Two-dimensional nonlinear travelling waves in magnetohydrodynamic channel flow
Hagan, Jonathan
2013-01-01
The present study is concerned with the stability of a flow of viscous conducting liquid driven by pressure gradient in the channel between two parallel walls subject to a transverse magnetic field. Although the magnetic field has a strong stabilizing effect, this flow, similarly to its hydrodynamic counterpart -- plane Poiseuille flow, is known to become turbulent significantly below the threshold predicted by linear stability theory. We investigate the effect of the magnetic field on 2D nonlinear travelling-wave states which are found at substantially subcritical Reynolds numbers starting from $Re_n=2939$ without the magnetic field and from $Re_n\\sim6.50\\times10^3Ha$ in a sufficiently strong magnetic field defined by the Hartmann number $Ha.$ Although the latter value is by a factor of seven lower than the linear stability threshold $Re_l\\sim4.83\\times10^4Ha$,it is still more by an order of magnitude higher than the experimentally observed value for the onset of turbulence in this flow.
Interaction of two-dimensional turbulence with a sheared channel flow: a numerical study
Kamp, Leon; Marques Rosas Fernandes, Vitor; van Heijst, Gertjan; Clercx, Herman
2015-11-01
Interaction of large-scale flows with turbulence is of fundamental and widespread importance in geophysical fluid dynamics and also, more recently for the dynamics of fusion plasma. More specifically the interplay between two-dimensional turbulence and so-called zonal flows has gained considerable interest because of its relevance for transport and associated barriers. We present numerical results on the interaction of driven two-dimensional turbulence with typical sheared channel flows (Couette and Poiseuille). It turns out that a linear shear rate that is being sustained by moving channel walls (Couette flow) is far more effective in suppressing turbulence and associated transport than a Poiseuille flow. We explore the mechanisms behind this in relation to the width of the channel and the strength of the shear of the background flow. Also the prominent role played by the no-slip boundaries and the Reynolds stress is discussed.
New insight into flow development and two dimensionality of turbulent channel flows
Vinuesa, Ricardo; Bartrons, Eduard; Chiu, Daniel; Dressler, Kristofer M.; Rüedi, J.-D.; Suzuki, Yasumasa; Nagib, Hassan M.
2014-06-01
The experimental conditions required for a turbulent channel flow to be considered fully developed and nominally two dimensional remain a challenging objective. In this study, we show that the flow obtained in a high-aspect-ratio channel facility cannot be reproduced by direct numerical simulations (DNSs) of spanwise-periodic channel flows; therefore, we reserve the term "channel" for spanwise-periodic DNSs and denote the experimental flow by the term "duct." Oil film interferometry (OFI) and static pressure measurements were carried out over the range in an adjustable-geometry duct flow facility. Three-dimensional effects were studied by considering different aspect ratio (AR) configurations and also by fixing the AR and modifying the hydraulic diameter of the section. The conditions at the centerplane of the duct were characterized through the local skin friction from the OFI and the centerline velocity at four different streamwise locations and through the wall shear based on the streamwise global pressure gradient. The skin friction obtained from pressure gradient overestimated the local shear measurements obtained from the OFI and did not reproduce the same AR dependence observed with OFI. Differences between the local and global techniques were also reflected in the flow development. For the range of Reynolds numbers tested, the development length of high-aspect-ratio ducts scales with the duct full-height and is around , much larger than the values of around 100-150 H previously reported in the literature.
Analytical Studies of Two-Dimensional Channel Turbulent Flow Subjected to Coriolis Force
鬼頭, 修己; 中林, 功一; キトウ, オサミ; Kito, Osami
1992-01-01
Coriolis effects on fully developed turbulent flow in a two-dimensional channel rotating about an axis perpendicular to its axis are considered. The Coriolis force has stabilizing/destabilizing effects on turbulence, and the mean velocity distribution changes accordingly. Experimental and numerical studies on the velocity characteristics have already been conducted by other researchers for various conditions. However, we cannot assemble the overall picture of the Coriolis effect on the veloci...
NUMERICAL SIMULATION OF TWO-DIMENSIONAL DAM-BREAK FLOWS IN CURVED CHANNELS
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Two-dimensional transient dam-break flows in a river with bends were theoretically studied. The river was modeled as a curved channel with a constant width and a flat bottom. The water was assumed to be an incompressible and homogeneous fluid. A channel-fitted orthogonal curvilinear coordinate system was established and the corresponding two-dimensional shallow-water equations were derived for this system. The governing equations with well-posed initial and boundary conditions were numerically solved in a rectangular domain by use of the Godunov-type finite-difference scheme, which can capture the hydraulic jump of dam-break flows. The comparison between the obtained numerical results and the experimental data of Miller and Chaudry in a semicircle channel shows the validity of the present numerical scheme. The mathematical model and the numerical method were applied to the dam-break flows in channels with various curvatures. Based on the numerical results, the influence of river curvatures on the dam-break flows was analyzed in details.
Riahi-Madvar, Hossien; Ayyoubzadeh, Seyed Ali; Namin, Masoud Montazeri; Seifi, Akram
2011-01-01
Flow in compound channels with overbank flows becomes more complex because of shear interactions between flows in main channel and flood plains, lateral momentum transfer and secondary flows. Compound channels have interesting applications in flood control, civil engineering and environmental management. Because it is difficult to obtain sufficiently accurate and comprehensive understandings of flow in natural compound rivers, the developed models of flow in overbank flows have many uncertain...
Flow of a two-dimensional aqueous foam in two parallel channels
Jones, S.; Cantat, I.; Dollet, B.; Meheust, Y.
2012-04-01
Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species that are initially present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have pecular flow properties that might be used in order to reach regions of the medium that are normally the least permeable. We study here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we study the behaviour of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. The corresponding pressure drop along each channel is calculated based on theoretical arguments involving both (i) a dynamic pressure drop, which is controlled by bubble-wall friction, and (ii) possibly a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. The flow behaviour of the foam happens to not uniquely be determined by the channel width, as would be the case for a Newtonian fluid, but also to be highly dependent on the foam structure within the narrowest of the two channel, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected. We try to define a corresponding medium permeability and compare it to the permeability expected for the flow of a standard newtonian fluid in the same geometry.
Water-channel study of flow and turbulence past a two-dimensional array of obstacles
Di Bernardino, Annalisa; Leuzzi, Giovanni; Querzoli, Giorgio
2016-01-01
A neutral boundary layer was generated in the laboratory to analyze the mean velocity field and the turbulence field within and above an array of two-dimensional obstacles simulating an urban canopy. Different geometrical configurations were considered in order to investigate the main characteristics of the flow as a function of the aspect ratio (AR) of the canopy. To this end, a summary of the two-dimensional fields of the fundamental turbulence parameters is given for AR ranging from 1 to 2. The results show that the flow field depends strongly on AR only within the canyon, while the outer flow seems to be less sensitive to this parameter. This is not true for the vertical momentum flux, which is one of the parameters most affected by AR, both within and outside the canyon. The experiments also indicate that, when (i.e. the skimming flow regime), the roughness sub-layer extends up to a height equal to 1.25 times the height of the obstacles (H), surmounted by an inertial sub-layer that extends up to 2.7 H. I...
Two dimensional analytical solution for a partially vegetated compound channel flow
Institute of Scientific and Technical Information of China (English)
HUAI Wen-xin; XU Zhi-gang; YANG Zhong-hua; ZENG Yu-hong
2008-01-01
The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item. The compound channel is di- vided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vege- tated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical so- lution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.
Numerical simulation of two-dimensional corner flows in a circulating water channel with guide vanes
Energy Technology Data Exchange (ETDEWEB)
Hung, Y.; Nishimoto, H.; Tamashima, M.; Yamazaki, R. [West Japan Fluid Engineering Co. Ltd., Nagasaki (Japan); Wang, G.
1998-09-04
A Navier-Stokes procedure is developed based on the Finite Volume Method to simulate the 2-D comer flows in a CWC. The staggered grid is adopted and a new method is presented to coupling the velocities and the pressure when the grid lines change direction by 90deg. The turbulince is approximated using {kappa} - {epsilon} model and a transfinite algebraic method is used to generate the body fitted coordinates. After validation of the computer code, the corner flows in a CWC was calculated and the effect of guide vanes was investigated. For laminar flows, the guide vanes may restrain the separations on the inner side but not so effective on the outside; for turbulent flows, separations on the inner side disappeared even without guide vanes but still remained on the outside. By incorporating guide vanes, the separation can be effectively controlled. 6 refs., 13 figs.
2015-01-01
A two-dimensional single-phase model is developed for the steady-state and transient analysis of polymer electrolyte membrane fuel cells (PEMFC). Based on diluted and concentrated solution theories, viscous flow is introduced into a phenomenological multi-component modeling framework in the membrane. Characteristic variables related to the water uptake are discussed. A ButlereVolmer formulation of the current-overpotential relationship is developed based on an elementary mechanism of elect...
Gai, Ya; Leong, Chia Min; Cai, Wei; Tang, Sindy K. Y.
2016-10-01
When a many-body system is driven away from equilibrium, order can spontaneously emerge in places where disorder might be expected. Here we report an unexpected order in the flow of a concentrated emulsion in a tapered microfluidic channel. The velocity profiles of individual drops in the emulsion show periodic patterns in both space and time. Such periodic patterns appear surprising from both a fluid and a solid mechanics point of view. In particular, when the emulsion is considered as a soft crystal under extrusion, a disordered scenario might be expected based on the stochastic nature of dislocation dynamics in microscopic crystals. However, an orchestrated sequence of dislocation nucleation and migration is observed to give rise to a highly ordered deformation mode. This discovery suggests that nanocrystals can be made to deform more controllably than previously thought. It can also lead to novel flow control and mixing strategies in droplet microfluidics.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Energy Technology Data Exchange (ETDEWEB)
Chono, S.; Tsuji, T. [Fukui University, Fukui (Japan). Faculty of Engineering
1995-05-25
Finite difference solutions to the Leslie-Ericksen equations were obtained for flows in two-dimensional L-shaped channels with various contraction ratios of the upstream to downstream channel width. A streamline shift toward the outer wall occurs upstream of the reentrant corner. Such behavior is similar to that of viscoelastic fluids. With increasing contraction ratio, the streamline shift occurs further upstream. The effect of the wall anchoring angle for the director is remarkable; for example, when the anchoring angle along the downstream walls is set to be opposite to the main flow direction, a distortion of streamlines is produced in the corner region and the director moves to the downstream region upside down. At small Ericksen numbers, the orientation angle for the director is varied over a wide area so as to suppress its local deformation. In contrast, when the Ericksen number is large, the director profile in the upstream region is retained close to the corner region where the director turns rapidly to the downstream direction. 7 refs., 9 figs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Tomita, Yukio; Ishibashi, Yukio; Saito, Eiji; Saito, Toshio
1988-02-25
For elucidation of the flow behavior of a magnetic fluid as a one-phase fluid, water base ferrofluids were introduced in a two-dimensional channel and the action of a uniform vertical magnetic field axial magnetic field, and both fields inclined at various angles to examine the laminar flow region. The ferrofluids used in the experiment were prepared by dispersing 17.5 weight % of Fe/sub 3/ O/sub 4/ fine particles of about 100A in diameter into ion-exchange water, and adding an anionic sodium oleate to stabilize the dispersion. Under no action of the magnetic fields, ferrofluids having a higher concentration than the above value exhibited plastic fluid. As the direction of the magnetic field acting on the fluid approached the vertical, so the pressure loss was increased. The pipe friction coefficient could be expressed by the empirical formula of which the variables are the ratios of inertia force/viscous force and magnetic force/viscous force, and the inclination of the magnetic poles. (15 figs, 14 refs)
Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.
2010-01-01
The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.
Barnas, C. R.; Czuba, J. A.; Gendaszek, A. S.; Magirl, C. S.
2010-12-01
The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Two dimensional axisymmetric smooth lattice Ricci flow
Brewin, Leo
2015-01-01
A lattice based method will be presented for numerical investigations of Ricci flow. The method will be applied to the particular case of 2-dimensional axially symmetric initial data on manifolds with S^2 topology. Results will be presented that show that the method works well and agrees with results obtained using contemporary finite difference methods.
Bao, Cheng; Bessler, Wolfgang G.
2015-03-01
The state-of-the-art electrochemical impedance spectroscopy (EIS) calculations have not yet started from fully multi-dimensional modeling. For a polymer electrolyte membrane fuel cell (PEMFC) with long flow channel, the impedance plot shows a multi-arc characteristic and some impedance arcs could merge. By using a step excitation/Fourier transform algorithm, an EIS simulation is implemented for the first time based on the full 2D PEMFC model presented in the first part of this work. All the dominant transient behaviors are able to be captured. A novel methodology called 'configuration of system dynamics', which is suitable for any electrochemical system, is then developed to resolve the physical meaning of the impedance spectra. In addition to the high-frequency arc due to charge transfer, the Nyquist plots contain additional medium/low-frequency arcs due to mass transfer in the diffusion layers and along the channel, as well as a low-frequency arc resulting from water transport in the membrane. In some case, the impedance spectra appear partly inductive due to water transport, which demonstrates the complexity of the water management of PEMFCs and the necessity of physics-based calculations.
Two dimensional velocity distribution in open channels using Renyi entropy
Kumbhakar, Manotosh; Ghoshal, Koeli
2016-05-01
In this study, the entropy concept is employed for describing the two-dimensional velocity distribution in an open channel. Using the principle of maximum entropy, the velocity distribution is derived by maximizing the Renyi entropy by assuming dimensionless velocity as a random variable. The derived velocity equation is capable of describing the variation of velocity along both the vertical and transverse directions with maximum velocity occurring on or below the water surface. The developed model of velocity distribution is tested with field and laboratory observations and is also compared with existing entropy-based velocity distributions. The present model has shown good agreement with the observed data and its prediction accuracy is comparable with the other existing models.
Factors influencing the density profiles of granular flux in a two-dimensional inclined channel
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The two-dimensional dilute granular flow on a smooth incline bounded by rough sidewalls is investigated experimentally, and the transverse density profiles of granular flux (ξ = ρ v) across the channel are measured. The results show that the transverse density profiles of granular flux are symmetric about the channel center and that the density of granular flux near the boundary is clearly lower than that of the center. There is a critical width of channel Wc for the transition of the density of granular flux. The density of granular flux near the boundary decays with the increasing of inclination (sinθ ) of the channel.
Factors influencing the density profiles of granular flux in a two-dimensional inclined channel
Institute of Scientific and Technical Information of China (English)
BAO DeSong; ZHOU Ying; ZHANG XunSheng; TANG XiaoWei
2009-01-01
The two-dimensional dilute granular flow on a smooth incline bounded by rough sidewalls is investigated experimentally, and the transverse density profiles of granular flux (ξ=pv) across the channel are measured. The results show that the transverse density profiles of granular flux are symmetric about the channel center and that the density of granular flux near the boundary is clearly lower than that of the center. There is a critical width of channel Wc for the transition of the density of granular flux. The density of granular flux near the boundary decays with the increasing of inclination (sinθ) of the channel.
Phase separation under two-dimensional Poiseuille flow.
Kiwata, H
2001-05-01
The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...
Numerical Study of Two-Dimensional Viscous Flow over Dams
Institute of Scientific and Technical Information of China (English)
王利兵; 刘宇陆; 涂敏杰
2003-01-01
In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.
Mean flow generation in rotating anelastic two-dimensional convection
Currie, Laura K
2016-01-01
We investigate the processes that lead to the generation of mean flows in two-dimensional anelastic convection. The simple model consists of a plane layer that is rotating about an axis inclined to gravity. The results are two-fold: firstly we numerically investigate the onset of convection in three-dimensions, paying particular attention to the role of stratification and highlight a curious symmetry. Secondly, we investigate the mechanisms that drive both zonal and meridional flows in two dimensions. We find that, in general, non-trivial Reynolds stresses can lead to systematic flows and, using statistical measures, we quantify the role of stratification in modifying the coherence of these flows.
Statistical mechanics of two-dimensional and geophysical flows
Bouchet, Freddy
2011-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...
Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation
Directory of Open Access Journals (Sweden)
Panjit MUSIK
2004-01-01
Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.
AN APPROACH IN MODELING TWO-DIMENSIONAL PARTIALLY CAVITATING FLOW
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An approach of modeling viscosity, unsteady partially cavitating flows around lifting bodies is presented. By employing an one-fluid Navier-Stokers solver, the algorithm is proved to be able to handle two-dimensional laminar cavitating flows at moderate Reynolds number. Based on the state equation of water-vapor mixture, the constructive relations of densities and pressures are established. To numerically simulate the cavity wall, different pseudo transition of density models are presumed. The finite-volume method is adopted and the algorithm can be extended to three-dimensional cavitating flows.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M
1993-01-01
Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175
2009-01-01
We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
Flow of an aqueous foam through a two-dimensional porous medium: a pore scale investigation
Meheust, Y.; Jones, S. A.; Dollet, B.; Cox, S.; Cantat, I.
2012-12-01
Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have peculiar flow properties that might be of benefit to the application. We address here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we first study the behavior of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. It is then compared to a theoretical model, the basic assumption of which is that the pressure drop along a channel is identical for both channels. This pressure drop both consists of (i) a dynamic pressure drop, which is controlled by bubble-wall friction and depends on the foam velocity in the channel, and (ii) a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. Based on this assumption, the dependence of the ratio of the foam velocities in the two channels is inferred as a function of the channel width ratio. It compares well to the measurements and shows that the flow behavior is highly dependent on the foam structure within the narrowest of the two channels, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected for the flow of a standard Newtonian fluid in the same geometry. We provide a comparison to this reference configuration. We then study the flow of the same
Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems
Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish
2015-12-01
This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.
Institute of Scientific and Technical Information of China (English)
XIA Junqiang; WANG Guangqian; WU Baosheng
2004-01-01
Two kinds of bank erosion mechanisms were analyzed, including fluvial and non-fluvial controlled mechanisms, and mechanical methods of simulating the erosion processes of cohesive, non-cohesive and composite riverbanks were improved. Then a two-dimensional numerical model of the channel deformation was developed, consisting of a 2D flow and sediment transport submodel and bank-erosion submodels of different soil riverbanks. In the model, a new technique for updating the bank geometry during the bed evolution was presented, which combines closely two kinds of submodels. The proposed model is capable of not only predicting the processes of flood routing and longitudinal channel deformation in natural rivers, but also simulating the processes of lateral channel deformation, especially the processes of lateral erosion and failure of cohesive, non-cohesive and composite riverbanks.
Epi-two-dimensional flow and generalized enstrophy
Yoshida, Zensho
2016-01-01
The conservation of the enstrophy ($L^2$ norm of the vorticity $\\omega$) plays an essential role in the physics and mathematics of two-dimensional (2D) Euler fluids. Generalizing to compressible ideal (inviscid and barotropic) fluids, the generalized enstrophy $\\int_{\\Sigma(t)} f(\\omega/\\rho)\\rho\\, d^2 x$, ($f$ an arbitrary smooth function, $\\rho$ the density, and $\\Sigma(t)$ an arbitrary 2D domain co-moving with the fluid) is a constant of motion, and plays the same role. On the other hand, for the three-dimensional (3D) ideal fluid, the helicity $\\int_{M} {V}\\cdot\\omega\\,d^3x$, ($V$ the flow velocity, $\\omega=\
Flow of foams in two-dimensional disordered porous media
Dollet, Benjamin; Geraud, Baudouin; Jones, Sian A.; Meheust, Yves; Cantat, Isabelle; Institut de Physique de Rennes Team; Geosciences Rennes Team
2015-11-01
Liquid foams are a yield stress fluid with elastic properties. When a foam flow is confined by solid walls, viscous dissipation arises from the contact zones between soap films and walls, giving very peculiar friction laws. In particular, foams potentially invade narrow pores much more efficiently than Newtonian fluids, which is of great importance for enhanced oil recovery. To quantify this effect, we study experimentally flows of foam in a model two-dimensional porous medium, consisting of an assembly of circular obstacles placed randomly in a Hele-Shaw cell, and use image analysis to quantify foam flow at the local scale. We show that bubbles split as they flow through the porous medium, by a mechanism of film pinching during contact with an obstacle, yielding two daughter bubbles per split bubble. We quantify the evolution of the bubble size distribution as a function of the distance along the porous medium, the splitting probability as a function of bubble size, and the probability distribution function of the daughter bubbles. We propose an evolution equation to model this splitting phenomenon and compare it successfully to the experiments, showing how at long distance, the porous medium itself dictates the size distribution of the foam.
ACCRETION DISKS IN TWO-DIMENSIONAL HOYLE-LYTTLETON FLOW
Energy Technology Data Exchange (ETDEWEB)
Blondin, John M., E-mail: John_Blondin@ncsu.edu [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)
2013-04-20
We investigate the flip-flop instability observed in two-dimensional planar hydrodynamic simulations of Hoyle-Lyttleton accretion in the case of an accreting object with a radius much smaller than the nominal accretion radius, as one would expect in astrophysically relevant situations. Contrary to previous results with larger accretors, accretion from a homogenous medium onto a small accretor is characterized by a robust, quasi-Keplerian accretion disk. For gas with a ratio of specific heats of 5/3, such a disk remains locked in one direction for a uniform ambient medium. The accretion flow is more variable for gas with a ratio of specific heats of 4/3, with more dynamical interaction of the disk flow with the bow shock leading to occasional flips in the direction of rotation of the accretion disk. In both cases the accretion of angular momentum is determined by the flow pattern behind the accretion shock rather than by the parameters of the upstream flow.
Yatou, Hiroki
2010-01-01
We find three types of steady solutions and remarkable flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Reynolds (Re) and Weissenberg (Wi) numbers using direct numerical simulations with spectral element method. The solutions are called "convective", "transition", and "elastic" in ascending order of Wi. In the convective region in the Re-Wi parameter space, the convective effect and the pressure gradient balance on average. As Wi increases, th...
Thin films flowing down inverted substrates: two dimensional flow
Lin, Te-sheng
2009-01-01
We consider free surface instabilities of films flowing on inverted substrates within the framework of lubrication approximation. We allow for the presence of fronts and related contact lines, and explore the role which they play in instability development. It is found that a contact line, modeled by a commonly used precursor film model, leads to free surface instabilities of convective type without any additional natural or excited perturbations. A single parameter D=(3Ca)^{1/3}cot\\alpha, where Ca is the capillary number and \\alpha is the inclination angle, is identified as a governing parameter in the problem. This parameter may be interpreted to reflect the combined effect of inclination angle, film thickness, Reynolds number and the fluid flux. Variation of D leads to change of the wave-like properties of the instabilities, allowing to observe traveling wave behavior, mixed waves, and the waves resembling solitary ones.
Universal description of channel plasmons in two-dimensional materials
DEFF Research Database (Denmark)
Gonçalves, P. A. D.; Bozhevolnyi, Sergey I.; Mortensen, N. Asger
2017-01-01
Channeling surface plasmon-polaritons to control their propagation direction is of the utmost importance for future optoelectronic devices. Here, we develop an effective-index method to describe and characterize the properties of 2D material's channel plasmon-polaritons (CPPs) guided along a V......-shaped channel. Focusing on the case of graphene, we derive a universal Schr\\"odinger-like equation from which one can determine the dispersion relation of graphene CPPs and corresponding field distributions at any given frequency, since they depend on the geometry of the structure alone. The results...... are then compared against more rigorous theories, having obtained a very good agreement. Our calculations show that CPPs in graphene and other 2D materials are attractive candidates to achieve deep subwavelength waveguiding of light, holding potential as active components for the next generation of tunable photonic...
Solution of Two-Dimensional Viscous Flow Driven by Motion of Flexible Walls
Directory of Open Access Journals (Sweden)
Mohamed Gad-el-Hak
2010-03-01
Full Text Available An exact solution of the Navier–Stokes equations for a flow driven by motion of flexible wall is developed. A simple two-dimensional channel with deforming walls is considered as domain. The governing equations are linearized for low Reynolds number and large Womersley number Newtonian flows. Appropriate boundary conditions for general deformation are decomposed into harmonic excitations in space by Fourier series decomposition. A model of harmonic boundary deformation is considered and results are compared with computational fluid dynamics predictions. The results of velocity profiles across the channel and the centerline velocities of the channel are in good agreement with CFD solution. The analytical model developed provides quantitative descriptions of the flow field for a wide spectrum of actuating frequnecy and boundary conditions. The presented model can be used as an effective framework for preliminary design and optimization of displacement micropumps and other miniature applications.
The flow of an aqueous foam through a two-dimensional porous medium
Dollet, B.; Jones, S. A.; Géraud, B.; Meheust, Y.; Cox, S. J.; Cantat, I.
2013-12-01
Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soils: the foam is injected into the ground in order to mobilize chemical species present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have peculiar flow properties that applications might benefit of. In particular, viscous dissipation arises mostly from the contact zones between the soap films and the walls, which results in peculiar friction laws allowing the foam to invade narrow pores more efficiently than Newtonian fluids would. We investigate the flow of a two-dimensional foam in three geometrical configurations. The flow velocity field and pressure field can both be reconstructed from the kinematics of the foam bubbles. We first consider a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow behavior is highly dependent on the foam structure within the narrowest of the two channels [1]; consequently, the flux ratio between the two channels exhibits a non-monotonic dependence on the ratio of their widths. We then consider two parallel channels that are respectively convergent and divergent. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels; these deformations strongly impact the foam/wall friction, and consequently the flux distribution between the two channels, causing flow irreversibility. We quantitatively predict the flux ratio as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam. We then study how film-wall friction, capillary pressures and bubble deformation impact the flow of a foam in a two-dimensional porous medium consisting of randomly
Two-dimensional coupled fluid and electrodynamic calculations for a MHD DCW channel with slag layers
Liu, B. L.
1982-01-01
A fully coupled, two dimensional numerical method of modeling linear, coal-fired MHD generators is developed for the case of a plasma flow bounded by a slag layer on the channel walls. The governing partial differential equations for the plasma flow, slag layer and electrodynamics are presented and their coupling discussed. An iterative, numerical procedure employing non-uniform computational meshes and appropriate tridiagonal matrix solution schemes for the equations is presented. The method permits the investigation of the mutual plasma flow-slag layer development for prescribed wall temperatures, electrode geometry, slag properties and channel loading. In particular, the slag layer-plasma interface properties which require prior specification in an uncoupled analysis comprise part of the solution in the present approach. Results are presented for a short diagonally connected generator channel and include contour plots of the electric potential and current stream function as well as transverse and axial profiles of pertinent plasma properties. The results indicate that a thin electrode slag layer can be maintained in the presence of reasonable current density levels.
Modeling two-dimensional water flow and bromide transport in a heterogeneous lignitic mine soil
Energy Technology Data Exchange (ETDEWEB)
Buczko, U.; Gerke, H.H. [Brandenburg University of Technology, Cottbus (Germany)
2006-02-15
Water and solute fluxes in lignitic mine soils and in many other soils are often highly heterogeneous. Here, heterogeneity reflects dumping-induced inclined structures and embedded heterogeneous distributions of sediment mixtures and of lignitic fragments. Such two-scale heterogeneity effects may be analyzed through the application of two-dimensional models for calculating water and solute fluxes. The objective of this study was to gain more insight to what extent spatial heterogeneity of soil hydraulic parameters contributes to preferential flow at a lignitic mine soil. The simulations pertained to the 'Barenbrucker Hohe' site in Germany where previously water fluxes and applied tracers had been monitored with a cell lysimeter, and from where a soil block had been excavated for detailed two-dimensional characterization of the hydraulic parameters using pedotransfer functions. Based on those previous studies, scenarios with different distributions of hydraulic parameters were simulated. The results show that spatial variability of hydraulic parameters alone can hardly explain the observed flow patterns. The observed preferential flow at the site was probably caused by additional factors such as hydrophobicity, the presence of root channels, anisotropy in the hydraulic conductivity, and heterogeneous root distributions. To study the relative importance of these other factors by applying two-dimensional flow models to such sites, the experimental database must be improved. Single-continuum model approaches may be insufficient for such sites.
Efficient solution of two-dimensional steady separated flows
Napolitano, M.
This work is concerned with the numerical solution of 2D incompressible steady laminar separated flows at moderate-to-high values of Re. The vorticity-stream function Navier-Stokes equations, as well as approximate models based upon the boundary-layer theory, will be considered. The main objective of the paper is to present the development of an efficient approach for solving a class of problems usually referred to as high Re weakly separated flows. A description is given of a block-alternating-direction-implicit method, which applies the approximate factorization scheme of Beam and Warming to the vorticity-stream function equations, using the delta form of the deferred correction procedure of Khosla and Rubin to combine the stability of upwind schemes with the accuracy of central differences. The logical steps which led to the development of a more efficient incremental block-line Gauss-Seidel method and to a simple multigrid strategy particularly suited for this kind of numerical scheme are then outlined. Finally, benchmark-quality solutions for separated flows inside diffusers and channels with smooth as well as sudden expansions are presented.
Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos
2016-11-01
We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.
Proton transport in a membrane protein channel: two-dimensional infrared spectrum modeling.
Liang, C.; Knoester, J.; Jansen, T.L.Th.A.
2012-01-01
We model the two-dimensional infrared (2DIR) spectrum of a proton channel to investigate its applicability as a spectroscopy tool to study the proton transport process in biological systems. Proton transport processes in proton channels are involved in numerous fundamental biochemical reactions. How
Two-dimensional surface river flow patterns measured with paired RiverSondes
Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.
2008-01-01
Two RiverSondes were operated simultaneously in close proximity in order to provide a two-dimensional map of river surface velocity. The initial test was carried out at Threemile Slough in central California. The two radars were installed about 135 m apart on the same bank of the channel. Each radar used a 3-yagi antenna array and determined signal directions using direction finding. The slough is approximately 200 m wide, and each radar processed data out to about 300 m, with a range resolution of 15 m and an angular resolution of 1 degree. Overlapping radial vector data from the two radars were combined to produce total current vectors at a grid spacing of 10 m, with updates every 5 minutes. The river flow in the region, which has a maximum velocity of about 0.8 m/s, is tidally driven with flow reversals every 6 hours, and complex flow patterns were seen during flow reversal. The system performed well with minimal mutual interference. The ability to provide continuous, non-contact two-dimensional river surface flow measurements will be useful in several unique settings, such as studies of flow at river junctions where impacts to juvenile fish migration are significant. Additional field experiments are planned this year on the Sacramento River. ?? 2007 IEEE.
The investigation on two-dimensional pilot-symbol-aided channel estimation method for OFDM system
Institute of Scientific and Technical Information of China (English)
Sun Juying; Zhang Yanhua
2008-01-01
Channel estimation for orthogonal frequency division multiplexing (OFDM) system has attracted widespread attention. In this paper, a novel efficient two-dimensional (2-D) channel estimation algorithm based on fast Fourier transform (FFT) is proposed for a time-variant, frequency-selective wideband wireless channel. Both theoretical analysis and simulation results are addressed in the paper. The simulation results prove that the proposed algorithm has simpler implementation, better performance and wider application than other traditional decision-directed algorithms.
The direct enstrophy cascade of two-dimensional soap film flows
Rivera, Mike; Ecke, Robert
2013-01-01
We investigate the direct enstrophy cascade of two-dimensional decaying turbulence in a flowing soap film channel. We use a coarse-graining approach that allows us to resolve the nonlinear dynamics and scale-coupling simultaneously in scale and in space. From our data, we calculate the transfer of enstrophy across scale $\\ell$ at every point $\\bx$ in the flow domain. We verify an exact relation due to Eyink (1995) between traditional 3rd-order structure function and the enstrophy flux obtained by coarse-graining. We also present experimental evidence that enstrophy cascades to smaller (larger) scales with a 60% (40%) probability, in support of theoretical predictions by Merilees & Warn (1975). Using an Eulerian coherent structure identification technique, we then determine the effect of flow topology on the enstrophy cascade. A key finding is that "centers" are inefficient at transferring enstrophy between scales, in contrast to "saddle" regions which transfer enstrophy to small scales with high efficienc...
Gas-kinetic numerical schemes for one- and two-dimensional inner flows
Institute of Scientific and Technical Information of China (English)
Zhi-hui LI; Lin BI; Zhi-gong TANG
2009-01-01
Several kinds of explicit and implicit finite-difference schemes directly solving the discretized velocity distribution functions are designed with precision of different orders by analyzing the inner characteristics of the gas-kinetic numerical algorithm for Boltzmann model equation.The peculiar flow phenomena and mechanism from various flow regimes are revealed in the numerical simulations of the unsteady Sod shock-tube problems and the two-dimensional channel flows with different Knudsen numbers.The numerical remainder-effects of the difference schemes are investigated and analyzed based on the computed results.The ways of improving the computational efficiency of the gaskinetic numerical method and the computing principles of difference discretization are discussed.
The two-dimensional Godunov scheme and what it means for macroscopic pedestrian flow models
Van Wageningen-Kessels, F.L.M.; Daamen, W.; Hoogendoorn, S.P.
2015-01-01
An efficient simulation method for two-dimensional continuum pedestrian flow models is introduced. It is a two-dimensional and multi-class extension of the Go-dunov scheme for one-dimensional road traffic flow models introduced in the mid 1990’s. The method can be applied to continuum pedestrian flo
Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows
2015-06-01
adiabatic wall flows over compression ramps and flows with shock impingements. The new correlations are derived from existing numerical data and...developed for 2D, laminar adiabatic wall flows over compression ramps and flows with shock impingements. These correlations are derived from existing...characterizing the influence of shocks and compression ramps on flat plate flows is presented. New correlations for laminar compressive interactions on
Asymptotic Behavior of the Newton-Boussinesq Equation in a Two-Dimensional Channel
Fucci, Guglielmo; Singh, Preeti
2007-01-01
We prove the existence of a global attractor for the Newton-Boussinesq equation defined in a two-dimensional channel. The asymptotic compactness of the equation is derived by the uniform estimates on the tails of solutions. We also establish the regularity of the global attractor.
Huang, N.; Chen, X.; Krishna, R.; Jiang, D.
2015-01-01
Ordered open channels found in two-dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks' dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a
Yatou, Hiroki
2010-01-01
We find three types of steady solutions and remarkable flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Reynolds (Re) and Weissenberg (Wi) numbers using direct numerical simulations with spectral element method. The solutions are called "convective", "transition", and "elastic" in ascending order of Wi. In the convective region in the Re-Wi parameter space, the convective effect and the pressure gradient balance on average. As Wi increases, the elastic effect becomes suddenly comparable and the first transition sets in. Through the transition, a separation vortex disappears and a jet flow induced close to the wall by the viscoelasticity moves into the bulk; The viscous drag significantly drops and the elastic wall friction rises sharply. This transition is caused by an elastic force in the streamwise direction due to the competition of the convective and elastic effects. In the transition region, the convective and elastic effects balance. When the elastic eff...
Flow Modelling for partially Cavitating Two-dimensional Hydrofoils
DEFF Research Database (Denmark)
Krishnaswamy, Paddy
2001-01-01
The present work addresses te computational analysis of partial sheet hydrofoil cavitation in two dimensions. Particular attention is given to the method of simulating the flow at the end of the cavity. A fixed-length partially cavitating panel method is used to predict the height of the re...... of the model and comparing the present calculations with numerical results. The flow around the partially cavitating hydrofoil with a re-entrant jet has also been treated with a viscous/inviscid interactive method. The viscous flow model is based on boundary layer theory applied on the compound foil......, consisting of the union of the cavity and the hydrofoil surface. The change in the flow direction in the cavity closure region is seen to have a slightly adverse effect on the viscous pressure distribution. Otherwise, it is seen that the viscous re-entrant jet solution compares favourably with experimental...
Two-Dimensional Turbulent Separated Flow. Volume 1
1985-06-01
of detached turbulent boundary layers, even when the sign of U is changed to account for mean backflows. Thus, earlier researchers, such as Kuhn and...Turbulent Shear Layer," Third Symposium on Turbulent Shear Flows, pp. 16.23-16.29. Hillier, R., Latour , M.E.M.P., and Cherry, N.J. (1983), "Unsteady...344. Kuhn , G.D. and Nielsen, J.N. (1971), "An Analytical Method for Calculating Turbulent Separated Flows Due to Adverse Pressure Gradients
Bubbly flows around a two-dimensional circular cylinder
Lee, Jubeom; Park, Hyungmin
2016-11-01
Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
Two-Dimensional Graphs Moving by Mean Curvature Flow
Institute of Scientific and Technical Information of China (English)
CHEN Jing Yi; LI Jia Yu; TIAN Gang
2002-01-01
A surface Σ is a graph in R4 if there is a unit constant 2-form ω on R4 such that initial surface, then the mean curvature flow has a global solution and the scaled surfaces converge to a self-similar solution. A surface ∑ is a graph in M1 × M2 where M1 and M2 are Riemann surfaces,surface with scalar curvature R, v0 ≥1/√2 on the initial surface, then the mean curvature flow has a global solution and it sub-converges to a minimal surface, if, in addition, R ≥ 0 it converges to a totally geodesic surface which is holomorphic.
Two dimensional RG flows and Yang-Mills instantons
Gava, Edi; Narain, K S
2010-01-01
We study RG flow solutions in (1,0) six dimensional supergravity coupled to an anti-symmetric tensor and Yang-Mills multiplets corresponding to a semisimple group $G$. We turn on $G$ instanton gauge fields, with instanton number $N$, in the conformally flat part of the 6D metric. The solution interpolates between two (4,0) supersymmetric $AdS_3\\times S^3$ backgrounds with two different values of $AdS_3$ and $S^3$ radii and describes an RG flow in the dual 2D SCFT. For the single instanton case and $G=SU(2)$, there exist a consistent reduction ansatz to three dimensions, and the solution in this case can be interpreted as an uplifted 3D solution. Correspondingly, we present the solution in the framework of N=4 $(SU(2)\\ltimes \\mathbf{R}^3)^2$ three dimensional gauged supergravity. The flows studied here are of v.e.v. type, driven by a vacuum expectation value of a (not exactly) marginal operator of dimension two in the UV. We give an interpretation of the supergravity solution in terms of the D1/D5 system in ty...
Pfeiffer, F.; Meyer-Koenig, W.
1949-01-01
By means of characteristics theory, formulas for the numerical treatment of stationary compressible supersonic flows for the two-dimensional and rotationally symmetrical cases have been obtained from their differential equations.
Coherent Structures in Turbulent Flow over Two-Dimensional River Dunes
Omidyeganeh, Mohammad
2011-01-01
We performed large-eddy simulations of the flow over a typical two-dimensional dune geometry at laboratory scale (the Reynolds number based on the average channel height and mean velocity is 18,900) using the Lagrangian dynamic eddy-viscosity subgrid-scale model. The flow separates at the dune crest and reattaches downstream on the bed (at x=5.7h). A favorable pressure gradient accelerates the flow over the stoss-side (the upward-sloping region for x > 8h) and an unfavorable gradient for x < 8h decelerates the flow over the lee-side of the dune. Due to the separation of the flow, a shear layer is generated after the crest that expands in the wake region towards the next dune. The outer-layer turbulence structures are visualized through isosurfaces of pressure fluctuations colored by distance to the surface. Spanwise vortices are generated in the shear layer separating from the crest due to the Kelvin-Helmholtz instability. They are convected downstream and either interact with the wall or rise to the surfa...
Blast shocks in quasi-two-dimensional supersonic granular flows.
Boudet, J F; Cassagne, J; Kellay, H
2009-11-27
In a thin, dilute, and fast flowing granular layer, the impact of a small sphere generates a fast growing hole devoid of matter. The growth of this hole is studied in detail, and its dynamics is found to mimic that of blast shocks in gases. This dynamics can be decomposed into two stages: a fast initial stage (the blast) and a slower growth regime whose growth velocity is given by the speed of sound in the medium used. A simple model using ingredients already invoked for the case of blast shocks in gases but including the inelastic nature of collisions between grains accounts accurately for our results. The system studied here allows for a detailed study of the full dynamics of a blast as it relaxes from a strong to a weak shock and later to an acoustic disturbance.
Topology of streamlines and vorticity contours for two - dimensional flows
DEFF Research Database (Denmark)
Andersen, Morten
Considering a coordinate-free formulation of helical symmetry rather than more traditional definitions based on coordinates, we discuss basic properties of helical vector fields and compare results from the literature. For inviscid flow where a velocity field is generated by a sum of helical vortex...... generated by a helical vortex filament in an ideal fluid. The classical expression for the stream function obtained by Hardin (Phys. Fluids 25, 1982) contains an infinite sum of modified Bessel functions. Using the approach by Okulov (Russ. J. Eng. Thermophys. 5, 1995) we obtain a closed-form approximation...... by a point vortex above a wall in inviscid fluid. There is no reason to a priori expect equivalent results of the three vortex definitions. However, the study is mainly motivated by the findings of Kudela & Malecha (Fluid Dyn. Res. 41, 2009) who find good agreement between the vorticity and streamlines...
Energy Technology Data Exchange (ETDEWEB)
Perez Guerrero, Jesus Salvador
1995-12-31
Laminar developing flow in channels of arbitrary geometry was studied by solving the Navier-Stokes equations in the stream function-only formulation through the Generalized Integral Transform Technique (GITT). The stream function is expanded in an infinite system based on eigenfunctions obtained by considering solely the diffusive terms of the original formulation. The Navier-Stokes equations are transformed into an infinite system of ordinary differential equations, by using the transformation and inversion formulae. For computational purposes, the infinite series is truncated, according to an automatic error control procedure. The ordinary differential is solved through well-established scientific subroutines from widely available mathematical libraries. The classical problem of developing flow between parallel-plates is analysed first, as for both uniform and irrotational inlet conditions. The effect of truncating the duct length in the accuracy of the obtained solution is studied. A convergence analysis of the results obtained by the GITT is performed and compared with results obtained by finite difference and finite element methods, for different values of Reynolds number. The problem of flow over a backward-facing step then follows. Comparisons with experimental results in the literature indicate an excellent agreement. The numerical co-validation was established for a test case, and perfect agreement is reached against results considered as benchmarks in the recent literature. The results were shown to be physically more reasonable than others obtained by purely numerical methods, in particular for situations where three-dimensional effects are identified. Finally, a test problem for an irregular by shoped duct was studied and compared against results found in the literature, with good agreement and excellent convergence rates for the stream function field along the whole channel, for different values of Reynolds number. (author) 78 refs., 24 figs., 14 tabs.
Institute of Scientific and Technical Information of China (English)
Feng Shuai; Wang Yi-Quan
2011-01-01
Light propagation through a channel filter based on two-dimensional photonic crystals with elliptical-rod defects is studied by the finite-difference time-domain method.Shape alteration of the defects from the usual circle to an ellipse offers a powerful approach to engineer the resonant frequency of channel filters.It is found that the resonant frequency can be flexibly adjusted by just changing the orientation angle of the elliptical defects.The sensitivity of the resonant wavelength to the alteration of the oval rods' shape is also studied.This kind of multi-channel filter is very suitable for systems requiring a large number of output channel filters.
Renouf, M.; Bonamy, D.; Dubois, F.; Alart, P.
