen direct-current （DC） discharge at low pressure is simulated. In the model, the metal electron overflow and secondary electron emission coefficient at the cathode spot axe introduced to represent the relationship between the electron and ion density, and the electron energy distribution function is expressed by kinetic theory. The electron current density and reaction constant reasonably set on the boundary are discussed. It is determined that 11 collision reactions play a major role in low pressure and weakly ionized hydrogen discharge. On this basis, the relationship between mobility, electrode spacing, and breakdown voltage is verified. Good agreement is achieved between the simulation curve and Paschen curve.
Simulations of Viscous Accretion Flow around Black Holes in Two-Dimensional Cylindrical Geometry
Lee, Seong-Jae; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu
2016-01-01
We simulate shock-free and shocked viscous accretion flow onto a black hole in a two dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian Total Variation Diminishing (LTVD) and remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. Inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any QPO-like activity developed. The steady state shocked solution in the inviscid, as well as, in the viscous regime, matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. Such oscillation of the inner part of disk is interpreted as the source of QPO in hard X-rays observed in micro-qua...
Simulation of two-dimensional adjustable liquid gradient refractive index (L-GRIN) microlens
Le, Zichun; Wu, Xiang; Sun, Yunli; Du, Ying
2017-07-01
In this paper, a two-dimensional liquid gradient refractive index (L-GRIN) microlens is designed which can be used in adjusting focusing direction and focal spot of light beam. Finite element method (FEM) is used to simulate the convection diffusion process happening in core inlet flow and cladding inlet flow. And the ray tracing method shows us the light beam focusing effect including the extrapolation of focal length and output beam spot size. When the flow rates of the core and cladding fluids are held the same between the internal and external, left and right, and upper and lower inlets, the focal length varied from 313 μm to 53.3 μm while the flow rate of liquids ranges from 500 pL/s to 10,000 pL/s. While the core flow rate is bigger than the cladding inlet flow rate, the light beam will focus on a light spot with a tunable size. By adjusting the ratio of cladding inlet flow rate including Qright/Qleft and Qup/Qdown, we get the adjustable two-dimensional focus direction rather than the one-dimensional focusing. In summary, by adjusting the flow rate of core inlet and cladding inlet, the focal length, output beam spot and focusing direction of the input light beam can be manipulated. We suppose this kind of flexible microlens can be used in integrated optics and lab-on-a-chip system.
Takagi, S.; Og˜uz, H. N.; Zhang, Z.; Prosperetti, A.
2003-05-01
This paper presents a new approach to the direct numerical simulation of particle flows. The basic idea is to use a local analytic representation valid near the particle to "transfer" the no-slip condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity arising from the irregular relation between the particle boundary and the underlying mesh is avoided and fast solvers can be used. The results suggest that the computational effort increases very slowly with the number of particles so that the method is efficient for large-scale simulations. The focus here is on the two-dimensional case (cylindrical particles), but the same procedure, to be developed in forthcoming papers, applies to three dimensions (spherical particles). Several extensions are briefly discussed.
Junting, Yu; Binqiao, Li; Pingping, Yu; Jiangtao, Xu; Cun, Mou
2010-09-01
Pixel image lag in a 4-T CMOS image sensor is analyzed and simulated in a two-dimensional model. Strategies of reducing image lag are discussed from transfer gate channel threshold voltage doping adjustment, PPD N-type doping dose/implant tilt adjustment and transfer gate operation voltage adjustment for signal electron transfer. With the computer analysis tool ISE-TCAD, simulation results show that minimum image lag can be obtained at a pinned photodiode n-type doping dose of 7.0 × 1012 cm-2, an implant tilt of -2°, a transfer gate channel doping dose of 3.0 × 1012 cm-2 and an operation voltage of 3.4 V. The conclusions of this theoretical analysis can be a guideline for pixel design to improve the performance of 4-T CMOS image sensors.
Fruitet, Joan; McFarland, Dennis J.; Wolpaw, Jonathan R.
2010-02-01
People can learn to control electroencephalogram (EEG) features consisting of sensorimotor-rhythm amplitudes and use this control to move a cursor in one, two or three dimensions to a target on a video screen. This study evaluated several possible alternative models for translating these EEG features into two-dimensional cursor movement by building an offline simulation using data collected during online performance. In offline comparisons, support-vector regression (SVM) with a radial basis kernel produced somewhat better performance than simple multiple regression, the LASSO or a linear SVM. These results indicate that proper choice of a translation algorithm is an important factor in optimizing brain-computer interface (BCI) performance, and provide new insight into algorithm choice for multidimensional movement control.
Institute of Scientific and Technical Information of China (English)
Chuantao Hou; Zhenhuan Li; Minsheng Huang; Chaojun Ouyang
2009-01-01
A two-dimensional discrete dislocation dynamics (DDD) technology by Giessen and Needleman (1995), which has been extended by integrating a dislocation-grain boundary interaction model, is used to computationally analyze the micro-cyclic plastic response of polycrystals containing micron-sized grains, with special attentions to significant influence of dislocationpenetrable grain boundaries (GBs) on the micro-plastic cyclic responses of polycrystals and underlying dislocation mechanism. Toward this end, a typical polycrystalline rectangular specimen under simple tension-compression loading is considered. Results show that, with the increase of cycle accumulative strain, continual dislocation accumulation and enhanced dislocation-dislocation interactions induce the cyclic hardening behavior; however, when a dynamic balance among dislocation nucleation, penetration through GB and dislocation annihilation is approximately established, cyclic stress gradually tends to saturate. In addition, other factors, including the grain size, cyclic strain amplitude and its history, also have considerable influences on the cyclic hardening and saturation.
Numerical simulations of Kelvin-Helmholtz instability: a two-dimensional parametric study
Tian, Chunlin
2016-01-01
Using two-dimensional simulations, we numerically explore the dependences of Kelvin-Helmholtz instability upon various physical parameters, including viscosity, width of sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirm that the linear coupling between magnetic field and Kelvin-Helmholtz modes is negligible if the magnetic field is weak enough. The morphological behaviour suggests that the multi-vortex coalescence might be driven by the underlying wave-wave interaction. Based on these results, we make a preliminary discussion about seve...
Renouf, M.; Bonamy, D.; Dubois, F.; Alart, P.
2005-10-01
The rheology of two-dimensional steady surface flow of cohesionless cylinders in a rotating drum is investigated through nonsmooth contact dynamics simulations. Profiles of volume fraction, translational and angular velocity, rms velocity, strain rate, and stress tensor are measured at the midpoint along the length of the surface-flowing layer, where the flow is generally considered as steady and homogeneous. Analysis of these data and their interrelations suggest the local inertial number—defined as the ratio between local inertial forces and local confinement forces—to be the relevant dimensionless parameter to describe the transition from the quasistatic part of the packing to the flowing part at the surface of the heap. Variations of the components of the stress tensor as well as the ones of rms velocity as a function of the inertial number are analyzed within both the quasistatic and the flowing phases. Their implications are discussed.
Chua, Victor; Vissers, Michael; Law, Stephanie A.; Vishveshwara, Smitha; Eckstein, James N.
2015-03-01
We simulate the consequences of the superconducting proximity effect on the DC current response of a semiconductor-superconductor proximity device within the quasiclassical formalism in the diffusively disordered limit. The device is modeled on in-situ fabricated NS junctions of superconducting Nb films on metallic doped InAs films, with electrical terminals placed in an N-S-N T-junction configuration. Due to the non-collinear configuration of this three terminal device, a theoretical model based on coupled two dimensional spectral and distributional Usadel equations was constructed and numerically solved using Finite-Elements methods. In the regime of high junction conductance, our numerical results demonstrate strong temperature and spatial dependencies of the proximity induced modifications to spectral and transport properties. Such characteristics deviate strongly from usual tunnel junction behavior and aspects of this have been observed in prior experiments[arXiv:1402.6055].
Phase diagram of the two-dimensional O(3) model from dual lattice simulations
Bruckmann, Falk; Kloiber, Thomas; Sulejmanpasic, Tin
2016-01-01
We have simulated the asymptotically free two-dimensional O(3) model at nonzero chemical potential using the model's dual representation. We first demonstrate how the latter solves the sign (complex action) problem. The system displays a crossover at nonzero temperature, while at zero temperature it undergoes a quantum phase transition when mu reaches the particle mass (generated dynamically similar to QCD). The density follows a square root behavior universal for repulsive bosons in one spatial dimension. We have also measured the spin stiffness, known to be sensitive to the spatial correlation length, using different scaling trajectories to zero temperature and infinite size. It points to a dynamical critical exponent z=2. Comparisons to thermodynamic Bethe ansaetze are shown as well.
Directory of Open Access Journals (Sweden)
Ozgul Mehmet
2012-08-01
Full Text Available Abstract Background Multidetector computed tomography (MDCT provides guidance for primary screening of the central airways. The aim of our study was assessing the contribution of multidetector computed tomography- two dimensional reconstruction in the management of patients with tracheobronchial stenosis prior to the procedure and during a short follow up period of 3 months after the endobronchial treatment. Methods This is a retrospective study with data collected from an electronic database and from the medical records. Patients evaluated with MDCT and who had undergone a stenting procedure were included. A Philips RSGDT 07605 model MDCT was used, and slice thickness, 3 mm; overlap, 1.5 mm; matrix, 512x512; mass, 90 and kV, 120 were evaluated. The diameters of the airways 10 mm proximal and 10 mm distal to the obstruction were measured and the stent diameter (D was determined from the average between D upper and D lower. Results Fifty-six patients, 14 (25% women and 42 (75% men, mean age 55.3 ± 13.2 years (range: 16-79 years, were assessed by MDCT and then treated with placement of an endobronchial stent. A computed tomography review was made with 6 detector Philips RSGDT 07605 multidetector computed tomography device. Endobronchial therapy was provided for the patients with endoluminal lesions. Stents were placed into the area of stenosis in patients with external compression after dilatation and debulking procedures had been carried out. In one patient the migration of a stent was detected during the follow up period by using MDCT. Conclusions MDCT helps to define stent size, length and type in patients who are suitable for endobronchial stinting. This is a non-invasive, reliable method that helps decisions about optimal stent size and position, thus reducing complications.
Energy Technology Data Exchange (ETDEWEB)
Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Nuclear Energy Research Center, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Firoozabadi, M. M.; Mohammadi, H. [Department of Physics, University of Birjand, Birjand 97175 (Iran, Islamic Republic of)
2014-01-15
A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ − z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79 × 10{sup 6} cm{sup −2}s{sup −1} and 2.20 ×10{sup 5} cm{sup −3}s{sup −1}, respectively.
Gheisari, R.; Firoozabadi, M. M.; Mohammadi, H.
2014-01-01
A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D2O and solid D2 (sD2). The D2O was investigated as the neutron moderator, and sD2 as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ - z) geometry was considered for 330 neutron energy groups in the sD2. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD2 volume) equal to 6.79 × 106 cm-2s-1 and 2.20 ×105 cm-3s-1, respectively.
Energy Technology Data Exchange (ETDEWEB)
Lu, Meijun; Das, Ujjwal; Bowden, Stuart; Hegedus, Steven; Birmire, Robert
2009-06-09
In this paper, two-dimensional (2D) simulation of interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells is presented using Sentaurus Device, a software package of Synopsys TCAD. A model is established incorporating a distribution of trap states of amorphous-silicon material and thermionic emission across the amorphous-silicon / crystalline-silicon heterointerface. The 2D nature of IBC-SHJ device is evaluated and current density-voltage (J-V) curves are generated. Optimization of IBC-SHJ solar cells is then discussed through simulation. It is shown that the open circuit voltage (VOC) and short circuit current density (JSC) of IBC-SHJ solar cells increase with decreasing front surface recombination velocity. The JSC improves further with the increase of relative coverage of p-type emitter contacts, which is explained by the simulated and measured position dependent laser beam induced current (LBIC) line scan. The S-shaped J-V curves with low fill factor (FF) observed in experiments are also simulated, and three methods to improve FF by modifying the intrinsic a-Si buffer layer are suggested: (i) decreased thickness, (ii) increased conductivity, and (iii) reduced band gap. With all these optimizations, an efficiency of 26% for IBC-SHJ solar cells is potentially achievable.
Directory of Open Access Journals (Sweden)
R. Gheisari
2014-01-01
Full Text Available A new idea to calculate ultracold neutron (UCN production by using Monte Carlo simulation method to calculate the cold neutron (CN flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source was modeled based on an arrangement of D2O and solid D2 (sD2. The D2O was investigated as the neutron moderator, and sD2 as the converter. In order to determine the required parameters, a two-dimensional (2D neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ − z geometry was considered for 330 neutron energy groups in the sD2. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD2 volume equal to 6.79 × 106 cm−2s−1 and 2.20 ×105 cm−3s−1, respectively.
GIS-based two-dimensional numerical simulation of rainfall-induced debris flow
Directory of Open Access Journals (Sweden)
C. Wang
2008-02-01
Full Text Available This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.
GIS-based two-dimensional numerical simulation of rainfall-induced debris flow
Wang, C.; Li, S.; Esaki, T.
2008-02-01
This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.
Institute of Scientific and Technical Information of China (English)
FENG Jing-jie; LI Ran; YANG Hui-xia; LI Jia
2013-01-01
Elevated levels of the Total Dissolved Gas (TDG) may be reached downstream of dams,leading to increased incidences of gas bubble diseases in fish.The supersaturated TDG dissipates and transports more slowly in reservoirs than in natural rivers because of the greater depth and the lower turbulence,which endangers the fish more seriously.With consideration of the topographical characteristics of a deep reservoir,a laterally averaged two-dimensional unsteady TDG model for deep reservoir is proposed.The dissipation process of the TDG inside the waterbody and the mass transfer through the free surface are separately modeled with different functions in the model.Hydrodynamics equations are solved coupling with those of water temperature and density.The TDG concentration is calculated based on the density current field.A good agreement is found in the simulation of the Dachaoshan Reservoir between the simulation results and the field data of the hydrodynamics parameters and the TDG distribution in the vertical direction and their unsteady evolution with time.The hydrodynamics parameters,the temperature and the TDG concentration are analyzed based on the simulation results.This study demonstrates that the model can be used to predict the evolutions of hydrodynamics parameters,the temperature and the TDG distribution in a deep reservoir with unsteady inflow and outflow.The results can be used in the study of the mitigation measures of the supersaturated TDG.
Kwac, Kijeong; Lee, Chewook; Jung, Yousung; Han, Jaebeom; Kwak, Kyungwon; Zheng, Junrong; Fayer, M D; Cho, Minhaeng
2006-12-28
Molecular dynamics (MD) simulations and quantum mechanical electronic structure calculations are used to investigate the nature and dynamics of the phenol-benzene complex in the mixed solvent, benzene/CCl4. Under thermal equilibrium conditions, the complexes are continuously dissociating and forming. The MD simulations are used to calculate the experimental observables related to the phenol hydroxyl stretching mode, i.e., the two dimensional infrared vibrational echo spectrum as a function of time, which directly displays the formation and dissociation of the complex through the growth of off-diagonal peaks, and the linear absorption spectrum, which displays two hydroxyl stretch peaks, one for the complex and one for the free phenol. The results of the simulations are compared to previously reported experimental data and are found to be in quite reasonable agreement. The electronic structure calculations show that the complex is T shaped. The classical potential used for the phenol-benzene interaction in the MD simulations is in good accord with the highest level of the electronic structure calculations. A variety of other features is extracted from the simulations including the relationship between the structure and the projection of the electric field on the hydroxyl group. The fluctuating electric field is used to determine the hydroxyl stretch frequency-frequency correlation function (FFCF). The simulations are also used to examine the number distribution of benzene and CCl4 molecules in the first solvent shell around the phenol. It is found that the distribution is not that of the solvent mole fraction of benzene. There are substantial probabilities of finding a phenol in either a pure benzene environment or a pure CCl4 environment. A conjecture is made that relates the FFCF to the local number of benzene molecules in phenol's first solvent shell.
A two-dimensional simulation of tritium transport in the vadose zone at the Nevada Test site
Energy Technology Data Exchange (ETDEWEB)
Ross, W.C.; Wheatcraft, S.W.
1994-09-01
The site of a 0.75-kiloton underground nuclear explosion, the Cambric event, was selected for the study of radionuclide transport in the hydrologic environment. Water samples from RNM-2S, a well located 91 m from Cambric, have been analyzed for tritium and other radionuclides since the initiation of pumping. Water from RNM-2S flows to Frenchman Lake via an unlined canal. Flume data indicate canal transmission losses of approximately 2m{sup 3}/day/meter of canal. To determine if infiltrating canal water might be recirculated by RNM-2S, and therefore provide an additional radionuclide input to water samples collected at RNM-2S, a two-dimensional variably saturated solute transport computer model (SATURN, Huyakorn et al., 1983) was used to simulate the movement of tritium from the canal to the water table. Results indicate that recirculated canal water has not had a significant effect on the breakthrough of tritium at RNM-2S.
Simulations of Viscous Accretion Flow around Black Holes in a Two-dimensional Cylindrical Geometry
Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu
2016-11-01
We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.
Two-dimensional simulations of explosive eruptions of Kick-em Jenny and other submarine volcanos
Energy Technology Data Exchange (ETDEWEB)
Gisler, Galen R.; Weaver, R. P. (Robert P.); Mader, Charles L.; Gittings, M. L. (Michael L.)
2004-01-01
Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy), but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailuluu in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by subaerial and sub-aqueous landslides demonstrate this.
TWO-DIMENSIONAL SIMULATIONS OF EXPLOSIVE ERUPTIONS OF KICK-EM JENNY AND OTHER SUBMARINE VOLCANOS
Directory of Open Access Journals (Sweden)
Galen Gisler
2006-01-01
Full Text Available Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy, but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailulu'u in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by sub- aerial and sub-aqueous landslides demonstrate this.
Nenov, Artur; Mukamel, Shaul; Garavelli, Marco; Rivalta, Ivan
2015-08-11
First-principles simulations of two-dimensional electronic spectroscopy in the ultraviolet region (2DUV) require computationally demanding multiconfigurational approaches that can resolve doubly excited and charge transfer states, the spectroscopic fingerprints of coupled UV-active chromophores. Here, we propose an efficient approach to reduce the computational cost of accurate simulations of 2DUV spectra of benzene, phenol, and their dimer (i.e., the minimal models for studying electronic coupling of UV-chromophores in proteins). We first establish the multiconfigurational recipe with the highest accuracy by comparison with experimental data, providing reference gas-phase transition energies and dipole moments that can be used to construct exciton Hamiltonians involving high-lying excited states. We show that by reducing the active spaces and the number of configuration state functions within restricted active space schemes, the computational cost can be significantly decreased without loss of accuracy in predicting 2DUV spectra. The proposed recipe has been successfully tested on a realistic model proteic system in water. Accounting for line broadening due to thermal and solvent-induced fluctuations allows for direct comparison with experiments.
A two-dimensional global simulation study of inductive-dynamic magnetosphere-ionosphere coupling
Tu, Jiannan; Song, Paul
2016-12-01
We present the numerical methods and results of a global two-dimensional multifluid-collisional-Hall magnetohydrodynamic (MHD) simulation model of the ionosphere-thermosphere system, an extension of our one-dimensional three-fluid MHD model. The model solves, self-consistently, Maxwell's equations, continuity, momentum, and energy equations for multiple ion and neutral species incorporating photochemistry, collisions among the electron, ion and neutral species, and various heating sources in the energy equations. The inductive-dynamic approach (solving self-consistently Faraday's law and retaining inertia terms in the plasma momentum equations) used in the model retains all possible MHD waves, thus providing faithful physical explanation (not merely description) of the magnetosphere-ionosphere/thermosphere (M-IT) coupling. In the present study, we simulate the dawn-dusk cross-polar cap dynamic responses of the ionosphere to imposed magnetospheric convection. It is shown that the convection velocity at the top boundary launches velocity, magnetic, and electric perturbations propagating with the Alfvén speed toward the bottom of the ionosphere. Within the system, the waves experience reflection, penetration, and rereflection because of the inhomogeneity of the plasma conditions. The reflection of the Alfvén waves may cause overshoot (stronger than the imposed magnetospheric convection) of the plasma velocity in some regions. The simulation demonstrates dynamic propagation of the field-aligned currents and ionospheric electric field carried by the Alfvén waves, as well as formation of closure horizontal currents (Pedersen currents in the E region), indicating that in the dynamic stage the M-I coupling is via the Alfvén waves instead of field-aligned currents or electric field mapping as described in convectional M-I coupling models.
Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex
Energy Technology Data Exchange (ETDEWEB)
Yeh, Shu-Hao [Department of Chemistry and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kais, Sabre, E-mail: kais@purdue.edu [Department of Chemistry and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar)
2014-12-21
The Fenna-Matthews-Olson (FMO) protein-pigment complex acts as a molecular wire conducting energy between the outer antenna system and the reaction center; it is an important photosynthetic system to study the transfer of excitonic energy. Recent crystallographic studies report the existence of an additional (eighth) bacteriochlorophyll a (BChl a) in some of the FMO monomers. To understand the functionality of this eighth BChl, we simulated the two-dimensional electronic spectra of both the 7-site (apo form) and the 8-site (holo form) variant of the FMO complex from green sulfur bacteria, Prosthecochloris aestuarii. By comparing the spectrum, it was found that the eighth BChl can affect two different excitonic energy transfer pathways: (1) it is directly involved in the first apo form pathway (6 → 3 → 1) by passing the excitonic energy to exciton 6; and (2) it facilitates an increase in the excitonic wave function overlap between excitons 4 and 5 in the second pathway (7 → 4,5 → 2 → 1) and thus increases the possible downward sampling routes across the BChls.
Directory of Open Access Journals (Sweden)
Lulu Wang
2016-01-01
Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.
Numerical Simulations of an atmospheric pressure discharge using a two dimensional fluid model
Iqbal, Muhammad M.; Turner, Miles M.
2008-10-01
We present numerical simulations of a parallel-plate dielectric barrier discharge using a two-dimensional fluid model with symmetric boundary conditions in pure helium and He-N2 gases at atmospheric pressure. The periodic stationary pattern of electrons and molecular helium ions density is shown at different times during one breakdown pulse for the pure helium gas. The temporal behavior of the helium metastables and excimers species density is examined and their influences on the discharge characteristics are exhibited for an APD. The atmospheric pressure discharge modes (APGD and APTD) are affected with small N2 impurities and the discharge mode structures are described under different operating conditions. The uniform and filamentary behavior of the discharge is controlled with the variable relative permittivity of the dielectric barrier material. The influence of nitrogen impurities plays a major role for the production of the filaments in the after glow phase of He-N2 discharge and the filaments are clearly observed with the increased recombination coefficient of nitrogen ions. The creation and annihilation mechanism of filaments is described with the production and destruction of nitrogen ions at different applied voltages and driving frequencies for a complete cycle. The results of the fluid model are validated by comparison with the experimental atmospheric pressure discharge results in He-N2 plasma discharge.
Agarwal, Sumit; Briant, Clyde L.; Krajewski, Paul E.; Bower, Allan F.; Taleff, Eric M.
2007-04-01
A finite element method was recently designed to model the mechanisms that cause superplastic deformation (A.F. Bower and E. Wininger, A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals during High-Temperature Plastic Deformation, J. Mech. Phys. Solids, 2004, 52, p 1289-1317). The computations idealize the solid as a collection of two-dimensional grains, separated by sharp grain boundaries. The grains may deform plastically by thermally activated dislocation motion, which is modeled using a conventional crystal plasticity law. The solid may also deform by sliding on the grain boundaries, or by stress-driven diffusion of atoms along grain boundaries. The governing equations are solved using a finite element method, which includes a front-tracking procedure to monitor the evolution of the grain boundaries and surfaces in the solid. The goal of this article is to validate these computations by systematically comparing numerical predictions to experimental measurements of the elevated-temperature response of aluminum alloy AA5083 (M.-A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley, Deformation Mechanisms in Superplastic AA5083 materials. Metall. Mater. Trans. A, 2005, 36(5), p 1249-1261). The experimental work revealed that a transition occurs from grain-boundary sliding to dislocation (solute-drag) creep at approximately 0.001/s for temperatures between 425 and 500 °C. In addition, increasing the grain size from 7 to 10 μm decreased the transition to significantly lower strain rates. Predictions from the finite element method accurately predict the effect of grain size on the transition in deformation mechanisms.
Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies
Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh
1991-01-01
This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.
Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies
Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh
1991-01-01
This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.
Energy Technology Data Exchange (ETDEWEB)
Caillol, Jean-Michel, E-mail: Jean-Michel.Caillol@th.u-psud.fr [University of Paris-Sud, CNRS, LPT, UMR 8627, Orsay F-91405 (France)
2015-04-21
We present two methods for solving the electrostatics of point charges and multipoles on the surface of a sphere, i.e., in the space S{sub 2}, with applications to numerical simulations of two-dimensional (2D) polar fluids. In the first approach, point charges are associated with uniform neutralizing backgrounds to form neutral pseudo-charges, while in the second, one instead considers bi-charges, i.e., dumbells of antipodal point charges of opposite signs. We establish the expressions of the electric potentials of pseudo- and bi-charges as isotropic solutions of the Laplace-Beltrami equation in S{sub 2}. A multipolar expansion of pseudo- and bi-charge potentials leads to the electric potentials of mono- and bi-multipoles, respectively. These potentials constitute non-isotropic solutions of the Laplace-Beltrami equation, the general solution of which in spherical coordinates is recast under a new appealing form. We then focus on the case of mono- and bi-dipoles and build the theory of dielectric media in S{sub 2}. We notably obtain the expression of the static dielectric constant of a uniform isotropic polar fluid living in S{sub 2} in terms of the polarization fluctuations of subdomains of S{sub 2}. We also derive the long range behavior of the equilibrium pair correlation function under the assumption that it is governed by macroscopic electrostatics. These theoretical developments find their application in Monte Carlo simulations of the 2D fluid of dipolar hard spheres. Some preliminary numerical experiments are discussed with a special emphasis on finite size effects, a careful study of the thermodynamic limit, and a check of the theoretical predictions for the asymptotic behavior of the pair correlation function.
Truong, T. K.; Liu, K. Y.; Reed, I. S.
1983-01-01
It is pointed out that the two-dimensional cyclic convolution is a useful tool for many two-dimensional digital signal processing applications. Two important applications are related to spaceborne high-resolution synthetic aperture radar (SAR) processing and image processing. Nussbaumer and Quandalle (1978) showed that a radix-2 polynomial transform analogous to the conventional radix-2 FFT algorithm can be used to compute a two-dimensional cyclic convolution. On the basis of results reported by Arambepola and Rayner (1979), a radix-2 polynomial transform can be defined to compute a multidimensional cyclic convolution. Truong et al. (1981) used the considered ideas together with the Chinese Theorem to further reduce the complexity of the radix-2 fast polynomial transform (FPT). Reed et al. (1981) demonstrated that such a new FPT algorithm is significantly faster than the FFT algorithm for computing a two-dimensional convolution. In the present investigation, a parallel-pipeline architecture is considered for implementing the FPT developed by Truong et al.
Two-dimensional fully dynamic SEM simulations of the 2011 Tohoku earthquake cycle
Shimizu, H.; Hirahara, K.
2014-12-01
Earthquake cycle simulations have been performed to successfully reproduce the historical earthquake occurrences. Most of them are quasi-dynamic, where inertial effects are approximated using the radiation damping proposed by Rice [1993]. Lapusta et al. [2000, 2009] developed a methodology capable of the detailed description of seismic and aseismic slip and gradual process of earthquake nucleation in the entire earthquake cycle. Their fully dynamic simulations have produced earthquake cycles considerably different from quasi-dynamic ones. Those simulations have, however, never been performed for interplate earthquakes at subduction zones. Many studies showed that on dipping faults such as interplate earthquakes at subduction zones, normal stress is changed during faulting due to the interaction with Earth's free surface. This change in normal stress not only affects the earthquake rupture process, but also causes the residual stress variation that might affect the long-term histories of earthquake cycle. Accounting for such effects, we perform two-dimensional simulations of the 2011 Tohoku earthquake cycle. Our model is in-plane and a laboratory derived rate and state friction acts on a dipping fault embedded on an elastic half-space that reaches the free surface. We extended the spectral element method (SEM) code [Ampuero, 2002] to incorporate a conforming mesh of triangles and quadrangles introduced in Komatitsch et al. [2001], which enables us to analyze the complex geometry with ease. The problem is solved by the methodology almost the same as Kaneko et al. [2011], which is the combined scheme switching in turn a fully dynamic SEM and a quasi-static SEM. The difference is the dip-slip thrust fault in our study in contrast to the vertical strike slip fault. With this method, we can analyze how the dynamic rupture with surface breakout interacting with the free surface affects the long-term earthquake cycle. We discuss the fully dynamic earthquake cycle results
Simulation of Two Dimensional Electrophoresis and Tandem Mass Spectrometry for Teaching Proteomics
Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul
2012-01-01
In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…
Simulation of Two Dimensional Electrophoresis and Tandem Mass Spectrometry for Teaching Proteomics
Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul
2012-01-01
In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…
Two-dimensional simulation of red blood cell motion near a wall under a lateral force
Hariprasad, Daniel S.; Secomb, Timothy W.
2014-11-01
The motion of a red blood cell suspended in a linear shear flow adjacent to a fixed boundary subject to an applied lateral force directed toward the boundary is simulated. A two-dimensional model is used that represents the viscous and elastic properties of normal red blood cells. Shear rates in the range of 100 to 600 s-1 are considered, and the suspending medium viscosity is 1 cP. In the absence of a lateral force, the cell executes a tumbling motion. With increasing lateral force, a transition from tumbling to tank-treading is predicted. The minimum force required to ensure tank-treading increases nonlinearly with the shear rate. Transient swinging motions occur when the force is slightly larger than the transition value. The applied lateral force is balanced by a hydrodynamic lift force resulting from the positive orientation of the long axis of the cell with respect to the wall. In the case of cyclic tumbling motions, the orientation angle takes positive values through most of the cycle, resulting in lift generation. These results are used to predict the motion of a cell close to the outer edge of the cell-rich core region that is generated when blood flows in a narrow tube. In this case, the lateral force is generated by shear-induced dispersion, resulting from cell-cell interactions in a region with a concentration gradient. This force is estimated using previous data on shear-induced dispersion. The cell is predicted to execute tank-treading motions at normal physiological hematocrit levels, with the possibility of tumbling at lower hematocrit levels.
Two-dimensional simulations of steady perforated-plate stabilized premixed flames
Altay, H. Murat
2010-03-17
The objective of this work is to examine the impact of the operating conditions and the perforated-plate design on the steady, lean premixed flame characteristics. We perform two-dimensional simulations of laminar flames using a reduced chemical kinetics mechanism for methane-air combustion, consisting of 20 species and 79 reactions. We solve the heat conduction problem within the plate, allowing heat exchange between the gas mixture and the solid plate. The physical model is based on a zero-Mach-number formulation of the axisymmetric compressible conservation equations. The results suggest that the flame consumption speed, the flame structure, and the flame surface area depend significantly on the equivalence ratio, mean inlet velocity, the distance between the perforated-plate holes and the plate thermal conductivity. In the case of an adiabatic plate, a conical flame is formed, anchored near the corner of the hole. When the heat exchange between themixture and the plate is finite, the flame acquires a Gaussian shape stabilizing at a stand-off distance, that grows with the plate conductivity. The flame tip is negatively curved; i.e. concave with respect to the reactants. Downstream of the plate, the flame base is positively curved; i.e. convex with respect to the reactants, stabilizing above a stagnation region established between neighboring holes. As the plate\\'s thermal conductivity increases, the heat flux to the plate decreases, lowering its top surface temperature. As the equivalence ratio increases, the flame moves closer to the plate, raising its temperature, and lowering the flame stand-off distance. As the mean inlet velocity increases, the flame stabilizes further downstream, the flame tip becomes sharper, hence raising the burning rate at that location. The curvature of the flame base depends on the distance between the neighboring holes; and the flame there is characterized by high concentration of intermediates, like carbon monoxide. © 2010 Taylor
Energy Technology Data Exchange (ETDEWEB)
Cline, M.C.
1981-08-01
VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.
Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger
2008-01-01
Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve
Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger Karl
2008-01-01
Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve
Jo, Ju-Yeon; Tanimura, Yoshitaka
2016-01-01
Frequency-domain two-dimensional Raman signals, which are equivalent to coherent two-dimensional Raman scattering (COTRAS) signals, for liquid water and carbon tetrachloride were calculated using an equilibrium-nonequilibrium hybrid MD simulation algorithm. We elucidate mechanisms governing the 2D signal pro?les involving anharmonic mode-mode coupling and the nonlinearities of the polarizability for the intermolecular and intramolecular vibrational modes. The predicted signal pro?les and intensities can be utilized to analyze recently developed single-beam 2D spectra, whose signals are generated from a coherently controlled pulse, allowing the single-beam measurement to be carried out more efficiently.
Po, Hoi Chun; Zhou, Qi
2015-08-13
Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems.
Liang, Chungwen; Jansen, Thomas L. C.
2012-01-01
In this paper, we develop and test a new approximate propagation scheme for calculating two-dimensional infrared and visible spectra. The new scheme scales one order more efficiently with the system size than the existing schemes. A Trotter type of approximation is used for the matrix exponent that
Fang, Changming; Van Blaaderen, Alfons; Van Huis, Marijn A.
