WorldWideScience

Sample records for two-dimensional 2d monolayer

  1. Two-dimensional multiferroics in monolayer group IV monochalcogenides

    Science.gov (United States)

    Wang, Hua; Qian, Xiaofeng

    2017-03-01

    Low-dimensional multiferroic materials hold great promises in miniaturized device applications such as nanoscale transducers, actuators, sensors, photovoltaics, and nonvolatile memories. Here, using first-principles theory we predict that two-dimensional (2D) monolayer group IV monochalcogenides including GeS, GeSe, SnS, and SnSe are a class of 2D semiconducting multiferroics with giant strongly-coupled in-plane spontaneous ferroelectric polarization and spontaneous ferroelastic lattice strain that are thermodynamically stable at room temperature and beyond, and can be effectively modulated by elastic strain engineering. Their optical absorption spectra exhibit strong in-plane anisotropy with visible-spectrum excitonic gaps and sizable exciton binding energies, rendering the unique characteristics of low-dimensional semiconductors. More importantly, the predicted low domain wall energy and small migration barrier together with the coupled multiferroic order and anisotropic electronic structures suggest their great potentials for tunable multiferroic functional devices by manipulating external electrical, mechanical, and optical field to control the internal responses, and enable the development of four device concepts including 2D ferroelectric memory, 2D ferroelastic memory, and 2D ferroelastoelectric nonvolatile photonic memory as well as 2D ferroelectric excitonic photovoltaics.

  2. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems

    KAUST Repository

    Cheng, Yingchun; Guo, Z. B.; Mi, W. B.; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2013-01-01

    Using first-principles calculations, we propose a two-dimensional diluted magnetic semiconductor: monolayer MoS2 doped by transition metals. Doping of transition metal atoms from the IIIB to VIB groups results in nonmagnetic states, since the number

  3. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    International Nuclear Information System (INIS)

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E 2 (PGE 2 ) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  4. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Chitcholtan, Kenny, E-mail: kenny.chitcholtan@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Asselin, Eric, E-mail: Eric.Asselin@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Parent, Sophie, E-mail: Sophie.Parent@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Sykes, Peter H., E-mail: peter.sykes@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Evans, John J., E-mail: john.evans@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Centre of Neuroendocrinology and The MacDiarmid Institute of Advanced Materials and Nanotechnology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand)

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  5. Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers

    KAUST Repository

    Pu, Jiang

    2016-07-27

    The carrier-density-dependent conductance and thermoelectric properties of large-area MoS2 and WSe2 monolayers are simultaneously investigated using the electrolyte gating method. The sign of the thermoelectric power changes across the transistor off-state in the ambipolar WSe2 transistor as the majority carrier density switches from electron to hole. The thermopower and thermoelectric power factor of monolayer samples are one order of magnitude larger than that of bulk materials, and their carrier-density dependences exhibit a quantitative agreement with the semiclassical Mott relation based on the two-dimensional energy band structure, concluding the thermoelectric properties are enhanced by the low-dimensional effect.

  6. C4N3H monolayer: A two-dimensional organic Dirac material with high Fermi velocity

    Science.gov (United States)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Li, Jianfu; Du, Youwei; Tang, Nujiang

    2017-11-01

    Searching for two-dimensional (2D) organic Dirac materials, which have more adaptable practical applications compared with inorganic ones, is of great significance and has been ongoing. However, only two such materials with low Fermi velocity have been discovered so far. Herein, we report the design of an organic monolayer with C4N3H stoichiometry that possesses fascinating structure and good stability in its free-standing state. More importantly, we demonstrate that this monolayer is a semimetal with anisotropic Dirac cones and very high Fermi velocity. This Fermi velocity is roughly one order of magnitude larger than the largest velocity ever reported in 2D organic Dirac materials, and it is comparable to that in graphene. The Dirac states in this monolayer arise from the extended π -electron conjugation system formed by the overlapping 2 pz orbitals of carbon and nitrogen atoms. Our finding paves the way to a search for more 2D organic Dirac materials with high Fermi velocity.

  7. Monolayer group-III monochalcogenides by oxygen functionalization: a promising class of two-dimensional topological insulators

    Science.gov (United States)

    Zhou, Si; Liu, Cheng-Cheng; Zhao, Jijun; Yao, Yugui

    2018-03-01

    Monolayer group-III monochalcogenides (MX, M = Ga, In; X = S, Se, Te), an emerging category of two-dimensional (2D) semiconductors, hold great promise for electronics, optoelectronics and catalysts. By first-principles calculations, we show that the phonon dispersion and Raman spectra, as well as the electronic and topological properties of monolayer MX can be tuned by oxygen functionalization. Chemisorption of oxygen atoms on one side or both sides of the MX sheet narrows or even closes the band gap, enlarges work function, and significantly reduces the carrier effective mass. More excitingly, InS, InSe, and InTe monolayers with double-side oxygen functionalization are 2D topological insulators with sizeable bulk gap up to 0.21 eV. Their low-energy bands near the Fermi level are dominated by the px and py orbitals of atoms, allowing band engineering via in-plane strains. Our studies provide viable strategy for realizing quantum spin Hall effect in monolayer group-III monochalcogenides at room temperature, and utilizing these novel 2D materials for high-speed and dissipationless transport devices.

  8. Synthesis, Characterization, and Properties of the Two-Dimensional Chalcogenides: Monolayers, Alloys, and Heterostructures

    Science.gov (United States)

    Cain, Jeffrey D.

    Inspired by the triumphs of graphene, and motivated by its limitations, the science and engineering community is rapidly exploring the landscape of other layered materials in their atomically-thin forms. Dominating this landscape are the layered chalcogenides; diverse in chemistry, crystal structure, and properties, there are well over 100 primary members of this material family. Driven by quantum confinement, single layers (or few, in some cases) of these materials exhibit electronic, optical, and mechanical properties that diverge dramatically from their bulk counterparts. While initially isolated in monolayer form via mechanical exfoliation, the field of two-dimensional (2D) materials is being forced evolve to more scalable and reliable methods. Focusing on the chalcogenides (e.g. MoS2, Bi 2Se3, etc.), this dissertation introduces and mechanistically examines multiple novel synthetic approaches for the direct growth of monolayers, heterostructures, and alloys with the desired quality, reproducibility and generality. The first methods described in this thesis are physical vapor transport (PVT) and evaporative thinning (ET): a facile, top-down synthesis approach for creating ultrathin specimens of layered materials down to the two-dimensional limit. Evaporative thinning, applied in this study to the fabrication of A2X3 (Bi2Se3 and Sb2Te3) monolayers, is based on the controlled evaporation of material from initially thick specimens until the 2D limit is reached. The resultant flakes are characterized with a suite of imaging and spectroscopic techniques and the mechanism of ET is investigated via in-situ heating within a transmission electron microscope. Additionally, the basic transport properties of the resultant flakes are probed. The growth of ultrathin GeSe flakes is explored using PVT and the material's basic structure, properties, and stability are addressed. Second, oxide precursor based chemical vapor deposition (CVD) is presented for the direct growth of

  9. Two-dimensional spin-orbit Dirac point in monolayer HfGeTe

    Science.gov (United States)

    Guan, Shan; Liu, Ying; Yu, Zhi-Ming; Wang, Shan-Shan; Yao, Yugui; Yang, Shengyuan A.

    2017-10-01

    Dirac points in two-dimensional (2D) materials have been a fascinating subject of research, with graphene as the most prominent example. However, the Dirac points in existing 2D materials, including graphene, are vulnerable against spin-orbit coupling (SOC). Here, based on first-principles calculations and theoretical analysis, we propose a new family of stable 2D materials, the HfGeTe-family monolayers, which host so-called spin-orbit Dirac points (SDPs) close to the Fermi level. These Dirac points are special in that they are formed only under significant SOC, hence they are intrinsically robust against SOC. We show that the existence of a pair of SDPs are dictated by the nonsymmorphic space group symmetry of the system, which are very robust under various types of lattice strains. The energy, the dispersion, and the valley occupation around the Dirac points can be effectively tuned by strain. We construct a low-energy effective model to characterize the Dirac fermions around the SDPs. Furthermore, we find that the material is simultaneously a 2D Z2 topological metal, which possesses nontrivial Z2 invariant in the bulk and spin-helical edge states on the boundary. From the calculated exfoliation energies and mechanical properties, we show that these materials can be readily obtained in experiment from the existing bulk materials. Our result reveals HfGeTe-family monolayers as a promising platform for exploring spin-orbit Dirac fermions and topological phases in two-dimensions.

  10. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems

    KAUST Repository

    Cheng, Yingchun

    2013-03-05

    Using first-principles calculations, we propose a two-dimensional diluted magnetic semiconductor: monolayer MoS2 doped by transition metals. Doping of transition metal atoms from the IIIB to VIB groups results in nonmagnetic states, since the number of valence electrons is smaller or equal to that of Mo. Doping of atoms from the VIIB to IIB groups becomes energetically less and less favorable. Magnetism is observed for Mn, Fe, Co, Zn, Cd, and Hg doping, while for the other dopants from these groups it is suppressed by Jahn-Teller distortions. Analysis of the binding energies and magnetic properties indicates that (Mo,X)S2 (X=Mn, Fe, Co, and Zn) are promising systems to explore two-dimensional diluted magnetic semiconductors.

  11. Two-dimensional sum-frequency generation (2D SFG) spectroscopy: summary of principles and its application to amyloid fiber monolayers.

    Science.gov (United States)

    Ghosh, Ayanjeet; Ho, Jia-Jung; Serrano, Arnaldo L; Skoff, David R; Zhang, Tianqi; Zanni, Martin T

    2015-01-01

    By adding a mid-infrared pulse shaper to a sum-frequency generation (SFG) spectrometer, we have built a 2D SFG spectrometer capable of measuring spectra analogous to 2D IR spectra but with monolayer sensitivity and SFG selection rules. In this paper, we describe the experimental apparatus and provide an introduction to 2D SFG spectroscopy to help the reader interpret 2D SFG spectra. The main aim of this manuscript is to report 2D SFG spectra of the amyloid forming peptide FGAIL. FGAIL is a critical segment of the human islet amyloid polypeptide (hIAPP or amylin) that aggregates in people with type 2 diabetes. FGAIL is catalyzed into amyloid fibers by many types of surfaces. Here, we study the structure of FGAIL upon deposition onto a gold surface covered with a self-assembled monolayer of methyl-4-mercaptobenzoate (MMB) that produces an ester coating. FGAIL deposited on bare gold does not form ordered layers. The measured 2D SFG spectrum is consistent with amyloid fiber formation, exhibiting both the parallel (a+) and perpendicular (a-) symmetry modes associated with amyloid β-sheets. Cross peaks are observed between the ester stretches of the coating and the FGAIL peptides. Simulations are presented for two possible structures of FGAIL amyloid β-sheets that illustrate the sensitivity of the 2D SFG spectra to structure and orientation. These results provide some of the first molecular insights into surface catalyzed amyloid fiber structure.

  12. Experimental Observation of the Aubry Transition in Two-Dimensional Colloidal Monolayers

    Science.gov (United States)

    Brazda, T.; Silva, A.; Manini, N.; Vanossi, A.; Guerra, R.; Tosatti, E.; Bechinger, C.

    2018-01-01

    The possibility to achieve entirely frictionless, i.e., superlubric, sliding between solids holds enormous potential for the operation of mechanical devices. At small length scales, where mechanical contacts are well defined, Aubry predicted a transition from a superlubric to a pinned state when the mechanical load is increased. Evidence for this intriguing Aubry transition (AT), which should occur in one dimension (1D) and at zero temperature, was recently obtained in few-atom chains. Here, we experimentally and theoretically demonstrate the occurrence of the AT in an extended two-dimensional (2D) system at room temperature using a colloidal monolayer on an optical lattice. Unlike the continuous nature of the AT in 1D, we observe a first-order transition in 2D leading to a coexistence regime of pinned and unpinned areas. Our data demonstrate that the original concept of Aubry not only survives in 2D but is relevant for the design of nanoscopic machines and devices at ambient temperature.

  13. GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures

    Science.gov (United States)

    Zhou, Liqin; Guo, Yu; Zhao, Jijun

    2018-01-01

    Two dimensional (2D) materials provide a versatile platform for nanoelectronics, optoelectronics and clean energy conversion. Based on first-principles calculations, we propose a novel kind of 2D materials - GeAs and SiAs monolayers and investigate their atomic structure, thermodynamic stability, and electronic properties. The calculations show that monolayer GeAs and SiAs sheets are energetically and dynamically stable. Their small interlayer cohesion energies (0.191 eV/atom for GeAs and 0.178 eV/atom for SiAs) suggest easy exfoliation from the bulk solids that exist in nature. As 2D semiconductors, GeAs and SiAs monolayers possess band gap of 2.06 eV and 2.50 eV from HSE06 calculations, respectively, while their band gap can be further engineered by the number of layers. The relatively small and anisotropic carrier effective masses imply fast electric transport in these 2D semiconductors. In particular, monolayer SiAs is a direct gap semiconductor and a potential photocatalyst for water splitting. These theoretical results shine light on utilization of monolayer or few-layer GeAs and SiAs materials for the next-generation 2D electronics and optoelectronics with high performance and satisfactory stability.

  14. SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts

    Science.gov (United States)

    Ma, Zhinan; Zhuang, Jibin; Zhang, Xu; Zhou, Zhen

    2018-06-01

    Because of graphene and phosphorene, two-dimensional (2D) layered materials of group IV and group V elements arouse great interest. However, group IV-V monolayers have not received due attention. In this work, three types of SiP monolayers were computationally designed to explore their electronic structure and optical properties. Computations confirm the stability of these monolayers, which are all indirect-bandgap semiconductors with bandgaps in the range 1.38-2.21 eV. The bandgaps straddle the redox potentials of water at pH = 0, indicating the potential of the monolayers for use as watersplitting photocatalysts. The computed optical properties demonstrate that certain monolayers of SiP 2D materials are absorbers of visible light and would serve as good candidates for optoelectronic devices.

  15. Proton and hydrogen transport through two-dimensional monolayers

    International Nuclear Information System (INIS)

    Seel, Max; Pandey, Ravindra

    2016-01-01

    Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS 2 ) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS 2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS 2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene. (paper)

  16. Proton and hydrogen transport through two-dimensional monolayers

    Science.gov (United States)

    Seel, Max; Pandey, Ravindra

    2016-06-01

    Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS2) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene.

  17. Modeling of anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene metal-oxide semiconductor field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jiwon [SEMATECH, 257 Fuller Rd #2200, Albany, New York 12203 (United States)

    2015-06-07

    Ballistic transport characteristics of metal-oxide semiconductor field effect transistors (MOSFETs) based on anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene are explored through quantum transport simulations. We focus on the effects of the channel crystal orientation and the channel length scaling on device performances. Especially, the role of degenerate conduction band (CB) valleys in monolayer HfS{sub 2} is comprehensively analyzed. Benchmarking monolayer HfS{sub 2} with phosphorene MOSFETs, we predict that the effect of channel orientation on device performances is much weaker in monolayer HfS{sub 2} than in phosphorene due to the degenerate CB valleys of monolayer HfS{sub 2}. Our simulations also reveal that at 10 nm channel length scale, phosphorene MOSFETs outperform monolayer HfS{sub 2} MOSFETs in terms of the on-state current. However, it is observed that monolayer HfS{sub 2} MOSFETs may offer comparable, but a little bit degraded, device performances as compared with phosphorene MOSFETs at 5 nm channel length.

  18. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

    KAUST Repository

    Cheng, Chia-Chin

    2016-09-10

    Two-dimensional layered transition metal dichalcogenide (TMD) materials such as Molybdenum disufide (MoS2) have been recognized as one of the low-cost and efficient electrocatalysts for hydrogen evolution reaction (HER). The crystal edges that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2 for enhancing their HER activity. Here, we report a simple and efficient approach-using a remote hydrogen-plasma process-to creating S-vacancies on the basal plane of monolayer crystalline MoS2; this process can generate high density of S-vacancies while mainly maintaining the morphology and structure of MoS2 monolayer. The density of S-vacancies (defects) on MoS2 monolayers resulted from the remote hydrogen-plasma process can be tuned and play a critical role in HER, as evidenced in the results of our spectroscopic and electrical measurements. The H2-plasma treated MoS2 also provides an excellent platform for systematic and fundamental study of defect-property relationships in TMDs, which provides insights for future applications including electrical, optical and magnetic devices. © 2016 Elsevier Ltd.

  19. Two-dimensional electron gas in monolayer InN quantum wells

    International Nuclear Information System (INIS)

    Pan, W.; Wang, G. T.; Dimakis, E.; Moustakas, T. D.; Tsui, D. C.

    2014-01-01

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in a superlattice structure of 40 InN quantum wells consisting of one monolayer of InN embedded between 10 nm GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5 × 10 15  cm −2 (or 1.25 × 10 14  cm −2 per InN quantum well, assuming all the quantum wells are connected by diffused indium contacts) and 420 cm 2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES

  20. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li

    2015-05-01

    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  1. Electrical control of truly two-dimensional neutral and charged excitons in monolayer MoSe2

    Science.gov (United States)

    Ross, Jason; Wu, Sanfeng; Yu, Hongyi; Ghimire, Nirmal; Jones, Aaron; Aivazian, Grant; Yan, Jiaqiang; Mandrus, David; Xiao, Di; Xiao, Di; Xu, Xiaodong

    2013-03-01

    Monolayer transition metal dichalcogenides (TMDs) have emerged as ideal 2D semiconductors with valley and spin polarized excitations expected to enable true valley-tronics. Here we investigate MoSe2, a TMD which has yet to be characterized in the monolayer limit. Specifically, we examine excitons and trions (their singly charged counterparts) in the ultimate 2D limit. Utilizing high quality exfoliated MoSe2 monolayers, we report the observation and electrostatic tunability of positively charged (X +) , neutral (Xo), and negatively charged (X-) excitons via photoluminescence in FETs. The trion charging energy is large (30 meV), enhanced by strong confinement and heavy effective masses, while the linewidth is narrow (5 meV) at temperatures below 55 K. This is greater spectral contrast than in any known quasi-2D system. Further, the charging energies for X + and X- to are nearly identical implying the same effective mass for electrons and holes, which supports their recent description as massive Dirac fermions. This work demonstrates that monolayer MoSe2 is an ultimate 2D semiconductor opening the door for the investigation of truly 2D exciton physics while laying the ground work necessary to begin valley-spin polarization studies. Support: US DoE, BES, Division of MSE. HY and WY supported by Research Grant Council of Hong Kong

  2. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. D.; Fang, Y. M.; Wu, S. Q., E-mail: zzhu@xmu.edu.cn, E-mail: wsq@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Zhu, Z. Z., E-mail: zzhu@xmu.edu.cn, E-mail: wsq@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005 (China)

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  3. Thermodynamic and structural study of two-dimensional melting within monolayers or rare gases or methane physically adsorbed upon the surface of layer-like solids

    International Nuclear Information System (INIS)

    Tessier, Christine

    1983-01-01

    The 2D (two-dimensional) melting of monolayers of rare gases or methane physically adsorbed on the basal face of lamellar solids (graphite, boron nitride and lamellar halides) has been studied. Two different experimental measurements have been made: i) adsorption isotherms; ii) neutron diffraction spectra. The main part of this report deals with the 2D liquid-incommensurate solid transition within monolayers of rare gases or methane adsorbed on the basal face of lamellar halides. This transition is first order. It is observed only if certain conditions of dimensional incompatibility between the substrate and the absorbate are fulfilled. It is little affected by the structure of the underlying substrate. A number of thermodynamic parameters associated with it, are constants once properly scaled. These constants agree well with theoretical estimates for 6-12 Lennard Jones particles adsorbed on a smooth surface. For the monolayer of Xe adsorbed on graphite the temperature of the tricritical point above which melting becomes a continuous transition has been measured. The isotope effect associated with 2D melting has been investigated by comparing the behaviour of monolayers of CH 4 and CD 4 adsorbed on boron nitride. The vapor pressure of Xe has been determined in the temperature range 101-120 K. (author) [fr

  4. Design of a new two-dimensional diluted magnetic semiconductor: Mn-doped GaN monolayer

    International Nuclear Information System (INIS)

    Zhao, Qian; Xiong, Zhihua; Luo, Lan; Sun, Zhenhui; Qin, Zhenzhen; Chen, Lanli; Wu, Ning

    2017-01-01

    Highlights: • It is found nonmagnetic GaN ML exhibits half-metallic FM behavior by Mn doping due to double exchange mechanism. • Interestingly, the FM coupling is enhanced with the increasing tensile strain due to stronger interaction between Mn-3d and N-2p state. • While, the FM interaction is weakened with the increasing compressive strain until it transforms into AFM under strain of −9.5%. • These results provide a feasible approach for the fabrication of 2D DMS based GaN ML. - Abstract: To meet the need of low-dimensional spintronic devices, we investigate the electronic structure and magnetic properties of Mn-doped GaN monolayer using first-principles method. We find the nonmagnetic GaN monolayer exhibits half-metallic ferromagnetism by Mn doping due to double-exchange mechanism. Interestingly, the ferromagnetic coupling in Mn-doped GaN monolayer is enhanced with tensile strain and weakened with compressive strain. What is more, the ferromagnetic–antiferromagnetic transformation occurs under compressive strain of −9.5%. These results provide a feasible approach for fabrication of a new GaN monolayer based diluted magnetic semiconductor.

  5. Design of a new two-dimensional diluted magnetic semiconductor: Mn-doped GaN monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qian [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Xiong, Zhihua, E-mail: xiong_zhihua@126.com [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038 (China); Luo, Lan [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Sun, Zhenhui [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038 (China); Qin, Zhenzhen [College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071 (China); Chen, Lanli [Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Wu, Ning [Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038 (China)

    2017-02-28

    Highlights: • It is found nonmagnetic GaN ML exhibits half-metallic FM behavior by Mn doping due to double exchange mechanism. • Interestingly, the FM coupling is enhanced with the increasing tensile strain due to stronger interaction between Mn-3d and N-2p state. • While, the FM interaction is weakened with the increasing compressive strain until it transforms into AFM under strain of −9.5%. • These results provide a feasible approach for the fabrication of 2D DMS based GaN ML. - Abstract: To meet the need of low-dimensional spintronic devices, we investigate the electronic structure and magnetic properties of Mn-doped GaN monolayer using first-principles method. We find the nonmagnetic GaN monolayer exhibits half-metallic ferromagnetism by Mn doping due to double-exchange mechanism. Interestingly, the ferromagnetic coupling in Mn-doped GaN monolayer is enhanced with tensile strain and weakened with compressive strain. What is more, the ferromagnetic–antiferromagnetic transformation occurs under compressive strain of −9.5%. These results provide a feasible approach for fabrication of a new GaN monolayer based diluted magnetic semiconductor.

  6. Two-dimensional square ternary Cu2MX4 (M = Mo, W; X = S, Se) monolayers and nanoribbons predicted from density functional theory

    KAUST Repository

    Gan, Liyong

    2014-03-19

    Two-dimensional (2D) materials often adopt a hexagonal lattice. We report on a class of 2D materials, Cu2MX4 (M = Mo, W; X = S, Se), that has a square lattice. Up to three monolayers, the systems are kinetically stable. All of them are semiconductors with band gaps from 2.03 to 2.48 eV. Specifically, the states giving rise to the valence band maximum are confined to the Cu and X atoms, while those giving rise to the conduction band minimum are confined to the M atoms, suggesting that spontaneous charge separation occurs. The semiconductive nature makes the materials promising for transistors, optoelectronics, and solar energy conversion. Moreover, the ferromagnetism on the edges of square Cu2MX4 nanoribbons opens applications in spintronics.

  7. Two-dimensional square ternary Cu2MX4 (M = Mo, W; X = S, Se) monolayers and nanoribbons predicted from density functional theory

    KAUST Repository

    Gan, Liyong; Schwingenschlö gl, Udo

    2014-01-01

    Two-dimensional (2D) materials often adopt a hexagonal lattice. We report on a class of 2D materials, Cu2MX4 (M = Mo, W; X = S, Se), that has a square lattice. Up to three monolayers, the systems are kinetically stable. All of them are semiconductors with band gaps from 2.03 to 2.48 eV. Specifically, the states giving rise to the valence band maximum are confined to the Cu and X atoms, while those giving rise to the conduction band minimum are confined to the M atoms, suggesting that spontaneous charge separation occurs. The semiconductive nature makes the materials promising for transistors, optoelectronics, and solar energy conversion. Moreover, the ferromagnetism on the edges of square Cu2MX4 nanoribbons opens applications in spintronics.

  8. Versatile two-dimensional transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max

    ), a strategy for the fabrication of 2D heterostructures must be developed. Here we demonstrate a novel approach for the bottom-up synthesis of TMDC monolayers, namely Pulsed Laser Deposition (PLD) combined with a sulfur evaporation beam. PLD relies on the use of a pulsed laser (ns pulse duration) to induce...... material transfer from a solid source (such as a sintered target of MoS2) to a substrate (such as Si or sapphire). The deposition rate in PLD is typically much less than a monolayer per pulse, meaning that the number of MLs can be controlled by a careful selection of the number of laser pulses......Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...

  9. Two-dimensional MoS2 electromechanical actuators

    Science.gov (United States)

    Hung, Nguyen T.; Nugraha, Ahmad R. T.; Saito, Riichiro

    2018-02-01

    We investigate the electromechanical properties of two-dimensional MoS2 monolayers with 1H, 1T, and 1T‧ structures as a function of charge doping by using density functional theory. We find isotropic elastic moduli in the 1H and 1T structures, while the 1T‧ structure exhibits an anisotropic elastic modulus. Moreover, the 1T structure is shown to have a negative Poisson’s ratio, while Poisson’s ratios of the 1H and 1T‧ are positive. By charge doping, the monolayer MoS2 shows a reversible strain and work density per cycle ranging from  -0.68% to 2.67% and from 4.4 to 36.9 MJ m-3, respectively, making them suitable for applications in electromechanical actuators. We also examine the stress generated in the MoS2 monolayers and we find that 1T and 1T‧ MoS2 monolayers have relatively better performance than 1H MoS2 monolayer. We argue that such excellent electromechanical performance originate from the electrical conductivity of the metallic 1T and semimetallic 1T‧ structures and also from their high Young’s modulus of about 150-200 GPa.

  10. Structural transformation in monolayer materials: a 2D to 1D transformation.

    Science.gov (United States)

    Momeni, Kasra; Attariani, Hamed; LeSar, Richard A

    2016-07-20

    Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials.

  11. Plasmonic Gold Nanorods Coverage Influence on Enhancement of the Photoluminescence of Two-Dimensional MoS2 Monolayer

    KAUST Repository

    Lee, Kevin C. J.