2005-10-01
The rheology of two-dimensional steady surface flow of cohesionless cylinders in a rotating drum is investigated through nonsmooth contact dynamics simulations. Profiles of volume fraction, translational and angular velocity, rms velocity, strain rate, and stress tensor are measured at the midpoint along the length of the surface-flowing layer, where the flow is generally considered as steady and homogeneous. Analysis of these data and their interrelations suggest the local inertial number—defined as the ratio between local inertial forces and local confinement forces—to be the relevant dimensionless parameter to describe the transition from the quasistatic part of the packing to the flowing part at the surface of the heap. Variations of the components of the stress tensor as well as the ones of rms velocity as a function of the inertial number are analyzed within both the quasistatic and the flowing phases. Their implications are discussed.
Structural analysis of a dipole system in two-dimensional channels.
Haghgooie, Ramin; Doyle, Patrick S
2004-12-01
A system of magnetic dipoles in two-dimensional (2D) channels was studied using Brownian dynamics simulations. The dipoles interact with a purely repulsive r(-3) potential and are confined by two hard walls in one of the dimensions. Solid crystals were annealed in the 2D channels and the structural properties of the crystals were investigated. The long-ranged nature of the purely repulsive dipoles combined with the presence of hard walls led to structural deviations from the unbounded (infinite) 2D dipolar crystal. The structures in the channels were characterized by a high density of particles along the walls. The particles along the wall became increasingly localized as the channel width was increased. The spacing of the walls was important in determining the properties of the structures formed in the channel. Small changes in the width of the channel induced significant structural changes in the crystal. These structural changes were manifested in the density profiles, defect concentrations, and local bond-orientation order of the system. Oscillations in the structural properties were observed as the channel width was increased, indicating the existence of magic-number channel widths for this system. As the channel width was increased the properties of the confined system approached those of the unbounded system surprisingly slowly.
Stability of a Two-Dimensional Poiseuille-Type Flow for a Viscoelastic Fluid
Endo, Masakazu; Giga, Yoshikazu; Götz, Dario; Liu, Chun
2017-03-01
A viscoelastic flow in a two-dimensional layer domain is considered. An L 2-stability of the Poiseuille-type flow is established provided that both Poiseuille flow and perturbation is sufficiently small. Our analysis is based on a stream function formulation introduced by Lin et al. (Commun Pure Appl Math 58(11):1437-1471, 2005).
Analytical solutions of the two-dimensional Dirac equation for a topological channel intersection
Anglin, J. R.; Schulz, A.
2017-01-01
Numerical simulations in a tight-binding model have shown that an intersection of topologically protected one-dimensional chiral channels can function as a beam splitter for noninteracting fermions on a two-dimensional lattice [Qiao, Jung, and MacDonald, Nano Lett. 11, 3453 (2011), 10.1021/nl201941f; Qiao et al., Phys. Rev. Lett. 112, 206601 (2014), 10.1103/PhysRevLett.112.206601]. Here we confirm this result analytically in the corresponding continuum k .p model, by solving the associated two-dimensional Dirac equation, in the presence of a "checkerboard" potential that provides a right-angled intersection between two zero-line modes. The method by which we obtain our analytical solutions is systematic and potentially generalizable to similar problems involving intersections of one-dimensional systems.
Energy Technology Data Exchange (ETDEWEB)
Pineda, Inti; Dagdug, Leonardo [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 México Distrito Federal (Mexico)
2014-01-14
Diffusive transport of particles is a ubiquitous feature of physical, chemical and biological systems. Typical structures like pores, tubes or fibers, are quasi one-dimensional, such that we need to solve 2+1 or 3+1 dimensional differential equations to describe correctly transport along them. The so-called Fick-Jacobs approach dramatically simplifies the problem if one assumes that a solute distribution in any cross-section of the channel is uniform at equilibrium. That study focuses on the mapping of the diffusion equation in a two-dimensional narrow asymmetric channel of varying cross section onto the longitudinal coordinate. We present a generalization to the case of an asymmetric channel using the projection method introduced earlier by Kalinay and Percus. We derive an expansion of the effective diffusion coefficient, which represents corrections to the Fick-Jacobs equation and contains the well-known previous results as special cases. Finally, we study numerically some specific two-dimensional asymmetric channel configurations to test and show the broader applicability of this effective diffusion coefficient formula.
Shallow water acoustic channel estimation using two-dimensional frequency characterization.
Ansari, Naushad; Gupta, Anubha; Gupta, Ananya Sen
2016-11-01
Shallow water acoustic channel estimation techniques are presented at the intersection of time, frequency, and sparsity. Specifically, a mathematical framework is introduced that translates the problem of channel estimation to non-uniform sparse channel recovery in two-dimensional frequency domain. This representation facilitates disambiguation of slowly varying channel components against high-energy transients, which occupy different frequency ranges and also exhibit significantly different sparsity along their local distribution. This useful feature is exploited to perform non-uniform sampling across different frequency ranges, with compressive sampling across higher Doppler frequencies and close to full-rate sampling at lower Doppler frequencies, to recover both slowly varying and rapidly fluctuating channel components at high precision. Extensive numerical experiments are performed to measure relative performance of the proposed channel estimation technique using non-uniform compressive sampling against traditional compressive sampling techniques as well as sparsity-constrained least squares across a range of observation window lengths, ambient noise levels, and sampling ratios. Numerical experiments are based on channel estimates from the SPACE08 experiment as well as on a recently developed channel simulator tested against several field trials.
Yatou, Hiroki
2010-09-01
We numerically find three types of steady solutions of viscoelastic flows and flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Weissenberg (Wi) and Reynolds (Re) numbers using a spectral element method. The solutions are called "convective," "transition," and "elastic" in ascending order of Wi. In the convective region in the Wi-Re parameter space, convective effect and pressure gradient balance on average. As Wi increases, elastic effect becomes comparable, and the first transition sets in. Through the transition, a separation vortex disappears, and a jet flow induced close to the wall by the viscoelasticity moves into the bulk; the viscous drag significantly drops, and the elastic wall friction rises sharply. This transition is caused by an elastic force in the streamwise direction due to the competition of the convective and elastic effects. In the transition region, the convective and elastic effects balance. When the elastic effect becomes greater than the convective effect, the second transition occurs but it is relatively moderate. The second transition seems to be governed by the so-called Weissenberg effect. These transitions are not sensitive to driving forces. By a scaling analysis, it is shown that the stress component is proportional to the Reynolds number on the boundary of the first transition in the Wi-Re space. This scaling coincides well with the numerical result.
A two-dimensional analytical model for short channel junctionless double-gate MOSFETs
Jiang, Chunsheng; Liang, Renrong; Wang, Jing; Xu, Jun
2015-05-01
A physics-based analytical model of electrostatic potential for short-channel junctionless double-gate MOSFETs (JLDGMTs) operated in the subthreshold regime is proposed, in which the full two-dimensional (2-D) Poisson's equation is solved in channel region by a method of series expansion similar to Green's function. The expression of the proposed electrostatic potential is completely rigorous and explicit. Based on this expression, analytical models of threshold voltage, subthreshold swing, and subthreshold drain current for JLDGMTs were derived. Subthreshold behavior was studied in detail by changing different device parameters and bias conditions, including doping concentration, channel thickness, gate length, gate oxide thickness, drain voltage, and gate voltage. Results predicted by all the analytical models agree well with numerical solutions from the 2-D simulator. These analytical models can be used to investigate the operating mechanisms of nanoscale JLDGMTs and to optimize their device performance.
A Two-Dimensional Signal Space for Intensity-Modulated Channels
Karout, Johnny; Kschischang, Frank R; Agrell, Erik
2012-01-01
A two-dimensional signal space for intensity- modulated channels is presented. Modulation formats using this signal space are designed to maximize the minimum distance between signal points while satisfying average and peak power constraints. The uncoded, high-signal-to-noise ratio, power and spectral efficiencies are compared to those of the best known formats. The new formats are simpler than existing subcarrier formats, and are superior if the bandwidth is measured as 90% in-band power. Existing subcarrier formats are better if the bandwidth is measured as 99% in-band power.
DEFF Research Database (Denmark)
Ruban, V.P.; Senchenko, Sergey
2004-01-01
The evolution of piecewise constant distributions of a conserved quantity related to the frozen-in canonical vorticity in effectively two-dimensional incompressible ideal EMHD flows is analytically investigated by the Hamiltonian method. The study includes the case of axisymmetric flows with zero...
Computation of two-dimensional isothermal flow in shell-and-tube heat exchangers
Energy Technology Data Exchange (ETDEWEB)
Carlucci, L.N.; Galpin, P.F.; Brown, J.D.; Frisina, V.
1983-07-01
A computational procedure is outlined whereby two-dimensional isothermal shell-side flow distributions can be calculated for tube bundles having arbitrary boundaries and flow blocking devices, such as sealing strips, defined in arbitrary locations. The procedure is described in some detail and several computed results are presented to illustrate the robustness and generality of the method. 11 figs.
Energy Technology Data Exchange (ETDEWEB)
Lavrent' ev, I.V.; Sidorenkov, S.I.
1988-01-01
To establish the limits of applicability of two-dimensional mathematical models describing induced electromagnetic field distribution in an annular MHD channel, it is necessary to solve a three-dimensional problem. By reducing the number of dimensions of the problem (using, for example, the axial symmetry of MHD flow), the solution can be derived in some approximation. This paper proposes and demonstrates this method by studying the motion of a conducting medium in an annular channel with a two-pole ferromagnetic system under various assumptions for the field, channel and liquid, among them the superconductivity of the working medium. The work performed by the Lorentz force in the channel, equal to the Joule losses in the current-carrying boundary layer, was determined. It was concluded that the current-carrying boundary layer begins to develop at the wall of the channel when the flow enters the magnetic field and that its thickness grows with the length of the region of MHD interaction. The problem was solved numerically and asymptotically.
Design considerations for pulsed-flow comprehensive two-dimensional GC: dynamic flow model approach.
Harvey, Paul McA; Shellie, Robert A; Haddad, Paul R
2010-04-01
A dynamic flow model, which maps carrier gas pressures and carrier gas flow rates through the first dimension separation column, the modulator sample loop, and the second dimension separation column(s) in a pulsed-flow modulation comprehensive two-dimensional gas chromatography (PFM-GCxGC) system is described. The dynamic flow model assists design of a PFM-GCxGC modulator and leads to rapid determination of pneumatic conditions, timing parameters, and the dimensions of the separation columns and connecting tubing used to construct the PFM-GCxGC system. Three significant innovations are introduced in this manuscript, which were all uncovered by using the dynamic flow model. A symmetric flow path modulator improves baseline stability, appropriate selection of the flow restrictors in the first dimension column assembly provides a generally more stable and robust system, and these restrictors increase the modulation period flexibility of the PFM-GCxGC system. The flexibility of a PFM-GCxGC system resulting from these innovations is illustrated using the same modulation interface to analyze Special Antarctic Blend (SAB) diesel using 3 s and 9 s modulation periods.
Two-dimensional optical feedback control of Euglena confined in closed-type microfluidic channels.
Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Hara, Masahiko; Maeda, Mizuo
2011-06-07
We examined two-dimensional (2D) optical feedback control of phototaxis flagellate Euglena cells confined in closed-type microfluidic channels (microaquariums), and demonstrated that the 2D optical feedback enables the control of the density and position of Euglena cells in microaquariums externally, flexibly, and dynamically. Using three types of feedback algorithms, the density of Euglena cells in a specified area can be controlled arbitrarily and dynamically, and more than 70% of the cells can be concentrated into a specified area. Separation of photo-sensitive/insensitive Euglena cells was also demonstrated. Moreover, Euglena-based neuro-computing has been achieved, where 16 imaginary neurons were defined as Euglena-activity levels in 16 individual areas in microaquariums. The study proves that 2D optical feedback control of photoreactive flagellate microbes is promising for microbial biology studies as well as applications such as microbe-based particle transportation in microfluidic channels or separation of photo-sensitive/insensitive microbes.
On the existence of two-dimensional nonlinear steady states in plane Couette flow
Rincon, Francois
2007-01-01
The problem of two-dimensional steady nonlinear dynamics in plane Couette flow is revisited using homotopy from either plane Poiseuille flow or from plane Couette flow perturbed by a small symmetry-preserving identity operator. Our results show that it is not possible to obtain the nonlinear plane Couette flow solutions reported by Cherhabili and Ehrenstein [Eur. J. Mech. B/Fluids, 14, 667 (1995)] using their Poiseuille-Couette homotopy. We also demonstrate that the steady solutions obtained by Mehta and Healey [Phys. Fluids, 17, 4108 (2005)] for small symmetry-preserving perturbations are influenced by an artefact of the modified system of equations used in their paper. However, using a modified version of their model does not help to find plane Couette flow solution in the limit of vanishing symmetry-preserving perturbations either. The issue of the existence of two-dimensional nonlinear steady states in plane Couette flow remains unsettled.
Two-dimensional cellular automaton model of traffic flow with open boundaries
Tadaki, S I
1996-01-01
A two-dimensional cellular automaton model of traffic flow with open boundaries are investigated by computer simulations. The outflow of cars from the system and the average velocity are investigated. The time sequences of the outflow and average velocity have flicker noises in a jamming phase. The low density behavior are discussed with simple jam-free approximation.
DEFF Research Database (Denmark)
Brøns, Morten; Hartnack, Johan Nicolai
1999-01-01
Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of nonlinear coordinate...
DEFF Research Database (Denmark)
Brøns, Morten; Hartnack, Johan Nicolai
1998-01-01
Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of non-linear coordinate...
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The dynamic effects in measurements of unsteady flow when using a probe with quasi-steady calibration curves has been investigated in this paper by numerical simulation of the compressible flow around a fixed two-dimensional 3-hole probe. The unsteady velocity and pressure distributions, as well as the hole-pressures, are calculated for high frequency flow variations. The measurement errors caused by the dynamic effects indicate that considerable measurement errors may occur for high frequency flow fluctuation, e.g., 2000Hz, especially, when the flow around the probe head approaches separation. This work shows how numerical simulation can be used to investigate and correct for the dynamic effects.
On the origins of vortex shedding in two-dimensional incompressible flows
Boghosian, M. E.; Cassel, K. W.
2016-12-01
An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the vortex shedding mechanism (VSM) is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.
Coexistence of two dissipative mechanisms in two-dimensional turbulent flows
Energy Technology Data Exchange (ETDEWEB)
Yen, Romain Nguyen van [FB Mathematik und Informatik, Freie Universitaet, Berlin (Germany); Farge, Marie [LMD-CNRS-IPSL, ENS Paris (France); Schneider, Kai, E-mail: rnguyen@zedat.fu-berlin.de [M2P2-CNRS, Universite d' Aix-Marseille (France)
2011-12-22
Two distinct dissipative mechanisms occurring in two-dimensional fully developed turbulent flows in the limit of vanishing viscosity have been highlighted by means of direct numerical simulation. First, molecular energy dissipation is triggered by the production of localized vortices at the walls. Second, instabilities intrinsic to the flow itself generate a noisy component which can be quantified by wavelet analysis. The possibilities of competition and coexistence of the two mechanisms are discussed.
Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor
Changyuan Zhai; Chunjiang Zhao; Xiu Wang; Ning Wang; Wei Zou; Wei Li
2015-01-01
Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultras...
Transition to two-dimensionality in magnetohydrodynamic turbulent Taylor-Couette flow.
Zhao, Yurong; Tao, Jianjun; Zikanov, Oleg
2014-03-01
Transition from a Taylor-Couette turbulent flow to a completely two-dimensional axisymmetric turbulent state is realized numerically by increasing gradually the strength of the azimuthal magnetic field produced by electric current flowing through the axial rod. With the increase of the Hartmann number, the Taylor-vortex-like structures shrink, move closer to the inner cylinder, and turn into unsteady but perfect tori at sufficiently high Hartmann numbers.
TWO-DIMENSIONAL PLANE WATER FLOW AND WATER QUALITY DISTRIBUTION IN BOSTEN LAKE
Institute of Scientific and Technical Information of China (English)
Feng Min-quan; Zhou Xiao-de; Zheng Bang-min; Min Tao; Zhao Ke-yu
2003-01-01
The two-dimensional plane water flow and water quality was developed by using the techniques of coordinate transformation, alternating directions, staggered grid, linear recurrence, and implicit scheme in the study of large water body in lakes. The model was proved to be suitable for treating the irregular boundary and predicting quickly water flow and water quality. The application of the model to the Bosten Lake in Xinjiang Uygur Autonomous Region of China shows that it is reasonable and practicable.
Double-Humped Transverse Density Profile in Two-Dimensional Chute Flow with Rough Sidewalls
Institute of Scientific and Technical Information of China (English)
HU Guo-Qi; ZHANG Xun-Sheng; BAO De-Song; TANG Xiao-Wei
2006-01-01
@@ We study a two-dimensional granular rapid flow with rough sidewalls stuck with the same size discs by molecular dynamics simulation. A transient state of the double-humped density profile in the flowing process has been found, which appears and moves as travelling wave and is the same as the phenomena in the recent experiments [Acta Phys. Sin. 53 (2004) 3389 (in Chinese)].
Directory of Open Access Journals (Sweden)
Ahmed W. Mustava
2013-04-01
Full Text Available The effect of a semi-circular cylinders in a two dimensional channel on heat transfer by forced convection from two heat sources with a constant temperature has been studied numerically. Each channel contains two heat sources; one on the upper surface of the channel and the other on the lower surface of the channel. There is semi-circular cylinder under the source in upper surface and there is semi-circular cylinder above the source in lower surface. The location of the second heat source with its semi-cylinder has been changed and keeps the first source with its semi- cylinder at the same location. The flow and temperature field are studied numerically with different values of Reynolds numbers and for different spacing between the centers of the semi-cylinders. The laminar flow field is analyzed numerically by solving the steady forms of the two-dimensional incompressible Navier- Stokes and energy equations. The Cartesian velocity components and pressure on a collocated (non-staggered grid are used as dependent variables in the momentum equations, which discretized by finite volume method, body fitted coordinates are used to represent the complex channel geometry accurately, and grid generation technique based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation of mass. The range of Reynolds number is (Re= 100 – 800 and the range of the spacing between the semi-cylinders is(1-4 and the Prandtl number is 0.7.The results showed that increasing the spacing between the semi-cylinders increases the average of Nusselt number of the first heat source for all Reynolds numbers. As well as the results show that the best case among the cases studied to enhance the heat transfer is when the second heat source and its semi-cylinder located on at the distance (S=1.5 from the first half of the cylinder and the Reynolds number is greater than (Re ≥ 400 because of the
Kyoden, Tomoaki; Yasue, Youichi; Ishida, Hiroki; Akiguchi, Shunsuke; Andoh, Tsugunobu; Takada, Yogo; Teranishi, Tsunenobu; Hachiga, Tadashi
2015-01-01
A laser Doppler velocimeter (LDV) has been developed that is capable of performing two-dimensional (2D) cross-sectional measurements. It employs two horizontal laser light sheets that intersect at an angle of 13.3°. Since the intersection region is thin, it can be used to approximately determine the 2D flow field. An 8 × 8 array of optical fibers is used to simultaneously measure Doppler frequencies at 64 points. Experiments were conducted to assess the performance of the LDV, and it was found to be capable of obtaining spatial and temporal velocity information at multiple points in a flow field. The technique is fast, noninvasive, and accurate over long sampling periods. Furthermore, its applicability to an actual flow field was confirmed by measuring the temporal velocity distribution of a pulsatile flow in a rectangular flow channel with an obstruction. The proposed device is thus a useful, compact optical instrument for conducting simultaneous 2D cross-sectional multipoint measurements.
Characterizing Mixing in a Quasi-Two-Dimensional Flow using Persistent Homology
Tithof, Jeffrey; Kelley, Douglas
2016-11-01
Fluid mixing is a tremendously important phenomenon present in numerous physical systems, both natural and human-made. Describing, understanding, and predicting the mixing behavior of fluid flows poses an immense challenge. In this work, we explore the utility of topological data analysis in quantifying fluid mixing. We analyze Eulerian and Lagrangian quantities obtained from a quasi-two-dimensional flow realized by driving a thin layer of fluid with electromagnetic forces. Our analysis employs persistent homology, which offers a unique framework for quantifying topological features associated with connectivity in the fluid flow. Preliminary results suggest that this topological approach offers new physical insight, complementing existing methods for quantifying fluid mixing.
EXPERIMENTAL INVESTIGATION ON TWO-DIMENSIONAL UNSTEADY COLD FLOW IN MPC EXHAUST MANIFOLD
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The gas flow in exhaust manifolds has much effect on scavenge, pumping loss and exhaust energy utilization of turbocharged diesel engines. This paper presented experimental investigation on two-dimensional unsteady flow in MPC(modular pulse converter) exhaust manifold model. The pressure and velocity distributions in six sections of the manifold model were measured when the diesel engine was motored. The probe with slitted sleeve was used to determine flow direction. The experimental results show that velocity distributions vary with place and time; the pressure traces at different points of the same section are not different obviously.
Two Dimensional Subsonic Euler Flows Past a Wall or a Symmetric Body
Chen, Chao; Du, Lili; Xie, Chunjing; Xin, Zhouping
2016-08-01
The existence and uniqueness of two dimensional steady compressible Euler flows past a wall or a symmetric body are established. More precisely, given positive convex horizontal velocity in the upstream, there exists a critical value {ρ_cr} such that if the incoming density in the upstream is larger than {ρ_cr}, then there exists a subsonic flow past a wall. Furthermore, {ρ_cr} is critical in the sense that there is no such subsonic flow if the density of the incoming flow is less than {ρ_cr}. The subsonic flows possess large vorticity and positive horizontal velocity above the wall except at the corner points on the boundary. Moreover, the existence and uniqueness of a two dimensional subsonic Euler flow past a symmetric body are also obtained when the incoming velocity field is a general small perturbation of a constant velocity field and the density of the incoming flow is larger than a critical value. The asymptotic behavior of the flows is obtained with the aid of some integral estimates for the difference between the velocity field and its far field states.
Group classification of steady two-dimensional boundary-layer stagnation-point flow equations
Nadjafikhah, Mehdi; Hejazi, Seyed Reza
2010-01-01
Lie symmetry group method is applied to study the boundary-layer equations for two-dimensional steady flow of an incompressible, viscous fluid near a stagnation point at a heated stretching sheet placed in a porous medium equation. The symmetry group and its optimal system are given, and group invariant solutions associated to the symmetries are obtained. Finally the structure of the Lie algebra symmetries is determined.
An immersed interface method for two-dimensional modelling of stratified flow in pipes
Berthelsen, Petter Andreas
2004-01-01
This thesis deals with the construction of a numerical method for solving two-dimensional elliptic interface problems, such as fully developed stratified flow in pipes. Interface problems are characterized by its non-smooth and often discontinuous behaviour along a sharp boundary separating the fluids or other materials. Classical numerical schemes are not suitable for these problems due to the irregular geometry of the interface. Standard finite difference discretization across the interface...
Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage
Kolokolov, I. V.
2017-03-01
The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor-Kraichnan-Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.
Determination of two-dimensional magnetostatic equilibria and analogous Euler flows
Linardatos, D.
1993-01-01
A modified computational procedure with an improved time-stepping algorithm for two-dimensional magnetic relaxation is developed. The procedure is used to determine a family of flows in a closed (square) domain with a single elliptic stagnation point. In addition, the problem of saddle point collapse is investigated, and the tendency to form discontinuities is confirmed in the manner described by Bajer (1989).
Directory of Open Access Journals (Sweden)
Taha Aziz
2013-01-01
Full Text Available The simplest equation method is employed to construct some new exact closed-form solutions of the general Prandtl's boundary layer equation for two-dimensional flow with vanishing or uniform mainstream velocity. We obtain solutions for the case when the simplest equation is the Bernoulli equation or the Riccati equation. Prandtl's boundary layer equation arises in the study of various physical models of fluid dynamics. Thus finding the exact solutions of this equation is of great importance and interest.
Flow Rate in the Discharge of a Two-dimensional Silo
Zuriguel, I.; Janda, A.; Garcimartín, A.; Maza, D.
2009-06-01
We present an experimental study of the flow rate in the discharge of a flat bottomed two-dimensional silo. The results of the flow rate dependence on the size of the orifice evidence that the Beverloo expression is not valid for small outlet sizes. This behavior is related with the properties of the flow rate which has been found to fluctuate in a gaussian like form for large orifices. On the contrary, for small orifices extreme events appear at zero flow rates causing a significant slow down of the average flow rate. These events are explained in terms of the existence of arches that block the outlet instantaneously but are unstable to permanently halt the flow.
Liu, Yifan; Shen, Yusheng; Duan, Lian; Yobas, Levent
2016-10-01
Two-dimensional hydrodynamic flow focusing is demonstrated through a microfluidic device featuring a monolithic integrated glass micronozzle inside a flow-focusing geometry. Such a coaxial configuration allows simple one-step focusing of a sample fluid stream, jetted from the micronozzle tip, in both in-plane and out-of-plane directions. The width of the focused filament can be precisely controlled and further scaled down to the submicrometer regime to facilitate rapid hydrodynamic mixing. Fluorescence quenching experiments reveal ultra-fast microsecond mixing of the denaturant into the focused filament. This device offers new possibilities to a set of applications such as the study of protein folding kinetics.
Seshasayanan, Kannabiran; Alexakis, Alexandros
2016-01-01
We investigate the critical transition from an inverse cascade of energy to a forward energy cascade in a two-dimensional magnetohydrodynamic flow as the ratio of magnetic to mechanical forcing amplitude is varied. It is found that the critical transition is the result of two competing processes. The first process is due to hydrodynamic interactions and cascades the energy to the large scales. The second process couples small-scale magnetic fields to large-scale flows, transferring the energy back to the small scales via a nonlocal mechanism. At marginality the two cascades are both present and cancel each other. The phase space diagram of the transition is sketched.
Multi-scale coupling strategy for fully two-dimensional and depth-averaged models for granular flows
Pudasaini, Shiva P.; Domnik, Birte; Miller, Stephen A.
2013-04-01
We developed a full two-dimensional Coulomb-viscoplastic model and applied it for inclined channel flows of granular materials from initiation to their deposition. The model includes the basic features and observed phenomena in dense granular flows like the exhibition of a yield strength and a non-zero slip velocity. A pressure-dependent yield strength is proposed to account for the frictional nature of granular materials. The yield strength can be related to the internal friction angle of the material and plays an important role, for example, in deposition processes. The interaction of the flow with the solid boundary is modelled by a pressure and rate-dependent Coulomb-viscoplastic sliding law. We developed an innovative multi-scale strategy to couple the full two-dimensional, non depth-averaged model (N-DAM) with a one-dimensional, depth-averaged model (DAM). The coupled model reduces computational complexity dramatically by using DAM only in regions with smooth changes of flow variables. The numerics uses N-DAM in regions where depth-averaging becomes inaccurate, for instance, in the initiation and deposition regions, and (particularly) when the flow hits an obstacle or a defense structure. In these regions, momentum transfer must be, and is, considered in all directions. We observe very high coupling performance, and show that the numerical results deviate only slightly from results of the much more cumbersome full two-dimensional model. This shows that the coupled model, which retains all the basic physics of the flow, is an attractive alternative to an expensive, full two-dimensional simulations. We compare simulation results with different experimental data for shock waves appearing in rapid granular flows down inclined channels and impacting a wall. The model predicts the evolution of the strong shock wave and the impact force on a rigid wall for different inclination angles and sliding surfaces. It is demonstrated that the internal friction angle plays an
Implementation of the Log-Conformation Formulation for Two-Dimensional Viscoelastic Flow
Jensen, K E; Okkels, F
2015-01-01
We have implemented the log-conformation method for two-dimensional viscoelastic flow in COMSOL, a commercial high-level finite element package. The code is verified for an Oldroyd-B fluid flowing past a confined cylinder. We are also able to describe the well-known bistability of the viscoelastic flow in a cross-slot geometry for a FENE-CR fluid, and we describe the changes required for performing simulations with the Phan-Thien-Tanner (PTT), Giesekus and FENE-P models. Finally, we calculate the flow of a FENE-CR fluid in a geometry with three in- and outlets. The implementation is included in the supplementary material, and we hope that it can inspire new as well as experienced researchers in the field of differential constitutive equations for viscoelastic flow.
Experimental study on two-dimensional film flow with local measurement methods
Energy Technology Data Exchange (ETDEWEB)
Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)
2015-12-01
Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged
Liu, Jing; Seo, Jung Hwan; Li, Yubo; Chen, Di; Kurabayashi, Katsuo; Fan, Xudong
2013-03-07
We developed a novel smart multi-channel two-dimensional (2-D) micro-gas chromatography (μGC) architecture that shows promise to significantly improve 2-D μGC performance. In the smart μGC design, a non-destructive on-column gas detector and a flow routing system are installed between the first dimensional separation column and multiple second dimensional separation columns. The effluent from the first dimensional column is monitored in real-time and decision is then made to route the effluent to one of the second dimensional columns for further separation. As compared to the conventional 2-D μGC, the greatest benefit of the smart multi-channel 2-D μGC architecture is the enhanced separation capability of the second dimensional column and hence the overall 2-D GC performance. All the second dimensional columns are independent of each other, and their coating, length, flow rate and temperature can be customized for best separation results. In particular, there is no more constraint on the upper limit of the second dimensional column length and separation time in our architecture. Such flexibility is critical when long second dimensional separation is needed for optimal gas analysis. In addition, the smart μGC is advantageous in terms of elimination of the power intensive thermal modulator, higher peak amplitude enhancement, simplified 2-D chromatogram re-construction and potential scalability to higher dimensional separation. In this paper, we first constructed a complete smart 1 × 2 channel 2-D μGC system, along with an algorithm for automated control/operation of the system. We then characterized and optimized this μGC system, and finally employed it in two important applications that highlight its uniqueness and advantages, i.e., analysis of 31 workplace hazardous volatile organic compounds, and rapid detection and identification of target gas analytes from interference background.
Energy Technology Data Exchange (ETDEWEB)
Goldberg, L.F. [Univ. of Minnesota, Minneapolis, MN (United States)
1990-08-01
The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year`s funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge.
Hydrodynamic aspects of premixed flame stripes in two-dimensional stagnation-point flows
Energy Technology Data Exchange (ETDEWEB)
Lee, H.; Sohrab, S.H. [Northwestern Univ., Evanston, IL (United States). Dept. of Mechanical Engineering
1995-06-01
The behavior of cellular premixed flames of rich butane-air in the two-dimensional stagnation-point flow configuration has been investigated. It is found that the stretching of the cellular flame results in the alignment f the ridge (extinction) and the trough (combustion) zones of the individual cells such as to form a series of parallel flame stripes. The number of flame stripes as a function of the equivalence ratio for three different mean velocities at the nozzle have been determined. Through the introduction of a generalized form of the stream function periodic velocity fields are obtained as the exact solutions of the Euler equation for the nonreactive finite-jet two-dimensional stagnation flow. The predicted periodic velocity profiles are confirmed by the experimental observation of the streamlines in nonreactive flow made visible by laser-sheet lighting. The observed average size of the flame stripes is found to be in good agreement with the predicted value. Similar periodic velocity profiles are also obtained for the viscous flow within the laminar boundary layer by treatment of the unsteady vorticity equation first described by Taylor. The results support an earlier prediction by Williams that cellular flame structures that are affected mainly by diffusive-thermal phenomena may in fact be initiated by the hydrodynamic instability.
Kramer, W.; Clercx, H.J.H.; van Heijst, G.J.F.
2008-01-01
This paper reports on a numerical study of forced two-dimensional turbulence in a periodic channel with flat no-slip walls. Since corners or curved domain boundaries, which are met in the standard rectangular, square, or circular geometries, are absent in this geometry, the (statistical) analysis of
Wake structure and thrust generation of a flapping foil in two-dimensional flow
DEFF Research Database (Denmark)
Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis
2017-01-01
We present a combined numerical (particle vortex method) and experimental (soap film tunnel) study of a symmetric foil undergoing prescribed oscillations in a two-dimensional free stream. We explore pure pitching and pure heaving, and contrast these two generic types of kinematics. We compare...... measurements and simulations when the foil is forced with pitching oscillations, and we find a close correspondence between flow visualisations using thickness variations in the soap film and the numerically determined vortex structures. Numerically, we determine wake maps spanned by oscillation frequency...
Two-dimensional motion of unstable steps induced by flow in solution
Sato, Masahide
2011-01-01
By carrying out Monte Carlo simulation, we study step instabilities during crystal growth from solution. In previous studies [M. Sato. J. Phys. Soc. Jpn. 79 (2010) 064606; M. Sato, J. Cryst. Growth 318 (2011) 5; M. Sato. J. Phys. Soc. Jpn. 80 (2011) 024604], we used a one-dimensional model, so that we were unable to study another type of instability, step wandering. In this research, we use a two-dimensional model to study both step wandering and step bunching. When the flow of solutes is in ...
Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage
Kolokolov, Igor
2016-01-01
The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time what contradicts to the statements present in literature. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor-Kraichnan-Kazantsev model. These tensors demonstrate highly intermittent statistics of the field fluctuations both in space and time.
Two-dimensional numerical simulation of flow around three-stranded rope
Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng
2016-08-01
Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.
On the use of wall functions as boundary conditions for two-dimensional separated compressible flows
Viegas, J. R.; Rubesin, M. W.; Horstman, C. C.
1985-01-01
A new and improved wall function method for compressible turbulent flows has been developed and tested. This method is applicable to attached and separated flows, to both high- and low-Reynolds number flows, and to flows with adiabatic and nonadiabatic surfaces. This wall function method has been applied to the Launder-Spalding k-epsilon two-equation model of turbulence. The tests consist of comparisons of calculated and experimental results for: (1) an axisymmetrical transonic shock-wave/boundary-wave interaction flow at low Reynolds number in an adiabatic tube, (2) an axisymmetrical high-Reynolds number transonic flow over a nonadiabatic bump, and (3) a two-dimensional supersonic high-Reynolds number flow on a nonadiabatic deflected flap. Each of these experiments had significant regions of flow separation. The calculations are performed with an implicit algorithm that solves the Reynolds-averaged Navier-Stokes equations. It is shown that the results obtained agree very well with the data for the complex compressible flows tested.
Venaille, Antoine
2010-01-01
Using explicit analytical computations, generic occurrence of inequivalence between two or more statistical ensembles is obtained for a large class of equilibrium states of two-dimensional and geophysical turbulent flows. The occurrence of statistical ensemble inequivalence is shown to be related to previously observed phase transitions in the equilibrium flow topology. We find in these turbulent flow equilibria, two mechanisms for the appearance of ensemble equivalences, that were not observed in any physical systems before. These mechanisms are associated respectively with second-order azeotropy (simultaneous appearance of two second-order phase transitions), and with bicritical points (bifurcation from a first-order to two second-order phase transition lines). The important roles of domain geometry, of topography, and of a screening length scale (the Rossby radius of deformation) are discussed. It is found that decreasing the screening length scale (making interactions more local) surprisingly widens the r...
A characteristic mapping method for two-dimensional incompressible Euler flows
Yadav, Badal; Mercier, Olivier; Nave, Jean-Christophe; Schneider, Kai
2016-11-01
We propose an efficient semi-Lagrangian method for solving the two-dimensional incompressible Euler equations with high precision on a coarse grid. The new approach evolves the flow map using the gradient-augmented level set method (GALSM). Since the flow map can be decomposed into submaps (each over a finite time interval), the error can be controlled by choosing the remapping times appropriately. This leads to a numerical scheme that has exponential resolution in linear time. The computational efficiency and the high precision of the method are illustrated for a vortex merger and a four mode flow. Comparisons with a Cauchy-Lagrangian method are also presented. KS thankfully acknowledges financial support from the French Research Federation for Fusion Studies within the framework of the European Fusion Development Agreement (EFDA).
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
Energy Technology Data Exchange (ETDEWEB)
Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.
A two-dimensional CA model for traffic flow with car origin and destination
In-nami, Junji; Toyoki, Hiroyasu
2007-05-01
Dynamic phase transitions in a two-dimensional traffic flow model defined on a decorated square-lattice are studied numerically. The square-lattice point and the decorated site denote intersections and roads, respectively. In the present model, a car has a finite deterministic path between the origin and the destination, which is assigned to the car from the beginning. In this new model, we found a new phase between the free-flow phase and the frozen-jam phase that is absent from previous models. The new model is characterized by the persistence of a macroscopic cluster. Furthermore, the behavior in this macroscopic cluster phase is classified into three regions characterized by the shape of the cluster. The boundary of the three regions is phenomenologically estimated. When the trip length is short and the car density is high, both ends of the belt-like cluster connect to each other through the periodic boundary with some probability. This type of cluster is classified topologically as a string on a two-dimensional torus.
A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow
Hsu, Li-Chieh
The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.
Mamatsashvili, G R; Gogichaishvili, D Z; Chagelishvili, G D; Horton, W
2014-04-01
We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity), and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence is subcritical by nature and hence it can be energetically supported just by a transient growth mechanism due to shear flow non-normality. This mechanism appears to be essentially anisotropic in the spectral (wave-number) plane and operates mainly for spatial Fourier harmonics with streamwise wave numbers less than the ratio of flow shear to Alfvén speed, kymagnetohydrodynamic (MHD) turbulence research. We find similarity of the nonlinear dynamics to the related dynamics in hydrodynamic flows: to the bypass concept of subcritical turbulence. The essence of the analyzed nonlinear MHD processes appears to be a transverse redistribution of kinetic and magnetic spectral energies in the wave-number plane [as occurs in the related hydrodynamic flow; see Horton et al., Phys. Rev. E 81, 066304 (2010)] and differs fundamentally from the existing concepts of (anisotropic direct and inverse) cascade processes in MHD shear flows.
Finite-time barriers to front propagation in two-dimensional fluid flows
Mahoney, John R
2015-01-01
Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear", introduced by Farazmand, Blazevski, and Haller [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our techniqu...
Flow-rate fluctuations in the outpouring of grains from a two-dimensional silo.
Janda, A; Harich, R; Zuriguel, I; Maza, D; Cixous, P; Garcimartín, A
2009-03-01
We present experimental results obtained with a two-dimensional silo discharging under gravity through an orifice at the flat bottom. High-speed measurements provide enough time resolution to detect every single bead that goes out and this allows the measurement of the flow rate in short-time windows. Two different regimes are clearly distinguished: one for large orifices, which can be described by Gaussian fluctuations, and another for small orifices, in which extreme events appear. The frontier between those two regimes coincides with the outlet size below which jamming events are frequent. Moreover, it is shown that the power spectrum of the flow-rate oscillations is not dominated by any particular frequency.
A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries
Energy Technology Data Exchange (ETDEWEB)
Toreja, A J; Uddin, R
2002-10-21
A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.
Chan, B. C.
1986-05-01
A basic, limited scope, fast-running computer model is presented for the solution of two-dimensional, transient, thermally-coupled fluid flow problems. This model is to be the module in the SSC (an LMFBR thermal-hydraulic systems code) for predicting complex flow behavior, as occurs in the upper plenum of the loop-type design or in the sodium pool of the pool-type design. The nonlinear Navier-Stokes equations and the two-equation (two-variable) transport model of turbulence are reduced to a set of linear algebraic equations in an implicit finite difference scheme, based on the control volume approach. These equations are solved iteratively in a line-by-line procedure using the tri-diagonal matrix algorithm. The results of calculational examplers are shown in the computer-generated plots.
Numerical Algorithms for Two-Dimensional Dry Granular Flow with Deformable Elastic Grain
Energy Technology Data Exchange (ETDEWEB)
Boateng, H A; Elander, V; Jin, C; Li, Y; Vasquez, P; Fast, P
2005-08-11
The authors consider the dynamics of interacting elastic disks in the plane. This is an experimentally realizable two-dimensional model of dry granular flow where the stresses can be visualized using the photoelastic effect. As the elastic disks move in a vacuum, they interact through collisions with each other and with the surrounding geometry. Because of the finite propagation speed of deformations inside each grain it can be difficult to capture computationally even simple experiments involving just a few interacting grains. The goal of this project is to improve our ability to simulate dense granular flow in complex geometry. They begin this process by reviewing some past work, how they can improve upon previous work. the focus of this project is on capturing the elastic dynamics of each grain in an approximate, computationally tractable, model that can be coupled to a molecular dynamics scheme.
A minimum action method for small random perturbations of two-dimensional parallel shear flows
Wan, Xiaoliang
2013-02-01
In this work, we develop a parallel minimum action method for small random perturbations of Navier-Stokes equations to solve the optimization problem given by the large deviation theory. The Freidlin-Wentzell action functional is discretized by hp finite elements in time direction and spectral methods in physical space. A simple diagonal preconditioner is constructed for the nonlinear conjugate gradient solver of the optimization problem. A hybrid parallel strategy based on MPI and OpenMP is developed to improve numerical efficiency. Both h- and p-convergence are obtained when the discretization error from physical space can be neglected. We also present preliminary results for the transition in two-dimensional Poiseuille flow from the base flow to a non-attenuated traveling wave.
Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media
Energy Technology Data Exchange (ETDEWEB)
McBride, J.F. (ed.) (Pacific Northwest Lab., Richland, WA (USA)); Graham, D.N. (ed.); Schiegg, H.O. (SIMULTEC Ltd., Meilen/Zurich (Switzerland))
1990-10-01
In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs.
Enhanced Transport of Passive Tracers In A Time Periodic Two-dimensional Flow
Boffetta, G.; Cencini, M.; Espa, S.; Musacchio, S.
, investigating systems in which the second condition is violated is much more inter- esting. With this purpose, some experiments have shown how superdiffusion arises in a two-dimensional quasi-geostrophic (planetary-type) flow, where particles can jump for very long time in the same direction performing a Levy flight (Castiglione et al., 2001 ). Moreover, two recent papers (Vulpiani, 1998; Solomon, 2001) show how, also in very simple two-dimensional, time and space periodic cellular flows,anomalous diffusive behaviours can appear. In this paper we present an experimental study of transport in an electromagnetically forced time periodic two-dimensional flow. The flow is generated by applying an electromagnetic forcing on a thin layer of an elec- trolyte solution and reveals in a square grid of alternating vortices. Time dependence can be easily obtained by changing the time dependence of the electric fields. In par- ticular, considering certain values of the imposed oscillation frequencies, particles can display very long jump. Particle Tracking Velocimetry (PTV) is used to measure the flow field. This technique is the most suitable for studying dispersion phenomena in a Lagrangian framework allowing the direct evaluation of particle displacements and related quantities (Cenedese, Querzoli; 2000). Moreover, due to the characteristics of the analyzed flow and to the improvement of the tracking procedure, we have been able to track a great number of particles for time intervals greater than the charac- teristic time-scales of the flow. In order to characterize the time correlations we will evaluate the so-called jumps probabilities with memory which represent the probabil- ities to jump in a given direction conditioned to having experienced jumps in the same direction at previous times. Such statistics will revealed very useful and suitable for detecting the onset of the aforementioned correlations. 2
GIS-based two-dimensional numerical simulation of rainfall-induced debris flow
Directory of Open Access Journals (Sweden)
C. Wang
2008-02-01
Full Text Available This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.
GIS-based two-dimensional numerical simulation of rainfall-induced debris flow
Wang, C.; Li, S.; Esaki, T.
2008-02-01
This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.
Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor
Directory of Open Access Journals (Sweden)
Changyuan Zhai
2015-10-01
Full Text Available Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately.
Two-dimensional automatic measurement for nozzle flow distribution using improved ultrasonic sensor.