2015-01-01
Two-dimensional (2D) hydrous silica sheets (HSSs) and hydrous silica nanotubes (HSNTs) have many unique properties and potential applications. Although preparation of 2D HSSs was patented already about half a century ago, very little is known about their structure and physical properties. He we pred
Energy Technology Data Exchange (ETDEWEB)
Barbaro, M. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dipt. Innovazione
1997-11-01
A numerical method is described which generates an orthogonal curvilinear mesh, subject to the constraint that mesh lines are matched to all boundaries of a closed, simply connected two-dimensional region of arbitrary shape. The method is based on the solution, by an iterative finite-difference technique, of an elliptic differential system of equations for the Cartesian coordinates of the orthogonal grid nodes. The interior grid distribution is controlled by a technique which ensures that coordinate lines can be concentrated as desired. Examples of orthogonal meshes inscribed in various geometrical figures are included.
Two-Dimensional Simulation of Left-Handed Metamaterial Flat Lens Using Remcon XFDTD
Wilson, Jeffrey D.; Reinert, Jason M.
2006-01-01
Remcom's XFDTD software was used to model the properties of a two-dimensional left-handed metamaterial (LHM) flat lens. The focusing capability and attenuation of the material were examined. The results showed strong agreement with experimental results and theoretical predictions of focusing effects and focal length. The inherent attenuation in the model corresponds well with the experimental results and implies that the code does a reasonably accurate job of modeling the actual metamaterial.
Jiao, Huiqing; Zhao, Chengyi; Sheng, Yu; Chen, Yan; Shi, Jianchu; Li, Baoguo
2017-04-01
Water shortage and soil salinization increasingly become the main constraints for sustainable development of agriculture in Southern Xinjiang, China. Mulched drip irrigation, as a high-efficient water-saving irrigation method, has been widely applied in Southern Xinjiang for cotton production. In order to analyze the reasonability of describing the three-dimensional soil water and salt transport processes under mulched drip irrigation with a relatively simple two-dimensional model, a field experiment was conducted from 2007 to 2015 at Aksu of Southern Xinjiang, and soil water and salt transport processes were simulated through the three-dimensional and two-dimensional models based on COMSOL. Obvious differences were found between three-dimensional and two-dimensional simulations for soil water flow within the early 12 h of irrigation event and for soil salt transport in the area within 15 cm away from drip tubes during the whole irrigation event. The soil water and salt contents simulated by the two-dimensional model, however, agreed well with the mean values between two adjacent emitters simulated by the three-dimensional model, and also coincided with the measurements as corresponding RMSE less than 0.037 cm3 cm-3 and 1.80 g kg-1, indicating that the two-dimensional model was reliable for field irrigation management. Subsequently, the two-dimensional model was applied to simulate the dynamics of soil salinity for five numerical situations and for a widely adopted irrigation pattern in Southern Xinjiang (about 350 mm through mulched drip irrigation during growing season of cotton and total 400 mm through flooding irrigations before sowing and after harvesting). The simulation results indicated that the contribution of transpiration to salt accumulation in root layer was about 75% under mulched drip irrigation. Moreover, flooding irrigations before sowing and after harvesting were of great importance for salt leaching of arable layer, especially in bare strip where
Energy Technology Data Exchange (ETDEWEB)
Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)
2015-08-15
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
Energy Technology Data Exchange (ETDEWEB)
Qin, S.; Zhou, Y.; Chan, C. [Northeastern Univ., Boston, MA (United States)
1996-12-31
Plasma immersion ion implantation (PIII) has been utilized as a low cost, low energy doping method for large area targets with applications to semiconductor manufacturing. They include doping, shallow junction formation, hydrogenation for poly-Si thin film transistors, and SIMOX (Separated by IMplant of OXygen) structure formation. The characteristics of the dynamic sheath expansion during PIII process is very important for the optimum PIII configuration design and process control in order to obtain more accurate doping results such as the implant dose and impurity profile. For example, the sheath thickness is critical to chamber design and monoenergetic ion implant for a more accurate control of as-implanted impurity profile of shallow junction and SIMOX structures. A PDP2 simulation code has been used to simulate PIII process which will aid in understanding the physics of PIII processes and obtain the optimum process parameters. This model was verified by comparing with the PDP2 computer simulations and the experimental results of the PIII doping processes.
DEFF Research Database (Denmark)
Yura, Harold; Hanson, Steen Grüner
2012-01-01
Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the......Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set...... with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative...
Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S
2016-10-31
The image-based computational fluid dynamics (IB-CFD) technique, as the combination of medical images and the CFD method, is utilized in this research to analyze the left ventricle (LV) hemodynamics. The research primarily aims to propose a semi-automated technique utilizing some freely available and commercial software packages in order to simulate the LV hemodynamics using the IB-CFD technique. In this research, moreover, two different physiological time-resolved 2D models of a patient-specific LV with two different types of aortic and mitral valves, including the orifice-type valves and integrated with rigid leaflets, are adopted to visualize the process of developing intraventricular vortex formation and propagation. The blood flow pattern over the whole cardiac cycle of two models is also compared to investigate the effect of utilizing different valve types in the process of the intraventricular vortex formation. Numerical findings indicate that the model with integrated valves can predict more complex intraventricular flow that can match better the physiological flow pattern in comparison to the orifice-type model.
Simulation study of scalings in scrape-off layer plasma by two-dimensional transport code
Energy Technology Data Exchange (ETDEWEB)
Itoh, S.-I.; Ueda, Noriaki; Itoh, Kimitaka (National Inst. for Fusion Science, Nagoya (Japan))
1990-07-01
Scrape-off Layer (SOL) plasma and divertor plasma in Tokamaks were numerically analyzed using a two-dimensional time-dependent transport code (UEDA code). Plasma transport in the SOL and the divertor region was studied for given particle and heat sources from the main plasma. A scaling study of the density, the temperature and their fall-off lengths was carried out for the JFT-2M Tokamak. The results show the inter-relations between the divertor plasma parameters and core plasma confinement. The operational conditions of the core necessary to guarantee the divertor performance are discussed. (author).
Energy Technology Data Exchange (ETDEWEB)
Takasao, Shinsuke; Nakamura, Naoki; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Matsumoto, Takuma, E-mail: takasao@kwasan.kyoto-u.ac.jp [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 (Japan)
2015-06-01
Solar flares are an explosive phenomenon where super-sonic flows and shocks are expected in and above the post-flare loops. To understand the dynamics of post-flare loops, a two-dimensional magnetohydrodynamic (2D MHD) simulation of a solar flare has been carried out. We found new shock structures in and above the post-flare loops, which were not resolved in the previous work by Yokoyama and Shibata. To study the dynamics of flows along the reconnected magnetic field, the kinematics and energetics of the plasma are investigated along selected field lines. It is found that shocks are crucial to determine the thermal and flow structures in the post-flare loops. On the basis of the 2D MHD simulation, we developed a new post-flare loop model, which we defined as the pseudo-2D MHD model. The model is based on the one-dimensional (1D) MHD equations, where all variables depend on one space dimension, and all the three components of the magnetic and velocity fields are considered. Our pseudo-2D model includes many features of the multi-dimensional MHD processes related to magnetic reconnection (particularly MHD shocks), which the previous 1D hydrodynamic models are not able to include. We compared the shock formation and energetics of a specific field line in the 2D calculation with those in our pseudo-2D MHD model, and found that they give similar results. This model will allow us to study the evolution of the post-flare loops in a wide parameter space without expensive computational cost or neglecting important physics associated with magnetic reconnection.
Numerical simulation of two-dimensional corner flows in a circulating water channel with guide vanes
Energy Technology Data Exchange (ETDEWEB)
Hung, Y.; Nishimoto, H.; Tamashima, M.; Yamazaki, R. [West Japan Fluid Engineering Co. Ltd., Nagasaki (Japan); Wang, G.
1998-09-04
A Navier-Stokes procedure is developed based on the Finite Volume Method to simulate the 2-D comer flows in a CWC. The staggered grid is adopted and a new method is presented to coupling the velocities and the pressure when the grid lines change direction by 90deg. The turbulince is approximated using {kappa} - {epsilon} model and a transfinite algebraic method is used to generate the body fitted coordinates. After validation of the computer code, the corner flows in a CWC was calculated and the effect of guide vanes was investigated. For laminar flows, the guide vanes may restrain the separations on the inner side but not so effective on the outside; for turbulent flows, separations on the inner side disappeared even without guide vanes but still remained on the outside. By incorporating guide vanes, the separation can be effectively controlled. 6 refs., 13 figs.
Experimental apparatus for quantum simulation with two-dimensional 9Be + Coulomb crystals
Pyka, Karsten; Ball, Harrison; McRae, Terry; Edmunds, Claire; Lee, Michael W.; Henderson, Samuel; Biercuk, Michael J.; Quantum Control Lab Team
2015-03-01
We report on the development of a new experimental setup designed for Quantum Simulation studies at a computationally relevant scale using laser-cooled 9Be + ion-crystals in a Penning trap. The trap geometry is optimized using numerical calculations for trapping large ion crystals with enhanced optical access and reduced anharmonic perturbations. Separate loading and spectroscopy zones prevent long term drifts of the trapping parameters due to contamination of the trap electrodes with Be deposits. Our customized superconducting magnet provides a homogenous (dB/B telecom wavelength fiber laser systems in the IR via nonlinear conversion. Our new approach employs high-efficiency telecom modulators and mode-selecting cavities to generate multiple beamlines from a single Sum-frequency-Generation step. Ultimately, this newly developed setup will allow for studies of many-body spin systems with tuneable interaction strength from infinite-range to nearest-neighbour type interaction.
Numerical Simulation of the Flow around Two-dimensional Partially Cavitating Hydrofoils
Institute of Scientific and Technical Information of China (English)
Fahri Celik; Yasemin Arikan Ozden; Sakir Bal
2014-01-01
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by the use of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.
Numerical simulation of the flow around two-dimensional partially cavitating hydrofoils
Celik, Fahri; Ozden, Yasemin Arikan; Bal, Sakir
2014-09-01
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by the use of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.
NUMERICAL SIMULATION OF TWO-DIMENSIONAL DAM-BREAK FLOWS IN CURVED CHANNELS
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Two-dimensional transient dam-break flows in a river with bends were theoretically studied. The river was modeled as a curved channel with a constant width and a flat bottom. The water was assumed to be an incompressible and homogeneous fluid. A channel-fitted orthogonal curvilinear coordinate system was established and the corresponding two-dimensional shallow-water equations were derived for this system. The governing equations with well-posed initial and boundary conditions were numerically solved in a rectangular domain by use of the Godunov-type finite-difference scheme, which can capture the hydraulic jump of dam-break flows. The comparison between the obtained numerical results and the experimental data of Miller and Chaudry in a semicircle channel shows the validity of the present numerical scheme. The mathematical model and the numerical method were applied to the dam-break flows in channels with various curvatures. Based on the numerical results, the influence of river curvatures on the dam-break flows was analyzed in details.
Numerical simulation of shallow-water flooding using a two-dimensional finite volume model
Institute of Scientific and Technical Information of China (English)
YUAN Bing; SUN Jian; YUAN De-kui; TAO Jian-hua
2013-01-01
A 2-D Finite Volume Model (FVM) is developed for shallow water flows over a complex topography with wetting and drying processes.The numerical fluxes are computed using the Harten,Lax,and van Leer (HLL) approximate Riemann solver.Second-order accuracy is achieved by employing the MUSCL reconstruction method with a slope limiter in space and an explicit two-stage Runge-Kutta method for time integration.A simple and efficient method is introduced to deal with the wetting and drying processes without any correction of the numerical flux term or the source term.In this new method,a switch of alternative schemes is used to compute the water depths at the cell interface to obtain the numerical flux.The model is verified against benchmark tests with analytical solutions and laboratory experimental data.The numerical results show that the model can simulate different types of flood waves from the ideal flood wave to cases over complex terrains.The satisfactory performance indicates an extensive application prospect of the present model in view of its simplicity and effectiveness.
Institute of Scientific and Technical Information of China (English)
LU Yong-jin; LIU Hua; WU Wei; ZHANG Jiu-shan
2007-01-01
A new mathematical model for the overtopping against seawalls armored with artificial units in regular waves was established. The 2-D numerical wave flume, based on the Reynolds Averaged Navier-Stokes (RANS) equations and the standard k-ε turbulence model, was developed to simulate the turbulent flows with the free surface, in which the Volume Of Fluid (VOF) method was used to handle the large deformation of the free surface and the relaxation approach of combined wave generation and absorbing was implemented. In order to consider the effects of energy dissipation due to the armors on a slope seawall, a porous media model was proposed and implemented in the numerical wave flume. A series of physical model experiments were carried out in the same condition of the numerical simulation to determine the drag coefficient in the porous media model in terms of the overtopping discharge. Compared the computational value of overtopping over the seawall with the experimental data, the values of the effective drag coefficient was calibrated for the layers of blocks at different locations along the seawalls.
Directory of Open Access Journals (Sweden)
Matas Richard
2012-04-01
Full Text Available The article deals with comparison of drag and lift coefficients for simple two-dimensional objects, which are often discussed in fluid mechanics fundamentals books. The commercial CFD software ANSYS/FLUENT 13 was used for computation of flow fields around the objects and determination of the drag and lift coefficients. The flow fields of the two-dimensional objects were computed for velocity up to 160 km per hour and Reynolds number Re = 420 000. Main purpose was to verify the suggested computational domain and model settings for further more complex objects geometries. The more complex profiles are used to stabilize asymmetrical ('z'-shaped pantographs of high-speed trains. The trains are used in two-way traffic where the pantographs have to operate with the same characteristics in both directions. Results of the CFD computations show oscillation of the drag and lift coefficients over time. The results are compared with theoretical and experimental data and discussed. Some examples are presented in the paper.
Britton, Joseph W; Sawyer, Brian C; Keith, Adam C; Wang, C-C Joseph; Freericks, James K; Uys, Hermann; Biercuk, Michael J; Bollinger, John J
2012-04-25
The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed-matter systems, potentially including high-temperature superconductivity. However, many properties of exotic, strongly correlated spin systems, such as spin liquids, have proved difficult to study, in part because calculations involving N-body entanglement become intractable for as few as N ≈ 30 particles. Feynman predicted that a quantum simulator--a special-purpose 'analogue' processor built using quantum bits (qubits)--would be inherently suited to solving such problems. In the context of quantum magnetism, a number of experiments have demonstrated the feasibility of this approach, but simulations allowing controlled, tunable interactions between spins localized on two- or three-dimensional lattices of more than a few tens of qubits have yet to be demonstrated, in part because of the technical challenge of realizing large-scale qubit arrays. Here we demonstrate a variable-range Ising-type spin-spin interaction, J(i,j), on a naturally occurring, two-dimensional triangular crystal lattice of hundreds of spin-half particles (beryllium ions stored in a Penning trap). This is a computationally relevant scale more than an order of magnitude larger than previous experiments. We show that a spin-dependent optical dipole force can produce an antiferromagnetic interaction J(i,j) proportional variant d(-a)(i,j), where 0 ≤ a ≤ 3 and d(i,j) is the distance between spin pairs. These power laws correspond physically to infinite-range (a = 0), Coulomb-like (a = 1), monopole-dipole (a = 2) and dipole-dipole (a = 3) couplings. Experimentally, we demonstrate excellent agreement with a theory for 0.05 ≲ a ≲ 1.4. This demonstration, coupled with the high spin count, excellent quantum control and low technical complexity of the Penning trap, brings within reach the simulation of otherwise computationally intractable problems in quantum magnetism.
Two-dimensional streamflow simulations of the Jordan River, Midvale and West Jordan, Utah
Kenney, Terry A.; Freeman, Michael L.
2011-01-01
The Jordan River in Midvale and West Jordan, Utah, flows adjacent to two U.S. Environmental Protection Agency Superfund sites: Midvale Slag and Sharon Steel. At both sites, geotechnical caps extend to the east bank of the river. The final remediation tasks for these sites included the replacement of a historic sheet-pile dam and the stabilization of the river banks adjacent to the Superfund sites. To assist with these tasks, two hydraulic modeling codes contained in the U.S. Geological Survey (USGS) Multi-Dimensional Surface-Water Modeling System (MD_SWMS), System for Transport and River Modeling (SToRM) and Flow and Sediment Transport and Morphological Evolution of Channels (FaSTMECH), were used to provide predicted water-surface elevations, velocities, and boundary shear-stress values throughout the study reach of the Jordan River. A SToRM model of a 0.7 mile subreach containing the sheet-pile dam was used to compare water-surface elevations and velocities associated with the sheet-pile dam and a proposed replacement structure. Maps showing water-surface elevation and velocity differences computed from simulations of the historic sheet-pile dam and the proposed replacement structure topographies for streamflows of 500 and 1,000 cubic feet per second (ft3/s) were created. These difference maps indicated that the velocities associated with the proposed replacement structure topographies were less than or equal to those associated with the historic sheet-pile dam. Similarly, water-surface elevations associated with the proposed replacement structure topographies were all either greater than or equal to water-surface elevations associated with the sheet-pile dam. A FaSTMECH model was developed for the 2.5-mile study reach to aid engineers in bank stabilization designs. Predicted water-surface elevations, velocities and shear-stress values were mapped on an aerial photograph of the study reach to place these parameters in a spatial context. Profile plots of predicted
Axisymmetric Two-Dimensional Computation of Magnetic Field Dragging in Accretion Disks
Reyes-Ruiz, Mauricio; Stepinski, Tomasz F.
1996-01-01
In this paper we model a geometrically thin accretion disk interacting with an externally imposed, uniform, vertical magnetic field. The accretion flow in the disk drags and distorts field lines, amplifying the magnetic field in the process. Inside the disk the radial component of the field is sheared into a toroidal component. The aim of this work is to establish the character of the resultant magnetic field and its dependence on the disk's parameters. We concentrate on alpha-disks driven by turbulent viscosity. Axisymmetric, two-dimensional solutions are obtained without taking into account the back-reaction of the magnetic field on the structure of the disk. The character of the magnetic field depends strongly on the magnitude of the magnetic Prandtl number, P . We present two illustrative examples of viscous disks: a so-called 'standard' steady state model of a disk around a compact star (e.g., cataclysmic variable), and a steady state model of a proto-planetary disk. In both cases, P = 1, P = 10(sup -1), and P = 10(sup -2) scenarios are calculated. Significant bending and magnification of the magnetic field is possible only for disks characterized by P of the order of 10(sup -2). In such a case, the field lines are bent sufficiently to allow the development of a centrifugally driven wind. Inside the disk the field is dominated by its toroidal component. We also investigate the dragging of the magnetic field by a nonviscous protoplanetary disk described by a phenomenological model. This scenario leads to large distortion and magnification of the magnetic field.
Simulation of two-dimensional ISAR decoys on a moving platform
Institute of Scientific and Technical Information of China (English)
Xiaoyi Pan; Wei Wang; Qixiang Fu; Dejun Feng; Guoyu Wang
2015-01-01
It is potential y useful to perform deception jamming using the digital image synthesizer (DIS) since it can form a two-dimensional (2D) decoy but suffers from multiple decoys ge-neration. Inspired by the intermittent sampling repeater jamming (ISRJ), the generation of inverse synthetic aperture radar (ISAR) decoys is addressed, associated with the DIS and the ISRJ. Radar pulses are sampled intermittently and modulated by the scatter-ing model of a false target by mounting the jammer on a moving platform, and then the jamming signals are retransmitted to the radar and a train of decoys are induced after ISAR imaging. A scattering model of Yak-42 is adopted as the false-target mo-dulation model to verify the effectiveness of the jamming method based on the standard ISAR motion compensation and image for-mation procedure.
Two-Dimensional Variable Property Conjugate Heat Transfer Simulation of Nanofluids in Microchannels
Directory of Open Access Journals (Sweden)
A. Ramiar
2013-01-01
Full Text Available Laminar two-dimensional forced convective heat transfer of CuO-water and Al2O3-water nanofluids in a horizontal microchannel has been studied numerically, considering axial conduction effects in both solid and liquid regions and variable thermal conductivity and dynamic viscosity. The results show that using nanoparticles with higher thermal conductivities will intensify enhancement of heat transfer characteristics and slightly increases shear stress on the wall. The obtained results show more steep changes in Nusselt number for lower diameters and also higher values of Nusselt number by decreasing the diameter of nanoparticles. Also, by utilizing conduction number as the criterion, it was concluded from the results that adding nanoparticles will intensify the axial conduction effect in the geometry considered.
Numerical simulations of blast wave characteristics with a two-dimensional axisymmetric room model
Sugiyama, Y.; Homae, T.; Wakabayashi, K.; Matsumura, T.; Nakayama, Y.
2017-01-01
This paper numerically visualizes explosion phenomena in order to discuss blast wave characteristics with a two-dimensional axisymmetric room model. After the shock wave exits via an opening, the blast wave propagates into open space. In the present study, a parametric study was conducted to determine the blast wave characteristics from the room exit by changing the room shape and the mass of the high explosive. Our results show that the blast wave characteristics can be correctly estimated using a scaling factor proposed in the present paper that includes the above parameters. We conducted normalization of the peak overpressure curve using the shock overpressure at the exit and the length scale of the room volume. In the case where the scaling factor has the same value, the normalized peak overpressure curve does not depend on the calculation conditions, and the scaling factor describes the blast wave characteristics emerging from the current room model.
A two-dimensional particle simulation of the magnetopause current layer
Energy Technology Data Exchange (ETDEWEB)
Berchem, J.; Okuda, H.
1988-11-01
We have developed a 2/1/2/-D (x, y, v/sub x/, v/sub y/, v/sub z/) electromagnetic code to study the formation and the stability of the magnetopause current layer. This code computes the trajectories of ion and electron particles in their self-consistently generated electromagnetic field and an externally imposed 2-D vacuum dipolar magnetic field. The results presented here are obtained for the simulation of the solar wind-magnetosphere interaction in the subsolar region of the equatorial plane. We observe the self-consistent establishment of a current layer resulting from both diamagnetic drift and E /times/ B drift due to the charge separation. The simulation results show that during the establishment of the current layer, its thickness is of the order of the hybrid gyroradius /rho//sub H/ = ..sqrt../rho//sub i//rho//sub e/ predicted by the Ferraro-Rosenbluth model. However, diagnostics indicate that the current sheet is subject to an instability which broadens the width of the current layer. Ripples with amplitudes of the order of the ion gyroradius appear at the interface between the field and the particles. These pertubations are observed both on the electrostatic field and on the compressional component of the magnetic field. This instability has a frequency of the order of the local ion cyclotron frequency. However, the modulation propagates in the same direction as the electron diamagnetic drift which indicates that the instability is not a classical gradient-driven instability, such as the lower hybrid or ion drift cyclotron instabilities. The nonlinear phase of the instability is characterized by the filamentation of the current layer which causes anomalous diffusion inside the central current sheet. 79 refs., 7 figs.
Jao, C.-S.; Hau, L.-N.
2016-11-01
Electrostatic streaming instabilities have been proposed as the generation mechanism for the electrostatic solitary waves observed in various space plasma environments. Past studies on the subject have been mostly based on the kinetic theory and particle simulations. In this paper, we extend our recent study based on one-dimensional fluid theory and particle simulations to two-dimensional regimes for both bi-streaming and bump-on-tail streaming instabilities in electron-ion plasmas. Both linear fluid theory and kinetic simulations show that for bi-streaming instability, the oblique unstable modes tend to be suppressed by the increasing background magnetic field, while for bump-on-tail instability, the growth rates of unstable oblique modes are increased with increasing background magnetic field. For both instabilities, the fluid theory gives rise to the linear growth rates and the wavelengths of unstable modes in good agreement with those obtained from the kinetic simulations. For unmagnetized and weakly magnetized systems, the formed electrostatic structures tend to diminish after the long evolution, while for relatively stronger magnetic field cases, the solitary waves may merge and evolve to steady one-dimensional structures. Comparisons between one and two-dimensional results are made and the effects of the ion-to-electron mass ratio are also examined based on the fluid theory and kinetic simulations. The study concludes that the fluid theory plays crucial seeding roles in the kinetic evolution of electrostatic streaming instabilities.
Kinetic cascade beyond MHD of solar wind turbulence in two-dimensional hybrid simulations
Verscharen, Daniel; Motschmann, Uwe; Müller, Joachim
2012-01-01
The nature of solar wind turbulence in the dissipation range at scales much smaller than the large MHD scales remains under debate. Here a two-dimensional model based on the hybrid code abbreviated as A.I.K.E.F. is presented, which treats massive ions as particles obeying the kinetic Vlasov equation and massless electrons as a neutralizing fluid. Up to a certain wavenumber in the MHD regime, the numerical system is initialized by assuming a superposition of isotropic Alfv\\'en waves with amplitudes that follow the empirically confirmed spectral law of Kolmogorov. Then turbulence develops and energy cascades into the dispersive spectral range, where also dissipative effects occur. Under typical solar wind conditions, weak turbulence develops as a superposition of normal modes in the kinetic regime. Spectral analysis in the direction parallel to the background magnetic field reveals a cascade of left-handed Alfv\\'en/ion-cyclotron waves up to wave vectors where their resonant absorption sets in, as well as a cont...
Trobo, Marta L.; Albano, Ezequiel V.; Binder, Kurt
2016-05-01
As a simplified model of a liquid nanostripe adsorbed on a chemically structured substrate surface, a two-dimensional Ising system with two boundaries at which surface fields act is studied. At the upper boundary, the surface field is uniformly negative, while at the lower boundary (a distance L apart), the surface field is negative only outside a range of extension b , where a positive surface stabilizes a droplet of the phase with positive magnetization for temperatures T exceeding the critical temperature Tw of the wetting transition of this model. We investigate the local order parameter profiles across the droplet, both in the directions parallel and perpendicular to the substrate, varying both b and T . Also, precursor effects to droplet formation as T approaches Tw from below are studied. In accord with theoretical predictions, for T >Tw the droplet is found to have the shape of a semiellipse, where the width (distance of the interface from the substrate) scale is proportional to b (b1 /2). So, the area of the droplet is proportional to b3 /2, and the temperature dependence of the corresponding prefactor, which also involves the interfacial stiffness, is studied.
A Vertical Two-Dimensional Model to Simulate Tidal Hydrodynamics in A Branched Estuary
Institute of Scientific and Technical Information of China (English)
LIU Wen-Cheng; WU Chung-Hsing
2005-01-01
A vertical (laterally averaged) two-dimensional hydrodynamic model is developed for tides, tidal current, and salinity in a branched estuarine system. The governing equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. An explicit scheme is employed to solve the continuity equations. The momentum and mass balance equations are solved implicitly in the Cartesian coordinate system. The tributaries are governed by the same dynamic equations. A control volume at the junctions is designed to conserve mass and volume transport in the finite difference schemes, based on the physical principle of continuum medium of fluid. Predictions by the developed model are compared with the analytic solutions of steady wind-driven circulatory flow and tidal flow. The model results for the velocities and water surface elevations coincide with analytic results. The model is then applied to the Tanshui River estuarine system. Detailed model calibration and verification have been conducted with measured water surface elevations,tidal current, and salinity distributions. The overall performance of the model is in qualitative agreement with the available field data. The calibrated and verified numerical model has been used to quantify the tidal prism and flushing rate in the Tanshui River-Tahan Stream, Hsintien Stream, and Keelung River.
Two-dimensional simulation of a direct-current microhollow cathode discharge
Kothnur, Prashanth S.; Raja, Laxminarayan L.
2005-02-01
Microhollow cathode discharges (MHCD's) are miniature direct-current discharges that operate at elevated pressures (several tens to hundreds of Torr) with electrode dimensions in the 10-100-μm range. MHCD's have been proposed for a number of applications based on their unique characteristics such as presence of intense excimer radiation and significant gas heating within the submillimeter discharge volume. A two-dimensional, self-consistent fluid model of a helium MHCD in the high-pressure (several hundreds of Torr), high-current (˜1mA) operating regime is presented in this study. Results indicate that the MHCD operates in an abnormal glow discharge mode with charged and excited metastable species with densities of ˜1020m-3, electron temperatures of approximately tens of eV, and gas temperatures of hundreds of Kelvin above room temperature. Significant discharge activity exists outside of the hollow region. The discharge volume and intensity increases with increasing current and becomes more confined with increasing pressures. Most predictions presented in this paper are in qualitative and quantitative agreement with experimental data for MHCD's under similar conditions.
Two-dimensional finite volume method for dam-break flow simulation
Institute of Scientific and Technical Information of China (English)
M.ALIPARAST
2009-01-01
A numerical model based upon a second-order upwind cell-center finite volume method on unstructured triangular grids is developed for solving shallow water equations.The assumption of a small depth downstream instead of a dry bed situation changes the wave structure and the propagation speed of the front which leads to incorrect results.The use of Harten-Lax-vau Leer (HLL) allows handling of wet/dry treatment.By usage of the HLL approximate Riemann solver,also it make possible to handle discontinuous solutions.As the assumption of a very small depth downstream of the dam can change the nature of the dam break flow problem which leads to incorrect results,the HLL approximate Riemann solver is used for the computation of inviscid flux functions,which makes it possible to handle discontinuous solutions.A multidimensional slope-limiting technique is applied to achieve second-order spatial accuracy and to prevent spurious oscillations.To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary,the friction source terms are treated in a fully implicit way.A third-order Runge-Kutta method is used for the time integration of semi-discrete equations.The developed numerical model has been applied to several test cases as well as to real flows.The tests are tested in two cases:oblique hydraulic jump and experimental dam break in converging-diverging flume.Numerical tests proved the robustness and accuracy of the model.The model has been applied for simulation of dam break analysis of Torogh in Irun.And finally the results have been used in preparing EAP (Emergency Action Plan).
A Bicharacteristic Scheme for the Numerical Computation of Two-Dimensional Converging Shock Waves
Meier, U E; Meier, Uwe E.; Demmig, Frank
1997-01-01
A 2d unsteady bicharacteristic scheme with shock fitting is presented and its characteristic step, shock point step and boundary step are described. The bicharacteristic scheme is compared with an UNO scheme and the Moretti scheme. Its capabilities are illustrated by computing a converging, deformed shock wave.
Computational two-dimensional modeling of the stress intensity factor in a cracked metallic material
Rolón, J. E.; Cendales, E. D.; Cruz, I. M.
2016-02-01
Cracking of metallic engineering materials is of great importance due cost of replacing mechanical elements cracked and the danger of sudden structural failure of these elements. One of the most important parameters during consideration of the mechanical behavior of machine elements having cracking and that are subject to various stress conditions is the stress intensity factor near the crack tip called factor Kic. In this paper a computational model is developed for the direct assessment of stress concentration factor near to the crack tip and compared with the results obtained in the literature in which other models have been established, which consider continuity of the displacement of the crack tip (XBEM). Based on this numerical approximation can be establish that computational XBEM method has greater accuracy in Kic values obtained than the model implemented by the method of finite elements for the virtual nodal displacement through plateau function.
Numerical computation of the critical energy constant for two-dimensional Boussinesq equations
Kolkovska, N.; Angelow, K.
2015-10-01
The critical energy constant is of significant interest for the theoretical and numerical analysis of Boussinesq type equations. In the one-dimensional case this constant is evaluated exactly. In this paper we propose a method for numerical evaluation of this constant in the multi-dimensional cases by computing the ground state. Aspects of the numerical implementation are discussed and many numerical results are demonstrated.
Miller, Benjamin L.; Baker, James E.; Sriram, Rashmi
2017-05-01
Because of their compatibility with standard CMOS fabrication, small footprint, and exceptional sensitivity, Two-Dimensional Photonic Crystals (2D PhCs) have been posited as attractive components for the development of real-time integrated photonic virus sensors. While detection of single virus-sized particles by 2D PhCs has been demonstrated, specific recognition of a virus simulant under conditions relevant to sensor use (including aqueous solution and microfluidic flow) has remained an unsolved challenge. This talk will describe the design and testing of a W1 waveguide-coupled 2D PhC in the context of addressing that challenge.
Kim, Kyungmok; Géringer, Jean; 10.1177/0954411911422843
2012-01-01
This paper describes a two-dimensional (2D) finite element simulation for fracture and fatigue behaviours of pure alumina microstructures such as those found at hip prostheses. Finite element models are developed using actual Al2O3 microstructures and a bilinear cohesive zone law. Simulation conditions are similar to those found at a slip zone in a dry contact between a femoral head and an acetabular cup of hip prosthesis. Contact stresses are imposed to generate cracks in the models. Magnitudes of imposed stresses are higher than those found at the microscopic scale. Effects of microstructures and contact stresses are investigated in terms of crack formation. In addition, fatigue behaviour of the microstructure is determined by performing simulations under cyclic loading conditions. It is shown that crack density observed in a microstructure increases with increasing magnitude of applied contact stress. Moreover, crack density increases linearly with respect to the number of fatigue cycles within a given con...
Komura, Yukihiro
2012-01-01
We present the multiple GPU computing with the common unified device architecture (CUDA) for the Swendsen-Wang multi-cluster algorithm of two-dimensional (2D) q-state Potts model. Extending our algorithm for single GPU computing [Comp. Phys. Comm. 183 (2012) 1155], we realize the GPU computation of the Swendsen-Wang multi-cluster algorithm for multiple GPUs. We implement our code on the large-scale open science supercomputer TSUBAME 2.0, and test the performance and the scalability of the simulation of the 2D Potts model. The performance on Tesla M2050 using 256 GPUs is obtained as 37.3 spin flips per a nano second for the q=2 Potts model (Ising model) at the critical temperature with the linear system size L=65536.
Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui
2015-01-01
Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.
Energy Technology Data Exchange (ETDEWEB)
Soria-Hoyo, C; Castellanos, A [Departamento de Electronica y Electromagnetismo, Facultad de Fisica, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de Fisica Aplicada II, EUAT, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)], E-mail: cshoyo@us.es
2008-10-21
Two different numerical techniques have been applied to the numerical integration of equations modelling gas discharges: a finite-difference flux corrected transport (FD-FCT) technique and a particle-in-cell (PIC) technique. The PIC technique here implemented has been specifically designed for the simulation of 2D electrical discharges using cylindrical coordinates. The development and propagation of a streamer between two parallel electrodes has been used as a convenient test to compare the performance of both techniques. In particular, the phase velocity of the cathode directed streamer has been used to check the internal consistency of the numerical simulations. The results obtained from the two techniques are in reasonable agreement with each other, and both techniques have proved their ability to follow the high gradients of charge density and electric field present in this type of problems. Moreover, the streamer velocities predicted by the simulation are in accordance with the typical experimental values.
Stable low-resolution simulations of two-dimensional vesicle suspensions
Kabacaoglu, Gokberk; Quaife, Bryan; Biros, George
2016-11-01
Vesicles, which resist bending and are locally inextensible, serve as experimental and numerical proxies for red blood cells. Vesicle flows, which are governed by hydrodynamic and elastic forces, refer to flow of vesicles that are filled with and suspended in a Stokesian fluid. In this work we present algorithms for stable and accurate low-resolution simulations of the vesicle flows in two-dimensions. We use an integral equation formulation of the Stokes equation coupled to the interface mass continuity and force balance. The problem poses numerical difficulties such as long-range hydrodynamic interactions, strong nonlinearities and stiff governing equations. These difficulties make simulations with long time horizons challenging, especially at low resolutions. We develop algorithms to control aliasing errors, correct errors in vesicle's area and arc-length, and avoid collision of vesicles. Additionally, we discuss several error measures to study the accuracy of the simulations. Then we closely look at how accurate the low-resolution simulations can capture true physics of the vesicle flows.
Simulations of interference effects in gated two-dimensional ballistic electron systems
DEFF Research Database (Denmark)
Jauho, Antti-Pekka; Pichugin, K.N.; Sadreev, A.F.
1999-01-01
We present detailed simulations addressing recent electronic interference experiments,where a metallic gate is used to locally modify the Fermi wavelength of the charge carriers. Our numerical calculations are based on a solution of the one-particle Schrodinger equation for a realistic model of t...
Horowitz, A; Sheinman, I; Lanir, Y; Perl, M; Sideman, S
1988-02-01
A two-dimensional incompressible plane-stress finite element is formulated for the simulation of the passive-state mechanics of thin myocardial strips. The formulation employs a total Lagrangian and materially nonlinear approach, being based on a recently proposed structural material law, which is derived from the histological composition of the tissue. The ensuing finite element allows to demonstrate the mechanical properties of a single myocardial layer containing uniformly directed fibers by simulating various loading cases such as tension, compression and shear. The results of these cases show that the fiber direction is considerably stiffer than the cross-fiber direction, that there is significant coupling between these two directions, and that the shear stiffness of the tissue is lower than its tensile and compressive stiffness.
Two-dimensional numerical simulation of a continuous needle-like argon electron-beam plasma
Bai, Xiaoyan; Chen, Chen; Li, Hong; Liu, Wandong
2017-05-01
The fluid-Poisson equations coupled with the Monte Carlo method were used to simulate the spatio-temporal behavior of a needle-like argon electron-beam plasma. Based on the Monte Carlo simulation, three coupled parameters characterizing the electron beam propagation for initial energies above several keV were expressed using a universal dimensionless shape function given in terms of the beam range multiplied by a normalized coefficient. Therefore, a single run of the Monte Carlo code was sufficient for the simulations over a wide range of conditions. The spatial potential as a function of space and time was studied from the fluid-Poisson equations. The results indicate that the time evolution of the spatial potential was influenced by the presence of the slowed-down electrons and the flying beam electrons, whereas the potential in quasi-equilibrium was mainly determined from the spatial distribution of the secondary electron. The potential in quasi-equilibrium was positive near the beam entrance and most negative along the tip of the beam range, which was a result of ambipolar diffusion. When the enclosing boundary surfaces were moved within the beam range, the potential was nearly positive everywhere. The calculation on the diffusion-drift flux indicated that the net current of the secondary electrons flowing back to the incident plane in quasi-equilibrium balanced the incident beam current, which was the so-called return current in the three-dimensional space.
The core helium flash revisited: I. One and two-dimensional hydrodynamic simulations
Mocak, M; Weiss, A; Kifonidis, K
2008-01-01
We investigate the hydrodynamics of the core helium flash near its peak. Past research concerned with the dynamics of this event is inconclusive. However, the most recent multidimensional hydrodynamic studies suggest a quiescent behavior and seem to rule out an explosive scenario. Previous work indicated, that depending on initial conditions, employed turbulence models, grid resolution, and dimensionality of the simulation, the core helium flash leads either to the disruption of a low-mass star or to a quiescent quasi-hydrostatic evolution. We try to clarify this issue by simulating the evolution with advanced numerical methods and detailed microphysics. Assuming spherical or axial symmetry, we simulate the evolution of the helium core of a $1.25 M_{\\odot}$ star with a metallicity Z=0.02 during the core helium flash at its peak with a grid-based hydrodynamics code. We find that the core helium flash neither rips the star apart, nor that it significantly alters its structure, as convection plays a crucial role...
Two Dimensional Simulations of Plastic-Shell, Direct-Drive Implosions on OMEGA
Energy Technology Data Exchange (ETDEWEB)
Radha, P B; Goncharov, V N; Collins, T B; Delettrez, J A; Elbaz, Y; Glebov, V Y; Keck, R L; Keller, D E; Knauer, J P; Marozas, J A; Marshall, F J; McKenty, P W; Meyerhofer, D D; Regan, S P; Sangster, T C; Shvarts, D; Skupsky, S; Srebro, Y; Town, R J; Stoeckl, C
2004-09-27
Multidimensional hydrodynamic properties of high-adiabat direct-drive plastic-shell implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] are investigated using the multidimensional hydrodynamic code, DRACO. Multimode simulations including the effects of nonuniform illumination and target roughness indicate that shell stability during the acceleration phase plays a critical role in determining target performance. For thick shells that remain integral during the acceleration phase, target yields are significantly reduced by the combination of the long-wavelength ({ell} < 10) modes due to surface roughness and beam imbalance and the intermediate modes (20 {le} {ell} {le} 50) due to single-beam nonuniformities. The neutron-production rate for these thick shells truncates relative to one-dimensional (1-D) predictions. The yield degradation in the thin shells is mainly due to shell breakup at short wavelengths ({lambda} {approx} {Delta}, where {Delta} is the in-flight shell thickness). The neutron-rate curves for the thinner shells have significantly lower amplitudes and a fall-off that is less steep than 1-D rates. DRACO simulation results are consistent with experimental observations.
A two-dimensional simulation model for the molded underfill process in flip chip packaging
Energy Technology Data Exchange (ETDEWEB)
Guo, Xue Ru; Young, Wen Bin [National Cheng Kung University, Tainan (China)
2015-07-15
The flip chip process involves the deposition of solder bumps on the chip surface and their subsequent direct attachment and connection to a substrate. Underfilling traditional flip chip packaging is typically performed following a two-step approach. The first step uses capillary force to fill the gap between the chip and the substrate, and the second step uses epoxy molding compound (EMC) to overmold the package. Unlike traditional flip chip packaging, the molded underfill (MUF) concept uses a single-step approach to simultaneously achieve both underfill and overmold. MUF is a simpler and faster process. In this study, a 2D numerical model is developed to simulate the front movement of EMC flow and the void formation for different geometric parameters. The 2D model simplifies the procedures of geometric modeling and reduces the modeling time for the MUF simulation. Experiments are conducted to verify the prediction results of the model. The effect on void formation for different geometric parameters is investigated using a 2D model.
Rathjen, K. A.
1977-01-01
A digital computer code CAVE (Conduction Analysis Via Eigenvalues), which finds application in the analysis of two dimensional transient heating of hypersonic vehicles is described. The CAVE is written in FORTRAN 4 and is operational on both IBM 360-67 and CDC 6600 computers. The method of solution is a hybrid analytical numerical technique that is inherently stable permitting large time steps even with the best of conductors having the finest of mesh size. The aerodynamic heating boundary conditions are calculated by the code based on the input flight trajectory or can optionally be calculated external to the code and then entered as input data. The code computes the network conduction and convection links, as well as capacitance values, given basic geometrical and mesh sizes, for four generations (leading edges, cooled panels, X-24C structure and slabs). Input and output formats are presented and explained. Sample problems are included. A brief summary of the hybrid analytical-numerical technique, which utilizes eigenvalues (thermal frequencies) and eigenvectors (thermal mode vectors) is given along with aerodynamic heating equations that have been incorporated in the code and flow charts.
Franci, Luca; Matteini, Lorenzo; Verdini, Andrea; Landi, Simone
2016-01-01
Proton temperature anisotropies between the directions parallel and perpendicular to the mean magnetic field are usually observed in the solar wind plasma. Here, we employ a high-resolution hybrid particle-in-cell simulation in order to investigate the relation between spatial properties of the proton temperature and the peaks in the current density and in the flow vorticity. Our results indicate that, although regions where the proton temperature is enhanced and temperature anisotropies are larger correspond approximately to regions where many thin current sheets form, no firm quantitative evidence supports the idea of a direct causality between the two phenomena. On the other hand, quite a clear correlation between the behavior of the proton temperature and the out-of-plane vorticity is obtained.
Two Dimensional Wake Vortex Simulations in the Atmosphere: Preliminary Sensitivity Studies
Proctor, F. H.; Hinton, D. A.; Han, J.; Schowalter, D. G.; Lin, Y.-L.
1998-01-01
A numerical large-eddy simulation model is currently being used to quantify aircraft wake vortex behavior with meteorological observables. The model, having a meteorological framework, permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, and humidity. The addition of grid-scale turbulence as an initial condition appeared to have little consequence. Results show that conventional nondimensionalizations work very well for vortex pairs embedded in stably stratified flows. However, this result is based on simple environments with constant Brunt-Vaisala frequency. Results presented here also show that crosswind profiles exert important and complex interactions on the trajectories of wake vortices. Nonlinear crosswind profiles tended to arrest the descent of wake vortex pairs. The member of the vortex pair with vorticity of same sign as the vertical change in the ambient along-track vorticity may be deflected upwards.
Tu, J.; Song, P.
2016-12-01
We have developed a new numerical simulation model of the ionosphere/thermosphere by using an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B, v paradigm), which is distinctive from the conventional modeling based on electric field E and current j. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, not only sound wave mode but also all possible MHD wave modes are retained in the solutions of the governing equations so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In the present study, we demonstrate dynamic propagation of field-aligned currents and ionospheric electric field carried by Alfven waves, as well as formation of closure horizontal currents (Pedersen currents in the E-region), indicating that the M-I coupling is via the Alfven waves instead of the field-aligned currents or electric field mapping. The simulation results also show that the Poynting flux and strongest energy dissipation in the ionosphere/thermosphere is in the regions of the largest ion velocities and not necessarily in the auroral oval where the field-aligned currents reside. The frictional heating increases plasma temperature and thus drives ion upflows. The frictional heating also increase neutral temperature and produces neutral upflows but in a much longer time scale. Furthermore, the coupling of high-to-low latitude ionosphere is investigated in terms of propagation of fast MHD waves.
Latencies in action potential stimulation in a two-dimensional bidomain: A numerical simulation
Barach, John Paul
1991-05-01
A numerical simulation is performed in which a uniform planar slab of idealized cardiac tissue is stimulated at the center. The cardiac slab is modeled as an anisotropic bidomain; within each domain current flow is determined by a forced diffusion equation in which the transmembrane current connecting the domains provides the forcing term. An action potential (AP) propagates outward after a time latency dependent upon the stimulus size and the physiological variables. Its isochrones are elliptical with an asymmetry that is a small fraction of the imposed asymmetry in resistivity. External voltages resemble the first derivative of those in the internal domain and tests with continuing stimuli exhibit a relaxation time of about 3 ms and space constants that agree with other work. The AP latency increases very strongly near threshold stimulus and decreases as the log (stimulus) for large stimuli in the ``virtual cathode'' range. Latencies in the longitudinal, transverse, and diagonal directions are found to be the same over a wide range of stimulus size and type.
Yang, Kesong
As a rapidly growing area of materials science, high-throughput (HT) computational materials design is playing a crucial role in accelerating the discovery and development of novel functional materials. In this presentation, I will first introduce the strategy of HT computational materials design, and take the HT discovery of topological insulators (TIs) as a practical example to show the usage of such an approach. Topological insulators are one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. Here I will show that, by defining a reliable and accessible descriptor, which represents the topological robustness or feasibility of the candidate, and by searching the quantum materials repository aflowlib.org, we have automatically discovered 28 TIs (some of them already known) in five different symmetry families. Next, I will talk about our recent research work on the HT computational design of the perovskite-based two-dimensional electron gas (2DEG) systems. The 2DEG formed on the perovskite oxide heterostructure (HS) has potential applications in next-generation nanoelectronic devices. In order to achieve practical implementation of the 2DEG in the device design, desired physical properties such as high charge carrier density and mobility are necessary. Here I show that, using the same strategy with the HT discovery of TIs, by introducing a series of combinatorial descriptors, we have successfully identified a series of candidate 2DEG systems based on the perovskite oxides. This work provides another exemplar of applying HT computational design approach for the discovery of advanced functional materials.
Leggate, Huw; Turner, Miles
2016-09-01
We discuss a two-dimensional implementation of the particle-in-cell algorithm with Monte Carlo collisions. This implementation is designed for multiprocessor environments in which each processor is assumed to offer vector capabilities and multiple execution threads. An appropriate implementation therefore combines OpenMP to exploit multithreading with MPI to coupled computing nodes. This approach promises to achieve accelerations of a least a factor of several hundred, relative to to a simple serial implementation. However, the complexity involved also offers many opportunities for error, and makes correctness demonstrations especially desirable. In this presentation we discuss the characteristics of this parallel implementation, and we describe a suite of verification tests that collectively create a strong presumption that the code is correct. Work supported by the EUROfusion consortium.
Huang, Huaxiong; Takagi, Shu
2003-08-01
In this paper, we study the convergence property of PHYSALIS when it is applied to incompressible particle flows in two-dimensional space. PHYSALIS is a recently proposed iterative method which computes the solution without imposing the boundary conditions on the particle surfaces directly. Instead, a consistency equation based on the local (near particle) representation of the solution is used as the boundary conditions. One of the important issues needs to be addressed is the convergence properties of the iterative procedure. In this paper, we present the convergence analysis using Laplace and biharmonic equations as two model problems. It is shown that convergence of the method can be achieved but the rate of convergence depends on the relative locations of the cages. The results are directly related to potential and Stokes flows. However, they are also relevant to Navier-Stokes flows, heat conduction in composite media, and other problems.
Kong, Wei; Yang, Fang; Liu, Songfen; Shi, Feng
2016-10-01
A Langevin dynamics simulation method is used to study the two-dimensional (2D) equilibrium structure of complex plasmas while considering an external magnetic field. The traditional Yukawa potential and a modified Yukawa potential according to Shukla et al. [Phys. Lett. A 291, 413 (2001); Shukla and Mendonca, Phys. Scr. T113 82 (2004)] and Salimullah et al. [Phys. Plasmas 10, 3047 (2003)] respectively, are employed to account for the interaction of the charged dust particles. It is found that the collisions between neutral gas and charged dust particles have minor effects on the 2D equilibrium structure of the system. Based on the modified Yukawa potential, studies on the 2D equilibrium structure show that the traditional Yukawa potential is still suitable for describing the magnetized complex plasmas, even if the shielding distance of charged dust particles is affected by the strong external magnetic field.
Institute of Scientific and Technical Information of China (English)
LI Hua-Bing; JIN Li; QIU Bing
2008-01-01
To study two-dimensional red blood cells deforming in a shear flow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow.
Directory of Open Access Journals (Sweden)
H. Matsui
2014-04-01
Full Text Available Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS, that can represent these parameters explicitly by considering new particle formation (NPF, black carbon (BC aging, and secondary organic aerosol (SOA processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 μm to resolve both aerosol size (12 bins and BC mixing state (10 bins for a total of 120 bins. The particles with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module is implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10–20% over northern East Asia and 20–35% over southern East Asia. A clear north-south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles over southern East Asia. Application of ATRAS to East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA
Chappard, D; Legrand, E; Haettich, B; Chalès, G; Auvinet, B; Eschard, J P; Hamelin, J P; Baslé, M F; Audran, M
2001-11-01
Trabecular bone has been reported as having two-dimensional (2-D) fractal characteristics at the histological level, a finding correlated with biomechanical properties. However, several fractal dimensions (D) are known and computational ways to obtain them vary considerably. This study compared three algorithms on the same series of bone biopsies, to obtain the Kolmogorov, Minkowski-Bouligand, and mass-radius fractal dimensions. The relationships with histomorphometric descriptors of the 2-D trabecular architecture were investigated. Bone biopsies were obtained from 148 osteoporotic male patients. Bone volume (BV/TV), trabecular characteristics (Tb.N, Tb.Sp, Tb.Th), strut analysis, star volumes (marrow spaces and trabeculae), inter-connectivity index, and Euler-Poincaré number were computed. The box-counting method was used to obtain the Kolmogorov dimension (D(k)), the dilatation method for the Minkowski-Bouligand dimension (D(MB)), and the sandbox for the mass-radius dimension (D(MR)) and lacunarity (L). Logarithmic relationships were observed between BV/TV and the fractal dimensions. The best correlation was obtained with D(MR) and the lowest with D(MB). Lacunarity was correlated with descriptors of the marrow cavities (ICI, star volume, Tb.Sp). Linear relationships were observed among the three fractal techniques which appeared highly correlated. A cluster analysis of all histomorphometric parameters provided a tree with three groups of descriptors: for trabeculae (Tb.Th, strut); for marrow cavities (Euler, ICI, Tb.Sp, star volume, L); and for the complexity of the network (Tb.N and the three D's). A sole fractal dimension cannot be used instead of the classic 2-D descriptors of architecture; D rather reflects the complexity of branching trabeculae. Computation time is also an important determinant when choosing one of these methods.
Komura, Yukihiro
2012-01-01
We present the GPU calculation with the common unified device architecture (CUDA) for the Swendsen-Wang multi-cluster algorithm of two-dimensional classical spin systems. We adjust the two connected component labeling algorithms recently proposed with CUDA for the assignment of the cluster in the Swendsen-Wang algorithm. Starting with the q-state Potts model, we extend our implementation to the system of vector spins, the q-state clock model, with the idea of embedded cluster. We test the performance, and the calculation time on GTX580 is obtained as 2.51 nano sec per a spin flip for the q=2 Potts model (Ising model) and 2.42 nano sec per a spin flip for the q=6 clock model with the linear size L=4096 at the critical temperature, respectively. The computational speed for the q=2 Potts model on GTX580 is 12.4 times as fast as the calculation speed on a current CPU core. That for the q=6 clock model on GTX580 is 35.6 times as fast as the calculation speed on a current CPU core.
Ohsuga, Ken
2011-01-01
We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, rho_0, we can reproduce three distinct modes of accretion flow. In model A with the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of the mild beaming, the apparent (isotropic) photon luminosity is ~22L_E (where L_E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B with a moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ~7R_S (where R_S is the S...
Directory of Open Access Journals (Sweden)
Guodong Liu
2013-01-01
Full Text Available Modular pebble-bed nuclear reactor (MPBNR technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.
Nenov, Artur; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco
2014-02-20
Two-dimensional (2D) optical spectroscopy techniques based on ultrashort laser pulses have been recently extended to the optical domain in the ultraviolet (UV) spectral region. UV-active aromatic side chains can thus be used as local highly specific markers for tracking dynamics and structural rearrangements of proteins. Here we demonstrate that 2D electronic spectra of a model proteic system, a tetrapeptide with two aromatic side chains, contain enough structural information to distinguish between two different configurations with distant and vicinal side chains. For accurate simulations of the 2DUV spectra in solution, we combine a quantum mechanics/molecular mechanics approach based on wave function methods, accounting for interchromophores coupling and environmental effects, with nonlinear response theory. The proposed methodology reveals effects, such as charge transfer between vicinal aromatic residues that remain concealed in conventional exciton Hamiltonian approaches. Possible experimental setups are discussed, including multicolor experiments and signal manipulation techniques for limiting undesired background contributions and enhancing 2DUV signatures of specific electronic couplings.
Yeh, Shu-Hao
2014-01-01
The Fenna-Matthews-Olson (FMO) protein-pigment complex acts as a molecular wire between the outer antenna system and the reaction center (RC); it is an important model system to study the excitonic energy transfer. Recent crystallographic studies report the existence of an additional (eighth) bacteriochlorophyll a (BChl a). To understand the functionality of this eighth BChl, we simulated the two-dimensional electronic spectra of both the 7-site (apo form) and the 8-site (holo form) variant of the FMO complex from green sulfur bacteria, Prosthecochloris aestuarii. By comparing the difference between the spectrum, it was found that the eighth BChl can affect two different excitonic energy transfer pathways, these being: (1) directly involve in the first pathway 6 $\\rightarrow$ 3 $\\rightarrow$ 1 of the apo form model by passing the excitonic energy to exciton 6; and (2) increase the excitonic wave function overlap between excitons 4 and 5 in the second pathway (7 $\\rightarrow$ 4,5 $\\rightarrow$ 2 $\\rightarrow$ ...
Wang, Xin; Zhang, Yanqi; Zhang, Limin; Li, Jiao; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng
2016-04-01
We present a generalized strategy for direct reconstruction in pharmacokinetic diffuse fluorescence tomography (DFT) with CT-analogous scanning mode, which can accomplish one-step reconstruction of the indocyanine-green pharmacokinetic-rate images within in vivo small animals by incorporating the compartmental kinetic model into an adaptive extended Kalman filtering scheme and using an instantaneous sampling dataset. This scheme, compared with the established indirect and direct methods, eliminates the interim error of the DFT inversion and relaxes the expensive requirement of the instrument for obtaining highly time-resolved date-sets of complete 360 deg projections. The scheme is validated by two-dimensional simulations for the two-compartment model and pilot phantom experiments for the one-compartment model, suggesting that the proposed method can estimate the compartmental concentrations and the pharmacokinetic-rates simultaneously with a fair quantitative and localization accuracy, and is well suitable for cost-effective and dense-sampling instrumentation based on the highly-sensitive photon counting technique.
FireStem2D--a two-dimensional heat transfer model for simulating tree stem injury in fires.
Directory of Open Access Journals (Sweden)
Efthalia K Chatziefstratiou
Full Text Available FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes.
Lu, Rong; Turco, Richard P.
1994-01-01
Over the southern California coastal region, observations of the vertical distributions of pollutants show that maximum concentrations can occur within temperature inversion layers well above the surface. A mesoscale model is used to study the dynamical phenomena that cause such layers, including sea breezes and mountain flows, and to study the characteristics of air pollutant transport in a coastal environment capped by a temperature inversion. The mathematical and physical structure of the model is described. Two-dimensional simulations corresponding to four configurations of coastal plains and mountains are discussed. The simulations reveal that pollutant transport over a coastal plain is strongly influenced by the topographic configuration, including the height of coastal mountains and their distance from the coastline. Sea breezes induced by land-sea thermal contrasts, as well as upslope winds induced along mountain flanks, both create vertical transport that can lead to the formation of elevated pollution layers. The sea-breeze circulation generates pollution layers by undercutting the mixed layer and lofting pollutants into the stable layer. Heating of mountain slopes acts to vent pollutants above the mountain ridge during the day; during the evening, pollutants can be injected directly into the inversion layer from the decaying upslope flows. In a land-sea configuration with mountains close to the coastline, the sea breeze and heated-mountain flow are strongly coupled. In the afternoon, this interaction can produce upslope flow from which polluted air is detrained into the inversion layer as a return circulation. When the mountains lie farther inland, however, pollutants may be trapped aloft when the mixed layer stabilizes in the late afternoon. As the nocturnal boundary layer forms over the coast in the evening, polluted mixed-layer air is effectively left behind in the inversion layer. In the Los Angeles Basin, the formation mechanism for elevated
Chakravarthy, S.
1978-01-01
An efficient, direct finite difference method is presented for computing sound propagation in non-stepped two-dimensional and axisymmetric ducts of arbitrarily varying cross section without mean flow. The method is not restricted by axial variation of acoustic impedance of the duct wall linings. The non-uniform two-dimensional or axisymmetric duct is conformally mapped numerically into a rectangular or cylindrical computational domain using a new procedure based on a method of fast direct solution of the Cauchy-Riemann equations. The resulting Helmholtz equation in the computational domain is separable. The solution to the governing equation and boundary conditions is expressed as a linear combination of fundamental solutions. The fundamental solutions are computed only once for each duct shape by means of the fast direct cyclic reduction method for the discrete solution of separable elliptic equations. Numerical results for several examples are presented to show the applicability and efficiency of the method.
Jin, Wang; Penington, Catherine J.; McCue, Scott W.; Simpson, Matthew J.
2016-10-01
Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of r≥slant 1 concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, λ C(1-C), where λ is the proliferation rate, is generalised to a universal growth function, λ C f(C). Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.
Directory of Open Access Journals (Sweden)
Zhishuo Huang
2016-08-01
Full Text Available Neither of the two typical two-dimensional materials, graphene and single layer MoS 2 , are good enough for developing semiconductor logical devices. We calculated the electron mobility of 14 two-dimensional semiconductors with composition of MX 2 , where M (=Mo, W, Sn, Hf, Zr and Pt are transition metals, and Xs are S, Se and Te. We approximated the electron phonon scattering matrix by deformation potentials, within which long wave longitudinal acoustical and optical phonon scatterings were included. Piezoelectric scattering in the compounds without inversion symmetry is also taken into account. We found that out of the 14 compounds, WS 2 , PtS 2 and PtSe 2 are promising for logical devices regarding the possible high electron mobility and finite band gap. Especially, the phonon limited electron mobility in PtSe 2 reaches about 4000 cm 2 ·V - 1 ·s - 1 at room temperature, which is the highest among the compounds with an indirect bandgap of about 1.25 eV under the local density approximation. Our results can be the first guide for experiments to synthesize better two-dimensional materials for future semiconductor devices.
Zhou, Chenggang; Landau, D. P.; Schulthess, Thomas C.
2006-01-01
By considering the appropriate finite-size effect, we explain the connection between Monte Carlo simulations of two-dimensional anisotropic Heisenberg antiferromagnet in a field and the early renormalization group calculation for the bicritical point in $2+\\epsilon$ dimensions. We found that the long length scale physics of the Monte Carlo simulations is indeed captured by the anisotropic nonlinear $\\sigma$ model. Our Monte Carlo data and analysis confirm that the bicritical point in two dime...
Choi, Changmok; Na, Youngjin; Rim, Byeongcheol; Kim, Youngkyung; Kang, Sangkuk; Kim, Jung
2013-06-01
We developed an alternative computer interface using surface electromyography (sEMG) for individuals with spinal cord injuries (SCI) to access a computer. We designed this interface to make a cursor move on a two-dimensional screen and to click using only three muscles for each subject. In addition, a user can voluntarily control cursor movement speed by modulating muscle contraction levels. Three SCI patients and 10 healthy subjects volunteered to evaluate the performance of this interface using Fitts' law test in a two-dimensional testing setup. The throughputs (TP) of our interface were 0.1962±0.0562 b/s for the SCI patients and 0.4356±0.0706 b/s for the healthy subjects. This interface could help SCI patients handle a wider range of activities such as browsing the Internet and communicating with others.
Huizinga, Richard J.
2008-01-01
In cooperation with the Missouri Department of Transportation, the U.S. Geological Survey determined hydrologic and hydraulic parameters for the Gasconade River at the site of a proposed bridge replacement and highway realignment of State Highway 17 near Waynesville, Missouri. Information from a discontinued streamflow-gaging station on the Gasconade River near Waynesville was used to determine streamflow statistics for analysis of the 25-, 50-, 100-, and 500-year floods at the site. Analysis of the streamflow-gaging stations on the Gasconade River upstream and downstream from Waynesville indicate that flood peaks attenuate between the upstream gaging station near Hazelgreen and the Waynesville gaging station, such that the peak discharge observed on the Gasconade River near Waynesville will be equal to or only slightly greater (7 percent or less) than that observed near Hazelgreen. A flood event occurred on the Gasconade River in March 2008, and a flood measurement was obtained near the peak at State Highway 17. The elevation of high-water marks from that event indicated it was the highest measured flood on record with a measured discharge of 95,400 cubic feet per second, and a water-surface elevation of 766.18 feet near the location of the Waynesville gaging station. The measurements obtained for the March flood resulted in a shift of the original stage-discharge relation for the Waynesville gaging station, and the streamflow statistics were modified based on the new data. A two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Gasconade River in the vicinity of State Highway 17. A model was developed that represents existing (2008) conditions on State Highway 17 (the 'model of existing conditions'), and was calibrated to the floods of March 20, 2008, December 4, 1982, and April 14, 1945. Modifications were made to the model of existing conditions to create a model that represents conditions along the same reach of the Gasconade
Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong
2004-12-01
The quest for high-throughput proteomics has revealed a number of critical issues. Whilst improved two-dimensional gel electrophoresis (2-DE) sample preparation, staining and imaging issues are being actively pursued by industry, reliable high-throughput spot matching and quantification remains a significant bottleneck in the bioinformatics pipeline, thus restricting the flow of data to mass spectrometry through robotic spot excision and protein digestion. To this end, it is important to establish a full multi-site Grid infrastructure for the processing, archival, standardisation and retrieval of proteomic data and metadata. Particular emphasis needs to be placed on large-scale image mining and statistical cross-validation for reliable, fully automated differential expression analysis, and the development of a statistical 2-DE object model and ontology that underpins the emerging HUPO PSI GPS (Human Proteome Organization Proteomics Standards Initiative General Proteomics Standards). The first step towards this goal is to overcome the computational and communications burden entailed by the image analysis of 2-DE gels with Grid enabled cluster computing. This paper presents the proTurbo framework as part of the ProteomeGRID, which utilises Condor cluster management combined with CORBA communications and JPEG-LS lossless image compression for task farming. A novel probabilistic eager scheduler has been developed to minimise make-span, where tasks are duplicated in response to the likelihood of the Condor machines' owners evicting them. A 60 gel experiment was pair-wise image registered (3540 tasks) on a 40 machine Linux cluster. Real-world performance and network overhead was gauged, and Poisson distributed worker evictions were simulated. Our results show a 4:1 lossless and 9:1 near lossless image compression ratio and so network overhead did not affect other users. With 40 workers a 32x speed-up was seen (80% resource efficiency), and the eager scheduler reduced the
Edelmann, P. V. F.; Röpke, F. K.; Hirschi, R.; Georgy, C.; Jones, S.
2017-07-01
Context. The treatment of mixing processes is still one of the major uncertainties in 1D stellar evolution models. This is mostly due to the need to parametrize and approximate aspects of hydrodynamics in hydrostatic codes. In particular, the effect of hydrodynamic instabilities in rotating stars, for example, dynamical shear instability, evades consistent description. Aims: We intend to study the accuracy of the diffusion approximation to dynamical shear in hydrostatic stellar evolution models by comparing 1D models to a first-principle hydrodynamics simulation starting from the same initial conditions. Methods: We chose an initial model calculated with the stellar evolution code GENEC that is just at the onset of a dynamical shear instability but does not show any other instabilities (e.g., convection). This was mapped to the hydrodynamics code SLH to perform a 2D simulation in the equatorial plane. We compare the resulting profiles in the two codes and compute an effective diffusion coefficient for the hydro simulation. Results: Shear instabilities develop in the 2D simulation in the regions predicted by linear theory to become unstable in the 1D stellar evolution model. Angular velocity and chemical composition is redistributed in the unstable region, thereby creating new unstable regions. After a period of time, the system settles in a symmetric, steady state, which is Richardson stable everywhere in the 2D simulation, whereas the instability remains for longer in the 1D model due to the limitations of the current implementation in the 1D code. A spatially resolved diffusion coefficient is extracted by comparing the initial and final profiles of mean atomic mass. Conclusions: The presented simulation gives a first insight on hydrodynamics of shear instabilities in a real stellar environment and even allows us to directly extract an effective diffusion coefficient. We see evidence for a critical Richardson number of 0.25 as regions above this threshold remain
Energy Technology Data Exchange (ETDEWEB)
Wang, Ping; Zhou, Ye, E-mail: yezhou@llnl.gov; MacLaren, Stephan A.; Huntington, Channing M.; Raman, Kumar S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Doss, Forrest W.; Flippo, Kirk A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2015-11-15
Three- and two-dimensional numerical studies have been carried out to simulate recent counter-propagating shear flow experiments on the National Ignition Facility. A multi-physics three-dimensional, time-dependent radiation hydrodynamics simulation code is used. Using a Reynolds Averaging Navier-Stokes model, we show that the evolution of the mixing layer width obtained from the simulations agrees well with that measured from the experiments. A sensitivity study is conducted to illustrate a 3D geometrical effect that could confuse the measurement at late times, if the energy drives from the two ends of the shock tube are asymmetric. Implications for future experiments are discussed.