    2015-11-17

    The 2-D transition metal dichalcogenide (TMD) semiconductors, has received great attention due to its excellent optical and electronic properties and potential applications in field-effect transistors, light emitting and sensing devices. Recently surface plasmon enhanced photoluminescence (PL) of the weak 2-D TMD atomic layers was developed to realize the potential optoelectronic devices. However, we noticed that the enhancement would not increase monotonically with increasing of metal plasmonic objects and the emission drop after the certain coverage. This study presents the optimized PL enhancement of a monolayer MoS2 in the presence of gold (Au) nanorods. A localized surface plasmon wave of Au nanorods that generated around the monolayer MoS2 can provide resonance wavelength overlapping with that of the MoS2 gain spectrum. These spatial and spectral overlapping between the localized surface plasmon polariton waves and that from MoS2 emission drastically enhanced the light emission from the MoS2 monolayer. We gave a simple model and physical interpretations to explain the phenomena. The plasmonic Au nanostructures approach provides a valuable avenue to enhancing the emitting efficiency of the 2-D nano-materials and their devices for the future optoelectronic devices and systems.

  12. Plasmonic Gold Nanorods Coverage Influence on Enhancement of the Photoluminescence of Two-Dimensional MoS2 Monolayer

    KAUST Repository

    Lee, Kevin C. J.; Chen, Yi-Huan; Lin, Hsiang-Yu; Cheng, Chia-Chin; Chen, Pei-Ying; Wu, Ting-Yi; Shih, Min-Hsiung; Wei, Kung-Hwa; Li, Lain-Jong; Chang, Chien-Wen

    2015-01-01

    The 2-D transition metal dichalcogenide (TMD) semiconductors, has received great attention due to its excellent optical and electronic properties and potential applications in field-effect transistors, light emitting and sensing devices. Recently surface plasmon enhanced photoluminescence (PL) of the weak 2-D TMD atomic layers was developed to realize the potential optoelectronic devices. However, we noticed that the enhancement would not increase monotonically with increasing of metal plasmonic objects and the emission drop after the certain coverage. This study presents the optimized PL enhancement of a monolayer MoS2 in the presence of gold (Au) nanorods. A localized surface plasmon wave of Au nanorods that generated around the monolayer MoS2 can provide resonance wavelength overlapping with that of the MoS2 gain spectrum. These spatial and spectral overlapping between the localized surface plasmon polariton waves and that from MoS2 emission drastically enhanced the light emission from the MoS2 monolayer. We gave a simple model and physical interpretations to explain the phenomena. The plasmonic Au nanostructures approach provides a valuable avenue to enhancing the emitting efficiency of the 2-D nano-materials and their devices for the future optoelectronic devices and systems.

  13. A new Dirac cone material: a graphene-like Be3C2 monolayer.

    Science.gov (United States)

    Wang, Bing; Yuan, Shijun; Li, Yunhai; Shi, Li; Wang, Jinlan

    2017-05-04

    Two-dimensional (2D) materials with Dirac cones exhibit rich physics and many intriguing properties, but the search for new 2D Dirac materials is still a current hotspot. Using the global particle-swarm optimization method and density functional theory, we predict a new stable graphene-like 2D Dirac material: a Be 3 C 2 monolayer with a hexagonal honeycomb structure. The Dirac point occurs exactly at the Fermi level and arises from the merging of the hybridized p z bands of Be and C atoms. Most interestingly, this monolayer exhibits a high Fermi velocity in the same order of graphene. Moreover, the Dirac cone is very robust and retains even included spin-orbit coupling or external strain. These outstanding properties render the Be 3 C 2 monolayer a promising 2D material for special electronics applications.

  14. A comparison of the transport properties of bilayer graphene,monolayer graphene, and two-dimensional electron gas

    Institute of Scientific and Technical Information of China (English)

    Sun Li-Feng; Dong Li-Min; Wu Zhi-Fang; Fang Chao

    2013-01-01

    we studied and compared the transport properties of charge carriers in bilayer graphene,monolayer graphene,and the conventional semiconductors (the two-dimensional electron gas (2DEG)).It is elucidated that the normal incidence transmission in the bilayer graphene is identical to that in the 2DEG but totally different from that in the monolayer graphene.However,resonant peaks appear in the non-normal incidence transmission profile for a high barrier in the bilayer graphene,which do not occur in the 2DEG.Furthermore,there are tunneling and forbidden regions in the transmission spectrum for each material,and the division of the two regions has been given in the work.The tunneling region covers a wide range of the incident energy for the two graphene systems,but only exists under specific conditions for the 2DEG.The counterparts of the transmission in the conductance profile are also given for the three materials,which may be used as high-performance devices based on the bilayer graphene.

  15. Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers

    Science.gov (United States)

    Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.

    2018-05-01

    We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.

  16. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon

    KAUST Repository

    Lin, Che-Yu

    2017-10-04

    High-frequency operation with ultra-thin, lightweight and extremely flexible semiconducting electronics are highly desirable for the development of mobile devices, wearable electronic systems and defense technologies. In this work, the first experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density and flexible electronics.

  17. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon

    KAUST Repository

    Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Li, Ming-Yang; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L.; Lan, Yann-Wen

    2017-01-01

    High-frequency operation with ultra-thin, lightweight and extremely flexible semiconducting electronics are highly desirable for the development of mobile devices, wearable electronic systems and defense technologies. In this work, the first experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density and flexible electronics.

  18. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon.

    Science.gov (United States)

    Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L; Lan, Yann-Wen

    2017-11-28

    High-frequency operation with ultrathin, lightweight, and extremely flexible semiconducting electronics is highly desirable for the development of mobile devices, wearable electronic systems, and defense technologies. In this work, the experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe 2 -MoS 2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density, and flexible electronics.

  19. Two-dimensional sum-frequency generation (2D SFG) reveals structure and dynamics of a surface-bound peptide

    Science.gov (United States)

    Laaser, Jennifer E.; Skoff, David R.; Ho, Jia-Jung; Joo, Yongho; Serrano, Arnaldo L.; Steinkruger, Jay D.; Gopalan, Padma; Gellman, Samuel H.; Zanni, Martin T.

    2014-01-01

    Surface-bound polypeptides and proteins are increasingly used to functionalize inorganic interfaces such as electrodes, but their structural characterization is exceedingly difficult with standard technologies. In this paper, we report the first two-dimensional sum-frequency generation (2D SFG) spectra of a peptide monolayer, which is collected by adding a mid-IR pulse shaper to a standard femtosecond SFG spectrometer. On a gold surface, standard FTIR spectroscopy is inconclusive about the peptide structure because of solvation-induced frequency shifts, but the 2D lineshapes, anharmonic shifts, and lifetimes obtained from 2D SFG reveal that the peptide is largely α-helical and upright. Random coil residues are also observed, which do not themselves appear in SFG spectra due to their isotropic structural distribution, but which still absorb infrared light and so can be detected by cross-peaks in 2D SFG spectra. We discuss these results in the context of peptide design. Because of the similar way in which the spectra are collected, these 2D SFG spectra can be directly compared to 2D IR spectra, thereby enabling structural interpretations of surface-bound peptides and biomolecules based on the well-studied structure/2D IR spectra relationships established from soluble proteins. PMID:24372101

  20. Role of electron filling in the magnetic anisotropy of monolayer WSe2 doped with 5 d transition metals

    Science.gov (United States)

    Song, Yan; Wang, Xiaocha; Mi, Wenbo

    2017-12-01

    Exploring magnetic anisotropy (MA) in single-atom-doped two-dimensional materials provides a viable ground for realizing information storage and processing at ultimate length scales. Herein, the MA of 5 d transition-metal doped monolayer WSe2 is investigated by first-principles calculations. Large MA energy (MAE) is achieved in several doping systems. The direction of MA is determined by the dopant in-plane d states in the vicinity of the Fermi level in line with previous studies. An occupation rule that the parity of the occupation number of the in-plane d orbital of the dopant determines the preference between in-plane and out-of-plane anisotropy is found in this 5 d -doped system. Furthermore, this rule is understood by second-order perturbation theory and proved by charge-doping analysis. Considering relatively little research on two-dimensional MA and not sufficiently large MAE, suitable contact medium dopant pairs with large MAE and tunable MA pave the way to novel data storage paradigms.

  1. Two-Dimensional (2D Slices Encryption-Based Security Solution for Three-Dimensional (3D Printing Industry

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-05-01

    Full Text Available Nowadays, three-dimensional (3D printing technology is applied to many areas of life and changes the world based on the creation of complex structures and shapes that were not feasible in the past. But, the data of 3D printing is often attacked in the storage and transmission processes. Therefore, 3D printing must be ensured security in the manufacturing process, especially the data of 3D printing to prevent attacks from hackers. This paper presents a security solution for 3D printing based on two-dimensional (2D slices encryption. The 2D slices of 3D printing data is encrypted in the frequency domain or in the spatial domain by the secret key to generate the encrypted data of 3D printing. We implemented the proposed solution in both the frequency domain based on the Discrete Cosine Transform and the spatial domain based on geometric transform. The entire 2D slices of 3D printing data is altered and secured after the encryption process. The proposed solution is responsive to the security requirements for the secured storage and transmission. Experimental results also verified that the proposed solution is effective to 3D printing data and is independent on the format of 3D printing models. When compared to the conventional works, the security and performance of the proposed solution is also better.

  2. Synthesis and structure of two-dimensional transition-metal dichalcogenides

    KAUST Repository

    Shi, Yumeng; Zhang, Hua; Chang, Wen-Hao; Shin, Hyeon Suk; Li, Lain-Jong

    2015-01-01

    Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) exhibit unique electrical, optical, thermal, and mechanical properties, which enable them to be used as building blocks in compact and lightweight integrated electronic systems. The controllable and reliable synthesis of atomically thin TMDCs is essential for their practical application. Recent progress in large-area synthesis of monolayer TMDCs paves the way for practical production of various 2D TMDC layers. The intrinsic optical and electrical properties of monolayer TMDCs can be defined by stoichiometry during synthesis. By manipulating the lattice structure or layer stacking manner, it is possible to create atomically thin van der Waals materials with unique and unexplored physical properties. In this article, we review recent developments in the synthesis of TMDC monolayers, alloys, and heterostructures, which shine light on the design of novel TMDCs with desired functional properties.

  3. Synthesis and structure of two-dimensional transition-metal dichalcogenides

    KAUST Repository

    Shi, Yumeng

    2015-07-13

    Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) exhibit unique electrical, optical, thermal, and mechanical properties, which enable them to be used as building blocks in compact and lightweight integrated electronic systems. The controllable and reliable synthesis of atomically thin TMDCs is essential for their practical application. Recent progress in large-area synthesis of monolayer TMDCs paves the way for practical production of various 2D TMDC layers. The intrinsic optical and electrical properties of monolayer TMDCs can be defined by stoichiometry during synthesis. By manipulating the lattice structure or layer stacking manner, it is possible to create atomically thin van der Waals materials with unique and unexplored physical properties. In this article, we review recent developments in the synthesis of TMDC monolayers, alloys, and heterostructures, which shine light on the design of novel TMDCs with desired functional properties.

  4. Double Dirac Point Semimetal in Two-Dimensional Material: Ta2Se3

    OpenAIRE

    Ma, Yandong; Jing, Yu; Heine, Thomas

    2017-01-01

    Here, we report by first-principles calculations one new stable 2D Dirac material, Ta2Se3 monolayer. For this system, stable layered bulk phase exists, and exfoliation should be possible. Ta2Se3 monolayer is demonstrated to support two Dirac points close to the Fermi level, achieving the exotic 2D double Dirac semimetal. And like 2D single Dirac and 2D node-line semimetals, spin-orbit coupling could introduce an insulating state in this new class of 2D Dirac semimetals. Moreover, the Dirac fe...

  5. Stability enhancement and electronic tunability of two-dimensional SbIV compounds via surface functionalization

    Science.gov (United States)

    Zhou, Wenhan; Guo, Shiying; Liu, Xuhai; Cai, Bo; Song, Xiufeng; Zhu, Zhen; Zhang, Shengli

    2018-01-01

    We propose a family of hydrogenated- and halogenated-SbIV (SbIVX-2) materials that simultaneously have two-dimensional (2D) structures, high stability and appealing electronic properties. Based on first-principles total-energy and vibrational-spectra calculations, SbIVX-2 monolayers are found both thermally and dynamically stable. Varying IV and X elements can rationally tune the electronic properties of SbIVX-2 monolayers, effectively modulating the band gap from 0 to 3.42 eV. Regarding such superior stability and broad band-gap range, SbIVX-2 monolayers are expected to be synthesized in experiments and taken as promising candidates for low-dimensional electronic and optoelectronic devices, such as blue-to-ultraviolet light-emitting diodes (LED) and photodetectors.

  6. Enhanced piezoelectricity of monolayer phosphorene oxides: a theoretical study.

    Science.gov (United States)

    Yin, Huabing; Zheng, Guang-Ping; Gao, Jingwei; Wang, Yuanxu; Ma, Yuchen

    2017-10-18

    Two-dimensional (2D) piezoelectric materials have potential applications in miniaturized sensors and energy conversion devices. In this work, using first-principles simulations at different scales, we systematically study the electronic structures and piezoelectricity of a series of 2D monolayer phosphorene oxides (POs). Our calculations show that the monolayer POs have tunable band gaps along with remarkable piezoelectric properties. The calculated piezoelectric coefficient d 11 of 54 pm V -1 in POs is much larger than those of 2D transition metal dichalcogenide monolayers and the widely used bulk α-quartz and AlN, and almost reaches the level of the piezoelectric effect in recently discovered 2D GeS. Furthermore, two other considerable piezoelectric coefficients, i.e., d 31 and d 26 with values of -10 pm V -1 and 21 pm V -1 , respectively, are predicted in some monolayer POs. We also examine the correlation between the piezoelectric coefficients and energy stability. The enhancement of piezoelectricity for monolayer phosphorene by oxidation will broaden the applications of phosphorene and phosphorene derivatives in nano-sized electronic and piezotronic devices.

  7. Thermodynamic and real-space structural evidence of a 2D critical point in phospholipid monolayers

    DEFF Research Database (Denmark)

    Nielsen, Lars K.; Bjørnholm, Thomas; Mouritsen, Ole G.

    2007-01-01

    The two-dimensional phase diagram of phospholipid monolayers at air-water interfaces has been constructed from Langmuir compression isotherms. The coexistence region between the solid and fluid phases of the monolayer ends at the critical temperature of the transition. The small-scale lateral...... structure of the monolayers has been imaged by atomic force microscopy in the nm to mu m range at distinct points in the phase diagram. The lateral structure is immobilized by transferring the monolayer from an air-water interface to a solid mica support using Langmuir-Blodgett techniques. A transfer...

  8. Dirac State in the FeB2 Monolayer with Graphene-Like Boron Sheet.

    Science.gov (United States)

    Zhang, Haijun; Li, Yafei; Hou, Jianhou; Du, Aijun; Chen, Zhongfang

    2016-10-12

    By introducing the commonly utilized Fe atoms into a two-dimensional (2D) honeycomb boron network, we theoretically designed a new Dirac material of FeB 2 monolayer with a Fermi velocity in the same order of graphene. The electron transfer from Fe atoms to B networks not only effectively stabilizes the FeB 2 networks but also leads to the strong interaction between the Fe and B atoms. The Dirac state in FeB 2 system primarily arises from the Fe d orbitals and hybridized orbital from Fe-d and B-p states. The newly predicted FeB 2 monolayer has excellent dynamic and thermal stabilities and is also the global minimum of 2D FeB 2 system, implying its experimental feasibility. Our results are beneficial to further uncovering the mechanism of the Dirac cones and providing a feasible strategy for Dirac materials design.

  9. Tunable band gap and optical properties of surface functionalized Sc2C monolayer

    International Nuclear Information System (INIS)

    Wang Shun; Du Yu-Lei; Liao Wen-He

    2017-01-01

    Using the density functional theory, we have investigated the electronic and optical properties of two-dimensional Sc 2 C monolayer with OH, F, or O chemical groups. The electronic structures reveal that the functionalized Sc 2 C monolayers are semiconductors with a band gap of 0.44–1.55 eV. The band gap dependent optical parameters, like dielectric function, absorption coefficients, reflectivity, loss function, and refraction index were also calculated for photon energy up to 20 eV. At the low-energy region, each optical parameter shifts to red, and the peak increases obviously with the increase of the energy gap. Consequently, Sc 2 C monolayer with a tunable band gap by changing the type of surface chemical groups is a promising 2D material for optoelectronic devices. (paper)

  10. Nucleation front instability in two-dimensional (2D) nanosheet gadolinium-doped cerium oxide (CGO) formation

    DEFF Research Database (Denmark)

    Marani, Debora; Moraes, Leticia Poras Reis; Gualandris, Fabrizio

    2018-01-01

    Herein we report for the first time the synthesis of ceramic–organic three-dimensional (3D) layered gadolinium-doped cerium oxide (Ce1−XGdXO2−δ, CGO) and its exfoliation into two-dimensional (2D) nanosheets. We adopt a water-based synthetic route via a homogenous precipitation approach at low...... temperatures (10–80 °C). The reaction conditions are tuned to investigate the effects of thermal energy on the final morphology. A low temperature (40 °C) morphological transition from nanoparticles (1D) to two-dimensional (2D) nanosheets is observed and associated with a low thermal energy transition of ca. 2.......6 kJ mol−1. For the 3D-layered material, exfoliation experiments are conducted in water/ethanol solutions. Systems at volume fractions ranging from 0.15 to 0.35 are demonstrated to promote under ultrasonic treatment the delamination into 2D nanosheets....

  11. Oxygen adsorption and dissociation during the oxidation of monolayer Ti2C

    KAUST Repository

    Gan, Liyong

    2013-08-20

    Exfoliated two-dimensional early transition metal carbides and carbonitrides are usually not terminated by metal atoms but saturated by O, OH, and/or F, thus making it difficult to understand the surface structure evolution and the induced electronic modifications. To fill this gap, density functional theory and molecular dynamics simulations are performed to capture the initial stage of the oxidation process of Ti2C, a prototypical example from the recently fabricated class of two-dimensional carbides and carbonitrides. It is shown that the unsaturated Ti 3d orbitals of the pristine Ti2C surface interact strongly with the approaching O2 molecules, resulting in barrierless O2 dissociation. The diffusion of the dissociated O atoms is also found to be very facile. Molecular dynamics simulations suggest that both dissociation and diffusion are enhanced as the O2 coverage increases to 0.25 monolayer. For a coverage of less than 0.11 monolayer, the adsorbates lead to a minor modification of the electronic properties of Ti2C, while the modification is remarkable at 0.25 monolayer. The formed Ti2CO2 after O saturation is an indirect narrow gap semiconductor (0.33 eV) with high intrinsic carrier concentration at room temperature and high thermodynamic stability at intermediate temperature (e.g., 550 °C).

  12. Oxygen adsorption and dissociation during the oxidation of monolayer Ti2C

    KAUST Repository

    Gan, Liyong; Huang, Dan; Schwingenschlö gl, Udo

    2013-01-01

    Exfoliated two-dimensional early transition metal carbides and carbonitrides are usually not terminated by metal atoms but saturated by O, OH, and/or F, thus making it difficult to understand the surface structure evolution and the induced electronic modifications. To fill this gap, density functional theory and molecular dynamics simulations are performed to capture the initial stage of the oxidation process of Ti2C, a prototypical example from the recently fabricated class of two-dimensional carbides and carbonitrides. It is shown that the unsaturated Ti 3d orbitals of the pristine Ti2C surface interact strongly with the approaching O2 molecules, resulting in barrierless O2 dissociation. The diffusion of the dissociated O atoms is also found to be very facile. Molecular dynamics simulations suggest that both dissociation and diffusion are enhanced as the O2 coverage increases to 0.25 monolayer. For a coverage of less than 0.11 monolayer, the adsorbates lead to a minor modification of the electronic properties of Ti2C, while the modification is remarkable at 0.25 monolayer. The formed Ti2CO2 after O saturation is an indirect narrow gap semiconductor (0.33 eV) with high intrinsic carrier concentration at room temperature and high thermodynamic stability at intermediate temperature (e.g., 550 °C).

  13. Optical Studies of Excitonic Effects at Two-Dimensional Nanostructure Interfaces

    Science.gov (United States)

    Ajayi, Obafunso Ademilolu

    Atomically thin two-dimensional nanomaterials such as graphene and transition metal dichalcogenides (TMDCs) have seen a rapid growth of exploration since the isolation of monolayer graphene. These materials provide a rich field of study for physics and optoelectronics applications. Many applications seek to combine a two dimensional (2D) material with another nanomaterial, either another two dimensional material or a zero (0D) or one dimensional (1D) material. The work in this thesis explores the consequences of these interactions from 0D to 2D. We begin in Chapter 2 with a study of energy transfer at 0D-2D interfaces with quantum dots and graphene. In our work we seek to maximize the rate of energy transfer by reducing the distance between the materials. We observe an interplay with the distance-dependence and surface effects from our halogen terminated quantum dots that affect our observed energy transfer. In Chapter 3 we study supercapacitance in composite graphene oxide-carbon nanotube electrodes. At this 2D-1D interface we observe a compounding effect between graphene oxide and carbon nanotubes. Carbon nanotubes increase the accessible surface area of the supercapacitors and improve conductivity by forming a conductive pathway through electrodes. In Chapter 4 we investigate effective means of improving sample quality in TMDCs and discover the importance of the monolayer interface. We observe a drastic improvement in photoluminescence when encapsulating our TMDCs with Boron Nitride. We measure spectral linewidths approaching the intrinsic limit due to this 2D-2D interface. We also effectively reduce excess charge and thus the trion-exciton ratio in our samples through substrate surface passivation. In Chapter 5 we briefly discuss our investigations on chemical doping, heterostructures and interlayer decoupling in ReS2. We observe an increase in intensity for p-doped MoS2 samples. We investigated the charge transfer exciton previously identified in

  14. Strain-engineered growth of two-dimensional materials.

    Science.gov (United States)

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali

    2017-09-20

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.

  15. Twelve inequivalent Dirac cones in two-dimensional ZrB2

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Bezanilla, Alejandro

    2018-01-01

    Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB2 is presented. Two-dimensional ZrB2 is a mechanically stable d- and p-orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is able to remove selectively the Dirac cones. A rational explanation in terms of d- and p-orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. The versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.

  16. Electronic and Optical Properties of Two-Dimensional GaN from First-Principles.

    Science.gov (United States)

    Sanders, Nocona; Bayerl, Dylan; Shi, Guangsha; Mengle, Kelsey A; Kioupakis, Emmanouil

    2017-12-13

    Gallium nitride (GaN) is an important commercial semiconductor for solid-state lighting applications. Atomically thin GaN, a recently synthesized two-dimensional material, is of particular interest because the extreme quantum confinement enables additional control of its light-emitting properties. We performed first-principles calculations based on density functional and many-body perturbation theory to investigate the electronic, optical, and excitonic properties of monolayer and bilayer two-dimensional (2D) GaN as a function of strain. Our results demonstrate that light emission from monolayer 2D GaN is blueshifted into the deep ultraviolet range, which is promising for sterilization and water-purification applications. Light emission from bilayer 2D GaN occurs at a similar wavelength to its bulk counterpart due to the cancellation of the effect of quantum confinement on the optical gap by the quantum-confined Stark shift. Polarized light emission at room temperature is possible via uniaxial in-plane strain, which is desirable for energy-efficient display applications. We compare the electronic and optical properties of freestanding two-dimensional GaN to atomically thin GaN wells embedded within AlN barriers in order to understand how the functional properties are influenced by the presence of barriers. Our results provide microscopic understanding of the electronic and optical characteristics of GaN at the few-layer regime.

  17. Novel Au- and Ge-based two-dimensional materials formed through topotactic transitions of AlB2-like structures

    Science.gov (United States)

    Tsetseris, Leonidas

    2016-07-01

    The topotactic reaction of a layered compound, for example CaGe2, with HCl solution is a common and facile method to produce two-dimensional (2D) materials. In this work we demonstrate with first-principles calculations that this technique can potentially lead to a whole new family of 2D materials starting from three-dimensional crystals with AlB2-like structures. As representative cases, we show here that the de-intercalation of Sc and Ca atoms from ScAuGe and Ca2AuGe3 crystals is strongly exothermic and produces the stable 2D monolayers AuGeH and AuGe3H3, respectively. Remarkably, both metals (AuGeH) and semiconductors (AuGe3H3) can be prepared by this method. Based on the broad availability of AlB2-like structures with varying stoichiometries, there are several possibilities to prepare novel functional 2D materials with suitable topotactic transitions.

  18. Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

    International Nuclear Information System (INIS)

    Jung, Young Mee

    2003-01-01

    Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra

  19. Status for the two-dimensional Navier-Stokes solver EllipSys2D

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, J.

    2001-01-01

    This report sets up an evaluation of the two-dimensional Navier-Stokes solver EllipSys2D in its present state. This code is used for blade aerodynamics simulations in the Aeroelastic Design group at Risø. Two airfoils are investigated by computing theflow at several angles of attack ranging from...

  20. Thermal conductivity of a h-BCN monolayer.

    Science.gov (United States)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Liu, Hong-Yuan; Wei, Ning

    2017-10-18

    A hexagonal graphene-like boron-carbon-nitrogen (h-BCN) monolayer, a new two-dimensional (2D) material, has been synthesized recently. Herein we investigate for the first time the thermal conductivity of this novel 2D material. Using molecular dynamics simulations based on the optimized Tersoff potential, we found that the h-BCN monolayers are isotropic in the basal plane with close thermal conductivity magnitudes. Though h-BCN has the same hexagonal lattice as graphene and hexagonal boron nitride (h-BN), it exhibits a much lower thermal conductivity than the latter two materials. In addition, the thermal conductivity of h-BCN monolayers is found to be size-dependent but less temperature-dependent. Modulation of the thermal conductivity of h-BCN monolayers can also be realized by strain engineering. Compressive strain leads to a monotonic decrease in the thermal conductivity while the tensile strain induces an up-then-down trend in the thermal conductivity. Surprisingly, the small tensile strain can facilitate the heat transport of the h-BCN monolayers.

  1. Dynamical observations on the crack tip zone and stress corrosion of two-dimensional MoS2

    KAUST Repository

    Ly, Thuc Hue

    2017-01-18

    Whether and how fracture mechanics needs to be modified for small length scales and in systems of reduced dimensionality remains an open debate. Here, employing in situ transmission electron microscopy, atomic structures and dislocation dynamics in the crack tip zone of a propagating crack in two-dimensional (2D) monolayer MoS2 membrane are observed, and atom-to-atom displacement mapping is obtained. The electron beam is used to initiate the crack; during in situ observation of crack propagation the electron beam effect is minimized. The observed high-frequency emission of dislocations is beyond previous understanding of the fracture of brittle MoS2. Strain analysis reveals dislocation emission to be closely associated with the crack propagation path in nanoscale. The critical crack tip plastic zone size of nearly perfect 2D MoS2 is between 2 and 5 nm, although it can grow to 10 nm under corrosive conditions such as ultraviolet light exposure, showing enhanced dislocation activity via defect generation.