Zhai, Changyuan; Zhao, Chunjiang; Wang, Xiu; Wang, Ning; Zou, Wei; Li, Wei
2015-10-16
Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately.
Suri, Balachandra; Tithof, Jeffrey; Pallantla, Ravi Kumar; Grigoriev, Roman; Schatz, Michael
2015-11-01
The dynamical systems approach to fluid turbulence relies on understanding the role of unstable, non-chaotic solutions - such as equilibria, traveling waves, and periodic orbits - of the Navier-Stokes equations. These solutions, called Exact Coherent Structures, exist in the same parameter regime as turbulence, but being unstable, are observed in experiments only as short transients. In this talk, we present experimental evidence for the existence and dynamical relevance of unstable equilibria in a weakly turbulent quasi-two-dimensional (Q2D) Kolmogorov flow. In the experiment, this Q2D flow is generated in an electromagnetically driven shallow layer of electrolyte. The numerical simulations, however, use a strictly 2D model which incorporates the effects of the finite thickness of the fluid layer in the experiment. During its evolution, there are instances when the dynamics of a weakly turbulent flow slow down, rather dramatically. Using experimental flow fields from such instances, and by means of a Newton-Solver, we numerically compute several unstable equilibria. Additionally, using numerical simulations, we show that the dynamics of a turbulent flow in the neighbourhood of an equilibrium are accurately described by the unstable manifold of the equilibrium. This work is supported in part by the National Science Foundation under grants CBET-0900018, and CMMI-1234436.
Rupper, Greg; Rudin, Sergey; Crowne, Frank J.
2012-12-01
In the Dyakonov-Shur terahertz detector the conduction channel of a heterostructure High Electron Mobility Transistor (HEMT) is used as a plasma wave resonator for density oscillations in electron gas. Nonlinearities in the plasma wave propagation lead to a constant source-to-drain voltage, providing the detector output. In this paper, we start with the quasi-classical Boltzmann equation and derive the hydrodynamic model with temperature dependent transport coefficients for a two-dimensional viscous flow. This derivation allows us to obtain the parameters for the hydrodynamic model from the band-structure of the HEMT channel. The treatment here also includes the energy balance equation into the analysis. By numerical solution of the hydrodynamic equations with a non-zero boundary current we evaluate the detector response function and obtain the temperature dependence of the plasma resonance. The present treatment extends the theory of Dyakonov-Shur plasma resonator and detector to account for the temperature dependence of viscosity, the effects of oblique wave propagation on detector response, and effects of boundary current in two-dimensional flow on quality of the plasma resonance. The numerical results are given for a GaN channel. We also investigated a stability of source to drain flow and formation of shock waves.
Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition
Institute of Scientific and Technical Information of China (English)
Yong Zhao; Tianlin Wang; Zhi Zong
2014-01-01
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows’ simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition’s behavior.
A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows
Mininni, P D; Pouquet, A G
2004-01-01
We explore some consequences of the ``alpha model,'' also called the ``Lagrangian-averaged'' model, for two-dimensional incompressible magnetohydrodynamic (MHD) turbulence. This model is an extension of the smoothing procedure in fluid dynamics which filters velocity fields locally while leaving their associated vorticities unsmoothed, and has proved useful for high Reynolds number turbulence computations. We consider several known effects (selective decay, dynamic alignment, inverse cascades, and the probability distribution functions of fluctuating turbulent quantities) in magnetofluid turbulence and compare the results of numerical solutions of the primitive MHD equations with their alpha-model counterparts' performance for the same flows, in regimes where available resolution is adequate to explore both. The hope is to justify the use of the alpha model in regimes that lie outside currently available resolution, as will be the case in particular in three-dimensional geometry or for magnetic Prandtl number...
Experimental Analysis of Two-Dimensional Pedestrian Flow in front of the Bottleneck
cek, Marek Buká\\v; Krbálek, Milan
2014-01-01
This contribution presents experimental study of two-dimensional pedestrian flow with the aim to capture the pedestrian behaviour within the cluster formed in front of the bottleneck. Two experiments of passing through a room with one entrance and one exit were arranged according to phase transition study in Ezaki et al. (2012), the inflow rate was regulated to obtain different walking modes. By means of automatic image processing, pedestrians' paths are extracted from camera records to get actual velocity and local density. Macroscopic information is extracted by means of virtual detector and leaving times of pedestrians. The pedestrian's behaviour is evaluated by means of density and velocity. Different approaches of measurement are compared using several fundamental diagrams. Two phases of crowd behaviour have been recognized and the phase transition was described.
Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field.
Alexakis, Alexandros
2011-11-01
The magnetohydrodynamic (MHD) equations in the presence of a guiding magnetic field are investigated by means of direct numerical simulations. The basis of the investigation consists of nine runs forced at the small scales. The results demonstrate that for a large enough uniform magnetic field the large scale flow behaves as a two-dimensional (2D) (non-MHD) fluid exhibiting an inverse cascade of energy in the direction perpendicular to the magnetic field, while the small scales behave like a three-dimensional (3D) MHD fluid cascading the energy forwards. The amplitude of the inverse cascade is sensitive to the magnetic field amplitude, the domain size, the forcing mechanism, and the forcing scale. All these dependences are demonstrated by the varying parameters of the simulations. Furthermore, in the case that the system is forced anisotropically in the small parallel scales an inverse cascade in the parallel direction is observed that is feeding the 2D modes k(//)=0.
Two-Dimensional River Flow Patterns Observed with a Pair of UHF Radar System
Directory of Open Access Journals (Sweden)
Yidong Hou
2017-01-01
Full Text Available A pair of ultrahigh-frequency (UHF radars system for measuring the two-dimensional river flow patterns is presented. The system consists of two all-digital UHF radars with exactly the same hardware structure, operating separately at 329–339 MHz and 341–351 MHz. The adoption of direct radio frequency (RF sampling technique and digital pulse compression simplifies the structure of radar system and eliminates the distortion introduced by the analog mixer, which improves the SNR and dynamic range of the radar. The field experiment was conducted at Hanjiang River, Hubei province, China. Over a period of several weeks, the radar-derived surface velocity has been very highly correlated with the measurements of EKZ-I, with a correlation coefficient of 0.958 and a mean square error of 0.084 m/s.
Simulations of Viscous Accretion Flow around Black Holes in Two-Dimensional Cylindrical Geometry
Lee, Seong-Jae; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu
2016-01-01
We simulate shock-free and shocked viscous accretion flow onto a black hole in a two dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian Total Variation Diminishing (LTVD) and remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. Inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any QPO-like activity developed. The steady state shocked solution in the inviscid, as well as, in the viscous regime, matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. Such oscillation of the inner part of disk is interpreted as the source of QPO in hard X-rays observed in micro-qua...
Turbulence models and Reynolds analogy for two-dimensional supersonic compression ramp flow
Wang, Chi R.; Bidek, Maleina C.
1994-01-01
Results of the application of turbulence models and the Reynolds analogy to the Navier-Stokes computations of Mach 2.9 two-dimensional compression ramp flows are presented. The Baldwin-Lomax eddy viscosity model and the kappa-epsilon turbulence transport equations for the turbulent momentum flux modeling in the Navier-Stokes equations are studied. The Reynolds analogy for the turbulent heat flux modeling in the energy equation was also studied. The Navier-Stokes equations and the energy equation were numerically solved for the flow properties. The Reynolds shear stress, the skin friction factor, and the surface heat transfer rate were calculated and compared with their measurements. It was concluded that with a hybrid kappa-epsilon turbulence model for turbulence modeling, the present computations predicted the skin friction factors of the 8 deg and 16 deg compression ramp flows and with the turbulent Prandtl number Pr(sub t) = 0.93 and the ratio of the turbulent thermal and momentum transport coefficients mu(sub q)/mu(sub t) = 2/Prt, the present computations also predicted the surface heat transfer rates beneath the boundary layer flow of the 16 compression ramp.
Wake Effects on Drift in Two-Dimensional Inviscid Incompressible Flows
Melkoumian, Sergei
2014-01-01
This investigation analyzes the effect of vortex wakes on the Lagrangian displacement of particles induced by the passage of an obstacle in a two-dimensional incompressible and inviscid fluid. In addition to the trajectories of individual particles, we also study their drift and the corresponding total drift areas in the F\\"oppl and Kirchhoff potential flow models. Our findings, which are obtained numerically and in some regimes are also supported by asymptotic analysis, are compared to the wakeless potential flow which serves as a reference. We show that in the presence of the F\\"oppl vortex wake some of the particles follow more complicated trajectories featuring a second loop. The appearance of an additional stagnation point in the F\\"oppl flow is identified as a source of this effect. It is also demonstrated that, while the total drift area increases with the size of the wake for large vortex strengths, it is actually decreased for small circulation values. On the other hand, the Kirchhoff flow model is s...
The onset of thermal instability of a two-dimensional hydromagnetic stagnation point flow
Energy Technology Data Exchange (ETDEWEB)
Amaouche, Mustapha; Bouda, Faical Nait [Laboratoire de physique theorique, Universite de Bejaia, Route de Targua Ouzemour Bejaia (Algeria); Sadat, Hamou [Laboratoire d' Etudes Thermiques, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France)
2005-10-01
The aim of the present paper is to examine the effects of a constant magnetic field on the thermal instability of a two-dimensional stagnation point flow. First, it is shown that a basic flow, described by an exact solution of the full Navier-Stokes equations exists under some conditions relating the orientation of the magnetic field in the plane of motion to the obliqueness of free stream. The stability of the basic flow is then investigated in the usual fashion by making use of the normal mode decomposition. The resulting eigenvalue problem is solved numerically by means of a pseudo spectral collocation method based upon Laguerre's functions. The use of this procedure is warranted by the exponential damping of disturbances far from the boundary layer and the appropriate distribution of the roots of Laguerre's polynomials to treat boundary layer problems. It is found through the calculation of neutral stability curves that magnetic field acts to increase the stability of the basic flow. (author)
Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter
Jiménez-Lozano, Joel; Sen, Mihir; Dunn, Patrick F.
2009-04-01
Particle motion in an unsteady peristaltic fluid flow is analyzed. The fluid is incompressible and Newtonian in a two-dimensional planar geometry. A perturbation method based on a small ratio of wave height to wavelength is used to obtain a closed-form solution for the fluid velocity field. This analytical solution is used in conjunction with an equation of motion for a small rigid sphere in nonuniform flow taking Stokes drag, virtual mass, Faxén, Basset, and gravity forces into account. Fluid streamlines and velocity profiles are calculated. Theoretical values for pumping rates are compared with available experimental data. An application to ureteral peristaltic flow is considered since fluid flow in the ureter is sometimes accompanied by particles such as stones or bacteriuria. Particle trajectories for parameters that correspond to calcium oxalates for calculosis and Escherichia coli type for bacteria are analyzed. The findings show that retrograde or reflux motion of the particles is possible and bacterial transport can occur in the upper urinary tract when there is a partial occlusion of the wave. Dilute particle mixing is also investigated, and it is found that some of the particles participate in the formation of a recirculating bolus, and some of them are delayed in transit and eventually reach the walls. This can explain the failure of clearing residuals from the upper urinary tract calculi after successful extracorporeal shock wave lithotripsy. The results may also be relevant to the transport of other physiological fluids and industrial applications in which peristaltic pumping is used.
Numerical simulation of two-dimensional fluid flow with strong shocks
Energy Technology Data Exchange (ETDEWEB)
Woodward, P.; Colella, P.
1984-04-01
Results of an extensive comparison of numerical methods for simulating hydrodynamics are presented and discussed. This study focuses on the simulation of fluid flows with strong shocks in two dimensions. By ''strong shocks,'' we here refer to shocks in which there is substantial entropy production. For the case of shocks in air, we therefore refer to Mach numbers of three and greater. For flows containing such strong shocks we find that a careful treatment of flow discontinuities is of greatest importance in obtaining accurate numerical results. Three aproaches to treating discontinuities in the flow are discussed-artificial viscosity, blending of low- and high-order-accurate fluxes, and the use of nonlinear solutions to Riemann's problem. The advantages and disadvantages of each approach are discussed and illustrated by computed results for three test problems. In this comparison we have focused our attention entirely upon the performance of schemes for differencing the hydrodynamic equations. We have regarded the nature of the grid upon which such differencing schemes are applied as an independent issue outside the scope of this work. Therefore we have restricted our study to the case of uniform, square computational zones in Cartesian coordinates. For simplicity we have further restricted our attention to two-dimensional difference schemes which are built out of symmetrized products of one-dimensional difference operators.
Gai, Ya; Leong, Chia Min; Cai, Wei; Tang, Sindy K. Y.
2016-11-01
Here we report a surprising order in concentrated emulsion when flowing as a monolayer in a tapered microfluidic channel. The flow of droplets in micro-channels can be non-trivial, and may lead to unexpected phenomena such as long-period oscillations and chaos. Previously, there have been studies on concentrated emulsions in straight channels and channels with bends. The dynamics of how drops flow and rearrange in a tapered geometry has not yet been characterized. At sufficiently slow flow rates, the drops arrange into a hexagonal lattice. At a given x-position, the time-averaged droplet velocities are uniform. The instantaneous drop velocities, however, reveal a different, wave-like pattern. Within the rearrangement zone where the number of rows of drops decreases from N to N-1, there is always a drop moved faster than the others. Close examination reveals the anomalous velocity profile arises from a series of dislocations that are both spatial and temporal periodic. To our knowledge, such reproducible dislocation motion has not been reported before. Our results are useful in novel flow control and mixing strategies in droplet microfluidics as well as modeling crystal plasticity in low-dimensional nanomaterials.
Directory of Open Access Journals (Sweden)
P. Martini
2004-01-01
Full Text Available The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.
Dual-RiverSonde measurements of two-dimensional river flow patterns
Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Stumpner, P.; Burau, J.R.
2008-01-01
Two-dimensional river flow patterns have been measured using a pair of RiverSondes in two experiments in the Sacramento-San Joaquin River Delta system of central California during April and October 2007. An experiment was conducted at Walnut Grove, California in order to explore the use of dual RiverSondes to measure flow patterns at a location which is important in the study of juvenile fish migration. The data available during the first experiment were limited by low wind, so a second experiment was conducted at Threemile Slough where wind conditions and surface turbulence historically have resulted in abundant data. Both experiments included ADCP near-surface velocity measurements from either manned or unmanned boats. Both experiments showed good comparisons between the RiverSonde and ADCP measurements. The flow conditions at both locations are dominated by tidal effects, with partial flow reversal at Walnut Grove and complete flow reversal at Threemile Slough. Both systems showed complex flow patterns during the flow reversals. Quantitative comparisons between the RiverSondes and an ADCP on a manned boat at Walnut Grove showed mean differences of 4.5 cm/s in the u (eastward) and 7.6 cm/s in the v (northward) components, and RMS differences of 14.7 cm/s in the u component and 21.0 cm/s in the v component. Quantitative comparisons between the RiverSondes and ADCPs on autonomous survey vessels at Threemile Slough showed mean differences of 0.007 cm/s in the u component and 0.5 cm/s in the v component, and RMS differences of 7.9 cm/s in the u component and 13.5 cm/s in the v component after obvious outliers were removed. ?? 2008 IEEE.
The flow of a foam in a two-dimensional porous medium
Géraud, Baudouin; Jones, Siân. A.; Cantat, Isabelle; Dollet, Benjamin; Méheust, Yves
2016-02-01
Foams have been used for decades as displacing fluids for enhanced oil recovery and aquifer remediation, and more recently, for remediation of the vadose zone, in which case foams carry chemical amendments. Foams are better injection fluids than aqueous solutions due to their low sensitivity to gravity and because they are less sensitive to permeability heterogeneities, thus allowing a more uniform sweep. The latter aspect results from their peculiar rheology, whose understanding motivates the present study. We investigate foam flow through a two-dimensional porous medium consisting of circular obstacles positioned randomly in a horizontal transparent Hele-Shaw cell. The local foam structure is recorded in situ, which provides a measure of the spatial distribution of bubble velocities and sizes at regular time intervals. The flow exhibits a rich phenomenology including preferential flow paths and local flow nonstationarity (intermittency) despite the imposed permanent global flow rate. Moreover, the medium selects the bubble size distribution through lamella division-triggered bubble fragmentation. Varying the mean bubble size of the injected foam, its water content, and mean velocity, we characterize those processes systematically. In particular, we measure the spatial evolution of the distribution of bubble areas, and infer the efficiency of bubble fragmentation depending on the various control parameters. We furthermore show that the distributions of bubble sizes and velocities are correlated. This study sheds new light on the local rheology of foams in porous media and opens the way toward quantitative characterization of the relationship between medium geometry and foam flow properties. It also suggests that large-scale models of foam flows in the subsurface should account for the correlation between bubble sizes and velocities.
One- and two-dimensional modelling of overland flow in semiarid shrubland, Jornada basin, New Mexico
Howes, David A.; Abrahams, Athol D.; Pitman, E. Bruce
2006-03-01
Two distributed parameter models, a one-dimensional (1D) model and a two-dimensional (2D) model, are developed to simulate overland flow in two small semiarid shrubland watersheds in the Jornada basin, southern New Mexico. The models are event-based and represent each watershed by an array of 1-m2 cells, in which the cell size is approximately equal to the average area of the shrubs.Each model uses only six parameters, for which values are obtained from field surveys and rainfall simulation experiments. In the 1D model, flow volumes through a fixed network are computed by a simple finite-difference solution to the 1D kinematic wave equation. In the 2D model, flow directions and volumes are computed by a second-order predictor-corrector finite-difference solution to the 2D kinematic wave equation, in which flow routing is implicit and may vary in response to flow conditions.The models are compared in terms of the runoff hydrograph and the spatial distribution of runoff. The simulation results suggest that both the 1D and the 2D models have much to offer as tools for the large-scale study of overland flow. Because it is based on a fixed flow network, the 1D model is better suited to the study of runoff due to individual rainfall events, whereas the 2D model may, with further development, be used to study both runoff and erosion during multiple rainfall events in which the dynamic nature of the terrain becomes an important consideration.
Jamming of particles in a two-dimensional fluid-driven flow
Guariguata, Alfredo; Pascall, Masika A.; Gilmer, Matthew W.; Sum, Amadeu K.; Sloan, E. Dendy; Koh, Carolyn A.; Wu, David T.
2012-12-01
The jamming of particles under flow is of critical importance in a broad range of natural and industrial settings, such as the jamming of ice in rivers, or the plugging of suspended solids in pipeline transport. Relatively few studies have been carried out on jamming of suspended particles under flow, in comparison to the many studies on jamming in gravity-driven flows that have revealed various features of the jamming process. Fluid-driven particle flows differ in several aspects from gravity-driven flows, particularly in being compatible with a range of particle concentrations and velocities. Additionally, there are fluid-particle interactions and hydrodynamic effects. To investigate particle jamming in fluid-driven flows, we have performed both experiments and computer simulations on the flow of circular particles floating over water in an open channel with a restriction. We determined the flow-rate boundary for a dilute-to-dense flow transition, similar to that seen in gravity-driven flows. The maximum particle throughput increased for larger restriction sizes consistent with a Beverloo equation form over the entire range of particle mixtures and restriction sizes. The exponent of ˜3/2 in the Beverloo equation is consistent with approximately constant acceleration of grains due to fluid drag in the immediate region of the opening. We verified that the jamming probability from the dense flow gave a geometric distribution in the number of particles escaping before a jam. The probability of jamming in both experiments and simulations was found to be dependent on the ratio of channel opening to particle size, but only weakly dependent on the fluid flow velocity. Flow entrance effects were measured and observed to affect the jamming probability, and dependence on particle friction coefficient was determined from simulation. A comprehensive model for the jamming probability integrating these observations from the different flow regimes was shown to be in good
Effect of a levee setback on aquatic resources using two-dimensional flow and bioenergetics models
Black, Robert W.; Czuba, Christiana R.; Magirl, Christopher S.; McCarthy, Sarah; Berge, Hans; Comanor, Kyle
2016-04-05
Watershed restoration is the focus of many resource managers and can include a multitude of restoration actions each with specific restoration objectives. For the White River flowing through the cities of Pacific and Sumner, Washington, a levee setback has been proposed to reconnect the river with its historical floodplain to help reduce flood risks, as well as provide increased habitat for federally listed species of salmonids. The study presented here documents the use of a modeling framework that integrates two-dimensional hydraulic modeling with process-based bioenergetics modeling for predicting how changes in flow from reconnecting the river with its floodplain affects invertebrate drift density and the net rate of energy intake of juvenile salmonids. Modeling results were calculated for flows of 25.9 and 49.3 cubic meters per second during the spring, summer, and fall. Predicted hypothetical future mean velocities and depths were significantly lower and more variable when compared to current conditions. The abundance of low energetic cost and positive growth locations for salmonids were predicted to increase significantly in the study reach following floodplain reconnection, particularly during the summer. This modeling framework presents a viable approach for evaluating the potential fisheries benefits of reconnecting a river to its historical floodplain that integrates our understanding of hydraulic, geomorphology, and organismal biology.
Unsteady Free-surface Waves Due to a Submerged Body in Two-dimensional Oseen Flows
Institute of Scientific and Technical Information of China (English)
LUDong-qiang; AllenT.CHWANG
2004-01-01
The two-dimensional unsteady free-surface waves due to a submerged body moving in an incompressible viscous fluid of infinite depth is considered.The disturbed flow is governed by the unsteadyOseen equations with the kinematic and dynamic boundary conditions linearized for the free-surface waves.Accordingly, the body is mathematically simulated by an Oseenlet with a periodically oscillating strength.By means of Fourier transforms,the exact solution for the free-surface waves is expressed by an integral with a complex dispersion function, which explicitly shows that the wave dynamics is characterized by a Reynolds number and a Strouhal number.By applying Lighthill's theorem, asymptotic representations are derived for the far-field waves with a sub-critical and a super-critical Strouhal number. It is found that the generated waves due to the oscillating Oseenlet consist of the steady-state and transient responses. For the viscous flow with a sub-critical Strouhal number, there exist four waves: three propagate downstream while one propagates upstream.However, for the viscous flow with a super-critical Strouhal number, there exist two waves only,which propagate downstream.
Two-dimensional relativistic space charge limited current flow in the drift space
Energy Technology Data Exchange (ETDEWEB)
Liu, Y. L.; Chen, S. H., E-mail: chensh@ncu.edu.tw [Department of Physics, National Central University, Jhongli 32001, Taiwan (China); Koh, W. S. [A-STAR Institute of High Performance Computing, Singapore 138632 (Singapore); Ang, L. K. [Engineering Product Development, Singapore University of Technology and Design, Singapore 138682 (Singapore)
2014-04-15
Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.
ONE- AND TWO-DIMENSIONAL COUPLED HYDRODYNAMICS MODEL FOR DAM BREAK FLOW
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
1-D and 2-D mathematical models for dam break flow were established and verified with the measured data in laboratory. The 1-D and 2-D models were then coupled, and used to simulate the dam break flow from the reservoir tail to the dam site, the propagation of dam break waves in the downstream channel, and the submergence of dam break flow in the downstream town with the hydrodynamics method. As a numerical example, the presented model was employed to simulate dam break flow of a hydropower station under construction. In simulation, different dam-break durations, upstream flows and water levels in front of dam were considered, and these influencing factors of dam break flow were analyzed, which could be referenced in planning and designing hydropower stations.
Gelfgat, Alexander Yu.
2016-08-01
A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin-Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented.
Two-dimensional Rarefaction Waves in the High-speed Two-phase Flow
Nakagawa, Masafumi; Harada, Atsushi
Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. The purpose of the present study is to elucidate theoretically the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. Two-dimensional basic equations for the compressible two-phase flow are introduced considering the inter-phase momentum transfer. Sound velocities are obtained from these equations by using monochromatic wave approximation. Those depend on the relaxation time that determines the momentum transfer. The two-phase flow with large relaxation times has a frozen sound velocity, and with small one has an equilibrium sound velocity. Rarefaction waves which occurred behind the two-phase flow nozzle are calculated by the CIP method. Although the frozen Mach number, below one, controls these basic equations, the rarefaction waves appeared for small relaxation time. The Mach line behind which the expansion starts depends on the inlet velocity and the relaxation time. Those relationships are shown in this paper. The pressure expansion curves are only a function of the revolution angle around the corner of the nozzle outlet for the relaxation time less than 0.1. For the larger relaxation time, the pressure decays because of internal friction caused by inter phase momentum transfer, and the expansion curves are a function of not only the angle but also the flow direction. The calculated expansion curves are compared with the experimental ones
Tran, S B Q; Thibault, Pierre; 10.1063/1.4751348
2012-01-01
This paper presents a microfluidic device that implements standing surface acoustic waves in order to handle single cells, droplets, and generally particles. The particles are moved in a very controlled manner by the two-dimensional drifting of a standing wave array, using a slight frequency modulation of two ultrasound emitters around their resonance. These acoustic tweezers allow any type of motion at velocities up to few 10mm/s, while the device transparency is adapted for optical studies. The possibility of automation provides a critical step in the development of lab-on-a-chip cell sorters and it should find applications in biology, chemistry, and engineering domains.
Al-Kouz, Wael; Alshare, Aiman; Alkhalidi, Ammar; Kiwan, Suhil
2016-01-01
A numerical simulation of the steady two-dimensional laminar natural convection heat transfer for the gaseous low-pressure flows in the annulus region between two concentric horizontal cylinders is carried out. This type of flow occurs in "evacuated" solar collectors and in the receivers of the solar parabolic trough collectors. A finite volume code is used to solve the coupled set of governing equations. Boussinesq approximation is utilized to model the buoyancy effect. A correlation for the thermal conductivity ratio (k r = k eff/k) in terms of Knudsen number and the modified Rayleigh number is proposed for Prandtl number (Pr = 0.701). It is found that as Knudsen number increases then the thermal conductivity ratio decreases for a given Rayleigh number. Also, it is shown that the thermal conductivity ratio k r increases as Rayleigh number increases. It appears that there is no consistent trend for varying the dimensionless gap spacing between the inner and the outer cylinder ([Formula: see text]) on the thermal conductivity ratio (k r) for the considered spacing range.
Two dimensional heat transfer problem in flow boiling in a rectangular minichannel
Directory of Open Access Journals (Sweden)
Hożejowska Sylwia
2015-01-01
Full Text Available The paper presents mathematical modelling of flow boiling heat transfer in a rectangular minichannel asymmetrically heated by a thin and one-sided enhanced foil. Both surfaces are available for observations due to the openings covered with glass sheets. Thus, changes in the colour of the plain foil surface can be registered and then processed. Plain side of the heating foil is covered with a base coat and liquid crystal paint. Observation of the opposite, enhanced surface of the minichannel allows for identification of the gas-liquid two-phase flow patterns and vapour quality. A two-dimensional mathematical model of heat transfer in three subsequent layers (sheet glass, heating foil, liquid was proposed. Heat transfer in all these layers was described with the respective equations: Laplace equation, Poisson equation and energy equation, subject to boundary conditions corresponding to the observed physical process. The solutions (temperature distributions in all three layers were obtained by Trefftz method. Additionally, the temperature of the boiling liquid was obtained by homotopy perturbation method (HPM combined with Trefftz method. The heat transfer coefficient, derived from Robin boundary condition, was estimated in both approaches. In comparison, the results by both methods show very good agreement especially when restricted to the thermal sublayer.
Institute of Scientific and Technical Information of China (English)
Mohammad Ali; S.Ahmed; A.K.M.Sadrul Islam
2003-01-01
A numerical investigation has been performed on supersonic mixing of hydrogen with air in a Scramjet(Supersonic Combustion Ramjet) combustor and its flame holding capability by solving Two-Dimensional full Navier-Stokes equations. The main flow is air entering through a finite width of inlet and gaseous hydrogen is injected perpendicularly from the side wall. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. In this study the enhancement of mixing and good flame holding capability of a supersonic combustor have been investigated by varying the distance of injector position from left boundary keeping constant the backward-facing step height and other calculation parameters. The results show that the configuration for small distance of injector position has high mixing efficiency but the upstream recirculation can not evolved properly which is an important factor for flame holding capability. On the other hand, the configuration for very long distance has lower mixing efficiency due to lower gradient of hydrogen mass concentration on the top of injector caused by the expansion of side jet in both upstream and downstream of injector. For moderate distance of injector position, large and elongated upstream recirculation can evolve which might be activated as a good flame holder.
Simulations of Viscous Accretion Flow around Black Holes in a Two-dimensional Cylindrical Geometry
Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu
2016-11-01
We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.
Institute of Scientific and Technical Information of China (English)
Guangyong Zhou; Michael James Ventura; Min Gu
2003-01-01
Two-dimensional (2D) triangular void channel photonic crystals with different lattice constants stacked in two different directions were fabricated by using femtosecond laser micro-explosion in solid polymer material. Fundamental and higher-order stop gaps were observed both in the infrared transmission and reflection spectra. There is an approximately linear relationship between the gap position and the lattice constant. The suppression of the fundamental gap is as high as 70% for 24-layer structures stacked in the Г-M direction.
Huang, Huaxiong; Takagi, Shu
2003-08-01
In this paper, we study the convergence property of PHYSALIS when it is applied to incompressible particle flows in two-dimensional space. PHYSALIS is a recently proposed iterative method which computes the solution without imposing the boundary conditions on the particle surfaces directly. Instead, a consistency equation based on the local (near particle) representation of the solution is used as the boundary conditions. One of the important issues needs to be addressed is the convergence properties of the iterative procedure. In this paper, we present the convergence analysis using Laplace and biharmonic equations as two model problems. It is shown that convergence of the method can be achieved but the rate of convergence depends on the relative locations of the cages. The results are directly related to potential and Stokes flows. However, they are also relevant to Navier-Stokes flows, heat conduction in composite media, and other problems.
Wan, Xiaoliang; Yu, Haijun; Weinan, E.
2015-05-01
In this work, we study the nonlinear instability of two-dimensional (2D) wall-bounded shear flows from the large deviation point of view. The main idea is to consider the Navier-Stokes equations perturbed by small noise in force and then examine the noise-induced transitions between the two coexisting stable solutions due to the subcritical bifurcation. When the amplitude of the noise goes to zero, the Freidlin-Wentzell (F-W) theory of large deviations defines the most probable transition path in the phase space, which is the minimizer of the F-W action functional and characterizes the development of the nonlinear instability subject to small random perturbations. Based on such a transition path we can define a critical Reynolds number for the nonlinear instability in the probabilistic sense. Then the action-based stability theory is applied to study the 2D Poiseuille flow in a short channel.
Institute of Scientific and Technical Information of China (English)
Kyu; Hwan; Hwang; G.; Hugh; Song; Chanmook; Lim; Soan; Kim; Kyung-Won; Chun; Mahn; Yong; Park
2003-01-01
A channel-drop filter has been designed based on the two-dimensional triangular-lattice hole photonic-crystal structure, which consists of two line defects and two point defects, by a two-dimensional finite-difference time-domain simulation.
Danila, Bogdan; Mocanu, Gabriela
2015-01-01
We investigate the transition to Self Organized Criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a Self Organized Critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one dimensional signatures in the magnetic two dimensional system, once the Self Organized Critical regime is established. The applications of the model for the study of Gamma Ray Bursts is briefly considered, and it is shown that some astrophysical paramet...
Pan, Tsorng-Whay
2016-01-01
In this article we present a numerical method for simulating the sedimentation of circular particles in two-dimensional channel filled with a viscoelastic fluid of FENE-CR type, which is generalized from a domain/distributed Lagrange multiplier method with a factorization approach for Oldroyd-B fluids developed in [J. Non-Newtonian Fluid Mech. 156 (2009) 95]. Numerical results suggest that the polymer extension limit L for the FENE-CR fluid has no effect on the final formation of vertical chain for the cases of two disks and three disks in two-dimensional narrow channel, at least for the values of L considered in this article; but the intermediate dynamics of particle interaction before having a vertical chain can be different for the smaller values of L when increasing the relaxation time. For the cases of six particles sedimenting in FENE-CR type viscoelastic fluid, the formation of chain of 4 to 6 disks does depend on the polymer extension limit L. For the smaller values of L, FENE-CR type viscoelastic flu...
HO, Yat-Kiu; LIU, Chun-Ho
2015-04-01
The atmospheric boundary layer (ABL) immediately above the urban canopy is the roughness sublayer (RSL). In this layer, flows and turbulence are strongly affected by the roughness elements beneath, e.g. building obstacles. The wind flows over urban areas could be represented by conventional logarithmic law of the wall (log-law) in the neutrally stratified ABL. However, in the RSL region, the vertical wind profile deviates from that predicted from log-law and the effect could be extended from ground level up to several canopy heights. As a result, the Monin-Obukhov similarity theory (MOST) fails and an additional length scale is required to describe the flows. The key aim of this study is to introduce a simple wind profile model which accounts for the effect of the RSL in neutral stratification using wind tunnel experiments. Profile measurements of wind speeds and turbulence quantities over various two-dimensional (2D) idealised roughness elements are carried out in an open-circuit wind tunnel with test section of size 560 mm (width) × 560 mm (height) × 6 m (length). The separation between the roughness elements is varied systematically so that ten different types of surface forms are adopted. The velocity measurements are obtained by hot-wire anemometry using X-probe design (for UW- measurements) with a constant temperature anemometer. For each configuration, eight vertical profiles are collected over the canopy, including solid boundaries and cavities of the roughness elements. Firstly, we compute the measurement results using conventional MOST to determine different roughness parameters. Afterwards, we derive the RSL height from the Reynolds stress profiles. Since the profiles taken from different locations of the canopy are eventually converged with increasing height, we use this 'congregated height' to define the RSL height. Next, we introduce an alternative function, i.e. power-law function, instead of MOST, to describe the velocity profile in attempt to
The Second Las Cruces Trench Experiment: Experimental Results and Two-Dimensional Flow Predictions
Hills, R. G.; Wierenga, P. J.; Hudson, D. B.; Kirkland, M. R.
1991-10-01
As part of a comprehensive field study designed to provide data to test stochastic and deterministic models of water flow and contaminant transport in the vadose zone, several trench experiments were performed in the semiarid region of southern New Mexico. The first trench experiment is discussed by Wierenga et al. (this issue). During the second trench experiment, a 1.2 m wide by 12 m long area on the north side of and parallel to a 26.4 m long by 4.8 m wide by 6m deep trench was irrigated with water containing tracers using a carefully controlled drip irrigation system. The irrigated area was heavily instrumented with tensiometers and neutron probe access tubes to monitor water movement, and with suction samplers to monitor solute transport. Water containing tritium and bromide was. applied during the first 11.5 days of the study. Thereafter, water was applied without tracers for an additional 64 days. Both water movement and tracer movement were monitored in the subsoil during infiltration and redistribution. The experimental results indicate that water and bromide moved fairly uniformly during infiltration and the bromide moved ahead of the tritium due to anion exclusion during redistribution. Comparisons between measurements and predictions made with a two-dimensional model show qualitative agreement for two of the three water content measurement planes. Model predictions of tritium and bromide transport were not as satisfactory. Measurements of both tritium and bromide show localized areas of high relative concentrations and a large downward motion of bromide relative to tritium during redistribution. While the simple deterministic model does show larger downward motions for bromide than for tritium during redistribution, it does not predict the high concentrations of solute observed during infiltration, nor can it predict the heterogeneous behavior observed for tritium during infiltration and for bromide during redistribution.
Bouncing, rolling, energy flows, and cluster formation in a two-dimensional vibrated granular gas
Pérez-Ángel, Gabriel; Nahmad-Molinari, Yuri
2011-10-01
We study the formation of crystalline clusters for a two-dimensional (2D) sinusoidally vibrated granular gas, with maximum vertical acceleration smaller than gravity, using fully 3D simulations. It is found that this phenomenon arises from the spontaneous segregation of the granulate into two dynamical modes: one of grains that bounce in synchrony with the motion of the sustaining plate (“bouncers”) and another of grains that cease to bounce and simply rolls on the plate, without ever loosing contact with it (“rollers”). These two dynamical categories are quite robust with respect to perturbations. The populations for bouncers and rollers depend on the preparation of the granulate and can be made to take arbitrary values in all the range of accelerations where both dynamical modes are present. It is found that the dynamical mode with the largest population coalesces in clusters under the influence of the other mode, whose grains act as a higher pressure gas that compresses the clusters. In this way it is possible to produce clusters of rollers or clusters of bouncers. A gas made of grains from only one dynamical class shows only weak density fluctuations. When the occupation fractions for both modes are similar, one observes segregation and clusters of both types. The clustering of the gas is monitored using both the average coordination number and the local hexatic order parameter ψ6. Energy flows in the plane are monitored, and it is shown that roller-bouncer collisions increase horizontal kinetic energy, while all other types of collisions reduce this energy. We find that friction with the substrate is the main sink of horizontal energy for these granular gases.
Fast chemical reaction in two-dimensional Navier-Stokes flow: initial regime.
Ait-Chaalal, Farid; Bourqui, Michel S; Bartello, Peter
2012-04-01
This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ[over ̃]. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ[over ̃] in the early part of the trajectory. We show that the chemical speed scales like κ(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.
Energy Technology Data Exchange (ETDEWEB)
Costa-Cabral, M.C. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik
1999-07-01
Current Lagrangian models for simulating advective transport of trace species in a discretized two-dimensional flow field use simplified descriptions of tracer sources, receptors and flow paths. When 'forward trajectories' are used, a diffuse source spread over a two-dimensional grid cell is treated as a single point source located at the cell's center, and its flow is projected in the downflow direction by a line. When 'backward trajectories' are used, each cell is treated as a point receptor and flow is projected back in time in the upflow direction by a line. In both cases, two-dimensional sources or receptors are treated as zero dimensional, and two-dimensional flow tubes are replaced by one-dimensional lines. While these simplifications may be acceptable in some cases, they can generate large errors when the flow field contains regions of considerable divergence of flow directions, or when fine scales are used. A new algorithm is introduced, called TUBES, which provides an exact solution to advective transport in a discretized two-dimensional flow field. TUBES uses two-dimensional flow tubes whose width expands and contracts over directionally divergent and convergent regions of the flow field, respectively. TUBES has applications in a wide variety of the earth sciences, including atmospheric science, oceanography, and surface and groundwater hydrology. (orig.) [German] Gegenwaertige Lagrange-Modelle zur Simulation advektiver Transporte von Tracern in einem diskretisierten zweidimensionalen Stroemungsfeld verwenden vereinfachte Beschreibungen der Quellen, Rezeptoren und Transportwege. Bei der Verwendung vorwaerts gerichteter Trajektorien ('forward trajectories') werden diffusive Quellen, die ueber eine zweidimensionale Gitterzelle verteilt sind, als Punktquelle behandelt, und der Transport mit der Stroemung erfolgt entlang einer Linie. Bei der Verwendung rueckwaerts gerichteter Trajektorien ('backward trajectories
Doraiswamy, A.; Patz, T.; Narayan, R. J.; Dinescu, M.; Modi, R.; Auyeung, R. C. Y.; Chrisey, D. B.
2006-04-01
Laser micromachining of hydrophobic gels into CAD/CAM patterns was used to develop differentially adherent surfaces and induce the attachment of B35 rat neuroblasts that would later form engineered nerve bundles. Narrow channels, 60-400 μm wide, were micromachined in a 2% agarose gel using an ArF laser, and subsequently filled with an extracellular matrix gel. Upon the addition of 1 ml of a 2 × 104 cells/ml neuroblast suspension, the cells selectively adhered to the ECM-lined channels in a non-confluent manner and we monitored their growth at various time points. The adherent neuroblasts were fluorescently imaged with a propidium iodide live/dead assay, which revealed that the cells were alive within the channels. After 72 h growth, the neuroblasts grew, proliferated, and differentiated into nerve bundles. The fully grown 1 cm long nerve bundle organoids maintained an aspect ratio on the order of 100. The results presented in this paper provide the foundation for laser micromachining technique to develop bioactive substrates for development of three-dimensional tissues. Laser micromachining offers rapid prototyping of substrates, excellent resolution, control of pattern depth and dimensions, and ease of fabrication.
Olson, L. E.; Dvorak, F. A.
1976-01-01
The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary-layer and potential-flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary-layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible.
Olson, L. E.; Dvorak, F. A.
1975-01-01
The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary layer and potential flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible.
Di Bernardino, Annalisa; Monti, Paolo; Leuzzi, Giovanni; Querzoli, Giorgio
2017-07-01
Lagrangian and Eulerian statistics are obtained from a water-channel experiment of an idealized two-dimensional urban canopy flow in neutral conditions. The objective is to quantify the Eulerian (TE) and Lagrangian (TL) time scales of the turbulence above the canopy layer as well as to investigate their dependence on the aspect ratio of the canopy, AR, as the latter is the ratio of the width (W) to the height (H) of the canyon. Experiments are also conducted for the case of flat terrain, which can be thought of as equivalent to a classical one-directional shear flow. The values found for the Eulerian time scales on flat terrain are in agreement with previous numerical results found in the literature. It is found that both the streamwise and vertical components of the Lagrangian time scale, T_u^L and T_w^L , follow Raupach's linear law within the constant-flux layer. The same holds true for T_w^L in both the canopies analyzed (AR= 1 and AR= 2 ) and also for T_u^L when AR = 1 . In contrast, for AR = 2 , T_u^L follows Raupach's law only above z=2H . Below that level, T_u^L is nearly constant with height, showing at z=H a value approximately one order of magnitude greater than that found for AR = 1 . It is shown that the assumption usually adopted for flat terrain, that β =TL/TE is proportional to the inverse of the turbulence intensity, also holds true even for the canopy flow in the constant-flux layer. In particular, γ /i_u fits well β _u =T_u^L /T_u^E in both the configurations by choosing γ to be 0.35 (here, i_u =σ _u / \\bar{u} , where \\bar{u} and σ _u are the mean and the root-mean-square of the streamwise velocity component, respectively). On the other hand, β _w =T_w^L /T_w^E follows approximately γ /i_w =0.65/( {σ _w /\\bar{u} } ) for z > 2H , irrespective of the AR value. The second main objective is to estimate other parameters of interest in dispersion studies, such as the eddy diffusivity of momentum (KT) and the Kolmogorov constant (C_0) . It
Nanofluidic electrokinetics in quasi-two-dimensional branched U-turn channels
Parikesit, G.O.F.