Williamson, Izaak; Hernandez, Andres Correa; Wong-Ng, Winnie; Li, Lan
2016-10-01
Two-dimensional transition metal dichalcogenides (2D-TMDs) are of broadening research interest due to their novel physical, electrical, and thermoelectric properties. Having the chemical formula MX 2, where M is a transition metal and X is a chalcogen, there are many possible combinations to consider for materials-by-design exploration. By identifying novel compositions and utilizing the lower dimensionality, which allows for improved thermoelectric performance (e.g., increased Seebeck coefficients without sacrificing electron concentration), MX 2 materials are promising candidates for thermoelectric applications. However, to develop these materials into wide-scale use, it is crucial to comprehensively understand the compositional affects. This work investigates the structure, electronic, and phonon properties of 18 different MX 2 materials compositions as a benchmark to explore the impact of various elements. There is significant correlation between properties of constituent transition metals (atomic mass and radius) and the structure/properties of the corresponding 2D-TMDs. As the mass of M increases, the n-type power factor and phonon frequency gap increases. Similarly, increases in the radius of M lead to increased layer thickness and Seebeck coefficient S. Our results identify key factors to optimize MX 2 compositions for desired performance.
Huizinga, Richard J.
2007-01-01
The evaluation of scour at bridges throughout the State of Missouri has been ongoing since 1991, and most of these evaluations have used one-dimensional hydraulic analysis and application of conventional scour depth prediction equations. Occasionally, the complex conditions of a site dictate a more thorough assessment of the stream hydraulics beyond a one-dimensional model. This was the case for structure A-1700, the Interstate 155 bridge crossing the Mississippi River near Caruthersville, Missouri. To assess the complex hydraulics at this site, a two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Mississippi River in the vicinity of the Interstate 155 structure A-1700. The model was used to simulate flow conditions for three discharges: a flood that occurred on April 4, 1975 (the calibration flood), which had a discharge of 1,658,000 cubic feet per second; the 100-year flood, which has a discharge of 1,960,000 cubic feet per second; and the project design flood, which has a discharge of 1,974,000 cubic feet per second. The project design flood was essentially equivalent to the flood that would cause impending overtopping of the mainline levees along the Mississippi River in the vicinity of structure A-1700. Discharge and river-stage readings from the flood of April 4, 1975, were used to calibrate the flow model. The model was then used to simulate the 100-year and project design floods. Hydraulic flow parameters obtained from the three flow simulations were applied to scour depth prediction equations to determine contraction, local pier, and abutment scour depths at structure A-1700. Contraction scour and local pier scour depths computed for the project design discharge generally were the greatest, whereas the depths computed for the calibration flood were the least. The maximum predicted total scour depth (contraction and local pier scour) for the calibration flood was 66.1 feet; for the 100-year flood, the maximum predicted total
Abramavicius, Darius; Mukamel, Shaul
2009-04-30
Electronic excitations and the optical properties of the photosynthetic complex PSI are analyzed using an effective exciton model developed by Vaitekonis et al. [Photosynth. Res. 2005, 86, 185]. States of the reaction center, the linker states, the highly delocalized antenna states and the red states are identified and assigned in absorption and circular dichroism spectra by taking into account the spectral distribution of density of exciton states, exciton delocalization length, and participation ratio in the reaction center. Signatures of exciton cooperative dynamics in nonchiral and chirality-induced two-dimensional (2D) photon-echo signals are identified. Nonchiral signals show resonances associated with the red, the reaction center, and the bulk antenna states as well as transport between them. Spectrally overlapping contributions of the linker and the delocalized antenna states are clearly resolved in the chirality-induced signals. Strong correlations are observed between the delocalized antenna states, the linker states, and the RC states. The active space of the complex covering the RC, the linker, and the delocalized antenna states is common to PSI complexes in bacteria and plants.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A two-dimensional model of unsteady turbulent flow induced by high-speed elevator system was established in the present study. The research was focused on the instantaneous variation of the aerodynamic force on the car structure during traversing motion of the counter weight in the hoistway. A dynamic meshing method was employed to treat the multi-body motion system to avoid poor distortion of meshes. A comprehensive understanding of this significant aspect was obtained by varying the horizontal gap (δ=0.1m, 0.2m, and 0.3m) between the elevator car and the counter weight, and the moving speed (U0=2m/s, 6m/s, and 10m/s) of the elevator system. A pulsed intensification of the aerodynamic force on the elevator car and subsequent appearance of large valley with negative aerodynamic force were clearly observed in the numerical results. In parameters studied (δ=0.1m, U0=2m/s, 6m/s, 10m/s), the peaked horizontal and vertical forces are respectively 7-11 and 4.3-5.65 times of that when the counter weight is far from the car. These results demonstrated the prominent influence of the traversing counter weight on aerodynamic force on the elevator car, which is of great significance to designers of high-speed elevator system.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Graham, Jonathan Pietarila; Mininni, Pablo D; Pouquet, Annick
2005-10-01
We present direct numerical simulations and Lagrangian averaged (also known as alpha model) simulations of forced and free decaying magnetohydrodynamic turbulence in two dimensions. The statistics of sign cancellations of the current at small scales is studied using both the cancellation exponent and the fractal dimension of the structures. The alpha model is found to have the same scaling behavior between positive and negative contributions as the direct numerical simulations. The alpha model is also able to reproduce the time evolution of these quantities in free decaying turbulence. At large Reynolds numbers, an independence of the cancellation exponent with the Reynolds numbers is observed.
Energy Technology Data Exchange (ETDEWEB)
Park, Young Seok; Kim, Sung Tae; Oh, Seung Hee; Park, Hee Jung; Lee, Sophia; Kim, Taeil; Lee, Young Kyu; Heo, Min Suk [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)
2014-06-15
This study evaluated the efficacy of alveolar ridge preservation methods with and without primary wound closure and the relationship between histometric and micro-computed tomographic (CT) data. Porcine hydroxyapatite with polytetrafluoroethylene membrane was implanted into a canine extraction socket. The density of the total mineralized tissue, remaining hydroxyapatite, and new bone was analyzed by histometry and micro-CT. The statistical association between these methods was evaluated. Histometry and micro-CT showed that the group which underwent alveolar preservation without primary wound closure had significantly higher new bone density than the group with primary wound closure (P<0.05). However, there was no significant association between the data from histometry and micro-CT analysis. These results suggest that alveolar ridge preservation without primary wound closure enhanced new bone formation more effectively than that with primary wound closure. Further investigation is needed with respect to the comparison of histometry and micro-CT analysis.
Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans
Wolpaw, Jonathan R.; McFarland, Dennis J.
2004-12-01
Brain-computer interfaces (BCIs) can provide communication and control to people who are totally paralyzed. BCIs can use noninvasive or invasive methods for recording the brain signals that convey the user's commands. Whereas noninvasive BCIs are already in use for simple applications, it has been widely assumed that only invasive BCIs, which use electrodes implanted in the brain, can provide multidimensional movement control of a robotic arm or a neuroprosthesis. We now show that a noninvasive BCI that uses scalp-recorded electroencephalographic activity and an adaptive algorithm can provide humans, including people with spinal cord injuries, with multidimensional point-to-point movement control that falls within the range of that reported with invasive methods in monkeys. In movement time, precision, and accuracy, the results are comparable to those with invasive BCIs. The adaptive algorithm used in this noninvasive BCI identifies and focuses on the electroencephalographic features that the person is best able to control and encourages further improvement in that control. The results suggest that people with severe motor disabilities could use brain signals to operate a robotic arm or a neuroprosthesis without needing to have electrodes implanted in their brains. brain-machine interface | electroencephalography
Energy Technology Data Exchange (ETDEWEB)
Kim, Tae-Hoon; Kim, Yong-Kyun; Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Dong Geon; Choi, Joonbum; Jang, Jae Yeong [Hanyang University, Seoul (Korea, Republic of); Chung, Hyun-Tai [Seoul National University, Seoul (Korea, Republic of)
2016-10-15
Gamma Knife model C contains 201 {sup 60}Co sources located on a spherical surface, so that each beam is concentrated on the center of the sphere. In the last work, we simulated the Gamma Knife model C through Monte Carlo simulation code using Geant4. Instead of 201 multi-collimation system, we made one single collimation system that collects source parameter passing through the collimator helmet. Using the virtual source, we drastically reduced the simulation time to transport 201 gamma circle beams to the target. Gamma index has been widely used to compare two dose distributions in cancer radiotherapy. Gamma index pass rates were compared in two calculated results using the virtual source method and the original method and measured results obtained using radiocrhomic films. A virtual source method significantly reduces simulation time of a Gamma Knife Model C and provides equivalent absorbed dose distributions as that of the original method showing Gamma Index pass rate close to 100% under 1mm/3% criteria. On the other hand, it gives a little narrow dose distribution compared to the film measurement showing Gamma Index pass rate of 94%. More accurate and sophisticated examination on the accuracy of the simulation and film measurement is necessary.
Barth, Johannes; Neyton, Lionel; Métais, Pierre; Panisset, Jean-Claude; Baverel, Laurent; Walch, Gilles; Lafosse, Laurent
2017-08-01
The aim of the study was to develop a computed tomography (CT)-based measurement protocol for coracoid graft (CG) placement in both axial and sagittal planes after a Latarjet procedure and to test its intraobserver and interobserver reliability. Fifteen postoperative CT scans were included to assess the intraobserver and interobserver reproducibility of a standardized protocol among 3 senior and 3 junior shoulder surgeons. The evaluation sequence included CG positioning, its contact area with the glenoid, and the angle of its screws in the axial plane. The percentage of CG positioned under the glenoid equator was also analyzed in the sagittal plane. The intraobserver and interobserver agreement was measured by the intraclass correlation coefficient (ICC), and the values were interpreted according to the Landis and Koch classification. The ICC was substantial to almost perfect for intraobserver agreement and fair to almost perfect for interobserver agreement in measuring the angle of screws in the axial plane. The intraobserver agreement was slight to almost perfect and the interobserver agreement slight to substantial regarding CG positioning in the same plane. The intraobserver agreement and interobserver agreement were both fair to almost perfect concerning the contact area. The ICC was moderate to almost perfect for intraobserver agreement and slight to almost perfect for interobserver agreement in analyzing the percentage of CG under the glenoid equator. The variability of ICC values observed implies that caution should be taken in interpreting results regarding the CG position on 2-dimensional CT scans. This discrepancy is mainly explained by the difficulty in orienting the glenoid in the sagittal plane before any other parameter is measured. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Mayer, M.; Malinský, P.; Schiettekatte, F.; Zolnai, Z.
2016-10-01
The codes RBS-MAST, STRUCTNRA, F95-Rough and CORTEO are simulation codes for ion beam analysis spectra from two- or three-dimensional sample structures. The codes were intercompared in a code-code comparison using an idealized grating structure and by comparison to experimental data from a silicon grating on tantalum interlayer. All codes are in excellent agreement at higher incident energies and not too large energy losses. At lower incident energies, grazing angles of incidence and/or larger energy losses plural scattering effects play an increasing role. Simulation codes with plural scattering capabilities offer higher accuracy and better agreement to experimental results in this regime.
Takagi, S.; Oguz, H.N.; Zhang, Z.; Prosperetti, A.
2003-01-01
This paper presents a new approach to the direct numerical simulation of particle flows. The basic idea is to use a local analytic representation valid near the particle to “transfer” the no-slip condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity ari
Wang, Ping; Raman, Kumar; MacLaren, Stephan; Huntington, Channing; Nagel, Sabrina
2016-10-01
We present simulations of recent high-energy-density (HED) re-shock experiments on the National Ignition Facility (NIF). The experiments study the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instability growth that occurs after successive shocks transit a sinusoidally-perturbed interface between materials of different densities. The shock tube is driven at one or both ends using indirect-drive laser cavities or hohlraums. X-ray area-backlit imaging is used to visualize the growth at different times. Our simulations are done with the three-dimensional, radiation hydrodynamics code ARES, developed at LLNL. We show the instabilitygrowth rate, inferred from the experimental radiographs, agrees well with our 2D and 3D simulations. We also discuss some 3D geometrical effects, suggested by our simulations, which could deteriorate the images at late times, unless properly accounted for in the experiment design. Work supported by U.S. Department of Energy under Contract DE- AC52-06NA27279. LLNL-ABS-680789.
Numerical Simulation for Two-Phase Water Hammer Flows in Pipe by Quasi-Two-Dimensional Model
Institute of Scientific and Technical Information of China (English)
Tae Uk Jang; Yuebin Wu; Ying Xu; Qiang Sun
2016-01-01
The features of a quasi⁃two⁃dimensional ( quasi⁃2D) model for simulating two⁃phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi⁃2D model with discrete vaporous cavity in the pipe is proposed in this paper. This model uses the quasi⁃2D model for pure liquid zone and one⁃dimensional ( 1D ) discrete vapor cavity model for vaporous cavity zone. The quasi⁃2D model solves two⁃dimensional equations for both axial and radial velocities and 1D equations for both pressure head and discharge by the method of characteristics. The 1D discrete vapor cavity model is used to simulate the vaporous cavity occurred when the pressure in the local pipe is lower than the vapor pressure of the liquid. The proposed model is used to simulate two⁃phase water flows caused by the rapid downstream valve closure in a reservoir⁃pipe⁃valve system. The results obtained by the proposed model are compared with those by the corresponding 1D model and the experimental ones provided by the literature, respectively. The comparison shows that the maximum pressure heads simulated by the proposed model are more accurate than those by the corresponding 1D model.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case.
Golbabai, Ahmad; Nikpour, Ahmad
2016-10-01
In this paper, two-dimensional Schrödinger equations are solved by differential quadrature method. Key point in this method is the determination of the weight coefficients for approximation of spatial derivatives. Multiquadric (MQ) radial basis function is applied as test functions to compute these weight coefficients. Unlike traditional DQ methods, which were originally defined on meshes of node points, the RBFDQ method requires no mesh-connectivity information and allows straightforward implementation in an unstructured nodes. Moreover, the calculation of coefficients using MQ function includes a shape parameter c. A new variable shape parameter is introduced and its effect on the accuracy and stability of the method is studied. We perform an analysis for the dispersion error and different internal parameters of the algorithm are studied in order to examine the behavior of this error. Numerical examples show that MQDQ method can efficiently approximate problems in complexly shaped domains.
Matsumoto, Takuma
2011-01-01
We report the results of the first two-dimensional self-consistent simulations directly covering from the photosphere to the interplanetary space. We carefully set up grid points with spherical coordinate to treat Alfv\\'enic waves in the atmosphere with the huge density contrast, and successfully simulate hot coronal wind streaming out as a result of surface convective motion. Footpoint motion excites upwardly propagating Alfv\\'enic waves along an open magnetic flux tube. These waves, traveling in non-uniform medium, suffer reflection, nonlinear mode conversion to compressive modes, and turbulent cascade. Combination of these mechanisms, the Alfv\\'enic waves eventually dissipate to accelerate the solar wind. While the shock heating by the dissipation of the compressive wave plays a primary role in the coronal heating, both turbulent cascade and shock heating contribute to drive the solar wind.
Institute of Scientific and Technical Information of China (English)
Ken-ichi SHIMOSE; Ming XUE; Robert D.PALMER; Jidong GAO; Boon Leng CHEONG; David J.BODINE
2013-01-01
Because they are most sensitive to atmospheric moisture content,radar refractivity observations can provide high-resolution information about the highly variable low-level moisture field.In this study,simulated radar refractivity-related phase-change data were created using a radar simulator from realistic high-resolution model simulation data for a dryline case.These data were analyzed using the 2DVAR system developed specifically for the phase-change data.Two sets of experiments with the simulated observations were performed,one assuming a uniform target spacing of 250 m and one assuming nonuniform spacing between 250 m to 4 km.Several sources of observation error were considered,and their impacts were examined.They included errors due to ground target position uncertainty,typical random errors associated with radar measurements,and gross error due to phase wrapping.Without any additional information,the 2DVAR system was incapable of dealing with phase-wrapped data directly.When there was no phase wrapping in the data,the 2DVAR produced excellent analyses,even in the presence of both position uncertainty and random radar measurement errors.When a separate pre-processing step was applied to unwrap the phase-wrapped data,quality moisture analyses were again obtained,although the analyses were smoother due to the reduced effective resolution of the observations by interpolation and smoothing involved in the unwrapping procedure.The unwrapping procedure was effective even when significant differences existed between the analyzed state and the state at a reference time.The results affirm the promise of using radar refractivity phase-change measurements for near-surface moisture analysis.
Research about two-dimensional IP numerical simulation%激电二维数值模拟研究
Institute of Scientific and Technical Information of China (English)
陈永凌; 蒋首进; 谢丹
2014-01-01
从点源二维地电问题出发，采用有限单元法进行了地电场进行数值模拟，采用自适应三角剖分来实现起伏地表的模拟，针对双边三极装置，实现了多种模型的正演研究；通过多种模型的正反演，总结异常产生的规律，为激电法的分析提供了有效的信息。%In this paper,starting from the question of point source and dimensional geoelectric field,we use finite element method to simulate geoelectric field,triangle subdivision algorithm to rolling surface,and various models to complete forward simulation according to the characteristic of bilateral three-pole device.By means of forward simulation and Inversion of various models,we have summarized some features about abnormity to offer some useful information for analysis of Induced polariza-tion.
On numerical evaluation of two-dimensional phase integrals
DEFF Research Database (Denmark)
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Two-dimensional simulation of Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect are directly simulated by a mixed finite element method.A temperature perturbation is used as an initial disturbed source for the basic parallel flows.The whole spatio-temporal evolution of the binary fluid flows is exhibited:initially only the disturbed mode with the wavenumber k=π is amplified while others are damped.and continuously the amplified mode grows further and the nonlinear effect becomes important;after a nonlinear evolution transition the flow system evolves finally into a periodic right traveling wave.
Almarza, N G; Pȩkalski, J; Ciach, A
2014-04-28
The triangular lattice model with nearest-neighbor attraction and third-neighbor repulsion, introduced by Pȩkalski, Ciach, and Almarza [J. Chem. Phys. 140, 114701 (2014)] is studied by Monte Carlo simulation. Introduction of appropriate order parameters allowed us to construct a phase diagram, where different phases with patterns made of clusters, bubbles or stripes are thermodynamically stable. We observe, in particular, two distinct lamellar phases-the less ordered one with global orientational order and the more ordered one with both orientational and translational order. Our results concern spontaneous pattern formation on solid surfaces, fluid interfaces or membranes that is driven by competing interactions between adsorbing particles or molecules.
Shukla, Chandrasekhar; Patel, Kartik
2016-01-01
We carry out Particle-in-Cell (PIC) simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On other hand, in strong relativistic case the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behaviour. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
Halliday, I; Lishchuk, S V; Spencer, T J; Pontrelli, G; Evans, P C
2016-08-01
We present a method for applying a class of velocity-dependent forces within a multicomponent lattice Boltzmann equation simulation that is designed to recover continuum regime incompressible hydrodynamics. This method is applied to the problem, in two dimensions, of constraining to uniformity the tangential velocity of a vesicle membrane implemented within a recent multicomponent lattice Boltzmann simulation method, which avoids the use of Lagrangian boundary tracers. The constraint of uniform tangential velocity is carried by an additional contribution to an immersed boundary force, which we derive here from physical arguments. The result of this enhanced immersed boundary force is to apply a physically appropriate boundary condition at the interface between separated lattice fluids, defined as that region over which the phase-field varies most rapidly. Data from this enhanced vesicle boundary method are in agreement with other data obtained using related methods [e.g., T. Krüger, S. Frijters, F. Günther, B. Kaoui, and J. Harting, Eur. Phys. J. 222, 177 (2013)10.1140/epjst/e2013-01834-y] and underscore the importance of a correct vesicle membrane condition.
Directory of Open Access Journals (Sweden)
Jung-Sik Choi
2015-06-01
Full Text Available The operating characteristics of hydrogen iodide (HI decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.
Energy Technology Data Exchange (ETDEWEB)
Djouder, M., E-mail: djouder-madjid@ummto.dz; Kermoun, F.; Mitiche, M. D.; Lamrous, O. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)
2016-01-15
Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.
Shukla, Chandrasekhar; Das, Amita; Patel, Kartik
2016-08-01
We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
Mohammadipour, Omid Reza; Niazmand, Hamid; Succi, Sauro
2017-03-01
In this paper, an alternative approach to implement initial and boundary conditions in the lattice Boltzmann method is presented. The main idea is to approximate the nonequilibrium component of distribution functions as a third-order power series in the lattice velocities and formulate a procedure to determine boundary node distributions by using fluid variables, consistent with such an expansion. The velocity shift associated with the body force effects is included in this scheme, along with an approximation to determine the mass density in complex geometries. Different strategies based on the present scheme are developed to implement velocity and pressure conditions for arbitrarily shaped boundaries, using the D2Q9, D3Q15, D3Q19 and D3Q27 lattices, in two and three space dimensions, respectively. The proposed treatment is tested against several well-established problems, showing second-order spatial accuracy and often improved behavior as compared to various existing methods, with no appreciable computational overhead.
Simulation of quantum computers
De Raedt, H; Michielsen, K; Hams, AH; Miyashita, S; Saito, K; Landau, DP; Lewis, SP; Schuttler, HB
2001-01-01
We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software con
Buras, R; Rampp, M; Kifonidis, K
2005-01-01
1D and 2D supernova simulations for stars between 11 and 25 solar masses are presented, making use of the Prometheus/Vertex neutrino-hydrodynamics code, which employs a full spectral treatment of the neutrino transport. Multi-dimensional transport aspects are treated by the ``ray-by-ray plus'' approximation described in Paper I. Our set of models includes a 2D calculation for a 15 solar mass star whose iron core is assumed to rotate rigidly with an angular frequency of 0.5 rad/s before collapse. No important differences were found depending on whether random seed perturbations for triggering convection are included already during core collapse, or whether they are imposed on a 1D collapse model shortly after bounce. Convection below the neutrinosphere sets in about 40 ms p.b. at a density above 10**12 g/cm^3 in all 2D models, and encompasses a layer of growing mass as time goes on. It leads to a more extended proto-neutron star structure with accelerated lepton number and energy loss and significantly higher ...
Vortices in the Two-Dimensional Simple Exclusion Process
Bodineau, T.; Derrida, B.; Lebowitz, Joel L.
2008-06-01
We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.
Williams, R. D.; Brasington, J.; Hicks, M.; Measures, R.; Rennie, C. D.; Vericat, D.
2013-09-01
Gravel-bed braided rivers are characterized by shallow, branching flow across low relief, complex, and mobile bed topography. These conditions present a major challenge for the application of higher dimensional hydraulic models, the predictions of which are nevertheless vital to inform flood risk and ecosystem management. This paper demonstrates how high-resolution topographic survey and hydraulic monitoring at a density commensurate with model discretization can be used to advance hydrodynamic simulations in braided rivers. Specifically, we detail applications of the shallow water model, Delft3d, to the Rees River, New Zealand, at two nested scales: a 300 m braid bar unit and a 2.5 km reach. In each case, terrestrial laser scanning was used to parameterize the topographic boundary condition at hitherto unprecedented resolution and accuracy. Dense observations of depth and velocity acquired from a mobile acoustic Doppler current profiler (aDcp), along with low-altitude aerial photography, were then used to create a data-rich framework for model calibration and testing at a range of discharges. Calibration focused on the estimation of spatially uniform roughness and horizontal eddy viscosity, νH, through comparison of predictions with distributed hydraulic data. Results revealed strong sensitivity to νH, which influenced cross-channel velocity and localization of high shear zones. The high-resolution bed topography partially accounts for form resistance, and the recovered roughness was found to scale by 1.2-1.4 D84 grain diameter. Model performance was good for a range of flows, with minimal bias and tight error distributions, suggesting that acceptable predictions can be achieved with spatially uniform roughness and νH.
Cryptography Using Multiple Two-Dimensional Chaotic Maps
Directory of Open Access Journals (Sweden)
Ibrahim S. I. Abuhaiba
2012-08-01
Full Text Available In this paper, a symmetric key block cipher cryptosystem is proposed, involving multiple two-dimensional chaotic maps and using 128-bits external secret key. Computer simulations indicate that the cipher has good diffusion and confusion properties with respect to the plaintext and the key. Moreover, it produces ciphertext with random distribution. The computation time is much less than previous related works. Theoretic analysis verifies its superiority to previous cryptosystems against different types of attacks.
Algorithm of Two-dimensional Acoustic Source Simulating GPS%二维表面声源模拟G PS实验算法的讨论
Institute of Scientific and Technical Information of China (English)
姚赫明; 苗明川; Saddam Foad(胡森)
2013-01-01
对实验的数据处理的方法进行讨论，将多种非线性方程组的数值解法应用于最终定位点的求解，给出不同算法结果的比较。%Simulated GPS experiment is the source system based on two-dimensional surface,in order to improve the accuracy,the data receiver,the positioning requirements of the remaining data by non-linear least squares method,with multiple sets of data to reduce the positioning errors.The numerical solution of nonlinear equations obtained to meet the requirements of optimal positioning point.This paper discusses the experimental data processing,a variety of numerical solution of nonlinear equations used in solving the final positioning point,given the results of different algorithms comparison.
Suryavanshi, Saurabh V.; Pop, Eric
2016-12-01
We present a physics-based compact model for two-dimensional (2D) field-effect transistors (FETs) based on monolayer semiconductors such as MoS2. A semi-classical transport approach is appropriate for the 2D channel, enabling simplified analytical expressions for the drain current. In addition to intrinsic FET behavior, the model includes contact resistance, traps and impurities, quantum capacitance, fringing fields, high-field velocity saturation, and self-heating, the latter being found to play an important role. The model is calibrated with state-of-the-art experimental data for n- and p-type 2D-FETs, and it can be used to analyze device properties for sub-100 nm gate lengths. Using the experimental fit, we demonstrate the feasibility of circuit simulations using properly scaled devices. The complete model is implemented in SPICE-compatible Verilog-A, and a downloadable version is freely available at the nanoHUB.org.
Energy Technology Data Exchange (ETDEWEB)
Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Helmholzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Kim, V. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Lamour, E. [Institut des NanoSciences de Paris, UPMC-Sorbonne Universite, CNRS-UMR 7588, 75252 Paris (France); Lomonosov, I.V. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A.R. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Rozet, J.P. [Institut des NanoSciences de Paris, UPMC-Sorbonne Universite, CNRS-UMR 7588, 75252 Paris (France); Stoehlker, Th. [GSI Helmholzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholz-Institut Jena, 07743 Jena (Germany); Sultanov, V. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Vernhet, D. [Institut des NanoSciences de Paris, UPMC-Sorbonne Universite, CNRS-UMR 7588, 75252 Paris (France)
2012-11-01
In this paper we report on two-dimensional numerical simulations of heating of a rotating, wheel shaped target impacted by the full intensity of the ion beam that will be delivered by the SPIRAL2 facility at Caen, France. The purpose of this work is to study heating of solid targets that will be used to strip the fast ions of SPIRAL2 to the required high charge state for the FISIC (Fast Ion-Slow Ion Collision) experiments. Strippers of aluminum with different emissivities and of carbon are exposed to high beam current of different ion species as oxygen, neon and argon. These studies show that carbon, due to its much higher sublimation temperature and much higher emissivity, is more favorable compared to aluminum. For the highest beam intensities, an aluminum stripper does not survive. However, problem of the induced thermal stresses and long term material fatigue needs to be investigated before a final conclusion can be drawn.
Noge, Hiroshi; Saito, Kimihiko; Sato, Aiko; Kaneko, Tetsuya; Kondo, Michio
2015-08-01
The performance of interdigitated back contact silicon heterojunction solar cells having overlapped p/i and n/i a-Si:H layers on the back has been investigated by two-dimensional simulation in comparison with the conventional cell structure having a gap between p/i and n/i layers. The results show that narrower overlap width leads to higher short circuit current and conversion efficiency, especially for poor heterojunction interface and thinner silicon substrate of the cells in addition to narrower uncovered width of p/i layer by a metal electrode. This is similar to the gap width dependence in the conventional cells, since both overlap and gap act as dead area for diffused excess carriers in the back contacts.
Tanuma, S; Kudoh, T; Shibata, K; Tanuma, Syuniti; Yokoyama, Takaaki; Kudoh, Takahiro; Shibata, Kazunari
2001-01-01
We examine the magnetic reconnection triggered by a supernova (or a point explosion) in interstellar medium, by performing two-dimensional resistive magnetohydrodynamic (MHD) numerical simulations with high spatial resolution. We found that the magnetic reconnection starts long after a supernova shock (fast-mode MHD shock) passes a current sheet. The current sheet evolves as follows: (i) Tearing-mode instability is excited by the supernova shock, and the current sheet becomes thin in its nonlinear stage. (ii) The current-sheet thinning is saturated when the current-sheet thickness becomes comparable to that of Sweet-Parker current sheet. After that, Sweet-Parker type reconnection starts, and the current-sheet length increases. (iii) ``Secondary tearing-mode instability'' occurs in the thin Sweet-Parker current sheet. (iv) As a result, further current-sheet thinning occurs and anomalous resistivity sets in, because gas density decreases in the current sheet. Petschek type reconnection starts and heats interste...
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Qin, Yuan; Yao, Man; Hao, Ce; Wan, Lijun; Wang, Yunhe; Chen, Ting; Wang, Dong; Wang, Xudong; Chen, Yonggang
2017-09-01
Two-dimensional (2D) chiral self-assembly system of 5-(benzyloxy)-isophthalic acid derivative/(S)-(+)-2-octanol/highly oriented pyrolytic graphite was studied. A combined density functional theory/molecular mechanics/molecular dynamics (DFT/MM/MD) approach for system of 2D chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface was thus proposed. Structural models of the chiral assembly were built on the basis of scanning tunneling microscopy (STM) images and simplified for DFT geometry optimization. Merck Molecular Force Field (MMFF) was singled out as the suitable force field by comparing the optimized configurations of MM and DFT. MM and MD simulations for hexagonal unit model which better represented the 2D assemble network were then preformed with MMFF. The adhesion energy, evolution of self-assembly process and characteristic parameters of hydrogen bond were obtained and analyzed. According to the above simulation, the stabilities of the clockwise and counterclockwise enantiomorphous networks were evaluated. The calculational results were supported by STM observations and the feasibility of the simulation method was confirmed by two other systems in the presence of chiral co-absorbers (R)-(-)-2-octanol and achiral co-absorbers 1-octanol. This theoretical simulation method assesses the stability trend of 2D enantiomorphous assemblies with atomic scale and can be applied to the similar hydrogen bond driven 2D chirality of molecular self-assembly system.
Liang, Xian-Ting
2014-07-28
A framework for simulating electronic spectra from photon-echo experiments is constructed by using a numerical path integral technique. This method is non-Markovian and nonperturbative and, more importantly, is not limited by a fixed form of the spectral density functions of the environment. Next, a two-dimensional (2D) third-order electronic spectrum of a dimer system is simulated. The spectrum is in agreement with the experimental and theoretical results previously reported [for example, M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003)]. Finally, a 2D third-order electronic spectrum of the Fenna-Matthews-Olson (FMO) complex is simulated by using the Debye, Ohmic, and Adolphs and Renger spectral density functions. It is shown that this method can clearly produce the spectral signatures of the FMO complex by using only the Adolphs and Renger spectral density function. Plots of the evolution of the diagonal and cross-peaks show that they are oscillating with the population time.
Energy Technology Data Exchange (ETDEWEB)
Bankura, Arindam; Chandra, Amalendu, E-mail: amalen@iitk.ac.in [Department of Chemistry, Indian Institute of Technology, Kanpur 208016 (India)
2015-01-28
The dynamics of proton transfer (PT) through hydrogen bonds in a two-dimensional water layer confined between two graphene sheets at room temperature are investigated through ab initio and quantum-classical simulations. The excess proton is found to be mostly solvated as an Eigen cation where the hydronium ion donates three hydrogen bonds to the neighboring water molecules. In the solvation shell of the hydronium ion, the three coordinated water molecules with two donor hydrogen bonds are found to be properly presolvated to accept a proton. Although no hydrogen bond needs to be broken for transfer of a proton to such presolvated water molecules from the hydronium ion, the PT rate is still found to be not as fast as it is for one-dimensional chains. Here, the PT is slowed down as the probability of finding a water with two donor hydrogen bonds in the solvation shell of the hydronium ion is found to be only 25%-30%. The hydroxide ion is found to be solvated mainly as a complex anion where it accepts four H-bonds through its oxygen atom and the hydrogen atom of the hydroxide ion remains free all the time. Here, the presolvation of the hydroxide ion to accept a proton requires that one of its hydrogen bonds is broken and the proton comes from a neighboring water molecule with two acceptor and one donor hydrogen bonds. The coordination number reduction by breaking of a hydrogen bond is a slow process, and also the population of water molecules with two acceptor and one donor hydrogen bonds is only 20%-25% of the total number of water molecules. All these factors together tend to slow down the hydroxide ion migration rate in two-dimensional water layers compared to that in three-dimensional bulk water.