  2. Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction

    Science.gov (United States)

    Naseri, Mosayeb; Lin, Shiru; Jalilian, Jaafar; Gu, Jinxing; Chen, Zhongfang

    2018-06-01

    By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanomaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrinsic electronic, and optical properties as well as the effect of external strain to the electronic properties have been systematically examined. Our computations showed that these P2C and P2Si monolayers have rather high thermodynamic, kinetic, and thermal stabilities, and are indirect semiconductors with wide bandgaps (2.76 eV and 2.69 eV, respectively) which can be tuned by an external strain. These monolayers exhibit high absorptions in the UV region, but behave as almost transparent layers for visible light in the electromagnetic spectrum. Their high stabilities and exceptional electronic and optical properties suggest them as promising candidates for future applications in UV-light shielding and antireflection layers in solar cells.

  3. Defects and oxidation of group-III monochalcogenide monolayers

    Science.gov (United States)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  4. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng; Li, Henan; Li, Lain-Jong

    2014-01-01

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  5. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng

    2014-10-20

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  6. Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues.

    Science.gov (United States)

    Wu, Menghao; Zeng, Xiao Cheng

    2016-05-11

    Phosphorene and phosphorene analogues such as SnS and SnSe monolayers are promising nanoelectronic materials with desired bandgap, high carrier mobility, and anisotropic structures. Here, we show first-principles calculation evidence that these monolayers are potentially the long-sought two-dimensional (2D) materials that can combine electronic transistor characteristic with nonvolatile memory readable/writeable capability at ambient condition. Specifically, phosphorene is predicted to be a 2D intrinsic ferroelastic material with ultrahigh reversible strain, whereas SnS, SnSe, GeS, and GeSe monolayers are multiferroic with coupled ferroelectricity and ferroelasticity. Moreover, their low-switching barriers render room-temperature nonvolatile memory accessible, and their notable structural anisotropy enables ferroelastic or ferroelectric switching readily readable via electrical, thermal, optical, mechanical, or even spintronic detection upon the swapping of the zigzag and armchair direction. In addition, it is predicted that the GeS and GeSe monolayers as well as bulk SnS and SnSe can maintain their ferroelasticity and ferroelectricity (anti-ferroelectricity) beyond the room temperature, suggesting high potential for practical device application.

  7. Valley Zeeman splitting of monolayer MoS2 probed by low-field magnetic circular dichroism spectroscopy at room temperature

    Science.gov (United States)

    Wu, Y. J.; Shen, C.; Tan, Q. H.; Shi, J.; Liu, X. F.; Wu, Z. H.; Zhang, J.; Tan, P. H.; Zheng, H. Z.

    2018-04-01

    The valley Zeeman splitting of monolayer two-dimensional (2D) materials in the magnetic field plays an important role in the valley and spin manipulations. In general, a high magnetic field (6-65 T) and low temperature (2-30 K) were two key measurement conditions to observe the resolvable valley Zeeman splitting of monolayer 2D materials in current reported experiments. In this study, we experimentally demonstrate an effective measurement scheme by employing magnetic circular dichroism (MCD) spectroscopy, which enables us to distinguish the valley Zeeman splitting under a relatively low magnetic field of 1 T at room temperature. MCD peaks related to both A and B excitonic transitions in monolayer MoS2 can be clearly observed. Based on the MCD spectra under different magnetic fields (-3 to 3 T), we obtained the valley Zeeman splitting energy and the g-factors of A and B excitons, respectively. Our results show that MCD spectroscopy is a high-sensitive magneto-optical technique to explore the valley and spin manipulation in 2D materials.

  8. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    Science.gov (United States)

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory.

  9. Sub-nanometre channels embedded in two-dimensional materials

    KAUST Repository

    Han, Yimo

    2017-12-04

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically thin p–n junctions2,3,4,5,6,7,8, metal–semiconductor contacts9,10,11, and metal–insulator barriers12,13,14 have been demonstrated. Although 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions is also necessary. Here, we report the direct synthesis of sub-nanometre-wide one-dimensional (1D) MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalysed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Using molecular dynamics simulations, we have identified other combinations of 2D materials where 1D channels can also be formed. The electronic band structure of these 1D channels offers the promise of carrier confinement in a direct-gap material and the charge separation needed to access the ultimate length scales necessary for future electronic applications.

  10. Two-dimensional Dirac fermions in thin films of C d3A s2

    Science.gov (United States)

    Galletti, Luca; Schumann, Timo; Shoron, Omor F.; Goyal, Manik; Kealhofer, David A.; Kim, Honggyu; Stemmer, Susanne

    2018-03-01

    Two-dimensional states in confined thin films of the three-dimensional Dirac semimetal C d3A s2 are probed by transport and capacitance measurements under applied magnetic and electric fields. The results establish the two-dimensional Dirac electronic spectrum of these states. We observe signatures of p -type conduction in the two-dimensional states as the Fermi level is tuned across their charge neutrality point and the presence of a zero-energy Landau level, all of which indicate topologically nontrivial states. The resistance at the charge neutrality point is approximately h /e2 and increases rapidly under the application of a magnetic field. The results open many possibilities for gate-tunable topological devices and for the exploration of novel physics in the zero-energy Landau level.

  11. Theoretical insights on the electro-thermal transport properties of monolayer MoS{sub 2} with line defects

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Dipankar, E-mail: dipsah-etc@yahoo.co.in; Mahapatra, Santanu, E-mail: santanu@dese.iisc.ernet.in [Nano-Scale Device Research Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2016-04-07

    Two dimensional (2D) materials demonstrate several novel electrical, mechanical, and thermal properties which are quite distinctive to those of their bulk form. Among many others, one important potential application of the 2D material is its use in the field of energy harvesting. Owing to that, here we present a detailed study on electrical as well as thermal transport of monolayer MoS{sub 2}, in quasi ballistic regime. Besides the perfect monolayer in its pristine form, we also consider various line defects which have been experimentally observed in mechanically exfoliated MoS{sub 2} samples. For calculating various parameters related to the electrical transmission, we employ the non-equilibrium Green's function-density functional theory combination. However, to obtain the phonon transmission, we take help of the parametrized Stillinger-Weber potential which can accurately delineate the inter-atomic interactions for the monolayer MoS{sub 2}. Due to the presence of line defects, we observed significant reductions in both the charge carrier and the phonon transmissions through a monolayer MoS{sub 2} flake. Moreover, we also report a comparative analysis showing the temperature dependency of the thermoelectric figure of merit values, as obtained for the perfect as well as the other defective 2D samples.

  12. Two-dimensional inverse opal hydrogel for pH sensing.

    Science.gov (United States)

    Xue, Fei; Meng, Zihui; Qi, Fenglian; Xue, Min; Wang, Fengyan; Chen, Wei; Yan, Zequn

    2014-12-07

    A novel hydrogel film with a highly ordered macropore monolayer on its surface was prepared by templated photo-polymerization of hydrogel monomers on a two-dimensional (2D) polystyrene colloidal array. The 2D inverse opal hydrogel has prominent advantages over traditional three-dimensional (3D) inverse opal hydrogels. First, the formation of the 2D array template through a self-assembly method is considerably faster and simpler. Second, the stable ordering structure of the 2D array template makes it easier to introduce the polymerization solution into the template. Third, a simple measurement, a Debye diffraction ring, is utilized to characterize the neighboring pore spacing of the 2D inverse opal hydrogel. Acrylic acid was copolymerized into the hydrogel; thus, the hydrogel responded to pH through volume change, which resulted from the formation of the Donnan potential. The 2D inverse opal hydrogel showed that the neighboring pore spacing increased by about 150 nm and diffracted color red-shifted from blue to red as the pH increased from pH 2 to 7. In addition, the pH response kinetics and ionic strength effect of this 2D mesoporous polymer film were also investigated.

  13. Electrical-field-induced magnetic Skyrmion ground state in a two-dimensional chromium tri-iodide ferromagnetic monolayer

    Science.gov (United States)

    Liu, Jie; Shi, Mengchao; Mo, Pinghui; Lu, Jiwu

    2018-05-01

    Using fully first-principles non-collinear self-consistent field density functional theory (DFT) calculations with relativistic spin-orbital coupling effects, we show that, by applying an out-of-plane electrical field on a free-standing two-dimensional chromium tri-iodide (CrI3) ferromagnetic monolayer, the Néel-type magnetic Skyrmion spin configurations become more energetically-favorable than the ferromagnetic spin configurations. It is revealed that the topologically-protected Skyrmion ground state is caused by the breaking of inversion symmetry, which induces the non-trivial Dzyaloshinskii-Moriya interaction (DMI) and the energetically-favorable spin-canting configuration. Combining the ferromagnetic and the magnetic Skyrmion ground states, it is shown that 4-level data can be stored in a single monolayer-based spintronic device, which is of practical interests to realize the next-generation energy-efficient quaternary logic devices and multilevel memory devices.

  14. Two dimensional dipolar coupling in monolayers of silver and gold nanoparticles on a dielectric substrate.

    Science.gov (United States)

    Liu, Yu; Begin-Colin, Sylvie; Pichon, Benoît P; Leuvrey, Cedric; Ihiawakrim, Dris; Rastei, Mircea; Schmerber, Guy; Vomir, Mircea; Bigot, Jean Yves

    2014-10-21

    The dimensionality of assembled nanoparticles plays an important role in their optical and magnetic properties, via dipolar effects and the interaction with their environment. In this work we develop a methodology for distinguishing between two (2D) and three (3D) dimensional collective interactions on the surface plasmon resonance of assembled metal nanoparticles. Towards that goal, we elaborate different sets of Au and Ag nanoparticles as suspensions, random 3D arrangements and well organized 2D arrays. Then we model their scattering cross-section using effective field methods in dimension n, including interparticle as well as particle-substrate dipolar interactions. For this modelling, two effective field medium approaches are employed, taking into account the filling factors of the assemblies. Our results are important for realizing photonic amplifier devices.

  15. Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor

    KAUST Repository

    Lan, Yann Wen

    2016-09-05

    The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.

  16. Rapid fabrication of 2D and 3D photonic crystals and their inversed structures

    International Nuclear Information System (INIS)

    Huang, C-K; Chan, C-H; Chen, C-Y; Tsai, Y-L; Chen, C-C; Han, J-L; Hsieh, K-H

    2007-01-01

    In this paper a new technique is proposed for the fabrication of two-dimensional (2D) and three-dimensional (3D) photonic crystals using monodisperse polystyrene microspheres as the templates. In addition, the approaches toward the creation of their corresponding inversed structures are described. The inversed structures were prepared by subjecting an introduced silica source to a sol-gel process; programmed heating was then performed to remove the template without spoiling the inversed structures. Utilizing these approaches, 2D and 3D photonic crystals and their highly ordered inversed hexagonal multilayer or monolayer structures were obtained on the substrate

  17. Sub-Nanometer Channels Embedded in Two-Dimensional Materials

    KAUST Repository

    Han, Yimo

    2017-07-31

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2-7, metal-semiconductor contacts8-10, and metal-insulator barriers11-13 have been demonstrated. While 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions are also necessary. Although external one-dimensional (1D) carbon nanotubes14 can be used to locally gate 2D materials, this adds a non-trivial third dimension, complicating device integration and flexibility. Here, we report the direct synthesis of sub-nanometer 1D MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalyzed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Molecular dynamics (MD) simulations have identified other combinations of 2D materials that could form 1D channels. Density function theory (DFT) calculation predicts these 1D channels display type II band alignment needed for carrier confinement and charge separation to access the ultimate length scales necessary for future electronic applications.

  18. Electronic and magnetic properties of 3d-metal trioxides superhalogen cluster-doped monolayer MoS2: A first-principles study

    International Nuclear Information System (INIS)

    Li, Dan; Niu, Yuan; Zhao, Hongmin; Liang, Chunjun; He, Zhiqun

    2014-01-01

    Utilizing first-principle calculations, the structural, electronic, and magnetic properties of monolayer MoS 2 doped with 3d transition-metal (TM) atoms and 3d-metal trioxides (TMO 3 ) superhalogen clusters are investigated. 3d-metal TMO 3 superhalogen cluster-doped monolayers MoS 2 almost have negative formation energies except CoO 3 and NiO 3 doped monolayer MoS 2 , which are much lower than those of 3d TM-doped structures. 3d-metal TMO 3 superhalogen clusters are more easily embedded in monolayer MoS 2 than 3d-metal atoms. MnO 3 , FeO 3 , CoO 3 , and NiO 3 incorporated into monolayer MoS 2 are magnetic, and the total magnetic moments are approximately 1.0, 2.0, 3.0, and 4.0 μB per supercell, respectively. MnO 3 and FeO 3 incorporated into monolayer MoS 2 become semiconductors, whereas CoO 3 and NiO 3 incorporated into monolayer MoS 2 become half-metallic. Our studies demonstrate that the half-metallic ferromagnetic nature of 3d-metal TMO 3 superhalogen clusters-doped monolayer MoS 2 has a great potential for MoS 2 -based spintronic device applications. -- Highlights: •TMO 3 superhalogen clusters incorporated into monolayer MoS 2 were investigated. •TMO 3 doped structures have much lower formation energies than TM doped structures. •TMO 3 cluster-doped MoS 2 are thermodynamically favored. •Significant charge transfers between O atoms and Mo atoms in TMO 3 doped structures. •MnO 3 , FeO 3 , CoO 3 , and NiO 3 incorporated into monolayer MoS 2 are magnetic.

  19. Measuring the Edge Recombination Velocity of Monolayer Semiconductors.

    Science.gov (United States)

    Zhao, Peida; Amani, Matin; Lien, Der-Hsien; Ahn, Geun Ho; Kiriya, Daisuke; Mastandrea, James P; Ager, Joel W; Yablonovitch, Eli; Chrzan, Daryl C; Javey, Ali

    2017-09-13

    Understanding edge effects and quantifying their impact on the carrier properties of two-dimensional (2D) semiconductors is an essential step toward utilizing this material for high performance electronic and optoelectronic devices. WS 2 monolayers patterned into disks of varying diameters are used to experimentally explore the influence of edges on the material's optical properties. Carrier lifetime measurements show a decrease in the effective lifetime, τ effective , as a function of decreasing diameter, suggesting that the edges are active sites for carrier recombination. Accordingly, we introduce a metric called edge recombination velocity (ERV) to characterize the impact of 2D material edges on nonradiative carrier recombination. The unpassivated WS 2 monolayer disks yield an ERV ∼ 4 × 10 4 cm/s. This work quantifies the nonradiative recombination edge effects in monolayer semiconductors, while simultaneously establishing a practical characterization approach that can be used to experimentally explore edge passivation methods for 2D materials.

  20. Electrical conductivity of quasi-two-dimensional foams.

    Science.gov (United States)

    Yazhgur, Pavel; Honorez, Clément; Drenckhan, Wiebke; Langevin, Dominique; Salonen, Anniina

    2015-04-01

    Quasi-two-dimensional (quasi-2D) foams consist of monolayers of bubbles squeezed between two narrowly spaced plates. These simplified foams have served successfully in the past to shed light on numerous issues in foam physics. Here we consider the electrical conductivity of such model foams. We compare experiments to a model which we propose, and which successfully relates the structural and the conductive properties of the foam over the full range of the investigated liquid content. We show in particular that in the case of quasi-2D foams the liquid in the nodes needs to be taken into account even at low liquid content. We think that these results may provide different approaches for the characterization of foam properties and for the in situ characterization of the liquid content of foams in confining geometries, such as microfluidics.

  1. Monolayer Cu2Si as a potential gas sensor for NOx and COx (x = 1, 2): A first-principles study

    Science.gov (United States)

    Zhu, Hao-Hao; Ye, Xiao-Juan; Liu, Chun-Sheng; Yan, Xiao-Hong

    2018-02-01

    Although the metal-decoration can enhance the sensing properties of two-dimensional (2D) materials, the cyclic utilization of materials is hindered by the clustering tendency of metal atoms. Furthermore, there exists a risk of explosion of combustible gases with the electrical measure. Based on first-principles calculations, we investigate the adsorption of various gas molecules (O2, NO, NO2, NH3, N2, CO, CH4 and CO2) on the 2D Cu-Si extended system (Cu2Si). The NOx molecules are chemisorbed on the Cu2Si monolayer, while other gas molecules (except CH4 and N2) are held by an interaction intermediating between the physisorbed and chemisorbed states. The strong hybridizations between N 2p and Si 3p (Cu 4p) orbitals lead to the large adsorption energies. Interestingly, the adsorption of NOx (1 μB) and CO2 (2 μB) can induce magnetic moments on the intrinsically nonmagnetic Cu2Si monolayer. The magnetic moment of NO-Cu2Si mainly arises from the molecule, while the magnetic moments for the NO2 and CO2 adsorption almost origin from the monolayer. In addition, an antiferromagnetic coupling is found in CO-Cu2Si. The changes in magnetization upon the gas adsorption may be detected sensitively and safely, suggesting the Cu2Si monolayer is potential for gas sensing.

  2. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)

    2017-01-15

    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. A theoretical study on the electronic property of a new two-dimensional material molybdenum dinitride

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Haiping, E-mail: mrhpwu@njust.edu.cn [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Qian, Yan, E-mail: qianyan@njust.edu.cn [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Lu, Ruifeng; Tan, Weishi [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2016-02-15

    Motivated by the recent synthesis of bulk MoN{sub 2} which exhibits the layered structure just like the bulk MoS{sub 2}, the monolayered MoN{sub 2} exfoliated from the bulk counterpart is investigated systematically by using density-functional calculations in this work. The result shows that the ground-state two-dimensional monolayered MoN{sub 2} behaves as an indirect band gap semiconductor with the energy gap of ∼0.12 eV. Subsequently, the external strain from −6% to 6% is employed to engineer the band structure, and the energy gap can be efficiently tuned from 0 to 0.70 eV. Notably, when the strain is beyond 5% or −3%, the two-dimensional monolayered MoN{sub 2} would transfer from an indirect band gap to a direct band gap semiconductor. This work introduces a new member of two-dimensional transition-metal family, which is important for industry applications, especially for the utilization in the long-wavelength infrared field. - Highlights: • The 2D MoN{sub 2} behaves as an indirect band gap semiconductor with the energy gap of ∼0.12 eV. • The energy gap can be efficiently tuned from 0 to 0.70 eV by small strain. • The band gap would transfer from an indirect to a direct one when the strain is beyond 5% or −3%.

  4. Computational 2D Materials Database

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    We present a comprehensive first-principles study of the electronic structure of 51 semiconducting monolayer transition-metal dichalcogenides and -oxides in the 2H and 1T hexagonal phases. The quasiparticle (QP) band structures with spin-orbit coupling are calculated in the G(0)W(0) approximation...... and used as input to a 2D hydrogenic model to estimate exciton binding energies. Throughout the paper we focus on trends and correlations in the electronic structure rather than detailed analysis of specific materials. All the computed data is available in an open database......., and comparison is made with different density functional theory descriptions. Pitfalls related to the convergence of GW calculations for two-dimensional (2D) materials are discussed together with possible solutions. The monolayer band edge positions relative to vacuum are used to estimate the band alignment...

  5. Analysis of electrical-field-dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer

    Science.gov (United States)

    Liu, Jie; Shi, Mengchao; Lu, Jiwu; Anantram, M. P.

    2018-02-01

    We analyze the impacts of the electric field on the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, and intrinsic ferromagnetism of the recently discovered two-dimensional ferromagnetic chromium tri-iodide (Cr I3 ) monolayer, by combining density functional theory and Monte Carlo simulations. By taking advantage of the counterbalancing effects of anisotropic symmetric exchange energy and antisymmetric exchange energy, it is shown that the intrinsic ferromagnetism can be manipulated by externally applied off-plane electric fields. The results quantitatively reveal the impacts of off-plane electric field on the lattice structure, magnetic anisotropy energy, symmetric and antisymmetric exchange energies, Curie temperature, magnetic hysteresis, and coercive field. The physical mechanism of all-electrical control of magnetism proposed here is useful for creating next-generation magnetic device technologies based on the recently discovered two-dimensional ferromagnetic crystals.

  6. Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations

    Science.gov (United States)

    Yu, Sheng; Ran, Shunjie; Zhu, Hao; Eshun, Kwesi; Shi, Chen; Jiang, Kai; Gu, Kunming; Seo, Felix Jaetae; Li, Qiliang

    2018-01-01

    With the advances in two-dimensional (2D) transition metal dichalcogenides (TMDCs) based metal-oxide-semiconductor field-effect transistor (MOSFET), the interface between the semiconductor channel and gate dielectrics has received considerable attention due to its significant impacts on the morphology and charge transport of the devices. In this study, first principle calculations were utilized to investigate the strain effect induced by the interface between crystalline α-Al2O3 (0001)/h-MoS2 monolayer. The results indicate that the 1.3 nm Al2O3 can induce a 0.3% tensile strain on the MoS2 monolayer. The strain monotonically increases with thicker dielectric layers, inducing more significant impact on the properties of MoS2. In addition, the study on temperature effect indicates that the increasing temperature induces monotonic lattice expansion. This study clearly indicates that the dielectric engineering can effectively tune the properties of 2D TMDCs, which is very attractive for nanoelectronics.

  7. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun

    2014-08-06

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  8. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun; Gan, Liyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  9. Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain.

    Science.gov (United States)

    Shao, Yuchuan; Liu, Ye; Chen, Xiaolong; Chen, Chen; Sarpkaya, Ibrahim; Chen, Zhaolai; Fang, Yanjun; Kong, Jaemin; Watanabe, Kenji; Taniguchi, Takashi; Taylor, André; Huang, Jinsong; Xia, Fengnian

    2017-12-13

    Recently, two-dimensional (2D) organic-inorganic perovskites emerged as an alternative material for their three-dimensional (3D) counterparts in photovoltaic applications with improved moisture resistance. Here, we report a stable, high-gain phototransistor consisting of a monolayer graphene on hexagonal boron nitride (hBN) covered by a 2D multiphase perovskite heterostructure, which was realized using a newly developed two-step ligand exchange method. In this phototransistor, the multiple phases with varying bandgap in 2D perovskite thin films are aligned for the efficient electron-hole pair separation, leading to a high responsivity of ∼10 5 A W -1 at 532 nm. Moreover, the designed phase alignment method aggregates more hydrophobic butylammonium cations close to the upper surface of the 2D perovskite thin film, preventing the permeation of moisture and enhancing the device stability dramatically. In addition, faster photoresponse and smaller 1/f noise observed in the 2D perovskite phototransistors indicate a smaller density of deep hole traps in the 2D perovskite thin film compared with their 3D counterparts. These desirable properties not only improve the performance of the phototransistor, but also provide a new direction for the future enhancement of the efficiency of 2D perovskite photovoltaics.

  10. Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers

    KAUST Repository

    Pu, Jiang; Kanahashi, Kaito; Cuong, Nguyen Thanh; Chen, Chang-Hsiao; Li, Lain-Jong; Okada, Susumu; Ohta, Hiromichi; Takenobu, Taishi

    2016-01-01

    The carrier-density-dependent conductance and thermoelectric properties of large-area MoS2 and WSe2 monolayers are simultaneously investigated using the electrolyte gating method. The sign of the thermoelectric power changes across the transistor

  11. Monolayer-Enriched Production of Au-Decorated WS2 Nanosheets via Defect Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dunklin, Jeremy R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lafargue, Paul [Ruprecht-Karls University Heidelberg; Higgins, Thomas M. [Ruprecht-Karls University Heidelberg; Forcherio, Gregory T. [U.S. Army Research Laboratory; Benamara, Mourad [University of Arkansas; McEvoy, Niall [Trinity College Dublin; Roper, D. Keith [University of Arkansas; Coleman, Jonathan N. [Trinity College Dublin; Vaynzof, Yana [Ruprecht-Karls University Heidelberg; Backes, Claudia [Ruprecht-Karls University Heidelberg

    2018-04-06

    Layered transition metal dichalcogenides (TMDs) represent a diverse, emerging source of two-dimensional (2D) nanostructures with broad application in optoelectronics and energy. Chemical functionalization has evolved into a powerful tool to tailor properties of these 2D TMDs; however, functionalization strategies have been largely limited to the metallic 1T-polytype. The work herein illustrates that 2H-semiconducting liquid-exfoliated tungsten disulfide (WS2) undergoes a spontaneous redox reaction with gold (III) chloride (AuCl3). Au nanoparticles (NPs) predominantly nucleate at nanosheet edges with tuneable NP size and density. AuCl3 is preferentially reduced on multi-layer WS2 and resulting large Au aggregates are easily separated from the colloidal dispersion by simple centrifugation. This process may be exploited to enrich the dispersions in laterally large, monolayer nanosheets. It is proposed that thiol groups at edges and defects sides reduce the AuCl3 to Au0 and are in turn oxidized to disulfides. Optical emission, i.e. photoluminescence, of the monolayers remained pristine, while the electrocatalytic activity towards the hydrogen evolution reaction is significantly improved. Taken together, these improvements in functionalization, fabrication, and catalytic activity represent an important advance in the study of these emerging 2D nanostructures.

  12. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie; Huang, Yu Li; Chen, Yifeng; Zhao, Weijie; Eda, Goki; Spataru, Catalin D.; Zhang, Wenjing; Chang, Yung-Huang; Li, Lain-Jong; Chi, Dongzhi; Quek, Su Ying; Wee, Andrew Thye Shen

    2016-01-01

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  13. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie

    2016-01-21

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  14. Photoluminescence inhomogeneity and excitons in CVD-grown monolayer WS2

    Science.gov (United States)

    Ren, Dan-Dan; Qin, Jing-Kai; Li, Yang; Miao, Peng; Sun, Zhao-Yuan; Xu, Ping; Zhen, Liang; Xu, Cheng-Yan

    2018-06-01

    Transition metal dichalcogenides two-dimensional materials are of great importance for future electronic and optoelectronic applications. In this work, triangular WS2 monolayers with size up to 130 μm were prepared via chemical vapor deposition method. WS2 monolayers presented uniform Raman intensity, while quenched photoluminescence (PL) was observed in the center. The PL quenching in the central part of WS2 monolayer flakes was attributed to the gradually increasing sulfur vacancies toward the center. The proportion of negative trion (X-) in PL spectrum increases with increasing sulfur vacancies in WS2. The enhanced binding energy of X- suggests higher Fermi level and n-doping level with larger sulfur vacancy concentration. Our findings may be beneficial to the development of integrated devices, and also explore the defect-induced optical and electrical properties for nanophotonics.