2008-01-01
Lab-on-a-Chip (LOC) is a new technology focused on analyzing and controlling flows of fluids, ions, and (bio) particles on the nanometer and micrometer scales, allowing us to shrink a complete fluid-based laboratory into a coin-sized instrumentation. In this thesis, we study a novel fluidic structur
Wind Tunnel Study on Flows over Various Two-dimensional Idealized Urban-liked Surfaces
Ho, Yat-Kiu; Liu, Chun-Ho
2013-04-01
Extensive human activities (e.g. increased traffic emissions) emit a wide range of pollutants resulting in poor urban area air quality. Unlike open, flat and homogenous rural terrain, urban surface is complicated by the presence of buildings, obstacles and narrow streets. The irregular urban surfaces thus form a random roughness that further modifies the near-surface flows and pollutant dispersion. In this study, a physical modelling approach is employed to commence a series of wind tunnel experiments to study the urban-area air pollution problems. The flow characteristics over different hypothetical urban roughness surfaces were studied in a wind tunnel in isothermal conditions. Preliminary experiments were conducted based on six types of idealized two-dimensional (2D) street canyon models with various building-height-to-street-width (aspect) ratios (ARs) 1, 1/2, 1/4, 1/8, 1/10 and 1/12. The main instrumentation is an in-house 90o X-hotwire anemometry. In each set of configuration, a sampling street canyon was selected near the end of the streamwise domain. Its roof level, i.e. the transverse between the mid points of the upstream and downstream buildings, was divided into eight segments. The measurements were then recorded on the mid-plane of the spannwise domain along the vertical profile (from building roof level to the ceiling of wind tunnel) of the eight segments. All the data acquisition processes were handled by the NI data acquisition modules, NI 9239 and CompactDAQ-9188 hardware. Velocity calculation was carried out in the post-processing stage on a digital computer. The two-component flow velocities and velocity fluctuations were calculated at each sampling points, therefore, for each model, a streamwise average of eight vertical profiles of mean velocity and velocity fluctuations was presented. A plot of air-exchange rate (ACH) against ARs was also presented in order to examine the ventilation performance of different tested models. Preliminary results
Froessling, Nils
1958-01-01
The fundamental boundary layer equations for the flow, temperature and concentration fields are presented. Two dimensional symmetrical and unsymmetrical and rotationally symmetrical steady boundary layer flows are treated as well as the transfer boundary layer. Approximation methods for the calculation of the transfer layer are discussed and a brief survey of an investigation into the validity of the law that the Nusselt number is proportional to the cube root of the Prandtl number is presented.
水坝绕流的数值研究%Numerical Study of Two-Dimensional Viscous Flow over Dams
Institute of Scientific and Technical Information of China (English)
王利兵; 刘宇陆; 涂敏杰
2003-01-01
In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.
Kalyanapu, A. J.; Dullo, T. T.; Thornton, J. C.; Auld, L. A.
2015-12-01
Obion River, is located in the northwestern Tennessee region, and discharges into the Mississippi River. In the past, the river system was largely channelized for agricultural purposes that resulted in increased erosion, loss of wildlife habitat and downstream flood risks. These impacts are now being slowly reversed mainly due to wetland restoration. The river system is characterized by a large network of "loops" around the main channels that hold water either from excess flows or due to flow diversions. Without data on each individual channel, levee, canal, or pond it is not known where the water flows from or to. In some segments along the river, the natural channel has been altered and rerouted by the farmers for their irrigation purposes. Satellite imagery can aid in identifying these features, but its spatial coverage is temporally sparse. All the alterations that have been done to the watershed make it difficult to develop hydraulic models, which could predict flooding and droughts. This is especially true when building one-dimensional (1D) hydraulic models compared to two-dimensional (2D) models, as the former cannot adequately simulate lateral flows in the floodplain and in complex terrains. The objective of this study therefore is to study the performance of 1D and 2D flood models in this complex river system, evaluate the limitations of 1D models and highlight the advantages of 2D models. The study presents the application of HEC-RAS and HEC-2D models developed by the Hydrologic Engineering Center (HEC), a division of the US Army Corps of Engineers. The broader impacts of this study is the development of best practices for developing flood models in channelized river systems and in agricultural watersheds.
Gallet, Basile
2015-01-01
We investigate the behavior of flows, including turbulent flows, driven by a horizontal body-force and subject to a vertical magnetic field, with the following question in mind: for very strong applied magnetic field, is the flow mostly two-dimensional, with remaining weak three-dimensional fluctuations, or does it become exactly 2D, with no dependence along the vertical? We first focus on the quasi-static approximation, i.e. the asymptotic limit of vanishing magnetic Reynolds number Rm << 1: we prove that the flow becomes exactly 2D asymptotically in time, regardless of the initial condition and provided the interaction parameter N is larger than a threshold value. We call this property "absolute two-dimensionalization": the attractor of the system is necessarily a (possibly turbulent) 2D flow. We then consider the full-magnetohydrodynamic equations and we prove that, for low enough Rm and large enough N, the flow becomes exactly two-dimensional in the long-time limit provided the initial vertically-de...
Two-dimensional (2+n) REMPI of CH(3)Br: photodissociation channels via Rydberg states.
Kvaran, Agúst; Wang, Huasheng; Matthíasson, Kristján; Bodi, Andras
2010-09-23
(2+n) resonance enhanced multiphoton ionization (REMPI) spectra of CH(3)Br for the masses H(+), CH(m)(+), (i)Br(+), H(i)Br(+), and CH(m)(i)Br(+) (m = 0-3; i = 79, 81) have been recorded in the 66 000-81 000 cm(-1) resonance energy range. Signals due to resonance transitions from the zero vibrational energy level of the ground state CH(3)Br to a number of Rydberg states [Ω(c)]nl;ω (Ω(c) = 3/2, 1/2; ω = 0, 2; l = 1(p), 2(d)) and various vibrational states were identified. C((3)P) and C*((1)D) atom and HBr intermediate production, detected by (2+1) REMPI, most probably is due to photodissociation of CH(3)Br via two-photon excitations to Rydberg states followed by an unusual breaking of four bonds and formation of two bonds to give the fragments H(2) + C/C* + HBr prior to ionization. This observation is supported by REMPI observations as well as potential energy surface (PES) ab initio calculations. Bromine atom production by photodissociation channels via two-photon excitation to Rydberg states is identified by detecting bromine atom (2+1) REMPI.
Joe, Yong S; Lee, Sun H; Hedin, Eric R; Kim, Young D
2013-06-01
We utilize a two-dimensional four-channel DNA model, with a tight-binding (TB) Hamiltonian, and investigate the temperature and the magnetic field dependence of the transport behavior of a short DNA molecule. Random variation of the hopping integrals due to the thermal structural disorder, which partially destroy phase coherence of electrons and reduce quantum interference, leads to a reduction of the localization length and causes suppressed overall transmission. We also incorporate a variation of magnetic field flux density into the hopping integrals as a phase factor and observe Aharonov-Bohm (AB) oscillations in the transmission. It is shown that for non-zero magnetic flux, the transmission zero leaves the real-energy axis and moves up into the complex-energy plane. We also point out that the hydrogen bonds between the base pair with flux variations play a role to determine the periodicity of AB oscillations in the transmission.
Shi, Xiao-Qiu; Wu, Yi-Qi; Li, Hong; Zhong, Rui
2007-11-01
Two-dimensional cellular automaton model has been broadly researched for traffic flow, as it reveals the main characteristics of the traffic networks in cities. Based on the BML models, a first-order phase transition occurs between the low-density moving phase in which all cars move at maximal speed and the high-density jammed phase in which all cars are stopped. However, it is not a physical result of a realistic system. We propose a new traffic rule in a two-dimensional traffic flow model containing road sections, which reflects that a car cannot enter into a road crossing if the road section in front of the crossing is occupied by another car. The simulation results reveal a second-order phase transition that separates the free flow phase from the jammed phase. In this way the system will not be entirely jammed (“don’t block the box” as in New York City).
Energy Technology Data Exchange (ETDEWEB)
Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)
2016-05-06
In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.
Adaptivity techniques for the computation of two-dimensional viscous flows using structured meshes
Szmelter, J.; Evans, A.; Weatherill, N. P.
In this paper three different adaptivity techniques have been investigated on the base of structured meshes. All the techniques indicate the significance of using adaptivity for improving computational results. In particular, the technique of combining point enrichment and node movement strategies offers the best compromise. Although, the work presented here used two-dimensional structured meshes, the techniques can be readily applied to hybrid and unstructured meshes. Also, preliminary three-dimensional numerical results have been already obtained by coauthors.
Institute of Scientific and Technical Information of China (English)
Bai Jing-Song; Zhang Zhan-Ji; Li Ping; Zhong Min
2006-01-01
Based on the classical Roe method, we develop an interface capture method according to the general equation of state, and extend the single-fluid Roe method to the two-dimensional (2D) multi-fluid flows, as well as construct the continuous Roe matrix for the whole flow field. The interface capture equations and fluid dynamic conservative equations are coupled together and solved by using any high-resolution schemes that usually suit for the single-fluid flows. Some numerical examples are given to illustrate the solution of 1D and 2D multi-fluid Riemann problems.
Xu, Jing; Sang, Pengpeng; Xing, Wei; Shi, Zemin; Zhao, Lianming; Guo, Wenyue; Yan, Zifeng
2015-12-01
A molecular simulation technique is employed to investigate the transport of H2/CH4 mixture through the two-dimensional (2D) channel between adjacent graphene layers. Pristine graphene membrane (GM) with pore width of 0.515~0.6 nm is found to only allow H2 molecules to enter rather than CH4, forming a molecular sieve. At pore widths of 0.64~1.366 nm, both H2 and CH4 molecules could fill into the GM channel, where the permeability of methane is more preferential than that of hydrogen with the largest CH4/H2 selectivity (1.89) at 0.728 nm. The edge functionalization by -H, -F, -OH, -NH2, and -COOH groups could significantly alter gas permeability by modifying the active surface area of the pore and tuning attractive and/or repulsive interaction with molecules at the entrance of channel. At the pore width of 0.6 nm, the H2 permeability of molecular sieve is enhanced by -H, -F, and -OH groups but restrained by -NH2, especially -COOH with a passing rate of zero. At pore widths of 0.64 and 0.728 nm, both -H and -F edge-functionalized GMs show a preferential selectivity of methane over hydrogen, while the favorable transport for GM-OH is changed from H2 molecules at 0.64 nm to CH4 molecules at 0.728 nm. For GM-NH2, it exhibits an excellent hydrogen molecular sieve at 0.64 nm and then turns into a significant H2/CH4 selectivity at 0.728 nm. Meanwhile, small H2 molecules start to enter the channel of GM-COOH at the pore width up to 0.728 nm. For the largest pore width of 1.336 nm, the influence of edge functionalization becomes small, and a comparable CH4/H2 selectivity is observed for all the considered membranes.
DEFF Research Database (Denmark)
Wenger, F.; Käll, M.
1997-01-01
We analyze the Raman-scattering response in a two-dimensional d(x2-y2)-wave superconductor and point out a strong suppression of relative intensity in the screened A(1g) channel compared to the B-1g channel for a generic tight-binding model. This is in contrast with the observed behavior in high...
Gelfgat, Alexander
2015-01-01
A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field on three coordinate planes was recently proposed. The projections were calculated using divergence-free Galerkin bases, which resulted in the whole procedure being complicated and CPU-time consuming. Here we propose an alternative way based on the Chorin projection combined with a SIMPLE-like iteration. The approach proposed is much easier in realization, allows...
Itoh, Tsubasa; Miura, Hideyuki; Yoneda, Tsuyoshi
2016-09-01
In this paper, we consider the two-dimensional Euler flow under a simple symmetry condition, with hyperbolic structure in a unit square {D = {(x_1,x_2):0 < x_1+x_2 < √{2},0 < -x_1+x_2 < √{2}}}. It is shown that the Lipschitz estimate of the vorticity on the boundary is at most a single exponential growth near the stagnation point.
Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration
Vignal, Philippe
2015-06-01
In this work, we present a novel isogeometric analysis discretization for the Navier-Stokes- Cahn-Hilliard equation, which uses divergence-conforming spaces. Basis functions generated with this method can have higher-order continuity, and allow to directly discretize the higher- order operators present in the equation. The discretization is implemented in PetIGA-MF, a high-performance framework for discrete differential forms. We present solutions in a two- dimensional annulus, and model spinodal decomposition under shear flow.
Kuiper, Logan K
2016-01-01
An approximate solution to the two dimensional Navier Stokes equation with periodic boundary conditions is obtained by representing the x any y components of fluid velocity with complex Fourier basis vectors. The chosen space of basis vectors is finite to allow for numerical calculations, but of variable size. Comparisons of the resulting approximate solutions as they vary with the size of the chosen vector space allow for extrapolation to an infinite basis vector space. Results suggest that such a solution, with the full basis vector space and which would give the exact solution, would fail for certain initial velocity configurations when initial velocity and time t exceed certain limits.
Numerical Simulation of the Flow around Two-dimensional Partially Cavitating Hydrofoils
Institute of Scientific and Technical Information of China (English)
Fahri Celik; Yasemin Arikan Ozden; Sakir Bal
2014-01-01
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by the use of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.
Numerical simulation of the flow around two-dimensional partially cavitating hydrofoils
Celik, Fahri; Ozden, Yasemin Arikan; Bal, Sakir
2014-09-01
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by the use of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.
A solution of two-dimensional magnetohydrodynamic flow using the finite volume method
Directory of Open Access Journals (Sweden)
Naceur Sonia
2014-01-01
Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.
Water Impact of Rigid Wedges in Two-Dimensional Fluid Flow
Directory of Open Access Journals (Sweden)
Sawan Shah
2015-01-01
Full Text Available A combined experimental and numerical investigation was conducted into impact of rigid wedges on water in two-dimensional fluid conditions. Drop test experiments were conducted involving symmetric rigid wedges of varying angle and mass impacted onto water. The kinematic behaviour of the wedge and water was characterised using high-speed video. Numerical models were analysed in LS-DYNA® that combined regions of Smoothed Particle Hydrodynamics particles and a Lagrangian element mesh. The analysis captured the majority of experimental results and trends, within the bounds of experimental variance. Further, the combined modelling technique presented a highly attractive combination of computational efficiency and accuracy, making it a suitable candidate for aircraft ditching investigations.
Huizinga, Richard J.
2008-01-01
In cooperation with the Missouri Department of Transportation, the U.S. Geological Survey determined hydrologic and hydraulic parameters for the Gasconade River at the site of a proposed bridge replacement and highway realignment of State Highway 17 near Waynesville, Missouri. Information from a discontinued streamflow-gaging station on the Gasconade River near Waynesville was used to determine streamflow statistics for analysis of the 25-, 50-, 100-, and 500-year floods at the site. Analysis of the streamflow-gaging stations on the Gasconade River upstream and downstream from Waynesville indicate that flood peaks attenuate between the upstream gaging station near Hazelgreen and the Waynesville gaging station, such that the peak discharge observed on the Gasconade River near Waynesville will be equal to or only slightly greater (7 percent or less) than that observed near Hazelgreen. A flood event occurred on the Gasconade River in March 2008, and a flood measurement was obtained near the peak at State Highway 17. The elevation of high-water marks from that event indicated it was the highest measured flood on record with a measured discharge of 95,400 cubic feet per second, and a water-surface elevation of 766.18 feet near the location of the Waynesville gaging station. The measurements obtained for the March flood resulted in a shift of the original stage-discharge relation for the Waynesville gaging station, and the streamflow statistics were modified based on the new data. A two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Gasconade River in the vicinity of State Highway 17. A model was developed that represents existing (2008) conditions on State Highway 17 (the 'model of existing conditions'), and was calibrated to the floods of March 20, 2008, December 4, 1982, and April 14, 1945. Modifications were made to the model of existing conditions to create a model that represents conditions along the same reach of the Gasconade
Meng, J. C. S.
1973-01-01
The laminar base flow field of a two-dimensional reentry body has been studied by Telenin's method. The flow domain was divided into strips along the x-axis, and the flow variations were represented by Lagrange interpolation polynomials in the transformed vertical coordinate. The complete Navier-Stokes equations were used in the near wake region, and the boundary layer equations were applied elsewhere. The boundary conditions consisted of the flat plate thermal boundary layer in the forebody region and the near wake profile in the downstream region. The resulting two-point boundary value problem of 33 ordinary differential equations was then solved by the multiple shooting method. The detailed flow field and thermal environment in the base region are presented in the form of temperature contours, Mach number contours, velocity vectors, pressure distributions, and heat transfer coefficients on the base surface. The maximum heating rate was found on the centerline, and the two-dimensional stagnation point flow solution was adquate to estimate the maximum heating rate so long as the local Reynolds number could be obtained.
Two-dimensionalization of the flow driven by a slowly rotating impeller in a rapidly rotating fluid
Machicoane, Nathanaël; Cortet, Pierre-Philippe
2016-01-01
We characterize the two-dimensionalization process in the turbulent flow produced by an impeller rotating at a rate $\\omega$ in a fluid rotating at a rate $\\Omega$ around the same axis for Rossby number $Ro=\\omega/\\Omega$ down to $10^{-2}$. The flow can be described as the superposition of a large-scale vertically invariant global rotation and small-scale shear layers detached from the impeller blades. As $Ro$ decreases, the large-scale flow is subjected to azimuthal modulations. In this regime, the shear layers can be described in terms of wakes of inertial waves traveling with the blades, originating from the velocity difference between the non-axisymmetric large-scale flow and the blade rotation. The wakes are well defined and stable at low Rossby number, but they become disordered at $Ro$ of order of 1. This experiment provides insight into the route towards pure two-dimensionalization induced by a background rotation for flows driven by a non-axisymmetric rotating forcing.
Two-Dimensional Spectroscopy of Photospheric Shear Flows in a Small delta Spot
Denker, C; Tritschler, A; Yurchyshyn, V
2007-01-01
In recent high-resolution observations of complex active regions, long-lasting and well-defined regions of strong flows were identified in major flares and associated with bright kernels of visible, near-infrared, and X-ray radiation. These flows, which occurred in the proximity of the magnetic neutral line, significantly contributed to the generation of magnetic shear. Signatures of these shear flows are strongly curved penumbral filaments, which are almost tangential to sunspot umbrae rather than exhibiting the typical radial filamentary structure. Solar active region NOAA 10756 was a moderately complex, beta-delta sunspot group, which provided an opportunity to extend previous studies of such shear flows to quieter settings. We conclude that shear flows are a common phenomenon in complex active regions and delta spots. However, they are not necessarily a prerequisite condition for flaring. Indeed, in the present observations, the photospheric shear flows along the magnetic neutral line are not related to a...
The CABARET method for a weakly compressible fluid flows in one- and two-dimensional implementations
Kulikov, Yu M.; Son, E. E.
2016-11-01
The CABARET method implementation for a weakly compressible fluid flow is in the focus of present paper. Testing both one-dimensional pressure balancing problem and a classical plane Poiseuille flow, we analyze this method in terms of discontinuity resolution, dispersion and dissipation. The method is proved to have an adequate convergence to an analytical solution for a velocity profile. We also show that a flow formation process represents a set of self-similar solutions under varying pressure differential and sound speed.
Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin
2016-11-01
In Navier-Stokes fluids, shear flows are known to become unstable leading to instability and eventually to turbulence. A class of flow namely, Kolmogorov Flows (K-Flows) exhibit such transition at low Reynolds number. Using fluid and molecular dynamics, we address the physics of transition from laminar to turbulent regime in strongly correlated-liquids such as in multi-species plasmas and also in naturally occurring plasmas with K-Flows as initial condition. A 2D phenomenological generalized hydrodynamic model is invoked wherein the effect of strong correlations is incorporated via a viscoelastic memory. To study the stability of K-Flows or in general any shear flow, a generalized eigenvalue solver has been developed along with a spectral solver for the full nonlinear set of fluid equations. A study of the linear and nonlinear features of K-Flow in incompressible and compressible limit exhibits cyclicity and nonlinear pattern formation in vorticity. A first principles based molecular dynamics simulation of particles interacting via Yukawa potential is performed with features such as configurational and kinetic thermostats for K-Flows. This work reveals several interesting similarities and differences between hydrodynamics and molecular dynamics studies.
Temperature and velocity field of the two-dimensional transverse hot-air jet in a freestream flow.
Tatom, J. W.; Cooper, M. A.; Hayden, T. K.
1972-01-01
Experimental investigation of the low subsonic, two-dimensional transverse hot-air jet. In the study jet-to-freestream angles of 90, 120, 135, and 150 deg and jet-to-freestream velocity ratios of 5, 10, and 20 were investigated. In the tests the jet velocity and temperature fields were measured using a temperature-compensated hot-wire anemometer. Photographs of the flowfield were also made. The tests results are compared with the available data and analysis. Results indicate a relatively minor deflection of the freestream by the jet and the presence of a large separated flow region behind the jet.
Miller, Benjamin L.; Baker, James E.; Sriram, Rashmi
2017-05-01
Because of their compatibility with standard CMOS fabrication, small footprint, and exceptional sensitivity, Two-Dimensional Photonic Crystals (2D PhCs) have been posited as attractive components for the development of real-time integrated photonic virus sensors. While detection of single virus-sized particles by 2D PhCs has been demonstrated, specific recognition of a virus simulant under conditions relevant to sensor use (including aqueous solution and microfluidic flow) has remained an unsolved challenge. This talk will describe the design and testing of a W1 waveguide-coupled 2D PhC in the context of addressing that challenge.
Wake Behavior behind Turbine Cascades in Compressible Two-Dimensional Flows
Directory of Open Access Journals (Sweden)
Kurz Rainer
2005-01-01
Full Text Available The goal of the paper is to describe wake parameters of wakes from turbine cascades in compressible flows especially in planes where the leading edge of the following blade row would be located. Data from experiments with turbine cascades in compressible flow will be used to derive a theoretical approach which describes the wake growth and the recovery of the velocity deficit. The theory is based on similarity assumptions. The derived equations depend on simple and readily available parameters such as overall losses, exit angle, and Mach or Laval number. In compressible turbine flows, the influence of the inviscid flow field is of great importance. In this paper, an approach to take this influence into account when determining the behavior of the wake is presented. Correlations for basic characteristics of wakes in compressible flows are not readily available. Such correlations are necessary as input to unsteady flow and heat transfer calculation procedures for turbomachine blades. Based on available data on wake behavior in the compressible flow behind turbine blades, the correlations presented describe the wake behavior from the trailing edge to the confluence of the wakes of adjacent blades.
The effect of magnetic field on mean flow generation by rotating two-dimensional convection
Currie, Laura K
2016-01-01
Motivated by the significant interaction of convection, rotation and magnetic field in many astrophysical objects, we investigate the interplay between large-scale flows driven by rotating convection and an imposed magnetic field. We utilise a simple model in two dimensions comprised of a plane layer that is rotating about an axis inclined to gravity. It is known that this setup can result in strong mean flows; we numerically examine the effect of an imposed horizontal magnetic field on such flows. We show that increasing the field strength in general suppresses the time-dependent mean flows, but in some cases it organises them leading to stronger time-averaged flows. Further, we discuss the effect of the field on the correlations responsible for driving the flows and the competition between Reynolds and Maxwell stresses. A change in behaviour is observed when the (fluid and magnetic) Prandtl numbers are decreased. In the smaller Prandtl number regime, it is shown that significant mean flows can persist even ...
Two-Dimensional Stagnation-Point Velocity-Slip Flow and Heat Transfer over Porous Stretching Sheet
Directory of Open Access Journals (Sweden)
FEROZ AHMED SOOMRO
2016-10-01
Full Text Available Present paper investigates 2D (Two-Dimensional stagnation-point velocity-slip flow over porous stretching sheet. The governing non-linear PDEs (Partial Differential Equations are non-dimensionlized by using the similarity transformation technique that results into coupled non-linear ODEs (Ordinary Differential Equations. Such ODEs are then solved by using shooting technique with fourth-order Runge-Kutta method. Since the behavior of boundary layer stagnation-point flow depends on the rate of cooling and stretching. Therefore, the main objective of this paper is to analyze the effects of different working parameters on shear stress, heat transfer, velocity and temperature of fluid. The results revealed that the velocity-slip has significant effect on the fluid flow as well as on the heat transfer. The numerical results are also compared with existing work for no-slip condition and found to have good agreement with improved asymptotic behavior.
Cross-flow blowing of a two-dimensional stationary arc.
Bose, T. K.
1971-01-01
It is demonstrated in an analysis that the electrons emitted from the cathode undergo collisions with the heavy particles and are deflected in the flow direction by the component of a collisional force associated with the relative difference in flow velocities between electrons and heavy particles. The resultant motion of the electrons describing the arc is thus caused by a combined action of the collisional force that results from the externally applied electric field. An expression is given which enables computation of the arc shape to be made provided the velocity distribution of the cross-flow and the distribution of the externally applied electric field are prescribed.
Nonparallel stability of two-dimensional nonuniformly heated boundary-layer flows
Nayfeh, A. H.; El-Hady, N. M.
1979-01-01
An analysis is presented for the linear stability of water boundary-layer flows over nonuniformly flat plates. Included in the analysis are disturbances due to velocity, pressure, temperatures, density, and transport properties as well as variations of the liquid properties with temperature. The method of multiple scales is used to account for the nonparallelism of the mean flow. In contrast with previous analyses, the nonsimilarity of the mean flow is taken into account. No analysis agrees, even qualitatively, with the experimental data when similar profiles are used. However, both the parallel and nonparallel results qualitatively agree with the experimental results of Strazisar and Reshotko when nonsimilar profiles are used.
A two-dimensional parabolic model for vertical annular two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Fernandez, F.M.; Toledo, A. Alvarez; Paladino, E.E. [Graduate Program in Mechanical Engineering, Universidade Federal de Rio Grande do Norte, Natal, RN (Brazil)], e-mail: emilio@ct.ufrn.br
2010-07-01
This work presents a solution algorithm for predicting hydrodynamic parameters for developing and equilibrium, adiabatic, annular, vertical two-phase flow. It solves mass and momentum transport differential equations for both the core and the liquid film across their entire domains. Thus, the velocity and shear stress distributions from the tube center to the wall are obtained, together with the average film thickness and the pressure gradient, making no use of empirical closure relations nor assuming any known velocity profile to solve the triangular relationship in the liquid film. The model was developed using the Finite Volume Method and an iterative procedure is proposed to solve all flow variables for given phase superficial velocities. The procedure is validated against the analytical solution for laminar flow and experimental data for gas-liquid turbulent flow with entrainment. For the last case, an algebraic turbulence model is used for turbulent viscosity calculation for both, liquid film and gas core. (author)
Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil
Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris
2016-01-01
Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.
Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking.
Fadnes, Solveig; Nyrnes, Siri Ann; Torp, Hans; Lovstakken, Lasse
2014-10-01
High-frame-rate ultrasound speckle tracking was used for quantification of peak velocity in shunt flows resulting from septal defects in congenital heart disease. In a duplex acquisition scheme implemented on a research scanner, unfocused transmit beams and full parallel receive beamforming were used to achieve a frame rate of 107 frames/s for full field-of-view flow images with high accuracy, while also ensuring high-quality focused B-mode tissue imaging. The setup was evaluated in vivo for neonates with atrial and ventricular septal defects. The shunt position was automatically tracked in B-mode images and further used in blood speckle tracking to obtain calibrated shunt flow velocities throughout the cardiac cycle. Validation toward color flow imaging and pulsed wave Doppler with manual angle correction indicated that blood speckle tracking could provide accurate estimates of shunt flow velocities. The approach was less biased by clutter filtering compared with color flow imaging and was able to provide velocity estimates beyond the Nyquist range. Possible placements of sample volumes (and angle corrections) for conventional Doppler resulted in a peak shunt velocity variations of 0.49-0.56 m/s for the ventricular septal defect of patient 1 and 0.38-0.58 m/s for the atrial septal defect of patient 2. In comparison, the peak velocities found from speckle tracking were 0.77 and 0.33 m/s for patients 1 and 2, respectively. Results indicated that complex intraventricular flow velocity patterns could be quantified using high-frame-rate speckle tracking of both blood and tissue movement. This could potentially help increase diagnostic accuracy and decrease inter-observer variability when measuring peak velocity in shunt flows. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Measuring two-dimensional components of a flow velocity vector using a hot-wire probe.
Kiełbasa, Jan
2007-08-01
The article presents a single-hot-wire probe adapted to detect the direction of flow velocity. The modification consists of the introduction of a third support which allows to measure voltage at the central point of the wire. The sign of voltage difference DeltaU between both parts of the wire is the measure of the direction of flow velocity in a system of coordinates associated with the probe.
Wake Behavior behind Turbine Cascades in Compressible Two-Dimensional Flows
2005-01-01
The goal of the paper is to describe wake parameters of wakes from turbine cascades in compressible flows especially in planes where the leading edge of the following blade row would be located. Data from experiments with turbine cascades in compressible flow will be used to derive a theoretical approach which describes the wake growth and the recovery of the velocity deficit. The theory is based on similarity assumptions. The derived equations depend on simple and readily available parameter...
Ensemble Distribution for Immiscible Two-Phase Flow in Two-Dimensional Networks
Savani, Isha; Kjelstrup, Signe; Vassvik, Morten; Sinha, Santanu; Hansen, Alex
2016-01-01
An ensemble distribution has been constructed to describe steady immiscible two-phase flow of two incompressible fluids in a network. The system is ergodic. The distribution relates the time that a bubble of the non-wetting fluid spends in a link to the local volume flow. The properties of the ensemble distribution are tested by two-phase flow simulations at the pore-scale for capillary numbers ranging from 0.1 to 0.001. It is shown that the distribution follows the postulated dependence on the local flow for Ca = 0.01 and 0.001. The distribution is used to compute the global flow performance of the network. In particular, we find the expression for the overall mobility of the system using the ensemble distribution. The entropy production at the scale of the network is shown to give the expected product of the average flow and its driving force, obtained from a black-box description. The distribution can be used to obtain macroscopic variables from local network information, for a practical range of capillary...
Que, Ruiyi; Zhu, Rong
2013-12-31
This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s-30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.
Directory of Open Access Journals (Sweden)
Ruiyi Que
2013-12-01
Full Text Available This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s–30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.
Moderately converging ion and electron flows in two-dimensional diodes
Cavenago, M.
2012-11-01
Flow of particles in diodes is solved selfconsistently assuming an approximated system of flow lines, that can be easily represented by an analytic transformation in a complex plane, with assumed uniformity in the third spatial direction. Beam current compression is tunable by an angle parameter α0; transformed coordinate lines are circular arcs, exactly matching to the curved cathode usually considered by rectilinear converging flows. The curvature of flow lines allows to partly balance the transverse effect of space charge. A self-contained discussion of the whole theory is reported, ranging from analytical solution for selfconsistent potential to electrode drawing to precise numerical simulation, which serves as a verification and as an illustration of typical electrode shapes. Motion and Poisson equation are written in a curved flow line system and their approximate consistency is shown to imply an ordinary differential equation for the beam edge potential. Transformations of this equation and their series solutions are given and discussed, showing that beam edge potential has a maximum, so supporting both diode (with α0 ≅ π/3) and triode design. Numerical simulations confirm the consistency of these solution. Geometrical details of diode design are discussed: the condition of a zero divergence beam, with the necessary anode lens effect included, is written and solved, as a function of beam compression; accurate relations for diode parameters and perveance are given. Weakly relativistic effects including self-magnetic field are finally discussed as a refinement.
New families of flows between two-dimensional conformal field theories
Dorey, P; Tateo, R; Dorey, Patrick; Dunning, Clare; Tateo, Roberto
2000-01-01
We present evidence for the existence of infinitely-many new families of renormalisation group flows between the nonunitary minimal models of conformal field theory. These are associated with perturbations by the $\\phi_{21}$ and In all of the new flows, the finite-volume effective central charge is a non-monotonic function of the system size. The evolution of this effective central charge is studied by means of a nonlinear integral equation, a massless variant of an equation recently found to describe certain massive perturbations of these same models. We also observe that a similar non-monotonicity arises in the more familiar $\\phi_{13}$ perturbations, when the flows induced are between nonunitary minimal models.
Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows
Gallet, Basile
2015-01-01
We consider the flow of a Newtonian fluid in a three-dimensional domain, rotating about a vertical axis and driven by a vertically invariant horizontal body-force. This system admits vertically invariant solutions that satisfy the 2D Navier-Stokes equation. At high Reynolds number and without global rotation, such solutions are usually unstable to three-dimensional perturbations. By contrast, for strong enough global rotation, we prove rigorously that the 2D (and possibly turbulent) solutions are stable to vertically dependent perturbations: the flow becomes 2D in the long-time limit. These results shed some light on several fundamental questions of rotating turbulence: for arbitrary Reynolds number and small enough Rossby number, the system is attracted towards purely 2D flow solutions, which display no energy dissipation anomaly and no cyclone-anticyclone asymmetry. Finally, these results challenge the applicability of wave turbulence theory to describe stationary rotating turbulence in bounded domains.
A Finite-Element Solution of the Navier-Stokes Equations for Two-Dimensional and Axis-Symmetric Flow
Directory of Open Access Journals (Sweden)
Sven Ø. Wille
1980-04-01
Full Text Available The finite element formulation of the Navier-Stokes equations is derived for two-dimensional and axis-symmetric flow. The simple triangular, T6, isoparametric element is used. The velocities are interpolated by quadratic polynomials and the pressure is interpolated by linear polynomials. The non-linear simultaneous equations are solved iteratively by the Newton-Raphson method and the element matrix is given in the Newton-Raphson form. The finite element domain is organized in substructures and an equation solver which works on each substructure is specially designed. This equation solver needs less storage in the computer and is faster than the traditional banded equation solver. To reduce the amount of input data an automatic mesh generator is designed. The input consists of the coordinates of eight points defining each substructure with the corresponding boundary conditions. In order to interpret the results they are plotted on a calcomp plotter. Examples of plots of the velocities, the streamlines and the pressure inside a two-dimensional flow divider and an axis-symmetric expansion of a tube are shown for various Reynolds numbers.
Katyal, A. K.; Kaluarachchi, J. J.; Parker, J. C.
1991-05-01
The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The required inputs for flow and transport analysis are described. Detailed instructions for creating data files needed to run the program and examples of input and output files are given in appendices.
Fundamental interactions of vortical structures with boundary layers in two-dimensional flows
DEFF Research Database (Denmark)
Coutsias, E.A.; Lynov, Jens-Peter
1991-01-01
in the vorticity-stream function representation for bounded geometries. Fundamental processes connected to vorticity detachment from the boundary layers caused by the proximity of vortical structures are described. These processes include enstrophy enhancement of the main flow during bursting events, and pinning...
Gelfgat, Alexander
2015-01-01
A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field on three coordinate planes was recently proposed. The projections were calculated using divergence-free Galerkin bases, which resulted in the whole procedure being complicated and CPU-time consuming. Here we propose an alternative way based on the Chorin projection combined with a SIMPLE-like iteration. The approach proposed is much easier in realization, allows for faster computations, and can be generalized for arbitrary curvilinear orthogonal coordinates. To illustrate the visualization method, examples of flow visualization in cylindrical and spherical coordinates, as well as post-processing of experimental 3D-PTV data are presented.
Rathbun, Wayne
2007-01-01
A method is described for automating the regulation of cold jet flow of a comprehensive two-dimensional gas chromatograph (GCxGC) configured with flame ionization detection. This new capability enables the routine automated separation, identification, and quantitation of hydrocarbon types in petroleum fractions extending into the vacuum gas oil (VGO) range (IBP-540 degrees C). Chromatographic data acquisition software is programmed to precisely change the rate of flow from the cold jet of a nitrogen cooled loop modulator of a GCxGC instrument during sample analysis. This provides for the proper modulation of sample compounds across a wider boiling range. The boiling point distribution of the GCxGC separation is shown to be consistent with high temperature simulated distillation results indicating recovery of higher boiling semi-volatile VGO sample components. GCxGC configured with time-of-flight mass spectrometry is used to determine the molecular identity of individual sample components and boundaries of different molecular types.
Tam, C. K. W.; Burton, D. E.
1984-01-01
An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.
ANALYSIS OF WATER QUALITY IN SHALLOW LAKES WITH A TWO-DIMENSIONAL FLOW-SEDIMENT MODEL
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The governing equation for sediment pollutions was derived based on the turbulent diffusion of pollutants in shallow lakes. Coupled with shallow water equations, a depth-averaged 2-D flow and water quality model was developed. By means of the conservation law, a proposed differential equation for the change of sediment pollutants was linked to the 2-D equations. Under the framework of the finite volume method, the Osher approximate Riemann solver was employed to solve the equations. An analytical resolution was used to examine the model capabilities. Simulated results matched the exact solutions especially well. As an example, the simulation of CODMn in the Wuli Lake, a part of the Taihu lake, was conducted, which led to reasonable results. This study provides a new approach and a practical tool for the simulation of flow and water quality in shallow lakes.
Unstable manifold computations for the two-dimensional plane Poiseuille flow
Energy Technology Data Exchange (ETDEWEB)
Casas, Pablo S. [Universidad Politecnica de Cataluna, Departamento de Matematica Aplicada I, Barcelona (Spain); Jorba, Angel [Universidad de Barcelona, Departamento de Matematica Aplicada y Analisis, Barcelona (Spain)
2004-11-01
We follow the unstable manifold of periodic and quasi-periodic solutions in time for the Poiseuille problem, using two formulations: holding a constant flux or mean pressure gradient. By means of a numerical integrator of the Navier-Stokes equations, we let the fluid evolve from an initially perturbed unstable solution until the fluid reaches an attracting state. Thus, we detect several connections among different configurations of the flow such as laminar, periodic, quasi-periodic with two or three basic frequencies, and more complex sets that we have not been able to classify. These connections make possible the location of new families of solutions, usually hard to find by means of numerical continuation of curves, and show the richness of the dynamics of the Poiseuille flow. (orig.)
Two-dimensional nonstationary flow of a conducting fluid, induced by a rotating magnetic field
Energy Technology Data Exchange (ETDEWEB)
Kapusta, A.B.
1977-07-01
An examination is made of a full induction problem on the planar movement of a conducting fluid in a rotating magnetic field. The solution to this problem is sought by the method of degradation into Fourier series by harmonics of the rotating field. The initial system of partial differential equations is reduced to the system 2+1 of normal differential equations that bind the amplitudes of function harmonics and electrical vector potential. A solution to the problem for small anti ..omega.. was found with an accuracy up to the second approximation. The unsteadiness of flow was found to be manifested in a form of induced cross-sectional waves, traveling along the stream tubes of this flow at a speed that is equal to the phase velocity of the magnetic field. The appearance of wave effects is explained by considerations of symmetry. 5 references, 1 figure.
Identifying the Flow Physics and Modeling Transient Forces on Two-Dimensional Wings
2016-09-02
becomes smaller relative to the random component of the error (indicated by the size of the confidence ellipse). This means that the modifications to...understanding the dynamics of these unsteady flows, and uses state-of-the-art techniques, both for measuring these phenomena in experiments (using an...art techniques, both for measuring these phenomena in experiments (using an unsteady wind tunnel at IIT), and for analyzing the data and developing
Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case
Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun
2008-07-01
Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.
Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S
2016-10-31
The image-based computational fluid dynamics (IB-CFD) technique, as the combination of medical images and the CFD method, is utilized in this research to analyze the left ventricle (LV) hemodynamics. The research primarily aims to propose a semi-automated technique utilizing some freely available and commercial software packages in order to simulate the LV hemodynamics using the IB-CFD technique. In this research, moreover, two different physiological time-resolved 2D models of a patient-specific LV with two different types of aortic and mitral valves, including the orifice-type valves and integrated with rigid leaflets, are adopted to visualize the process of developing intraventricular vortex formation and propagation. The blood flow pattern over the whole cardiac cycle of two models is also compared to investigate the effect of utilizing different valve types in the process of the intraventricular vortex formation. Numerical findings indicate that the model with integrated valves can predict more complex intraventricular flow that can match better the physiological flow pattern in comparison to the orifice-type model.
Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies
Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh
1991-01-01
This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.
Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies
Fuller, Franklyn B.
1961-01-01
The method described is an inverse one; the shock shape is chosen and the solution proceeds downstream to a body. Bodies blunter than circular cylinders are readily accessible, and any adiabatic index can be chosen. The lower limit to the free-stream Mach number available in any case is determined by the extent of the subsonic field, which in turn depends upon the body shape. Some discussion of the stability of the numerical processes is given. A set of solutions for flows about circular cylinders at several Mach numbers and several values of the adiabatic index is included.
Directory of Open Access Journals (Sweden)
Mohammad Mehdi Rashidi
2008-01-01
Full Text Available The flow of a viscous incompressible fluid between two parallel plates due to the normal motion of the plates is investigated. The unsteady Navier-Stokes equations are reduced to a nonlinear fourth-order differential equation by using similarity solutions. Homotopy analysis method (HAM is used to solve this nonlinear equation analytically. The convergence of the obtained series solution is carefully analyzed. The validity of our solutions is verified by the numerical results obtained by fourth-order Runge-Kutta.
Statistical theory of reversals in two-dimensional confined turbulent flows
Shukla, Vishwanath; Brachet, Marc
2016-01-01
It is shown that the Truncated Euler Equations, i.e. a finite set of ordinary differential equations for the amplitude of the large-scale modes, can correctly describe the complex transitional dynamics that occur within the turbulent regime of a confined 2D Navier-Stokes flow with bottom friction and a spatially periodic forcing. In particular, the random reversals of the large scale circulation on the turbulent background involve bifurcations of the probability distribution function of the large-scale circulation velocity that are described by the related microcanonical distribution which displays transitions from gaussian to bimodal and broken ergodicity. A minimal 13-mode model reproduces these results.
Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies
Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh
1991-01-01
This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.
The orientation field of fibers advected by a two-dimensional chaotic flow
Hejazi, Bardia; Mehlig, Bernhard; Voth, Greg
2016-11-01
We examine the orientation of slender fibers advected by a 2D chaotic flow. The orientation field of these fibers show fascinating structures called scar lines, where they rotate by π over short distances. We use the standard map as a convenient model to represent a time-periodic 2D incompressible fluid flow. To understand the fiber orientation field, we consider the stretching field, given by the eigenvalues and eigenvectors of the Cauchy-Green strain tensors. The eigenvector field is strongly aligned with the fibers over almost the entire field, but develops topological singularities at certain points which do not exist in the advected fiber field. The singularities are points that have experienced zero stretching, and the number of such points increases rapidly with time. A key feature of both the fiber orientation and the eigenvector field are the scar lines. We show that certain scar lines form from fluid elements that are initially stretched in one direction and then stretched in an orthogonal direction to cancel the initial stretching. The scar lines that satisfy this condition contain the singularities of the eigenvector field. These scar lines highlight the major differences between the passive director field and the much more widely studied passive scalar field.
Tomé, M. F.; Bertoco, J.; Oishi, C. M.; Araujo, M. S. B.; Cruz, D.; Pinho, F. T.; Vynnycky, M.
2016-04-01
This work is concerned with the numerical solution of the K-BKZ integral constitutive equation for two-dimensional time-dependent free surface flows. The numerical method proposed herein is a finite difference technique for simulating flows possessing moving surfaces that can interact with solid walls. The main characteristics of the methodology employed are: the momentum and mass conservation equations are solved by an implicit method; the pressure boundary condition on the free surface is implicitly coupled with the Poisson equation for obtaining the pressure field from mass conservation; a novel scheme for defining the past times t‧ is employed; the Finger tensor is calculated by the deformation fields method and is advanced in time by a second-order Runge-Kutta method. This new technique is verified by solving shear and uniaxial elongational flows. Furthermore, an analytic solution for fully developed channel flow is obtained that is employed in the verification and assessment of convergence with mesh refinement of the numerical solution. For free surface flows, the assessment of convergence with mesh refinement relies on a jet impinging on a rigid surface and a comparison of the simulation of a extrudate swell problem studied by Mitsoulis (2010) [44] was performed. Finally, the new code is used to investigate in detail the jet buckling phenomenon of K-BKZ fluids.
Lefkoff, L.J.; Gorelick, S.M.