Bankura, Arindam; Chandra, Amalendu
2015-01-01
The dynamics of proton transfer (PT) through hydrogen bonds in a two-dimensional water layer confined between two graphene sheets at room temperature are investigated through ab initio and quantum-classical simulations. The excess proton is found to be mostly solvated as an Eigen cation where the hydronium ion donates three hydrogen bonds to the neighboring water molecules. In the solvation shell of the hydronium ion, the three coordinated water molecules with two donor hydrogen bonds are found to be properly presolvated to accept a proton. Although no hydrogen bond needs to be broken for transfer of a proton to such presolvated water molecules from the hydronium ion, the PT rate is still found to be not as fast as it is for one-dimensional chains. Here, the PT is slowed down as the probability of finding a water with two donor hydrogen bonds in the solvation shell of the hydronium ion is found to be only 25%-30%. The hydroxide ion is found to be solvated mainly as a complex anion where it accepts four H-bonds through its oxygen atom and the hydrogen atom of the hydroxide ion remains free all the time. Here, the presolvation of the hydroxide ion to accept a proton requires that one of its hydrogen bonds is broken and the proton comes from a neighboring water molecule with two acceptor and one donor hydrogen bonds. The coordination number reduction by breaking of a hydrogen bond is a slow process, and also the population of water molecules with two acceptor and one donor hydrogen bonds is only 20%-25% of the total number of water molecules. All these factors together tend to slow down the hydroxide ion migration rate in two-dimensional water layers compared to that in three-dimensional bulk water.
Asllanaj, Fatmir; Fumeron, Sebastien
2012-07-01
Optical tomography is a medical imaging technique based on light propagation in the near infrared (NIR) part of the spectrum. We present a new way of predicting the short-pulsed NIR light propagation using a time-dependent two-dimensional-global radiative transfer equation in an absorbing and strongly anisotropically scattering medium. A cell-vertex finite-volume method is proposed for the discretization of the spatial domain. The closure relation based on the exponential scheme and linear interpolations was applied for the first time in the context of time-dependent radiative heat transfer problems. Details are given about the application of the original method on unstructured triangular meshes. The angular space (4πSr) is uniformly subdivided into discrete directions and a finite-differences discretization of the time domain is used. Numerical simulations for media with physical properties analogous to healthy and metastatic human liver subjected to a collimated short-pulsed NIR light are presented and discussed. As expected, discrepancies between the two kinds of tissues were found. In particular, the level of light flux was found to be weaker (inside the medium and at boundaries) in the healthy medium than in the metastatic one.
Naab, T; Emsellem, E; Cappellari, M; Krajnovic, D; McDermid, R M; Alatalo, K; Bayet, E; Blitz, L; Bois, M; Bournaud, F; Bureau, M; Crocker, A; Davies, R L; Davis, T A; de Zeeuw, P T; Duc, P -A; Hirschmann, M; Johansson, P H; Khochfar, S; Kuntschner, H; Morganti, R; Oosterloo, T; Sarzi, M; Scott, N; Serra, P; van de Ven, G; Weijmans, A; Young, L M
2013-01-01
We present a detailed two-dimensional stellar dynamical analysis of a sample of 44 cosmological hydrodynamical simulations of individual central galaxies and their satellites. Kinematic maps of the stellar line-of-sight velocity, velocity dispersion, and higher-order Gauss-Hermite moments $h_3$ and $h_4$ are constructed for each central galaxy and for the most massive satellites. The amount of rotation is quantified using the $\\lambda_{\\mathrm{R}}$-parameter. The velocity, velocity dispersion, $h_3$, and $h_4$ fields of the simulated galaxies show a diversity similar to observed kinematic maps of early-type galaxies in the ATLAS$^{\\rm{3D}}$ survey. This includes fast (regular), slow, and misaligned rotation, hot spheroids with embedded cold disk components as well as galaxies with counter-rotating cores or central depressions in the velocity dispersion. We link the present day kinematic properties to the individual cosmological formation histories of the galaxies. In general, major galaxy mergers have a signi...
Umeda, Takayuki; Matsukiyo, Shuichi; Yamazaki, Ryo
2014-01-01
Large-scale two-dimensional (2D) full particle-in-cell simulations are carried out for studying the relationship between the dynamics of a perpendicular shock and microinstabilities generated at the shock foot. The structure and dynamics of collisionless shocks are generally determined by Alfven Mach number and plasma beta, while microinstabilities at the shock foot are controlled by the ratio of the upstream bulk velocity to the electron thermal velocity and the ratio of the plasma-to-cyclotron frequency. With a fixed Alfven Mach number and plasma beta, the ratio of the upstream bulk velocity to the electron thermal velocity is given as a function of the ion-to-electron mass ratio. The present 2D full PIC simulations with a relatively low Alfven Mach number (M_A ~ 6) show that the modified two-stream instability is dominant with higher ion-to-electron mass ratios. It is also confirmed that waves propagating downstream are more enhanced at the shock foot near the shock ramp as the mass ratio becomes higher. T...
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Sun, Yi; Timofeyev, Ilya
2014-05-01
We employ an efficient list-based kinetic Monte Carlo (KMC) method to study traffic flow models on one-dimensional (1D) and two-dimensional (2D) lattices based on the exclusion principle and Arrhenius microscopic dynamics. This model implements stochastic rules for cars' movements based on the configuration of the traffic ahead of each car. In particular, we compare two different look-ahead rules: one is based on the distance from the car under consideration to the car in front of it, and the other one is based on the density of cars ahead. The 1D numerical results of these two rules suggest different coarse-grained macroscopic limits in the form of integro-differential Burgers equations. The 2D results of both rules exhibit a sharp phase transition from freely flowing to fully jammed, as a function of the initial density of cars. However, the look-ahead rule based on the density of the traffic produces more realistic results. The KMC simulations reported in this paper are compared with those from other well-known traffic flow models and the corresponding empirical results from real traffic.
Hu, Zhang-Hu; Song, Yuan-Hong; Wang, You-Nian
2010-08-01
A two-dimensional particle-in-cell (PIC) model is proposed to study the wake field and stopping power induced by a nonrelativistic charged particle moving perpendicular to the external magnetic field in two-component plasmas. The effects of the magnetic field on the wake potential and the stopping due to the polarization of both the plasma ions and electrons are discussed. The velocity fields of plasma ions and electrons are investigated, respectively, in the weak and strong magnetic field cases. Our simulation results show that in the case of weak magnetic field and high ion velocity, the wakes exhibit typical V-shaped cone structures and the opening cone angles decrease with the increasing ion velocity. As the magnetic field becomes strong, the wakes lose their typical V-shaped structures and become highly asymmetrical. Similar results can be obtained in the case of low ion velocity and strong magnetic field. In addition, stopping power is calculated and compared with previous one-dimensional and full three-dimensional PIC results.
Institute of Scientific and Technical Information of China (English)
Chee Khoon LIEW; Kui Hian SIM; Rapaee ANNUAR; Tiong Kiam ONG; Sze Piaw CHIN; Tobias Seyfarth; Yean Yip FONG; Wei Ling CHAN; Choon Kiat ANG; Houng Bang LIEW
2006-01-01
Objectives To compare left ventricular ejection fraction (LVEF) determined from 64-row multi-detector computed tomography (64-row MDCT) with those determined from two dimensional echocardiography (2D echo) and cardiac magnetic resonance imaging (CMR). Methods Thirty-two patients with coronary artery disease underwent trans-thoracic 2D echo, CMR and contrast-enhanced 64-row MDCT for assessment of LVEF within 48 hours of each other. 64-row MDCT LVEF was derived using the Syngo Circulation software; CMR LVEF was by Area Length Ejection Fraction (ALEF) and Simpson method and 2D echo LVEF by Simpson method.Results The LVEF was 49.13 ± 15.91% by 2D echo, 50.72 ± 16.55% (ALEF method) and 47.65 ± 16.58%(Simpson method) by CMR and 50.00 ± 15.93% by 64-row MDCT. LVEF measurements by 64-row MDCT correlated well with LVEF measured with CMR using either the ALEF method (Pearson correlation r = 0.94, P ＜0.01) or Simpson method (r = 0.92, P＜0.01). It also correlated well with LVEF measured using 2D echo (r = 0.80, P ＜ 0.01). Conclusion LVEF measurements by 64-row MDCT correlated well with LVEF measured by CMR and 2D echo. The correlation between 64-row MDCT and CMR was better than the correlation between 2D echo with CMR. Standard data set from a 64-row MDCT coronary study can be reliably used to calculate the LVEF.
García-Peñarrubia, Pilar; Gálvez, Juan J; Gálvez, Jesús
2014-09-01
Cell signalling processes involve receptor trafficking through highly connected networks of interacting components. The binding of surface receptors to their specific ligands is a key factor for the control and triggering of signalling pathways. But the binding process still presents many enigmas and, by analogy with surface catalytic reactions, two different mechanisms can be conceived: the first mechanism is related to the Eley-Rideal (ER) mechanism, i.e. the bulk-dissolved ligand interacts directly by pure three-dimensional (3D) diffusion with the specific surface receptor; the second mechanism is similar to the Langmuir-Hinshelwood (LH) process, i.e. 3D diffusion of the ligand to the cell surface followed by reversible ligand adsorption and subsequent two-dimensional (2D) surface diffusion to the receptor. A situation where both mechanisms simultaneously contribute to the signalling process could also occur. The aim of this paper is to perform a computational study of the behavior of the signalling response when these different mechanisms for ligand-receptor interactions are integrated into a model for signal transduction and ligand transport. To this end, partial differential equations have been used to develop spatio-temporal models that show trafficking dynamics of ligands, cell surface components, and intracellular signalling molecules through the different domains of the system. The mathematical modeling developed for these mechanisms has been applied to the study of two situations frequently found in cell systems: (a) dependence of the signal response on cell density; and (b) enhancement of the signalling response in a synaptic environment.
Thang, Ho Viet; Rubeš, Miroslav; Bludský, Ota; Nachtigall, Petr
2014-09-04
The adsorption and catalytic properties of three-dimensional zeolite UTL were investigated computationally along with properties of its two-dimensional analogue IPC-1P that can be obtained from UTL by a removal of D4R units. Adsorption properties and Lewis acidity of extra-framework Li(+) sites were investigated for both two- and three-dimensional forms of UTL using the carbon monoxide as a probe molecule. The CO adsorption enthalpies, calculated with various dispersion-corrected DFT methods, including DFT/CC, DFT-D2, and vdW-DF2, and the CO stretching frequencies obtained with the νCO/rCO correlation method are compared for corresponding Li(+) sites in 3D and 2D UTL zeolite. For the majority of framework Al positions the Li(+) cation is preferably located in one of the channel wall sites and such sites remains unchanged upon the 3D → 2D UTL transformation; consequently, the adsorption enthalpies become only slightly smaller in 2D UTL (less than 3 kJ mol(-1)) due to the missing part of dispersion interactions and νCO becomes also only up to 5 cm(-1) smaller in 2D UTL due to the missing repulsion with framework oxygen atoms from the opposite site of the zeolite channel (effect from the top). However, when Li(+) is located in the intersection site in 3D UTL (about 20% probability), its coordination with the framework is significantly increased in 2D UTL and that is accompanied by significant decrease of both νCO (about 20 cm(-1)) and adsorption enthalpy (about 20 kJ mol(-1)). Because the intersection sites in 3D UTL are the most active adsorption and catalytic Lewis sites, the results reported herein suggest that the 3D → 2D transformation of UTL zeolite is connected with partial decrease of zeolite activity in processes driven by Lewis acid sites.
Computer Modeling and Simulation
Energy Technology Data Exchange (ETDEWEB)
Pronskikh, V. S. [Fermilab
2014-05-09
Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Directory of Open Access Journals (Sweden)
Vanderley de Vasconcelos
1997-12-01
Full Text Available Na formação de aglomerados, partículas pequenas tendem a se agregar, reduzindo a energia livre total do sistema. Mesmo quando as partículas primárias têm forma esférica e tamanhos uniformes, dependendo do tipo do processamento e das forças envolvidas, os aglomerados podem apresentar orientações preferenciais de partículas. Este trabalho utiliza técnica de processamento digital de imagens para a obtenção das distribuições de orientação de partículas em aglomerados bidimensionais simulados. As simulações foram realizadas em um ambiente de computação gráfica com recursos de modelagem de sólidos. A escolha de modelos bidimensionais para representar casos tridimensionais é um artifício muito empregado para reduzir os altos tempos de processamento computacional envolvidos no estudo de processos complexos.Apesar de simples, em príncipio, muitas conclusões importante podem ser extraídas dos modelos bidimensionais e muitos de seus resultados aplicados diretamente aos casos reais.In the formation of agglomerates, small particles tend to aggregate in order to reduce the total free energy of the system. Even when the individual particles can be treated as spheres of uniform size, depending on the process and involved forces the agglomerates can show some kind of particle orientation. This paper uses digital image processing techniques for obtaining particle orientation distribution of two-dimensional simulated agglomerates. These simulations were carried out using a computer graphics environment with solid modeling extension. The use of two-dimensional models instead of three-dimensional ones is an alternative to reduce the long computacional times involved in the analysis of complex real systems. Despite being simple, in principle, very important information can be obtained from two-dimensional systems and directly applied to real three-dimensional cases.
Energy Technology Data Exchange (ETDEWEB)
Chono, S.; Tsuji, T. [Fukui University, Fukui (Japan). Faculty of Engineering
1995-05-25
Finite difference solutions to the Leslie-Ericksen equations were obtained for flows in two-dimensional L-shaped channels with various contraction ratios of the upstream to downstream channel width. A streamline shift toward the outer wall occurs upstream of the reentrant corner. Such behavior is similar to that of viscoelastic fluids. With increasing contraction ratio, the streamline shift occurs further upstream. The effect of the wall anchoring angle for the director is remarkable; for example, when the anchoring angle along the downstream walls is set to be opposite to the main flow direction, a distortion of streamlines is produced in the corner region and the director moves to the downstream region upside down. At small Ericksen numbers, the orientation angle for the director is varied over a wide area so as to suppress its local deformation. In contrast, when the Ericksen number is large, the director profile in the upstream region is retained close to the corner region where the director turns rapidly to the downstream direction. 7 refs., 9 figs., 1 tab.
Boriakoff, Valentin
1994-01-01
The goal of this project was the feasibility study of a particular architecture of a digital signal processing machine operating in real time which could do in a pipeline fashion the computation of the fast Fourier transform (FFT) of a time-domain sampled complex digital data stream. The particular architecture makes use of simple identical processors (called inner product processors) in a linear organization called a systolic array. Through computer simulation the new architecture to compute the FFT with systolic arrays was proved to be viable, and computed the FFT correctly and with the predicted particulars of operation. Integrated circuits to compute the operations expected of the vital node of the systolic architecture were proven feasible, and even with a 2 micron VLSI technology can execute the required operations in the required time. Actual construction of the integrated circuits was successful in one variant (fixed point) and unsuccessful in the other (floating point).
Institute of Scientific and Technical Information of China (English)
杜政东; 魏平; 赵菲; 尹文禄
2015-01-01
针对二维波达方向估计时 MUSIC 谱的快速计算问题，研究了均匀圆阵变换到虚拟线阵的 MUSIC 算法（UCA-ULA-MUSIC）、流形分离 MUSIC 算法（MS-MUSIC）、傅立叶域线性求根 MUSIC 算法（FD-Line-Search-MU-SIC）、基于 FFT 的2n 元均匀圆阵 MUSIC 算法（2n-UCA-FFT-MUSIC）与基于 FFT 的任意圆阵 MUSIC 算法（ACA-FFT-MUSIC）。对各种算法快速计算二维 MUSIC 谱的实现步骤进行了总结。在此基础上，给出了各算法计算二维MUSIC 谱的计算复杂度表达式，并以传统方法为参考，对比了各种快速算法相对于传统方法的计算复杂度比值；同时，针对不同的阵列形式，对适用的快速算法的测向性能进行了仿真对比。根据分析和对比的结果，指出 MS-MUSIC 算法与 ACA-FFT-MUSIC 算法具有更高的工程应用价值，由具体的情况单独或分频段联合使用 MS-MUSIC算法与 ACA-FFT-MUSIC 算法，可以使测向系统较好的兼顾测向性能与时效性。%According to the fast computation problem of MUSIC spectrum in two dimensional direction of arrival estimation, the fast algorithms by manifold transformation or spectrum function transformation are studied.The implementation steps of computation method for two dimensional MUSIC spectrum by these algorithms are summarized.Furthermore,expressions for computational complexity of discussed algorithms in computing two dimensional MUSIC spectrum are presented.With refer-ence to the conventional method,the ratio of computational complexity of discussed algorithms is compared.Meanwhile,for different circular arrays,the direction finding performance of applicable algorithms is compared by simulation.It is proved that the MUSIC algorithm based on Manifold Separation (MS-MUSIC)and Fast Fourier Transformation (FFT)which suits to arbitrary circular array (ACA-FFT-MUSIC)have higher engineering value according to the results of analysis and com-parison.The performance and
PBX炸药细观结构冲击点火的二维数值模拟%Two-dimensional Mesoscale Simulation of Shock Ignition in PBX Explosives
Institute of Scientific and Technical Information of China (English)
刘群; 陈朗; 伍俊英; 王晨
2011-01-01
为了研究冲击加载下非均质炸药的点火机理,对PBX炸药细观结构在冲击加载下的响应过程进行了二维数值模拟.首先对炸药颗粒的压制过程进行数值模拟,获得PBX炸药的细观结构模型.然后对炸药冲击点火进行数值模拟计算,考虑了热力耦合作用和炸药自热反应,分析了炸药颗粒尺寸、密度和黏结剂对炸药冲击点火的影响.结果表明,冲击作用下PBX炸药点火点出现在炸药颗粒与黏结剂界面处；炸药颗粒尺寸较小时,PBX炸药点火的临界压力较大；随着PBX炸药密度的增加,临界点火压力逐渐增大；黏结剂能够衰减冲击波对炸药颗粒的压缩作用,黏结剂增多,PBX炸药的临界点火压力提高.%To investigate the mechanism of shock ignition in heterogeneous explosives, two-dimensional mesoscale simulation of PBX explosives under shock loading was conducted. Through simulation of explosive particles press-ing,the mesoscale structure of PBX was obtained. Then the shock ignition of PBX explosives was calculated,and the coupled thermo-mechanics and self-heating reaction were considered, and the influence of explosive density, particle size and binder content on shock ignition were analyzed. The results show that hot spots focus on the interface be-tween explosive particles and binder. The critical pressure to ignite explosives in small particle size is higher than that in large particle size. The critical pressure to ignite explosives in low density is higher than that of explosives in high density. In addition,binders play an important role in attenuating shock intensity on explosive particles,and PBX ex-plosives in more binder content are more insensitive than those in less binder content.
Brela, Mateusz; Stare, Jernej; Pirc, Gordana; Sollner-Dolenc, Marija; Boczar, Marek; Wójcik, Marek J; Mavri, Janez
2012-04-19
The nature of medium strong intra- and intermolecular hydrogen bonding in 2-hydroxy-5-nitrobenzamide in the crystal phase was examined by infrared spectroscopy and Car-Parrinello molecular dynamics simulation. The focal point of our study was the part of the infrared spectra associated with the O-H and N-H stretching modes that are very sensitive to the strength of hydrogen bonding. For spectra calculations we used an isolated dimer and the fully periodic crystal environment. We calculated the spectra by using harmonic approximation, the time course of the dipole moment function as obtained from the Car-Parrinello simulation, and the quantization of the nuclear motion of the proton for an instantaneous snapshot of the structures in one and two dimensions. Although quantitative assessment of the agreement between the computed and experimental band contour is difficult due to the fact that the experimental band is very broad, we feel that the most reasonable qualitative agreement with the experiment is obtained from snapshot structures and two-dimensional quantization of the proton motion. We have also critically examined the methods of constructing the one-dimensional proton potential. Perspectives are given for the treatment of nuclear quantum effects in biocatalysis.
Yang, Zhongwei; Richardson, John D; Lu, Quanming; Huang, Can; Wang, Rui
2015-01-01
The transition between the supersonic solar wind and the subsonic heliosheath, the termination shock (TS), was observed by Voyager 2 (V2) on 2007 August 31-September 1 at a distance of 84 AU from the Sun. The data reveal multiple crossings of a complex, quasi-perpendicular supercritical shock. These experimental data are the starting point for a more sophisticated analysis that includes computer modeling of a shock in the presence of pickup ions (PUIs). here, we present two-dimensional (2-D) particle-in-cell (PIC) simulations of the TS including PUIs self-consistently. We also report the ion velocity distribution across the TS using the Faraday cup data from V2. A relatively complete plasma and magnetic field data set from V2 gives us the opportunity to do a full comparison between the experimental data and PIC simulation results. Our results show that: (1) The nonstationarity of the shock front is mainly caused by the ripples along the shock front and these ripples from even if the percentage of PUIs is high...
Wagner, Daniel M.
2013-01-01
In the early morning hours of June 11, 2010, substantial flooding occurred at Albert Pike Recreation Area in the Ouachita National Forest of west-central Arkansas, killing 20 campers. The U.S. Forest Service needed information concerning the extent and depth of flood inundation, the water velocity, and flow paths throughout Albert Pike Recreation Area for the flood and for streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The two-dimensional flow model Fst2DH, part of the Federal Highway Administration’s Finite Element Surface-water Modeling System, and the graphical user interface Surface-water Modeling System (SMS) were used to perform a steady-state simulation of the flood in a 1.5-mile reach of the Little Missouri River at Albert Pike Recreation Area. Peak streamflows of the Little Missouri River and tributary Brier Creek served as inputs to the simulation, which was calibrated to the surveyed elevations of high-water marks left by the flood and then used to predict flooding that would result from streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The simulated extent of the June 11, 2010, flood matched the observed extent of flooding at Albert Pike Recreation Area. The mean depth of inundation in the camp areas was 8.5 feet in Area D, 7.4 feet in Area C, 3.8 feet in Areas A, B, and the Day Use Area, and 12.5 feet in Lowry’s Camp Albert Pike. The mean water velocity was 7.2 feet per second in Area D, 7.6 feet per second in Area C, 7.2 feet per second in Areas A, B, and the Day Use Area, and 7.6 feet per second in Lowry’s Camp Albert Pike. A sensitivity analysis indicated that varying the streamflow of the Little Missouri River had the greatest effect on simulated water-surface elevation, while varying the streamflow of tributary Brier Creek had the least effect. Simulated water-surface elevations were lower than those modeled by the U.S. Forest Service using the standard-step method, but the
DEFF Research Database (Denmark)
Nielsen, Morten; Miao, Ling; Ipsen, John Hjorth;
1996-01-01
In this work we concentrate on phase equilibria in two-dimensional condensed systems of particles where both translational and internal degrees of freedom are present and coupled through microscopic interactions, with a focus on the manner of the macroscopic coupling between the two types...
Hoomans, B.P.B.; Kuipers, J.A.M.; Briels, Willem J.; van Swaaij, Willibrordus Petrus Maria
1996-01-01
A discrete particle model of a gas-fluidised bed has been developed and in this the two-dimensional motion of the individual, spherical particles was directly calculated from the forces acting on them, accounting for the interaction between the particles and the interstitial gas phase. Our collision
A Direct Two-Dimensional Pressure Formulation in Molecular Dynamics
YD, Sumith
2016-01-01
Two-dimensional (2D) pressure field estimation in molecular dynamics (MD) simulations has been done using three-dimensional (3D) pressure field calculations followed by averaging, which is computationally expensive due to 3D convolutions. In this work, we develop a direct 2D pressure field estimation method which is much faster than 3D methods without losing accuracy. The method is validated with MD simulations on two systems: a liquid film and a cylindrical drop of argon suspended in surrounding vapor.
Multidimensional computer simulation of Stirling cycle engines
Hall, C. A.; Porsching, T. A.; Medley, J.; Tew, R. C.
1990-01-01
The computer code ALGAE (algorithms for the gas equations) treats incompressible, thermally expandable, or locally compressible flows in complicated two-dimensional flow regions. The solution method, finite differencing schemes, and basic modeling of the field equations in ALGAE are applicable to engineering design settings of the type found in Stirling cycle engines. The use of ALGAE to model multiple components of the space power research engine (SPRE) is reported. Videotape computer simulations of the transient behavior of the working gas (helium) in the heater-regenerator-cooler complex of the SPRE demonstrate the usefulness of such a program in providing information on thermal and hydraulic phenomena in multiple component sections of the SPRE.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
Two-dimensional localized structures in harmonically forced oscillatory systems
Ma, Y.-P.; Knobloch, E.
2016-12-01
Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.
蜂窝状催化剂反应器中氢气/空气燃烧的二维模拟%Two-dimensional Simulation for Hydrogen/Air Combustion in a Monolith Reactor
Institute of Scientific and Technical Information of China (English)
洪若瑜; 丁剑敏; Vlachos D G
2005-01-01
Recent studies on hydrogen combustion were reviewed briefly. The laminar flow and combustion of premixed hydrogen/air mixture in a cylindrical channel of a monolith reactor with and without catalytic wall was numerically modeled by solving two-dimensional (2-D) Navier-Stokes (N-S) equations, energy equation, and species equations. Eight gas species and twenty reversible gas reactions were considered. The control volume technique and the SIMPLE algorithm were used to solve the partial differential equations. The streamlines of the flow field, temperature contours, the entrance length, and the concentration fields were computed. It is found that the entrance zone plays an important role on flow and temperature as well as species distribution. Therefore, the flow cannot be assumed either as fully developed or as plug flow. There is a small but strong thermal expansion zone between the wall and the entrance. Both diffusion and convection affect the heat and mass transfer processes in the expansion zone. Thus the equations of momentum, energy and species conservations should be used to describe hydrogen/air combustion in the monolith reactor. The hot-spot location and concentration field of the homogeneous combustion is strongly influenced by the inlet velocity and temperature, and the equivalence ratio. The catalytic combustion of premixed hydrogen/air mixture over platinum catalyst-coated wall in a cylindrical channel was also simulated.
A two-dimensional analytical model of petroleum vapor intrusion
Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.
2016-02-01
In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.
Chrzanowska, Agnieszka
2017-06-01
A replica method for calculation of smectic liquid crystal properties within the Onsager theory has been presented and applied to an exemplary case of two-dimensional perfectly aligned needlelike boomerangs. The method allows one to consider the complete influence of the interaction terms in contrast to the Fourier expansion method which uses mostly first or second order terms of expansion. The program based on the replica algorithm is able to calculate a single representative layer as an equivalent set of layers, depending on the size of the considered width of the sample integration interval. It predicts successfully smectic density distributions, energies, and layer thicknesses for different types of layer arrangement—of the antiferroelectric or of the smectic A order type. Specific features of the algorithm performance and influence of the numerical accuracy on the physical properties are presented. Future applications of the replica method to freely rotating molecules are discussed.
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Li, Xinghui; Cai, Yindi; Aihara, Ryo; Shimizu, Yuki; Ito, So; Gao, Wei
2015-07-01
This paper presents a fabrication method of two-dimensional micro patterns for adaptive optics with a micrometric or sub-micrometric period to be used for fabrication of micro lens array or two-dimensional diffraction gratings. A multibeam two-axis Lloyd's mirror interferometer is employed to carry out laser interference lithography for the fabrication of two-dimensional grating structures. In the proposed instrument, the optical setup consists of a light source providing a laser beam, a multi-beam generator, two plane mirrors to generate a two-dimensional XY interference pattern and a substrate on which the XY interference pattern is to be exposed. In this paper, pattern exposure tests are carried out by the developed optical configuration optimized by computer simulations. Some experimental results of the XY pattern fabrication will be reported.
Institute of Scientific and Technical Information of China (English)
宜晨虹; 慕青松; 苗天德
2009-01-01
The discrete element method is used to research the distribution of forces within the two-dimensional granular system under gravity. The force chains among the particles are generated according to the magnitudes of the forces. Then the simulation results are compared with the well-known q-model, a-model and experimental results obtained through the photoelastic test under the same conditions. According to the computational solution, we conclude that the simulation results are similar to the experimental results are some what different from the two probability models. In addition, we also obtained that the probability distribution of the force is very uneven. The probability of the large force decays exponentially and the distribution of the force chains takes on a fraetal character.%用离散元的方法模拟了仅有重力作用的二维颗粒系统内部力的分布情况,并根据力的大小得到颗粒之间的应力链.模拟结果与颗粒介质研究中的两个著名模型q模型和a模型作了对比,并与光弹实验的结果作了比较.对比结果表明,模拟结果与实验相似,而与两个概率模型有一定的差异.另外计算结果还表明,颗粒介质中力大小的概率分布极为不均匀,较大的力概率呈指数衰减,应力链的分布具有分形特征.
Directory of Open Access Journals (Sweden)
Szymkiewicz Adam
2015-09-01
Full Text Available Flow in unsaturated porous media is commonly described by the Richards equation. This equation is strongly nonlinear due to interrelationships between water pressure head (negative in unsaturated conditions, water content and hydraulic conductivity. The accuracy of numerical solution of the Richards equation often depends on the method used to estimate average hydraulic conductivity between neighbouring nodes or cells of the numerical grid. The present paper discusses application of the computer simulation code VS2DI to three test problems concerning infiltration into an initially dry medium, using various methods for inter-cell conductivity calculation (arithmetic mean, geometric mean and upstream weighting. It is shown that the influence of the averaging method can be very large for coarse grid, but that it diminishes as cell size decreases. Overall, the arithmetic average produced the most reliable results for coarse grids. Moreover, the difference between results obtained with various methods is a convenient indicator of the adequacy of grid refinement.
Szymkiewicz, Adam; Tisler, Witold; Burzyński, Kazimierz
2015-09-01
Flow in unsaturated porous media is commonly described by the Richards equation. This equation is strongly nonlinear due to interrelationships between water pressure head (negative in unsaturated conditions), water content and hydraulic conductivity. The accuracy of numerical solution of the Richards equation often depends on the method used to estimate average hydraulic conductivity between neighbouring nodes or cells of the numerical grid. The present paper discusses application of the computer simulation code VS2DI to three test problems concerning infiltration into an initially dry medium, using various methods for inter-cell conductivity calculation (arithmetic mean, geometric mean and upstream weighting). It is shown that the influence of the averaging method can be very large for coarse grid, but that it diminishes as cell size decreases. Overall, the arithmetic average produced the most reliable results for coarse grids. Moreover, the difference between results obtained with various methods is a convenient indicator of the adequacy of grid refinement.
Massively parallel quantum computer simulator
De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.
2007-01-01
We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray
Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices.
Wang, Lei; Hu, Bambi; Li, Baowen
2012-10-01
Heat conduction in three two-dimensional (2D) momentum-conserving nonlinear lattices are numerically calculated via both nonequilibrium heat-bath and equilibrium Green-Kubo algorithms. It is expected by mainstream theories that heat conduction in such 2D lattices is divergent and the thermal conductivity κ increases with lattice length N logarithmically. Our simulations for the purely quartic lattice firmly confirm it. However, very robust finite-size effects are observed in the calculations for the other two lattices, which well explain some existing studies and imply the extreme difficulties in observing their true asymptotic behaviors with affordable computation resources.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Hallock, Ashley K.; Polzin, Kurt A.
2011-01-01
A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale.
Two-dimensional cellular automaton model of traffic flow with open boundaries
Tadaki, S I
1996-01-01
A two-dimensional cellular automaton model of traffic flow with open boundaries are investigated by computer simulations. The outflow of cars from the system and the average velocity are investigated. The time sequences of the outflow and average velocity have flicker noises in a jamming phase. The low density behavior are discussed with simple jam-free approximation.
A novel computer simulation for modeling grain growth
Energy Technology Data Exchange (ETDEWEB)
Chen, L.Q. (Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering)
1995-01-01
In this paper, the author proposes a new computer simulation model for investigating grain growth kinetics, born from the recent work on the domain growth kinetics of a quenched system with many non-conserved order parameters. A key new feature of this model for studying grain growth is that the grain boundaries are diffuse, as opposed to previous meanfield and statistical theories and Monte-Carlo simulations which assumed that grain boundaries were sharp. Unlike the Monte-Carlo simulations in which grain boundaries are made up of kinks, grain boundaries in the continuum model are smooth. Below, he describes this model in detail, give prescriptions for computer simulation, and then present computer simulation results on a two-dimensional model system.