  15. Quantitative optical mapping of two-dimensional materials

    DEFF Research Database (Denmark)

    Jessen, Bjarke S.; Whelan, Patrick R.; Mackenzie, David M. A.

    2018-01-01

    The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image...

  16. Two-trace two-dimensional (2T2D) correlation spectroscopy - A method for extracting useful information from a pair of spectra

    Science.gov (United States)

    Noda, Isao

    2018-05-01

    Two-trace two-dimensional (2T2D) correlation spectroscopy, where a pair of spectra are compared as 2D maps by a form of cross correlation analysis, is introduced. In 2T2D, spectral intensity changes of bands arising from the same origin, which cannot change independently of each other, are synchronized. Meanwhile, those arising from different sources may and often do change asynchronously. By taking advantage of this property, one can distinguish and classify a number of contributing bands present in the original pair of spectra in a systematic manner. Highly overlapped neighboring bands originating from different sources can also be identified by the presence of asynchronous cross peaks, thus enhancing the apparent spectral resolution. Computational procedure to obtain 2T2D correlation spectra and their interpretation method, as well as an illustrative description of the basic concept in the vector phase space, are provided. 2T2D spectra may also be viewed as individual building blocks of the generalized 2D correlation spectra derived from a series of more than two spectral data. Some promising application potentials of 2T2D correlation and integration with established advanced 2D correlation techniques are discussed.

  17. Controllable Growth of Monolayer MoS2 and MoSe2 Crystals Using Three-temperature-zone Furnace

    Science.gov (United States)

    Zheng, Binjie; Chen, Yuanfu

    2017-12-01

    Monolayer molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) have attracted a great attention for their exceptional electronic and optoelectronic properties among the two dimensional family. However, controllable synthesis of monolayer crystals with high quality needs to be improved urgently. Here we demonstrate a chemical vapor deposition (CVD) growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. Systematical study of the effects of growth pressure, temperature and time on the thickness, morphology and grain size of crystals shows the good controllability. The photoluminescence (PL) characterizations indicate that the as-grown monolayer MoS2 and MoSe2 crystals possess excellent optical qualities with very small full-width-half-maximum (FWHM) of 96 me V and 57 me V, respectively. It is comparable to that of exfoliated monolayers and reveals their high crystal quality. It is promising that our strategy should be applicable for the growth of other transition metal dichalcogenides (TMDs) monolayer crystals.

  18. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates

    Science.gov (United States)

    Bonilla, Manuel; Kolekar, Sadhu; Ma, Yujing; Diaz, Horacio Coy; Kalappattil, Vijaysankar; Das, Raja; Eggers, Tatiana; Gutierrez, Humberto R.; Phan, Manh-Huong; Batzill, Matthias

    2018-04-01

    Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic1, optical2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9) and Cr2Ge2Te6 (ref. 10), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.

  19. An Al₂O₃ Gating Substrate for the Greater Performance of Field Effect Transistors Based on Two-Dimensional Materials.

    Science.gov (United States)

    Yang, Hang; Qin, Shiqiao; Zheng, Xiaoming; Wang, Guang; Tan, Yuan; Peng, Gang; Zhang, Xueao

    2017-09-22

    We fabricated 70 nm Al₂O₃ gated field effect transistors based on two-dimensional (2D) materials and characterized their optical and electrical properties. Studies show that the optical contrast of monolayer graphene on an Al₂O₃/Si substrate is superior to that on a traditional 300 nm SiO₂/Si substrate (2.4 times). Significantly, the transconductance of monolayer graphene transistors on the Al₂O₃/Si substrate shows an approximately 10-fold increase, due to a smaller dielectric thickness and a higher dielectric constant. Furthermore, this substrate is also suitable for other 2D materials, such as WS₂, and can enhance the transconductance remarkably by 61.3 times. These results demonstrate a new and ideal substrate for the fabrication of 2D materials-based electronic logic devices.

  20. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

    KAUST Repository

    Cheng, Chia-Chin; Lu, Ang-Yu; Tseng, Chien-Chih; Yang, Xiulin; Hedhili, Mohamed N.; Chen, Min-Cheng; Wei, Kung-Hwa; Li, Lain-Jong

    2016-01-01

    that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2

  1. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide

    KAUST Repository

    Nayak, Avinash P.

    2015-01-14

    Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structure-property relation due to the rich band structure of MoS2. Remarkably, the metastable 1T′-MoS2 metallic state remains invariant with pressure, with the J2, A1g, and E2g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.

  2. Towards molecular doping effect on the electronic properties of two-dimensional layered materials

    International Nuclear Information System (INIS)

    Arramel; Wang, Q.; Zheng, Y.; Zhang, W.; Wee, A. T. S.

    2016-01-01

    In recent advancements of an atomically-thick, flat, and flexible two-dimensional (2D) material has attracted tremendous interest. Graphene and 2D layered semiconductors such as transition-metal dichalcogenides (TMDs) pave the way on the exploration of their unique layer-number dependent electronic and optical properties. The latter have a promising future on the microelectronics due to their sizeable bandgaps, i.e., the crossover from indirect-direct bandgap transition occurs as the thickness of TMDs is decreased to a monolayer. In this work, we systematically investigated the optimum growth parameter of chemical vapor deposition of MoS2 and WSe2, respectively. It turns out that the temperature and the duration growth plays role to produce a large area of TMDs monolayers. Our studies suggest that a well-controlled high quality of TMDs could serves as template and interlayer in the TMD-organic heterointerfaces. Thus it is potentially an attractive approach towards a wide-ranging application in optoelectronics, nanoelectronics and energy-harvesting applications. (paper)

  3. A micromorphic model for monolayer hexagonal boron nitride with determined constitutive constants by phonon dispersions

    International Nuclear Information System (INIS)

    Zhang, Bin; Yang, Gang

    2014-01-01

    A two dimensional (2D) micromorphic model is developed for monolayer hexagonal boron nitride (h-BN). Theoretical expressions of phonon dispersions for 2D crystals are derived based on the simplified governing equations of specialized three dimensional micromorphic crystals. The constitutive constants of governing equations of the h-BN micromorphic model are determined, which is performed by fitting the available phonon dispersions data of experimental measurements and first-principles calculations with our theoretical expressions. The obtained Young’s modulus and Poisson’s ratio of h-BN are comparable with the results of ab initio calculations and inelastic x-ray scattering experiments, thus the constitutive relations of the h-BN model are verified, which also indicates that mechanical properties of monolayer h-BN could be characterized by our 2D micromorphic model

  4. Neutron scattering study of 36 Ar monolayer films adsorbed on graphite

    DEFF Research Database (Denmark)

    Taub, H.; da Costa Carneiro, Kim; Kjems, Jørgen

    1977-01-01

    Diffraction of neutrons from 36 Ar monolayers adsorbed on graphite basal planes indicates that an ordered, two-dimensional (2D) triangular lattice is formed at low temperature. The lattice constant is found to be slightly larger than that of the bulk 3D solid but significantly smaller than that o...

  5. Extended Moment Formation in Monolayer WS2 Doped with 3d Transition-Metals

    KAUST Repository

    Singh, Nirpendra; Schwingenschlö gl, Udo

    2016-01-01

    First-principles calculations with onsite Coulomb interaction and spin-orbit coupling are used to investigate the electronic structure of monolayer WS2 doped substitutionally with 3d transition-metals. While neither W vacancies nor strain induce

  6. Scanning tunneling spectroscopy of MoS2 monolayer in presence of ethanol gas

    Science.gov (United States)

    Hosseini, Seyed Ali; Iraji zad, Azam; Berahman, Masoud; Aghakhani Mahyari, Farzaneh; Shokouh, Seyed Hossein Hosseini

    2018-04-01

    Due to high surface to volume ratio and tunable band gap, two dimensional (2D) layered materials such as MoS2, is good candidate for gas sensing applications. This research mainly focuses on variation of Density of States (DOS) of MoS2 monolayes caused by ethanol adsorption. The nanosheets are synthesized by liquid exfoliation, and then using Scanning Tunneling Spectroscopy (STS) and Density Functional Theory (DFT), local electronic characteristic such as DOS and band gap in non-vacuum condition are analyzed. The results show that ethanol adsorption enhances DOS and deform orbitals near the valence and conduction bands that increase transport of carriers on the sheet.

  7. Pressure-Dependent Light Emission of Charged and Neutral Excitons in Monolayer MoSe 2

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xinpeng [State; Li, Fangfei [State; Lin, Jung-Fu [Department; Gong, Yuanbo [State; Huang, Xiaoli [State; Huang, Yanping [State; Han, Bo [State; Zhou, Qiang [State; Cui, Tian [State

    2017-07-19

    Tailoring the excitonic properties in two-dimensional monolayer transition metal dichalcogenides (TMDs) through strain engineering is an effective means to explore their potential applications in optoelectronics and nanoelectronics. Here we report pressure-tuned photon emission of trions and excitons in monolayer MoSe2 via a diamond anvil cell (DAC) through photoluminescence measurements and theoretical calculations. Under quasi-hydrostatic compressive strain, our results show neutral (X0) and charged (X–) exciton emission of monolayer MoSe2 can be effectively tuned by alcohol mixture vs inert argon pressure transmitting media (PTM). During this process, X– emission undergoes a continuous blue shift until reaching saturation, while X0 emission turns up splitting. The pressure-dependent charging effect observed in alcohol mixture PTM results in the increase of the X– exciton component and facilitates the pressure-tuned emission of X– excitons. This substantial tunability of X– and X0 excitons in MoSe2 can be extended to other 2D TMDs, which holds potential for developing strained and optical sensing devices.

  8. Status for the two-dimensional Navier-Stokes solver EllipSys2D

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, N.; Johansen, J.

    2001-08-01

    This report sets up an evaluation of two-dimensional Navier-Stokes solver EllipSys2D in its present state. This code is used for blade aerodynamics simulations in the Aeroelastic Design group at Risoe. Two airfoils are investigated by computing the flow at several angles of attack ranging from the linear to the stalled region. The computational data are compared to experimental data and numerical results from other computational codes. Several numerical aspects are studied, as mesh dependency, convective scheme, steady state versus unsteady computations, transition modelling. Some general conclusions intended to help in using this code for numerical simulations are given. (au)

  9. Comparative proteome analysis of monolayer and spheroid culture of canine osteosarcoma cells.

    Science.gov (United States)

    Gebhard, Christiane; Miller, Ingrid; Hummel, Karin; Neschi Née Ondrovics, Martina; Schlosser, Sarah; Walter, Ingrid

    2018-04-15

    Osteosarcoma is an aggressive bone tumor with high metastasis rate in the lungs and affects both humans and dogs in a similar way. Three-dimensional tumor cell cultures mimic the in vivo situation of micro-tumors and metastases and are therefore better experimental in vitro models than the often applied two-dimensional monolayer cultures. The aim of the present study was to perform comparative proteomics of standard monolayer cultures of canine osteosarcoma cells (D17) and three-dimensional spheroid cultures, to better characterize the 3D model before starting with experiments like migration assays. Using DIGE in combination with MALDI-TOF/TOF we found 27 unique canine proteins differently represented between these two culture systems, most of them being part of a functional network including mainly chaperones, structural proteins, stress-related proteins, proteins of the glycolysis/gluconeogenesis pathway and oxidoreductases. In monolayer cells, a noticeable shift to more acidic pI values was noticed for several proteins of medium to high abundance; two proteins (protein disulfide isomerase A3, stress-induced-phosphoprotein 1) showed an increase of phosphorylated protein species. Protein distribution within the cells, as detected by immunohistochemistry, displayed a switch of stress-induced-phosphoprotein 1 from the cytoplasm (in monolayer cultures) to the nucleus (in spheroid cultures). Additionally, Western blot testing revealed upregulated concentrations of metastasin (S100A4), triosephosphate isomerase 1 and septin 2 in spheroid cultures, in contrast to decreased concentrations of CCT2, a subunit of the T-complex. Results indicate regulation of stress proteins in the process of three-dimensional organization characterized by a hypoxic and nutrient-deficient environment comparable to tumor micro-metastases. Osteosarcoma is an aggressive bone tumor that early spreads to the lungs. Three-dimensional tumor cell cultures represent the avascular stage of micro

  10. Monolayer MoS2 heterojunction solar cells

    KAUST Repository

    Tsai, Menglin

    2014-08-26

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS 2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS 2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices. © 2014 American Chemical Society.

  11. Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS2 Nanostructures.

    Science.gov (United States)

    Purcell-Milton, Finn; McKenna, Robert; Brennan, Lorcan J; Cullen, Conor P; Guillemeney, Lilian; Tepliakov, Nikita V; Baimuratov, Anvar S; Rukhlenko, Ivan D; Perova, Tatiana S; Duesberg, Georg S; Baranov, Alexander V; Fedorov, Anatoly V; Gun'ko, Yurii K

    2018-02-27

    Two-dimensional (2D) nanomaterials have been intensively investigated due to their interesting properties and range of potential applications. Although most research has focused on graphene, atomic layered transition metal dichalcogenides (TMDs) and particularly MoS 2 have gathered much deserved attention recently. Here, we report the induction of chirality into 2D chiral nanomaterials by carrying out liquid exfoliation of MoS 2 in the presence of chiral ligands (cysteine and penicillamine) in water. This processing resulted in exfoliated chiral 2D MoS 2 nanosheets showing strong circular dichroism signals, which were far past the onset of the original chiral ligand signals. Using theoretical modeling, we demonstrated that the chiral nature of MoS 2 nanosheets is related to the presence of chiral ligands causing preferential folding of the MoS 2 sheets. There was an excellent match between the theoretically calculated and experimental spectra. We believe that, due to their high aspect ratio planar morphology, chiral 2D nanomaterials could offer great opportunities for the development of chiroptical sensors, materials, and devices for valleytronics and other potential applications. In addition, chirality plays a key role in many chemical and biological systems, with chiral molecules and materials critical for the further development of biopharmaceuticals and fine chemicals, and this research therefore should have a strong impact on relevant areas of science and technology such as nanobiotechnology, nanomedicine, and nanotoxicology.

  12. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  13. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons

    Science.gov (United States)

    Tongay, Sefaattin; Suh, Joonki; Ataca, Can; Fan, Wen; Luce, Alexander; Kang, Jeong Seuk; Liu, Jonathan; Ko, Changhyun; Raghunathanan, Rajamani; Zhou, Jian; Ogletree, Frank; Li, Jingbo; Grossman, Jeffrey C.; Wu, Junqiao

    2013-01-01

    Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering. PMID:24029823

  14. First-principles study on the structure and electronic property of gas molecules adsorption on Ge2Li2 monolayer

    Science.gov (United States)

    Hu, Yiwei; Long, Linbo; Mao, Yuliang; Zhong, Jianxin

    2018-06-01

    Using first-principles methods, we have studied the adsorption of gas molecules (CO2, CH4, H2S, H2 and NH3) on two dimensional Ge2Li2 monolayer. The adsorption geometries, adsorption energies, charge transfer, and band structures of above mentioned gas molecules adsorption on Ge2Li2 monolayer are analyzed. It is found that the adsorption of CO2 on Ge2Li2 monolayer is a kind of strong chemisorption, while other gas molecules such as CH4, H2S, H2 and NH3 are physisorption. The strong covalent binding is formed between the CO2 molecule and the nearest Ge atom in Ge2Li2 monolayer. This adsorption of CO2 molecule on Ge2Li2 monolayer leads to a direct energy gap of 0.304 eV. Other gas molecules exhibit mainly ionic binding to the nearest Li atoms in Ge2Li2 monolayer, which leads to indirect energy gap after adsorptions. Furthermore, it is found that the work function of Ge2Li2 monolayer is sensitive with the variation of adsorbents. Our results reveal that the Ge2Li2 monolayer can be used as a kind of nano device for gas molecules sensor.

  15. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.

    Science.gov (United States)

    Sharma, Ankur; Yan, Han; Zhang, Linglong; Sun, Xueqian; Liu, Boqing; Lu, Yuerui

    2018-05-15

    Atomically thin two-dimensional (2D) semiconductors have presented a plethora of opportunities for future optoelectronic devices and photonics applications, made possible by the strong light matter interactions at the 2D quantum limit. Many body interactions between fundamental particles in 2D semiconductors are strongly enhanced compared with those in bulk semiconductors because of the reduced dimensionality and, thus, reduced dielectric screening. These enhanced many body interactions lead to the formation of robust quasi-particles, such as excitons, trions, and biexcitons, which are extremely important for the optoelectronics device applications of 2D semiconductors, such as light emitting diodes, lasers, and optical modulators, etc. Recently, the emerging anisotropic 2D semiconductors, such as black phosphorus (termed as phosphorene) and phosphorene-like 2D materials, such as ReSe 2 , 2D-perovskites, SnS, etc., show strong anisotropic optical and electrical properties, which are different from conventional isotropic 2D semiconductors, such as transition metal dichalcogenide (TMD) monolayers. This anisotropy leads to the formation of quasi-one-dimensional (quasi-1D) excitons and trions in a 2D system, which results in even stronger many body interactions in anisotropic 2D materials, arising from the further reduced dimensionality of the quasi-particles and thus reduced dielectric screening. Many body interactions have been heavily investigated in TMD monolayers in past years, but not in anisotropic 2D materials yet. The quasi-particles in anisotropic 2D materials have fractional dimensionality which makes them perfect candidates to serve as a platform to study fundamental particle interactions in fractional dimensional space. In this Account, we present our recent progress related to 2D phosphorene, a 2D system with quasi-1D excitons and trions. Phosphorene, because of its unique anisotropic properties, provides a unique 2D platform for investigating the

  16. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  17. Transition from two-dimensional to three-dimensional melting in Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Mukhopadhyay, M.K.; Sanyal, M.K.; Datta, A.; Mukherjee, M.; Geue, Th.; Grenzer, J.; Pietsch, U.

    2004-01-01

    Results of energy-dispersive x-ray reflectivity and grazing incidence diffraction studies of Langmuir-Blodgett films exhibited evolution of conventional three-dimensional melting from continuous melting, characteristic of two-dimensional systems, as a function of deposited monolayers. Continuous expansion followed by a sharp phase transition of the in-plane lattice was observed before the melting point and found to be independent of number of deposited layers. Evolution of conventional melting with an increase in the number of monolayers could be quantified by measuring stiffness against tilting of the vertical stack of molecules, which are kept together by an internal field. The internal field as defined in this model reduces as the in-plane lattice expands and the sample temperature approaches melting point. The sharpness of the melting transition, which has been approximated by a Langevin function, increases with the number of deposited monolayers

  18. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial CellsSummary

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2017-07-01

    Full Text Available Background & Aims: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D tissue cultured from primary colon cells has not been accomplished. Methods: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. Results: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. Conclusions: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies. Keywords: Colonic Epithelial Cells, Monolayer, Organoids, Compound Screening

  19. Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One Dimensional (1D and Two Dimensional (2D Carbon

    Directory of Open Access Journals (Sweden)

    Francisco Medellín-Rodríguez

    2013-08-01

    Full Text Available Electrospun one dimensional (1D and two dimensional (2D carbon based polymer nanocomposites are studied in order to determine the effect provided by the two differently structured nanofillers on crystallinity and thermo-mechanical properties of the nanofibres. The nanomaterials studied are pristine carbon nanotubes, oxidised carbon nanotubes, reduced graphene oxide and graphene oxide. Functional groups associated with the order structure of the polymers are analysed by infrared and Raman spectroscopies; the morphology is studied by scanning electron microscopy and the crystallinity properties are investigated by differential scanning calorimetry and X-ray diffraction. Differences in crystallisation behaviour between 1D and 2D carbon based nanofibres are shown by their crystallinity degree and their crystal sizes. The nanocomposite crystal sizes perpendicular to the plane (100 decrease with nanofiller content in all cases. The crystallinity trend and crystal sizes are in accordance with storage modulus response. The results also suggest that functionalisation favours interfacial bonding and dispersion of the nanomaterials within the polymer matrix. As a consequence the number of nucleating sites increases which in turn decreases the crystal size in the nanocomposites. These features explain the improved thermo-mechanical properties in the nanocomposites.

  20. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems.

    Science.gov (United States)

    Howes, Amy L; Richardson, Robyn D; Finlay, Darren; Vuori, Kristiina

    2014-01-01

    3-dimensional (3D) culture models have the potential to bridge the gap between monolayer cell culture and in vivo studies. To benefit anti-cancer drug discovery from 3D models, new techniques are needed that enable their use in high-throughput (HT) screening amenable formats. We have established miniaturized 3D culture methods robust enough for automated HT screens. We have applied these methods to evaluate the sensitivity of normal and tumorigenic breast epithelial cell lines against a panel of oncology drugs when cultured as monolayers (2D) and spheroids (3D). We have identified two classes of compounds that exhibit preferential cytotoxicity against cancer cells over normal cells when cultured as 3D spheroids: microtubule-targeting agents and epidermal growth factor receptor (EGFR) inhibitors. Further improving upon our 3D model, superior differentiation of EC50 values in the proof-of-concept screens was obtained by co-culturing the breast cancer cells with normal human fibroblasts and endothelial cells. Further, the selective sensitivity of the cancer cells towards chemotherapeutics was observed in 3D co-culture conditions, rather than as 2D co-culture monolayers, highlighting the importance of 3D cultures. Finally, we examined the putative mechanisms that drive the differing potency displayed by EGFR inhibitors. In summary, our studies establish robust 3D culture models of human cells for HT assessment of tumor cell-selective agents. This methodology is anticipated to provide a useful tool for the study of biological differences within 2D and 3D culture conditions in HT format, and an important platform for novel anti-cancer drug discovery.

  1. Atomic Defects and Doping of Monolayer NbSe2.

    Science.gov (United States)

    Nguyen, Lan; Komsa, Hannu-Pekka; Khestanova, Ekaterina; Kashtiban, Reza J; Peters, Jonathan J P; Lawlor, Sean; Sanchez, Ana M; Sloan, Jeremy; Gorbachev, Roman V; Grigorieva, Irina V; Krasheninnikov, Arkady V; Haigh, Sarah J

    2017-03-28

    We have investigated the structure of atomic defects within monolayer NbSe 2 encapsulated in graphene by combining atomic resolution transmission electron microscope imaging, density functional theory (DFT) calculations, and strain mapping using geometric phase analysis. We demonstrate the presence of stable Nb and Se monovacancies in monolayer material and reveal that Se monovacancies are the most frequently observed defects, consistent with DFT calculations of their formation energy. We reveal that adventitious impurities of C, N, and O can substitute into the NbSe 2 lattice stabilizing Se divacancies. We further observe evidence of Pt substitution into both Se and Nb vacancy sites. This knowledge of the character and relative frequency of different atomic defects provides the potential to better understand and control the unusual electronic and magnetic properties of this exciting two-dimensional material.

  2. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    International Nuclear Information System (INIS)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-01-01

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm 2 V −1 s −1 ), which is much higher than that of MoS 2 monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm 2 V −1 s −1 ), which is higher than that of MoS 2 monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm 2 V −1 s −1 , which is much higher than that of MoS 2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  3. A pentacene monolayer trapped between graphene and a substrate.

    Science.gov (United States)

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-09-21

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.

  4. Substrate effect on the growth of monolayer dendritic MoS2 on LaAlO3 (100) and its electrocatalytic applications

    Science.gov (United States)

    Li, Cong; Zhang, Yu; Ji, Qingqing; Shi, Jianping; Chen, Zhaolong; Zhou, Xiebo; Fang, Qiyi; Zhang, Yanfeng

    2016-09-01

    In accommodating the rapid development of two-dimensional (2D) nanomaterials, chemical vapor deposition (CVD) has become a powerful tool for their batch production with desirable characteristics, such as high crystal quality, large domain size, and tunable domain shape. The crystallinity and morphology of the growth substrates usually play a crucial role in the CVD synthesis of high-quality monolayer MoS2, a kind of 2D layered material which has ignited huge interest in nanoelectronics, optoelectronics and energy harvesting, etc. Herein, by utilizing a low-pressure chemical vapor deposition (LPCVD) system, we demonstrate a regioselective synthesis of monolayer MoS2 on the corrugated single-crystal LaAlO3 (100) with twin crystal domains induced by the second-order phase transition. Unique dendritic morphologies with tunable nucleation densities were obtained in different regions of the undulated substrate, presenting a strong substrate modulation effect. Interestingly, the exposure of abundant active edge sites along with the rather high nucleation density makes the monolayer dendritic MoS2 a good electrocatalyst for hydrogen evolution reaction (HER), particularly featured by a rather high exchange current density (70.4 μA cm-2). Furthermore, uniform monolayer MoS2 films can also be obtained and transferred to arbitrary substrates. We believe that this work provides a new growth system for the controllable synthesis of 2D layered materials with unique dendritic morphologies, as well as its great application potential in energy conversion and harvesting.

  5. A real-time Raman spectroscopy study of the dynamics of laser-thinning of MoS2 flakes to monolayers

    Science.gov (United States)

    Gu, Enyao; Wang, Qiyuan; Zhang, Youwei; Cong, Chunxiao; Hu, Laigui; Tian, Pengfei; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2017-12-01

    Transition metal dichalcogenides (TMDCs) in monolayer form have attracted a great deal of attention for electronic and optical applications. Compared to mechanical exfoliation and chemical synthesis, laser thinning is a novel and unique "on-demand" approach to fabricate monolayers or pattern desired shapes with high controllability and reproducibility. Its successful demonstration motivates a further exploration of the dynamic behaviour of this local thinning process. Here, we present an in-situ study of void formation by laser irradiation with the assistance of temporal Raman evolution. In the analysis of time-dependent Raman intensity, an empirical formula relating void size to laser power and exposure time is established. Void in thinner MoS2 flakes grows faster than in thicker ones as a result of reduced sublimation temperature in the two-dimensional (2D) materials. Our study provides useful insights into the laser-thinning dynamics of 2D TMDCs and guidelines for an effective control over the void formation.

  6. Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.

    Science.gov (United States)

    Ishii, Kunihiko; Tahara, Tahei

    2013-10-03

    In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution.

  7. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  8. Two Dimensional X-Ray Diffraction (2D-XRD) studies on Olivine of U.S.A

    International Nuclear Information System (INIS)

    Jabeen, S.; Raza, S.M.; Ahmed, M.A.; Zai, M.Y.; Elacher, K.