1987-01-01
A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)
Directory of Open Access Journals (Sweden)
Sarvesh Dubey
2011-01-01
Full Text Available In this paper, a short-channel threshold voltage model is presented for triple-material double-gate(TM-DG MOSFET with uniform doping profile in the channel region. To obtain the channel potential expression, the two-dimensional (2D Poisson’s equation has been solved using the parabolic potential approximation with suitable boundary conditions. Subsequently, the surface potential expression has been employed to derive an analytical expression of thresholod. The threshold voltage variation with various device parameters has been shown. To validate the model, ATLASTM based numerical simulation results have been used.
Institute of Scientific and Technical Information of China (English)
ZHOU Ningyu; ZHAO Dongfeng; DING Hongwei
2008-01-01
A higher quality of service (QoS) is provided for ad hoc networks through a multi-channel and slotted random multi-access (MSRM) protocol with two-dimensional probability. For this protocol, the system time is slotted into a time slot with high channel utilization realized by the choice of two parameters p1 and p2, and the channel load equilibrium. The protocol analyzes the throughput of the MSRM protocol for a load equilibrium state and the throughput based on priority. Simulations agree with the theoretical analysis. The simulations also show that the slotted-time system is better than the continuous-time system.
Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states
Naso, A; Dubrulle, B
2009-01-01
A simplified thermodynamic approach of the incompressible 2D Euler equation is considered based on the conservation of energy, circulation and microscopic enstrophy. Statistical equilibrium states are obtained by maximizing the Miller-Robert-Sommeria (MRS) entropy under these sole constraints. The vorticity fluctuations are Gaussian while the mean flow is characterized by a linear $\\overline{\\omega}-\\psi$ relationship. Furthermore, the maximization of entropy at fixed energy, circulation and microscopic enstrophy is equivalent to the minimization of macroscopic enstrophy at fixed energy and circulation. This provides a justification of the minimum enstrophy principle from statistical mechanics when only the microscopic enstrophy is conserved among the infinite class of Casimir constraints. A new class of relaxation equations towards the statistical equilibrium state is derived. These equations can provide an effective description of the dynamics towards equilibrium or serve as numerical algorithms to determin...
Directory of Open Access Journals (Sweden)
Yuri V. Konovalov
2012-09-01
Full Text Available We present results of basal friction coefficient inversion. The inversion was performed by a 2D flow line model for one of the four fast flowing ice streams on the southern side of the Academy of Sciences Ice Cap in the Komsomolets Island, Severnaya Zemlya archipelago. The input data for the performance of both the forward and the inverse problems included synthetic aperture radar interferometry ice surface velocities, ice surface elevations and ice thicknesses obtained by airborne measurements (all were taken from Dowdeswell et al., 2002. Numerical experiments with: i different sea level shifts; and ii randomly perturbed friction coefficient have been carried out in the forward problem. The impact of sea level changes on vertical distribution of horizontal velocity and on shear stress distribution near the ice front has been investigated in experiments with different sea level shifts. The experiments with randomly perturbed friction coefficient have revealed that the modeled surface velocity is weakly sensitive to the perturbations and, therefore, the inverse problem should be considered ill posed. To mitigate ill posedness of the inverse problem, Tikhonov’s regularization was applied. The regularization parameter was determined from the relation of the discrepancy between observed and modeled velocities to the regularization parameter. The inversion was performed for both linear and non-linear sliding laws. The inverted spatial distributions of the basal friction coefficient are similar for both sliding laws. The similarity between these inverted distributions suggests that the changes in the friction coefficient are accompanied by appropriate water content variations at the glacier base.
Two-dimensional finite volume method for dam-break flow simulation
Institute of Scientific and Technical Information of China (English)
M.ALIPARAST
2009-01-01
A numerical model based upon a second-order upwind cell-center finite volume method on unstructured triangular grids is developed for solving shallow water equations.The assumption of a small depth downstream instead of a dry bed situation changes the wave structure and the propagation speed of the front which leads to incorrect results.The use of Harten-Lax-vau Leer (HLL) allows handling of wet/dry treatment.By usage of the HLL approximate Riemann solver,also it make possible to handle discontinuous solutions.As the assumption of a very small depth downstream of the dam can change the nature of the dam break flow problem which leads to incorrect results,the HLL approximate Riemann solver is used for the computation of inviscid flux functions,which makes it possible to handle discontinuous solutions.A multidimensional slope-limiting technique is applied to achieve second-order spatial accuracy and to prevent spurious oscillations.To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary,the friction source terms are treated in a fully implicit way.A third-order Runge-Kutta method is used for the time integration of semi-discrete equations.The developed numerical model has been applied to several test cases as well as to real flows.The tests are tested in two cases:oblique hydraulic jump and experimental dam break in converging-diverging flume.Numerical tests proved the robustness and accuracy of the model.The model has been applied for simulation of dam break analysis of Torogh in Irun.And finally the results have been used in preparing EAP (Emergency Action Plan).
Verjus, Romuald; Angilella, Jean-Régis
2016-05-01
Inertial particles are often observed to be trapped, temporarily or permanently, by recirculation cells which are ubiquitous in natural or industrial flows. In the limit of small particle inertia, determining the conditions of trapping is a challenging task, as it requires a large number of numerical simulations or experiments to test various particle sizes or densities. Here, we investigate this phenomenon analytically and numerically in the case of heavy particles (e.g., aerosols) at low Reynolds number, to derive a trapping criterion that can be used both in analytical and numerical velocity fields. The resulting criterion allows one to predict the characteristics of trapped particles as soon as single-phase simulations of the flow are performed. Our analysis is valid for two-dimensional particle-laden flows in the vertical plane, in the limit where the particle inertia, the free-fall terminal velocity, and the flow unsteadiness can be treated as perturbations. The weak unsteadiness of the flow generally induces a chaotic tangle near heteroclinic or homoclinic cycles if any, leading to the apparent diffusion of fluid elements through the boundary of the cell. The critical particle Stokes number Stc below which aerosols also enter and exit the cell in a complex manner has been derived analytically, in terms of the flow characteristics. It involves the nondimensional curvature-weighted integral of the squared velocity of the steady fluid flow along the dividing streamline of the recirculation cell. When the flow is unsteady and St>Stc , a regular motion takes place due to gravity and centrifugal effects, like in the steady case. Particles driven towards the interior of the cell are trapped permanently. In contrast, when the flow is unsteady and St
Energy Technology Data Exchange (ETDEWEB)
Cline, M.C.
1981-08-01
VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.
Granular flow over inclined channels with linear contraction
Tunuguntla, D R; Thornton, A R; Bokhove, O
2015-01-01
We consider dry granular flow down an inclined chute with a localised contraction theoretically and numerically. The flow regimes are predicted through a novel extended one-dimensional hydraulic theory. A discrete particle method validated empirical constitutive law is used to close this one-dimensional asymptotic model. The one-dimensional model is verified by solving the two-dimensional shallow granular equations through discontinuous Galerkin finite element method (DGFEM). For supercritical flows, the one-dimensional asymptotic theory surprisingly holds although the two-dimensional oblique granular jumps largely vary across the converging channel.
Directory of Open Access Journals (Sweden)
Shun Takahashi
2014-01-01
Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.
Directory of Open Access Journals (Sweden)
Richard J. Simpson
2006-04-01
Full Text Available This review deals with the application of a new prefractionation tool, free-flow electrophoresis (FFE, for proteomic analysis of colorectal cancer (CRC. CRC is a leading cause of cancer death in the Western world. Early detection is the single most important factor influencing outcome of CRC patients. If identified while the disease is still localized, CRC is treatable. To improve outcomes for CRC patients there is a pressing need to identify biomarkers for early detection (diagnostic markers, prognosis (prognostic indicators, tumour responses (predictive markers and disease recurrence (monitoring markers. Despite recent advances in the use of genomic analysis for risk assessment, in the area of biomarker identification genomic methods alone have yet to produce reliable candidate markers for CRC. For this reason, attention is being directed towards proteomics as a complementary analytical tool for biomarker identification. Here we describe a proteomics separation tool, which uses a combination of continuous FFE, a liquid-based isoelectric focusing technique, in the first dimension, followed by rapid reversed-phase HPLC (1Ã¢Â€Â“6 min/analysis in the second dimension. We have optimized imaging software to present the FFE/RP-HPLC data in a virtual 2D gel-like format. The advantage of this liquid based fractionation system over traditional gel-based fractionation systems is the ability to fractionate large quantity protein samples. Unlike 2D gels, the method is applicable to both high-Mr proteins and small peptides, which are difficult to separate, and in the case of peptides, are not retained in standard 2D gels.
Takagi, S.; Og˜uz, H. N.; Zhang, Z.; Prosperetti, A.
2003-05-01
This paper presents a new approach to the direct numerical simulation of particle flows. The basic idea is to use a local analytic representation valid near the particle to "transfer" the no-slip condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity arising from the irregular relation between the particle boundary and the underlying mesh is avoided and fast solvers can be used. The results suggest that the computational effort increases very slowly with the number of particles so that the method is efficient for large-scale simulations. The focus here is on the two-dimensional case (cylindrical particles), but the same procedure, to be developed in forthcoming papers, applies to three dimensions (spherical particles). Several extensions are briefly discussed.
Allen, H Julian; Vincenti, Walter G
1944-01-01
Theoretical tunnel-wall corrections are derived for an airfoil of finite thickness and camber in a two-dimensional-flow wind tunnel. The theory takes account of the effects of the wake of the airfoil and of the compressibility of the fluid, and is based upon the assumption that the chord of the airfoil is small in comparison with the height of the tunnel. Consideration is given to the phenomenon of choking at high speeds and its relation to the tunnel-wall corrections. The theoretical results are compared with the small amount of low-speed experimental data available and the agreement is seen to be satisfactory, even for relatively large values of the chord-height ratio.
Runyan, Harry L; Watkins, Charles E
1953-01-01
This report treats the effect of wind-tunnel walls on the oscillating two-dimensional air forces in a compressible medium. The walls are simulated by the usual method of placing images at appropriate distances above and below the wing. An important result shown is that, for certain conditions of wing frequency, tunnel height, and Mach number, the tunnel and wing may form a resonant system so that the forces on the wing are greatly changed from the condition of no tunnel walls. It is pointed out that similar conditions exist for three-dimensional flow in circular and rectangular tunnels and apparently, within certain Mach number ranges, in tunnels of nonuniform cross section or even in open tunnels or jets.
Directory of Open Access Journals (Sweden)
Wenqiang Zhao
2014-11-01
Full Text Available This work studies the long-time behavior of two-dimensional micropolar fluid flows perturbed by the generalized time derivative of the infinite dimensional Wiener processes. Based on the omega-limit compactness argument as well as some new estimates of solutions, it is proved that the generated random dynamical system admits an H^1-random attractor which is compact in H^1 space and attracts all tempered random subsets of L^2 space in H^1 topology. We also give a general abstract result which shows that the continuity condition and absorption of the associated random dynamical system in H^1 space is not necessary for the existence of random attractor in H^1 space.
Ohsuga, Ken
2011-01-01
We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, rho_0, we can reproduce three distinct modes of accretion flow. In model A with the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of the mild beaming, the apparent (isotropic) photon luminosity is ~22L_E (where L_E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B with a moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ~7R_S (where R_S is the S...
Bohling, G.C.; Butler, J.J.
2001-01-01
We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.
Frankl, F.; Voishel, V.
1943-01-01
In the present report an investigation is made on a flat plate in a two-dimensional compressible flow of the effect of compressibility and heating on the turbulent frictional drag coefficient in the boundary layer of an airfoil or wing radiator. The analysis is based on the Prandtl-Karman theory of the turbulent boundary later and the Stodola-Crocco, theorem on the linear relation between the total energy of the flow and its velocity. Formulas are obtained for the velocity distribution and the frictional drag law in a turbulent boundary later with the compressibility effect and heat transfer taken into account. It is found that with increase of compressibility and temperature at full retardation of the flow (the temperature when the velocity of the flow at a given point is reduced to zero in case of an adiabatic process in the gas) at a constant R (sub x), the frictional drag coefficient C (sub f) decreased, both of these factors acting in the same sense.
Park, Kyu-Hwan; Son, Jang-Won; Park, Won-Jong; Lee, Sang-Hee; Kim, Ung; Park, Jong-Seon; Shin, Dong-Gu; Kim, Young-Jo; Choi, Jung-Hyun; Houle, Helene; Vannan, Mani A; Hong, Geu-Ru
2013-01-01
This article is the first clinical investigation of the quantitative left atrial (LA) vortex flow by two-dimensional (2-D) transesophageal contrast echocardiography (2-D-TECE) using vector particle image velocimetry (PIV). The aims of this study were to assess the feasibility of LA vortex flow analysis and to characterize and quantify the LA vortex flow in controls and in patients with atrial fibrillation (AF). Thirty-five controls and 30 patients with AF underwent transesophageal contrast echocardiography. The velocity vector was estimated by particle image velocimetry. The morphology and pulsatility of the LA vortex flow were compared between the control and AF groups. In all patients, quantitative LA vortex flow analysis was feasible. In the control group, multiple, pulsatile, compact and elliptical-shaped vortices were seen in the periphery of the LA. These vortices were persistently maintained and vectors were directed toward the atrioventricular inflow. In the AF group, a large, merged, lower pulsatile and round-shaped vortex was observed in the center of the LA. In comparisons of vortex parameters, the relative strength was significantly lower in the AF group (1.624 ± 0.501 vs. 2.105 ± 0.226, p < 0.001). It is feasible to characterize and quantify the LA vortex flow by transesophageal contrast echocardiography in patients with AF, which offers a new method to obtain additional information on LA hemodynamics. The approach has the potential for early detection of the LA dysfunction and in decisions regarding treatment strategy and guiding anticoagulation treatment in patients with AF.
Baskan, O; Speetjens, M F M; Metcalfe, G; Clercx, H J H
2015-10-01
Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.
Energy Technology Data Exchange (ETDEWEB)
Baskan, O.; Clercx, H. J. H [Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Speetjens, M. F. M. [Energy Technology Laboratory, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Metcalfe, G. [Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria 3190 (Australia); Swinburne University of Technology, Department of Mechanical Engineering, Hawthorn VIC 3122 (Australia)
2015-10-15
Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.
Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.
2016-01-01
In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic fl...
Boufadel, Michel C.; Suidan, Makram T.; Venosa, Albert D.
1999-04-01
We present a formulation for water flow and solute transport in two-dimensional variably saturated media that accounts for the effects of the solute on water density and viscosity. The governing equations are cast in a dimensionless form that depends on six dimensionless groups of parameters. These equations are discretized in space using the Galerkin finite element formulation and integrated in time using the backward Euler scheme with mass lumping. The modified Picard method is used to linearize the water flow equation. The resulting numerical model, the MARUN model, is verified by comparison to published numerical results. It is then used to investigate beach hydraulics at seawater concentration (about 30 g l -1) in the context of nutrients delivery for bioremediation of oil spills on beaches. Numerical simulations that we conducted in a rectangular section of a hypothetical beach revealed that buoyancy in the unsaturated zone is significant in soils that are fine textured, with low anisotropy ratio, and/or exhibiting low physical dispersion. In such situations, application of dissolved nutrients to a contaminated beach in a freshwater solution is superior to their application in a seawater solution. Concentration-engendered viscosity effects were negligible with respect to concentration-engendered density effects for the cases that we considered.
Duddu, Ravindra
2009-05-01
We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.
Huizinga, Richard J.
2007-01-01
The Blue River Channel Modification project being implemented by the U.S. Army Corps of Engineers (USACE) is intended to provide flood protection within the Blue River valley in the Kansas City, Mo., metropolitan area. In the latest phase of the project, concerns have arisen about preserving the Civil War historic area of Byram's Ford and the associated Big Blue Battlefield while providing flood protection for the Byram's Ford Industrial Park. In 1996, the USACE used a physical model built at the Waterways Experiment Station (WES) in Vicksburg, Miss., to examine the feasibility of a proposed grade control structure (GCS) that would be placed downstream from the historic river crossing of Byram's Ford to provide a subtle transition of flow from the natural channel to the modified channel. The U.S. Geological Survey (USGS), in cooperation with the USACE, modified an existing two-dimensional finite element surface-water model of the river between 63d Street and Blue Parkway (the 'original model'), used the modified model to simulate the existing (as of 2006) unimproved channel and the proposed channel modifications and GCS, and analyzed the results from the simulations and those from the WES physical model. Modifications were made to the original model to create a model that represents existing (2006) conditions between the north end of Swope Park immediately upstream from 63d Street and the upstream limit of channel improvement on the Blue River (the 'model of existing conditions'). The model of existing conditions was calibrated to two measured floods. The model of existing conditions also was modified to create a model that represents conditions along the same reach of the Blue River with proposed channel modifications and the proposed GCS (the 'model of proposed conditions'). The models of existing conditions and proposed conditions were used to simulate the 30-, 50-, and 100-year recurrence floods. The discharge from the calibration flood of May 15, 1990, also
Granular flow over inclined channels with constrictions
Tunuguntla, Deepak; Weinhart, Thomas; Thornton, Anthony; Bokhove, Onno
2013-04-01
Study of granular flows down inclined channels is essential in understanding the dynamics of natural grain flows like landslides and snow avalanches. As a stepping stone, dry granular flow over an inclined channel with a localised constriction is investigated using both continuum methods and particle simulations. Initially, depth-averaged equations of motion (Savage & Hutter 1989) containing an unknown friction law are considered. The shallow-layer model for granular flows is closed with a friction law obtained from particle simulations of steady flows (Weinhart et al. 2012) undertaken in the open source package Mercury DPM (Mercury 2010). The closed two-dimensional (2D) shallow-layer model is then width-averaged to obtain a novel one-dimensional (1D) model which is an extension of the one for water flows through contraction (Akers & Bokhove 2008). Different flow states are predicted by this novel one-dimensional theory. Flow regimes with distinct flow states are determined as a function of upstream channel Froude number, F, and channel width ratio, Bc. The latter being the ratio of the channel exit width and upstream channel width. Existence of multiple steady states is predicted in a certain regime of F - Bc parameter plane which is in agreement with experiments previously undertaken by (Akers & Bokhove 2008) and for granular flows (Vreman et al. 2007). Furthermore, the 1D model is verified by solving the 2D shallow granular equations using an open source discontinuous Galerkin finite element package hpGEM (Pesch et al. 2007). For supercritical flows i.e. F > 1 the 1D asymptotics holds although the two-dimensional oblique granular jumps largely vary across the converging channel. This computationally efficient closed 1D model is validated by comparing it to the computationally more expensiveaa three-dimensional particle simulations. Finally, we aim to present a quasi-steady particle simulation of inclined flow through two rectangular blocks separated by a gap
Li, Hua; Ma, Gang
2010-08-01
The long-term lateral migration of a two-dimensional elastic capsule in a microchannel is studied numerically in this paper. The numerical method combines a finite volume technique for solving the fluid problem with a front tracking technique for capturing and tracking the capsule membrane. The capsule is modeled as a liquid medium enclosed by a thin membrane which has linear elastic properties. The capsule, whose initial shape is circle and which starts from a near-center position or a near-wall position, experiences tilting and membrane tank-treading, and migrates laterally when moving along the surrounding flow. The lateral migration demonstrates the existence of lift effect of surrounding flow on moving capsule. Before capsule approaches to the microchannel centerline closely, lower membrane dilation modulus and lower viscosity ratio tend to result in faster lateral migration. The initial position also influences the performance behavior of capsule, despite the lateral migration of capsule is a quasisteady process. Small difference in capsule behavior when capsule is not near to the microchannel centerline might lead to significant difference in capsule behavior when capsule approaches closely to the centerline. When capsules are near to microchannel wall, the effect of the wall on capsule behavior might dominate, leading to relatively faster lateral migration. When capsules are not far from microchannel centerline, the effect of the nonlinearity of Poiseuille flow might dominate, resulting in relatively slower lateral movement. When capsules are located closely to the centerline, they behave differently, where the reason still remains poorly understood and it will be one of our future studies. The comparison between the capsule behavior from the present simulation and that by the migration law proposed by Coupier [Phys. Fluids 20, 111702 (2008)] shows that the behavioral agreement for near-wall capsule is better than that for near-center capsule, and the best
Yin, W.-L.
1984-04-01
It is shown that, in the case of non-zero charge density, the class of steady, plane, incompressible, aligned-fluid magnetofluiddynamic flows contains no rotational motions. Therefore, this class of flows is exhausted by the irrotational solutions of Kingston and Power.
Directory of Open Access Journals (Sweden)
Guodong Liu
2013-01-01
Full Text Available Modular pebble-bed nuclear reactor (MPBNR technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A two-dimensional model of unsteady turbulent flow induced by high-speed elevator system was established in the present study. The research was focused on the instantaneous variation of the aerodynamic force on the car structure during traversing motion of the counter weight in the hoistway. A dynamic meshing method was employed to treat the multi-body motion system to avoid poor distortion of meshes. A comprehensive understanding of this significant aspect was obtained by varying the horizontal gap (δ=0.1m, 0.2m, and 0.3m) between the elevator car and the counter weight, and the moving speed (U0=2m/s, 6m/s, and 10m/s) of the elevator system. A pulsed intensification of the aerodynamic force on the elevator car and subsequent appearance of large valley with negative aerodynamic force were clearly observed in the numerical results. In parameters studied (δ=0.1m, U0=2m/s, 6m/s, 10m/s), the peaked horizontal and vertical forces are respectively 7-11 and 4.3-5.65 times of that when the counter weight is far from the car. These results demonstrated the prominent influence of the traversing counter weight on aerodynamic force on the elevator car, which is of great significance to designers of high-speed elevator system.
Energy Technology Data Exchange (ETDEWEB)
Yoo, Y.Z.; Chmaissem, O.; Kolesnik, S.; Ullah, A.; Lurio, L.B.; Brown, D.E.; Brady, J.; Dabrowski, B.; Kimball, C.W.; Haji-Sheikh, M.; Genis, A.P. (NIU)
2010-12-03
Geometrical anisotropy axes of diverse SrRuO{sub 3} (SRO) films grown by random and directional two-dimensional and step flow modes are determined and their characteristic angular magnetizations are understood in terms of growth mode induced structural effects. Two-dimensional SRO films possess single-crystal-like structural qualities. Angular magnetization measurements show sharp minima and indicate the films easy axis to be in the [310] direction. In contrast, examination of step flow SRO films shows the presence of degenerate multiple in-plane domains and the anisotropy axis in a direction close to [110] even though directional surface steps are clearly visible.
Yang, Liping; Liu, Junliang; Zhang, Yuezhao; Wang, Wei; Yu, Deyang; Li, Xiaoxiao; Li, Xin; Zheng, Min; Ding, Baowei; Cai, Xiaohong
2017-08-01
Based on the charge-division method, a compact detector system for charged particles is constructed. The system consists of a pair of micro-channel plates, a novel two-dimensional position-sensitive cross-connected-pixels resistive anode, and specially designed front-end electronics that can directly drive analog-to-digital converters. The detector is tested with an (241)Am α-source. A position resolution of better than 0.3 mm and a maximum distortion within 0.5 mm in the active dimensions of 100 mm diameter are achieved.
Yang, Liping; Liu, Junliang; Zhang, Yuezhao; Wang, Wei; Yu, Deyang; Li, Xiaoxiao; Li, Xin; Zheng, Min; Ding, Baowei; Cai, Xiaohong
2017-08-01
Based on the charge-division method, a compact detector system for charged particles is constructed. The system consists of a pair of micro-channel plates, a novel two-dimensional position-sensitive cross-connected-pixels resistive anode, and specially designed front-end electronics that can directly drive analog-to-digital converters. The detector is tested with an 241Am α-source. A position resolution of better than 0.3 mm and a maximum distortion within 0.5 mm in the active dimensions of 100 mm diameter are achieved.
2-D SIMULATION OF CHANNEL FLOWS WITH MOVEABLE BED
Institute of Scientific and Technical Information of China (English)
Wilhelm BECHTELER; Davood FARSHI
2001-01-01
This paper presents some preliminary results of 2-D numerical simulation of open channel flow with moveable bed. The unsteady two dimensional channel flow and sediment transport are simulated by solving shallow water equations and sediment continuity equation in conservation form based on unstructured finite volume method. Redefining longitudinal and transverse slopes of the bed is implemented in order to consider them in the bedload equation. A simple modeling treatment dealing with secondary flow effect on sediment movement is also discussed. Finally, two examples of numerical simulation are presented.
Energy Technology Data Exchange (ETDEWEB)
Eaton, R.R.; Hopkins, P.L.
1992-08-01
LLUVIA-II is a program designed for the efficient solution of two- dimensional transient flow of liquid water through partially saturated, porous media. The code solves Richards equation using the method-of-lines procedure. This document describes the solution procedure employed, input data structure, output, and code verification.
Motevalli, Benyamin; Taherifar, Neda; Liu, Zhe
We report a cooperative reformable channel system in a coordination porous polymer, named as ZIF-L. Three types of local flexible ligands coexist in the crystal structure of this polymer, resulting in ultra-flexibility. The reformable channel is able to regulate permeation of a nonspherical guest molecule, such as N2 or CO2, based on its longer molecular dimension, which is in a striking contrast to conventional molecular sieves that regulate the shorter cross-sectional dimension of the guest molecules. Our density functional theory (DFT) calculations reveal that the guest molecule induces dynamic motion of the flexible ligands, leading to the channel reformation, and then the guest molecule reorientates itself to fit in the reformed channel. Such a unique ``induced fit-in'' mechanism causes the gas molecule to pass through 6 membered-ring windows in the c- crystal direction of ZIF-L with its longer axis parallel to the window plane. Our experimental permeance of N2 through the ZIF-L membranes is about three times greater than that of CO2, supporting the DFT simulation predictions.
Mirrored serpentine flow channels for fuel cell
Energy Technology Data Exchange (ETDEWEB)
Rock, Jeffrey Allan (Rochester, NY)
2000-08-08
A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.
DEFF Research Database (Denmark)
Sjöholm, Mikael; Angelou, Nikolas; Hansen, Per
2014-01-01
position; all points in space within a cone with a full opening angle of 1208 can be reached from about 8mout to some hundred meters depending on the range resolution required. The first two-dimensional mean wind fields measured in a horizontal plane and in a vertical plane below a hovering search...
Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F
2015-12-01
Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.
Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.; Grathwohl, Peter; Rolle, Massimo
2015-07-01
In porous media, lateral mass exchange exerts a significant influence on the dilution of solute plumes in quasi steady state. This process is one of the main mechanisms controlling transport of continuously emitted conservative tracers in groundwater and is fundamental for the understanding of many degradation processes. We investigate the effects of high-permeability inclusions on transverse mixing in three-dimensional versus two-dimensional systems by experimental, theoretical, and numerical analyses. Our results show that mixing enhancement strongly depends on the system dimensionality and on the parameterization used to model transverse dispersion. In particular, no enhancement of transverse mixing would occur in three-dimensional media if the local transverse dispersion coefficient was uniform and flow focusing in both transverse directions was identical, which is fundamentally different from the two-dimensional case. However, the velocity and grain size dependence of the transverse dispersion coefficient and the correlation between hydraulic conductivity and grain size lead to prevailing mixing enhancement within the inclusions, regardless of dimensionality. We perform steady state bench-scale experiments with multiple tracers in three-dimensional and quasi two-dimensional flow-through systems at two different velocities (1 and 5 m/d). We quantify transverse mixing by the flux-related dilution index and compare the experimental results with model simulations. The experiments confirm that, although dilution is larger in three-dimensional systems, the enhancement of transverse mixing due to flow focusing is less effective than in two-dimensional systems. The spatial arrangement of the high-permeability inclusions significantly affects the degree of mixing enhancement. We also observe more pronounced compound-specific effects in the dilution of solute plumes in three-dimensional porous media than in two-dimensional ones.
Kim, Myeong-Ho; Lee, Young-Ahn; Kim, Jinseo; Park, Jucheol; Ahn, Seungbae; Jeon, Ki-Joon; Kim, Jeong Won; Choi, Duck-Kyun; Seo, Hyungtak
2015-10-27
The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.
FLOW FIELD IN SCOURED ZONE OF CHANNEL CONTRACTIONS
Institute of Scientific and Technical Information of China (English)
Rajkumar V. RAIKAR; Subhasish DEY
2004-01-01
Experiments were conducted in a laboratory flume to measure the two-dimensional turbulent flow field in the scoured zone of channel contractions under a clear-water scour condition. The Acoustic Doppler Velocimeter (ADV) was used to detect the flow field at different vertical lines along the centerline of uncontracted (main channel) and contracted zones of the channel. The distributions of time-averaged velocity components, turbulent intensity, turbulent kinetic energy, and Reynolds stresses are presented in nondimensional graphical form. The bed shear stresses are computed from the measured Reynolds stresses being in threshold condition within the zone of contraction where bed was scoured. The data presented in this paper would be useful to the investigators for the development of kinematic flow model and morphological model of scour at a channel or river contraction.
Ke, Xinyou; Alexander, J Iwan D; Savinell, Robert F
2016-01-01
In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic flow inlet boundary conditions. However, the volumetric flow penetration within the porous electrode beneath the flow channel through the integration of interface flow velocity reveals that this value is identical under both ideal plug flow and ideal parabolic flow inlet boundary conditions. The volumetric flow penetrations under the advection effects of flow channel and landing/rib are estimated. The maximum current density achieved in the flow battery can be predicted based on the 100% amount of electrolyte flow reactant ...
Bouley, Simon; François, Benjamin; Roger, Michel; Posson, Hélène; Moreau, Stéphane
2017-09-01
The present work deals with the analytical modeling of two aspects of outlet guide vane aeroacoustics in axial-flow fan and compressor rotor-stator stages. The first addressed mechanism is the downstream transmission of rotor noise through the outlet guide vanes, the second one is the sound generation by the impingement of the rotor wakes on the vanes. The elementary prescribed excitation of the stator is an acoustic wave in the first case and a hydrodynamic gust in the second case. The solution for the response of the stator is derived using the same unified approach in both cases, within the scope of a linearized and compressible inviscid theory. It is provided by a mode-matching technique: modal expressions are written in the various sub-domains upstream and downstream of the stator as well as inside the inter-vane channels, and matched according to the conservation laws of fluid dynamics. This quite simple approach is uniformly valid in the whole range of subsonic Mach numbers and frequencies. It is presented for a two-dimensional rectilinear-cascade of zero-staggered flat-plate vanes and completed by the implementation of a Kutta condition. It is then validated in sound generation and transmission test cases by comparing with a previously reported model based on the Wiener-Hopf technique and with reference numerical simulations. Finally it is used to analyze the tonal rotor-stator interaction noise in a typical low-speed fan architecture. The interest of the mode-matching technique is that it could be easily transposed to a three-dimensional annular cascade in cylindrical coordinates in a future work. This makes it an attractive alternative to the classical strip-theory approach.
Han, Yehua; Levkin, Pavel; Abarientos, Irene; Liu, Huwei; Svec, Frantisek; Fréchet, Jean M.J.
2010-01-01
Superhydrophobic monolithic porous polymer layers with a photopatterned hydrophilic channel have been prepared. These layers were used for two-dimensional thin layer chromatography of peptides. The 50 μm thin poly(butyl methacrylate-co-ethylene dimethacrylate) layers supported onto 4.0 × 3.3 cm glass plates were prepared using UV-initiated polymerization in a simple glass mold. Photografting of a mixture of 2-acrylamido-2-methyl-1-propanesulfonic acid and 2-hydroxyethyl methacrylate carried out through a mask afforded a 600 μm wide virtual channel along one side of the layer. This channel, which contains ionizable functionalities, enabled the first dimension separation in ion exchange mode. The aqueous mobile phase migrates only through the channel due to the large difference in surface tension at the interface of the hydrophilic channel and the superhydrophobic monolith. The unmodified part of the layer featuring hydrophobic chemistry was then used for the reversed phase separation in the orthogonal second dimension. Practical application of our technique was demonstrated with a rapid 2D separation of a mixture of model peptides differing in hydrophobicity and isoelectric point using a combination of ion-exchange and reversed phase modes. In the former mode, the peptides migrated 11 mm in less than 1 min. Detection of fluorescently labeled peptides was achieved through UV light visualization. Separation of the native peptides was monitored directly using a desorption electrospray ionization (DESI) source coupled to a mass spectrometer. Unidirectional surface scanning with the DESI source was found suitable to determine both the location of each separated peptide and its molecular mass. PMID:20151661
Vo, Tony; Pothérat, Alban; Sheard, Gregory J.
2017-03-01
This study considers the linear stability of Poiseuille-Rayleigh-Bénard flows subjected to a transverse magnetic field, to understand the instabilities that arise from the complex interaction between the effects of shear, thermal stratification, and magnetic damping. This fundamental study is motivated in part by the desire to enhance heat transfer in the blanket ducts of nuclear fusion reactors. In pure magnetohydrodynamic flows, the imposed transverse magnetic field causes the flow to become quasi-two-dimensional and exhibit disturbances that are localized to the horizontal walls. However, the vertical temperature stratification in Rayleigh-Bénard flows feature convection cells that occupy the interior region, and therefore the addition of this aspect provides an interesting point for investigation. The linearized governing equations are described by the quasi-two-dimensional model proposed by Sommeria and Moreau [J. Fluid Mech. 118, 507 (1982), 10.1017/S0022112082001177], which incorporates a Hartmann friction term, and the base flows are considered fully developed and one-dimensional. The neutral stability curves for critical Reynolds and Rayleigh numbers, Rec and Rac, respectively, as functions of Hartmann friction parameter H have been obtained over 10-2≤H ≤104 . Asymptotic trends are observed as H →∞ following Rec∝H1 /2 and Rac∝H . The linear stability analysis reveals multiple instabilities which alter the flow both within the Shercliff boundary layers and the interior flow, with structures consistent with features from plane Poiseuille and Rayleigh-Bénard flows.
Williams, R. D.; Brasington, J.; Hicks, M.; Measures, R.; Rennie, C. D.; Vericat, D.
2013-09-01
Gravel-bed braided rivers are characterized by shallow, branching flow across low relief, complex, and mobile bed topography. These conditions present a major challenge for the application of higher dimensional hydraulic models, the predictions of which are nevertheless vital to inform flood risk and ecosystem management. This paper demonstrates how high-resolution topographic survey and hydraulic monitoring at a density commensurate with model discretization can be used to advance hydrodynamic simulations in braided rivers. Specifically, we detail applications of the shallow water model, Delft3d, to the Rees River, New Zealand, at two nested scales: a 300 m braid bar unit and a 2.5 km reach. In each case, terrestrial laser scanning was used to parameterize the topographic boundary condition at hitherto unprecedented resolution and accuracy. Dense observations of depth and velocity acquired from a mobile acoustic Doppler current profiler (aDcp), along with low-altitude aerial photography, were then used to create a data-rich framework for model calibration and testing at a range of discharges. Calibration focused on the estimation of spatially uniform roughness and horizontal eddy viscosity, νH, through comparison of predictions with distributed hydraulic data. Results revealed strong sensitivity to νH, which influenced cross-channel velocity and localization of high shear zones. The high-resolution bed topography partially accounts for form resistance, and the recovered roughness was found to scale by 1.2-1.4 D84 grain diameter. Model performance was good for a range of flows, with minimal bias and tight error distributions, suggesting that acceptable predictions can be achieved with spatially uniform roughness and νH.
HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCOELASTIC ELECTRICALLY CONDUCTING FLUID
Directory of Open Access Journals (Sweden)
RITA CHOUDHURY
2011-10-01
Full Text Available A theoretical study for the two-dimensional boundary layer flow through a divergent channel of a visco-elastic electrically conducting fluid in presence of transverse magnetic field has been considered. Similarity solutions are obtained by considering a special form of magnetic field. The analytical expressions for velocity and skin friction at the wall have been obtained and numerically worked out for different values of the flow parametersinvolved in the solution. The velocity and the skin friction coefficient have been presented graphically to observe the visco-elastic effects for various values of the flow parameters across the boundary layer.
Institute of Scientific and Technical Information of China (English)
Gérard J. Poitras; L.-Emmanuel Brizzi; Yves Gagnon
2001-01-01
The results of different numerical algorithms for the computation of unsteady fluid flows are used to visualize different variables of the flow. In particular, the instantaneous vorticity, velocity and pressure fields, along with streamline plots, are presented as a function of time inside a visualization window of the computational domain.The different forms of visualization are used to analyze the flow inside a two-dimensional channel incorporating an obstacle, which can represent several interesting flows such as the flow over electronic components, heat transfer devices and buildings.
van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef
2014-07-01
The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.
Chakravarthy, S.
1978-01-01
An efficient, direct finite difference method is presented for computing sound propagation in non-stepped two-dimensional and axisymmetric ducts of arbitrarily varying cross section without mean flow. The method is not restricted by axial variation of acoustic impedance of the duct wall linings. The non-uniform two-dimensional or axisymmetric duct is conformally mapped numerically into a rectangular or cylindrical computational domain using a new procedure based on a method of fast direct solution of the Cauchy-Riemann equations. The resulting Helmholtz equation in the computational domain is separable. The solution to the governing equation and boundary conditions is expressed as a linear combination of fundamental solutions. The fundamental solutions are computed only once for each duct shape by means of the fast direct cyclic reduction method for the discrete solution of separable elliptic equations. Numerical results for several examples are presented to show the applicability and efficiency of the method.
Huizinga, Richard J.
2007-01-01
The evaluation of scour at bridges throughout the State of Missouri has been ongoing since 1991, and most of these evaluations have used one-dimensional hydraulic analysis and application of conventional scour depth prediction equations. Occasionally, the complex conditions of a site dictate a more thorough assessment of the stream hydraulics beyond a one-dimensional model. This was the case for structure A-1700, the Interstate 155 bridge crossing the Mississippi River near Caruthersville, Missouri. To assess the complex hydraulics at this site, a two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Mississippi River in the vicinity of the Interstate 155 structure A-1700. The model was used to simulate flow conditions for three discharges: a flood that occurred on April 4, 1975 (the calibration flood), which had a discharge of 1,658,000 cubic feet per second; the 100-year flood, which has a discharge of 1,960,000 cubic feet per second; and the project design flood, which has a discharge of 1,974,000 cubic feet per second. The project design flood was essentially equivalent to the flood that would cause impending overtopping of the mainline levees along the Mississippi River in the vicinity of structure A-1700. Discharge and river-stage readings from the flood of April 4, 1975, were used to calibrate the flow model. The model was then used to simulate the 100-year and project design floods. Hydraulic flow parameters obtained from the three flow simulations were applied to scour depth prediction equations to determine contraction, local pier, and abutment scour depths at structure A-1700. Contraction scour and local pier scour depths computed for the project design discharge generally were the greatest, whereas the depths computed for the calibration flood were the least. The maximum predicted total scour depth (contraction and local pier scour) for the calibration flood was 66.1 feet; for the 100-year flood, the maximum predicted total
Shu, Jian-Jun
2014-01-01
A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.
Al-Maaitah, Ayman A.; Nayfeh, Ali H.; Ragab, Saad A.
1989-01-01
The effect of suction on the stability of compressible flows over backward-facing steps is investigated. Mach numbers up to 0.8 are considered. The results show that continuous suction stabilizes the flow outside the separation bubble, but it destabilizes the flow inside it. Nevertheless, the overall N factor decreases as the suction level increases due to the considerable reduction of the separation bubble. For the same suction flow rate, properly distributed suction strips stabilize the flow more than continuous suction. The size of the separation bubble, and hence its effect on the instability can be considerably reduced by placing strips with high suction velocities in the separation region.
Coupled One and Two Dimensional Model for River Network Flow and Sediment Transport%一二维耦合河网水沙模型研究
Institute of Scientific and Technical Information of China (English)
吕文丽; 张旭
2011-01-01
Based on previous research, a new one and two-dimensional coupled model of river water and sediment was proposed.With reference to the three-level solution for one-dimensional river network water mode, the two-dimensional river section will be generalized to river section within the river network.One and two dimensional coupled river network sediment model will be established with the balance of flow amount and sediment transport.The model sets up the chasing relationship between variables of water level and sediment content at the end and first section to further establish matrix equations of the whole one and two-dimensional river network node water level and sediment content.Though the verification and calculation for generalized river network from Datong to Zhenjiang in the lower reaches of the Yangtze River, it is found that the model is of great practical value.%借鉴河网水流的三级解法,将二维河段概化为河网内部河段,通过河网节点流量和输沙量的平衡,建立一二维耦合河网水沙模型.模型采用全隐式方法建立二维河段以首末断面的水位和含沙量为中间变量的矩阵追赶关系,进而建立整个一二维河网的节点水位及含沙量的矩阵方程组.对方程组的求解,可实现一二维水沙模型的耦合求解.通过对长江下游大通至镇江概化河网的验证计算,表明模型具有很好的实用价值.
Xu, Huifang; Dai, Yuehua
2017-02-01
A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.
Two-dimensional simulation of Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect are directly simulated by a mixed finite element method.A temperature perturbation is used as an initial disturbed source for the basic parallel flows.The whole spatio-temporal evolution of the binary fluid flows is exhibited:initially only the disturbed mode with the wavenumber k=π is amplified while others are damped.and continuously the amplified mode grows further and the nonlinear effect becomes important;after a nonlinear evolution transition the flow system evolves finally into a periodic right traveling wave.
1955-01-01
8217rinRE-DifMENSONAL HtYPERtSONIC 15.W indicated-flow-separation oin the leewardl side of (lie body for excellent agreemelnt in tlie plano of symmlletry...REIMARKS b~ound~ary layers may, inl like imanner, prove useful il- pie - A mnethod of characteristics employing p)ressure and-flow deigdrednesoa
Precipitation patterns during channel flow
Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.
2013-12-01
Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001
Shahriari, S; Kadem, L; Rogers, B D; Hassan, I
2012-11-01
This paper aims to extend the application of smoothed particle hydrodynamics (SPH), a meshfree particle method, to simulate flow inside a model of the heart's left ventricle (LV). This work is considered the first attempt to simulate flow inside a heart cavity using a meshfree particle method. Simulating this kind of flow, characterized by high pulsatility and moderate Reynolds number using SPH is challenging. As a consequence, validation of the computational code using benchmark cases is required prior to simulating the flow inside a model of the LV. In this work, this is accomplished by simulating an unsteady oscillating flow (pressure amplitude: A = 2500 N ∕ m(3) and Womersley number: W(o) = 16) and the steady lid-driven cavity flow (Re = 3200, 5000). The results are compared against analytical solutions and reference data to assess convergence. Then, both benchmark cases are combined and a pulsatile jet in a cavity is simulated and the results are compared with the finite volume method. Here, an approach to deal with inflow and outflow boundary conditions is introduced. Finally, pulsatile inlet flow in a rigid model of the LV is simulated. The results demonstrate the ability of SPH to model complex cardiovascular flows and to track the history of fluid properties. Some interesting features of SPH are also demonstrated in this study, including the relation between particle resolution and sound speed to control compressibility effects and also order of convergence in SPH simulations, which is consistently demonstrated to be between first-order and second-order at the moderate Reynolds numbers investigated.
Energy Technology Data Exchange (ETDEWEB)
Lasseter, T.J.; Karakas, M.
1982-01-01
A simple numerical method has been developed that largely eliminates numerical diffusion errors associated with saturation discontinuities or shocks for two-phase flow in one and two dimensions. The important aspect of the approach is the computation of a variable weighting factor for the interface fractional flow between grid blocks. The approach appears to be generalizable to the multicomponent, multidimensional case including gravity and capilarity. 5 refs.