Directory of Open Access Journals (Sweden)
Javier Achury Varila
2010-04-01
Full Text Available La inestabilidad en la combustión es una condición indeseada en algunos sistemas de combustión como en turbinas de gas por ejemplo. Se refiere a la presencia autogenerada de oscilaciones en la presión que pueden afectar a la cámara de combustión y de paso llegar a generar ruido. Una reciente tendencia generalizada en los procesos de combustión apunta al uso de mezclas pobres para la reducción de contaminantes, no obstante que este tipo de mezclas son más susceptibles a la inestabilidad en la combustión. Las complicadas relaciones que gobiernan el fenómeno se pueden resumir como el acoplamiento entre la llama y la acústica del sistema. En el presente trabajo se presenta un planteamiento numérico que permite aproximarse al fenómeno a través de la solución de un modelo de combustión básico implementado computacionalmente. En este modelo se simula una autoexcitación del sistema a través de oscilaciones en la entrada de flujos de reactantes. Finalmente, se comparan los resultados de la simulación numérica con otras simulaciones y datos experimentales.The Combustion instability is an undesirable condition reached in some combustion systems, as during the operation of gas turbines. It refers to self-excited oscillations of pressure that may affect the combustion chamber and generate noise. A recent generalized tendency in combustion processes aims to the use of lean combustion (low fuel/air ratios for pollutants reduction, nevertheless this sort of mixtures are more susceptible to combustion instabilities. The complex relationship that generates the phenomenon can be summarized as the coupling between flame and acoustics. In this paper it is outlined a numerical approach to this phenomenon by solving a basic computational combustion model (by Direct Numerical Simulation. In this model a self-excited system is simulated through imposed oscillations in reactants flows. Finally, results for this numerical simulation are compared
Institute of Scientific and Technical Information of China (English)
Cai Qing-Dong; Chen Shi-Yi; Sheng Xiao-Wei
2011-01-01
This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution function of velocities of particles is Gaussian at the central part, but diverts from Gaussian distribution nearby the wall. The macroscopic stress along the vertical direction has large fluctuation around a constant value, the non-zero average velocity occurs mainly near the moving wall, which forms a shearing zone. . In the shearing movement, the volume of the granular material behaves in a random manner. The equivalent friction coefficient between moving slab and granular material correlates with the moving speed at low velocity, and approaches constant as the velocity is large enough.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Vanhille, Christian
2017-01-17
This work deals with a theoretical analysis about the possibility of using linear and nonlinear acoustic properties to modify ultrasound by adding gas bubbles of determined sizes in a liquid. We use a two-dimensional numerical model to evaluate the effect that one and several monodisperse bubble populations confined in restricted areas of a liquid have on ultrasound by calculating their nonlinear interaction. The filtering of an input ultrasonic pulse performed by a net of bubbly-liquid cells is analyzed. The generation of a low-frequency component from a single cell impinged by a two-frequency harmonic wave is also studied. These effects rely on the particular dispersive character of attenuation and nonlinearity of such bubbly fluids, which can be extremely high near bubble resonance. They allow us to observe how gas bubbles can change acoustic signals. Variations of the bubbly medium parameters induce alterations of the effects undergone by ultrasound. Results suggest that acoustic signals can be manipulated by bubbles. This capacity to achieve the modification and control of sound with oscillating gas bubbles introduces the concept of bubbly-liquid-based acoustic metamaterials (BLAMMs).
二维超音速喷管型线设计仿真研究%Design and Numerical Simulation on the Two-Dimensional Supersonic Nozzle Profile
Institute of Scientific and Technical Information of China (English)
刘晓东; 高丽敏; 李永增
2014-01-01
采用计算软件FLUENT，对四种经典收缩段型线下的流场特性进行数值模拟，为选择超声速风洞收缩段的型线提供依据。基于特征线理论，利用解析法完成超音速喷管膨胀段型线设计，通过分析总压恢复系数及均匀度等流场参数，确定型线膨胀角角度及喷管长度。结果表明，收缩段型线选用双三次曲线，膨胀角度3.5°的情况下，超音速喷管出口达到了设计要求马赫数，并获得了较好的气流品质。%In this paper, the research results about numerical simulation on the flow field of four classic convergent curves are gained by computational software FLUENT, which provides basis for selecting a kind of optimal curve to design the supersonic nozzle convergent profile. Based on the theory of characteristics line, the curve of supersonic nozzle expansion is designed with analytical method. Finally, comparing total pressure recovery coefficient and uniformity of flow field parameters, the angle of expansion curve and nozzle length are confirmed. The results show that exit velocity of the supersonic nozzle achieves the design requirements for Mach number and uniformity when Bipartite Cubic is the method of the contraction profile and the angle of expansion profile is 3.5°.
Grid computing and biomolecular simulation.
Woods, Christopher J; Ng, Muan Hong; Johnston, Steven; Murdock, Stuart E; Wu, Bing; Tai, Kaihsu; Fangohr, Hans; Jeffreys, Paul; Cox, Simon; Frey, Jeremy G; Sansom, Mark S P; Essex, Jonathan W
2005-08-15
Biomolecular computer simulations are now widely used not only in an academic setting to understand the fundamental role of molecular dynamics on biological function, but also in the industrial context to assist in drug design. In this paper, two applications of Grid computing to this area will be outlined. The first, involving the coupling of distributed computing resources to dedicated Beowulf clusters, is targeted at simulating protein conformational change using the Replica Exchange methodology. In the second, the rationale and design of a database of biomolecular simulation trajectories is described. Both applications illustrate the increasingly important role modern computational methods are playing in the life sciences.
Massive Parallel Quantum Computer Simulator
De Raedt, K; De Raedt, H; Ito, N; Lippert, T; Michielsen, K; Richter, M; Trieu, B; Watanabe, H; Lippert, Th.
2006-01-01
We describe portable software to simulate universal quantum computers on massive parallel computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI Altix 3700 and clusters of PCs running Windows XP. We study the performance of the software by simulating quantum computers containing up to 36 qubits, using up to 4096 processors and up to 1 TB of memory. Our results demonstrate that the simulator exhibits nearly ideal scaling as a function of the number of processors and suggest that the simulation software described in this paper may also serve as benchmark for testing high-end parallel computers.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Duesbury, R T; O'Neil, H F
1996-06-01
The purpose of this study was to determine the effect of practice in manipulating 2- and 3-dimensional (D) wireframe images on a learner's ability to visualize 3-D objects. Practice, either rotational or not, consisted of visualizing 2- and 3-D objects generated by personal computer (PC)-based computer-assisted design software. Results indicated that participants in the rotation treatment group performed significantly better than those in either the nonrotation or control group on measures of spatial ability and 3-D visualization ability. Both treatment groups performed significantly better than the control group on measures of metacognition, effort, and worry. These results support a conclusion that spatial ability can be improved through practice that allows the learner to see the relationship between the 2-D and 3-D features of objects.
Miksat, J.; Müller, T. M.; Wenzel, F.
2008-07-01
Finite difference (FD) simulation of elastic wave propagation is an important tool in geophysical research. As large-scale 3-D simulations are only feasible on supercomputers or clusters, and even then the simulations are limited to long periods compared to the model size, 2-D FD simulations are widespread. Whereas in generally 3-D heterogeneous structures it is not possible to infer the correct amplitude and waveform from 2-D simulations, in 2.5-D heterogeneous structures some inferences are possible. In particular, Vidale & Helmberger developed an approach that simulates 3-D waveforms using 2-D FD experiments only. However, their method requires a special FD source implementation technique that is based on a source definition which is not any longer used in nowadays FD codes. In this paper, we derive a conversion between 2-D and 3-D Green tensors that allows us to simulate 3-D displacement seismograms using 2-D FD simulations and the actual ray path determined in the geometrical optic limit. We give the conversion for a source of a certain seismic moment that is implemented by incrementing the components of the stress tensor. Therefore, we present a hybrid modelling procedure involving 2-D FD and kinematic ray-tracing techniques. The applicability is demonstrated by numerical experiments of elastic wave propagation for models of different complexity.
Status for the two-dimensional Navier-Stokes solver EllipSys2D
DEFF Research Database (Denmark)
Bertagnolio, F.; Sørensen, Niels N.; Johansen, J.
2001-01-01
This report sets up an evaluation of the two-dimensional Navier-Stokes solver EllipSys2D in its present state. This code is used for blade aerodynamics simulations in the Aeroelastic Design group at Risø. Two airfoils are investigated by computing theflow at several angles of attack ranging from...... the linear to the stalled region. The computational data are compared to experimental data and numerical results from other computational codes. Several numerical aspects are studied, as mesh dependency,convective scheme, steady state versus unsteady computations, transition modelling. Some general...... conclusions intended to help in using this code for numerical simulations are given....
Jia, Wen-Zhu; Wang, Xi-Feng; Song, Yuan-Hong; Wang, You-Nian
2017-04-01
Improving plasma uniformity during plasma processing in the microelectronics industry is of critical importance to the quality of etching or deposition. Compared to continuous wave (CW) plasmas, pulsed plasmas have drawn much attention with the introduction of additional pulse parameters, which would be helpful to improve the plasma properties. In this paper, a two-dimensional fluid model is developed to investigate a pulsed radio-frequency capacitively coupled plasma (CCP) sustained in SiH4/N2/O2 mixture at fixed operating conditions of 70V rf power, 300 mTorr (40 Pa) gas pressure and an SiH4/N2/O2 gas ratio of 2.5/92.5/5. First, we study the temporal dynamics of densities of the electron, positive ion and negative ion, at different positions in the pulsed CCP. Under the operation conditions, charged particles, instead of neutral particles, may basically respond to the applied modulated power. The electron density in the bulk could approach a quasi-steady value by the end of the activeglow. However, the achievement of a quasi-steady state of plasma like that in the CW condition not only depends on enough activeglow time of the pulse discharge but also relies on the observed position in the discharge. In addition, we investigate the impact of pulse parameters on plasma characteristics, showing that the radial inhomogeneity of plasma caused by the edge effect can be effectively suppressed by controlling the duty cycle (DC) rather than the pulse repetition frequency (PRF). Improvement of the plasma uniformity in pulsed discharge is due to the competition between the edge effects during the activeglow and diffusion of charged species during the afterglow. Moreover, the electron density undergoes a local minimum value in the temporal profile before it rises sharply beyond that of CW discharge, since production of electrons is less than loss by the spatial movement at the very beginning of one pulse. Also, there appears to be a peak value of ion bombardment energy at
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Computer simulation in materials science
Energy Technology Data Exchange (ETDEWEB)
Arsenault, R.J.; Beeler, J.R.; Esterling, D.M.
1988-01-01
This book contains papers on the subject of modeling in materials science. Topics include thermodynamics of metallic solids and fluids, grain-boundary modeling, fracture from an atomistic point of view, and computer simulation of dislocations on an atomistic level.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Martínez-Sykora, Juan; De Pontieu, Bart; Carlsson, Mats; Hansteen, Viggo H.; Nóbrega-Siverio, Daniel; Gudiksen, Boris V.
2017-09-01
We investigate the effects of interactions between ions and neutrals on the chromosphere and overlying corona using 2.5D radiative MHD simulations with the Bifrost code. We have extended the code capabilities implementing ion–neutral interaction effects using the generalized Ohm’s law, i.e., we include the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. Our models span from the upper convection zone to the corona, with the photosphere, chromosphere, and transition region partially ionized. Our simulations reveal that the interactions between ionized particles and neutral particles have important consequences for the magnetothermodynamics of these modeled layers: (1) ambipolar diffusion increases the temperature in the chromosphere; (2) sporadically the horizontal magnetic field in the photosphere is diffused into the chromosphere, due to the large ambipolar diffusion; (3) ambipolar diffusion concentrates electrical currents, leading to more violent jets and reconnection processes, resulting in (3a) the formation of longer and faster spicules, (3b) heating of plasma during the spicule evolution, and (3c) decoupling of the plasma and magnetic field in spicules. Our results indicate that ambipolar diffusion is a critical ingredient for understanding the magnetothermodynamic properties in the chromosphere and transition region. The numerical simulations have been made publicly available, similar to previous Bifrost simulations. This will allow the community to study realistic numerical simulations with a wider range of magnetic field configurations and physics modules than previously possible.
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Institute of Scientific and Technical Information of China (English)
Chai Zhen-Hua; Shi Bao-Chang; Zheng Lin
2006-01-01
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.
Stark, D. J.; Yin, L.; Albright, B. J.; Guo, F.
2016-10-01
A PIC study of laser-ion acceleration via relativistic induced transparency points to how 2D-S (laser polarization in the simulation plane) and -P (out-of-plane) simulations may capture different physics characterizing these systems, visible in their entirety in (often cost-prohibitive) 3D simulations. The electron momentum anisotropy induced in the target by the laser pulse is dramatically different in the two 2D cases, manifesting in differences in polarization shift, electric field strength, density threshold for onset of relativistic induced transparency, and target expansion timescales. In particular, a trajectory analysis of individual electrons and ions may allow one to delineate the role of the fields and modes responsible for ion acceleration. With this information, we consider how 2D simulations might be used to develop, in some respects, a fully 3D understanding of the system. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.
Directory of Open Access Journals (Sweden)
Bjelić Mišo B.
2016-01-01
Full Text Available Simulation models of welding processes allow us to predict influence of welding parameters on the temperature field during welding and by means of temperature field and the influence to the weld geometry and microstructure. This article presents a numerical, finite-difference based model of heat transfer during welding of thin sheets. Unfortunately, accuracy of the model depends on many parameters, which cannot be accurately prescribed. In order to solve this problem, we have used simulated annealing optimization method in combination with presented numerical model. This way, we were able to determine uncertain values of heat source parameters, arc efficiency, emissivity and enhanced conductivity. The calibration procedure was made using thermocouple measurements of temperatures during welding for P355GH steel. The obtained results were used as input for simulation run. The results of simulation showed that represented calibration procedure could significantly improve reliability of heat transfer model. [National CEEPUS Office of Czech Republic (project CIII-HR-0108-07-1314 and to the Ministry of Education and Science of the Republic of Serbia (project TR37020
Fluid simulation for computer graphics
Bridson, Robert
2008-01-01
Animating fluids like water, smoke, and fire using physics-based simulation is increasingly important in visual effects, in particular in movies, like The Day After Tomorrow, and in computer games. This book provides a practical introduction to fluid simulation for graphics. The focus is on animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to the actual implementation.
Sadabadi, Mahdiye Sadat; Shafiee, Masoud; Karrari, Mehdi
2008-07-01
In this paper, parameter identification of two-dimensional continuous-time systems via two-dimensional modulating functions is proposed. In the proposed method, trigonometric functions and sine-cosine wavelets are used as modulating functions. By this, a partial differential equation on the finite-time intervals is converted into an algebraic equation linear in parameters. The parameters of the system can then be estimated using the least square algorithms. The underlying computations utilize a two-dimensional fast Fourier transform algorithm, without the need for estimating the unknown initial or boundary conditions, at the beginning of each finite-time interval. Numerical simulations are presented to show the effectiveness of the proposed algorithm.
Buras, R; Janka, H T; Kifonidis, K
2005-01-01
Supernova models with a full spectral treatment of the neutrino transport are presented, employing the Prometheus/Vertex neutrino-hydrodynamics code with a ``ray-by-ray plus'' approximation for treating two- (or three-) dimensional problems. The method is described in detail and critically assessed with respect to its capabilities, limitations, and inaccuracies in the context of supernova simulations. In this first paper of a series, 1D and 2D core-collapse calculations for a (nonrotating) 15 M_sun star are discussed, uncertainties in the treatment of the equation of state -- numerical and physical -- are tested, Newtonian results are compared with simulations using a general relativistic potential, bremsstrahlung and interactions of neutrinos of different flavors are investigated, and the standard approximation in neutrino-nucleon interactions with zero energy transfer is replaced by rates that include corrections due to nucleon recoil, thermal motions, weak magnetism, and nucleon correlations. Models with t...
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Institute of Scientific and Technical Information of China (English)
李宗泽; 史成军
2016-01-01
The cloud model is a powerful tool to achieve qualitative and quantitative uncertainty transforming. It integrates the fuzziness and randomness of objective things and solves the problem of nonlinear and uncertainties. For the nonlinearity, time-variability and uncertainty of excitation system in ship power system, the cloud model is applied to synchronous generator excitation control and two dimensional cloud model of PID excitation is designed. The forward cloud model is utilized to represent the voltage difference of synchronous generator and rate of voltage difference change concepts. Then the backward cloud generator is employed to generate the three parameters of PID concepts. Thus the cloud reasoning rule of double condition multi-rules of two dimensional cloud model is formulated and PID parameters of excitation controller are self-tuned. Through the establishment of models of synchronous generator controllable phase compound brushless excitation system and the two dimensional cloud model PID excitation system, the result of simulation shows that the two dimensional cloud model PID excitation controllable system model has better robustness and better adaptive ability.%云模型可以实现定性概念与定量之间的转换，集成了概念的模糊性与随机性，可以解决非线性与不确定性问题。针对船舶电力系统中励磁系统非线性、时变性、不确定性的特点，将云模型应用到同步发电机励磁控制中，设计出二维云模型PID励磁控制器。其过程是将同步发电机端电压差及其变化率进行概念表示，形成前件二维云模型，然后根据PID三个参数信息构造成后件云模型，并制定出二维云模型双条件多规则的映射语言形式，实现对PID参数的模糊推理自整定。与可控相复励无刷励磁系统进行对比，仿真实验结果表明了二维云模型PID励磁控制系统模型具有更好的鲁棒性和自适应能力。
Livne, E; Walder, R; Lichtenstadt, I; Thompson, T A; Livne, Eli; Burrows, Adam; Walder, Rolf; Lichtenstadt, Itamar; Thompson, Todd A.
2004-01-01
We have developed a time-dependent, multi-energy-group, and multi-angle (S$_n$) Boltzmann transport scheme for radiation hydrodynamics simulations, in one and two spatial dimensions. The implicit transport is coupled to both 1D (spherically-symmetric) and 2D (axially-symmetric) versions of the explicit Newtonian hydrodynamics code VULCAN. The 2D variant, VULCAN/2D, can be operated in general structured or unstructured grids and though the code can address many problems in astrophysics it was constructed specifically to study the core-collapse supernova problem. Furthermore, VULCAN/2D can simulate the radiation/hydrodynamic evolution of differentially rotating bodies. We summarize the equations solved and methods incorporated into the algorithm and present results of a time-dependent 2D test calculation. A more complete description of the algorithm is postponed to another paper. We highlight a 2D test run that follows for 22 milliseconds the immediate post-bounce evolution of a collapsed core. We present the r...
Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway
2012-09-01
ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located
Simulating chemistry using quantum computers
Kassal, Ivan; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán
2010-01-01
The difficulty of simulating quantum systems, well-known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.
Simulating chemistry using quantum computers.
Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán
2011-01-01
The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.
Lusso, Christelle; Ern, Alexandre; Bouchut, François; Mangeney, Anne; Farin, Maxime; Roche, Olivier
2017-03-01
This work is devoted to numerical modeling and simulation of granular flows relevant to geophysical flows such as avalanches and debris flows. We consider an incompressible viscoplastic fluid, described by a rheology with pressure-dependent yield stress, in a 2D setting with a free surface. We implement a regularization method to deal with the singularity of the rheological law, using a mixed finite element approximation of the momentum and incompressibility equations, and an arbitrary Lagrangian Eulerian (ALE) formulation for the displacement of the domain. The free surface is evolved by taking care of its deposition onto the bottom and of preventing it from folding over itself. Several tests are performed to assess the efficiency of our method. The first test is dedicated to verify its accuracy and cost on a one-dimensional simple shear plug flow. On this configuration we setup rules for the choice of the numerical parameters. The second test aims to compare the results of our numerical method to those predicted by an augmented Lagrangian formulation in the case of the collapse and spreading of a granular column over a horizontal rigid bed. Finally we show the reliability of our method by comparing numerical predictions to data from experiments of granular collapse of both trapezoidal and rectangular columns over horizontal rigid or erodible granular bed made of the same material. We compare the evolution of the free surface, the velocity profiles, and the static-flowing interface. The results show the ability of our method to deal numerically with the front behavior of granular collapses over an erodible bed.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Institute of Scientific and Technical Information of China (English)
A. BOUCHIKHI
2012-01-01
This paper presents an investigation of a DC glow discharge at low pressure in the normal mode and with Einstein's relation of electron diffusivity. Two-dimensional distributions in Cartesian geometry are presented in the stationary state, including electric potential, electron and ion densities, longitudinal and transverse electrics fields as well as electron temperature. Our results are compared with those obtained in existing literature. The model used in this work is based on the first three moments of Boltzmann's equation. They serve as the continuity equation, the momentum transfer and the energy equations. The set of equations for charged particles presented in monatomic argon gas are coupled in a self-consistent way with Poisson's equation. A parametric study varying the cathode voltage, gas pressure, and secondary electron emission coefficient predicts many of the well-known features of DC discharges.
Computational Modeling of Simulation Tests.
1980-06-01
Mexico , March 1979. 14. Kinney, G. F.,.::. IeiN, .hoce 1h Ir, McMillan, p. 57, 1962. 15. Courant and Friedrichs, ,U: r. on moca an.: Jho...AD 79 275 NEW MEXICO UNIV ALBUGUERGUE ERIC H WANG CIVIL ENGINE-ETC F/6 18/3 COMPUTATIONAL MODELING OF SIMULATION TESTS.(U) JUN 80 6 LEIGH, W CHOWN, B...COMPUTATIONAL MODELING OF SIMULATION TESTS00 0G. Leigh W. Chown B. Harrison Eric H. Wang Civil Engineering Research Facility University of New Mexico
Institute of Scientific and Technical Information of China (English)
申志超; 别社安; 刘欣; 倪敏; 王胜年
2016-01-01
对饱和状态下开裂混凝土裂缝附近区域氯离子的二维扩散进行了数值模拟.以Fick第二扩散定律(FSDL)修正模型及二维氯离子扩散理论模型为基础,建立了开裂混凝土氯离子扩散有限差分数值模型,并编制了计算程序.通过与试验结果的对比,证明了模型的有效性.利用建立的模型分析了裂缝、水胶比、衰减系数和时间因素对氯离子扩散的影响,提出了裂缝影响区的概念.在裂缝影响区内,氯离子呈二维扩散,在其外,氯离子呈一维扩散;在时间上,氯离子扩散存在快速期、过渡期与缓慢期;从长期来看,裂缝深度对氯离子的扩散影响显著,而裂缝宽度几乎对其无影响.%Numerical simulation of two-dimensional chloride diffusion is carried out in the crack area of saturated and cracked concrete. Based on correction model of Fick's second law and two-dimensional model of chloride diffusion, a finite differential model for chloride diffusion in cracked concrete is established. A calculation program is codedand turns out to be effective through the comparison with experimental results. The effect of crack,water-binder ratio, attenuation coefficient and time on chloride diffusion is analyzed through the established numerical model. The con-cept of crack-affected zone is put forward,within which,chloride diffuses in two-dimensional way,and beyond which,chloride diffuses in one-dimensional way. There are three stages in chloride diffusion,including rapid diffu-sion period,transitional period and slow diffusion period. The simulation results show that crack depth has significant effect on chloride diffusion in the long-term situation,while crack width nearly makes no difference.
Two-Dimensional Numerical Simulation of Gas/Liquid Interface Instability%二维气/液界面不稳定性数值模拟
Institute of Scientific and Technical Information of China (English)
王涛; 柏劲松; 李平
2008-01-01
以多介质的体积分数方法和三阶PPM(Piecewise Parabolic Method)方法为基础,给出了适用于多介质流体动力学数值模拟的计算方法和程序MFPPM.利用MFPPM程序对在高压气体冲击作用下的气体/液体交界面的Richtmyer-Meshkov (RM) 不稳定性及其引起的流体混合现象进行了数值模拟研究.主要研究在不同的初始扰动情况下流体混合区的发展,并细致研究了流体混合区的宽度、气泡和尖钉高度随时间的增长情况及不同初始扰动对它们的影响;同时还研究了网格尺度不同时混合区、气泡以及尖钉的构型和高度的增长情况.通过对计算结果的分析得出,流体混合区、气泡以及尖钉的发展与初始扰动有密切的关系,特别是在后期影响更为显著;混合区宽度的变化过程和尖钉相似,而气泡高度的变化基本上呈线性增长趋势,且受初始扰动的影响比较小,但是其构型却有明显差别;网格的影响也主要体现在对混合区、气泡和尖钉的构型上.%On the basis of multi-fluid volume fraction(VOF) and piecewise parabolic method(PPM),a multi-fluid hydrodynamic program MFPPM(Multi-Fluid Piecewise Parabolic Method) was developed and performed to study the Richtmyer-Meshkov instability of gas/liquid interface.The influences of initial perturbations and grids on the fluid mixing zone(FMZ) were mainly researched when it is accelerated by shock waves,and the FMZ width,bubble and spike height growing with time were presented simultaneously.By comparing the computational results,it shows that the initial perturbations affect the FMZ growth rate extremely,especially at late times.The evolution of spike is similar to the FMZ,the bubble height increases linearly with time basically,and influenced little by initial perturbations,but the configuration is quite different,and as the effect of grid size is.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Computational simulation of wave propagation problems in infinite domains
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
This paper deals with the computational simulation of both scalar wave and vector wave propagation problems in infinite domains. Due to its advantages in simulating complicated geometry and complex material properties, the finite element method is used to simulate the near field of a wave propagation problem involving an infinite domain. To avoid wave reflection and refraction at the common boundary between the near field and the far field of an infinite domain, we have to use some special treatments to this boundary. For a wave radiation problem, a wave absorbing boundary can be applied to the common boundary between the near field and the far field of an infinite domain, while for a wave scattering problem, the dynamic infinite element can be used to propagate the incident wave from the near field to the far field of the infinite domain. For the sake of illustrating how these two different approaches are used to simulate the effect of the far field, a mathematical expression for a wave absorbing boundary of high-order accuracy is derived from a two-dimensional scalar wave radiation problem in an infinite domain, while the detailed mathematical formulation of the dynamic infinite element is derived from a two-dimensional vector wave scattering problem in an infinite domain. Finally, the coupled method of finite elements and dynamic infinite elements is used to investigate the effects of topographical conditions on the free field motion along the surface of a canyon.
Biomass Gasifier for Computer Simulation; Biomassa foergasare foer Computer Simulation
Energy Technology Data Exchange (ETDEWEB)
Hansson, Jens; Leveau, Andreas; Hulteberg, Christian [Nordlight AB, Limhamn (Sweden)
2011-08-15
This report is an effort to summarize the existing data on biomass gasifiers as the authors have taken part in various projects aiming at computer simulations of systems that include biomass gasification. Reliable input data is paramount for any computer simulation, but so far there is no easy-accessible biomass gasifier database available for this purpose. This study aims at benchmarking current and past gasifier systems in order to create a comprehensive database for computer simulation purposes. The result of the investigation is presented in a Microsoft Excel sheet, so that the user easily can implement the data in their specific model. In addition to provide simulation data, the technology is described briefly for every studied gasifier system. The primary pieces of information that are sought for are temperatures, pressures, stream compositions and energy consumption. At present the resulting database contains 17 gasifiers, with one or more gasifier within the different gasification technology types normally discussed in this context: 1. Fixed bed 2. Fluidised bed 3. Entrained flow. It also contains gasifiers in the range from 100 kW to 120 MW, with several gasifiers in between these two values. Finally, there are gasifiers representing both direct and indirect heating. This allows for a more qualified and better available choice of starting data sets for simulations. In addition to this, with multiple data sets available for several of the operating modes, sensitivity analysis of various inputs will improve simulations performed. However, there have been fewer answers to the survey than expected/hoped for, which could have improved the database further. However, the use of online sources and other public information has to some extent counterbalanced the low response frequency of the survey. In addition to that, the database is preferred to be a living document, continuously updated with new gasifiers and improved information on existing gasifiers.
A study of two-dimensional magnetic polaron
Institute of Scientific and Technical Information of China (English)
LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin
2006-01-01
By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.
Digital hardware implementation of a stochastic two-dimensional neuron model.
Grassia, F; Kohno, T; Levi, T
2017-02-22
This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein-Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model's computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments.
Institute of Scientific and Technical Information of China (English)
肖玉红
2011-01-01
Based on N-S equation and standard k-ε turbulence model, CFD computational fluid dynamics software was adapted in two-di mensional steady numerical simulation for internal flow of volute, guide vane and turning wheel of HLA616-WJ-55 axial flow turbine, and the results were compared and analyzed with three-dimensional numerical simulation of the same turbine type. The results showed that the internal flow rule of volute of two-dimensional was consistent with three-dimensional numerical simulation, and the distribution of pressure and speed were uniform, the flow condition was better. Two-dimensional CFD analysis could predict the structures of internal flows of volute, guide vane and turning wheel roundly, and numerical simulation results had important directive significance to turbines selection and optimization design.%基于N-S方程和标准k-ε紊流模型,采用CFD计算流体力学软件对HLA616 -W J-55混流式水轮机原型机的蜗壳、导叶及转轮内部水流进行二维定常数值模拟,并与同型式水轮机的蜗壳、导叶及转轮内部流动三维数值模拟结果进行比较分析.结果表明,二维与三维蜗壳内部流动的规律基本一致,压力分布和速度分布比较均匀,流动状况较为理想.二维CFD分析能较全面地预测水轮机蜗壳、导叶及转轮内部流场的结构,数值模拟结果对水轮机选型和优化设计均具有重要的指导意义.
Numerical model for two-dimensional hydrodynamics and energy transport. [VECTRA code
Energy Technology Data Exchange (ETDEWEB)
Trent, D.S.
1973-06-01
The theoretical basis and computational procedure of the VECTRA computer program are presented. VECTRA (Vorticity-Energy Code for TRansport Analysis) is designed for applying numerical simulation to a broad range of intake/discharge flows in conjunction with power plant hydrological evaluation. The code computational procedure is based on finite-difference approximation of the vorticity-stream function partial differential equations which govern steady flow momentum transport of two-dimensional, incompressible, viscous fluids in conjunction with the transport of heat and other constituents.
Plasma physics via computer simulation
Birdsall, CK
2004-01-01
PART 1: PRIMER Why attempting to do plasma physics via computer simulation using particles makes good sense Overall view of a one dimensional electrostatic program A one dimensional electrostatic program ES1 Introduction to the numerical methods used Projects for ES1 A 1d electromagnetic program EM1 Projects for EM1 PART 2: THEORY Effects of the spatial grid Effects of the finitw time ste Energy-conserving simulation models Multipole models Kinetic theory for fluctuations and noise; collisions Kinetic properties: theory, experience and heuristic estimates PART 3: PRACTIC
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Fission-gas release at extended burnups: effect of two-dimensional heat transfer
Energy Technology Data Exchange (ETDEWEB)
Tayal, M. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Yu, S.D. [Ryerson Polytechnic Univ., Toronto, Ontario (Canada); Lau, J.H.K
2000-09-01
To better simulate the performance of high-burnup CANDU fuel, a two-dimensional model for heat transfer between the pellet and the sheath has been added to the computer code ELESTRES. The model covers four relative orientations of the pellet and the sheath and their impacts on heat transfer and fission-gas release. The predictions of the code were compared to a database of 27 experimental irradiations involving extended burnups and normal burnups. The calculated values of fission gas release matched the measurements to an average of 94%. Thus, the two-dimensional heat transfer model increases the versatility of the ELESTRES code to better simulate fuels at normal as well as at extended burnups. (author)
Two-dimensional investigation of forced bubble oscillation under microgravity
Institute of Scientific and Technical Information of China (English)
HONG Ruoyu; Masahiro KAWAJI
2003-01-01
Recent referential studies of fluid interfaces subjected to small vibration under microgravity conditions are reviewed. An experimental investigation was carried out aboard the American Space Shuttle Discovery. Two-dimensional (2-D) modeling and simulation were conducted to further understand the experimental results. The oscillation of a bubble in fluid under surface tension is governed by the incompressible Navier-Stokes equations. The SIMPLEC algorithm was used to solve the partial differential equations on an Eulerian mesh in a 2-D coordinate. Free surfaces were represented with the volume of fluid (VOF) obtained by solving a kinematic equation. Surface tension was modeled via a continuous surface force (CSF) algorithm that ensures robustness and accuracy. A new surface reconstruction scheme, alternative phase integration (API) scheme, was adopted to solve the kinematic equation, and was compared with referential schemes. Numerical computations were conducted to simulate the transient behavior of an oscillating gas bubble in mineral oil under different conditions. The bubble positions and shapes under different external vibrations were obtained numerically. The computed bubble oscillation amplitudes were compared with experimental data.
Computer simulation of liquid crystals
Energy Technology Data Exchange (ETDEWEB)
McBride, C.
1999-01-01
Molecular dynamics simulation performed on modern computer workstations provides a powerful tool for the investigation of the static and dynamic characteristics of liquid crystal phases. In this thesis molecular dynamics computer simulations have been performed for two model systems. Simulations of 4,4'-di-n-pentyl-bibicyclo[2.2.2]octane demonstrate the growth of a structurally ordered phase directly from an isotropic fluid. This is the first time that this has been achieved for an atomistic model. The results demonstrate a strong coupling between orientational ordering and molecular shape, but indicate that the coupling between molecular conformational changes and molecular reorientation is relatively weak. Simulations have also been performed for a hybrid Gay-Berne/Lennard-Jones model resulting in thermodynamically stable nematic and smectic phases. Frank elastic constants have been calculated for the nematic phase formed by the hybrid model through analysis of the fluctuations of the nematic director, giving results comparable with those found experimentally. Work presented in this thesis also describes the parameterization of the torsional potential of a fragment of a dimethyl siloxane polymer chain, disiloxane diol (HOMe[sub 2]Si)[sub 2]O, using ab initio quantum mechanical calculations. (author)
Computer simulation of liquid crystals
Energy Technology Data Exchange (ETDEWEB)
McBride, C
1999-09-01
Molecular dynamics simulation performed on modern computer workstations provides a powerful tool for the investigation of the static and dynamic characteristics of liquid crystal phases. In this thesis molecular dynamics computer simulations have been performed for two model systems. Simulations of 4,4`-di-n-pentyl-bibicyclo[2.2.2]octane demonstrate the growth of a structurally ordered phase directly from an isotropic fluid. This is the first time that this has been achieved for an atomistic model. The results demonstrate a strong coupling between orientational ordering and molecular shape, but indicate that the coupling between molecular conformational changes and molecular reorientation is relatively weak. Simulations have also been performed for a hybrid Gay-Berne/Lennard-Jones model resulting in thermodynamically stable nematic and smectic phases. Frank elastic constants have been calculated for the nematic phase formed by the hybrid model through analysis of the fluctuations of the nematic director, giving results comparable with those found experimentally. Work presented in this thesis also describes the parameterization of the torsional potential of a fragment of a dimethyl siloxane polymer chain, disiloxane diol (HOMe{sub 2}Si){sub 2}O, using ab initio quantum mechanical calculations. (author)
Inversion based on computational simulations
Energy Technology Data Exchange (ETDEWEB)
Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.