    2011-01-01

    The Olivine (Mg, Fe) 2SiO/sub 4/ of USA has been studied with two dimensional X-ray diffractometer (D8 discover with GADDS). The two distinct phases of orthorhombic structure, one with Mg/sub 8/[Fe/sub 2/SiO/sub 4/] and the other with Mg/sub 2/SiO/sub 4/ is observed. We also observed phase transitions due to presence of iron and Silicon preferably the structural change of Mg/sub 8/[Fe/sub 2/SiO/sub 4/] from orthorhombic to spinel like (spinel chord) structure. Magnesium ions in Mg/sub 8/[Fe/sub 2/SiO/sub 4/] shuffle, arrange at the five vertices of a pentagon and the remaining three at the central but with displaced position from the plane of the pentagon, Thus resulting into a three dimensional spinel chord like structure. We evidenced the same from diverse orientations of phase peaks and indeed from Kossel lines. (author)

  9. A 3D Polymer Based Printed Two-Dimensional Laser Scanner

    International Nuclear Information System (INIS)

    Oyman, H A; Yalcinkaya, A D; Gokdel, Y D; Ferhanoglu, O

    2016-01-01

    A two-dimensional (2D) polymer based scanning mirror with magnetic actuation is developed for imaging applications. Proposed device consists of a circular suspension holding a rectangular mirror and can generate a 2D scan pattern. Three dimensional (3D) printing technology which is used for implementation of the device, offers added flexibility in controlling the cross-sectional profile as well as the stress distribution compared to the traditional planar process technologies. The mirror device is developed to meet a portable, miniaturized confocal microscope application in mind, delivering 4.5 and 4.8 degrees of optical scan angles at 111 and 267 Hz, respectively. As a result of this mechanical performance, the resulting microscope incorporating the mirror is estimated to accomplish a field of view (FOV) of 350 µm × 350 µm. (paper)

  10. Screened Raman response in two-dimensional d(x2-y2)-wave superconductors: Relative intensities in different symmetry channels

    DEFF Research Database (Denmark)

    Wenger, F.; Käll, M.

    1997-01-01

    We analyze the Raman-scattering response in a two-dimensional d(x2-y2)-wave superconductor and point out a strong suppression of relative intensity in the screened A(1g) channel compared to the B-1g channel for a generic tight-binding model. This is in contrast with the observed behavior in high...

  11. Salt-assisted clean transfer of continuous monolayer MoS2 film for hydrogen evolution reaction

    Science.gov (United States)

    Cho, Heung-Yeol; Nguyen, Tri Khoa; Ullah, Farman; Yun, Jong-Won; Nguyen, Cao Khang; Kim, Yong Soo

    2018-03-01

    The transfer of two-dimensional (2D) materials from one substrate to another is challenging but of great importance for technological applications. Here, we propose a facile etching and residue-free method for transferring a large-area monolayer MoS2 film continuously grown on a SiO2/Si by chemical vapor deposition. Prior to synthesis, the substrate is dropped with water- soluble perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt (PTAS). The as-grown MoS2 on the substrate is simply dipped in water to quickly dissolve PTAS to yield the MoS2 film floating on the water surface, which is subsequently transferred to the desired substrate. The morphological, optical and X-ray photoelectron spectroscopic results show that our method is useful for fast and clean transfer of the MoS2 film. Specially, we demonstrate that monolayer MoS2 film transferred onto a conducting substrate leads to excellent performance for hydrogen evolution reaction with low overpotential (0.29 V vs the reversible hydrogen electrode) and Tafel slope (85.5 mV/decade).

  12. Electronic and magnetic properties of SnS2 monolayer doped with 4d transition metals

    Science.gov (United States)

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Chen, Qiao; Wang, Ling-Ling

    2017-09-01

    We investigate the electronic structures and magnetic properties of SnS2 monolayers substitutionally doped with 4-d transition-metal through systematic first principles calculations. The doped complexes exhibit interesting electronic and magnetic behaviors, depending on the interplay between crystal field splitting, Hund's rule, and 4d levels. The system doped with Y is nonmagnetic metal. Both the Zr- and Pd-doped systems remain nonmagnetic semiconductors. Doping results in half-metallic states for Nb-, Ru-, Rh-, Ag, and Cd doped cases, and magnetic semiconductors for systems with Mo and Tc dopants. In particular, the Nb- and Mo-doped systems display long-ranged ferromagnetic ordering with Curie temperature above room temperature, which are primarily attributable to the double-exchange mechanism, and the p-d/p-p hybridizations, respectively. Moreover, The Mo-doped system has excellent energetic stability and flexible mechanical stability, and also possesses remarkable dynamic and thermal (500 K) stability. Our studies demonstrate that Nb- and Mo-doped SnS2 monolayers are promising candidates for preparing 2D diluted magnetic semiconductors, and hence will be a helpful clue for experimentalists.

  13. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond.

    Science.gov (United States)

    Liu, Chun; Oikonomopoulos, Angelos; Sayed, Nazish; Wu, Joseph C

    2018-03-08

    The advent of human induced pluripotent stem cells (iPSCs) presents unprecedented opportunities to model human diseases. Differentiated cells derived from iPSCs in two-dimensional (2D) monolayers have proven to be a relatively simple tool for exploring disease pathogenesis and underlying mechanisms. In this Spotlight article, we discuss the progress and limitations of the current 2D iPSC disease-modeling platform, as well as recent advancements in the development of human iPSC models that mimic in vivo tissues and organs at the three-dimensional (3D) level. Recent bioengineering approaches have begun to combine different 3D organoid types into a single '4D multi-organ system'. We summarize the advantages of this approach and speculate on the future role of 4D multi-organ systems in human disease modeling. © 2018. Published by The Company of Biologists Ltd.

  14. High-order harmonic generation from a two-dimensional band structure

    Science.gov (United States)

    Jin, Jian-Zhao; Xiao, Xiang-Ru; Liang, Hao; Wang, Mu-Xue; Chen, Si-Ge; Gong, Qihuang; Peng, Liang-You

    2018-04-01

    In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser's orientation and ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands can be excited step by step via these crossing points and the total contribution of the harmonic is given by the mixing of transitions between different clusters of conduction bands to the valence band. We also present the orientation dependence of the harmonic yield on the laser polarization direction.

  15. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2000-10-01

    Full Text Available Abstract Background The relationship between cell shape, proliferation, and extracellular matrix (ECM production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D culture. Results Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1 Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2 Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3 Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. Conclusions The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior.

  16. Electronic, elastic, and optical properties of monolayer BC{sub 2}N

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Lina; Hu, Meng; Peng, Yusi; Luo, Yanting; Li, Chunmei; Chen, Zhiqian, E-mail: chen_zq@swu.edu.cn

    2016-12-15

    The structural stability, electronic structure, elasticity, and optical properties of four types of monolayer BC{sub 2}N have been investigated from first principles using calculation based on density functional theory. The results show that the structural stability of BC{sub 2}N increases with the number of C–C and B–N bonds. By calculating the two-dimensional Young's modulus, shear modulus, Poisson's ratio, and shear anisotropic factors in different directions, four structures present various anisotropies and the most stable structure is almost isotropic. For C-type BC{sub 2}N, the values of two-dimensional Young's modulus, shear modulus, and bulk modulus (309, 128, 195 GPa m{sup −1}), are smaller than those of graphene (343, 151, 208) but bigger than those of h-BN (286, 185, 116). Furthermore, the dielectric function, refractive index, reflectivity, absorption coefficient, and energy loss spectrum are also calculated to investigate the mechanism underpinning the optical transitions in BC{sub 2}N, revealing monolayer BC{sub 2}N as a candidate window material. - Graphical abstract: Schematic diagram of BC{sub 2}N under the biaxial tensile strain. Changes in the valence-band top and the conduction-band bottom of BC{sub 2}N with increasing strain.

  17. Strain-induced band engineering in monolayer stanene on Sb(111)

    Science.gov (United States)

    Gou, Jian; Kong, Longjuan; Li, Hui; Zhong, Qing; Li, Wenbin; Cheng, Peng; Chen, Lan; Wu, Kehui

    2017-10-01

    The two-dimensional (2D) allotrope of tin with low buckled honeycomb structure named stanene is proposed to be an ideal 2D topological insulator with a nontrivial gap larger than 0.1 eV. Theoretical works also pointed out the topological property of stanene amenability to strain tuning. In this paper we report the successful realization of high quality, monolayer stanene film as well as monolayer stanene nanoribbons on Sb(111) surface by molecular-beam epitaxy, providing an ideal platform to the study of stanene. More importantly, we observed a continuous evolution of the electronic bands of stanene across the nanoribbon, related to the strain field gradient in stanene. Our work experimentally confirmed that strain is an effective method for band engineering in stanene, which is important for fundamental research and application of stanene.

  18. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates

    Science.gov (United States)

    Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; Unocic, Raymond R.; Rack, Philip D.; Baddorf, Arthur P.; Ivanov, Ilia N.; Lavrik, Nickolay V.; List, Frederick; Gupta, Nitant; Bets, Ksenia V.; Yakobson, Boris I.; Smirnov, Sergei N.

    2018-03-01

    There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection2 approach, which is now realized in 2D geometry. The method relies on `self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.

  19. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis

    Science.gov (United States)

    Zhou, Yangen; Zhang, Yongfan; Lin, Mousheng; Long, Jinlin; Zhang, Zizhong; Lin, Huaxiang; Wu, Jeffrey C.-S.; Wang, Xuxu

    2015-09-01

    Two-dimensional-layered heterojunctions have attracted extensive interest recently due to their exciting behaviours in electronic/optoelectronic devices as well as solar energy conversion systems. However, layered heterojunction materials, especially those made by stacking different monolayers together by strong chemical bonds rather than by weak van der Waal interactions, are still challenging to fabricate. Here the monolayer Bi2WO6 with a sandwich substructure of [BiO]+-[WO4]2--[BiO]+ is reported. This material may be characterized as a layered heterojunction with different monolayer oxides held together by chemical bonds. Coordinatively unsaturated Bi atoms are present as active sites on the surface. On irradiation, holes are generated directly on the active surface layer and electrons in the middle layer, which leads to the outstanding performances of the monolayer material in solar energy conversion. Our work provides a general bottom-up route for designing and preparing novel monolayer materials with ultrafast charge separation and active surface.

  20. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    Energy Technology Data Exchange (ETDEWEB)

    Du, Juan [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Xia, Congxin, E-mail: xiacongxin@htu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Liu, Yaming [Henan Institute of Science and Technology, Xinxiang 453003 (China); Li, Xueping [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Peng, Yuting [Department of Physics, University of Texas at Arlington, TX 76019 (United States); Wei, Shuyi [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2017-04-15

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is much higher than that of MoS{sub 2} monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is higher than that of MoS{sub 2} monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm{sup 2} V{sup −1} s{sup −1}, which is much higher than that of MoS{sub 2} monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  1. Monolayer MoS{sub 2} self-switching diodes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dirini, Feras, E-mail: alf@unimelb.edu.au; Hossain, Md Sharafat [Department of Electrical and Electronic Engineering, University of Melbourne, Victoria (Australia); Centre for Neural Engineering, University of Melbourne, Victoria (Australia); Victorian Research Laboratory, National ICT Australia, West Melbourne, Victoria (Australia); Hossain, Faruque M.; Skafidas, Efstratios [Department of Electrical and Electronic Engineering, University of Melbourne, Victoria (Australia); Centre for Neural Engineering, University of Melbourne, Victoria (Australia); Mohammed, Mahmood A. [Princess Sumaya University for Technology, Amman (Jordan); Nirmalathas, Ampalavanapillai [Department of Electrical and Electronic Engineering, University of Melbourne, Victoria (Australia); Melbourne Networked Society Institute (MNSI), University of Melbourne, Victoria (Australia)

    2016-01-28

    This paper presents a new molybdenum disulphide (MoS{sub 2}) nanodevice that acts as a two-terminal field-effect rectifier. The device is an atomically-thin two-dimensional self-switching diode (SSD) that can be realized within a single MoS{sub 2} monolayer with very minimal process steps. Quantum simulation results are presented confirming the device's operation as a diode and showing strong non-linear I-V characteristics. Interestingly, the device shows p-type behavior, in which conduction is dominated by holes as majority charge carriers and the flow of reverse current is enhanced, while the flow of forward current is suppressed, in contrast to monolayer graphene SSDs, which behave as n-type devices. The presence of a large bandgap in monolayer MoS{sub 2} results in strong control over the channel, showing complete channel pinch-off in forward conduction, which was confirmed with transmission pathways plots. The device exhibited large leakage tunnelling current through the insulating trenches, which may have been due to the lack of passivation; nevertheless, reverse current remained to be 6 times higher than forward current, showing strong rectification. The effect of p-type substitutional channel doping of sulphur with phosphorus was investigated and showed that it greatly enhances the performance of the device, increasing the reverse-to-forward current rectification ratio more than an order of magnitude, up to a value of 70.

  2. Research Update: Spin transfer torques in permalloy on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-03-01

    Full Text Available We observe current induced spin transfer torque resonance in permalloy (Py grown on monolayer MoS2. By passing rf current through the Py/MoS2 bilayer, field-like and damping-like torques are induced which excite the ferromagnetic resonance of Py. The signals are detected via a homodyne voltage from anisotropic magnetoresistance of Py. In comparison to other bilayer systems with strong spin-orbit torques, the monolayer MoS2 cannot provide bulk spin Hall effects and thus indicates the purely interfacial nature of the spin transfer torques. Therefore our results indicate the potential of two-dimensional transition-metal dichalcogenide for the use of interfacial spin-orbitronics applications.

  3. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Showkat H. [Centre for Nano Science, Central University of Gujarat, Gandhinagar 382030 (India); Chakraborty, Sudip, E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in; Wärnå, John [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala 75120 (Sweden); Jha, Prakash C., E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in [School of Applied Material Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Soni, Himadri [Lehrstuhl für Theoretische Chemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen (Germany); Jha, Prafulla K. [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002 (India); Ahuja, Rajeev [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala 75120 (Sweden); Department of Materials and Engineering, Royal Institute of Technology (KTH), 10044 Stockholm (Sweden)

    2016-08-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of the boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.

  4. FireStem2D — A two-dimensional heat transfer model for simulating tree stem injury in fires

    Science.gov (United States)

    Efthalia K. Chatziefstratiou; Gil Bohrer; Anthony S. Bova; Ravishankar Subramanian; Renato P.M. Frasson; Amy Scherzer; Bret W. Butler; Matthew B. Dickinson

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by...

  5. Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: A comparative study

    Science.gov (United States)

    Qin, Guangzhao; Qin, Zhenzhen; Fang, Wu-Zhang; Zhang, Li-Chuan; Yue, Sheng-Ying; Yan, Qing-Bo; Hu, Ming; Su, Gang

    2016-05-01

    New classes of two-dimensional (2D) materials beyond graphene, including layered and non-layered, and their heterostructures, are currently attracting increasing interest due to their promising applications in nanoelectronics, optoelectronics and clean energy, where thermal transport is a fundamental physical parameter. In this paper, we systematically investigated the phonon transport properties of the 2D orthorhombic group IV-VI compounds of GeS, GeSe, SnS and SnSe by solving the Boltzmann transport equation (BTE) based on first-principles calculations. Despite their similar puckered (hinge-like) structure along the armchair direction as phosphorene, the four monolayer compounds possess diverse anisotropic properties in many aspects, such as phonon group velocity, Young's modulus and lattice thermal conductivity (κ), etc. Especially, the κ along the zigzag and armchair directions of monolayer GeS shows the strongest anisotropy while monolayer SnS and SnSe show almost isotropy in phonon transport. The origin of the diverse anisotropy is fully studied and the underlying mechanism is discussed in details. With limited size, the κ could be effectively lowered, and the anisotropy could be effectively modulated by nanostructuring, which would extend the applications to nanoscale thermoelectrics and thermal management. Our study offers fundamental understanding of the anisotropic phonon transport properties of 2D materials, and would be of significance for further study, modulation and applications in emerging technologies.

  6. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

    Directory of Open Access Journals (Sweden)

    Smita Mukherjee

    2015-12-01

    Full Text Available In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal–organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters.

  7. Two-dimensional numerical experiments with DRIX-2D on two-phase-water-flows referring to the HDR-blowdown-experiments

    International Nuclear Information System (INIS)

    Moesinger, H.

    1979-08-01

    The computer program DRIX-2D has been developed from SOLA-DF. The essential elements of the program structure are described. In order to verify DRIX-2D an Edwards-Blowdown-Experiment is calculated and other numerical results are compared with steady state experiments and models. Numerical experiments on transient two-phase flow, occurring in the broken pipe of a PWR in the case of a hypothetic LOCA, are performed. The essential results of the two-dimensional calculations are: 1. The appearance of a radial profile of void-fraction, velocity, sound speed and mass flow-rate inside the blowdown nozzle. The reason for this is the flow contraction at the nozzle inlet leading to more vapour production in the vicinity of the pipe wall. 2. A comparison between modelling in axisymmetric and Cartesian coordinates and calculations with and without the core barrel show the following: a) The three-dimensional flow pattern at the nozzle inlet is poorly described using Cartesian coordinates. In consequence a considerable difference in pressure history results. b) The core barrel alters the reflection behaviour of the pressure waves oscillating in the blowdown-nozzle. Therefore, the core barrel should be modelled as a wall normal to the nozzle axis. (orig./HP) [de

  8. MARG2D code. 1. Eigenvalue problem for two dimensional Newcomb equation

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, Shinji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Watanabe, Tomoko

    1997-10-01

    A new method and a code MARG2D have been developed to solve the 2-dimensional Newcomb equation which plays an important role in the magnetohydrodynamic (MHD) stability analysis in an axisymmetric toroidal plasma such as a tokamak. In the present formulation, an eigenvalue problem is posed for the 2-D Newcomb equation, where the weight function (the kinetic energy integral) and the boundary conditions at rational surfaces are chosen so that an eigenfunction correctly behaves as the linear combination of the small solution and the analytical solutions around each of the rational surfaces. Thus, the difficulty on solving the 2-D Newcomb equation has been resolved. By using the MARG2D code, the ideal MHD marginally stable state can be identified for a 2-D toroidal plasma. The code is indispensable on computing the outer-region matching data necessary for the resistive MHD stability analysis. Benchmark with ERATOJ, an ideal MHD stability code, has been carried out and the MARG2D code demonstrates that it indeed identifies both stable and marginally stable states against ideal MHD motion. (author)

  9. Transition-metal-doped group-IV monochalcogenides: a combination of two-dimensional triferroics and diluted magnetic semiconductors

    Science.gov (United States)

    Yang, Liu; Wu, Menghao; Yao, Kailun

    2018-05-01

    We report the first-principles evidence of a series of two-dimensional triferroics (ferromagnetic + ferroelectric + ferroelastic), which can be obtained by doping transition-metal ions in group-IV monochalcogenide (SnS, SnSe, GeS, GeSe) monolayers, noting that a ferromagnetic Fe-doped SnS2 monolayer has recently been realized (Li B et al 2017 Nat. Commun. 8 1958). The ferroelectricity, ferroelasticity and ferromagnetism can be coupled and the magnetization direction may be switched upon ferroelectric/ferroelastic switching, rendering electrical writing + magnetic reading possible. They can be also two-dimensional half-metals or diluted magnetic semiconductors, where p/n channels or even multiferroic tunneling junctions can be designed by variation in doping and incorporated into a monolayer wafer.

  10. Development of 2-D/1-D fusion method for three-dimensional whole-core heterogeneous neutron transport calculations

    International Nuclear Information System (INIS)

    Lee, Gil Soo

    2006-02-01

    To describe power distribution and multiplication factor of a reactor core accurately, it is necessary to perform calculations based on neutron transport equation considering heterogeneous geometry and scattering angles. These calculations require very heavy calculations and were nearly impossible with computers of old days. From the limitation of computing power, traditional approach of reactor core design consists of heterogeneous transport calculation in fuel assembly level and whole core diffusion nodal calculation with assembly homogenized properties, resulting from fuel assembly transport calculation. This approach may be effective in computation time, but it gives less accurate results for highly heterogeneous problems. As potential for whole core heterogeneous transport calculation became more feasible owing to rapid development of computing power during last several years, the interests in two and three dimensional whole core heterogeneous transport calculations by deterministic method are increased. For two dimensional calculation, there were several successful approaches using even parity transport equation with triangular meshes, S N method with refined rectangular meshes, the method of characteristics (MOC) with unstructured meshes, and so on. The work in this thesis originally started from the two dimensional whole core heterogeneous transport calculation by using MOC. After successful achievement in two dimensional calculation, there were efforts in three-dimensional whole-core heterogeneous transport calculation using MOC. Since direct extension to three dimensional calculation of MOC requires too much computing power, indirect approach to three dimensional calculation was considered.Thus, 2D/1D fusion method for three dimensional heterogeneous transport calculation was developed and successfully implemented in a computer code. The 2D/1D fusion method is synergistic combination of the MOC for radial 2-D calculation and S N -like methods for axial 1

  11. A class of monolayer metal halogenides MX{sub 2}: Electronic structures and band alignments

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Feng; Wang, Weichao; Luo, Xiaoguang; Cheng, Yahui; Dong, Hong; Liu, Hui; Wang, Wei-Hua, E-mail: whwangnk@nankai.edu.cn [Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071 (China); Xie, Xinjian [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-03-28

    With systematic first principles calculations, a class of monolayer metal halogenides MX{sub 2} (M = Mg, Ca, Zn, Cd, Ge, Pb; M = Cl, Br, I) has been proposed. Our study indicates that these monolayer materials are semiconductors with the band gaps ranging from 2.03 eV of ZnI{sub 2} to 6.08 eV of MgCl{sub 2}. Overall, the band gap increases with the increase of the electronegativity of the X atom or the atomic number of the metal M. Meanwhile, the band gaps of monolayer MgX{sub 2} (X = Cl, Br) are direct while those of other monolayers are indirect. Based on the band edge curvatures, the derived electron (m{sub e}) and hole (m{sub h}) effective masses of MX{sub 2} monolayers are close to their corresponding bulk values except that the m{sub e} of CdI{sub 2} is three times larger and the m{sub h} for PbI{sub 2} is twice larger. Finally, the band alignments of all the studied MX{sub 2} monolayers are provided using the vacuum level as energy reference. These theoretical results may not only introduce the monolayer metal halogenides family MX{sub 2} into the emerging two-dimensional materials, but also provide insights into the applications of MX{sub 2} in future electronic, visible and ultraviolet optoelectronic devices.

  12. Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure

    KAUST Repository

    He, Xin; Li, Hai; Zhu, Zhiyong; Dai, Zhenyu; Yang, Yang; Yang, Peng; Zhang, Qiang; Li, Peng; Schwingenschlö gl, Udo; Zhang, Xixiang

    2016-01-01

    Mechanically exfoliated monolayers of WS2, MoS2 and their van der Waals heterostructure were fabricated on flexible substrate so that uniaxial tensile strain can be applied to the two-dimensional samples. The modification of the band structure under strain was investigated by micro-photoluminescence spectroscopy at room temperature as well as by first-principles calculations. Exciton and trion emissions were observed in both WS2 and the heterostructure at room temperature, and were redshifted by strain, indicating potential for applications in flexible electronics and optoelectronics.

  13. Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure

    KAUST Repository

    He, Xin

    2016-10-27

    Mechanically exfoliated monolayers of WS2, MoS2 and their van der Waals heterostructure were fabricated on flexible substrate so that uniaxial tensile strain can be applied to the two-dimensional samples. The modification of the band structure under strain was investigated by micro-photoluminescence spectroscopy at room temperature as well as by first-principles calculations. Exciton and trion emissions were observed in both WS2 and the heterostructure at room temperature, and were redshifted by strain, indicating potential for applications in flexible electronics and optoelectronics.

  14. Penta-SiC5 monolayer: A novel quasi-planar indirect semiconductor with a tunable wide band gap

    Science.gov (United States)

    Naseri, Mosayeb

    2018-03-01

    In this paper, by using of the first principles calculations in the framework of the density functional theory, we systematically investigated the structure, stability, electronic and optical properties of a novel two-dimensional pentagonal monolayer semiconductors namely penta-SiC5 monolayer. Comparing elemental silicon, diamond, and previously reported 2D carbon allotropes, our calculation shows that the predicted penta-SiC5 monolayer has a metastable nature. The calculated results indicate that the predicted monolayer is an indirect semiconductor with a wide band gap of about 2.82 eV by using Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional level of theory which can be effectively tuned by external biaxial strains. The obtained exceptional electronic properties suggest penta-SiC5 monolayer as promising candidates for application in new electronic devices in nano scale.

  15. Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds

    NARCIS (Netherlands)

    Leferink, Anne Marijke; Santos, D.; Karperien, Hermanus Bernardus Johannes; Truckenmüller, R.K.; van Blitterswijk, Clemens; Moroni, Lorenzo

    2015-01-01

    Many studies have shown the influence of soluble factors and material properties on the differentiation capacity of mesenchymal stromal cells (MSCs) cultured as monolayers. These types of two-dimensional (2D) studies can be used as simplified models to understand cell processes related to stem cell

  16. First-principles engineering of charged defects for two-dimensional quantum technologies

    Science.gov (United States)

    Wu, Feng; Galatas, Andrew; Sundararaman, Ravishankar; Rocca, Dario; Ping, Yuan

    2017-12-01

    Charged defects in two-dimensional (2D) materials have emerging applications in quantum technologies such as quantum emitters and quantum computation. The advancement of these technologies requires a rational design of ideal defect centers, demanding reliable computation methods for the quantitatively accurate prediction of defect properties. We present an accurate, parameter-free, and efficient procedure to evaluate the quasiparticle defect states and thermodynamic charge transition levels of defects in 2D materials. Importantly, we solve critical issues that stem from the strongly anisotropic screening in 2D materials, that have so far precluded the accurate prediction of charge transition levels in these materials. Using this procedure, we investigate various defects in monolayer hexagonal boron nitride (h -BN ) for their charge transition levels, stable spin states, and optical excitations. We identify CBVN (nitrogen vacancy adjacent to carbon substitution of boron) to be the most promising defect candidate for scalable quantum bit and emitter applications.

  17. Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes

    KAUST Repository

    Dong, Liang

    2016-12-30

    Two-dimensional (2D) materials that display robust ferromagnetism have been pursued intensively for nanoscale spintronic applications, but suitable candidates have not been identified. Here we present theoretical predictions on the design of ordered double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in Ti2MnC2Tx monolayers regardless of the surface terminations (T = O, OH, and F), as well as in Hf2MnC2O2 and Hf2VC2O2 monolayers. The high magnetic moments (3–4 μB/unit cell) and high Curie temperatures (495–1133 K) of these MXenes are superior to those of existing 2D ferromagnetic materials. Furthermore, semimetal-to-semiconductor and ferromagnetic-to-antiferromagnetic phase transitions are predicted to occur in these materials in the presence of small or moderate tensile in-plane strains (0–3%), which can be externally applied mechanically or internally induced by the choice of transition metals.