Energy Technology Data Exchange (ETDEWEB)
Katyal, A.K.; Kaluarachchi, J.J.; Parker, J.C.
1991-05-01
The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The report describes the required inputs for flow analysis and transport analysis. Time dependent boundary conditions for flow and transport analysis can be handled by the program and are described in the report. Detailed instructions for creating data files needed to run the program and example input and output files are given in appendices.
A MODIFIED SIMPLE ALGORITHM FOR 2-D FLOW IN OPEN CHANNEL
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
For two-dimensional water flow in open channel, by discritizing hydrodynamic differential equation of conservative form, the corresponding algebraic equations were derived which involve the relationship between velocity and depth. Based on the relationship, this paper deduced a modified formula of velocity correction for SIMPLE algorithm. As a test case, the flow in a prismatic channel with two different slopes was computed and a good result was obtained.
Directory of Open Access Journals (Sweden)
M.N Kherief
2016-01-01
Full Text Available Steady, laminar, natural-convection flow in the presence of a magnetic field in an inclined rectangular enclosure heated from one side and cooled from the adjacent side was considered. The governing equations were solved numerically for the stream function, vorticity and temperature using the finite-volume method for various Grashof and Hartman numbers and inclination angles and magnetic field directions. The results show that the orientation and the strength and direction of the magnetic field have significant effects on the flow and temperature fields. Counterclockwise inclination induces the formation of multiple eddies inside the enclosure significantly affecting the temperature field. Circulation inside the enclosure and therefore the convection become stronger as the Grashof number increases while the magnetic field suppresses the convective flow and the heat transfer rate.
Erpelding, Marion; Sinha, Santanu; Tallakstad, Ken Tore; Hansen, Alex; Flekkøy, Eirik Grude; Måløy, Knut Jørgen
2013-11-01
It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, histograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.
2012-05-10
light (Schmelzle, 1994 and Albano , 1994). The kinetic mechanisms were incorporated into the flow field model by introducing the species mass... Albano , M., 1994. Computer Simulation of a Photolytic Reactor to Study the Effects of a Variety of Wavelengths, A Thesis in Environmental Pollution
Takagi, S.; Oguz, H.N.; Zhang, Z.; Prosperetti, A.
2003-01-01
This paper presents a new approach to the direct numerical simulation of particle flows. The basic idea is to use a local analytic representation valid near the particle to “transfer” the no-slip condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity ari
Block, Stephan; Lundgren, Anders; Zhdanov, Vladimir P; Höök, Fredrik
2016-01-01
Biological nanoparticles (BNPs) are of high interest due to their key role in various biological processes and use as biomarkers. BNP size and molecular composition are decisive for their functions, but simultaneous determination of both properties with high accuracy remains challenging, which is a severe limitation. Surface-sensitive microscopy allows one to precisely determine fluorescence or scattering intensity, but not the size of individual BNPs. The latter is better determined by tracking their random motion in bulk, but the limited illumination volume for tracking this motion impedes reliable intensity determination. We here show that attaching BNPs (specifically, vesicles and functionalized gold NPs) to a supported lipid bilayer, subjecting them to a hydrodynamic flow, and tracking their motion via surface-sensitive imaging enable to determine their diffusion coefficients and flow-induced drift velocities and to accurately quantify both BNP size and emission intensity. For vesicles, the high accuracy...
Block, Stephan; Fast, Björn Johansson; Lundgren, Anders; Zhdanov, Vladimir P.; Höök, Fredrik
2016-09-01
Biological nanoparticles (BNPs) are of high interest due to their key role in various biological processes and use as biomarkers. BNP size and composition are decisive for their functions, but simultaneous determination of both properties with high accuracy remains challenging. Optical microscopy allows precise determination of fluorescence/scattering intensity, but not the size of individual BNPs. The latter is better determined by tracking their random motion in bulk, but the limited illumination volume for tracking this motion impedes reliable intensity determination. Here, we show that by attaching BNPs to a supported lipid bilayer, subjecting them to hydrodynamic flows and tracking their motion via surface-sensitive optical imaging enable determination of their diffusion coefficients and flow-induced drifts, from which accurate quantification of both BNP size and emission intensity can be made. For vesicles, the accuracy of this approach is demonstrated by resolving the expected radius-squared dependence of their fluorescence intensity for radii down to 15 nm.
Directory of Open Access Journals (Sweden)
Sabet Safa
2016-03-01
Full Text Available In the present study, the fluid flow in a periodic, non-isotropic dual scale porous media consisting of permeable square rods in inline arrangement is analyzed to determine permeability, numerically. The continuity and Navier-Stokes equations are solved to obtain the velocity and pressure distributions in the unit structures of the dual scale porous media for flows within Darcy region. Based on the obtained results, the intrinsic inter and intraparticle permeabilities and the bulk permeability tensor of the dual scale porous media are obtained for different values of inter and intraparticle porosities. The study is performed for interparticle porosities between 0.4 and 0.75 and for intraparticle porosities from 0.2 to 0.8. A correlation based on Kozeny-Carman relationship in terms of inter and intraparticle porosities and permeabilities is proposed to determine the bulk permeability tensor of the dual scale porous media.
Belfort, Benjamin; Weill, Sylvain; Lehmann, François
2017-07-01
A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.
Energy Technology Data Exchange (ETDEWEB)
Votsish, A.D.
1977-07-01
Results are given for experimental studies of the effect that a cross-sectional magnetic field has on longitudinal and cross-sectional velocity pulsations and the coefficient of their correlation in a homogeneous shear region of averaged flow velocity. An opposite sign change for turbulent friction was obtained as the magnetic field was increased. In this connection an identification was made of an impulse transfer from regions with lower speeds to regions with high speeds. 4 references, 1 figure.
Heat transfer in the flow of a cold, two-dimensional draining sheet over a hot, horizontal cylinder
Shu, Jian-Jun
2014-01-01
The paper considers heat transfer characteristics of thin film flow over a hot horizontal cylinder resulting from a cold vertical sheet of liquid falling onto the surface. The underlying physical features of the developing film thickness, velocity and temperature distributions have been illustrated by numerical solutions of high accuracy for large Reynolds numbers using the modified Keller box method. The solutions for film thickness distribution are good agreement with those obtained using the Pohlhausen integral momentum technique thus providing a basic confirmation of the validity of the results presented.
Institute of Scientific and Technical Information of China (English)
Ying-hui ZHANG; Zhong TAN
2011-01-01
In this paper,we are concerned with the asymptotic behaviour of a weak solution to the NavierStokes equations for compressible barotropic flow in two space dimensions with the pressure function satisfying p(ρ) =a(ρ)logd(ρ) for large (ρ).Here d ＞ 2,a ＞ 0.We introduce useful tools from the theory of Orlicz spaces and construct a suitable function which approximates the density for time going to infinity.Using properties of this function,we can prove the strong convergence of the density to its limit state.The behaviour of the velocity field and kinetic energy is also briefly discussed.
Numerical Simulation for Two-Phase Water Hammer Flows in Pipe by Quasi-Two-Dimensional Model
Institute of Scientific and Technical Information of China (English)
Tae Uk Jang; Yuebin Wu; Ying Xu; Qiang Sun
2016-01-01
The features of a quasi⁃two⁃dimensional ( quasi⁃2D) model for simulating two⁃phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi⁃2D model with discrete vaporous cavity in the pipe is proposed in this paper. This model uses the quasi⁃2D model for pure liquid zone and one⁃dimensional ( 1D ) discrete vapor cavity model for vaporous cavity zone. The quasi⁃2D model solves two⁃dimensional equations for both axial and radial velocities and 1D equations for both pressure head and discharge by the method of characteristics. The 1D discrete vapor cavity model is used to simulate the vaporous cavity occurred when the pressure in the local pipe is lower than the vapor pressure of the liquid. The proposed model is used to simulate two⁃phase water flows caused by the rapid downstream valve closure in a reservoir⁃pipe⁃valve system. The results obtained by the proposed model are compared with those by the corresponding 1D model and the experimental ones provided by the literature, respectively. The comparison shows that the maximum pressure heads simulated by the proposed model are more accurate than those by the corresponding 1D model.
DEFF Research Database (Denmark)
Brix, Lau; Christoffersen, Christian P. V.; Kristiansen, Martin Søndergaard
of the aorta. Methods: 2D phase contrast flow images of the aorta were acquired from a patient with an enlarged pulmonary artery on a Philips Achieva 1.5T CMR system. The cardiac motion was removed from the data set using the Cornelius/Kanade registration algorithm. The time resolved flow data...... promising because it saves time for post-processing. However, the k-means cluster approach is not comprehensive for quantitative flow estimations as it is but seems feasible for a subsequent segmentation algorithm like deformable contours (i.e. snakes). Future work may overcome this manual part and make...
Kreider, Kevin L.; Baumeister, Kenneth J.
1996-01-01
An explicit finite difference real time iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for future large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable for a harmonic monochromatic sound field, a parabolic (in time) approximation is introduced to reduce the order of the governing equation. The analysis begins with a harmonic sound source radiating into a quiescent duct. This fully explicit iteration method then calculates stepwise in time to obtain the 'steady state' harmonic solutions of the acoustic field. For stability, applications of conventional impedance boundary conditions requires coupling to explicit hyperbolic difference equations at the boundary. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
Filgueira, Marcelo R.; Huang, Yuan; Witt, Klaus; Castells, Cecilia; Carr, Peter W.
2011-01-01
The use of flow splitters between the two dimensions in on-line comprehensive two dimensional liquid chromatography (LC×LC) has not received very much attention in comparison to their use in GC×GC where they are quite common. In principle, splitting the flow after the first dimension column and performing on-line LC×LC on this constant fraction of the first dimension effluent should allow the two dimensions to be optimized almost independently. When there is no flow splitting any change in the first dimension flow rate has an immediate impact on the second dimension. With a flow splitter one could for example double the flow rate into the first dimension column and do a 1:1 flow split without changing the sample loop size or the sampler’s collection time. Of course, the sensitivity would be diminished but this can be partially compensated by use of a larger injection; this will likely only amount to a small price to pay for this increased resolving power and system flexibility. Among other benefits, we found a 2-fold increase in the corrected 2D peak capacity and the number of observed peaks for a 15 min analysis time by using a post first dimension flow splitter. At a fixed analysis time this improvement results primarily from an increase in the gradient time resulting from the reduced system re-equilibration time and to a smaller extent it is due to the increased peak capacity achieved by full optimization of the first dimension. PMID:22017622
Institute of Scientific and Technical Information of China (English)
Cai Qing-Dong; Chen Shi-Yi; Sheng Xiao-Wei
2011-01-01
This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution function of velocities of particles is Gaussian at the central part, but diverts from Gaussian distribution nearby the wall. The macroscopic stress along the vertical direction has large fluctuation around a constant value, the non-zero average velocity occurs mainly near the moving wall, which forms a shearing zone. . In the shearing movement, the volume of the granular material behaves in a random manner. The equivalent friction coefficient between moving slab and granular material correlates with the moving speed at low velocity, and approaches constant as the velocity is large enough.
van der Poel, Erwin P; Verzicco, Roberto; Lohse, Detlef
2015-01-01
The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-B\\'enard convection. Combinations of no-slip, stress-free and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between $10^8$ and $10^{11}$ the heat transport is lower for $\\Gamma = 0.33$ than for $\\Gamma = 1$ in case of no-slip sidewalls. This is surprisingly opposite for stress-free sidewalls, where the heat transport increases for lower aspect-ratio. In wider cells the aspect-ratio dependence is observed to disappear for $\\text{Ra} \\ge 10^{10}$. Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and horizontal zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall s...
Pavlidis, Mitrofanis
2016-01-01
Purpose. To evaluate comparative aspiration flow performance and also vitrectomy operating time efficiency using a double-cutting open port vitreous cutting system incorporated in a two-dimensional cutting (TDC, DORC International) vitrectome design versus standard vitreous cutter. Methods. In vitro investigations compared aspiration flow rates in artificial vitreous humor at varying cutter speeds and vacuum levels using a TDC vitrectome and a standard vitrectome across different aspiration pump systems. A prospective single-centre clinical study evaluated duration of core vitrectomy in 80 patients with macular pucker undergoing 25-gauge or 27-gauge vitrectomy using either a TDC vitrectome at 16,000 cuts per minute (cpm) or standard single-cut vitrectome, combined with a Valve Timing intelligence (VTi) pump system (EVA, DORC International). Results. Aspiration flow rates remained constant independent of TDC vitrectome cut rate, while flow rates decreased linearly at higher cutter speeds using a classic single-blade vitrectome. Mean duration of core vitrectomy surgeries using a TDC vitreous cutter system was significantly (p < 0.001) shorter than the mean duration of core vitrectomy procedures using a single-cut vitrectome of the same diameter (reduction range, 34%-50%). Conclusion. Vitrectomy surgery performed using a TDC vitrectome was faster than core vitrectomy utilizing a standard single-action vitrectome at similar cut speeds.
Directory of Open Access Journals (Sweden)
Mitrofanis Pavlidis
2016-01-01
Full Text Available Purpose. To evaluate comparative aspiration flow performance and also vitrectomy operating time efficiency using a double-cutting open port vitreous cutting system incorporated in a two-dimensional cutting (TDC, DORC International vitrectome design versus standard vitreous cutter. Methods. In vitro investigations compared aspiration flow rates in artificial vitreous humor at varying cutter speeds and vacuum levels using a TDC vitrectome and a standard vitrectome across different aspiration pump systems. A prospective single-centre clinical study evaluated duration of core vitrectomy in 80 patients with macular pucker undergoing 25-gauge or 27-gauge vitrectomy using either a TDC vitrectome at 16,000 cuts per minute (cpm or standard single-cut vitrectome, combined with a Valve Timing intelligence (VTi pump system (EVA, DORC International. Results. Aspiration flow rates remained constant independent of TDC vitrectome cut rate, while flow rates decreased linearly at higher cutter speeds using a classic single-blade vitrectome. Mean duration of core vitrectomy surgeries using a TDC vitreous cutter system was significantly (p<0.001 shorter than the mean duration of core vitrectomy procedures using a single-cut vitrectome of the same diameter (reduction range, 34%–50%. Conclusion. Vitrectomy surgery performed using a TDC vitrectome was faster than core vitrectomy utilizing a standard single-action vitrectome at similar cut speeds.
Institute of Scientific and Technical Information of China (English)
CAO; Wei
2001-01-01
.0, MNRAS,1992, 256: 349.［25］Hazard, C. , Morton, D. C., Terlevich, R. et al. , Nine new quasi-stellar objects with borad absorption lines, Astrophys.J. , 1984, 282: 33.［26］Osmer, P. S. , Q0353-383: The best case yet for abundance anomalies in quasars, Astrophys. J. , 1980, 237, 666.［27］Hamann, F. , Zuo, L., Tytler, D. , Broad Ne VIII λ774 emission from quasars in the HST-Fos snapshot survey (ABSNAP),Astrophys. J., 1995, 444: L69.［28］Laor, A. , Bahcall, J. N., Jannuzi, B. T. , The ultraviolet emission properties of five low-redshift active galactic unclei at high signal-to-noise ratio and spectral resolution, Astrophys. J., 1994, 420: 110.［29］Barthel, P. D., Tytler, D. R., Thomson, B., Optical spectra of distant radio loud quasars, A&AS, 1990, 82: 339.［30］Schmidt, M., Schneider, D. P., Gunn, J. E., Pc0910 + 5625: An optically selected quasar with a redshift of 4.04, Astro-phys. J., 1987, 321: L7.［31］Adams, M. T., Coleman, G. D., Stockman, H. S. et al., The spectrum of Markarian 132, Astrophys. J., 1978, 228:758.［32］Hammann, F. , Shields, J. C. , Ferland, G. J. et al. , Broad NE VIII lambda 744 emission from the Quasar PG 148 + 549,Astrophys. J., 1995, 454: 688.［33］Baldwin, J. A., McMahon, R., Hazard, C. et al., QSOs with narrow emission lines, Astrophys. J., 1988, 327: 103.［34］Baldwin, J. A. , Burbidge, E. M. , Hazard, C. et al. , A spectroscopic surrvey of 92 QSO candidates, Astrophys. J. ,1973, 185: 739.［35］Baldwin, J. A. , Ferland, G. J. , Korista, K. T., Very high density clumps and out flowing winds in QSO broad-line re-gions, Astrophys. J., 1996, 461: 664.［36］Ferland, G. J., Baldwin, J. A., Korista, K. T., High metal enrichments in luminous quasars, Astrophys. J., 461: 683.［37］Bceker, R. H., Helfand, D. J., White, R. L., The discovery of an X-ray selected radio-loud quasar at z = 3.9 AJ, 1992,104: 531.［38］Schneider, D. P., Lawrence, C. R., Schmide, M. et al., Deep optical and radio observations of the
Directory of Open Access Journals (Sweden)
Y. V. Konovalov
2015-11-01
Full Text Available The prognostic experiments for fast-flowing ice streams on the southern side of the Academy of Sciences Ice Cap in the Komsomolets Island, Severnaya Zemlya archipelago, are implemented in this study. These experiments are based on inversions of basal friction coefficients using a two-dimensional flow-line thermo-coupled model and the Tikhonov's regularization method. The modeled ice temperature distributions in the cross-sections were obtained using the ice surface temperature histories that were inverted previously from the borehole temperature profiles derived at the Academy of Sciences Ice Cap. Input data included InSAR ice surface velocities, ice surface elevations, and ice thicknesses obtained from airborne measurements and the surface mass balance, were adopted from the prior investigations for the implementation of both the forward and inverse problems. The prognostic experiments reveal that both ice mass and ice stream extents decline for the reference time-independent surface mass balance. Specifically, the grounding line retreats (a along the B–B' flow line from ~ 40 to ~ 30 km (the distance from the summit, (b along the C–C' flow line from ~ 43 to ~ 37 km, and (c along the D–D' flow line from ~ 41 to ~ 32 km considering a time period of 500 years and assuming time-independent surface mass balance. Ice flow velocities in the ice streams decrease with time and this trend results in the overall decline of the outgoing ice flux. Generally, the modeled histories are in agreement with observations of sea ice extent and thickness indicating a continual ice decline in the Arctic.
Developing laminar flow in curved rectangular channels
De Vriend, H.J.
1978-01-01
As an intermediate step between earlier investigations on fully developed laminar flow in curved channels of shallow rectancular wet cross-section and the mathematical modeling of turbulent flow in river bends, a mathematical model of developing laminar flow in such channels is investigated. The mos
Sun, Yi; Timofeyev, Ilya
2014-05-01
We employ an efficient list-based kinetic Monte Carlo (KMC) method to study traffic flow models on one-dimensional (1D) and two-dimensional (2D) lattices based on the exclusion principle and Arrhenius microscopic dynamics. This model implements stochastic rules for cars' movements based on the configuration of the traffic ahead of each car. In particular, we compare two different look-ahead rules: one is based on the distance from the car under consideration to the car in front of it, and the other one is based on the density of cars ahead. The 1D numerical results of these two rules suggest different coarse-grained macroscopic limits in the form of integro-differential Burgers equations. The 2D results of both rules exhibit a sharp phase transition from freely flowing to fully jammed, as a function of the initial density of cars. However, the look-ahead rule based on the density of the traffic produces more realistic results. The KMC simulations reported in this paper are compared with those from other well-known traffic flow models and the corresponding empirical results from real traffic.
Zoccali, Mariosimone; Schug, Kevin A; Walsh, Phillip; Smuts, Jonathan; Mondello, Luigi
2017-05-12
The present paper is focused on the use of a vacuum ultraviolet absorption spectrometer (VUV) for gas chromatography (GC), within the context of flow modulated comprehensive two-dimensional gas chromatography (FM GC×GC). The features of the VUV detector were evaluated through the analysis of petrochemical and fatty acids samples. Besides responding in a predictable fashion via Beer's law principles, the detector provides additional spectroscopic information for qualitative analysis. Virtually all chemical species absorb and have unique gas phase absorption features in the 120-240nm wavelength range monitored. The VUV detector can acquire up to 90 full range absorption spectra per second, allowing its coupling with comprehensive two-dimensional gas chromatography. This recent form of detection can address specific limitations related to mass spectrometry (e.g., identification of isobaric and isomeric species with very similar mass spectra or labile chemical compounds), and it is also able to deconvolute co-eluting peaks. Moreover, it is possible to exploit a pseudo-absolute quantitation of analytes based on pre-recorded absorption cross-sections for target analytes, without the need for traditional calibration. Using this and the other features of the detector, particular attention was devoted to the suitability of the FM GC×GC-VUV system toward qualitative and quantitative analysis of bio-diesel fuel and different kinds of fatty acids. Satisfactory results were obtained in terms of tailing factor (1.1), asymmetry factor (1.1), and similarity (average value 97%), for the FAMEs mixtures analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Surface oscillations in channeled snow flows
Rastello, Marie
2007-01-01
An experimental device has been built to measure velocity profiles and friction laws in channeled snow flows. The measurements show that the velocity depends linearly on the vertical position in the flow and that the friction coefficient is a first-order polynomial in velocity (u) and thickness (h) of the flow. In all flows, oscillations on the surface of the flow were observed throughout the channel and measured at the location of the probes. The experimental results are confronted with a shallow water approach. Using a Saint-Venant modeling, we show that the flow is effectively uniform in the streamwise direction at the measurement location. We show that the surface oscillations produced by the Archimedes's screw at the top of the channel persist throughout the whole length of the channel and are the source of the measured oscillations. This last result provides good validation of the description of such channeled snow flows by a Saint-Venant modeling.
Directory of Open Access Journals (Sweden)
Hożejowska Sylwia
2014-03-01
Full Text Available The paper presents application of the nodeless Trefftz method to calculate temperature of the heating foil and the insulating glass pane during continuous flow of a refrigerant along a vertical minichannel. Numerical computations refer to an experiment in which the refrigerant (FC-72 enters under controlled pressure and temperature a rectangular minichannel. Initially its temperature is below the boiling point. During the flow it is heated by a heating foil. The thermosensitive liquid crystals allow to obtain twodimensional temperature field in the foil. Since the nodeless Trefftz method has very good performance for providing solutions to such problems, it was chosen as a numerical method to approximate two-dimensional temperature distribution in the protecting glass and the heating foil. Due to known temperature of the refrigerant it was also possible to evaluate the heat transfer coefficient at the foil-refrigerant interface. For expected improvement of the numerical results the nodeless Trefftz method was combined with adjustment calculus. Adjustment calculus allowed to smooth the measurements and to decrease the measurement errors. As in the case of the measurement errors, the error of the heat transfer coefficient decreased.
On the Flow of a Paramagnetic Fluid in a Differentially Heated Channel
Directory of Open Access Journals (Sweden)
H. Sadat
2011-01-01
Full Text Available In the present study, we investigate the flow of a paramagnetic fluid in a two dimensional heated channel when an external magnetic gradient is imposed. In the fully developed regime, an analytical solution shows that a flow reversal may occur; the condition of this is given n terms of the Reynolds number. Numerical simulations are then carried out for more general situations. It is shown that the analytical model gives good qualitative predictions.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
HANARO core channel flow-rate measurement
Energy Technology Data Exchange (ETDEWEB)
Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1996-06-01
HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.
Solute dispersion in open channel flow with bed absorption
Wang, Ping; Chen, G. Q.
2016-12-01
Reactive solute dispersion is of essential significance in various ecological and environmental applications. It is only qualitatively known that boundary absorption depletes pollutant around the boundary and reduces the concentration nearby. All the existing studies on this topic have been focused on the longitudinally distributed mean concentration, far from enough to fully characterize the transport process with tremendous cross-sectional concentration nonuniformity. This work presents an analytical study of the evolution of two-dimensional concentration distribution for solute dispersion in a laminar open channel flow with bed absorption. The fourth order Aris-Gill expansion proposed in our previous study (Wang and Chen, 2016b) is further extended for the case with bed absorption to cover the transitional effects of skewness and kurtosis. Results reveal the extremely nonuniform cross-sectional concentration distribution, and demonstrate that concentration at the bed instead of the mean should be used for reliable quantification of the absorption flux. The accurate two-dimensional concentration distribution presented in this study brings important environmental implications such as risk assessment associated with peak concentration position and duration of toxic pollutant cloud in open channel waters.
Institute of Scientific and Technical Information of China (English)
Gang Guo; Yonggui Yang; Weiqun Yang
2011-01-01
The optimal velocity encoding of phase-contrast magnetic resonance angiography (PC MRA) in measuring cerebral blood flow volume (BFV) ranges from 60 to 80 cm/s. To verify the accuracy of two-dimensional (2D) PC MRA, the present study localized the region of interest at blood vessels of the neck using PC MRA based on three-dimensional time-of-flight sequences, and the velocity encodingwas set to 80 cm/s. Results of the measurements showed that the error rate was 7.0 ± 6.0%in the estimation of BFV in the internal carotid artery, the external carotid artery and the ipsilateralcommon carotid artery. There was no significant difference, and a significant correlation in BFV between internal carotid artery + external carotid artery and ipsilateral common carotid artery. Inaddition, the BFV of the common carotid artery was correlated with that of the ipsilateral internal carotid artery. The main error was attributed to the external carotid artery and its branches. Therefore,after selecting the appropriate scanning parameters and protocols, 2D PC MRA is more accuratein the determination of BFV in the carotid arteries.
Franchina, Flavio Antonio; Machado, Maria Elisabete; Tranchida, Peter Quinto; Zini, Cláudia Alcaraz; Caramão, Elina Bastos; Mondello, Luigi
2015-03-27
The present research is focused on the development of a flow-modulated comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry (FM GC × GC-MS/MS) method for the determination of classes of aromatic organic sulphur compounds (benzothiophenes, dibenzothiophenes, and benzonaphthothiophene) in heavy gas oil (HGO). The MS/MS instrument was used to provide both full-scan and multiple-reaction-monitoring (MRM) data. Linear retention index (LRI) ranges were used to define the MRM windows for each chemical class. Calibration solutions (internal standard: 1-fluoronaphthalene) were prepared by using an HGO sample, depleted of S compounds. Calibration information was also derived for the thiophene class (along with MRM and LRI data), even though such constituents were not present in the HGO. Linearity was satisfactory over the analyzed concentration range (1-100 mg/L); intra-day precision for the lowest calibration point was always below 17%. Accuracy was also satisfactory, with a maximum percentage error of 3.5% (absolute value) found among the S classes subjected to (semi-)quantification. The highest limit of quantification was calculated to be 299 μg/L (for the C1-benzothiophene class), while the lowest was 21 μg/L (for the C4-benzothiophene class).
Finite analytic numerical solution of heat transfer and flow past a square channel cavity
Chen, C.-J.; Obasih, K.
1982-01-01
A numerical solution of flow and heat transfer characteristics is obtained by the finite analytic method for a two dimensional laminar channel flow over a two-dimensional square cavity. The finite analytic method utilizes the local analytic solution in a small element of the problem region to form the algebraic equation relating an interior nodal value with its surrounding nodal values. Stable and rapidly converged solutions were obtained for Reynolds numbers ranging to 1000 and Prandtl number to 10. Streamfunction, vorticity and temperature profiles are solved. Local and mean Nusselt number are given. It is found that the separation streamlines between the cavity and channel flow are concave into the cavity at low Reynolds number and convex at high Reynolds number (Re greater than 100) and for square cavity the mean Nusselt number may be approximately correlated with Peclet number as Nu(m) = 0.365 Pe exp 0.2.
Effects of roughness on density-weighted particle statistics in turbulent channel flows
Energy Technology Data Exchange (ETDEWEB)
Milici, Barbara [Faculty of Engineering and Architecture, Cittadella Universitaria - 94100 - Enna (Italy)
2015-12-31
The distribution of inertial particles in turbulent flows is strongly influenced by the characteristics of the coherent turbulent structures which develop in the carrier flow field. In wall-bounded flows, these turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the roughness of the wall, nevertheless its effects on the particle transport in two-phase turbulent flows has been still poorly investigated. The issue is discussed here by addressing DNS combined with LPT to obtain statistics of velocity and preferential accumulation of a dilute dispersion of heavy particles in a turbulent channel flow, bounded by irregular two-dimensional rough surfaces, in the one-way coupling regime.
Directory of Open Access Journals (Sweden)
Yonghuai Wang
Full Text Available Coronary slow-flow phenomenon (CSFP is an angiographic diagnosis characterised by a low rate of flow of contrast agent in the normal or near-normal epicardial coronary arteries. Many of the patients with CSFP may experience recurrent acute coronary syndromes. However, current clinical practice tends to underestimate the impact of CSFP due to the yet unknown effect on the cardiac function. This study was performed to evaluate left ventricular (LV and right ventricular (RV diastolic and systolic functions, using two-dimensional (2D longitudinal strain and strain rate, in patients with CSFP, and to determine the relationships between the thrombolysis in myocardial infarction (TIMI frame count (TFC and LV and RV diastolic and systolic functions.Sixty-three patients with CSFP and 45 age- and sex-matched controls without CSFP were enrolled in the study. Diagnosis of CSFP was made by TFC. LV and RV diastolic and systolic functions were assessed by 2D speckle-tracking echocardiography.LV peak early diastolic longitudinal strain rate (LSRe was lower in patients with CSFP than in controls (P = 0.01. LV peak systolic longitudinal strain (LS and LV peak systolic longitudinal strain rate (LSRs were lower in patients with CSFP than in controls (P = 0.004 and P = 0.03, respectively. There was no difference in LV ejection fraction. RV peak early diastolic longitudinal strain rate (RSRe was lower in patients with CSFP than in controls (P = 0.03. There were no differences in RV peak systolic longitudinal strain (RS, RV peak systolic longitudinal strain rate (RSRs, or RV fractional area change among the groups. The mean TFC correlated negatively with LSRe and RSRe in patients with CSFP (r = -0.26, P = 0.04 and r = -0.32, P = 0.01, respectively.LV diastolic and systolic functions were impaired in patients with CSFP. CSFP also affected RV diastolic function, but not RV systolic function.
2010-04-01
for the resonant tunable detection of terahertz radiation. The non-linear plasma response has been observed in InGaAs (3, 4) and GaN (5–8) HEMTs , in...the transistor cut-off frequency in a short channel device. In the Dyakonov-Shur detector a short channel HEMT is used for the resonant tunable...for the (a) GaAs and (b) GaN channels
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Anisotropic flow in striped superhydrophobic channels
Zhou, Jiajia; Schmid, Friederike; Vinogradova, Olga I
2012-01-01
We report results of dissipative particle dynamics simulations and develop a semi-analytical theory and of an anisotropic flow in a parallel-plate channel with two superhydrophobic striped walls. Our approach is valid for any local slip at the gas sectors and an arbitrary distance between the plates, ranging from a thick to a thin channel. It allows us to optimize area fractions, slip lengths, channel thickness and texture orientation to maximize a transverse flow. Our results may be useful for extracting effective slip tensors from global measurements, such as the permeability of a channel, in experiments or simulations, and may also find applications in passive microfluidic mixing.
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Chetverikov, A. P.; Ebeling, W.; Velarde, M. G.
2016-09-01
We present computational evidence of the possibility of fast, supersonic or subsonic, nearly loss-free ballistic-like transport of electrons bound to lattice solitons (a form of electron surfing on acoustic waves) along crystallographic axes in two-dimensional anharmonic crystal lattices. First we study the structural changes a soliton creates in the lattice and the time lapse of recovery of the lattice. Then we study the behavior of one electron in the polarization field of one and two solitons with crossing pathways with suitably monitored delay. We show how an electron surfing on a lattice soliton may switch to surf on the second soliton and hence changing accordingly the direction of its path. Finally we discuss the possibility to control the way an excess electron proceeds from a source at a border of the lattice to a selected drain at another border by following appropriate straight pathways on crystallographic axes.
Improvement of performance of gas flow channel in PEM fuel cells
Energy Technology Data Exchange (ETDEWEB)
Kuo, Jenn-Kun [Graduate Institute of Greenergy Technology, National University of Tainan, 700 Taiwan (China); Yen, Tzu-Shuang; Chen, Cha' o-Kuang [Department of Mechanical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan (China)
2008-10-15
This study performs numerical simulations to evaluate the convective heat transfer performance and velocity flow characteristics of the gas flow channel design to enhance the performance of proton exchange membrane fuel cells (PEMFCs). To restrict the current simulations to two-dimensional incompressible flows, the flow regime is assumed to be laminar with a low Reynolds number of approximately 200. In addition, the field synergy principle is applied to demonstrate that an increased interruption within the fluid flow reduces the intersection angle between the velocity vector and the temperature gradient. The interruption within the fluid flow is induced by different type of obstacles: wave like, trapezoid like and ladder like forms and the straight form of the gas flow channel. The numerical results show that, compared to a conventional straight gas flow channel, the wave like, trapezoid like and ladder like geometry of the proposed gas flow channel increases the mean Nusselt number by a factor of approximately two. Furthermore, the periodic three patterns (wave like, trapezoid like and ladder like) structure increases the gas flow velocity in the channel and, hence, improves the catalysis reaction performance in the catalyst layer. Finally, the results show that the three patterns geometry of the gas flow channel reduces the included angle between the velocity vector and the temperature gradient. Hence, the present numerical results are consistent with the field synergy principle, which states that the convective heat transfer is enhanced when the velocity vector and temperature gradient are closely aligned with one another. (author)
Numerical investigation into the performance PEMFC with a wave-like gas flow channel design
Energy Technology Data Exchange (ETDEWEB)
Chang, S.M. [Kao Yuan Univ., Kaohsiung, Taiwan (China). Dept. of Mechanical and Automation Engineering; Kuo, J.K. [National Univ. of Tainan, Taiwan (China). Inst. of Greenergy
2007-07-01
Proton exchange membrane fuel cells (PEMFCs) are a viable power source for many applications. This inexpensive and compact power source has high power density, high performance and good electrical stability. A study was conducted to gain a better understanding of the transport mechanism in a fuel cell, which involves coupled fluid flow, heat and mass transfer and electrochemical reactions. In particular, a two-dimensional computational model was developed to study the transport phenomena in PEMFCs with wave-like gas flow channels and conventional straight gas flow channels, respectively. The velocity, temperature and gas concentration distributions within the novel wave-like gas flow channel were investigated numerically. The electrical performance of a PEMFC with wave-like gas flow channels was then compared with that of a PEMFC with conventional straight gas flow. Simulations were based on a steady state, single-phase, multi-species, two-dimensional mass transfer model of a PEMFC. The effect of the wave-like channel profile on the gas flow characteristics was determined along with temperature distribution, electrochemical reaction efficiency, and electrical performance. In comparison to a conventional straight gas flow channel, the wave-like channel increased the fuel flow velocity, enhanced the transport through the porous layer, and improved the temperature distribution. It was concluded that the PEMFC with wave-like gas flow has better fuel utilization efficiency and superior heat transfer characteristics. It also has a higher PEMFC output voltage and better current density and polarization characteristics. 12 refs., 1 tab., 8 figs.
Directory of Open Access Journals (Sweden)
Jian Zhou
2016-09-01
Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.
Stability of flowing open fluidic channels
Directory of Open Access Journals (Sweden)
Jue Nee Tan
2013-02-01
Full Text Available Open fluidic systems have a distinct advantage over enclosed channels in that the fluids exposed nature makes for easy external interaction, this finds uses in introduction of samples by adding liquid droplets or from the surrounding gaseous medium. This work investigates flowing open channels and films, which can potentially make use of the open section of the system as an external interface, before bringing the sample into an enclosed channel. Clearly, in this scenario a key factor is the stability of the flowing open fluid. The open channels investigated include a straight open channel defined by a narrow strip of solid surface, the edges of which allow large contact angle hysteresis, and a wider structure allowing for multiple inputs and outputs. A model is developed for fluid flow, and the findings used to describe the process of failure in both cases.
Slow flow in channels with porous walls
Jensen, Kaare H
2012-01-01
We consider the slow flow of a viscous incompressible liquid in a channel of constant but arbitrary cross section shape, driven by non-uniform suction or injection through the porous channel walls. A similarity transformation reduces the Navier-Stokes equations to a set of coupled equations for the velocity potential in two dimensions. When the channel aspect ratio and Reynolds number are both small, the problem reduces to solving the biharmonic equation with constant forcing in two dimensions. With the relevant boundary conditions, determining the velocity field in a porous channels is thus equivalent to solving for the vertical displacement of a simply suspended thin plate under uniform load. This allows us to provide analytic solutions for flow in porous channels whose cross-section is e.g. a rectangle or an equilateral triangle, and provides a general framework for the extension of Berman flow (Journal of Applied Physics 24(9), p. 1232, 1953) to three dimensions.
Laser Doppler velocimetry measurement of turbulent bubbly channel flow
Energy Technology Data Exchange (ETDEWEB)
So, S.; Takagi, S.; Matsumoto, Y. [Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Morikita, H. [Morikita Shuppan Co. Ltd, 1-4-11,Fujimi Chiyoda-ku, Tokyo 102-0071 (Japan)
2002-07-01
Measurements of the turbulence properties of gas-liquid bubbly flows with mono-dispersed 1-mm-diameter bubbles are reported for upward flow in a rectangular channel. Bubble size and liquid-phase velocity were measured using image-processing and laser Doppler velocimetry (LDV), respectively. A description is given of the special arrangements for two-dimensional LDV needed to obtain reliable bubbly flow data, in particular the configuration of the optical system, the distinction of signals from the bubbles and liquid phase. To create the mono-dispersed bubbles, a small amount of surfactant (3-pentanol of 20 ppm) was added to the flow. Whilst this caused a drastic change in bubble size distribution and flow field, it did not affect the turbulence properties of the single-phase flow. In this study, experiments with three different bulk Reynolds numbers (1,350, 4,100, 8,200) were conducted with void fractions less than 1.2%. In all three cases, there was a very high accumulation of bubbles near the wall with bubble slip at the wall. The mean velocity profile of the liquid phase was steeper near the wall owing to the driving force of buoyant bubbles, and the streamwise turbulent intensity in the vicinity of the wall was enhanced. Furthermore the mean velocity profiles of the liquid phase were flattened in the wide region around the channel center. This region was lifted up by the bubble sheet near the wall, giving it a plug-like flow structure. In addition, the turbulent fluctuation and Reynolds stress in the liquid phase are very much suppressed in this region. This strong preferential accumulation near the wall produces the dramatic change of the whole flow structure. (orig.)
Laser Doppler velocimetry measurement of turbulent bubbly channel flow
So, S.; Morikita, H.; Takagi, S.; Matsumoto, Y.
2002-05-01
Measurements of the turbulence properties of gas-liquid bubbly flows with mono-dispersed 1-mm-diameter bubbles are reported for upward flow in a rectangular channel. Bubble size and liquid-phase velocity were measured using image-processing and laser Doppler velocimetry (LDV), respectively. A description is given of the special arrangements for two-dimensional LDV needed to obtain reliable bubbly flow data, in particular the configuration of the optical system, the distinction of signals from the bubbles and liquid phase. To create the mono-dispersed bubbles, a small amount of surfactant (3-pentanol of 20 ppm) was added to the flow. Whilst this caused a drastic change in bubble size distribution and flow field, it did not affect the turbulence properties of the single-phase flow. In this study, experiments with three different bulk Reynolds numbers (1,350, 4,100, 8,200) were conducted with void fractions less than 1.2%. In all three cases, there was a very high accumulation of bubbles near the wall with bubble slip at the wall. The mean velocity profile of the liquid phase was steeper near the wall owing to the driving force of buoyant bubbles, and the streamwise turbulent intensity in the vicinity of the wall was enhanced. Furthermore the mean velocity profiles of the liquid phase were flattened in the wide region around the channel center. This region was lifted up by the bubble sheet near the wall, giving it a plug-like flow structure. In addition, the turbulent fluctuation and Reynolds stress in the liquid phase are very much suppressed in this region. This strong preferential accumulation near the wall produces the dramatic change of the whole flow structure.
Parameter estimation in channel network flow simulation
Institute of Scientific and Technical Information of China (English)
Han Longxi
2008-01-01
Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.
Energy Technology Data Exchange (ETDEWEB)
Korichi, Abdelkader [Centre Universitaire de Medea, Quartier Ain D' heb, Medea 26000 (Algeria)], E-mail: a_korichi@hotmail.com; Oufer, Lounes [Universite des Sciences et de la Technologie Houari Boumediene, Faculte de Genie Mecanique et de Genie des Procedes, Departement de Genie Chimique et de Cryogenie, Laboratoire des Phenomenes de Transfert, BP 32, El-Alia, Bab-Ezzouar, Alger (Algeria)], E-mail: lounesoufer@yahoo.com
2007-10-15
A numerical investigation is conducted in a rectangular channel with heated obstacles mounted alternatively on the upper and lower walls. Time-dependent two dimensional laminar flow with constant thermophysical properties is assumed for air at three values of the Reynolds number (50, 500 and 1000). A detailed analysis is carried out to investigate flow pattern and Nusselt number. Streamwise periodic contraction-expansion of the cross-section induces bifurcation from steady to unsteady flow. In the unsteady state, a self-sustained periodic oscillatory flow occurs. It is also found that a travelling wave generated by the vortex shedding contributes mainly to heat transfer enhancement.
A method for calculating turbulent boundary layers and losses in the flow channels of turbomachines
Schumann, Lawrence F.
1987-01-01
An interactive inviscid core flow-boundary layer method is presented for the calculation of turbomachine channel flows. For this method, a one-dimensional inviscid core flow is assumed. The end-wall and blade surface boundary layers are calculated using an integral entrainment method. The boundary layers are assumed to be collateral and thus are two-dimensional. The boundary layer equations are written in a streamline coordinate system. The streamwise velocity profiles are approximated by power law profiles. Compressibility is accounted for in the streamwise direction but not in the normal direction. Equations are derived for the special cases of conical and two-dimensional rectangular diffusers. For these cases, the assumptions of a one-dimensional core flow and collateral boundary layers are valid. Results using the method are compared with experiment and good quantitative agreement is obtained.
Bulk flow scaling for turbulent channel and pipe flows
Chen, Xi; She, Zhen-Su
2016-01-01
We report a theory deriving bulk flow scaling for canonical wall-bounded flows. The theory accounts for the symmetries of boundary geometry (flat plate channel versus circular pipe) by a variational calculation for a large-scale energy length, which characterizes its bulk flow scaling by a simple exponent, i.e. $m=4$ for channel and 5 for pipe. The predicted mean velocity shows excellent agreement with several dozen sets of quality empirical data for a wide range of the Reynolds number (Re), with a universal bulk flow constant $\\kappa\\approx0.45$. Predictions for dissipation and turbulent transport in the bulk flow are also given, awaiting data verification.
Fiechtner, Gregory J; Cummings, Eric B
2004-02-20
A novel methodology to design on-chip conduction channels is presented for expansion of low-dispersion separation channels. Designs are examined using two-dimensional numerical solutions of the Laplace equation with a Monte Carlo technique to model diffusion. The design technique relies on trigonometric relations that apply for ideal electrokinetic flows. Flows are rotated and stretched along the abrupt interface between adjacent regions having differing specific permeability. Multiple interfaces can be placed in series along a channel. The resulting channels can be expanded to extreme widths while minimizing dispersion of injected analyte bands. These channels can provide a long path length for line-of-sight optical absorption measurements. Expanded sections can be reduced to enable point detection at the exit section of the channel. Designed to be shallow, these channels have extreme aspect ratios in the wide section, greatly increasing the surface-to-volume ratio to increase heat removal and decrease unwanted pressure-driven flow. The use of multiple interfaces is demonstrated by considering several three-interface designs. Faceted flow splitters can be constructed to divide channels into any number of exit channels while minimizing dispersion. The resulting manifolds can be used to construct medians for structural support in wide, shallow channels.