1998-09-01
A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal.
Institute of Scientific and Technical Information of China (English)
文立华; 张京妹; 孙进才
2001-01-01
Traditional methods for solving acoustic problems in engineering often require the solution of non-symmetric full matrix, whose dimension may be even higher than 10 000 and thus computational cost becomes quite high. To overcome this serious shortcoming, we propose a new periodic wavelet approach for the Helmholtz integral-equation solution of two-dimensional acoustic radiation and scattering over curved computation domain. We expand the boundary quantities in terms of periodic and orthogonal wavelets and we obtain the algebraic equations needed for solving the acoustic problems with Dirichlet, Neumann and mixed conditions. We evaluate the coefficients with fast wavelet transform. The advantage of the new approach is a highly sparse matrix system. We compare the numerical results obtained with our new approach, boundary element method or analytical solutions; the numerical results, as given in Table 1, show that our new approach converges rapidly and is of good accuracy.%提出了一种新的求解二维Helmholtz积分方程的方法。它通过将边界量用周期子波展开，将Helmholtz积分方程化为一组代数方程求解。即可求解Dirichlet、Neumann问题，也可求解混合边值问题。方程的系数形成可用快速子波变换。用该方法形成的Helmholtz积分方程的系数矩阵是一稀疏矩阵。这样大大提高了计算效率。本文算例表明：该方法收敛快，精度高，相同的精度下，本文方法求解的未知量大大少于边界元所用未知量。
FPGA-accelerated simulation of computer systems
Angepat, Hari; Chung, Eric S; Hoe, James C; Chung, Eric S
2014-01-01
To date, the most common form of simulators of computer systems are software-based running on standard computers. One promising approach to improve simulation performance is to apply hardware, specifically reconfigurable hardware in the form of field programmable gate arrays (FPGAs). This manuscript describes various approaches of using FPGAs to accelerate software-implemented simulation of computer systems and selected simulators that incorporate those techniques. More precisely, we describe a simulation architecture taxonomy that incorporates a simulation architecture specifically designed f
Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network
Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.
2015-12-01
Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.
Radar Landmass Simulation Computer Programming (Interim Report).
RADAR SCANNING, TERRAIN), (*NAVAL TRAINING, RADAR OPERATORS), (*FLIGHT SIMULATORS, TERRAIN AVOIDANCE), (* COMPUTER PROGRAMMING , INSTRUCTION MANUALS), PLAN POSITION INDICATORS, REAL TIME, DISPLAY SYSTEMS, RADAR IMAGES, SIMULATION
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Institute of Scientific and Technical Information of China (English)
杨宏伟
2002-01-01
对由前向爆轰产生驱动气体并具有局部锥形收缩截面的轴对称激波管利用两相常比热完全气体的欧拉方程组和有限体积TVD格式在局部正交的网格上进行了二维数值模拟.将消除两种介质界面处数值振荡的新方法成功地推广到二维情况.分析了该激波管的力学特性.%The numerical simulation of axisymmetric two-dimensional shock tube is studied,which has a conical convergent section,and its driving gas is the hot product of hydrogen oxygen detonation.Finite volume TVD scheme is adopted and the mesh is local orthogonal.The primitive equations are Euler's equations of multi-component flow.The new method of eliminating numerical oscillation at the interface of two materials is extended to two dimensions (2D).The mechanical character of this shock tube is analyzed.
Agapiou, A; Zorba, E; Mikedi, K; McGregor, L; Spiliopoulou, C; Statheropoulos, M
2015-07-01
Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel. The current work focuses only on the results of the laboratory method using thermal desorption coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (TD-GC×GC-TOF MS). The flow-modulated TD-GC×GC-TOF MS provided enhanced separation of the VOC profile and served as a reference method for the evaluation of the on-site analytical methods in the current experimental campaign. Bespoke software was used to deconvolve the VOC profile to extract as much information as possible into peak lists. In total, 288 unique VOCs were identified (i.e., not found in blank samples). The majority were aliphatics (172), aromatics (25) and nitrogen compounds (19), followed by ketones (17), esters (13), alcohols (12), aldehydes (11), sulfur (9), miscellaneous (8) and acid compounds (2). The TD-GC×GC-TOF MS proved to be a sensitive and powerful system for resolving the chemical puzzle of above-ground "scent of death".
Energy Technology Data Exchange (ETDEWEB)
Almeida Cunha Ferreira, Marcelo de [Mannesmann SA, Belo Horizonte, MG (Brazil); Jacobi, Hatto; Wuennenberg, Klaus [Mannesmann-Forschungsinstitut GmbH, Duisburg (Germany)
1992-12-31
It is described a two dimensional model made to study how different geometries influence existing current and turbulences while a ladle equipped with sliding gates is poured. (author). 17 refs., 12 figs., 1 tab.
Thermodynamics of Two-Dimensional Black-Holes
Nappi, Chiara R.; Pasquinucci, Andrea
1992-01-01
We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Two-dimensional assignment with merged measurements using Langrangrian relaxation
Briers, Mark; Maskell, Simon; Philpott, Mark
2004-01-01
Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Spectral Radiative Properties of Two-Dimensional Rough Surfaces
Xuan, Yimin; Han, Yuge; Zhou, Yue
2012-12-01
Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Tracking dynamics of two-dimensional continuous attractor neural networks
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2009-12-01
We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
A two-dimensional spin liquid in quantum kagome ice.
Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G
2015-06-22
Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Institute of Scientific and Technical Information of China (English)
XIONG Lei; LI haijiao; ZHANG Lewen
2008-01-01
The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.
Dynamics of two-dimensional complex plasmas in a magnetic field
Ott, T; Bonitz, M
2013-01-01
We consider a two-dimensional complex plasma layer containing charged dust particles in a perpendicular magnetic field. Computer simulations of both one-component and binary systems are used to explore the equilibrium particle dynamics in the fluid state. The mobility is found to scale with the inverse of the magnetic field strength (Bohm diffusion) for strong fields. For bidisperse mixtures, the magnetic field dependence of the long-time mobility depends on the particle species providing an external control of their mobility ratio. For large magnetic fields, even a two-dimensional model porous matrix can be realized composed by the almost immobilized high-charge particles which act as obstacles for the mobile low-charge particles.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Two-dimensional Numerical Simulation of Melt-wave Erosion in Solid Armatures%固体电枢熔化波烧蚀的二维数值模拟
Institute of Scientific and Technical Information of China (English)
巩飞; 翁春生
2012-01-01
为了准确地反映电磁轨道炮内电枢烧蚀的特性,建立了二维固体电枢熔化波烧蚀的计算模型.采用有限差分的交替方向隐式法进行耦合计算,得到了熔化波烧蚀的变化特性.计算结果表明,烧蚀的驱动机制为速度趋肤效应,电流集中在电枢与导轨接触面的尾部边缘,使电枢焦耳热剧增导致出现烧蚀.熔化波从电枢尾部向头部推进,当传至电枢头部时,可能引发电枢转捩.%In order to reflect Armature erosion characteristics in railguns exactly, a computational model of melt-wave erosion in two-dimensional solid armatures is developed. The variation characteristics of melt-wave erosion are obtained adopting coupling calculations by using the Peaceman-Rachford(P-R) format of the finite difference method. The calculation results show that; the driving mechanism of erosion is the velocity skin effect,a concentration of current is at the rear edge of the rail-armature interface, and the erosion occurs due to the joule heating. The melt-wave moves from the back to the front of the armature. It is possible to cause an armature transition when the melt-wave reaches the front of the armature.
Thermodynamics of two-dimensional Yukawa systems across coupling regimes
Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.
2017-04-01
Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.
Institute of Scientific and Technical Information of China (English)
许莹; 李晋斌
2012-01-01
采用随机级数展开的量子蒙特卡罗方法研究二维硬核的玻色-赫伯德模型的热力学性质.首先通过算符变换将模型映射成为二维反铁磁准海森伯模型.变换后的模型比通常的海森伯模型多一项,该项正比于系统的格点总数N,对于大粒子数的系统,该项使模拟耗时指数增加,所以难以计算大粒子数系统.采用非局域操作循环更新后,这个困难可以得到很好的解决,可使粒子数总数增大到几千个.研究结果表明,粒子数密度在0—0.5范围内增大时,能量呈递减趋势,并趋于某一定值,随着正方晶格系统尺度增大,能量也随之增大;正方晶格系统尺度一定时,能量和磁化强度随着温度的升高而增大,化学势的变化对能量和磁化强度没有影响,能量随着正方晶格系统尺度增大而增大,磁化强度却随之减小;正方晶格系统尺度一定时,化学势的增大对比热没有影响,随着温度的升高比热出现先增大后减小的趋势,最后趋于某个值,达到平衡,而正方晶格系统尺度越大,比热曲线增大部分的趋势越大,减小部分的趋势也更明显,参照朗道超流理论,本文模拟的能量和比热曲线趋势与朗道二流体模型下HeⅡ的理论研究一致;不同正方晶格系统尺度的影响不大,均匀磁化率倒数在0—0.5（J/k_B）的低温范围内有很小的波动,J为耦合能,k_B为玻尔兹曼常数,温度在0.5—2（J/k_B）的范围内,均匀磁化率的倒数随着温度的升高而增大,且曲线的趋势显示了一种类似近藤行为.%In this paper,the stochastic series expansion quantum Monte Carlo method is employed to investigate the thermodynamic properties of hardcore Bose-Hubbard model in two-dimensional space.The two-dimensional hardcore Bose-Hubbard model can be mapped into the two-dimensional antiferromagnetic quasi-Heisenberg model under transform of bosonic operators.There is an additional term which is proportional
Two-dimensional model of elastically coupled molecular motors
Institute of Scientific and Technical Information of China (English)
Zhang Hong-Wei; Wen Shu-Tang; Chen Gai-Rong; Li Yu-Xiao; Cao Zhong-Xing; Li Wei
2012-01-01
A flashing ratchet model of a two-headed molecular motor in a two-dimensional potential is proposed to simulate the hand-over-hand motion of kinesins.Extensive Langevin simulations of the model are performed.We discuss the dependences of motion and efficiency on the model parameters,including the external force and the temperature.A good qualitative agreement with the expected behavior is observed.
Computer Simulation of Radial Immunodiffusion
Trautman, Rodes
1972-01-01
Theories of diffusion with chemical reaction are reviewed as to their contributions toward developing an algorithm needed for computer simulation of immunodiffusion. The Spiers-Augustin moving sink and the Engelberg stationary sink theories show how the antibody-antigen reaction can be incorporated into boundary conditions of the free diffusion differential equations. For this, a stoichiometric precipitate was assumed and the location of precipitin lines could be predicted. The Hill simultaneous linear adsorption theory provides a mathematical device for including another special type of antibody-antigen reaction in antigen excess regions of the gel. It permits an explanation for the lowered antigen diffusion coefficient, observed in the Oudin arrangement of single linear diffusion, but does not enable prediction of the location of precipitin lines. The most promising mathematical approach for a general solution is implied in the Augustin alternating cycle theory. This assumes the immunodiffusion process can be evaluated by alternating computation cycles: free diffusion without chemical reaction and chemical reaction without diffusion. The algorithm for the free diffusion update cycle, extended to both linear and radial geometries, is given in detail since it was based on gross flow rather than more conventional expressions in terms of net flow. Limitations on the numerical integration process using this algorithm are illustrated for free diffusion from a cylindrical well. PMID:4629869
Computer Simulations on a Multidimensional Continuum:
DEFF Research Database (Denmark)
Girault, Isabelle; Pfeffer, Melanie; Chiocarriello, Augusto
2016-01-01
Computer simulations exist on a multidimensional continuum with other educational technologies including static animations, serious games, and virtual worlds. The act of defining simulations is context dependent. In our context of science education, we define simulations as algorithmic, dynamic...... with emphasis on simulations’ algorithmic, dynamic, and simple features. Defined as models, simulations can be computational or conceptual in nature and may reflect hypothetical or real events; such distinctions are addressed. Examples of programs that demonstrate the features of simulations emphasized in our...
Optically simulated universal quantum computation
Francisco, D.; Ledesma, S.
2008-04-01
Recently, classical optics based systems to emulate quantum information processing have been proposed. The analogy is based on the possibility of encoding a quantum state of a system with a 2N-dimensional Hilbert space as an image in the input of an optical system. The probability amplitude of each state of a certain basis is associated with the complex amplitude of the electromagnetic field in a given slice of the laser wavefront. Temporal evolution is represented as the change of the complex amplitude of the field when the wavefront pass through a certain optical arrangement. Different modules that represent universal gates for quantum computation have been implemented. For instance, unitary operations acting on the qbits space (or U(2) gates) are represented by means of two phase plates, two spherical lenses and a phase grating in a typical image processing set up. In this work, we present CNOT gates which are emulated by means of a cube prism that splits a pair of adjacent rays incoming from the input image. As an example of application, we present an optical module that can be used to simulate the quantum teleportation process. We also show experimental results that illustrate the validity of the analogy. Although the experimental results obtained are promising and show the capability of the system for simulate the real quantum process, we must take into account that any classical simulation of quantum phenomena, has as fundamental limitation the impossibility of representing non local entanglement. In this classical context, quantum teleportation has only an illustrative interpretation.
QCE : A Simulator for Quantum Computer Hardware
Michielsen, Kristel; Raedt, Hans De
2003-01-01
The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms.
Strange attractor simulated on a quantum computer
2002-01-01
We show that dissipative classical dynamics converging to a strange attractor can be simulated on a quantum computer. Such quantum computations allow to investigate efficiently the small scale structure of strange attractors, yielding new information inaccessible to classical computers. This opens new possibilities for quantum simulations of various dissipative processes in nature.
Institute of Scientific and Technical Information of China (English)
徐速
2011-01-01
Taking Beijing Yizhuang economic development area as example, the MIKE Flood integrated simulation model was used for one- and two-dimensional integrated simulation of storm pipe network and surface flow for the existing condition and constructed wetland built in the future in 1, 5, and 10 year storm return periods. The results show that under the existing condition, there are flooded areas in all 3 storm return periods, especially in more than 5 year return periods, the flooded area exceeds 10％ of the total area. The constructed wetland built in the future can reduce about 20％ flooded area,which locates at the upstream of the wetland, than the existing condition. The results can be utilized to do further research including risk assessment and comparison among emergency response plans to find an optimal way to reduce loss from storm.%采用MTKE n00d集成模型,以北京市亦庄经济技术开发区为案例,针对现状和未来建设人工湿地两种情景,对1年、5年、10年暴雨重现期下的淹没特性进行了雨水管网和地面流的一、二维集成模拟.模拟结果表明,在现状条件下,3种暴雨重现期都会产生淹没区域,尤其是在5年以上重现期时整个区域的10%都会被淹没;未来建设人工湿地可比现状减少20%左右的淹没面积,但其作用范围是人工湿地上游区域,对其他区域则没有明显作用.利用这些结果可进行暴雨危害的风险评估,并对各种工程方案进行比较分析,以寻找减轻暴雨淹没损失的最佳途径.
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
The Dynamics of Water in Porous Two-Dimensional Crystals.
Strong, Steven E; Eaves, Joel D
2017-01-12
Porous two-dimensional crystals offer many promises for water desalination applications. For computer simulation to play a predictive role in this area, however, one needs to have reliable methods for simulating an atomistic system with hydrodynamic currents and interpretative tools to relate microscopic interactions to emergent macroscopic dynamical quantities, such as friction, slip length, and permeability. In this article, we use Gaussian dynamics, a nonequilibrium molecular dynamics method that provides microscopic insights into the interactions that control the flows of both simple liquids and liquid water through atomically small channels. In simulations of aqueous transport, we mimic the effect of changing the membrane chemical composition by adjusting the attractive strength of the van der Waals interactions between the membrane atoms and water. We find that the wetting contact angle, a common measure of a membrane's hydrophobicity, does not predict the permeability of a membrane. Instead, the hydrophobic effect is subtle, with both static and dynamic effects that can both help and hinder water transport through these materials. The competition between the static and dynamical hydrophobicity balances an atomic membrane's tendency to wet against hydrodynamic friction, and determines an optimal contact angle for water passage through nonpolar membranes. To a reasonable approximation, the optimal contact angle depends only on the aspect ratio of the pore. We also find that water molecules pass through the most hydrophobic membranes in a punctuated series of bursts that are separated by long pauses. A continuous-time Markov model of these data provides evidence of a molecular analogue to the clogging transition, a phenomenon observed in driven granular flows.
Hamiltonian dynamics of the two-dimensional lattice {phi}{sup 4} model
Energy Technology Data Exchange (ETDEWEB)
Caiani, Lando [Scuola Internazionale Superiore di Studi Avanzati (SISSA/ISAS), Trieste (Italy); Casetti, Lapo [Istituto Nazionale di Fisica della Materia (INFM), Unita di Ricerca del Politecnico di Torino, Dipartimento di Fisica, Politecnico di Torino, Turin (Italy); Pettini, Marco [Osservatorio Astrofisico di Arcetri, Florence (Italy)
1998-04-17
The Hamiltonian dynamics of the classical {phi}{sup 4} model on a two-dimensional square lattice is investigated by means of numerical simulations. The macroscopic observables are computed as time averages. The results clearly reveal the presence of the continuous phase transition at a finite energy density and are consistent both qualitatively and quantitatively with the predictions of equilibrium statistical mechanics. The Hamiltonian microscopic dynamics also exhibits critical slowing down close to the transition. Moreover, the relationship between chaos and the phase transition is considered, and interpreted in the light of a geometrization of dynamics. (author)
Institute of Scientific and Technical Information of China (English)
王伟; 宋文艳; 罗飞腾; 李宁
2011-01-01
喷管是发动机产生推力的主要部件,其气动性能对发动机的性能具有决定性的影响。本文利用简化特征线法设计二元收敛-扩张（2DCD）推力矢量喷管模型;采用RNGk-ε湍流模型和非平衡壁面函数对单缝二次流喷射后的喷管流场进行数值模拟,分析了射流位置、主流落压比（NPR）、二次流与主流总压比（SPR）等参数对矢量喷管气动性能的影响。计算结果表明：二次射流位置对激波强度及推力矢量角有较大影响,开缝位置越接近喷管出口,推力矢量越大;喷射位置固定,激波强度和推力矢量角主要受SPR影响;SPR相同,随着NPR的增加,存在着一个最大推力矢量角。%Nozzle is the main component of an engine,which produces thrust.Its aerodynamic performance is of a decisive influence to engine performance.A Two-Dimensional Convergent-Divergent（2DCD） thrust vectoring nozzle model with fixed length is designed by the simplified method of characteristics in this paper.The full flow-field of the 2DCD thrust vectoring nozzle with single secondary injection are numerically simulated by CFD method,with the RNG turbulence model and non-equilibrium wall functions employed.The influence of secondary injection locations,Nozzle Pressure Ratio（NPR） and Secondary Pressure Ratio（SPR） on aerodynamic performance of thrust vectoring nozzle are examined.The numerical results indicate that：the secondary injection location is of significant effect on shock intensity and thrust vectoring angle,the thrust vectoring angle gradually increase when secondary injection location is transferred toward the nozzle;at the same secondary injection location,the shock intensity and thrust vectoring angle are mainly affected by SPR;at the same of SPR,there exists a maximum thrust vectoring angle as NPR increasing.
A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids
Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-05-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Institute of Scientific and Technical Information of China (English)
Chaojun Yan; Wenbiao Peng; Haijun Li
2007-01-01
@@ The alternate-direction implicit finite difference beam propagation method (FD-BPM) is used to analyze the two-dimensional (2D) symmetrical multimode interference (MMI) couplers. The positions of the images at the output plane and the length of multimode waveguide are accurately determined numerically. In order to reduce calculation time, the parallel processing of the arithmetic is implemented by the message passing interface and the simulation is accomplished by eight personal computers.
Computer Simulation and Computabiblity of Biological Systems
Baianu, I C
2004-01-01
The ability to simulate a biological organism by employing a computer is related to the ability of the computer to calculate the behavior of such a dynamical system, or the "computability" of the system. However, the two questions of computability and simulation are not equivalent. Since the question of computability can be given a precise answer in terms of recursive functions, automata theory and dynamical systems, it will be appropriate to consider it first. The more elusive question of adequate simulation of biological systems by a computer will be then addressed and a possible connection between the two answers given will be considered as follows. A symbolic, algebraic-topological "quantum computer" (as introduced in Baianu, 1971b) is here suggested to provide one such potential means for adequate biological simulations based on QMV Quantum Logic and meta-Categorical Modeling as for example in a QMV-based, Quantum-Topos (Baianu and Glazebrook,2004.
The Guide to Computer Simulations and Games
Becker, K
2011-01-01
The first computer simulation book for anyone designing or building a game Answering the growing demand for a book catered for those who design, develop, or use simulations and games this book teaches you exactly what you need to know in order to understand the simulations you build or use all without having to earn another degree. Organized into three parts, this informative book first defines computer simulations and describes how they are different from live-action and paper-based simulations. The second section builds upon the previous, with coverage of the technical details of simulations
Minor magnetization loops in two-dimensional dipolar Ising model
Energy Technology Data Exchange (ETDEWEB)
Sarjala, M. [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland); Seppaelae, E.T., E-mail: eira.seppala@nokia.co [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland); Alava, M.J., E-mail: mikko.alava@tkk.f [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland)
2011-05-15
The two-dimensional dipolar Ising model is investigated for the relaxation and dynamics of minor magnetization loops. Monte Carlo simulations show that in a stripe phase an exponential decrease can be found for the magnetization maxima of the loops, M{approx}exp(-{alpha}N{sub l}) where N{sub l} is the number of loops. We discuss the limits of this behavior and its relation to the equilibrium phase diagram of the model.
Nonlocal bottleneck effect in two-dimensional turbulence
Biskamp, D; Schwarz, E
1998-01-01
The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.
Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity
Baillie, C F
1992-01-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of {\\it multiple} $q=2,3,4$ state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the $c>1$ region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for $c>1$. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for $c>1$.
Multiple Potts models coupled to two-dimensional quantum gravity
Baillie, C. F.; Johnston, D. A.
1992-07-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.
Thermal diode from two-dimensional asymmetrical Ising lattices.
Wang, Lei; Li, Baowen
2011-06-01
Two-dimensional asymmetrical Ising models consisting of two weakly coupled dissimilar segments, coupled to heat baths with different temperatures at the two ends, are studied by Monte Carlo simulations. The heat rectifying effect, namely asymmetric heat conduction, is clearly observed. The underlying mechanisms are the different temperature dependencies of thermal conductivity κ at two dissimilar segments and the match (mismatch) of flipping frequencies of the interface spins.
Acoustic Bloch oscillations in a two-dimensional phononic crystal.
He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou
2007-11-01
We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.
Biomes computed from simulated climatologies
National Research Council Canada - National Science Library
Claussen, M; Esch, M
1992-01-01
The biome model of Prentice is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max...
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
Computer simulation technology in inertial confinement (ICF)
Energy Technology Data Exchange (ETDEWEB)
Yabe, Takashi (Gunma Univ., Kiryu (Japan). Faculty of Engineering)
1994-12-01
Recent development of computational technologies in inertial confinement fusion (ICF) is reviewed with a special emphasis on hydrodynamic simulations. The CIP method developed for ICF simulations is one of the typical examples that are used in various fields of physics such as variety of computational fluid dynamics, astrophysics, laser applications, geophysics, and so on. (author).
Framework for utilizing computational devices within simulation
Directory of Open Access Journals (Sweden)
Miroslav Mintál
2013-12-01
Full Text Available Nowadays there exist several frameworks to utilize a computation power of graphics cards and other computational devices such as FPGA, ARM and multi-core processors. The best known are either low-level and need a lot of controlling code or are bounded only to special graphic cards. Furthermore there exist more specialized frameworks, mainly aimed to the mathematic field. Described framework is adjusted to use in a multi-agent simulations. Here it provides an option to accelerate computations when preparing simulation and mainly to accelerate a computation of simulation itself.
Computer simulation of ion beam analysis of laterally inhomogeneous materials
Energy Technology Data Exchange (ETDEWEB)
Mayer, M.
2016-03-15
The program STRUCTNRA for the simulation of ion beam analysis charged particle spectra from arbitrary two-dimensional distributions of materials is described. The code is validated by comparison to experimental backscattering data from a silicon grating on tantalum at different orientations and incident angles. Simulated spectra for several types of rough thin layers and a chessboard-like arrangement of materials as example for a multi-phase agglomerate material are presented. Ambiguities between back-scattering spectra from two-dimensional and one-dimensional sample structures are discussed.
Thermodynamics of the two-dimensional XY model from functional renormalization
Jakubczyk, Pawel
2016-01-01
We solve the nonperturbative renormalization-group flow equations for the two-dimensional XY model at the truncation level of the (complete) second-order derivative expansion. We compute the thermodynamic properties in the high-temperature phase and compare the non-universal features specific to the XY model with results from Monte Carlo simulations. In particular, we study the position and magnitude of the specific heat peak as a function of temperature. The obtained results compare well with Monte Carlo simulations. We additionally gauge the accuracy of simplified nonperturbative renormalization-group treatments relying on $\\phi^4$-type truncations. Our computation indicates that such an approximation is insufficient in the high-$T$ phase and a correct analysis of the specific heat profile requires account of an infinite number of interaction vertices.
Thermodynamics of the two-dimensional XY model from functional renormalization.
Jakubczyk, P; Eberlein, A
2016-06-01
We solve the nonperturbative renormalization-group flow equations for the two-dimensional XY model at the truncation level of the (complete) second-order derivative expansion. We compute the thermodynamic properties in the high-temperature phase and compare the nonuniversal features specific to the XY model with results from Monte Carlo simulations. In particular, we study the position and magnitude of the specific-heat peak as a function of temperature. The obtained results compare well with Monte Carlo simulations. We additionally gauge the accuracy of simplified nonperturbative renormalization-group treatments relying on ϕ^{4}-type truncations. Our computation indicates that such an approximation is insufficient in the high-T phase and a correct analysis of the specific-heat profile requires account of an infinite number of interaction vertices.
The two-dimensional Godunov scheme and what it means for macroscopic pedestrian flow models
Van Wageningen-Kessels, F.L.M.; Daamen, W.; Hoogendoorn, S.P.
2015-01-01
An efficient simulation method for two-dimensional continuum pedestrian flow models is introduced. It is a two-dimensional and multi-class extension of the Go-dunov scheme for one-dimensional road traffic flow models introduced in the mid 1990’s. The method can be applied to continuum pedestrian flo
NUMERICAL SIMULATION OF SOLUTE TRANSPORTSIN TWO DIMENSIONAL VIRTUAL SOIL%二维虚拟土壤中溶质迁移行为的数值模拟研究
Institute of Scientific and Technical Information of China (English)
陶亚奇; 蒋新; 卞永荣; 杨兴伦; 王芳
2009-01-01
Virtual soils, rich in macropore, but different in level, were constructed with the aid of the Voronoi tesselation algorithm on two dimensional lattices and transport behaviors of solute particles therein numerically simulated using random walk models. It was found that the solute diffusion was anomalous and its mean square of displacement was positively correlated with time, being ＜(r→)~2(t)＞∝t~K. Values of K depended on the types of soils and the types of random walk models. With biased random walk models, the values increased with the time, which means the particles diffused faster with the time went on. The first passage time of solute transport satisfied the logarithmic normal distribution. Non-fick effect of the diffusion was obvious with the continuous time random walk theory. And it was found that soils different in por structure would have different corresponding fitting parameters with the random walk models, that is to say, they also affected the transport behaviors of solute particles. The findings of the study are found to be helpful to researchers in understanding and predicting behaviors of water and solutes in macroporous soil, and hence in helping protect the underground water environment.%利用Voronoi图逐级碎裂方法,在二维正方网格上构造出不同等级的虚拟土壤来仿真具有丰富孔隙结构的真实土壤,并借助于随机行走模型,数值模拟了溶质粒子在该虚拟土壤中的迁移行为.结果表明,溶质粒子表现出反常扩散行为.对有偏倚的随机行走模型,其均方位移与时间呈正比关系＜r~2(t)＞∝t~K,即扩散系数D=K-1,长时间的K值更大,溶质粒子扩散更快;首次穿越时间满足正态对数分布,说明溶质粒子迁移是一阶随机过程;由连续时间随机行走理论,发现溶质粒子扩散非费克现象明显.同时发现不同的土壤孔隙结构及随机行走类型所对应的拟合参数不同,即它们也影响溶质粒子的迁移行为.该
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
FEL Simulation Using Distributed Computing
Energy Technology Data Exchange (ETDEWEB)
Einstein, Joshua [Fermilab; Bernabeu Altayo, Gerard [Fermilab; Biedron, Sandra [Ljubljana U.; Freund, Henry [Colorado State U., Fort Collins; Milton, Stephen [Colorado State U., Fort Collins; van der Slot, Peter [Colorado State U., Fort Collins
2016-06-01
While simulation tools are available and have been used regularly for simulating light sources, the increasing availability and lower cost of GPU-based processing opens up new opportunities. This poster highlights a method of how accelerating and parallelizing code processing through the use of COTS software interfaces.
Gas-kinetic numerical schemes for one- and two-dimensional inner flows
Institute of Scientific and Technical Information of China (English)
Zhi-hui LI; Lin BI; Zhi-gong TANG
2009-01-01
Several kinds of explicit and implicit finite-difference schemes directly solving the discretized velocity distribution functions are designed with precision of different orders by analyzing the inner characteristics of the gas-kinetic numerical algorithm for Boltzmann model equation.The peculiar flow phenomena and mechanism from various flow regimes are revealed in the numerical simulations of the unsteady Sod shock-tube problems and the two-dimensional channel flows with different Knudsen numbers.The numerical remainder-effects of the difference schemes are investigated and analyzed based on the computed results.The ways of improving the computational efficiency of the gaskinetic numerical method and the computing principles of difference discretization are discussed.
Stress Wave Propagation in Two-dimensional Buckyball Lattice
Xu, Jun; Zheng, Bowen
2016-11-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.
The Persistence Problem in Two-Dimensional Fluid Turbulence
Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul
2010-01-01
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter {\\Lambda} to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with a universal exponent {\\theta} = 3.1 \\pm 0.2.
Transport behavior of water molecules through two-dimensional nanopores
Energy Technology Data Exchange (ETDEWEB)
Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-11-14
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Transport behavior of water molecules through two-dimensional nanopores
Zhu, Chongqin; Li, Hui; Meng, Sheng
2014-11-01
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Phase separation under two-dimensional Poiseuille flow.
Kiwata, H
2001-05-01
The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
Filtration theory using computer simulations
Energy Technology Data Exchange (ETDEWEB)
Bergman, W.; Corey, I. [Lawrence Livermore National Lab., CA (United States)
1997-08-01
We have used commercially available fluid dynamics codes based on Navier-Stokes theory and the Langevin particle equation of motion to compute the particle capture efficiency and pressure drop through selected two- and three-dimensional fiber arrays. The approach we used was to first compute the air velocity vector field throughout a defined region containing the fiber matrix. The particle capture in the fiber matrix is then computed by superimposing the Langevin particle equation of motion over the flow velocity field. Using the Langevin equation combines the particle Brownian motion, inertia and interception mechanisms in a single equation. In contrast, most previous investigations treat the different capture mechanisms separately. We have computed the particle capture efficiency and the pressure drop through one, 2-D and two, 3-D fiber matrix elements. 5 refs., 11 figs.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Professors' and students' perceptions and experiences of computational simulations as learning tools
Magana de Leon, Alejandra De Jesus
Computational simulations are becoming a critical component of scientific and engineering research, and now are becoming an important component for learning. This dissertation provides findings from a multifaceted research study exploring the ways computational simulations have been perceived and experienced as learning tools by instructors and students. Three studies were designed with an increasing focus on the aspects of learning and instructing with computational simulation tools. Study One used a student survey with undergraduate and graduate students whose instructors enhanced their teaching using online computational tools. Results of this survey were used to identify students' perceptions and experiences with these simulations as learning tools. The results provided both an evaluation of the instructional design and an indicator of which instructors were selected in Study Two. Study Two used a phenomenographic research design resulting in a two dimensional outcome space with six qualitatively different ways instructors perceived their learning outcomes associated with using simulation tools as part of students' learning experiences. Results from this work provide a framework for identifying major learning objectives to promote learning with computational simulation tools. Study Three used a grounded theory methodology to expand on instructors' learning objectives to include their perceptions of formative assessment and pedagogy. These perceptions were compared and contrasted with students' perceptions associated with learning with computational tools. The study is organized around three phases and analyzed as a collection of case studies focused on the instructors and their students' perceptions and experiences of computational simulations as learning tools. This third study resulted in a model for using computational simulations as learning tools. This model indicates the potential of integrating the computational simulation tools into formal learning
Le Texier, H.; Solomon, S.; Thomas, R. J.; Garcia, R. R.