  18. Out-of-Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by Piezoresponse Force Microscopy.

    Science.gov (United States)

    Brennan, Christopher J; Ghosh, Rudresh; Koul, Kalhan; Banerjee, Sanjay K; Lu, Nanshu; Yu, Edward T

    2017-09-13

    Two-dimensional (2D) materials have recently been theoretically predicted and experimentally confirmed to exhibit electromechanical coupling. Specifically, monolayer and few-layer molybdenum disulfide (MoS 2 ) have been measured to be piezoelectric within the plane of their atoms. This work demonstrates and quantifies a nonzero out-of-plane electromechanical response of monolayer MoS 2 and discusses its possible origins. A piezoresponse force microscope was used to measure the out-of-plane deformation of monolayer MoS 2 on Au/Si and Al 2 O 3 /Si substrates. Using a vectorial background subtraction technique, we estimate the effective out-of-plane piezoelectric coefficient, d 33 eff , for monolayer MoS 2 to be 1.03 ± 0.22 pm/V when measured on the Au/Si substrate and 1.35 ± 0.24 pm/V when measured on Al 2 O 3 /Si. This is on the same order as the in-plane coefficient d 11 reported for monolayer MoS 2 . Interpreting the out-of-plane response as a flexoelectric response, the effective flexoelectric coefficient, μ eff * , is estimated to be 0.10 nC/m. Analysis has ruled out the possibility of elastic and electrostatic forces contributing to the measured electromechanical response. X-ray photoelectron spectroscopy detected some contaminants on both MoS 2 and its substrate, but the background subtraction technique is expected to remove major contributions from the unwanted contaminants. These measurements provide evidence that monolayer MoS 2 exhibits an out-of-plane electromechanical response and our analysis offers estimates of the effective piezoelectric and flexoelectric coefficients.

  19. Piezoelectricity enhancement and bandstructure modification of atomic defect-mediated MoS2 monolayer.

    Science.gov (United States)

    Yu, Sheng; Rice, Quinton; Neupane, Tikaram; Tabibi, Bagher; Li, Qiliang; Seo, Felix Jaetae

    2017-09-13

    Piezoelectricity appears in the inversion asymmetric crystal that converts mechanical deformation to electricity. Two-dimensional transition metal dichalcolgenide (TMDC) monolayers exhibit the piezoelectric effect due to inversion asymmetry. The intrinsic piezoelectric coefficient (e 11 ) of MoS 2 is ∼298 pC m -1 . For the single atomic shift of Mo of 20% along the armchair direction, the piezoelectric coefficient (e 11 ) of MoS 2 with 5 × 5 unit cells was enhanced up to 18%, and significantly modified the band structure. The single atomic shift in the MoS 2 monolayer also induced new energy levels inside the forbidden bandgap. The defect-induced energy levels for a Mo atom shift along the armchair direction are relatively deeper than that for a S atom shift along the same direction. This indicates that the piezoelectricity and band structure of MoS 2 can be engineered by a single atomic shift in the monolayer with multi unit cells for piezo- and opto-electric applications.

  20. Anisotropic Raman scattering and mobility in monolayer 1T_d-ReS_2 controlled by strain engineering

    International Nuclear Information System (INIS)

    Zhou, Z.H.; Wei, B.C.; He, C.Y.; Min, Y.M.; Chen, C.H.; Liu, L.Z.; Wu, X.L.

    2017-01-01

    Highlights: • Symmetry breaking is achieved by strain that modulates the band structure and carrier population. • Mobility cunt-on rate can be enhanced by structural transformation. • The angle-dependent Raman spectrum of A_g-like, E_g-like and C_p models are used to discriminate and analysis structural anisotropy. • Strain engineering is a useful method to design the anisotropic Raman scattering and mobility. - Abstract: Regulation of electronic structure and mobility cut-on rate in two-dimensional transition metal dichalcogenides (TMDs) has attracted much attention because of its potential in electronic device design. The anisotropic Raman scattering and mobility cut-on rate of monolayer unique distorted-1T (1T_d) ReS_2 with external strain are determined theoretically based on the density function theory. The angle-dependent Raman spectrum of A_g-like, E_g-like and C_p models are used to discriminate and analysis structural anisotropy; the strain is exploited to adjust the structural symmetry and electronic structure of ReS_2 so as to enhance mobility cut-on rate to almost 6 times of the original value. Our results suggest the use of the strain engineering in high-quality semiconductor switch device.

  1. Exciton-dominant Electroluminescence from a Diode of Monolayer MoS2

    Science.gov (United States)

    2014-05-14

    injected electrons and holes, is a reliable technique to study exciton recombination processes in monolayer MoS2, including val- ley and spin excitation...temperature. After superimposing a white light scattering image of the de - vice, we find that the electroluminescence is localized at the edge of the...We find the emerged feature (labeled NX) peaks at 550 nm with energy of 2.255 eV. In low dimensional system, like monolayer MoS2, Coulomb interactions

  2. Theoretical Prediction of an Antimony-Silicon Monolayer (penta-Sb2Si): Band Gap Engineering by Strain Effect

    Science.gov (United States)

    Morshedi, Hosein; Naseri, Mosayeb; Hantehzadeh, Mohammad Reza; Elahi, Seyed Mohammad

    2018-04-01

    In this paper, using a first principles calculation, a two-dimensional structure of silicon-antimony named penta-Sb2Si is predicted. The structural, kinetic, and thermal stabilities of the predicted monolayer are confirmed by the cohesive energy calculation, phonon dispersion analysis, and first principles molecular dynamic simulation, respectively. The electronic properties investigation shows that the pentagonal Sb2Si monolayer is a semiconductor with an indirect band gap of about 1.53 eV (2.1 eV) from GGA-PBE (PBE0 hybrid functional) calculations which can be effectively engineered by employing external biaxial compressive and tensile strain. Furthermore, the optical characteristics calculation indicates that the predicted monolayer has considerable optical absorption and reflectivity in the ultraviolet region. The results suggest that a Sb2Si monolayer has very good potential applications in new nano-optoelectronic devices.

  3. Quantum mechanical rippling of a MoS2 monolayer controlled by interlayer bilayer coupling.

    Science.gov (United States)

    Zheng, Yi; Chen, Jianyi; Ng, M-F; Xu, Hai; Liu, Yan Peng; Li, Ang; O'Shea, Sean J; Dumitrică, T; Loh, Kian Ping

    2015-02-13

    Nanoscale corrugations are of great importance in determining the physical properties of two-dimensional crystals. However, the mechanical behavior of atomically thin films under strain is not fully understood. In this Letter, we show a layer-dependent mechanical response of molybdenum disulfide (MoS(2)) subject to atomistic-precision strain induced by 2H-bilayer island epitaxy. Dimensional crossover in the mechanical properties is evidenced by the formation of star-shaped nanoripple arrays in the first monolayer, while rippling instability is completely suppressed in the bilayer. Microscopic-level quantum mechanical simulations reveal that the nanoscale rippling is realized by the twisting of neighboring Mo-S bonds without modifying the chemical bond length, and thus invalidates the classical continuum mechanics. The formation of nanoripple arrays significantly changes the electronic and nanotribological properties of monolayer MoS(2). Our results suggest that quantum mechanical behavior is not unique for sp(2) bonding but general for atomic membranes under strain.

  4. (d -2 ) -Dimensional Edge States of Rotation Symmetry Protected Topological States

    Science.gov (United States)

    Song, Zhida; Fang, Zhong; Fang, Chen

    2017-12-01

    We study fourfold rotation-invariant gapped topological systems with time-reversal symmetry in two and three dimensions (d =2 , 3). We show that in both cases nontrivial topology is manifested by the presence of the (d -2 )-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of filled bands and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also present. The theory is extended to strongly interacting systems through the explicit construction of microscopic models having robust (d -2 )-dimensional edge states.

  5. The Interface between Gd and Monolayer MoS2: A First-Principles Study

    KAUST Repository

    Zhang, Xuejing

    2014-12-08

    We analyze the electronic structure of interfaces between two-, four- and six-layer Gd(0001) and monolayer MoS2 by first-principles calculations. Strong chemical bonds shift the Fermi energy of MoS2 upwards into the conduction band. At the surface and interface the Gd f states shift to lower energy and new surface/interface Gd d states appear at the Fermi energy, which are strongly hybridized with the Mo 4d states and thus lead to a high spin-polarization (ferromagnetically ordered Mo magnetic moments of 0.15 μB). Gd therefore is an interesting candidate for spin injection into monolayer MoS2.

  6. Strain-mediated electronic properties of pristine and Mn-doped GaN monolayers

    Science.gov (United States)

    Sharma, Venus; Srivastava, Sunita

    2018-04-01

    Graphene-like two-dimensional (2D) monolayer structures GaN has gained enormous amount of interest due to high thermal stability and inherent energy band gap for practical applications. First principles calculations are performed to investigate the electronic structure and strain-mediated electronic properties of pristine and Mn-doped GaN monolayer. Binding energy of Mn dopant at various adsorption site is found to be nearly same indicating these sites to be equally favorable for adsorption of foreign atom. Depending on the adsorption site, GaN monolayer can act as p-type or n-type magnetic semiconductor. The tensile strength of both pristine and doped GaN monolayer (∼24 GPa) at ultimate tensile strain of 34% is comparable with the tensile strength of graphene. The in-plane biaxial strain modulate the energy band gap of both pristine and doped-monolayer from direct to indirect gap semiconductor and finally retendered theme into metal at critical value of applied strain. These characteristics make GaN monolayer to be potential candidate for the future applications in tunable optoelectronics.

  7. Ultrafast photocurrents in monolayer MoS2

    Science.gov (United States)

    Parzinger, Eric; Wurstbauer, Ursula; Holleitner, Alexander W.

    Two-dimensional transition metal dichalcogenides such as MoS2 have emerged as interesting materials for optoelectronic devices. In particular, the ultrafast dynamics and lifetimes of photoexcited charge carriers have attracted great interest during the last years. We investigate the photocurrent response of monolayer MoS2 on a picosecond time scale utilizing a recently developed pump-probe spectroscopy technique based on coplanar striplines. We discuss the ultrafast dynamics within MoS2 including photo-thermoelectric currents and the impact of built-in fields due to Schottky barriers as well as the Fermi level pinning at the contact region. We acknowledge support by the ERC via Project 'NanoREAL', the DFG via excellence cluster 'Nanosystems Initiative Munich' (NIM), and through the TUM International Graduate School of Science and Engineering (IGSSE) and BaCaTeC.

  8. Extended Moment Formation in Monolayer WS2 Doped with 3d Transition-Metals

    KAUST Repository

    Singh, Nirpendra

    2016-08-30

    First-principles calculations with onsite Coulomb interaction and spin-orbit coupling are used to investigate the electronic structure of monolayer WS2 doped substitutionally with 3d transition-metals. While neither W vacancies nor strain induce spin polarization, we demonstrate an unprecedented tendency to extended moment formation under doping. The extended magnetic moments are characterized by dopant-specific spin density patterns with rich structural features involving the nearest neighbor W and S atoms.

  9. Exciton center-of-mass localization and dielectric environment effect in monolayer WS2

    Science.gov (United States)

    Hichri, Aïda; Ben Amara, Imen; Ayari, Sabrine; Jaziri, Sihem

    2017-06-01

    The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional semiconductors. They have attracted increasing attention due to their unique optical properties originate from neutral and charged excitons. In this paper, we study the strong localization of exciton center-of-mass motion within random potential fluctuations caused by the monolayer defects. Here, we report negatively charged exciton formation in monolayer TMDs, notably tungsten disulfide WS2. Our theory is based on an effective mass model of neutral and charged excitons, parameterized by ab-initio calculations. Taking into the account the strong correlation between the monolayer WS2 and the surrounding dielectric environment, our theoretical results are in good agreement with one-photon photoluminescence (PL) and reflectivity measurements. We also show that the exciton state with p-symmetry, experimentally observed by two-photon PL emission, is energetically below the 2s-state. We use the equilibrium mass action law, to quantify the relative weight of exciton and trion PL. We show that exciton and trion emission can be tuned and controlled by external parameters like temperature, pumping, and injection electrons. Finally, in comparison with experimental measurements, we show that exciton emission in monolayer tungsten dichalcogenides is substantially reduced. This feature suggests that free exciton can be trapped in disordered potential wells to form a localized exciton and therefore offers a route toward novel optical properties.

  10. One-pot synthesis of powder-form β-Ni(OH)2 monolayer nanosheets with high electrochemical performance

    International Nuclear Information System (INIS)

    Wang, Minmin; Ren, Wanzhong; Zhao, Yunan; Liu, Yan; Cui, Hongtao

    2013-01-01

    In this work, β-Ni(OH) 2 monolayer nanosheets, which had been thought to be unachievable, were successfully prepared for the first time by a one-pot strategy using epoxide as precipitation agent and sodium dodecyl sulfate (SDS) as surfactant. The characterization results indicate that the formation of monolayer morphology depends on the mediation of SDS molecules. The XRD patterns demonstrate the loose and defective packing of Ni(OH) 2 layers in the SDS intercalated samples. The disappearing of vibration band of free hydroxyl groups in the FTIR spectra suggests the interlayer separation resulted by SDS. The TEM and AFM images further confirm the formation of monolayer nanosheets. It is proposed that the in situ modification of the secondary growth unit of β-Ni(OH) 2 by SDS allows its two-dimensional anisotropic growth through steric hindrance of SDS molecules. In addition, this effect allows isolation of β-Ni(OH) 2 from solvent with keeping of monolayer nanosheet state in dry powder. The electrochemical measurement results indicate that β-Ni(OH) 2 monolayer nanosheets own much higher urea electrolysis performance than their corresponding multilayer structure

  11. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    Science.gov (United States)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  12. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm '2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  13. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  14. X-Ray Reflectometry of DMPS Monolayers on a Water Substrate

    Science.gov (United States)

    Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.

    2017-12-01

    The molecular structure of dimyristoyl phosphatidylserine (DMPS) monolayers on a water substrate in different phase states has been investigated by X-ray reflectometry with a photon energy of 8 keV. According to the experimental data, the transition from a two-dimensional expanded liquid state to a solid gel state (liquid crystal) accompanied by the ordering of the hydrocarbon tails C14H27 of the DMPS molecule occurs in the monolayer as the surface pressure rises. The monolayer thickness is 20 ± 3 and 28 ± 2 Å in the liquid and solid phases, respectively, with the deflection angle of the molecular tail axis from the normal to the surface in the gel phase being 26° ± 8°. At least a twofold decrease in the degree of hydration of the polar lipid groups also occurs under two-dimensional monolayer compression. The reflectometry data have been analyzed using two approaches: under the assumption about the presence of two layers with different electron densities in the monolayer and without any assumptions about the transverse surface structure. Both approaches demonstrate satisfactory agreement between themselves in describing the experimental results.

  15. Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures

    Science.gov (United States)

    Li, Guanpeng; Yao, Kailun; Gao, Guoying

    2018-01-01

    Using first-principle calculations combined with Boltzmann transport theory, we investigate the biaxial strain effect on the electronic and phonon thermal transport properties of a 1 T (CdI2-type) structural TiS2 monolayer, a recent experimental two-dimensional (2D) material. It is found that the electronic band structure can be effectively modulated and that the band gap experiences an indirect-direct-indirect transition with increasing tensile strain. The band convergence induced by the tensile strain increases the Seebeck coefficient and the power factor, while the lattice thermal conductivity is decreased under the tensile strain due to the decreasing group velocity and the increasing scattering chances between the acoustic phonon modes and the optical phonon modes, which together greatly increase the thermoelectric performance. The figure of merit can reach 0.95 (0.82) at an 8 percent tensile strain for the p-type (n-type) doping, which is much larger than that without strain. The present work suggests that the TiS2 monolayer is a good candidate for 2D thermoelectric materials, and that biaxial strain is a powerful tool with which to enhance thermoelectric performance.

  16. Phase transitions in polymer monolayers

    NARCIS (Netherlands)

    Deschênes, Louise; Lyklema, J.; Danis, Claude; Saint-Germain, François

    2015-01-01

    In this paper we investigate the application of the two-dimensional Clapeyron law to polymer monolayers. This is a largely unexplored area of research. The main problems are (1) establishing if equilibrium is reached and (2) if so, identifying and defining phases as functions of the temperature.

  17. DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting

    Science.gov (United States)

    Ju, Lin; Dai, Ying; Wei, Wei; Li, Mengmeng; Huang, Baibiao

    2018-03-01

    Recently, extensive attention has been paid to the direct Z-scheme systems for photocatalytic water splitting where carriers migrate directly between the two semiconductors without a redox mediator. In the present work, the electronic structure and related properties of two-dimensional (2D) van de Waals (vdW) GeS/WX2 (X = O, S, Se, Te) heterojunction are systematically investigated by first-principles calculations. Our results demonstrate that, the GeS/WS2 heterojunction could form a direct Z-scheme system for photocatalytic water splitting, whereas the GeS/WX2 (X = O, Se, Te) can't, because of their respective unsuitable electronic structures. For the GeS/WS2 heterojunction, the GeS and WS2 monolayers serve as photocatalysts for the hydrogen evolution reactionand oxygen evolution reaction, respectively. The internal electric field induced by the electron transfer at the interface can promote the separation of photo-generated charge carriers and formation of the interface Z-scheme electron transfer. Remarkably, the designed GeS/WS2 heterojunction not only enhances the hydrogen production activity of GeS and the oxygen production ability of WS2 but also improves the light absorption of the two monolayers by reducing the band gaps. Moreover, it is found that narrowing the interlayer distance could enhance the internal electric field, improving the photocatalytic ability of the vdW heterojunction. This work provides fundamental insights for further design and preparation of emergent metal dichalcogenide catalysts, beneficial for the development in clean energy.

  18. Atomic Scale Simulation on the Anti-Pressure and Friction Reduction Mechanisms of MoS2 Monolayer

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-04-01

    Full Text Available MoS2 nanosheets can be used as solid lubricants or additives of lubricating oils to reduce friction and resist wear. However, the atomic scale mechanism still needs to be illustrated. Herein, molecular simulations on the indentation and scratching process of MoS2 monolayer supported by Pt(111 surface were conducted to study the anti-pressure and friction reduction mechanisms of the MoS2 monolayer. Three deformation stages of Pt-supported MoS2 monolayer were found during the indentation process: elastic deformation, plastic deformation and finally, complete rupture. The MoS2 monolayer showed an excellent friction reduction effect at the first two stages, as a result of enhanced load bearing capacity and reduced deformation degree of the substrate. Unlike graphene, rupture of the Pt-supported MoS2 monolayer was related primarily to out-of-plane compression of the monolayer. These results provide a new insight into the relationship between the mechanical properties and lubrication properties of 2D materials.

  19. Three-dimensional isotropic T2-weighted cervical MRI at 3 T: Comparison with two-dimensional T2-weighted sequences

    International Nuclear Information System (INIS)

    Kwon, J.W.; Yoon, Y.C.; Choi, S.-H.

    2012-01-01

    Aim: To compare three-dimensional (3D) isotropic T2-weighted magnetic resonance imaging (MRI) sequences and reformation with two-dimensional (2D) T2-weighted sequences regarding image quality of the cervical spine at 3 T. Materials and methods: A phantom study was performed using a water-filled cylinder. The signal-to-noise and image homogeneity were evaluated. Fourteen (n = 14) volunteers were examined at 3 T using 3D isotropic T2-weighted sagittal and conventional 2D T2-weighted sagittal, axial, and oblique sagittal MRI. Multiplanar reformation (MPR) of the 3D T2-weighted sagittal dataset was performed simultaneously with image evaluation. In addition to artefact assessment, the visibility of anatomical structures in the 3D and 2D sequences was qualitatively assessed by two radiologists independently. Cohen’s kappa and Wilcoxon signed rank test were used for the statistical analysis. Result: The 3D isotropic T2-weighted sequence resulted in the highest signal-to-noise ratio (SNR) and lowest non-uniformity (NU) among the sequences in the phantom study. Quantitative evaluation revealed lower NU values of the cerebrospinal fluid (CSF) and muscles in 2D T2-weighted sagittal sequences compared to the 3D volume isotropic turbo spin-echo acquisition (VISTA) sequence. The other NU values revealed no statistically significant difference between the 2D turbo spin-echo (TSE) and 3D VISTA sequences (0.059 < p < 0.959). 3D VISTA images showed significantly fewer CSF flow artefacts (p < 0.001) and better delineated intradural nerve rootlets (p = 0.001) and neural foramina (p = 0.016) compared to 2D sequences. Conclusion: A 3D T2 weighted sequence is superior to conventional 2D sequences for the delineation of intradural nerve rootlets and neural foramina and is less affected by CSF flow artefacts.

  20. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    KAUST Repository

    Kim, J.

    2014-12-04

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  1. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    KAUST Repository

    Kim, J.; Hong, X.; Jin, C.; Shi, S.-F.; Chang, C.-Y. S.; Chiu, Ming-Hui; Li, Lain-Jong; Wang, F.

    2014-01-01

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  2. Mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the in-plane biaxial strain

    Science.gov (United States)

    Behzad, Somayeh

    2017-11-01

    Recently, a new two-dimensional (2D) material, the 2D BC3 crystal, has been synthesized. Here, the mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the biaxial strain is investigated. The electronic structure calculations showed that the strain-free monolayer and bilayer BC3 are indirect band-gap semiconductors with band gap of 0.62 and 0.29 eV, respectively, where the conduction band minimum (CBM) is at the M point whereas the valence band maximum (VBM) is at the Γ point. The doubly degenerated bands in the monolayer BC3 are splitted in the bilayer BC3 due to the interlayer interactions. Both monolayer and bilayer BC3 remain indirect gap semiconductor under biaxial tensile strain and their band gaps increases with strain. On the other hand, by increasing the magnitude of tensile strain, the optical spectra shift to the lower energies and the static dielectric constant increases. These findings suggest the potential of strain-engineered 2D BC3 in electronic and optoelectronic device applications.

  3. Double Dirac point semimetal in 2D material: Ta2Se3

    Science.gov (United States)

    Ma, Yandong; Jing, Yu; Heine, Thomas

    2017-06-01

    Here, we report by first-principles calculations one new stable 2D Dirac material, Ta2Se3 monolayer. For this system, stable layered bulk phase exists, and exfoliation should be possible. Ta2Se3 monolayer is demonstrated to support two Dirac points close to the Fermi level, achieving the exotic 2D double Dirac semimetal. And like 2D single Dirac and 2D node-line semimetals, spin-orbit coupling could introduce an insulating state in this new class of 2D Dirac semimetals. Moreover, the Dirac feature in this system is layer-dependent and a metal-to-insulator transition is identified in Ta2Se3 when reducing the layer-thickness from bilayer to monolayer. These findings are of fundamental interests and of great importance for nanoscale device applications.

  4. First-principles study of adsorption-induced magnetic properties of InSe monolayers

    Science.gov (United States)

    Fu, Zhaoming; Yang, Bowen; Zhang, Na; Ma, Dongwei; Yang, Zongxian

    2018-04-01

    In this work we studied the adsorption-induced magnetic behaviors on the two-dimensional InSe monolayer. Six kinds of adatoms (H, B, C, N, O and F) are taken into account. It is found that the InSe with adsorbing C and F have nonzero magnetic moments and good stability. Importantly, the magnetism of C and F modified InSe monolayers completely comes from p electrons of adatoms and substrates. The strength of magnetic exchange interaction can be controlled by changing the coverage of adsorbates. This p-electron magnetic material is thought to have obvious advantages compared to conventional d- or f-electron magnets. Our research is meaningful for practical applications in spintronic electronics and two dimensional magnetic semiconductors.

  5. Novel target design algorithm for two-dimensional optical storage (TwoDOS)

    NARCIS (Netherlands)

    Huang, Li; Chong, T.C.; Vijaya Kumar, B.V.K.; Kobori, H.

    2004-01-01

    In this paper we introduce the Hankel transform based channel model of Two-Dimensional Optical Storage (TwoDOS) system. Based on this model, the two-dimensional (2D) minimum mean-square error (MMSE) equalizer has been derived and applied to some simple but common cases. The performance of the 2D

  6. The simulation of a two-dimensional (2D) transport problem in a rectangular region with Lattice Boltzmann method with two-relaxation-time

    Science.gov (United States)

    Sugiyanto, S.; Hardyanto, W.; Marwoto, P.

    2018-03-01

    Transport phenomena are found in many problems in many engineering and industrial sectors. We analyzed a Lattice Boltzmann method with Two-Relaxation Time (LTRT) collision operators for simulation of pollutant moving through the medium as a two-dimensional (2D) transport problem in a rectangular region model. This model consists of a 2D rectangular region with 54 length (x), 27 width (y), and it has isotropic homogeneous medium. Initially, the concentration is zero and is distributed evenly throughout the region of interest. A concentration of 1 is maintained at 9 < y < 18, whereas the concentration of zero is maintained at 0 < y < 9 and 18 < y < 27. A specific discharge (Darcy velocity) of 1.006 is assumed. A diffusion coefficient of 0.8333 is distributed uniformly with a uniform porosity of 0.35. A computer program is written in MATLAB to compute the concentration of pollutant at any specified place and time. The program shows that LTRT solution with quadratic equilibrium distribution functions (EDFs) and relaxation time τa=1.0 are in good agreement result with other numerical solutions methods such as 3DLEWASTE (Hybrid Three-dimensional Lagrangian-Eulerian Finite Element Model of Waste Transport Through Saturated-Unsaturated Media) obtained by Yeh and 3DFEMWATER-LHS (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media with Latin Hypercube Sampling) obtained by Hardyanto.

  7. Coulomb Blockade in a Two-Dimensional Conductive Polymer Monolayer.

    Science.gov (United States)

    Akai-Kasaya, M; Okuaki, Y; Nagano, S; Mitani, T; Kuwahara, Y

    2015-11-06

    Electronic transport was investigated in poly(3-hexylthiophene-2,5-diyl) monolayers. At low temperatures, nonlinear behavior was observed in the current-voltage characteristics, and a nonzero threshold voltage appeared that increased with decreasing temperature. The current-voltage characteristics could be best fitted using a power law. These results suggest that the nonlinear conductivity can be explained using a Coulomb blockade (CB) mechanism. A model is proposed in which an isotropic extended charge state exists, as predicted by quantum calculations, and percolative charge transport occurs within an array of small conductive islands. Using quantitatively evaluated capacitance values for the islands, this model was found to be capable of explaining the observed experimental data. It is, therefore, suggested that percolative charge transport based on the CB effect is a significant factor giving rise to nonlinear conductivity in organic materials.