Backstepping feedback control of open channel flow
Huo, Mandy; Malek, Sami
2014-01-01
We derive a feedback control law for the control of the downstream flow in a 1-D open channel by manipulating the water flow at an upstream location. We use backstepping for controller design and Lyapunov techniques for stability analysis. Finally, the controller is verified with simulations.
Flow and sediment transport across oblique channels
DEFF Research Database (Denmark)
Hjelmager Jensen, Jacob; Madsen, Erik Østergaard; Fredsøe, Jørgen
1998-01-01
A 3D numerical investigation of flow across channels aligned obliquely to the main flow direction has been conducted. The applied numerical model solves the Reynolds-averaged Navier-Stokes equations using the k-ε model for turbulence closure on a curvilinear grid. Three momentum equations are sol...
NUMERICAL MODELING OF COMPOUND CHANNEL FLOWS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A numerical model capable of predicting flow characteristics in a compound channel was established with the 3-D steady continuity and momentum equations along with the transport equations for turbulence kinetic energy and dissipation rate. Closure was achieved with the aid of algebraic relations for turbulent shear stresses. The above equations were discretized with implicit difference approach and solved with a step method along the flow direction. The computational results showing the lateral distribution of vertical average velocities and the latio of total flow in the compound channel agree well with the available experimental data.
Fast Vortex Method for the Simulation of Flows Inside Channels With and Without Injection
Institute of Scientific and Technical Information of China (English)
YvesGAGNON; HUANGWeiguang
1993-01-01
A fast vortex method is presented for the simulation of fluid flows inside two-dimensional channels,The first channel studied is formed by two parallel walls simulating the entrance length of a developing flow.The second channel is similar to the first one but with an injection of a secondary fluid through a slot on one of its walls,In both cases,results are presented for flows at low Reynolds numbers and for flows at a high Reynolds number The numerical method used is based on the Random Vortex Method and on the Vortex-In-Cell Algorithm.Physical analyses of the numerical results are also presented.mostly in application to film cooling.
Simulation of the solidification in a channel of a water-cooled glass flow
Directory of Open Access Journals (Sweden)
G. E. Ovando Chacon
2014-12-01
Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
Secondary Flow Effects in Relatively Narrow Channels
Institute of Scientific and Technical Information of China (English)
Rudolf Dvo(r)ák
2003-01-01
Secondary flow effects were discussed in numerous papers at the past ISAIF Symposia, mainly in connection with turbine or compressor cascades[1]. This paper will complement these papers by looking at the problem from the channel (or blade passages) geometry point of view. If we describe as secondary flows any flows in planes perpendicular to the main flow direction, then there are at least three kinds of secondary flows in a typical turbine rotor cascade: - secondary flows of the 1st kind, generated by centrifugal forces in closed curved channels, - secondary flows of the 2nd kind, generated by interacting boundary layers, mainly in corners (this will include even the horseshoe vortices), - secondary flows due to mass inflow through the tip clearance. Quite often all the secondary flow vortices merge downstream into a passage vortex with a non-negligible contribution to the channel (cascade) losses, and it is worth investigating the individual contributions to these losses to take them into account in the design procedure.
Understanding heat transfer in 2D channel flows including recirculation
Dirkse, M.H.; Loon, van W.K.P.; Stigter, J.D.; Bot, G.P.A.
2007-01-01
Inviscid, irrotational two-dimensional flows can be modelled using the Schwarz¿Christoffel integral. Although bounded flows including boundary layer separation and recirculation are not irrotational, a model is presented that uses the Schwarz¿Christoffel integral to model these flows. The model sepa
Inception of supraglacial channelization under turbulent flow conditions
Mantelli, E.; Camporeale, C.; Ridolfi, L.
2013-12-01
Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Reichert, R, S.; Biringen, S.; Howard, J. E.
1999-01-01
LINER is a system of Fortran 77 codes which performs a 2D analysis of acoustic wave propagation and noise suppression in a rectangular channel with a continuous liner at the top wall. This new implementation is designed to streamline the usage of the several codes making up LINER, resulting in a useful design tool. Major input parameters are placed in two main data files, input.inc and nurn.prm. Output data appear in the form of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed account of program usage, including input formats and graphical options. A sample run is also provided. Finally, Section 5 briefly describes the individual program files.
Poiseuille channel flow by adding and doubling
Ganapol, Barry D.
2016-11-01
The flow of a rarefied gas between two plates of a micro channel, commonly called Poiseuille flow, has been extensively studied in the BGK approximation. In particular, the Analytical Discrete Ordinates (ADO) method determines the velocity profile and flow rate efficiently and accurately. Here, an equally efficient and precise solution is presented using the method of doubling, which however is arguably a numerically simpler and a more natural approach avoiding eigenvalues and eigenvectors. Highly accurate benchmark results for Poiseuille flow are reported for use as a benchmark.
Pan, Tsorng-Whay
2016-01-01
In this article we present a numerical study of the dynamics of two disks settling in a narrow vertical channel filled with Oldroyd-B fluid. Two kinds of particle dynamics are obtained: (i) periodic interaction between two disks and (ii) the chain formation of two disks. For the periodic interaction of two disks, two different motions are obtained: (a) two disks stay far apart and interact periodically and (b) two disks interact closely and then far apart in a periodic way, like the drafting, kissing and tumbling of two disks sedimenting in Newtonian fluid, due to the lack of strong enough elastic force. For the formation of two disk chain occurred at higher values of the elasticity number, it is either a tilted chain or a vertical chain. The tilted chain can be obtained for either that the elasticity number is less than the critical value for having the vertical chain or that the Mach number is greater than the critical value for a long body to fall broadside-on. Hence the values of the elasticity number and...
Stability in channel flow with fiber suspensions
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The constitutive equation of fiber suspensions is established on the basis of fiber orientation tensors. The modified Orr-Sommerfeld stability equation is obtained further and numerically solved by aid of spectral method and finite difference method. The computational results of channel flow without fibers agree well with the experimental data with a higher degree of accuracy than previous numerical results. The results of the channel flow with fiber suspensions indicate that the presence of fibers attenuates the instability of flow, increases the critical Reynolds number, reduces the growth rate of perturbations and narrows the range of unstable waves. The extent of the effect of fibers on the flow stability is in direct proportion to the volume fraction and aspect-ratio of the fibers.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Taking the distributing calculation of velocity and concentration as an example, the paper established a series of governing equations by the vorticity-stream function method, and dispersed the equations by the finite differencing method. After figuring out the distribution field of velocity, the paper also calculated the concentration distribution in sedimentation tank by using the two-dimensional concentration transport equation. The validity and feasibility of the numerical method was verified through comparing with experimental data. Furthermore, the paper carried out a tentative exploration into the application of numerical simulation of sedimentation tanks.
Transverse flow in thin superhydrophobic channels
Feuillebois, Francois; Vinogradova, Olga I
2010-01-01
We provide some general theoretical results to guide the optimization of transverse hydrodynamic phenomena in superhydrophobic channels. Our focus is on the canonical micro- and nanofluidic geometry of a parallel-plate channel with an arbitrary two-component (low-slip and high-slip) coarse texture, varying on scales larger than the channel thickness. By analyzing rigorous bounds on the permeability, over all possible patterns, we optimize the area fractions, slip lengths, geometry and orientation of the surface texture to maximize transverse flow. In the case of two aligned striped surfaces, very strong transverse flows are possible. Optimized superhydrophobic surfaces may find applications in passive microfluidic mixing and amplification of transverse electrokinetic phenomena.
Flag flutter in inviscid channel flow
Alben, Silas
2014-01-01
Using nonlinear vortex-sheet simulations, we determine the region in parameter space in which a straight flag in a channel-bounded inviscid flow is unstable to flapping motions. We find that for heavier flags, greater confinement increases the size of the region of instability. For lighter flags, confinement has little influence. We then compute the stability boundaries analytically for an infinite flag, and find similar results. For the finite flag we also consider the effect of channel walls on the large-amplitude periodic flapping dynamics. We find that multiple flapping states are possible but rare at a given set of parameters, when periodic flapping occurs. As the channel walls approach the flag, its flapping amplitude decreases roughly in proportion to the near-wall distance, for both symmetric and asymmetric channels. Meanwhile, its dominant flapping frequency and mean number of deflection extrema (or "wavenumber") increase in a nearly stepwise fashion. That is, they remain nearly unchanged over a wide...
Effect of gas channel height on gas flow and gas diffusion in a molten carbonate fuel cell stack
Hirata, Haruhiko; Nakagaki, Takao; Hori, Michio
An investigation is made of the relationships between the gas channel height, the gas-flow characteristics, and the gas-diffusion characteristics in a plate heat-exchanger type molten carbonate fuel cell stack. Effects of the gas channel height on the uniformity and pressure loss of the gas flow are evaluated by numerical analysis using a computational fluid dynamics code. The effects of the gas channel height on the distribution of the reactive gas concentration in the direction perpendicular to the channel flow are evaluated by an analytical solution of the two-dimensional concentration transport equation. Considering the results for uniformity and pressure loss of the gas flow, and for distribution of the reactive gas concentration, the appropriate gas channel height in the molten carbonate fuel cell stack is investigated.
On unsteady reacting flow in a channel with a cavity
Directory of Open Access Journals (Sweden)
Ivar Ø. Sand
1991-10-01
Full Text Available The problem investigated is the stability of a flame anchored by recirculation within a channel with a cavity, acting as a two-dimensional approximation to a gas turbine combustion chamber. This is related to experiments of Vaneveld, Hom and Oppenheim (1982. The hypothesis studied is that hydrodynamic oscillations within the cavity can lead to flashback.
Liquid infused surfaces in turbulent channel flow
Fu, Matthew; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang; Wang, Karen; Lee, Kevin; Hultmark, Marcus
2014-11-01
A turbulent channel flow facility is used to measure the drag reduction capabilities and dynamic behavior of liquid-infused micro-patterned surfaces. Liquid infused surfaces have been proposed as a robust alternative to traditional air-cushion-based superhydrophobic surfaces. The mobile liquid lubricant creates a surface slip with the outer turbulent shear flow as well as an energetic sink to dampen turbulent fluctuations. Micro-manufactured surfaces can be mounted flush in the channel and exposed to turbulent flows. Two configurations are possible, both capable of producing laminar and turbulent flows. The first configuration allows detailed investigation of the infused liquid layer and the other allows well resolved pressure gradient measurements. Both of the configurations have high aspect ratios 15-45:1. Drag reduction for a variety of liquid-infused surface architectures is quantified by measuring pressure drop in the channel. Flow in the oil film is simultaneously visualized using fluorescent dye. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).
Blade manipulators in turbulent channel flow
Vasudevan, B.; Prabhu, A.; Narasimha, R.
1992-01-01
We report here the results of a series of careful experiments in turbulent channel flow, using various configurations of blade manipulators suggested as optimal in earlier boundary layer studies. The mass flow in the channel could be held constant to better than 0.1%, and the uncertainties in pressure loss measurements were less than 0.1 mm of water; it was therefore possible to make accurate estimates of the global effects of blade manipulation of a kind that are difficult in boundary layer flows. The flow was fully developed at the station where the blades were mounted, and always relaxed to the same state sufficiently far downstream. It is found that, for a given mass flow, the pressure drop to any station downstream is always higher in the manipulated than in the unmanipulated flow, demonstrating that none of the blade manipulators tried reduces net duct losses. However the net increase in duct losses is less than the drag of the blade even in laminar flow, showing that there is a net reduction in the total skin friction drag experienced by the duct, but this relief is only about 20% of the manipulator drag at most.
Topology optimization of Channel flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.
2005-01-01
]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...... sensitivities. Our target application is optimal layout design of channels in fluid network systems. Using concepts borrowed from topology optimization of compliant mechanisms in solid mechanics, we introduce a method for the synthesis of fluidic components, such as switches, diodes, etc....
Interannual variability in the Yucatan Channel flow
Athié, Gabriela; Sheinbaum, Julio; Leben, Robert; Ochoa, José; Shannon, Michael R.; Candela, Julio
2015-03-01
Mooring measurements in the Yucatan Channel, from May 2010 to May 2011 and from July 2012 to June 2013 yield a mean transport of 27 and 25 Sv, respectively, with a subinertial standard deviation of 3.5 Sv. These mean transport values are higher than the 23 Sv reported from 21 months of similar measurements (1999-2001). Analysis of low-frequency variations of a transport proxy based on 20 years of altimetry data indicates that during 1999-2001, the flow through Yucatan Channel was anomalously low. This suggests that a sizable compensation through other channels off the Gulf of Mexico is required to match the transport cable measurements of the Florida Current at 27°N.
Slip Effects in Compressible Turbulent Channel Flow
Skovorodko, P A
2012-01-01
The direct numerical simulation of compressible fully developed turbulent Couette flow between two parallel plates with equal temperatures moving in opposite directions with some velocity was performed. The algorithm was tested on well known numerical solution for incompressible Poiseuille channel flow and found to provide its well description. The slip effects in studied flow are found to be negligibly small at the values of accommodation coefficients for velocity and temperature of the order of unity. The considerable increase of mean temperature with decreasing the accommodation coefficient for temperature was discovered. The effect may be important in the problems of heat exchange in compressible turbulent boundary layer for some combinations of flowing gas, surface and adsorbing gas.
Slip effects in compressible turbulent channel flow
Skovorodko, P. A.
2012-11-01
The direct numerical simulation of compressible fully developed turbulent Couette flow between two parallel plates with temperature Tw moving with velocities ±Uw was performed. The algorithm was tested on well known numerical solution for incompressible Poiseuille channel flow and found to provide its well description. The slip effects in studied flow are found to be negligibly small at the values of accommodation coefficients αu and αT of the order of unity. The considerable increase of mean temperature with decreasing the accommodation coefficient αT for fixed value of αu = 1 was discovered. The effect may be important in the problems of heat exchange in compressible turbulent boundary layer for some combinations of flowing gas, surface and adsorbing gas.
Two dimensional hydrodynamic modeling of a high latitude braided river
Humphries, E.; Pavelsky, T.; Bates, P. D.
2014-12-01
Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.
Flow in channels with superhydrophobic trapezoidal textures
Nizkaya, Tatiana V; Vinogradova, Olga I
2013-01-01
Superhydrophobic one-dimensional surfaces reduce drag and generate transverse hydrodynamic phenomena by combining hydrophobicity and roughness to trap gas bubbles in a microscopic textures. Recent work in this area has focused on specific cases of superhydrophobic stripes. Here we study theoretically and numerically the hydrodynamic flow in a channel with a superhydrophobic trapezoidal texture. These allow us to evaluate the drag reduction and anisotropy of the flow for various trapezoidal reliefs. Our results provide a framework for the rational design of superhydrophobic surfaces for microfluidic applications.
Energy Technology Data Exchange (ETDEWEB)
Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng
2016-02-01
During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.
Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng
2016-02-01
During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.
Simulation of Dynamics in Two-Dimensional Vortex Systems in Random Media
Institute of Scientific and Technical Information of China (English)
ZHANG Wei; SUN Li-Zhen; LUO Meng-Bo
2009-01-01
Dynamics in two-dimensional vortex systems with random pinning centres is investigated using molecular dy-namical simulations. The driving force and temperature dependences of vortex velocity are investigated. Below the critical depinning force Fc, a creep motion of vortex is found at low temperature. At forces slightly above Fc, a part of vortices flow in winding channels at zero temperature. In the vortex channel flow region, we ob-serve the abnormal behaviour of vortex dynamics: the velocity is roughly independent of temperature or even decreases with temperature at low temperatures. A phase diagram that describes different dynamics of vortices is presented.
Lattice Boltzmanr dmulation of fluid flows in two-dimenslonal channel with complex geometries
Institute of Scientific and Technical Information of China (English)
Wen Bing-Hai; Liu Hai-Yan; Zhang Chao-Ying; Wang Qiang
2009-01-01
Boundary conditions(BCs)play an essential role in lattice Boltzmann(LB)simulations. This paper investigates several most commonly applied BCs by evaluating the relative L_2-norm errors of the LB simulations for two-dimensional(2-D)Poiseuille flow. It is found that the relative L_2-norm error resulting from FHML's BC is smaller than that from other BCs as a whole. Then. based on the FHML's BC, it formulates an LB model for simulating fluid flows in 2-D channel with complex geometries. Afterwards, the flows between two inclined plates, in a pulmonary blood vessel and in a blood Vessel with local expansion region, are simulated. The numerical results are in good agreement with the analytical predictions and clearly show that the model is effective. It is expected that the model can be extended to simulate some real biologic flows, such as blood flows in arteries, vessels with stenosises, aneurysms and bifurcations, etc.
Van den Hove, L E; Meeus, P; Derom, A; Demuynck, H; Verhoef, G E; Vandenberghe, P; Boogaerts, M A
1998-06-01
The distribution of 27 T-, B-, and natural killer-cell subsets in the peripheral blood of 40 patients with multiple myeloma (MM), ten patients with monoclonal gammopathy of undetermined significance (MGUS), and 40 healthy donors was investigated by means of classical univariate statistics and advanced multivariate data-analytical techniques. The latter approach was used to describe, represent, and analyze lymphocyte subset distribution in a two-dimensional correlation biplot, allowing comparison of complex lymphocyte profiles (i.e., compound lymphocyte subset distributions) of individual subjects rather than isolated subset values of selected patient and/or donor groups. The correlation biplot revealed that, in accordance with the univariate statistics, the MM patients were characterized by marked shifts towards CD8+, CD57+, CD62L-, CD(16+56)+, and HLA-DR+ T cells, suggesting in vivo immune activation. The activation profile was most markedly observed in treated MM patients in the advanced disease stage category. The lymphocyte profiles of MGUS patients were heterogeneous, with approximately half of them located in the swarm of MM patients and the other half in the swarm of healthy donors. Although the univariate statistics revealed significant differences between MGUS patients and healthy donors only within the B-cell compartment, the correlation biplot revealed that two MGUS patients clearly had a typical T-cell activation profile similar to that of the MM patients. One MGUS patient with a T-cell activation profile progressed 13 months later to a stage IA MM and required chemotherapy. A marked lymphocyte profile shift in one MM patient was associated with terminal and aggressive disease transformation. Our study illustrates further the practical use of correlation biplots for the detection of aberrant lymphocyte profiles and/or profile shifts in individual patients.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Superhydrophobic surfaces in turbulent channel flow
Li, Yixuan; Alame, Karim; Mahesh, Krishnan
2016-11-01
The drag reduction effect of superhydrophobic surfaces in turbulent channel flow is studied using direct numerical simulation. The volume of fluid (VOF) methodology is used to resolve the dynamics of the interface. Laminar flow simulations show good agreement with experiment, and illustrate the relative importance of geometry and interface boundary condition. An analytical solution for the multi-phase problem is obtained that shows good agreement with simulation. Turbulent simulations over a longitudinally grooved surface show drag reduction even in the fully wetted regime. The statistics show that geometry alone can cause an apparent slip to the external flow. Instantaneous plots indicate that the grooves prevent the penetration of near wall vorticity, yielding overall drag reduction. Results for spectra, wall pressure fluctuations and correlations will be presented. Unsteady effects on the air-vapor interface will be discussed. Results for random roughness surfaces will be presented. Supported by Office of Naval Research.
Covert Flow Graph Approach to Identifying Covert Channels
XiangMei Song; ShiGuang Ju
2011-01-01
In this paper, the approach for identifying covert channels using a graph structure called Covert Flow Graph is introduced. Firstly, the construction of Covert Flow Graph which can offer information flows of the system for covert channel detection is proposed, and the search and judge algorithm used to identify covert channels in Covert Flow Graph is given. Secondly, an example file system analysis using Covert Flow Graph approach is provided, and the analysis result is compared with that of ...
Sleep, Norman H.
2008-08-01
Chains of volcanic edifices lie along flow lines between plume-fed hot spots and the thin lithosphere at ridge axes. Discovery and Euterpe/Musicians Seamounts are two examples. An attractive hypothesis is that buoyant plume material flows along the base of the lithosphere perpendicular to isochrons. The plume material may conceivably flow in a broad front or flow within channels convectively eroded into the base to the lithosphere. A necessary but not sufficient condition for convective channeling is that the expected stagnant-lid heat flow for the maximum temperature of the plume material is comparable to the half-space surface heat flow of the oceanic lithosphere. Two-dimensional and three-dimensional numerical calculations confirm this inference. A second criterion for significant convective erosion is that it needs to occur before the plume material thins by lateral spreading. Scaling relationships indicate spreading and convection are closely related. Mathematically, the Nusselt number (ratio of convective to conductive heat flow in the plume material) scales with the flux (volume per time per length of flow front) of the plume material. A blob of unconfined plume material thus spreads before the lithosphere thins much and evolves to a slowly spreading and slowly convecting warm region in equilibrium with conduction into the base of the overlying lithosphere. Three-dimensional calculations illustrate this long-lasting (and hence observable) state of plume material away from its plume source. A different flow domain occurs around a stationary hot plume that continuously supplies hot material. The plume convectively erodes the overlying lithosphere, trapping the plume material near its orifice. The region of lithosphere underlain by plume material grows toward the ridge axis and laterally by convective thinning of the lithosphere at its edges. The hottest plume material channels along flow lines. Geologically, the regions of lithosphere underlain by either warm
Modelling debris flows down general channels
Directory of Open Access Journals (Sweden)
S. P. Pudasaini
2005-01-01
Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to
Mantič-Lugo, Vladislav; Gallaire, François
2016-12-01
Selective noise amplifiers are characterized by large linear amplification to external perturbations in a particular frequency range despite their global linear stability. Applying a stochastic forcing with increasing amplitude, the response undergoes a strong nonlinear saturation when compared to the linear estimation. Building upon our previous work, we introduce a predictive model that describes this nonlinear dynamics, and we apply it to a canonical example of selective noise amplifiers: the backward-facing step flow. Rewriting conveniently the stochastic forcing and response in the frequency domain, the model consists in a mean flow equation coupled to the linear response to forcing at each frequency. This coupling is attained by the Reynolds stress, which is constructed by the integral in frequency of the independent responses. We generalize the model for a response to a white noise forcing δ -correlated in space and time restricting the flow dynamics to its most energetic patterns calculated from the optimal harmonic forcing and response of the flow. The model estimates accurately the response saturation when compared to direct numerical simulations, and it correctly approximates the structure of the response and the mean flow modification. It also shows that the response undergoes a selective process governed by the nonlinear gain, which promotes a response structure with an approximately single frequency and wavelength in the whole domain. These results suggest that the mean flow modification by the Reynolds stress is the key nonlinearity in the saturation process of the response to white noise.
Energy Technology Data Exchange (ETDEWEB)
Mantzaras, I.; Benz, P.; Schaeren, R.; Bombach, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.
Bucs, Szilard S.
2015-09-25
Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m∙s-1) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m∙s-1) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m∙s-1, thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
Liquid Infused Surfaces in Turbulent Channel Flow
Fu, Matthew; Liu, Ying; Stone, Howard; Hultmark, Marcus
2016-11-01
Liquid infused surfaces have been proposed as a robust method for turbulent drag reduction. These surfaces consist of functionalized roughness elements wetted with a liquid lubricant that is immiscible with external fluids. The presence of the lubricant creates mobile, fluid-fluid interfaces, each of which can support a localized slip. Collectively, these interfaces yield a finite slip velocity at the effective surface, which has been demonstrated to reduce skin friction drag in turbulent flows. Retention of the lubricant layer is critical to maintaining the drag reduction effect. A turbulent channel-flow facility is used to characterize the drag reduction and robustness of various liquid infused surfaces. Micro-manufactured surfaces are mounted flush in the channel and exposed to turbulent flows. The retention of fluorescent lubricants and pressure drop are monitored to characterize the effects of surface geometry and lubricant properties. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim) and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
NUMERICAL SIMULATION OF SKIMMING FLOW OVER MILD STEPPED CHANNEL
Institute of Scientific and Technical Information of China (English)
DONG Zhi-yong; LEE Joseph Hun-wei
2006-01-01
Numerical simulation of stepped channel flow was conducted using turbulence models based on the VOF technique. Stepped channel flow is a complicated air-water two-phase flow with free surface, which can be divided into three flow regimes: skimming flow, nappe flow and transition flow. The characteristics of skimming flow over mild stepped channel was investigated, including friction factors, air concentration profiles velocity field, clear-water and bulked depths, static pressure, etc. Smooth channel flow was also simulated to compare the hydraulic characteristics of the stepped channel flow with the smooth one. Comparisons between the computed and the measured were made. Furthermore, comparison of the computed air concentration with Straub and Anderson's data was also performed. The Fluent 6.1 software was employed to conduct this numerical simulation work.
Directory of Open Access Journals (Sweden)
V. Rajesh
2014-08-01
Full Text Available The interaction of free convection with thermal radiation of a viscous incompressible unsteady flow past a vertical plate with ramped wall temperature and mass diffusion is presented here, taking into account the homogeneous chemical reaction of first order. The fluid is gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative flux in the energy equation. The dimensionless governing equations are solved using an implicit finite-difference method of the Crank-Nicolson type, which is stable and convergent. The velocity profiles are compared with the available theoretical solution and are found to be in good agreement. Numerical results for the velocity, the temperature, the concentration, the local and average skin friction, the Nusselt number and Sherwood number are shown graphically. This work has wide application in chemical and power engineering and also in the study of vertical air flow into the atmosphere. The present results can be applied to an important class of flows in which the driving force for the flow is provided by combination of the thermal and chemical species diffusion effects.
Lusso, Christelle; Ern, Alexandre; Bouchut, François; Mangeney, Anne; Farin, Maxime; Roche, Olivier
2017-03-01
This work is devoted to numerical modeling and simulation of granular flows relevant to geophysical flows such as avalanches and debris flows. We consider an incompressible viscoplastic fluid, described by a rheology with pressure-dependent yield stress, in a 2D setting with a free surface. We implement a regularization method to deal with the singularity of the rheological law, using a mixed finite element approximation of the momentum and incompressibility equations, and an arbitrary Lagrangian Eulerian (ALE) formulation for the displacement of the domain. The free surface is evolved by taking care of its deposition onto the bottom and of preventing it from folding over itself. Several tests are performed to assess the efficiency of our method. The first test is dedicated to verify its accuracy and cost on a one-dimensional simple shear plug flow. On this configuration we setup rules for the choice of the numerical parameters. The second test aims to compare the results of our numerical method to those predicted by an augmented Lagrangian formulation in the case of the collapse and spreading of a granular column over a horizontal rigid bed. Finally we show the reliability of our method by comparing numerical predictions to data from experiments of granular collapse of both trapezoidal and rectangular columns over horizontal rigid or erodible granular bed made of the same material. We compare the evolution of the free surface, the velocity profiles, and the static-flowing interface. The results show the ability of our method to deal numerically with the front behavior of granular collapses over an erodible bed.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Institute of Scientific and Technical Information of China (English)
Chai Zhen-Hua; Shi Bao-Chang; Zheng Lin
2006-01-01
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.
Messaris, G. T.; Papastavrou, C. A.; Loukopoulos, V. C.; Karahalios, G. T.
2009-08-01
A new finite-difference method is presented for the numerical solution of the Navier-Stokes equations of motion of a viscous incompressible fluid in two (or three) dimensions and in the primitive-variable formulation. Introducing two auxiliary functions of the coordinate system and considering the form of the initial equation on lines passing through the nodal point (x0, y0) and parallel to the coordinate axes, we can separate it into two parts that are finally reduced to ordinary differential equations, one for each dimension. The final system of linear equations in n-unknowns is solved by an iterative technique and the method converges rapidly giving satisfactory results. For the pressure variable we consider a pressure Poisson equation with suitable Neumann boundary conditions. Numerical results, confirming the accuracy of the proposed method, are presented for configurations of interest, like Poiseuille flow and the flow between two parallel plates with step under the presence of a pressure gradient.
Static flow instability in subcooled flow boiling in parallel channels
Energy Technology Data Exchange (ETDEWEB)
Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L. Jr.
1995-04-01
A series of tests for static flow instability or flow excursion (FE) at conditions applicable to the proposed Advanced Neutron Source reactor was completed in parallel rectangular channels configuration with light water flowing vertically upward at very high velocities. True critical heat flux experiments under similar conditions were also conducted. The FE data reported in this study considerably extend the velocity range of data presently available worldwide. Out of the three correlations compared, the Saha and Zuber correlation had the best fit with the data. However, a modification was necessary to take into account the demonstrated dependence of the Stanton (St) and Nusselt (Nu) numbers on subcooling levels, especially in the low subcooling regime.
Institute of Scientific and Technical Information of China (English)
杨延强; 易维明; 李志合; 柏雪源; 李永军
2012-01-01
In the cold PIV (particle image velocimetry) system of the laminar entrained flow reactor, the relative position between the camera and the measuring tube was an important condition to ensure accurate test data. To make the PIV operation more convenient, accurate, and fast in the test, two-dimensional PIV automatic control system was designed. And the reliability of the system was tested in the cold simulation equipment of laminar flow furnace, compared with no using two-dimensional PIV automatic control system, the results showed that in different sections of the measuring tube, the particle speed of the axial center achieves a smooth transition, and eliminates the jump change; when collection distance is 350mm and main air flow rate is 1. 5 mVh, the relative error of particle residence time is 9. 218% ; and the operation saves time and effort in the test process. These suggested that the two-dimensional PIV automatic control system could satisfy the cold test of the laminar entrained flow reactor needs, achieve uniform and continuous test, reduce human error and improve the accuracy of test data.%在层流炉冷态粒子图像测速( PIV)系统中,相机与测量管的相对位置是保证试验数据精确的重要条件.为使试验过程中整个PIV系统操作起来更加方便、准确、快捷,设计了二维PIV自动控制系统,并在层流炉冷态模拟装置上对该系统的可靠性进行了试验验证.与没有使用二维PIV自动控制系统之前的试验结果相比:各测量段颗粒的轴向中心速度相互之间的衔接实现了平滑过渡,消除了跳跃性变化；收集距离为350 mm,主气流流量为1.5 m3/h时,层流炉内颗粒停留时间的相对误差为9.218％.说明该二维PIV自动控制系统能够满足层流炉冷态试验需要,实现了均匀、连续拍摄,减少了人为误差,提高了试验数据的准确性.
Structure-dependent mobility of a dry aqueous foam flowing along two parallel channels
Jones, Sian A; Méheust, Yves; Cox, Simon J; Cantat, Isabelle
2013-01-01
The velocity of a two-dimensional aqueous foam has been measured as it flows through two parallel channels, at a constant overall volumetric flow rate. The flux distribution between the two channels is studied as a function of the ratio of their widths. A peculiar dependence of the velocity ratio on the width ratio is observed when the foam structure in the narrower channel is either single staircase or bamboo. In particular, discontinuities in the velocity ratios are observed at the transitions between double and single staircase and between single staircase and bamboo. A theoretical model accounting for the viscous dissipation at the solid wall and the capillary pressure across a film pinned at the channel outlet predicts the observed non-monotonic evolution of the velocity ratio as a function of the width ratio. It also predicts quantitatively the intermittent temporal evolution of the velocity in the narrower channel when it is so narrow that film pinning at its outlet repeatedly brings the flow to a near...
Kardan, Farshid; Cheng, Wai-Chi; Baverel, Olivier; Porté-Agel, Fernando
2016-04-01
Understanding, analyzing and predicting meteorological phenomena related to urban planning and built environment are becoming more essential than ever to architectural and urban projects. Recently, various version of RANS models have been established but more validation cases are required to confirm their capability for wind flows. In the present study, the performance of recently developed RANS models, including the RNG k-ɛ , SST BSL k-ω and SST ⪆mma-Reθ , have been evaluated for the flow past a single block (which represent the idealized architecture scale). For validation purposes, the velocity streamlines and the vertical profiles of the mean velocities and variances were compared with published LES and wind tunnel experiment results. Furthermore, other additional CFD simulations were performed to analyze the impact of regular/irregular mesh structures and grid resolutions based on selected turbulence model in order to analyze the grid independency. Three different grid resolutions (coarse, medium and fine) of Nx × Ny × Nz = 320 × 80 × 320, 160 × 40 × 160 and 80 × 20 × 80 for the computational domain and nx × nz = 26 × 32, 13 × 16 and 6 × 8, which correspond to number of grid points on the block edges, were chosen and tested. It can be concluded that among all simulated RANS models, the SST ⪆mma-Reθ model performed best and agreed fairly well to the LES simulation and experimental results. It can also be concluded that the SST ⪆mma-Reθ model provides a very satisfactory results in terms of grid dependency in the fine and medium grid resolutions in both regular and irregular structure meshes. On the other hand, despite a very good performance of the RNG k-ɛ model in the fine resolution and in the regular structure grids, a disappointing performance of this model in the coarse and medium grid resolutions indicates that the RNG k-ɛ model is highly dependent on grid structure and grid resolution. These quantitative validations are essential
Directory of Open Access Journals (Sweden)
Szymkiewicz Adam
2015-09-01
Full Text Available Flow in unsaturated porous media is commonly described by the Richards equation. This equation is strongly nonlinear due to interrelationships between water pressure head (negative in unsaturated conditions, water content and hydraulic conductivity. The accuracy of numerical solution of the Richards equation often depends on the method used to estimate average hydraulic conductivity between neighbouring nodes or cells of the numerical grid. The present paper discusses application of the computer simulation code VS2DI to three test problems concerning infiltration into an initially dry medium, using various methods for inter-cell conductivity calculation (arithmetic mean, geometric mean and upstream weighting. It is shown that the influence of the averaging method can be very large for coarse grid, but that it diminishes as cell size decreases. Overall, the arithmetic average produced the most reliable results for coarse grids. Moreover, the difference between results obtained with various methods is a convenient indicator of the adequacy of grid refinement.
Szymkiewicz, Adam; Tisler, Witold; Burzyński, Kazimierz
2015-09-01
Flow in unsaturated porous media is commonly described by the Richards equation. This equation is strongly nonlinear due to interrelationships between water pressure head (negative in unsaturated conditions), water content and hydraulic conductivity. The accuracy of numerical solution of the Richards equation often depends on the method used to estimate average hydraulic conductivity between neighbouring nodes or cells of the numerical grid. The present paper discusses application of the computer simulation code VS2DI to three test problems concerning infiltration into an initially dry medium, using various methods for inter-cell conductivity calculation (arithmetic mean, geometric mean and upstream weighting). It is shown that the influence of the averaging method can be very large for coarse grid, but that it diminishes as cell size decreases. Overall, the arithmetic average produced the most reliable results for coarse grids. Moreover, the difference between results obtained with various methods is a convenient indicator of the adequacy of grid refinement.
Axial dispersion in segmented gas-liquid flow: Effects of alternating channel curvature
Muradoglu, Metin
2010-12-01
The effects of channel curvature on the axial dispersion in segmented gas-liquid flows are studied computationally in a two-dimensional setting using a finite-volume/front-tracking method. Passive tracer particles are used to visualize and quantify the axial dispersion. The molecular diffusion is modeled by random walk of tracer particles. It is found that there is significant axial dispersion in serpentine channels even in the absence of molecular diffusion. The lubricating thin liquid layer that persists on the wall of a straight channel is periodically broken in the serpentine channel leading to enhanced axial dispersion. It is also found that the axial dispersion is always larger in the serpentine channel than that in the straight channel but the effects of channel curvature are more pronounced at high Peclet numbers, i.e., Pe>104. A model is proposed based on the difference between the liquid film thicknesses on the inner and outer side of the bend in the limit as Pe→∞. Good agreement is found between the computational results and the model when the liquid slug is well mixed by the chaotic advection.
Axial Dispersion in Segmented Gas-Liquid Flow: Effects of the Channel Curvature
Muradoglu, Metin
2009-11-01
The effects of channel curvature on the axial dispersion in segmented gas-liquid flows have been studied computationally in a two-dimensional setting using a front-tracking/finite-volume method. Passive tracer particles are used to visualize and quantify the axial dispersion. The molecular diffusion is modeled by random walk of tracer particles. It is found that there is significant axial dispersion in serpentine channels even in the absence of molecular diffusion and dispersion increases with channel curvature. It is known that there is no dispersion in straight channels since a lubricating thin liquid layer persists on the wall. However this lubricating liquid layer is periodically broken in the curved channel case leading to enhanced axial dispersion. It is found that the dispersion increases as the Peclet number (Pe) decreases both in straight and curved channels. Difference between the straight and curved channel decreases continuously as the Peclet number decreases and virtually disappears at low Peclet numbers, i.e., Pestudy. A model is proposed based on the difference between the liquid film thicknesses on the inner and outer side of the bend in the limit as Pe->∞. Good agreement is found between the computational results and the model when the liquid slug is well mixed by the chaotic advection.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Fuchs, L.; Schmeling, H.
2013-08-01
A key to understand many geodynamic processes is studying the associated large deformation fields. Finite deformation can be measured in the field by using geological strain markers giving the logarithmic strain f = log 10(R), where R is the ellipticity of the strain ellipse. It has been challenging to accurately quantify finite deformation of geodynamic models for inhomogeneous and time-dependent large deformation cases. We present a new formulation invoking a 2-D marker-in-cell approach. Mathematically, one can describe finite deformation by a coordinate transformation to a Lagrangian reference frame. For a known velocity field the deformation gradient tensor, F, can be calculated by integrating the differential equation DtFij = LikFkj, where L is the velocity gradient tensor and Dt the Lagrangian derivative. The tensor F contains all information about the minor and major semi-half axes and orientation of the strain ellipse and the rotation. To integrate the equation centrally in time and space along a particle's path, we use the numerical 2-D finite difference code FDCON in combination with a marker-in-cell approach. For a sufficiently high marker density we can accurately calculate F for any 2-D inhomogeneous and time-dependent creeping flow at any point for a deformation f up to 4. Comparison between the analytical and numerical solution for the finite deformation within a Poiseuille-Couette flow shows an error of less than 2 per cent for a deformation up to f = 1.7. Moreover, we determine the finite deformation and strain partitioning within Rayleigh-Taylor instabilities (RTIs) of different viscosity and layer thickness ratios. These models provide a finite strain complement to the RTI benchmark of van Keken et al. Large finite deformation of up to f = 4 accumulates in RTIs within the stem and near the compositional boundaries. Distinction between different stages of diapirism shows a strong correlation between a maximum occurring deformation of f = 1, 3 and
Khorasanizade, Sh.; Sousa, J. M. M.
2016-03-01
A Segmented Boundary Algorithm (SBA) is proposed to deal with complex boundaries and moving bodies in Smoothed Particle Hydrodynamics (SPH). Boundaries are formed in this algorithm with chains of lines obtained from the decomposition of two-dimensional objects, based on simple line geometry. Various two-dimensional, viscous fluid flow cases have been studied here using a truly incompressible SPH method with the aim of assessing the capabilities of the SBA. Firstly, the flow over a stationary circular cylinder in a plane channel was analyzed at steady and unsteady regimes, for a single value of blockage ratio. Subsequently, the flow produced by a moving circular cylinder with a prescribed acceleration inside a plane channel was investigated as well. Next, the simulation of the flow generated by the impulsive start of a flat plate, again inside a plane channel, has been carried out. This was followed by the study of confined sedimentation of an elliptic body subjected to gravity, for various density ratios. The set of test cases was completed with the simulation of periodic flow around a sunflower-shaped object. Extensive comparisons of the results obtained here with published data have demonstrated the accuracy and effectiveness of the proposed algorithms, namely in cases involving complex geometries and moving bodies.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Optimization of Meridional Flow Channel Design of Pump Impeller
Miyauchi Sunao; Horiguchi Hironori; Fukutomi Jun-ichirou; Takahashi Akihiro
2004-01-01
The meridional flow channel design of a pump impeller affects its performance. However, since so many design parameters exist, a new design method is proposed in which a meridional and blade-to-blade flow channel is designed by the parallel use of the circulation distribution provided by the designer. Thus, an optimization method was used to design an axis-symmetrical meridional flow channel from the circulation distribution. In addition, the inverse design method proposed by Zangeneh et al. ...
Magnetohydrodynamic channel flows with weak transverse magnetic fields.
Rothmayer, A P
2014-07-28
Magnetohydrodynamic flow of an incompressible fluid through a plane channel with slowly varying walls and a magnetic field applied transverse to the channel is investigated in the high Reynolds number limit. It is found that the magnetic field can first influence the hydrodynamic flow when the Hartmann number reaches a sufficiently large value. The magnetic field is found to suppress the steady and unsteady viscous flow near the channel walls unless the wall shapes become large.
VELOCITY PROFILES OF TURBULENT OPEN CHANNEL FLOWS
Institute of Scientific and Technical Information of China (English)
WANG Dianchang; WANG Xingkui; YU Mingzhong; LI Danxun
2001-01-01
The log-law and the wake law of velocity profile for open channel flows are discussed and compared in this paper. Experimental data from eight sources are used to verify the velocity distribution models.The effect of bed level on the velocity profile is analyzed. A formula to calculate the maximum velocity is proposed. In the region of y ＜δm , the velocity profile approximately follows the log-law. For the region of y ＞δm , the effect of the aspect ratio is considered. A new velocity profile model on the basis of log-law that can unify all of the hydraulic bed roughness is presented.
Covert Flow Graph Approach to Identifying Covert Channels
Directory of Open Access Journals (Sweden)
XiangMei Song
2011-12-01
Full Text Available In this paper, the approach for identifying covert channels using a graph structure called Covert Flow Graph is introduced. Firstly, the construction of Covert Flow Graph which can offer information flows of the system for covert channel detection is proposed, and the search and judge algorithm used to identify covert channels in Covert Flow Graph is given. Secondly, an example file system analysis using Covert Flow Graph approach is provided, and the analysis result is compared with that of Shared Resource Matrix and Covert Flow Tree method. Finally, the comparison between Covert Flow Graph approach and other two methods is discussed. Different from previous methods, Covert Flow Graph approach provides a deep insight for system’s information flows, and gives an effective algorithm for covert channel identification.
Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.
2017-07-01
In this paper, the problem of the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field is investigated numerically. Using a Berman's similarity transformation, the two-dimensional momentum conservation partial differential equations can be written as a system of nonlinear ordinary differential equations incorporating Lorentizian magneto-hydrodynamic body force terms. A new computational method based on the operational matrix of derivative of orthonormal Bernstein polynomials for solving the resulting differential systems is introduced. Moreover, by using the residual correction process, two types of error estimates are provided and reported to show the strength of the proposed method. Graphical and tabular results are presented to investigate the influence of the Hartmann number ( Ha) and the transpiration Reynolds number ( Re on velocity profiles in the channel. The results are compared with those obtained by previous works to confirm the accuracy and efficiency of the proposed scheme.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
TWO PHASE FLOW SPLIT MODEL FOR PARALLEL CHANNELS
African Journals Online (AJOL)
Ifeanyichukwu Onwuka
The equations are solved using the Broyden'smethod ... channel system subjected to a two-phase flow transient, and the results have been very .... system pressure, the heat addition rates inside ... three dimensional flows in the LP.