1989-01-01
Seasonal variations of the OH-asterisk (7-5) mesospheric hydroxyl emission at 1.89 microns observed by the SME near-IR spectrometer are compared with the theoretical predictions of a two-dimensional dynamical/chemical model. The good agreement found at low latitudes for both dayglow and nightglow provides support for the model assumption that breaking gravity waves induce seasonal and latitudinal variations in diffusion. The seasonal behavior of atomic hydrogen in the upper mesosphere (related to vertical transport) and/or uncertainties in the OH Meinel band parameters are proposed as possible explanations for the discrepancy noted between model and observational data for the middle latitudes.
Computer simulation in physics and engineering
Steinhauser, Martin Oliver
2013-01-01
This work is a needed reference for widely used techniques and methods of computer simulation in physics and other disciplines, such as materials science. The work conveys both: the theoretical foundations of computer simulation as well as applications and "tricks of the trade", that often are scattered across various papers. Thus it will meet a need and fill a gap for every scientist who needs computer simulations for his/her task at hand. In addition to being a reference, case studies and exercises for use as course reading are included.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
Energy Technology Data Exchange (ETDEWEB)
Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.
A two-dimensional hydrodynamic model of a tidal estuary
Walters, Roy A.; Cheng, Ralph T.
1979-01-01
A finite element model is described which is used in the computation of tidal currents in an estuary. This numerical model is patterned after an existing algorithm and has been carefully tested in rectangular and curve-sided channels with constant and variable depth. One of the common uncertainties in this class of two-dimensional hydrodynamic models is the treatment of the lateral boundary conditions. Special attention is paid specifically to addressing this problem. To maintain continuity within the domain of interest, ‘smooth’ curve-sided elements must be used at all shoreline boundaries. The present model uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and a linear basis function for water surface elevation. An implicit time integration is used and the model is unconditionally stable. The resultant governing equations are nonlinear owing to the advective and the bottom friction terms and are solved iteratively at each time step by the Newton-Raphson method. Model test runs have been made in the southern portion of San Francisco Bay, California (South Bay) as well as in the Bay west of Carquinez Strait. Owing to the complex bathymetry, the hydrodynamic characteristics of the Bay system are dictated by the generally shallow basins which contain deep, relict river channels. Great care must be exercised to ensure that the conservation equations remain locally as well as globally accurate. Simulations have been made over several representative tidal cycles using this finite element model, and the results compare favourably with existing data. In particular, the standing wave in South Bay and the progressive wave in the northern reach are well represented.
Augmented Reality Simulations on Handheld Computers
Squire, Kurt; Klopfer, Eric
2007-01-01
Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…
Computer Simulation in Information and Communication Engineering
Anton Topurov
2005-01-01
CSICE'05 Sofia, Bulgaria 20th - 22nd October, 2005 On behalf of the International Scientific Committee, we would like to invite you all to Sofia, the capital city of Bulgaria, to the International Conference in Computer Simulation in Information and Communication Engineering CSICE'05. The Conference is aimed at facilitating the exchange of experience in the field of computer simulation gained not only in traditional fields (Communications, Electronics, Physics...) but also in the areas of biomedical engineering, environment, industrial design, etc. The objective of the Conference is to bring together lectures, researchers and practitioners from different countries, working in the fields of computer simulation in information engineering, in order to exchange information and bring new contribution to this important field of engineering design and education. The Conference will bring you the latest ideas and development of the tools for computer simulation directly from their inventors. Contribution describ...
Computational Astrophysics at the Bleeding Edge: Simulating Core Collapse Supernovae
Mezzacappa, Anthony
2013-04-01
Core collapse supernovae are the single most important source of elements in the Universe, dominating the production of elements between oxygen and iron and likely responsible for half the elements heavier than iron. They result from the death throes of massive stars, beginning with stellar core collapse and the formation of a supernova shock wave that must ultimately disrupt such stars. Past, first-principles models most often led to the frustrating conclusion the shock wave stalls and is not revived, at least given the physics included in the models. However, recent progress in the context of two-dimensional, first-principles supernova models is reversing this trend, giving us hope we are on the right track toward a solution of one of the most important problems in astrophysics. Core collapse supernovae are multi-physics events, involving general relativity, hydrodynamics and magnetohydrodynamics, nuclear burning, and radiation transport in the form of neutrinos, along with a detailed nuclear physics equation of state and neutrino weak interactions. Computationally, simulating these catastrophic stellar events presents an exascale computing challenge. I will discuss past models and milestones in core collapse supernova theory, the state of the art, and future requirements. In this context, I will present the results and plans of the collaboration led by ORNL and the University of Tennessee.
Computer simulation of an advanced combustor for clean coal technology
Energy Technology Data Exchange (ETDEWEB)
Chang, S.L.; Lottes, S.A.
1992-01-01
Magnetohydrodynamic (MHD) power generation is a clean coal technology because of its higher thermal efficiency and lower pollutant emission. Argonne National Laboratory used a comprehensive integral combustion computer code to aid the development of a TRW's second stage combustor for MHD power generation. The integral combustion code is a computer code for two-phase, two-dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and solid particles of variable sizes. In the MHD second stage combustor, opposed jets of oxidizer are injected into a confined cross-stream coal gas flow laden with seed particles. The performance of the downstream MHD power generation channel depends mainly on the degree and the uniformity of gas ionization, which, in turn, depends on the uniformity of temperature and seed vapor distributions leaving the combustor. The simulation provides in-depth information of flow, combustion, and heat transfer patterns in the combustor, which is used to predict ranges of combustor operating conditions for optimum performance of the MHD system.
Computer simulation of an advanced combustor for clean coal technology
Energy Technology Data Exchange (ETDEWEB)
Chang, S.L.; Lottes, S.A.
1992-09-01
Magnetohydrodynamic (MHD) power generation is a clean coal technology because of its higher thermal efficiency and lower pollutant emission. Argonne National Laboratory used a comprehensive integral combustion computer code to aid the development of a TRW`s second stage combustor for MHD power generation. The integral combustion code is a computer code for two-phase, two-dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and solid particles of variable sizes. In the MHD second stage combustor, opposed jets of oxidizer are injected into a confined cross-stream coal gas flow laden with seed particles. The performance of the downstream MHD power generation channel depends mainly on the degree and the uniformity of gas ionization, which, in turn, depends on the uniformity of temperature and seed vapor distributions leaving the combustor. The simulation provides in-depth information of flow, combustion, and heat transfer patterns in the combustor, which is used to predict ranges of combustor operating conditions for optimum performance of the MHD system.
Study Development of the Cardiac Computer Simulations
Institute of Scientific and Technical Information of China (English)
VOLKERHellemanns; ZHANGHong; SEKOUSingare; ZHANGZhen-xi; KONGXiang-yun
2004-01-01
The technique of computer simulations is a very efficient method in investigating mechanisms of many diseases. This paper reviews how the simulations of the human heart started as a simple mathematical models in the past and developed to the point where genetic information is needed to do suitable work like finding out new medicaments against heart diseases. Also the Influence of the development of computer performance in the future as well as the data presentation is described.
Mao, Jian; Chen, Pengyu; Liang, Junshi; Guo, Ruohai; Yan, Li-Tang
2016-01-26
Two-dimensional nanomaterials, such as graphene and transitional metal dichalcogenide nanosheets, are promising materials for the development of antimicrobial surfaces and the nanocarriers for intracellular therapy. Understanding cell interaction with these emerging materials is an urgently important issue to promoting their wide applications. Experimental studies suggest that two-dimensional nanomaterials enter cells mainly through receptor-mediated endocytosis. However, the detailed molecular mechanisms and kinetic pathways of such processes remain unknown. Here, we combine computer simulations and theoretical derivation of the energy within the system to show that the receptor-mediated transport of two-dimensional nanomaterials, such as graphene nanosheet across model lipid membrane, experiences a flat vesiculation event governed by the receptor density and membrane tension. The graphene nanosheet is found to undergo revolution relative to the membrane and, particularly, unique self-rotation around its normal during membrane wrapping. We derive explicit expressions for the formation of the flat vesiculation, which reveals that the flat vesiculation event can be fundamentally dominated by a dimensionless parameter and a defined relationship determined by complicated energy contributions. The mechanism offers an essential understanding on the cellular internalization and cytotoxicity of the emerging two-dimensional nanomaterials.
Experimental realization of two-dimensional boron sheets.
Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui
2016-06-01
A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.
Reservoir Thermal Recover Simulation on Parallel Computers
Li, Baoyan; Ma, Yuanle
The rapid development of parallel computers has provided a hardware background for massive refine reservoir simulation. However, the lack of parallel reservoir simulation software has blocked the application of parallel computers on reservoir simulation. Although a variety of parallel methods have been studied and applied to black oil, compositional, and chemical model numerical simulations, there has been limited parallel software available for reservoir simulation. Especially, the parallelization study of reservoir thermal recovery simulation has not been fully carried out, because of the complexity of its models and algorithms. The authors make use of the message passing interface (MPI) standard communication library, the domain decomposition method, the block Jacobi iteration algorithm, and the dynamic memory allocation technique to parallelize their serial thermal recovery simulation software NUMSIP, which is being used in petroleum industry in China. The parallel software PNUMSIP was tested on both IBM SP2 and Dawn 1000A distributed-memory parallel computers. The experiment results show that the parallelization of I/O has great effects on the efficiency of parallel software PNUMSIP; the data communication bandwidth is also an important factor, which has an influence on software efficiency. Keywords: domain decomposition method, block Jacobi iteration algorithm, reservoir thermal recovery simulation, distributed-memory parallel computer
Salesperson Ethics: An Interactive Computer Simulation
Castleberry, Stephen
2014-01-01
A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…
Salesperson Ethics: An Interactive Computer Simulation
Castleberry, Stephen
2014-01-01
A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…
Computer simulation and vehicle front optimisation.
Sluis, J. van der
1993-01-01
The influence of the stiffness and shape of a car-front on injuries of bicyclists caused by side collisions was studied by computer simulation. Simulation was a suitable method in this case because of two reasons: variation of shape and stiffness is more difficult to perform in case of an experiment
Simulations of Probabilities for Quantum Computing
Zak, M.
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.
[Animal experimentation, computer simulation and surgical research].
Carpentier, Alain
2009-11-01
We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.
Computer simulation to arc spraying
Institute of Scientific and Technical Information of China (English)
梁志芳; 李午申; 王迎娜
2004-01-01
The arc spraying process is divided into two stages: the first stage is atomization-spraying stream (ASS) and the second one is spraying deposition (SD). Then study status is described of both stages' physical model and corresponding controlling-equation. Based on the analysis of study status, the conclusion as follows is got. The heat and mass transfer models with two or three dimensions in ASS stage should be established to far deeply analyses the dynamical and thermal behavior of the overheat droplet. The statistics law of overheated droplets should be further studied by connecting simulation with experiments. More proper validation experiments should be designed for flattening simulation to modify the models in SD stage.
Computer simulation of aeolian bedforms
Institute of Scientific and Technical Information of China (English)
苗天德; 慕青松; 武生智
2001-01-01
A discrete model is set up using the cellular automaton method and applied to simulate the formation and evolution of aeolian bedforms. The calculated bedforms resemble the actual shape of natural sand ripples and dunes.This reveals that the sand movement is a typical nonlinear dynamical process, and that the nesting configuration of sand ripples, dunes and draas are a self-organized system with a fractal characteristic, and evotves simultaneously at various scales in the sand-airflow.
Computer simulations applied in materials
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
This workshop takes stock of the simulation methods applied to nuclear materials and discusses the conditions in which these methods can predict physical results when no experimental data are available. The main topic concerns the radiation effects in oxides and includes also the behaviour of fission products in ceramics, the diffusion and segregation phenomena and the thermodynamical properties under irradiation. This document brings together a report of the previous 2002 workshop and the transparencies of 12 presentations among the 15 given at the workshop: accommodation of uranium and plutonium in pyrochlores; radiation effects in La{sub 2}Zr{sub 2}O{sub 7} pyrochlores; first principle calculations of defects formation energies in the Y{sub 2}(Ti,Sn,Zr){sub 2}O{sub 7} pyrochlore system; an approximate approach to predicting radiation tolerant materials; molecular dynamics study of the structural effects of displacement cascades in UO{sub 2}; composition defect maps for A{sup 3+}B{sup 3+}O{sub 3} perovskites; NMR characterization of radiation damaged materials: using simulation to interpret the data; local structure in damaged zircon: a first principle study; simulation studies on SiC; insertion and diffusion of He in 3C-SiC; a review of helium in silica; self-trapped holes in amorphous silicon dioxide: their short-range structure revealed from electron spin resonance and optical measurements and opportunities for inferring intermediate range structure by theoretical modelling. (J.S.)
Computer simulations applied in materials
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
This workshop takes stock of the simulation methods applied to nuclear materials and discusses the conditions in which these methods can predict physical results when no experimental data are available. The main topic concerns the radiation effects in oxides and includes also the behaviour of fission products in ceramics, the diffusion and segregation phenomena and the thermodynamical properties under irradiation. This document brings together a report of the previous 2002 workshop and the transparencies of 12 presentations among the 15 given at the workshop: accommodation of uranium and plutonium in pyrochlores; radiation effects in La{sub 2}Zr{sub 2}O{sub 7} pyrochlores; first principle calculations of defects formation energies in the Y{sub 2}(Ti,Sn,Zr){sub 2}O{sub 7} pyrochlore system; an approximate approach to predicting radiation tolerant materials; molecular dynamics study of the structural effects of displacement cascades in UO{sub 2}; composition defect maps for A{sup 3+}B{sup 3+}O{sub 3} perovskites; NMR characterization of radiation damaged materials: using simulation to interpret the data; local structure in damaged zircon: a first principle study; simulation studies on SiC; insertion and diffusion of He in 3C-SiC; a review of helium in silica; self-trapped holes in amorphous silicon dioxide: their short-range structure revealed from electron spin resonance and optical measurements and opportunities for inferring intermediate range structure by theoretical modelling. (J.S.)
A computer program for simulating geohydrologic systems in three dimensions
Posson, D.R.; Hearne, G.A.; Tracy, J.V.; Frenzel, P.F.
1980-01-01
This document is directed toward individuals who wish to use a computer program to simulate ground-water flow in three dimensions. The strongly implicit procedure (SIP) numerical method is used to solve the set of simultaneous equations. New data processing techniques and program input and output options are emphasized. The quifer system to be modeled may be heterogeneous and anisotropic, and may include both artesian and water-table conditions. Systems which consist of well defined alternating layers of highly permeable and poorly permeable material may be represented by a sequence of equations for two dimensional flow in each of the highly permeable units. Boundaries where head or flux is user-specified may be irregularly shaped. The program also allows the user to represent streams as limited-source boundaries when the streamflow is small in relation to the hydraulic stress on the system. The data-processing techniques relating to ' cube ' input and output, to swapping of layers, to restarting of simulation, to free-format NAMELIST input, to the details of each sub-routine 's logic, and to the overlay program structure are discussed. The program is capable of processing large models that might overflow computer memories with conventional programs. Detailed instructions for selecting program options, for initializing the data arrays, for defining ' cube ' output lists and maps, and for plotting hydrographs of calculated and observed heads and/or drawdowns are provided. Output may be restricted to those nodes of particular interest, thereby reducing the volumes of printout for modelers, which may be critical when working at remote terminals. ' Cube ' input commands allow the modeler to set aquifer parameters and initialize the model with very few input records. Appendixes provide instructions to compile the program, definitions and cross-references for program variables, summary of the FLECS structured FORTRAN programming language, listings of the FLECS and
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Gao, Yu-Qiang; Li, Pan; Wang, Nan; Xing, Hui; Chen, Chang-Le
2016-06-01
We perform first-principles calculations to explore the possibility of tuning the two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface through BaTiO3 substrate. A metal-to-insulator transition is found at the interface as the polarization of BaTiO3 reverses. Through the potential analysis of the LaAlO3/SrTiO3/BaTiO3 superstructure, we find that the intrinsic electric field of LaAlO3 is significantly suppressed as the polarization points away from the LaAlO3/SrTiO3 interface, while it is enhanced with the polarization pointing to the interface. The ferroelectric field control of the intrinsic electric field, and therefore the electronic reconstructions at the interface, originating from the screening of polarization charges, opens the way to the development of novel nanoscale electronic devices.
Computer simulation of gear tooth manufacturing processes
Mavriplis, Dimitri; Huston, Ronald L.
1990-01-01
The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.
Institute of Scientific and Technical Information of China (English)
Chen Bin; Yang Yintang; Chai Changchun; Song Kun; Ma Zhenyang
2011-01-01
A two-dimensional model of a 4H-SiC metal-semiconductor-metal (MSM) ultraviolet photodetector has been established using a self-consistent numerical calculation method.The structure-dependent spectral response of a 4H-SiC MSM detector is calculated by solving Poisson's equation,the current continuity equation and the current density equation.The calculated results are verified with experimental data.With consideration of the reflection and absorption on the metal contacts,a detailed study involving various electrode heights (H),spacings (S) and widths (W) reveals conclusive results in device design.The mechanisms responsible for variations of responsivity with those parameters are analyzed.The findings show that responsivity is inversely proportional to electrode height and is enhanced with an increase of electrode spacing and width.In addition,the ultraviolet (UV)-to-visible rejection ratio is ＞ 103.By optimizing the device structure at 10 V bias,a responsivity as high as 180.056 mA/W,a comparable quantum efficiency of 77.93% and a maximum UV-to-visible rejection ratio of 1875 are achieved with a detector size of H =50 nm,S =9 μm and W =3μm.
Energy Technology Data Exchange (ETDEWEB)
Chen Bin; Yang Yintang; Chai Changchun; Song Kun; Ma Zhenyang, E-mail: xidianchenbin@163.com [Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)
2011-08-15
A two-dimensional model of a 4H-SiC metal-semiconductor-metal (MSM) ultraviolet photodetector has been established using a self-consistent numerical calculation method. The structure-dependent spectral response of a 4H-SiC MSM detector is calculated by solving Poisson's equation, the current continuity equation and the current density equation. The calculated results are verified with experimental data. With consideration of the reflection and absorption on the metal contacts, a detailed study involving various electrode heights (H), spacings (S) and widths (W) reveals conclusive results in device design. The mechanisms responsible for variations of responsivity with those parameters are analyzed. The findings show that responsivity is inversely proportional to electrode height and is enhanced with an increase of electrode spacing and width. In addition, the ultraviolet (UV)-to-visible rejection ratio is > 10{sup 3}. By optimizing the device structure at 10 V bias, a responsivity as high as 180.056 mA/W, a comparable quantum efficiency of 77.93% and a maximum UV-to-visible rejection ratio of 1875 are achieved with a detector size of H = 50 nm, S = 9 {mu}m and W = 3 {mu}m.
Atomistic computer simulations a practical guide
Brazdova, Veronika
2013-01-01
Many books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory ""how to"" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters o
Numerical Algorithms for Two-Dimensional Dry Granular Flow with Deformable Elastic Grain
Energy Technology Data Exchange (ETDEWEB)
Boateng, H A; Elander, V; Jin, C; Li, Y; Vasquez, P; Fast, P
2005-08-11
The authors consider the dynamics of interacting elastic disks in the plane. This is an experimentally realizable two-dimensional model of dry granular flow where the stresses can be visualized using the photoelastic effect. As the elastic disks move in a vacuum, they interact through collisions with each other and with the surrounding geometry. Because of the finite propagation speed of deformations inside each grain it can be difficult to capture computationally even simple experiments involving just a few interacting grains. The goal of this project is to improve our ability to simulate dense granular flow in complex geometry. They begin this process by reviewing some past work, how they can improve upon previous work. the focus of this project is on capturing the elastic dynamics of each grain in an approximate, computationally tractable, model that can be coupled to a molecular dynamics scheme.
Polymer Composites Corrosive Degradation: A Computational Simulation
Chamis, Christos C.; Minnetyan, Levon
2007-01-01
A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.
Computer-Aided Simulation of Mastoidectomy
Institute of Scientific and Technical Information of China (English)
CHEN He-xin; MA Zhi-chao; Wang Zhang-feng; GUO Jie-bo; WEN Wei-ping; XU Geng
2008-01-01
Objective To establish a three-dimensional model of the temporal bone using CT scan images for study of temporal bone structures and simulation of mastoidectomy procedures. Methods CT scan images from 6 individuals (12 temporal bones) were used to reconstruct the Fallopian canal, internal auditory canal, cochlea, semicircular canals, sigmoid sinus, posterior fossa floor and jugular bulb on a computer platform. Their anatomical relations within the temporal bone were restored in the computed model. The same model was used to simulate mastoidectomy procedures. Results The reconstructed computer model provided accurate and clear three-dimensional images of temporal bone structures. Simulation of mastoidectomy using these images provided procedural experiences closely mimicking the real surgical procedure. Conclusion Computeraided three dimensional reconstruction of temporal bone structures using CT scan images is a useful tool in surgical simulation and can aid surgical procedure planning.
Two-dimensional chiral topological superconductivity in Shiba lattices
Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei
2016-07-01
The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal.
Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition
Institute of Scientific and Technical Information of China (English)
Yong Zhao; Tianlin Wang; Zhi Zong
2014-01-01
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows’ simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition’s behavior.
Two-Dimensional Infrared (2DIR) Spectroscopy of the Peptide Beta3s Folding
Lai, Zaizhi; Preketes, Nicholas K; Jiang, Jun; Mukamel, Shaul; Wang, Jin
2013-01-01
Probing underlying free energy landscape, pathways, and mechanism is the key for understanding protein folding in theory and experiment. Recently time-resolved two-dimensional infrared (2DIR) with femtosecond laser pulses, has emerged as a promising tool for investigating the protein folding dynamics on faster timescales than possible by NMR. We have employed molecular dynamics simulations to compute 2DIR spectra of the folding process of a peptide, Beta3s. Simulated non-chiral and chiral 2DIR signals illustrate the variation of the spectra as the peptide conformation evolves along the free energy landscape. Chiral spectra show stronger changes than the non-chiral signals because cross peaks caused by the formation of the β-sheet are clearly resolved. Chirality-induced 2DIR may be used to detect the folding of β-sheet proteins with high spectral and temporal resolution. PMID:23956818
Computer Code for Nanostructure Simulation
Filikhin, Igor; Vlahovic, Branislav
2009-01-01
Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Parameter estimation in heat conduction using a two-dimensional inverse analysis
Mohebbi, Farzad; Sellier, Mathieu
2016-07-01
This article is concerned with a two-dimensional inverse steady-state heat conduction problem. The aim of this study is to estimate the thermal conductivity, the heat transfer coefficient, and the heat flux in irregular bodies (both separately and simultaneously) using a two-dimensional inverse analysis. The numerical procedure consists of an elliptic grid generation technique to generate a mesh over the irregular body and solve for the heat conduction equation. This article describes a novel sensitivity analysis scheme to compute the sensitivity of the temperatures to variation of the thermal conductivity, the heat transfer coefficient, and the heat flux. This sensitivity analysis scheme allows for the solution of inverse problem without requiring solution of adjoint equation even for a large number of unknown variables. The conjugate gradient method (CGM) is used to minimize the difference between the computed temperature on part of the boundary and the simulated measured temperature distribution. The obtained results reveal that the proposed algorithm is very accurate and efficient.
Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems
Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish
2015-12-01
This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.
Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence.
Servidio, S; Matthaeus, W H; Shay, M A; Cassak, P A; Dmitruk, P
2009-03-20
Systematic analysis of numerical simulations of two-dimensional magnetohydrodynamic turbulence reveals the presence of a large number of X-type neutral points where magnetic reconnection occurs. We examine the statistical properties of this ensemble of reconnection events that are spontaneously generated by turbulence. The associated reconnection rates are distributed over a wide range of values and scales with the geometry of the diffusion region. Locally, these events can be described through a variant of the Sweet-Parker model, in which the parameters are externally controlled by turbulence. This new perspective on reconnection is relevant in space and astrophysical contexts, where plasma is generally in a fully turbulent regime.
Corner wetting transition in the two-dimensional Ising model
Lipowski, Adam
1998-07-01
We study the interfacial behavior of the two-dimensional Ising model at the corner of weakened bonds. Monte Carlo simulations results show that the interface is pinned to the corner at a lower temperature than a certain temperature Tcw at which it undergoes a corner wetting transition. The temperature Tcw is substantially lower than the temperature of the ordinary wetting transition with a line of weakened bonds. A solid-on-solid-like model is proposed, which provides a supplementary description of the corner wetting transition.
Dynamic Multiscaling in Two-dimensional Fluid Turbulence
Ray, Samriddhi Sankar; Perlekar, Prasad; Pandit, Rahul
2011-01-01
We obtain, by extensive direct numerical simulations, time-dependent and equal-time structure functions for the vorticity, in both quasi-Lagrangian and Eulerian frames, for the direct-cascade regime in two-dimensional fluid turbulence with air-drag-induced friction. We show that different ways of extracting time scales from these time-dependent structure functions lead to different dynamic-multiscaling exponents, which are related to equal-time multiscaling exponents by different classes of bridge relations; for a representative value of the friction we verify that, given our error bars, these bridge relations hold.
Size-dispersity effects in two-dimensional melting.
Watanabe, Hiroshi; Yukawa, Satoshi; Ito, Nobuyasu
2005-01-01
In order to investigate the effect of size dispersity on two-dimensional melting transitions, hard-disk systems with equimolar bidispersity are studied by means of particle dynamics simulations. From the nonequilibrium relaxation behaviors of bond-orientational order parameters, we find that (i) there is a critical dispersity at which the melting transition of the hexagonal solid vanishes and (ii) the quadratic structure is metastable in a certain region of the dispersity-density parameter space. These results suggest that the dispersity not only destroys order but produces new structures under certain specific conditions.
The XY model coupled to two-dimensional quantum gravity
Baillie, C. F.; Johnston, D. A.
1992-09-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, c, carries over to the XY model, which has c=1.
Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
严承华; 王赤忠; 程尔升
2001-01-01
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domainsecond order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results. Itis found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur forlarge amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features ofnonlinear wave and can be used instead of the fully nonlinear theory.
AN APPROACH IN MODELING TWO-DIMENSIONAL PARTIALLY CAVITATING FLOW
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An approach of modeling viscosity, unsteady partially cavitating flows around lifting bodies is presented. By employing an one-fluid Navier-Stokers solver, the algorithm is proved to be able to handle two-dimensional laminar cavitating flows at moderate Reynolds number. Based on the state equation of water-vapor mixture, the constructive relations of densities and pressures are established. To numerically simulate the cavity wall, different pseudo transition of density models are presumed. The finite-volume method is adopted and the algorithm can be extended to three-dimensional cavitating flows.
On two-dimensional magnetic reconnection with nonuniform resistivity
Malyshkin, Leonid M.; Kulsrud, Russell M.
2010-12-01
In this paper, two theoretical approaches for the calculation of the rate of quasi-stationary, two-dimensional magnetic reconnection with nonuniform anomalous resistivity are considered in the framework of incompressible magnetohydrodynamics (MHD). In the first, 'global' equations approach, the MHD equations are approximately solved for a whole reconnection layer, including the upstream and downstream regions and the layer center. In the second, 'local' equations approach, the equations are solved across the reconnection layer, including only the upstream region and the layer center. Both approaches give the same approximate answer for the reconnection rate. Our theoretical model is in agreement with the results of recent simulations of reconnection with spatially nonuniform resistivity.
Local kinetic effects in two-dimensional plasma turbulence.
Servidio, S; Valentini, F; Califano, F; Veltri, P
2012-01-27
Using direct numerical simulations of a hybrid Vlasov-Maxwell model, kinetic processes are investigated in a two-dimensional turbulent plasma. In the turbulent regime, kinetic effects manifest through a deformation of the ion distribution function. These patterns of non-Maxwellian features are concentrated in space nearby regions of strong magnetic activity: the distribution function is modulated by the magnetic topology, and can elongate along or across the local magnetic field. These results open a new path on the study of kinetic processes such as heating, particle acceleration, and temperature anisotropy, commonly observed in astrophysical and laboratory plasmas.
The XY Model Coupled to Two-Dimensional Quantum Gravity
Baillie, C F; 10.1016/0370-2693(92)91037-A
2009-01-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, $c$, carries over to the XY model, which has $c=1$.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
Visual analysis of the computer simulation for both imaging and non-imaging optical systems
Barladian, B. K.; Potemin, I. S.; Zhdanov, D. D.; Voloboy, A. G.; Shapiro, L. S.; Valiev, I. V.; Birukov, E. D.
2016-10-01
Typical results of the optic simulation are images generated on the virtual sensors of various kinds. As a rule, these images represent two-dimensional distribution of the light values in Cartesian coordinates (luminance, illuminance) or in polar coordinates (luminous intensity). Using the virtual sensors allows making the calculation and design of different kinds of illumination devices, providing stray light analysis, synthesizing of photorealistic images of three-dimensional scenes under the complex illumination generated with optical systems, etc. Based on rich experience in the development and practical using of computer systems of virtual prototyping and photorealistic visualization the authors formulated a number of basic requirements for the visualization and analysis of the results of light simulations represented as two-dimensional distribution of luminance, illuminance and luminous intensity values. The requirements include the tone mapping operators, pseudo color imaging, visualization of the spherical panorama, regression analysis, the analysis of the image sections and regions, analysis of pixel values, the image data export, etc. All those requirements were successfully satisfied in designed software component for visual analysis of the light simulation results. The module "LumiVue" is an integral part of "Lumicept" modeling system and the corresponding plug-in of computer-aided design and support for CATIA product. A number of visual examples of analysis of calculated two-dimensional distribution of luminous intensity, illuminance and luminance illustrate the article. The examples are results of simulation and design of lighting optical systems, secondary optics for LEDs, stray light analysis, virtual prototyping and photorealistic rendering.
Estimating the hydraulic conductivity of two-dimensional fracture networks
Leung, C. T.; Zimmerman, R. W.
2010-12-01
Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our
Numerical characteristics of quantum computer simulation
Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.
2016-12-01
The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.
Computer simulation of thermal plant operations
O'Kelly, Peter
2012-01-01
This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment.
Directory of Open Access Journals (Sweden)
Fangqing Wen
2013-01-01
Full Text Available A low complexity monostatic cross multiple-in multiple-out (MIMO radar scheme is proposed in this paper. The minimum-redundancy linear array (MRLA is introduced in the cross radar to improve the efficiency of the array elements. The two-dimensional direction-of-arrival (DOA estimation problem links to the trilinear model, which automatically pairs the estimated two-dimensional angles, requiring neither eigenvalue decomposition of received signal covariance matrix nor spectral peak searching. The proposed scheme performs better than the uniform linear arrays (ULA configuration under the same conditions, and the proposed algorithm has less computational complexity than that of multiple signal classification (MUSIC algorithm. Simulation results show the effectiveness of our scheme.
Monte Carlo computer simulation of sedimentation of charged hard spherocylinders
Energy Technology Data Exchange (ETDEWEB)
Viveros-Méndez, P. X., E-mail: xviveros@fisica.uaz.edu.mx; Aranda-Espinoza, S. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esq. Paseo, La Bufa s/n, 98060 Zacatecas, Zacatecas, México (Mexico); Gil-Villegas, Alejandro [Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, México (Mexico)
2014-07-28
In this article we present a NVT Monte Carlo computer simulation study of sedimentation of an electroneutral mixture of oppositely charged hard spherocylinders (CHSC) with aspect ratio L/σ = 5, where L and σ are the length and diameter of the cylinder and hemispherical caps, respectively, for each particle. This system is an extension of the restricted primitive model for spherical particles, where L/σ = 0, and it is assumed that the ions are immersed in an structureless solvent, i.e., a continuum with dielectric constant D. The system consisted of N = 2000 particles and the Wolf method was implemented to handle the coulombic interactions of the inhomogeneous system. Results are presented for different values of the strength ratio between the gravitational and electrostatic interactions, Γ = (mgσ)/(e{sup 2}/Dσ), where m is the mass per particle, e is the electron's charge and g is the gravitational acceleration value. A semi-infinite simulation cell was used with dimensions L{sub x} ≈ L{sub y} and L{sub z} = 5L{sub x}, where L{sub x}, L{sub y}, and L{sub z} are the box dimensions in Cartesian coordinates, and the gravitational force acts along the z-direction. Sedimentation effects were studied by looking at every layer formed by the CHSC along the gravitational field. By increasing Γ, particles tend to get more packed at each layer and to arrange in local domains with an orientational ordering along two perpendicular axis, a feature not observed in the uncharged system with the same hard-body geometry. This type of arrangement, known as tetratic phase, has been observed in two-dimensional systems of hard-rectangles and rounded hard-squares. In this way, the coupling of gravitational and electric interactions in the CHSC system induces the arrangement of particles in layers, with the formation of quasi-two dimensional tetratic phases near the surface.
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Probabilistic Universality in two-dimensional Dynamics
Lyubich, Mikhail
2011-01-01
In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A M Shaikh; S S Desai; A K Patra
2004-08-01
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.