  8. Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

    International Nuclear Information System (INIS)

    David, Sabrina N.; Zhai, Yao; Zande, Arend M. van der; O'Brien, Kevin; Huang, Pinshane Y.; Chenet, Daniel A.; Hone, James C.; Zhang, Xiang; Yin, Xiaobo

    2015-01-01

    Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques

  9. Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition Metal Dichalcogenides

    KAUST Repository

    Aljarb, Areej

    2017-08-07

    Two-dimensional (2D) transition metal dichalcogenide (TMDCs) semiconductors are important for next-generation electronics and optoelectronics. Given the difficulty in growing large single crystals of 2D TMDC materials, understanding the factors affecting the seed formation and orientation becomes an important issue for controlling the growth. Here, we systematically study the growth of molybdenum disulfide (MoS2) monolayer on c-plane sapphire with chemical vapor deposition (CVD) to discover the factors controlling their orientation. We show that the concentration of precursors, i.e., the ratio between sulfur and molybdenum oxide (MoO3), plays a key role in the size and orientation of seeds, subsequently controlling the orientation of MoS2 monolayers. High S/MoO3 ratio is needed in the early stage of growth to form small seeds that can align easily to the substrate lattice structures while the ratio should be decreased to enlarge the size of the monolayer at the next stage of the lateral growth. Moreover, we show that the seeds are actually crystalline MoS2 layers as revealed by high-resolution transmission electron microscopy. There exist two preferred orientations (0° or 60°) registered on sapphire, confirmed by our density functional theory (DFT) simulation. This report offers a facile technique to grow highly aligned 2D TMDCs and contributes to knowledge advancement in growth mechanism.

  10. One-pot synthesis of powder-form {beta}-Ni(OH){sub 2} monolayer nanosheets with high electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minmin; Ren, Wanzhong; Zhao, Yunan; Liu, Yan; Cui, Hongtao, E-mail: htcui@ytu.edu.cn [Yantai University, Shandong Provincial Engineering Research Center for Light Hydrocarbon Comprehensive Utilization, College of Chemistry and Chemical Engineering (China)

    2013-08-15

    In this work, {beta}-Ni(OH){sub 2} monolayer nanosheets, which had been thought to be unachievable, were successfully prepared for the first time by a one-pot strategy using epoxide as precipitation agent and sodium dodecyl sulfate (SDS) as surfactant. The characterization results indicate that the formation of monolayer morphology depends on the mediation of SDS molecules. The XRD patterns demonstrate the loose and defective packing of Ni(OH){sub 2} layers in the SDS intercalated samples. The disappearing of vibration band of free hydroxyl groups in the FTIR spectra suggests the interlayer separation resulted by SDS. The TEM and AFM images further confirm the formation of monolayer nanosheets. It is proposed that the in situ modification of the secondary growth unit of {beta}-Ni(OH){sub 2} by SDS allows its two-dimensional anisotropic growth through steric hindrance of SDS molecules. In addition, this effect allows isolation of {beta}-Ni(OH){sub 2} from solvent with keeping of monolayer nanosheet state in dry powder. The electrochemical measurement results indicate that {beta}-Ni(OH){sub 2} monolayer nanosheets own much higher urea electrolysis performance than their corresponding multilayer structure.

  11. Anisotropic Raman scattering and mobility in monolayer 1T{sub d}-ReS{sub 2} controlled by strain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.H.; Wei, B.C.; He, C.Y.; Min, Y.M.; Chen, C.H.; Liu, L.Z., E-mail: lzliu@nju.edu.cn; Wu, X.L., E-mail: hkxlwu@nju.edu.cn

    2017-05-15

    Highlights: • Symmetry breaking is achieved by strain that modulates the band structure and carrier population. • Mobility cunt-on rate can be enhanced by structural transformation. • The angle-dependent Raman spectrum of A{sub g}-like, E{sub g}-like and C{sub p} models are used to discriminate and analysis structural anisotropy. • Strain engineering is a useful method to design the anisotropic Raman scattering and mobility. - Abstract: Regulation of electronic structure and mobility cut-on rate in two-dimensional transition metal dichalcogenides (TMDs) has attracted much attention because of its potential in electronic device design. The anisotropic Raman scattering and mobility cut-on rate of monolayer unique distorted-1T (1T{sub d}) ReS{sub 2} with external strain are determined theoretically based on the density function theory. The angle-dependent Raman spectrum of A{sub g}-like, E{sub g}-like and C{sub p} models are used to discriminate and analysis structural anisotropy; the strain is exploited to adjust the structural symmetry and electronic structure of ReS{sub 2} so as to enhance mobility cut-on rate to almost 6 times of the original value. Our results suggest the use of the strain engineering in high-quality semiconductor switch device.

  12. Enhanced job control language procedures for the SIMSYS2D two-dimensional water-quality simulation system

    Science.gov (United States)

    Karavitis, G.A.

    1984-01-01

    The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)

  13. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

    Science.gov (United States)

    Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.

    2018-01-01

    Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

  14. Two-dimensional condensation of pyrimidine oligonucleotides during their self-assemblies at mercury based surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hason, Stanislav [Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i. Kralovopolska 135, CZ-612 65 Brno (Czech Republic)], E-mail: hasons@ibp.cz; Vetterl, Vladimir [Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i. Kralovopolska 135, CZ-612 65 Brno (Czech Republic); Fojta, Miroslav [Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i. Kralovopolska 135, CZ-612 65 Brno (Czech Republic)], E-mail: fojta@ibp.cz

    2008-02-15

    For the first time it is shown that homopyrimidine oligodeoxynucleotides (ODNs) adsorbed at mercury or amalgam electrode surface can condensate upon applying negative potentials (around -1.35 V vs. Ag/AgCl/3M KCl). This 2D condensation resulted in formation of capacitance pits on the C-E curves resembling those observed earlier with monomeric nucleic acid bases, nucleosides and nucleotides. Differences in behavior of the condensed layers of dT{sub 30} and dC{sub 30} ODNs, reflecting different physico-chemical and electrochemical properties of thymine and cytosine, were observed. Formation of the ODN condensed film involved reorientation of the oligonucleotide molecules firmly adsorbed at the electrode and took place even in the absence of any ODN in the bulk of solution. Homopurine ODNs did not form these two-dimensional (2D) condensed monolayers under the same conditions. A preliminary thermodynamic analysis of the condensed ODN layers is presented.

  15. How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2

    DEFF Research Database (Denmark)

    Hüser, Falco; Olsen, Thomas; Thygesen, Kristian Sommer

    2013-01-01

    We present first-principles many-body calculations of the dielectric constant, quasiparticle band structure, and optical absorption spectrum of monolayer MoS2 using a supercell approach. As the separation between the periodically repeated layers is increased, the dielectric function of the layer...

  16. The structure of a lipid-water lamellar phase containing two types of lipid monolayers

    International Nuclear Information System (INIS)

    Ranck, J.L.; Luzzati, V.; Zaccai, G.

    1980-01-01

    One lamellar phase, observed in the mitochondrial lipids-water system at low temperature (ca 253 K) and at low water content (ca 15%), contains four lipid monolayers in its unit cell, two of type α and two of type β. Previous X-ray scattering studies of this phase led to an ambiguity: the phase could contain either two homogeneous bilayers, one α and one β, or two mixed bilayers, each formed by an α and a β monolayer. A solution to this problem was sought in a neutron scattering study as a function of the D 2 O/H 2 O ratio. Because of limited resolution, straightforward analysis of the neutron scattering data leads also to ambiguous results. Using a more sophisticated analysis based upon the zeroth- and second-order moments of the Patterson peaks relevant to the exchangeable components, it is shown that the weight of the evidence is in favour of a structure containing mixed bilayers. (Auth.)

  17. Growth of 2D Materials and Application in Electrochemical Energy Conversion

    Science.gov (United States)

    Ye, Gonglan

    The discovery of graphene in 2004 has generated numerous interests among scientists for graphene's versatile potentials. The enthusiasm for graphene has recently been extended to other members of two-dimensional (2D) materials for applications in electronics, optoelectronics, and catalysis. Different from graphene, atomically-thin transition metal dichalcogenides (TMDs) have varied band gaps and would benefit for applications in the semiconductor industry. One of the promising applications of 2D TMDs is for 2D integrated circuits to replace current Si based electronics. In addition to electronic applications, 2D materials are also good candidates for electrochemical energy storage and conversion due to their large surface area and atomic thickness. This thesis mainly focuses on the synthesis of 2D materials and their application in energy conversion. Firstly, we focus on the synthesis of two-dimensional Tin Disulfide (SnS2). SnS2 is considered to be a novel material in 2D family. 2D SnS2 has a large band gap ( 2.8 eV) and high carrier mobility, which makes it a potential applicant for electronics. Monolayer SnS2 with large scale and high crystal quality was successfully synthesized by chemical vapor deposition (CVD), and its performance as a photodetector was examined. The next chapter demonstrated a generic method for growing millimeter-scale single crystals as well as wafer-scale thin films of TMDs. This generic method was obtained by studying the precursors' behavior and the flow dynamics during the CVD process of growing MoSe2, and was extended to other TMD layers such as millimeter-scale WSe2 single crystals. Understanding the growth processes of high quality large area monolayers of TMDs is crucial for further fundamental research as well as future development for scalable complex electronics. Besides the synthesis of 2D materials with high qualities, we further explored the relationship between defects and electrochemical properties. By directly observing

  18. Multiple-canister flow and transport code in 2-dimensional space. MCFT2D: user's manual

    International Nuclear Information System (INIS)

    Lim, Doo-Hyun

    2006-03-01

    A two-dimensional numerical code, MCFT2D (Multiple-Canister Flow and Transport code in 2-Dimensional space), has been developed for groundwater flow and radionuclide transport analyses in a water-saturated high-level radioactive waste (HLW) repository with multiple canisters. A multiple-canister configuration and a non-uniform flow field of the host rock are incorporated in the MCFT2D code. Effects of heterogeneous flow field of the host rock on migration of nuclides can be investigated using MCFT2D. The MCFT2D enables to take into account the various degrees of the dependency of canister configuration for nuclide migration in a water-saturated HLW repository, while the dependency was assumed to be either independent or perfectly dependent in previous studies. This report presents features of the MCFT2D code, numerical simulation using MCFT2D code, and graphical representation of the numerical results. (author)

  19. Role of defects in tuning the electronic properties of monolayer WS{sub 2} grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Zheliuk, Oleksandr; Lu, Jianming; Ye, Jianting [Zernike Institute for Advanced Materials, University of Groningen, Groningen (Netherlands); Gordiichuk, Pavlo [Zernike Institute for Advanced Materials, University of Groningen, Groningen (Netherlands); Department of Chemistry, Northwestern University, Evanston, IL (United States); Herrmann, Andreas [Zernike Institute for Advanced Materials, University of Groningen, Groningen (Netherlands); Molecular Biophysics, Department of Biology, Humboldt-Universitaet Berlin (Germany)

    2017-10-15

    Two-dimensional transition metal dichalcogenides have already attracted enormous research interest. To understand the dependence of electronic properties on the quality and defect morphology is vital for synthesizing high quality materials and the realization of functional devices. Here, we demonstrate the mapping of the conductive variations by conducting atomic force microscopy (C-AFM) in the monolayer tungsten disulfide (WS{sub 2}) grown by chemical vapor deposition. The electronic properties are strongly affected by the formation of vacancies in monolayer WS{sub 2} during growth, which is also verified by the photoluminescence. This spatial study of defects provides opportunities for optimization of the growth process for enhancing devices performance of TMDs monolayers. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Two-Stage Regularized Linear Discriminant Analysis for 2-D Data.

    Science.gov (United States)

    Zhao, Jianhua; Shi, Lei; Zhu, Ji

    2015-08-01

    Fisher linear discriminant analysis (LDA) involves within-class and between-class covariance matrices. For 2-D data such as images, regularized LDA (RLDA) can improve LDA due to the regularized eigenvalues of the estimated within-class matrix. However, it fails to consider the eigenvectors and the estimated between-class matrix. To improve these two matrices simultaneously, we propose in this paper a new two-stage method for 2-D data, namely a bidirectional LDA (BLDA) in the first stage and the RLDA in the second stage, where both BLDA and RLDA are based on the Fisher criterion that tackles correlation. BLDA performs the LDA under special separable covariance constraints that incorporate the row and column correlations inherent in 2-D data. The main novelty is that we propose a simple but effective statistical test to determine the subspace dimensionality in the first stage. As a result, the first stage reduces the dimensionality substantially while keeping the significant discriminant information in the data. This enables the second stage to perform RLDA in a much lower dimensional subspace, and thus improves the two estimated matrices simultaneously. Experiments on a number of 2-D synthetic and real-world data sets show that BLDA+RLDA outperforms several closely related competitors.

  1. Layer-dependent anisotropic electronic structure of freestanding quasi-two-dimensional Mo S 2

    KAUST Repository

    Hong, Jinhua

    2016-02-29

    The anisotropy of the electronic transition is a well-known characteristic of low-dimensional transition-metal dichalcogenides, but their layer-thickness dependence has not been properly investigated experimentally until now. Yet, it not only determines the optical properties of these low-dimensional materials, but also holds the key in revealing the underlying character of the electronic states involved. Here we used both angle-resolved electron energy-loss spectroscopy and spectral analysis of angle-integrated spectra to study the evolution of the anisotropic electronic transition involving the low-energy valence electrons in the freestanding MoS2 layers with different thicknesses. We are able to demonstrate that the well-known direct gap at 1.8 eV is only excited by the in-plane polarized field while the out-of-plane polarized optical gap is 2.4 ± 0.2 eV in monolayer MoS2. This contrasts with the much smaller anisotropic response found for the indirect gap in the few-layer MoS2 systems. In addition, we determined that the joint density of states associated with the indirect gap transition in the multilayer systems and the corresponding indirect transition in the monolayer case has a characteristic three-dimensional-like character. We attribute this to the soft-edge behavior of the confining potential and it is an important factor when considering the dynamical screening of the electric field at the relevant excitation energies. Our result provides a logical explanation for the large sensitivity of the indirect transition to thickness variation compared with that for the direct transition, in terms of quantum confinement effect.

  2. Layer-dependent anisotropic electronic structure of freestanding quasi-two-dimensional Mo S 2

    KAUST Repository

    Hong, Jinhua; Li, Kun; Jin, Chuanhong; Zhang, Xixiang; Zhang, Ze; Yuan, Jun

    2016-01-01

    The anisotropy of the electronic transition is a well-known characteristic of low-dimensional transition-metal dichalcogenides, but their layer-thickness dependence has not been properly investigated experimentally until now. Yet, it not only determines the optical properties of these low-dimensional materials, but also holds the key in revealing the underlying character of the electronic states involved. Here we used both angle-resolved electron energy-loss spectroscopy and spectral analysis of angle-integrated spectra to study the evolution of the anisotropic electronic transition involving the low-energy valence electrons in the freestanding MoS2 layers with different thicknesses. We are able to demonstrate that the well-known direct gap at 1.8 eV is only excited by the in-plane polarized field while the out-of-plane polarized optical gap is 2.4 ± 0.2 eV in monolayer MoS2. This contrasts with the much smaller anisotropic response found for the indirect gap in the few-layer MoS2 systems. In addition, we determined that the joint density of states associated with the indirect gap transition in the multilayer systems and the corresponding indirect transition in the monolayer case has a characteristic three-dimensional-like character. We attribute this to the soft-edge behavior of the confining potential and it is an important factor when considering the dynamical screening of the electric field at the relevant excitation energies. Our result provides a logical explanation for the large sensitivity of the indirect transition to thickness variation compared with that for the direct transition, in terms of quantum confinement effect.

  3. Two-dimensional distribution of carbon nanotubes in copper flake powders

    Energy Technology Data Exchange (ETDEWEB)

    Tan Zhanqiu; Li Zhiqiang; Fan Genlian; Li Wenhuan; Liu Qinglei; Zhang Wang; Zhang Di, E-mail: lizhq@sjtu.edu.cn, E-mail: zhangdi@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-06-03

    We report an approach of flake powder metallurgy to the uniform, two-dimensional (2D) distribution of carbon nanotubes (CNTs) in Cu flake powders. It consists of the preparation of Cu flakes by ball milling in an imidazoline derivative (IMD) aqueous solution, surface modification of Cu flakes with polyvinyl alcohol (PVA) hydrosol and adsorption of CNTs from a CNT aqueous suspension. During ball milling, a hydrophobic monolayer of IMD is adsorbed on the surface of the Cu flakes, on top of which a hydrophilic PVA film is adsorbed subsequently. This PVA film could further interact with the carboxyl-group functionalized CNTs and act to lock the CNTs onto the surfaces of the Cu flakes. The CNT volume fraction is controlled easily by adjusting the concentration/volume of CNT aqueous suspension and Cu flake thickness. The as-prepared CNT/Cu composite flakes will serve as suitable building blocks for the self-assembly of CNT/Cu laminated composites that enable the full potential of 2D distributed CNTs to achieve high thermal conductivity.

  4. Two-dimensional distribution of carbon nanotubes in copper flake powders

    International Nuclear Information System (INIS)

    Tan Zhanqiu; Li Zhiqiang; Fan Genlian; Li Wenhuan; Liu Qinglei; Zhang Wang; Zhang Di

    2011-01-01

    We report an approach of flake powder metallurgy to the uniform, two-dimensional (2D) distribution of carbon nanotubes (CNTs) in Cu flake powders. It consists of the preparation of Cu flakes by ball milling in an imidazoline derivative (IMD) aqueous solution, surface modification of Cu flakes with polyvinyl alcohol (PVA) hydrosol and adsorption of CNTs from a CNT aqueous suspension. During ball milling, a hydrophobic monolayer of IMD is adsorbed on the surface of the Cu flakes, on top of which a hydrophilic PVA film is adsorbed subsequently. This PVA film could further interact with the carboxyl-group functionalized CNTs and act to lock the CNTs onto the surfaces of the Cu flakes. The CNT volume fraction is controlled easily by adjusting the concentration/volume of CNT aqueous suspension and Cu flake thickness. The as-prepared CNT/Cu composite flakes will serve as suitable building blocks for the self-assembly of CNT/Cu laminated composites that enable the full potential of 2D distributed CNTs to achieve high thermal conductivity.

  5. Two-dimensional distribution of carbon nanotubes in copper flake powders.

    Science.gov (United States)

    Tan, Zhanqiu; Li, Zhiqiang; Fan, Genlian; Li, Wenhuan; Liu, Qinglei; Zhang, Wang; Zhang, Di

    2011-06-03

    We report an approach of flake powder metallurgy to the uniform, two-dimensional (2D) distribution of carbon nanotubes (CNTs) in Cu flake powders. It consists of the preparation of Cu flakes by ball milling in an imidazoline derivative (IMD) aqueous solution, surface modification of Cu flakes with polyvinyl alcohol (PVA) hydrosol and adsorption of CNTs from a CNT aqueous suspension. During ball milling, a hydrophobic monolayer of IMD is adsorbed on the surface of the Cu flakes, on top of which a hydrophilic PVA film is adsorbed subsequently. This PVA film could further interact with the carboxyl-group functionalized CNTs and act to lock the CNTs onto the surfaces of the Cu flakes. The CNT volume fraction is controlled easily by adjusting the concentration/volume of CNT aqueous suspension and Cu flake thickness. The as-prepared CNT/Cu composite flakes will serve as suitable building blocks for the self-assembly of CNT/Cu laminated composites that enable the full potential of 2D distributed CNTs to achieve high thermal conductivity.

  6. Thermodynamic and structural study of two-dimensional phase transitions and orientational order in films of linear molecules with a large quadrupole moment, physi-sorbed on lamellar substrates

    International Nuclear Information System (INIS)

    Terlain, Anne

    1984-01-01

    The 2D (two-dimensional) phase transitions and orientational order in N 2 O, CO 2 , C 2 N 2 and C 2 D 2 films physi-sorbed on the (0001) face of graphite or lamellar halides, were studied experimentally by adsorption isotherm measurements and neutron diffraction. The thermodynamic functions derived from sets of isotherms suggest that crystal monolayers of N 2 O, CO 2 , and C 2 N 2 adsorbed on graphite are orientationally ordered and that the quadrupolar interaction stabilizes the 2D crystal with respect to the 2D liquid. This stabilization leads to an increase in the 2D triple point temperature, T 2t as compared with the 2D critical temperature T 2c . For C 2 N 2 this stabilization is so pronounced that T 2t becomes virtually higher than T 2c , and the phase diagram qualitatively different, having no gas-liquid coexistence domain. From a neutron diffraction experiment we have determined the crystal structure of the C 2 N 2 monolayer. It supports our interpretation of the monolayer phase diagram. In N 2 O, CO 2 , C 2 N 2 films adsorbed on graphite the molecules lie flat on the surface and their orientational order hence differs from that in the bulk crystals resulting in a loss of adsorbate-adsorbate interaction energy. Beyond a given film thickness this loss will not be compensated by the adsorbate-substrate interaction and the film will stop growing. For most of the films studied a partial wetting transition is observed at which the film thickness increases discontinuously with temperature. Although C 2 N 2 and C 2 D 2 monolayers on graphite have comparable adsorption energies, only C 2 D 2 is adsorbed on lamellar halides. This adsorption is possible only because the monolayer has a large entropy due to orientational disorder. For C 2 N 2 , which has a higher moment of inertia, such an orientational disorder cannot exist. (author) [fr

  7. Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides.

    Science.gov (United States)

    Zhang, Kehao; Jariwala, Bhakti; Li, Jun; Briggs, Natalie C; Wang, Baoming; Ruzmetov, Dmitry; Burke, Robert A; Lerach, Jordan O; Ivanov, Tony G; Haque, Md; Feenstra, Randall M; Robinson, Joshua A

    2017-12-21

    Two and three-dimensional (2D/3D) hybrid materials have the potential to advance communication and sensing technologies by enabling new or improved device functionality. To date, most 2D/3D hybrid devices utilize mechanical exfoliation or post-synthesis transfer, which can be fundamentally different from directly synthesized layers that are compatible with large scale industrial needs. Therefore, understanding the process/property relationship of synthetic heterostructures is priority for industrially relevant material architectures. Here we demonstrate the scalable synthesis of molybdenum disulfide (MoS 2 ) and tungsten diselenide (WSe 2 ) via metal organic chemical vapor deposition (MOCVD) on gallium nitride (GaN), and elucidate the structure, chemistry, and vertical transport properties of the 2D/3D hybrid. We find that the 2D layer thickness and transition metal dichalcogenide (TMD) choice plays an important role in the transport properties of the hybrid structure, where monolayer TMDs exhibit direct tunneling through the layer, while transport in few layer TMDs on GaN is dominated by p-n diode behavior and varies with the 2D/3D hybrid structure. Kelvin probe force microscopy (KPFM), low energy electron microscopy (LEEM) and X-ray photoelectron spectroscopy (XPS) reveal a strong intrinsic dipole and charge transfer between n-MoS 2 and p-GaN, leading to a degraded interface and high p-type leakage current. Finally, we demonstrate integration of heterogeneous 2D layer stacks of MoS 2 /WSe 2 on GaN with atomically sharp interface. Monolayer MoS 2 /WSe 2 /n-GaN stacks lead to near Ohmic transport due to the tunneling and non-degenerated doping, while few layer stacking is Schottky barrier dominated.

  8. Two-dimensional superconducting state of monolayer Pb films grown on GaAs(110) in a strong parallel magnetic field.

    Science.gov (United States)

    Sekihara, Takayuki; Masutomi, Ryuichi; Okamoto, Tohru

    2013-08-02

    Two-dimensional (2D) superconductivity was studied by magnetotransport measurements on single-atomic-layer Pb films on a cleaved GaAs(110) surface. The superconducting transition temperature shows only a weak dependence on the parallel magnetic field up to 14T, which is higher than the Pauli paramagnetic limit. Furthermore, the perpendicular-magnetic-field dependence of the sheet resistance is almost independent of the presence of the parallel field component. These results are explained in terms of an inhomogeneous superconducting state predicted for 2D metals with a large Rashba spin splitting.

  9. Chain Stretching and Order-Disorder Transitions in Block Copolymer Monolayers and Multilayers

    Science.gov (United States)

    Kramer, Edward J.; Mishra, Vindhya; Stein, Gila E.; Sohn, Karen E.; Hur, Sumi; Fredrickson, Glenn H.; Cochran, Eric W.

    2009-03-01

    Both monolayers of block copolymer cylinders and spheres undergo order to disorder transitions (ODT) at temperatures well below those of the bulk. Monolayers of PS-b-P2VP cylinders undergo a ``nematic'' to ``isotropic'' transition at temperatures about 20 K below the bulk ODT while monolayers of PS-b-P2VP with P2VP spheres undergo a 2D crystal to hexatic transition at least 10 K below the bulk ODT. Bilayers of each structure disorder at temperatures well above that of the monolayers. While one is tempted to attribute all of the difference to the fact that ordered monolayers are quasi 2 dimensional while bilayers are not, an alternative explanation exists. In the cylinder monolayer the corona PS chains must stretch to fill a nearly square cross-section domain rather than a hexagonal one in the bulk, while the corona PS chains in a sphere monolayer must stretch to fill a hexagonal prism rather than an octahedron in the bulk. The more non-uniform stretching of the chains in the monolayer should increase its free energy and decrease its order-disorder temperature.

  10. Two-dimensional orbital ordering in d{sup 1} Mott insulator Sr{sub 2}VO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Viennois, R; Giannini, E; Teyssier, J; Elia, J; Van der Marel, D [DPMC, Universite de Geneve, 24 quai Ernest Ansermet, CH-1211 Geneve (Switzerland); Deisenhofer, J, E-mail: Romain.Viennois@unige.c [Institute of Physics, University of Augsburg, Augsburg (Germany)

    2010-01-15

    The Mott insulator Sr{sub 2}VO{sub 4} is a unique d{sup 1} two-dimensional compound exhibiting an orbital ordering transition. In addition to the orbital ordering transition at about 100 K, we discovered a ferromagnetic transition below 10 K, thus confirming the predictions of recent band structure calculations. The magnetic properties proved to be strongly sensitive to the material purity, the actual oxygen stoichiometry and the crystallographic parameters. An additional transition is observed at 125 K, which is believed to be due to structural modifications.

  11. Synthesis of Large-Scale Single-Crystalline Monolayer WS2 Using a Semi-Sealed Method

    Directory of Open Access Journals (Sweden)

    Feifei Lan

    2018-02-01

    Full Text Available As a two-dimensional semiconductor, WS2 has attracted great attention due to its rich physical properties and potential applications. However, it is still difficult to synthesize monolayer single-crystalline WS2 at larger scale. Here, we report the growth of large-scale triangular single-crystalline WS2 with a semi-sealed installation by chemical vapor deposition (CVD. Through this method, triangular single-crystalline WS2 with an average length of more than 300 µm was obtained. The largest one was about 405 μm in length. WS2 triangles with different sizes and thicknesses were analyzed by optical microscope and atomic force microscope (AFM. Their optical properties were evaluated by Raman and photoluminescence (PL spectra. This report paves the way to fabricating large-scale single-crystalline monolayer WS2, which is useful for the growth of high-quality WS2 and its potential applications in the future.