沟道二维泥石流运动和冲淤数值模型研究%Two-dimensional numerical model for debris flow motion and gully bed evolution
Institute of Scientific and Technical Information of China (English)
张万顺; 赵琰鑫; 崔鹏; 彭虹; 陈雪娇
2012-01-01
以水沙混合流模型为基础,采用混合流沙量动态变化模式,提出泥石流运动控制方程组,建立适用于模拟泥石流在天然沟道中的运动和冲淤过程的二维数值模型.模型基于水动力学理论、水沙两相混合流理论和宾汉体模型理论,考虑了泥石流运动、泥沙输移、沟床变形、泥石流宾汉体流变特性等主要动力学过程.将模型应用于云南东川蒋家沟实测泥石流过程的模拟研究,结果较好地反映了泥石流运动不连续性的特征和泥石流沟道冲淤随时间演变的实际规律.%A two-dimensional mathematical model of debris flow in natural gully is developed. Based on the hydrodynamic theory, the water-sediments two-phase flow theory and the Bingham rheological theory, the dynamic processes of debris flow movement, sediment transport, bed evolution and rheological properties of the debris flow are considered. The model is applied to simulate debris flow event in Jiangjia Gully, Yunnan Province and predict the flow pattern and bed erosion-deposition processes. The results show the effectiveness of the proposed model.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Hydraulic flow through a channel contraction: multiple steady states
Akers, B.; Bokhove, O.
2008-01-01
We have investigated shallow water flows through a channel with a contraction by experimental and theoretical means. The horizontal channel consists of a sluice gate and an upstream channel of constant width $b_0$ ending in a linear contraction of minimum width $b_c$. Experimentally, we observe upst
Effects of spanwise rotation on turbulent channel flow
Brethouwer, Geert
2016-01-01
A study of fully developed plane turbulent channel flow subject to spanwise system rotation through direct numerical simulations is presented. In order to study both the influence of the Reynolds number and spanwise rotation on channel flow, the Reynolds number $Re = U_b h/\
Spreading of Advected Tracers in a Creeping Flow in a Rectangular Channel
Kaufman, Miron
2006-03-01
We have developed an analytical solution [M.Kaufman, 2003 AIChE Annual Meeting Conference Proceedings] of the Navier-Stokes equation for the two-dimensional incompressible flow in a rectangular cavity in the limit of zero Reynolds number. An analytical solution for the fluid velocity along the axis of a parallelepiped, again in the Stokes limit, is also known. In this work we combine the two solutions to get analytically the three-dimensional creeping flow inside a channel in the shape of a parallelepiped. We integrate numerically the velocity vector to get trajectories of tracers advected by the fluid. We analyze the spreading in space of the tracers by calculating the time evolution of the entropy.
Energy Technology Data Exchange (ETDEWEB)
Haneda, Y.; Kurasawa, H. (Nagano National College of Technology, Nagano (Japan)); Tsuchiya, Y. (Shinshu Univ., Nagano (Japan). Faculty of Engineering); Suzuki, K. (Kyoto Univ., Kyoto (Japan). Faculty of Engineering)
1994-04-25
The flow field and heat transfer around a circular cylinder is investigated experimentally when two dimensional jet is impinged on a circular cylinder mounted near two flat plates which are set at a fixed inclination against the axis of jet. Flow field varies markedly depending on whether the minimum channel width is the minimum space B between the flat plates or the space C between the cylinder and the plates. The local Nusselt number of the cylinder strongly depends on the value of space C between the cylinder and the plates. The minimum and maximum locations correspond to the locations of separation and reattachment, respectively, of the flow around the cylinder. When the ratio between the nozzle-to-cylinder distance L and the short side h of the nozzle is 3 (L/h=3), the mean Nusselt number around the cylinder becomes the maximum when C/D is 0.1 where D is the diameter of the cylinder, and increases by about 9 to 12% as compared with the case where no plate is provided. For L/h=7 and L/h=10, the mean Nusselt number does not increase distinctly as compared with the case where no flat plate is provided. 16 refs., 15 figs.
Radu, Andrea I.
2012-04-01
A two-dimensional mathematical model coupling fluid dynamics, salt and substrate transport and biofilm development in time was used to investigate the effects of cross-flow velocity and substrate availability on biofouling in reverse osmosis (RO)/nanofiltration (NF) feed channels. Simulations performed in channels with or without spacer filaments describe how higher liquid velocities lead to less overall biomass amount in the channel by increasing the shear stress. In all studied cases at constant feed flow rate, biomass accumulation in the channel reached a steady state. Replicate simulation runs prove that the stochastic biomass attachment model does not affect the stationary biomass level achieved and has only a slight influence on the dynamics of biomass accumulation. Biofilm removal strategies based on velocity variations are evaluated. Numerical results indicate that sudden velocity increase could lead to biomass sloughing, followed however by biomass re-growth when returning to initial operating conditions. Simulations show particularities of substrate availability in membrane devices used for water treatment, e.g., the accumulation of rejected substrates at the membrane surface due to concentration polarization. Interestingly, with an increased biofilm thickness, the overall substrate consumption rate dominates over accumulation due to substrate concentration polarization, eventually leading to decreased substrate concentrations in the biofilm compared to bulk liquid. © 2012 Elsevier B.V.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
DISCRETE MODELLING OF TWO-DIMENSIONAL LIQUID FOAMS
Institute of Scientific and Technical Information of China (English)
Qicheng Sun
2003-01-01
Liquid foam is a dense random packing of gas or liquid bubbles in a small amount of immiscible liquid containing surfactants. The liquid within the Plateau borders, although small in volume, causes considerable difficulties to the investigation of the spatial structure and physical properties of foams, and the situation becomes even more complicated as the fluid flows. To solve these problems, a discrete model of two-dimensional liquid foams on the bubble scale is proposed in this work. The bubble surface is represented with finite number of nodes, and the liquid within Plateau borders is discretized into lattice particles. The gas in bubbles is treated as ideal gas at constant temperatures. This model is tested by choosing an arbitrary shape bubble as the initial condition. This then automatically evolves into a circular shape, which indicates that the surface energy minimum routine is obeyed without calling external controlling conditions. Without inserting liquid particle among the bubble channels, periodic ordered and disordered dry foams are both simulated, and the fine foam structures are developed. Wet foams are also simulated by inserting fluid among bubble channels. The calculated coordination number, as a function of liquid fractions, agrees well with the standard values.
Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels
Allen, Jeffrey S.
2005-01-01
Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.
Subcritical transition to turbulence in plane channel flows
Orszag, S. A.; Patera, A. T.
1980-01-01
A linear three dimensional mechanism for the transition of plane Poiseuille flows to turbulence is presented which provides good agreement with experimental observations. The mechanism is based on the evolution of states within a band of quasi-equilibria which slowly approach the stable upper branch solutions for the evolution of flow energy but which are strongly unstable to infinitesimal three-dimensional disturbances. Numerical simulation has shown that if two-dimensional flow persists long enough for the three-dimensional perturbations to attain finite amplitude, the resulting three dimensional flow quickly develops a turbulent character with nonperiodic behavior, and thus transition can be predicted from knowledge of the initial two- and three-dimensional energies and time scales. The mechanism predicts transition to turbulence at Reynolds numbers greater than 1000, as observed in experiments, and implies higher threshold three-dimensional energies in plane Couette flow.
Energy Technology Data Exchange (ETDEWEB)
Sun, L.; Oosthuizen, P.H. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering; McAuley, K.B. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemical Engineering
2005-07-01
Developments in Computational Flow Dynamics (CFD) software have meant that Proton Exchange Membrane Fuel Cell (PEMFC) modelling is now able to include cell components such as gas channels and porous diffusion layers. This paper discussed a numerical model which was developed to study air flow in the flow plate and gas diffusion layer assembly on the cathode side of a PEMFC. The flow plate in this fuel cell often has serpentine channels, and the porous layer is adjacent to the flow plate in order to diffuse the air to the catalyst layer. Flow crossover of air through the porous diffusion layer from one part of the channel to another can occur as a result of pressure differences between different parts of the channel. The numerical study was undertaken to compare the cases of a single channel and 2 parallel channels, with the channels having a trapezoidal cross-sectional shape. The objective of the study was to examine the effect of the flow plate geometry on the basic fluid flow through the plate. Flow was assumed to be 3-dimensional, steady, incompressible, isothermal and single-phase. The flow through the porous diffusion layer was described using the Darcy model. Dimensionless governing equations were solved using FIDAP, a commercial CFD solver. The results indicate that single channel systems have a greater maximum flow rate difference than the parallel channel systems under the conditions considered in the experiment. In addition, the size ratio R of trapezoidal cross-sectional shape has a significant effect on the flow crossover and pressure variation in the flow field. 16 refs., 15 figs.
National Research Council Canada - National Science Library
El Khoury, George K; Schlatter, Philipp; Brethouwer, Geert; Johansson, Arne V
2014-01-01
Direct numerical simulation data of fully developed turbulent pipe flow are extensively compared with those of turbulent channel flow and zero-pressure-gradient boundary layer flow for Re-tau up to 1 000...
Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui
2016-12-01
Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.
Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui
2016-08-01
Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.
Experimental study of natural circulation flow instability in rectangular channels
Energy Technology Data Exchange (ETDEWEB)
Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.
2017-05-15
Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
4. Large-Eddy Simulation of Turbulent Channel Flow
Yasuaki, DOI; Tsukasa, KIMURA; Hiroshima University; Mitsubishi Precision
1989-01-01
Turbulent channel flow is studied numerically by using Large-Eddy Simulation (LES). Finite difference method is employed in the LES. The simulation is stably executed by using the 3rd order upwind difference scheme which dissipate numerical errors. Several pilot tests are performed in order to investigate the effect of numerical dissipation and the wall damping function on the calculated results. Time dependent feature and turbulent flow structures in a turbulent channel flow are numerically ...
Advanced porous electrodes with flow channels for vanadium redox flow battery
Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon
2017-02-01
Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
LONGITUDINAL DISPERSION IN SEDIMENT-LADEN OPEN CHANNEL FLOWS
Institute of Scientific and Technical Information of China (English)
Z.AHMAD; U.C.KOTHYARI; K.G.RANGA RAJU
2004-01-01
Laboratory experiments on longitudinal dispersion in clear-water and sediment-laden open channel flows are reported. Data from these experiments and those available from previous studies indicate that the suspended sediment present in the flow affects the longitudinal dispersion process. The observed velocity distributions over the depth of sediment-laden flows indicate that the velocity deviates from the mean velocity more in sediment-laden flows than in clear-water flows. The velocity distributions over the cross section and secondary flow in the channel are also expected to be altered due to the presence of suspended sediments in the flow. For these reasons, more dispersion is found in sediment-laden flows than in corresponding clear-water flows. A predictor for the dispersion coefficient in sediment-laden flows is proposed.
Mathematical modeling of jet interaction with a high-enthalpy flow in an expanding channel
Fedorova, N. N.; Fedorchenko, I. A.; Fedorov, A. V.
2013-03-01
Results of modeling the interaction of a plane supersonic jet with a supersonic turbulent high-enthalpy flow in a channel are reported. The problem is solved in a two-dimensional formulation at external flow Mach numbers M∞ = 2.6 and 2.8 and at high values of the total temperature of the flow T 0 = 1800-2000 K. The mathematical model includes full averaged Navier-Stokes equations supplemented with a two-equation turbulence model and an equation that describes the transportation of the injected substance. The computations are performed by using the ANSYS Fluent 12.1 software package. Verification of the computational technique is performed against available experimental results on transverse injection of nitrogen and helium jets. The computed and experimental results are demonstrated to agree well. For the examined problems, in addition to surface distributions of characteristics, fields of flow parameters are obtained, which allow one to reproduce specific features that can be hardly captured in experiments. Parametric studies show that an increase in the angle of inclination and the mass flow rate of the jet leads to an increase in the depth of jet penetration into the flow, but more intense separated flows and shock waves are observed in this case.
Plural voltage minima in an arc-heated channel flow
Sasoh, A.
2001-04-01
In flows through a channel with varying cross-sectional area, the impulse and total enthalpy can be increased by superimposing an electrical discharge. The flow field is determined from the inlet flow condition, channel geometry, and discharge specifications. In this study, steady-state, quasi-one-dimensional flows interacting with an arc discharge are computed numerically. Once the arc column configuration is given, the discharge voltage is computed from the solution of flow field variables. For a constant discharge current, there exist plural column configurations which yield a minimum discharge voltage. This result explains the fluid-dynamic mechanisms of the existence of plural voltage modes in an arcjet operation.
Flow characteristics and heat transfer in wavy walled channels
Mills, Zachary; Shah, Tapan; Monts, Vontravis; Warey, Alok; Balestrino, Sandro; Alexeev, Alexander
2013-11-01
Using lattice Boltzmann simulations, we investigated the effects of wavy channel geometry on the flow and heat transfer within a parallel plate heat exchanger. We observed three distinct flow regimes that include steady flow with and without recirculation and unsteady time-periodic flow. We determined the critical Reynolds numbers at which the flow transitions between different flow regimes. To validate our computational results, we compared the simulated flow structures with the structures observed in a flowing soap film. Furthermore, we examine the effects of the wavy channel geometry on the heat transfer. We find that the unsteady flow regime drastically enhances the rate of heat transfer and show that heat exchangers with wavy walls outperform currently used heat exchangers with similar volume and power characteristics. Results from our study point to a simple and efficient method for increasing performance in compact heat exchangers.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Computation of gradually varied flow in compound open channel networks
Indian Academy of Sciences (India)
H Prashanth Reddy; M Hanif Chaudhry; Jasim Imran
2014-12-01
Although, natural channels are rarely rectangular or trapezoidal in cross section, these cross sections are assumed for the computation of steady, gradually varied flow in open channel networks. The accuracy of the computed results, therefore, becomes questionable due to differences in the hydraulic and geometric characteristics of the main channel and floodplains. To overcome these limitations, an algorithm is presented in this paper to compute steady, gradually varied flow in an open-channel network with compound cross sections. As compared to the presently available methods, the methodology is more general and suitable for application to compound and trapezoidal channel cross sections in series channels, tree-type or looped networks. In this method, the energy and continuity equations are solved for steady, gradually varied flow by the Newton–Raphson method and the proposed methodology is applied to tree-type and looped-channel networks. An algorithm is presented to determine multiple critical depths in a compound channel. Modifications in channel geometry are presented to avoid the occurrence of multiple critical depths. The occurrence of only one critical depth in a compound cross section with modified geometry is demonstrated for a tree-type channel network.
Hydromagnetic Blood Flow of Sisko Fluid in a Non-uniform Channel Induced by Peristaltic Wave
Zeeshan, A.; Bhatti, M. M.; Akbar, N. S.; Sajjad, Y.
2017-07-01
In this paper, a smooth repetitive oscillating wave traveling down the elastic walls of a non-uniform two-dimensional channels is considered. It is assumed that the fluid is electrically conducting and a uniform magnetic field is perpendicular to flow. The Sisko fluid is grease thick non-Newtonian fluid can be considered equivalent to blood. Taking long wavelength and low Reynolds number, the equations are reduced. The analytical solution of the emerging non-linear differential equation is obtained by employing Homotopy Perturbation Method (HPM). The outcomes for dimensionless flow rate and dimensionless pressure rise have been computed numerically with respect to sundry concerning parameters amplitude ratio ϕ, Hartmann number M, and Sisko fluid parameter b 1. The behaviors for pressure rise and average friction have been discussed in details and displayed graphically. Numerical and graphical comparison of Newtonian and non-Newtonian has also been evaluated for velocity and pressure rise. It is observed that the magnitude of pressure rise is maximum in the middle of the channel whereas for higher values of fluid parameter it increases. Further, it is also found that the velocity profile shows converse behavior along the walls of the channel against multiple values of fluid parameter.
Stability of non-parallel flow in a channel
Directory of Open Access Journals (Sweden)
Philip G. Drazin
1991-05-01
Full Text Available This is a review of several generalizations of Hiemenz's classic solution for steady two-dimensional flow of a uniform incompressible viscous fluid near a stagnation point on a bluff body. These generalizations are diverse exact solutions, steady and unsteady, two- and three-dimensional, of the Navier-Stokes equations. The solutions exhibit many types of instability and bifurcation. There are turning points, trans critical bifurcations, pitchfork bifurcations, Hopf bifurcations and Takens-Bogdanov bifurcations. The solutions also take the period-doubling and Ruelle-Takens routes to chaos.
Two-dimensional simulation of polymer electrolyte membrane fuel cells
Energy Technology Data Exchange (ETDEWEB)
Hum, B.; Li, X. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering
2002-07-01
Polymer electrolyte membrane (PEM) fuel cells have fast startup, are highly energy efficient and have high power density, rendering them very suitable for use in zero-emission vehicles and on-site power cogeneration. Before the PEM fuel cell can reach widespread commercial use, the performance has to be improved regarding the minimization of all transport resistances. This can be done by considering the electrochemical reactions in the catalyst layers along with the physical transport of reactant gas flows, product and process water, heat and the charged particles in the individual cells and stacks. This paper presents the results of a two-dimensional numerical simulation of a steady, isothermal, fully humidified PEM fuel cell which was conducted to examine what happens in the catalyst layers. The finite volume method was used together with the alternating direction implicit algorithm. It was determined that the cathode catalyst layer has more pronounced changes in potential, reaction rate and current density generation compared to the anode catalyst layer. This is because of the large cathode activation overpotential and the low diffusion coefficient of oxygen. It was demonstrated that catalyst layers, by nature, are 2 dimensional, particularly in areas of low reactant concentrations. Maximum power density is limited by the depletion of one of the reactants in the catalyst layer. Both the fuel and oxidant supply must be managed simultaneously for optimal cell performance. It was concluded that cell performance is not greatly affected by flow direction. It was noted that this analysis can also be used for more complex cell design, such as cross flow between reactant streams and practical serpentine flow channel design. 11 refs., 2 tabs., 10 figs.
Flow boiling in microgap channels experiment, visualization and analysis
Alam, Tamanna; Jin, Li-Wen
2013-01-01
Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c
A spectral element method for fluid dynamics - Laminar flow in a channel expansion
Patera, A. T.
1984-01-01
A spectral element method that combines the generality of the finite element method with the accuracy of spectral techniques is proposed for the numerical solution of the incompressible Navier-Stokes equations. In the spectral element discretization, the computational domain is broken into a series of elements, and the velocity in each element is represented as a high-order Lagrangian interpolant through Chebyshev collocation points. The hyperbolic piece of the governing equations is then treated with an explicit collocation scheme, while the pressure and viscous contributions are treated implicitly with a projection operator derived from a variational principle. The implementation of the technique is demonstrated on a one-dimensional inflow-outflow advection-diffusion equation, and the method is then applied to laminar two-dimensional (separated) flow in a channel expansion. Comparisons are made with experiment and previous numerical work.
2D SiC/SiC composite for flow channel insert (FCI) application
Energy Technology Data Exchange (ETDEWEB)
Yu Haijiao [Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, 47 Yanwachi Street, Changsha 410073 (China); Zhou Xingui, E-mail: zhouxinguilmy@163.com [Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, 47 Yanwachi Street, Changsha 410073 (China); Wang Honglei; Zhao Shuang [Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, 47 Yanwachi Street, Changsha 410073 (China); Wu Yican; Huang Qunying; Zhu Zhiqiang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Huang Zelan [Chongyi Zhangyuan Tungsten Co. Ltd., Chongyi 341300 (China)
2010-12-15
Two-dimensional (2D) silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) composite suiting for flow channel insert (FCI) application was successfully fabricated by stacking molding-precursor impregnation and pyrolysis (PIP) process. Plain-woven KD-I SiC fiber fabric was used as the reinforcement. SiC coating was deposited as the fiber/matrix interphase layer by chemical vapor deposition (CVD) technique. Mechanical, thermal and electrical properties of the 2D SiC/SiC composite were investigated. The results show that mechanical properties and through thickness thermal conductivity of the 2D KD-I/PIP SiC composite well meet the FCI application requirements; meanwhile, it seems that the electrical conductivity requirement will also be satisfied with a series of improvements.
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Flow Routing for Delineating Supraglacial Meltwater Channel Networks
Directory of Open Access Journals (Sweden)
Leonora King
2016-12-01
Full Text Available Growing interest in supraglacial channels, coupled with the increasing availability of high-resolution remotely sensed imagery of glacier surfaces, motivates the development and testing of new approaches to delineating surface meltwater channels. We utilized a high-resolution (2 m digital elevation model of parts of the western margin of the Greenland Ice Sheet (GrIS and retention of visually identified sinks (i.e., moulins to investigate the ability of a standard D8 flow routing algorithm to delineate supraglacial channels. We compared these delineated channels to manually digitized channels and to channels extracted from multispectral imagery. We delineated GrIS supraglacial channel networks in six high-elevation (above 1000 m and one low-elevation (below 1000 m catchments during and shortly after peak melt (July and August 2012, and investigated the effect of contributing area threshold on flow routing performance. We found that, although flow routing is sensitive to data quality and moulin identification, it can identify 75% to 99% of channels observed with multispectral analysis, as well as low-order, high-density channels (up to 15.7 km/km2 with a 0.01 km2 contributing area threshold in greater detail than multispectral methods. Additionally, we found that flow routing can delineate supraglacial channel networks on rough ice surfaces with widespread crevassing. Our results suggest that supraglacial channel density is sufficiently high during peak melt that low contributing area thresholds can be employed with little risk of overestimating the channel network extent.
Two-phase flow instabilities in a vertical annular channel
Energy Technology Data Exchange (ETDEWEB)
Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Directory of Open Access Journals (Sweden)
Taymaz Imdat
2015-01-01
Full Text Available The Lattice Boltzmann Method is applied to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a two-dimensional channel with a built-in bluff body. In this study, a triangular prism is taken as the bluff body. Not only the momentum transport, but also the energy transport is modeled by the Lattice Boltzmann Method. A uniform lattice structure with a single time relaxation rule is used. For obtaining a higher flexibility on the computational grid, interpolation methods are applied, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is investigated for different Reynolds numbers, while keeping the Prandtl number at the constant value of 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an assessment of the accuracy of the developed Lattice Boltzmann code, the results are compared with those obtained by a commercial Computational Fluid Dynamics code. It is observed that the present Lattice Boltzmann code delivers results that are of similar accuracy to the well-established Computational Fluid Dynamics code, with much smaller computational time for the prediction of the unsteady phenomena.
Erosional processes in channelized water flows on Mars
Baker, V. R.
1979-01-01
A hypothesis is investigated according to which the Martian outflow channels were formed by high-velocity flows of water or dynamically similar liquid. It is suggested that the outflow channels are largely the result of several interacting erosional mechanisms, including fluvial processes involving ice covers, macroturbulence, streamlining, and cavitation.
Molecular dynamics simulations of oscillatory flows in microfluidic channels
DEFF Research Database (Denmark)
Hansen, J.S.; Ottesen, Johnny T.
2006-01-01
In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, high...
NONUNIFORM OPEN CHANNEL FLOW WITH UPWARD SEEPAGE THROUGH LOOSE BEDS
Institute of Scientific and Technical Information of China (English)
Subhasish DEY
2003-01-01
The Reynolds stress and bed shear stress are important parameters in fluvial hydraulics. Steadynonuniform flow in open channels with streamwise sloping beds having upward seepage through loose beds is theoretically analyzed to estimate the Reynolds stress and bed shear stress. Equations of the Reynolds stress and bed shear stress are developed, assuming a modified logarithmic velocity distribution law due to upward seepage, and using the Reynolds and continuity equations of twodimensional flow in open channels.
A Numerical Analysis Of Gaseous Flow in the Entrance Region of Micro-channels
Directory of Open Access Journals (Sweden)
Sampad Gobinda Das
2010-06-01
Full Text Available Fluid flow in micro-channels is rapidly emerging as a major area of research, due to its wide area of applications invarious forms in industries. Although substantial work has been carried out xperimentally, numerically as well as analytically on this area, still the reported results show wide variation from one another. In the present work an attempt has been made to analyze gaseous flow in two dimensional micro-channels by using a numerical scheme.The momentum equation has been converted into stream function vorticity form and a finite difference technique has been used. Both slip and no slip boundary conditions have been applied and nitrogen and helium have been considered as representative ideal gases. The numerical scheme has been validated and the results have shown theimportance of Knudsen number apart from Reynolds number, in the gaseous flow during its hydro dynamically developing stage. The present work has carried out a comparative study based on the code developed, between nitrogen and helium, one of them being a monatomic gas and the other diatomic. Also a non dimensional analysis has been presented.
Numerical Investigation of Developing Velocity Distributions in Open Channel Flows
Directory of Open Access Journals (Sweden)
Usman Ghani
2014-04-01
Full Text Available The velocity profiles in open channel flows start developing after entering into the channel for quite some length. All types of laboratory experiments for open channel flows are carried out in the fully developed flow regions which exist at some length downstream the inlet. In this research work an attempt has been made to investigate the impact of roughness and slope of the channel bed on the length required for establishment of fully developed flow in an open channel. A range of different roughness values along with various slopes were considered for this purpose. It was observed that an increase in roughness results in reduction of development length; and development length reduces drastically when roughness reaches to the range normally encountered in open channel flows with emergent vegetation or natural river flows. However, it was observed that the change of slope did not have any noticeable effect on development length. This work suggests that CFD (Computational Fluid Dynamics technique can be used for getting a reliable development length before performing an experimental work
LARGE EDDY SIMULATION OF PULSATING TURBULENT OPEN CHANNEL FLOW
Institute of Scientific and Technical Information of China (English)
ZOU Li-yong; LIU Nan-sheng; LU Xi-yun
2004-01-01
Pulsating turbulent open channel flow has been investigated by the use of Large Eddy Simulation (LES) technique coupled with dynamic Sub-Grid-Scale (SGS) model for turbulent SGS stress to closure the governing equations. Three-dimensional filtered Navier-Stokes equations are numerically solved by a fractional-step method. The objective of this study is to deal with the behavior of the pulsating turbulent open channel flow and to examine the reliability of the LES approach for predicting the pulsating turbulent flow. In this study, the Reynolds number (Reτ ) is chosen as 180 based on the friction velocity and the channel depth. The frequency of the driving pressure gradient for the pulsating turbulent flow ranges low, medium and high value. Statistical turbulence quantities as well as the flow structures are analyzed.
Stability of stratified two-phase flows in inclined channels
Barmak, Ilya; Ullmann, Amos; Brauner, Neima
2016-01-01
Linear stability of stratified gas-liquid and liquid-liquid plane-parallel flows in inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict parameter regions in which stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of steady state solutions are presented on the flow pattern map and are accompanied by critical wavenumbers and spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of ...
Ren, Qiang; Wu, Caisheng; Zhang, Jinlan
2013-08-23
The use of two-dimensional liquid chromatography (2D-LC) for quantification studies presents challenges with respect to repeatability, precision, and robustness. The present study used an on-line stop-flow heart-cutting 2D-LC system to determine 12 chemical constituents in tartary buckwheat. A combination of various stationary phases was developed and bridged using two switch valves as the interface. Hydrophilic interaction chromatography was chosen for separation in the first dimension ((1)D), and mixed mode stationary phases (an amide polar-embedded phase and alkyl-phenyl phase) were used in parallel for separation in the second dimension ((2)D). The mobile phase comprised acetonitrile and water containing 0.03% aqueous phosphoric acid. The sample was separated into two fractions on the (1)D column (HILIC-10 column) using 5% acetonitrile. One fraction, mainly comprising flavonoids, was directly eluted onto the head of (2)D column (Polar Advantage II column) and further separated using a linear gradient of 11-23% acetonitrile. The second fraction, containing phenylpropanoid glycosides, was trapped on the (1)D column. This retained fraction was back-flushed onto the (2)D column (Phenyl-1 column) and separated using a linear gradient of 35-43% acetonitrile. An on-line stop-flow heart-cutting 2D-LC system was successfully developed with column switching and back-flush. This 2D-LC system was validated and was able to simultaneously determine 12 major components in tartary buckwheat: seven flavonoids, four phenylpropanoid glycosides, and N-trans-feruloyltyramine. The system showed good performance with respect to linearity (r>0.996), repeatability (RSD, relative standard deviation<3.4%), intra-day and inter-day precision (RSD<4.6%), recovery (91.2-108%), limit of detection (LOD) (0.05-0.21μg/mL), and limit of quantification (LOQ) (0.10-0.41μg/mL). The on-line stop-flow heart-cutting 2D-LC system offers a potential approach to analyze compounds, which have similar
Energy Technology Data Exchange (ETDEWEB)
Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Shahzad, S. A.; Meraj, M. A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M. K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Raza, J. [School of Quantitative Sciences, Universiti Utara Malaysia, 06010, Sintok, Kedah (Malaysia)
2016-03-15
A numerical study is carried out for two dimensional steady incompressible mixed convective flow of electrically conductive micro nanofluid in a stretchable channel. The flow is generated due to the stretching walls of the channel immersed in a porous medium. The magnetic field is applied perpendicular to the walls. The impact of radiation, viscous dissipation, thermophoretic and Brownian motion of nanoparticles appear in the energy equation. A numerical technique based on Runge-Kutta-Fehlberg fourth-fifth order (RFK45) method is used to express the solutions of velocity, microrotation, temperature and concentration fields. The dimensionless physical parameters are discussed both in tabular and graphical forms. The results are also found in a good agreement with previously published literature work.
The partition function of two-dimensional string theory
Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen
1993-04-01
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.
The partition function of two-dimensional string theory
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))
1993-04-12
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity
Flow splitting modifies the helical motion in submarine channels
Islam, M. Ashraful; Imran, Jasim; Pirmez, Carlos; Cantelli, Alessandro
2008-11-01
Intricately meandering channels of various scales constitute a major morphological feature of the submarine slope and fan systems. These channels act as conduits of density-driven gravity underflows and in turn are shaped by these underflows. The relationship between channel curvature and the dynamics of sediment-laden underflows commonly known as turbidity current has been an enigma, and recently, a subject of controversy. This contribution unravels the flow field of turbidity current at submarine channel bends captured from large scale laboratory experiments. The experimental results show that a mildly sloping channel bank greatly enhances the tilt of the turbidity current-ambient water interface, so much so that the current completely separates from the convex or the inside bank. We also show that irrespective of the shape of the channel cross section, two cells of helical flow appear in confined submarine bend flow. The near-bed cell has a circulation pattern similar to that observed in fluvial channels; the other cell has an opposite sense of rotation. If, on the other hand, a portion of the flow detaches from the body of the current and spills to the concave or outside overbank area, the upper circulation cell becomes suppressed by the resulting lateral convection.
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
DNS and scaling law analysis of compressible turbulent channel flow
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Fully developed compressible turbulent channel flow (Ma=0.8,Re=3300) is numerically simulated, and the data base of turbulence is established. The s tatistics such as density_weighted mean velocity and RMS velocity fluctuations i n semi_local coordinates agree well with those from other DNS data. High order s tatistics (skewness and flatness factors) of velocity fluctuations of compressib le turbulence are reported for the first time. Compressibility effects are also discussed. Pressure_dilatation absorbs part of the kinetic energy and makes the streaks of compressible channel flow more smooth. The scaling laws of compressible channel flow are also discussed. The conclusi ons are: (a) Scaling law is found in the center area of the channel. (b) In this area, ESS is also found. (c) When Mach number is not ve ry high, compressibility has little effect on scaling exponents.
Unsteady hydromagnetic Couette flow within a porous channel with ...
African Journals Online (AJOL)
user
It may be noted that the study of hydromagnetic flow within a porous channel may find application in designing of cooling systems with liquid metals, geothermal reservoirs, ... The paper is organized as follows: In Section 2, formulation of the problem and its ...... Combined effect of free and forced convection on MHD flow in a.
Turbulent oscillating channel flow subjected to wind stress
Kramer, W.; Clercx, H.J.H.; Armenio, V.; Armenio, Vincenzo; Geurts, Bernard; Fröhlich, Jochen
2010-01-01
The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations (LES). a slowly pulsating mean flow occurs with the turbulent mechanics essentially being quasi steady. Logarithmic boundary layers are present at both th
Propagation and deposition of stony debris flows at channel confluences
Stancanelli, L. M.; Lanzoni, S.; Foti, E.
2015-07-01
The fluid dynamics of stony debris flows generated in two small tributaries adjacent to each other and flowing into a main receiving channel was analyzed experimentally at a laboratory scale. The analysis on the propagation along the tributaries and deposition in the main channel provide information about sediment-water mobility, dangerous damming, and potential hazard. Debris flows were generated by releasing a preset water discharge over an erodible layer of saturated gravels material. As a consequence, the debris flow sediment concentration varied accordingly to the entrainment rate which, in turn, was strongly controlled by the tributary slope. The data collected by acoustic level sensors, pore fluid pressure transducers, and a load cell were used to characterize the evolution of bulk density and solid concentration of the sediment-water mixture. These two parameters were relevant to assess the stony debris flow mobility which contributes to determine the shape of sediment deposits in the main channel. The detailed bed topography surveys carried out in the main channel at the end of each experiment provided information on the morphology of these deposits and on the interplay of adjacent confluences. The influences of confluence angle, tributary slopes, and triggering conditions have been investigated, for a total of 18 different configurations. Within the investigated range of parameters, the slope angle was the parameter that mainly influences the stony debris flow mobility while, for adjacent confluences, the degree of obstruction within the receiving channel was strongly influenced by the triggering scenario.
Single phase channel flow forced convection heat transfer
Energy Technology Data Exchange (ETDEWEB)
Hartnett, J.P.
1999-04-01
A review of the current knowledge of single phase forced convection channel flow of liquids (Pr > 5) is presented. Two basic channel geometries are considered, the circular tube and the rectangular duct. Both laminar flow and turbulent flow are covered. The review begins with a brief overview of the heat transfer behavior of Newtonian fluids followed by a more detailed presentation of the behavior of purely viscous and viscoelastic Non-Newtonian fluids. Recent developments dealing with aqueous solutions of high molecular weight polymers and aqueous solutions of surfactants are discussed. The review concludes by citing a number of challenging research opportunities.
Energy Technology Data Exchange (ETDEWEB)
Chono, S.; Tanoue, S.; Iemoto, Y. [Fukui University, Fukui (Japan). Faculty of Engineering
1998-10-25
Orientation profiles of fibers in fiber suspension flow between two parallel plates with a square cylinder on the center axis was studied by using the computer image analysis. The orientational order parameter S decreases near the square cylinder because the flow changes its direction and also a wake is developed, while it is large near the channel wall owing to high shear deformation. The preferred angle and S decrease in the downstream vicinity of the square cylinder, and reach fully-developed values at a farther area. S along the channel center axis increases with increasing a fiber concentration and the Reynolds number. The size of a square cylinder has an effect on the fiber orientation near the cylinder. Since a stagnation region and a large wake are developed before and after a cylinder for a viscoelastic fluid, a lower value of S near the cylinder is obtained for the viscoelastic fluid compared to that for a Newtonian fluid. At a downstream area, however, the viscoelastic fluid gives a higher values of S. 21 refs., 14 figs., 1 tab.
Institute of Scientific and Technical Information of China (English)
刘艳; 赵鹏飞; 王晓放
2012-01-01
Cavitating flows around a two-dimensional NACA66 hydrofoil with an angle of attack of 6.5° are studied using the mixture multiphase model and cavitation model.The Singhal′s full cavitation model（FCM） and the Zwart-Gerber-Belamri（Z-G-B） cavitation model are applied,and based on experimental data,results obtained from the two models are compared in terms of pressure distribution coefficient on the surface of the hydrofoil,lift and drag coefficients and flow field structures.The experimental results show that for the FCM,the value of mass fraction of noncondensible gases has some effects on computational results.The length of cavitation zone becomes smaller with the mass fraction of noncondensible gases decreasing.For the Z-G-B model,both vaporization and condensation coefficients have influence on results.In general,both cavitation models give satisfactory prediction results by choosing reasonable empirical coefficients.%采用混合多相流模型和空化模型对攻角为6.5°的NACA66型二维水翼的空化流动进行数值研究.使用Singhal全空化模型（FCM）和Zwart-Gerber-Belamri（Z-G-B）空化模型,以实验数据为基准,对这两种空化模型得到的翼型表面压力分布系数和升、阻力系数以及流场结构进行了比较和分析,结果表明：FCM中,不凝结气体质量分数对计算结果影响较大,空化区长度随着不凝结气体质量分数的减小而变小;Z-G-B空化模型中,蒸发系数和凝结系数对结果有较大影响.总体说来,通过选取合理的经验系数,两种空化模型都给出了令人满意的空化流动结果.
NUMERICAL ANALYSIS OF GASEOUS FLOW IN MICRO-CHANNELS
Institute of Scientific and Technical Information of China (English)
Xu Jie; Gu Chuangang; Wang Tong
2004-01-01
The algorithm of gaseous flow in bi-dimensional micro-channels is set up and the corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels is numerically analyzed and the pressure drop along the duct as well as the velocity profile in the micro-channels is obtained. The numerical results agreed well with the experimental results in the references. Moreover, the effects of Kn, (σv and Re on the velocity profiles are analyzed. It is found that for Kn>0.001, with increasing Kn number, the slip velocity on the wall boundary increases; the tangential momentum coefficient (σv affects the slip velocity greatly. The slip velocity increases with decreasing (σv In the slip flow regime and for low Re numbers, the slip velocity is little influenced by the Re number.
Transport behavior of water molecules through two-dimensional nanopores
Energy Technology Data Exchange (ETDEWEB)
Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-11-14
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Transport behavior of water molecules through two-dimensional nanopores
Zhu, Chongqin; Li, Hui; Meng, Sheng
2014-11-01
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
High Resolution Simulation of Turbulent Flow in a Channel.
1987-09-25
chosen to maintain the original Poiseuille flow . The introduction of highly unstable disturbances causes transition to turbulence so that the wall...for Turbulent Channel Flow ," Phys. Rev. Lett, Vol. 47, 832-835 (1981). 2. S.A. Orszag and L.C. Kells, "Transition to turbulence in plane Poiseuille and...plane Couette Flow ," J. Fluid Mech., Vol. 96, pp. 159-205. 3. Kreplin, H.-P. and Eckelmann, H., "Behavior of the Three Fluctucting Velocity
Two-dimensional, isothermal, multi-component model for a polymer electrolyte membrane fuel cell
Energy Technology Data Exchange (ETDEWEB)
Mahinpey, N.; Jagannathan, A.; Idem, R. [Regina Univ., SK (Canada). Faculty of Engineering
2007-07-01
A fuel cell is an electrochemical energy conversion device which is more efficient than an internal combustion engine in converting fuel to power. Numerous fuel cell models have been developed by a number of authors accounting for the various physical processes. Earlier models were restricted to being one dimensional, steady-state, and isothermal while more recent two-dimensional models had several limitations. This paper presented the results of a study that developed a two-dimensional computational fluid dynamics model of a polymer electrolyte membrane fuel cell using a finite element method to solve a multi-component transport model coupled with flow in porous media, charge balance, electrochemical kinetics, and rigorous water balance in the membrane. The mass transport, momentum transport, and electrochemical processes occurring in the membrane electrolyte and catalyst layers were modeled. The local equilibrium was assumed at the interfaces and the model was combined with the kinetics and was analytically solved for the anodic and cathodic current using an agglomerate spherical catalyst pellet. The paper compared the modeling results with previously published experimental data. The study investigated the effects of channel and bipolar plate shoulder size, porosity of the electrodes, temperature, relative humidity and current densities on the cell performance. It was concluded that smaller sized channels and bipolar plate shoulders were required to obtain higher current densities, although larger channels were satisfactory at moderate current densities. 13 refs., 5 figs.
MHD-flow in slotted channels with conducting walls
Energy Technology Data Exchange (ETDEWEB)
Evtushenko, I.A.; Kirillov, I.R. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Reed, C.B. [Argonne National Lab., Chicago, IL (United States)
1994-07-01
A review of experimental results is presented for magnetohydrodynamic (MHD) flow in rectangular channels with conducting walls and high aspect ratios (longer side parallel to the applied magnetic field), which are called slotted channels. The slotted channel concept was conceived at Efremov Institute as a method for reducing MHD pressure drop in liquid metal cooled blanket design. The experiments conducted by the authors were aimed at studying both fully developed MHD-flow, and the effect of a magnetic field on the hydrodynamics of 3-D flows in slotted channels. Tests were carried out on five models of the slotted geometry. A good agreement between test and theoretical results for the pressure drop in slotted channels was demonstrated. Application of a {open_quotes}one-electrode movable probe{close_quotes} for velocity measurement permitted measurement of the M-shape velocity profiles in the slotted channels. Suppression of 3-D inertial effects in slotted channels of complex geometry was demonstrated based on potential distribution data.
Thermal Drawdown-Induced Flow Channeling in Fractured Geothermal Reservoirs
Energy Technology Data Exchange (ETDEWEB)
Fu, Pengcheng; Hao, Yue; Walsh, Stuart D. C.; Carrigan, Charles R.
2015-06-30
We investigate the flow-channeling phenomenon caused by thermal drawdown in fractured geothermal reservoirs. A discrete fracture network-based, fully coupled thermal–hydrological–mechanical simulator is used to study the interactions between fluid flow, temperature change, and the associated rock deformation. The responses of a number of randomly generated 2D fracture networks that represent a variety of reservoir characteristics are simulated with various injection-production well distances. We find that flow channeling, namely flow concentration in cooled zones, is the inevitable fate of all the scenarios evaluated. We also identify a secondary geomechanical mechanism caused by the anisotropy in thermal stress that counteracts the primary mechanism of flow channeling. This new mechanism tends, to some extent, to result in a more diffuse flow distribution, although it is generally not strong enough to completely reverse flow channeling. We find that fracture intensity substantially affects the overall hydraulic impedance of the reservoir but increasing fracture intensity generally does not improve heat production performance. Increasing the injection-production well separation appears to be an effective means to prolong the production life of a reservoir.
Logtenberg, Hella; Lopez-Martinez, Maria J.; Feringa, Ben L.; Browne, Wesley R.; Verpoorte, Elisabeth
2011-01-01
An approach to control two-phase flow systems in a poly(dimethylsiloxane) (PDMS) microfluidic device using spatially selective surface modification is demonstrated. Side-by-side flows of ethanol : water solutions containing different polymers are used to selectively modify both sides of a channel by
Effect Of Flow Resistance In Open Rectangular Channel
Directory of Open Access Journals (Sweden)
Ahmad Noor Aliza
2017-01-01
Full Text Available The determination of flow resistance for open channels remains a challenge in practices. In this research, an experimental study was carried out to investigate the hydraulic roughness characteristics in an open channel. The experimental flume (10 m length, 0.30 m width and 0.46 height was carried out with two conditions ; contain gravel bed and without gravel bed (as controller. Blocks of concrete foam were fabricated and laid on the bed surface for providing uniformly roughened along the open channel. A velocity flow meter was used to quantify the average velocity, and other parameters such as cross-section, hydraulic radius, wetted perimeter, and channel slopes were also calculated. Finally, the flow resistance, n obtained using the flume with gravel bed surface is higher than the flume without gravel bed surface. The flow conditions were declared as subcritical as the Froude number is less than 1 for both conditions in the flume. As a conclusion, it was identified that the hydraulic roughness n, was influenced by the type bed roughness, flow rate and channel slope.