  12. Electric field effect of GaAs monolayer from first principles

    Directory of Open Access Journals (Sweden)

    Jiongyao Wu

    2017-03-01

    Full Text Available Using first-principle calculations, we investigate two-dimensional (2D honeycomb monolayer structures composed of group III-V binary elements. It is found that such compound like GaAs should have a buckled structure which is more stable than graphene-like flat structure. This results a polar system with out-of-plane dipoles arising from the non-planar structure. Here, we optimized GaAs monolayer structure, then calculated the electronic band structure and the change of buckling height under external electric field within density functional theory using generalized gradient approximation method. We found that the band gap would change proportionally with the electric field magnitude. When the spin-orbit coupling (SOC is considered, we revealed fine spin-splitting at different points in the reciprocal space. Furthermore, the valence and conduction bands spin-splitting energies due to SOC at the K point of buckled GaAs monolayers are found to be weakly dependent on the electric field strength. Finally electric field effects on the spin texture and second harmonic generation are discussed. The present work sheds light on the control of physical properties of GaAs monolayer by the applied electric field.

  13. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    Science.gov (United States)

    Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong

    2018-06-01

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as a field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in the FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not been previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  14. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    KAUST Repository

    Chen, Jyun-Hong

    2018-03-12

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  15. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems

    Science.gov (United States)

    Zhu, Yuan-Yan; Zhang, Jian-Min

    2018-05-01

    We report the structural, magnetic and electronic properties of the pristine and single TM atoms X (X = Fe, Ru or Os) doped monolayer WS2 systems based on first-principle calculations. The results show that the W-S bond shows a stronger covalent bond, but the covalency is obviously weakened after the substitution of W atom with single X atoms, especially for Ru (4d75s1) with the easily lost electronic configuration. The smaller total energies of the doped systems reveal that the spin-polarized states are energetically favorable than the non-spin-polarized states, and the smallest total energy of -373.918 eV shows the spin-polarized state of the Os doped monolayer WS2 system is most stable among three doped systems. In addition, although the pristine monolayer WS2 system is a nonmagnetic-semiconductor with a direct band gap of 1.813 eV, single TM atoms Fe and Ru doped monolayer WS2 systems transfer to magnetic-HM with the total moments Mtot of 1.993 and 1.962 μB , while single TM atom Os doped monolayer WS2 systems changes to magnetic-metal with the total moments Mtot of 1.569 μB . Moreover, the impurity states with a positive spin splitting energies of 0.543, 0.276 and 0.1999 eV near the Fermi level EF are mainly contributed by X-dxy and X-dx2-y2 states hybridized with its nearest-neighbor atom W-dz2 states for Fe, Ru and Os doped monolayer WS2 system, respectively. Finally, we hope that the present study on monolayer WS2 will provide a useful theoretical guideline for exploring low-dimensional spintronic materials in future experiments.

  16. Metal-free spin and spin-gapless semiconducting heterobilayers: monolayer boron carbonitrides on hexagonal boron nitride.

    Science.gov (United States)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Ding, Yingchun; Chen, Jie; Du, Youwei; Tang, Nujiang

    2017-06-07

    The interfaces between monolayer boron carbonitrides and hexagonal boron nitride (h-BN) play an important role in their practical applications. Herein, we respectively investigate the structural and electronic properties of two metal-free heterobilayers constructed by vertically stacking two-dimensional (2D) spintronic materials (B 4 CN 3 and B 3 CN 4 ) on a h-BN monolayer from the viewpoints of lattice match and lattice mismatch models using density functional calculations. It is found that both B 4 CN 3 and B 3 CN 4 monolayers can be stably adsorbed on the h-BN monolayer due to the van der Waals interactions. Intriguingly, we demonstrate that the bipolar magnetic semiconductor (BMS) behavior of the B 4 CN 3 layer and the spin gapless semiconductor (SGS) property of the B 3 CN 4 layer can be well preserved in the B 4 CN 3 /BN and B 3 CN 4 /BN heterobilayers, respectively. The magnetic moments and spintronic properties of the two systems originate mainly from the 2p z electrons of the carbon atoms in the B 4 CN 3 and B 3 CN 4 layers. Furthermore, the BMS behavior of the B 4 CN 3 /BN bilayer is very robust while the electronic property of the B 3 CN 4 /BN bilayer is sensitive to interlayer couplings. These theoretical results are helpful both in understanding the interlayer coupling between B 4 CN 3 or B 3 CN 4 and h-BN monolayers and in providing a possibility of fabricating 2D composite B 4 CN 3 /BN and B 3 CN 4 /BN metal-free spintronic materials theoretically.

  17. Monolayer MoSe 2 Grown by Chemical Vapor Deposition for Fast Photodetection

    KAUST Repository

    Chang, Yung-Huang

    2014-08-26

    Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of monolayer MoS2 devices. Here, highly crystalline molybdenum diselenide (MoSe2) monolayers have been successfully synthesized by the chemical vapor deposition (CVD) method. Low-temperature photoluminescence comparison for MoS2 and MoSe 2 monolayers reveals that the MoSe2 monolayer shows a much weaker bound exciton peak; hence, the phototransistor based on MoSe2 presents a much faster response time (<25 ms) than the corresponding 30 s for the CVD MoS2 monolayer at room temperature in ambient conditions. The images obtained from transmission electron microscopy indicate that the MoSe exhibits fewer defects than MoS2. This work provides the fundamental understanding for the differences in optoelectronic behaviors between MoSe2 and MoS2 and is useful for guiding future designs in 2D material-based optoelectronic devices. © 2014 American Chemical Society.

  18. Monolayer atomic crystal molecular superlattices

    Science.gov (United States)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  19. Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-03-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 +/- 0.01 eV around K valley in the Brillouin zone.

  20. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  1. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure.

    Science.gov (United States)

    Li, Han; Zheng, Xin; Liu, Yu; Zhang, Zhepeng; Jiang, Tian

    2018-01-25

    The idea of fabricating artificial solids with band structures tailored to particular applications has long fascinated condensed matter physicists. Heterostructure (HS) construction is viewed as an effective and appealing approach to engineer novel electronic properties in two dimensional (2D) materials. Different from common 2D/2D heterojunctions where energy transfer is rarely observed, CsPbBr 3 quantum dots (0D-QDs) interfaced with 2D materials have become attractive HSs for exploring the physics of charge transfer and energy transfer, due to their superior optical properties. In this paper, a new 0D/2D HS is proposed and experimentally studied, making it possible to investigate both light utilization and energy transfer. Specifically, this HS is constructed between monolayer WS 2 and CsPbBr 3 QDs, and exhibits a hybrid band alignment. The dynamics of energy transfer within the investigated 0D/2D HS is characterized by femtosecond transient absorption spectrum (TAS) measurements. The TAS results reveal that ultrafast energy transfer caused by optical excitation is observed from CsPbBr 3 QDs to the WS 2 layer, which can increase the exciton fluence within the WS 2 layer up to 69% when compared with pristine ML WS 2 under the same excitation fluence. Moreover, the formation and dynamics of interlayer excitons have also been investigated and confirmed in the HS, with a calculated recombination time of 36.6 ps. Finally, the overall phenomenological dynamical scenario for the 0D/2D HS is established within the 100 ps time region after excitation. The techniques introduced in this work can also be applied to versatile optoelectronic devices based on low dimensional materials.

  3. 2D Semiconductors for Valley-Polarized LEDs and Photodetectors

    Science.gov (United States)

    Yu, Ting

    The recently discovered two-dimensional (2D) semiconductors, such as transitional-metal-dichalcogenide monolayers, have aroused great interest due to the underlying quantum physics and the appealing optoelectronic applications like atomically thin light-emitting diodes (LEDs) and photodetectors. On the one hand, valley-polarized electroluminescence and photocurrent from such monolayers have not caused enough attention but highly demanded as building blocks for the new generation valleytronic applications. On the other hand, most reports on these devices are based on the mechanically exfoliated small samples. Considering real applications, a strategy which could offer mass-product and high compatibility to the current planar processes is greatly demanded. Large-area samples prepared by chemical vapour deposition (CVD) are perfect candidates towards such a goal. Here, we report electrically tunable valley-polarized electroluminescence and the selective spin-valley-coupled photocurrent in optoelectronic devices based on monolayer WS2 and MoS2 grown by CVD, exhibiting large electroluminescence and photocurrent dichroisms of 81% and 60%, respectively. The controllable valley polarization and emission components of the electroluminescence have been realized by varying electrical injection of carriers. For the observed helicity-dependent photocurrent, the circular photogalvanic effect at resonant excitations has been found to take the dominant responsibility.

  4. Novel two-dimensional uranyl-organic assemblages in the citrate and D(-)-citramalate families

    International Nuclear Information System (INIS)

    Thuery, P.

    2008-01-01

    Uranyl nitrate reacts with D(-)-citramalic acid (H(3)citml) under mild hydrothermal conditions to give the two-dimensional polymer [UO 2 (Hcitml)] 1, in which each ligand chelates one metal atom through its hydroxyl and alpha- carboxylate groups and binds to three others in monodentate fashion. The resulting neutral layers display isolated uranyl pentagonal bipyramidal polyhedra. Whereas citric acid (H(4)cit) has been shown previously to give various three- and mono-dimensional uranyl organic assemblages, complexation under hydrothermal conditions in the presence of either NaOH/NEt 4 Cl or pyridine yields the complexes [NEt 4 ] 2 [(UO 2 ) 3 (cit) 2 (H 2 O) 22H 2 O 2 and [Hpy] 2 )[(UO 2 ) 3 (cit)(Hcit)(OH)] 3, respectively, which both crystallize as two- dimensional frameworks. The layers are either planar and separated by the counter ions in 2 or corrugated and hydrogen bonded to one another in 3. In both 2 and 3, [UO 2 (cit)] 2 4- dimeric subunits with edge-sharing pentagonal bipyramidal uranium coordination polyhedra are present but, in both cases and in contrast with previous structures containing [UO 2 (Hcit)] 2 2- dimers, the carboxylate group not involved in the dimer formation is coordinated to another uranyl unit, which is part of either a centrosymmetric hexagonal bipyramidal bis-aquated group or a different, [(UO 2 ) 2 (Hcit)(OH)] dimer. These examples of two- dimensional assemblages further illustrate the variety of architectures which can be obtained with citric and related acids and the important structure-directing effects of the counter ions. (author)

  5. Monolayer Superconductivity in WS2

    NARCIS (Netherlands)

    Zheliuk, Oleksandr; Lu, Jianming; Yang, Jie; Ye, Jianting

    Superconductivity in monolayer tungsten disulfide (2H-WS2) is achieved by strong electrostatic electron doping of an electric double-layer transistor (EDLT). Single crystals of WS2 are grown by a scalable method - chemical vapor deposition (CVD) on standard Si/SiO2 substrate. The monolayers are

  6. Nonlinear optical characteristics of monolayer MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)

    2016-08-15

    In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates

    KAUST Repository

    Park, Soohyung; Mutz, Niklas; Schultz, Thorsten; Blumstengel, Sylke; Han, Ali; Aljarb, Areej; Li, Lain-Jong; List-Kratochvil, Emil J W; Amsalem, Patrick; Koch, Norbert

    2018-01-01

    Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (E b,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (E g), and by reflectance measurements the optical excitonic band gap (E exc). The difference of these two energies is E b,exc. The values of E g and E b,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au E b,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant E b,exc reduction is primarily due to a reduction of E g resulting from enhanced screening by the metal, while E exc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron–hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.

  8. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates

    Science.gov (United States)

    Park, Soohyung; Mutz, Niklas; Schultz, Thorsten; Blumstengel, Sylke; Han, Ali; Aljarb, Areej; Li, Lain-Jong; List-Kratochvil, Emil J. W.; Amsalem, Patrick; Koch, Norbert

    2018-04-01

    Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (E b,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (E g), and by reflectance measurements the optical excitonic band gap (E exc). The difference of these two energies is E b,exc. The values of E g and E b,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au E b,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant E b,exc reduction is primarily due to a reduction of E g resulting from enhanced screening by the metal, while E exc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron-hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.

  9. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates

    KAUST Repository

    Park, Soohyung

    2018-01-03

    Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (E b,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (E g), and by reflectance measurements the optical excitonic band gap (E exc). The difference of these two energies is E b,exc. The values of E g and E b,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au E b,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant E b,exc reduction is primarily due to a reduction of E g resulting from enhanced screening by the metal, while E exc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron–hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.

  10. Template-Directed Self-Assembly of Alkanethiol Monolayers: Selective Growth on Preexisting Monolayer Edges

    NARCIS (Netherlands)

    Sharpe, R.B.A.; Burdinski, Dirk; Huskens, Jurriaan; Zandvliet, Henricus J.W.; Reinhoudt, David; Poelsema, Bene

    2007-01-01

    Self-assembled monolayers were investigated for their suitability as two-dimensional scaffolds for the selective growth of alkanethiol edge structures. Heterostructures with chemical contrast could be grown, whose dimensions were governed by both the initial pattern sizes and the process time.

  11. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Weigelt, Britta; Lo, Alvin T; Park, Catherine C; Gray, Joe W; Bissell, Mina J

    2009-07-27

    Development of effective and durable breast cancer treatment strategies requires a mechanistic understanding of the influence of the microenvironment on response. Previous work has shown that cellular signaling pathways and cell morphology are dramatically influenced by three-dimensional (3D) cultures as opposed to traditional two-dimensional (2D) monolayers. Here, we compared 2D and 3D culture models to determine the impact of 3D architecture and extracellular matrix (ECM) on HER2 signaling and on the response of HER2-amplified breast cancer cell lines to the HER2-targeting agents Trastuzumab, Pertuzumab and Lapatinib. We show that the response of the HER2-amplified AU565, SKBR3 and HCC1569 cells to these anti-HER2 agents was highly dependent on whether the cells were cultured in 2D monolayer or 3D laminin-rich ECM gels. Inhibition of {beta}1 integrin, a major cell-ECM receptor subunit, significantly increased the sensitivity of the HER2-amplified breast cancer cell lines to the humanized monoclonal antibodies Trastuzumab and Pertuzumab when grown in a 3D environment. Finally, in the absence of inhibitors, 3D cultures had substantial impact on HER2 downstream signaling and induced a switch between PI3K-AKT- and RAS-MAPKpathway activation in all cell lines studied, including cells lacking HER2 amplification and overexpression. Our data provide direct evidence that breast cancer cells are able to rapidly adapt to different environments and signaling cues by activating alternative pathways that regulate proliferation and cell survival, events that may play a significant role in the acquisition of resistance to targeted therapies.

  12. Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe 2 by Hydrohalic Acid Treatment

    KAUST Repository

    Han, Hau-Vei

    2015-12-30

    Atomically thin two-dimensional transition-metal dichalcogenides (TMDCs) have attracted much attention recently due to their unique electronic and optical properties for future optoelectronic devices. The chemical vapor deposition (CVD) method is able to generate TMDCs layers with a scalable size and a controllable thickness. However, the TMDC monolayers grown by CVD may incorporate structural defects, and it is fundamentally important to understand the relation between photoluminescence and structural defects. In this report, point defects (Se vacancies) and oxidized Se defects in CVD-grown MoSe2 monolayers are identified by transmission electron microscopy and X-ray photoelectron spectroscopy. These defects can significantly trap free charge carriers and localize excitons, leading to the smearing of free band-to-band exciton emission. Here, we report that the simple hydrohalic acid treatment (such as HBr) is able to efficiently suppress the trap-state emission and promote the neutral exciton and trion emission in defective MoSe2 monolayers through the p-doping process, where the overall photoluminescence intensity at room temperature can be enhanced by a factor of 30. We show that HBr treatment is able to activate distinctive trion and free exciton emissions even from highly defective MoSe2 layers. Our results suggest that the HBr treatment not only reduces the n-doping in MoSe2 but also reduces the structural defects. The results provide further insights of the control and tailoring the exciton emission from CVD-grown monolayer TMDCs.

  13. Superconductivity proximate to antiferromagnetism in a copper-oxide monolayer grown on Bi2Sr2CaCu2O8 +δ

    Science.gov (United States)

    Wang, Shuai; Zhang, Long; Wang, Fa

    2018-01-01

    A nodeless superconducting (SC) gap was reported in a recent scanning tunneling spectroscopy experiment of a copper-oxide monolayer grown on a Bi2Sr2CaCu2O8 +δ (Bi2212) substrate [Zhong et al., Sci. Bull. 61, 1239 (2016), 10.1007/s11434-016-1145-4], which is in stark contrast to the nodal d -wave pairing gap in the bulk cuprates. Motivated by this experiment, we first show with first-principles calculations that the tetragonal CuO (T-CuO) monolayer on the Bi2212 substrate is more stable than the commonly postulated CuO2 structure. The T-CuO monolayer is composed of two CuO2 layers sharing the same O atoms. The band structure is obtained by first-principles calculations, and its strong electron correlation is treated with the renormalized mean-field theory. We argue that one CuO2 sublattice is hole doped while the other sublattice remains half filled and may have antiferromagnetic (AF) order. The doped Cu sublattice can show d -wave SC; however, its proximity to the AF Cu sublattice induces a spin-dependent hopping, which splits the Fermi surface and may lead to a full SC gap. Therefore, the nodeless SC gap observed in the experiment could be accounted for by the d -wave SC proximity to an AF order, thus it is extrinsic rather than intrinsic to the CuO2 layers.

  14. Observation of Switchable Photoresponse of a Monolayer WSe2-MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging.

    Science.gov (United States)

    Son, Youngwoo; Li, Ming-Yang; Cheng, Chia-Chin; Wei, Kung-Hwa; Liu, Pingwei; Wang, Qing Hua; Li, Lain-Jong; Strano, Michael S

    2016-06-08

    In the pursuit of two-dimensional (2D) materials beyond graphene, enormous advances have been made in exploring the exciting and useful properties of transition metal dichalcogenides (TMDCs), such as a permanent band gap in the visible range and the transition from indirect to direct band gap due to 2D quantum confinement, and their potential for a wide range of device applications. In particular, recent success in the synthesis of seamless monolayer lateral heterostructures of different TMDCs via chemical vapor deposition methods has provided an effective solution to producing an in-plane p-n junction, which is a critical component in electronic and optoelectronic device applications. However, spatial variation of the electronic and optoelectonic properties of the synthesized heterojunction crystals throughout the homogeneous as well as the lateral junction region and the charge carrier transport behavior at their nanoscale junctions with metals remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic diode behavior for WSe2 and MoS2, owing to the formation of a Schottky barrier of dissimilar properties. Notably, by changing the polarity and magnitude of the tip voltage applied, pixels that show the photoresponse of the heterostructure are observed to be selectively switched on and off, allowing for the realization of a hyper-resolution array of the switchable photodiode pixels. This experimental approach has significant implications toward the development of novel optoelectronic technologies for regioselective photodetection and imaging at nanoscale resolutions. Comparative 2D Fourier analysis of physical height and current images shows high spatial frequency variations in substrate/MoS2 (or WSe2) contact that

  15. Functionalization of liquid-exfoliated two-dimensional 2H-MoS2.

    Science.gov (United States)

    Backes, Claudia; Berner, Nina C; Chen, Xin; Lafargue, Paul; LaPlace, Pierre; Freeley, Mark; Duesberg, Georg S; Coleman, Jonathan N; McDonald, Aidan R

    2015-02-23

    Layered two-dimensional (2D) inorganic transition-metal dichalchogenides (TMDs) have attracted great interest as a result of their potential application in optoelectronics, catalysis, and medicine. However, methods to functionalize and process such 2D TMDs remain scarce. We have established a facile route towards functionalized layered MoS2 . We found that the reaction of liquid-exfoliated 2D MoS2 , with M(OAc)2 salts (M=Ni, Cu, Zn; OAc=acetate) yielded functionalized MoS2 -M(OAc)2 materials. Importantly, this method furnished the 2H-polytype of MoS2 which is a semiconductor. X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT-IR), and thermogravimetric analysis (TGA) provide strong evidence for the coordination of MoS2 surface sulfur atoms to the M(OAc)2 salt. Interestingly, functionalization of 2H-MoS2 allows for its dispersion/processing in more conventional laboratory solvents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Morphology and magnetism of Fe monolayers and small Fen clusters (n 2-19) supported on the Ni(111) surface

    International Nuclear Information System (INIS)

    Longo, R C; MartInez, E; Dieguez, O; Vega, A; Gallego, L J

    2007-01-01

    Using the modified embedded atom model in conjunction with a self-consistent tight-binding method, we investigated the lowest-energy structures of Fe monolayers and isolated Fe n clusters (n = 2-19) supported on the Ni(111) surface. In keeping with experimental findings, our calculations predict that the atoms of the monolayer occupy face-centred cubic (fcc) rather than hexagonal close-packed (hcp) sites. Likewise in agreement with experiment we found that Fe layers stack with a pseudomorphic fcc structure up to two monolayers, beyond which they stack as bcc(110). The structures of supported Fe clusters are predicted to be two-dimensional islands maximizing the number of nearest-neighbour bonds among the adsorbed Fe atoms, and their average magnetic moments per atom decrease towards that of the supported Fe monolayer almost monotonically as n increases. Finally, a pair of Fe 3 clusters on Ni(111) were found to exhibit virtually no interaction with each other even when separated by only one atomic row, i.e. so long as they do not coalesce they retain their individual magnetic properties

  17. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  18. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao; Zhang, Hua

    2015-01-01

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards

  19. Method of solving conformal models in D-dimensional space 2: A family of exactly solvable models in D > 2

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Palchik, M.Ya.

    1996-02-01

    We study a family of exactly solvable models of conformally-invariant quantum field theory in D-dimensional space. We demonstrate the existence of D-dimensional analogs of primary and secondary fields. Under the action of energy-momentum tensor and conserved currents, the primary fields creates an infinite set of (tensor) secondary fields of different generations. The commutators of secondary fields with zero components of current and energy-momentum tensor include anomalous operator terms. We show that the Hilbert space of conformal theory has a special sector which structure is solely defined by the Ward identities independently on the choice of dynamical model. The states of this sector are constructed from secondary fields. Definite self-consistent conditions on the states of the latter sector fix the choice of the field model uniquely. In particular, Lagrangian models do belong to this class of models. The above self-consistent conditions are formulated as follows. Special superpositions Q s , s = 1,2,... of secondary fields are constructed. Each superposition is determined by the requirement that the form of its commutators with energy-momentum tensor and current (i.e. transformation properties) should be identical to that of a primary field. Each equation Q s (x) = 0 is consistent, and defines an exactly solvable model for D ≥ 3. The structure of these models are analogous to that of well-known two dimensional conformal models. The states Q s (x) modul 0> are analogous to the null-vectors of two dimensional theory. In each of these models one can obtain a closed set of differential equations for all the higher Green functions, as well as algebraic equations relating the scale dimension of fundamental field to the D-dimensional analog of a central charge. As an example, we present a detailed discussion of a pair of exactly solvable models in even-dimensional space D ≥ 4. (author). 28 refs

  20. Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations

    Science.gov (United States)

    Yuan, Junhui; Yu, Niannian; Wang, Jiafu; Xue, Kan-Hao; Miao, Xiangshui

    2018-04-01

    The successful fabrication of two-dimensional lateral heterostructures (LHS's) has opened up unprecedented opportunities in material science and device physics. It is therefore highly desirable to search for more suitable materials to create such heterostructures for next-generation devices. Here, we investigate a novel lateral heterostructure composed of monolayer ZrS2 and HfS2 based on density functional theory. The phonon dispersion and ab initio molecular dynamics analysis indicate its good kinetic and thermodynamic stability. Remarkably, we find that these lateral heterostructures exhibit an indirect to direct bandgap transition, in contrast to the intrinsic indirect bandgap nature of ZrS2 and HfS2. The type-II alignment and chemical bonding across the interline have also been revealed. The tensile strain is proved to be an efficient way to modulate the band structure. Finally, we further discuss other three stable lateral heterostructures: (ZrSe2)2(HfSe2)2 LHS, (ZrS2)2(ZrSe2)2 LHS and (HfS2)2(HfSe2)2 LHS. Generally, the lateral heterostructures of monolayer ZrS2 and HfS2 are of excellent electrical properties, and may find potential applications for future electronic devices.

  1. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System.

    Science.gov (United States)

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  2. Mechanical exfoliation of two-dimensional materials

    Science.gov (United States)

    Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping

    2018-06-01

    Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.

  3. Minimizing residues and strain in 2D materials transferred from PDMS

    Science.gov (United States)

    Jain, Achint; Bharadwaj, Palash; Heeg, Sebastian; Parzefall, Markus; Taniguchi, Takashi; Watanabe, Kenji; Novotny, Lukas

    2018-06-01

    Integrating layered two-dimensional (2D) materials into 3D heterostructures offers opportunities for novel material functionalities and applications in electronics and photonics. In order to build the highest quality heterostructures, it is crucial to preserve the cleanliness and morphology of 2D material surfaces that come in contact with polymers such as PDMS during transfer. Here we report that substantial residues and up to ∼0.22% compressive strain can be present in monolayer MoS2 transferred using PDMS. We show that a UV-ozone pre-cleaning of the PDMS surface before exfoliation significantly reduces organic residues on transferred MoS2 flakes. An additional 200 ◦C vacuum anneal after transfer efficiently removes interfacial bubbles and wrinkles as well as accumulated strain, thereby restoring the surface morphology of transferred flakes to their native state. Our recipe is important for building clean heterostructures of 2D materials and increasing the reproducibility and reliability of devices based on them.

  4. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.

    2007-01-01

    their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D......The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along...... temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When...

  5. Wafer-scale synthesis of monolayer and few-layer MoS2 via thermal vapor sulfurization

    Science.gov (United States)

    Robertson, John; Liu, Xue; Yue, Chunlei; Escarra, Matthew; Wei, Jiang

    2017-12-01

    Monolayer molybdenum disulfide (MoS2) is an atomically thin, direct bandgap semiconductor crystal potentially capable of miniaturizing optoelectronic devices to an atomic scale. However, the development of 2D MoS2-based optoelectronic devices depends upon the existence of a high optical quality and large-area monolayer MoS2 synthesis technique. To address this need, we present a thermal vapor sulfurization (TVS) technique that uses powder MoS2 as a sulfur vapor source. The technique reduces and stabilizes the flow of sulfur vapor, enabling monolayer wafer-scale MoS2 growth. MoS2 thickness is also controlled with great precision; we demonstrate the ability to synthesize MoS2 sheets between 1 and 4 layers thick, while also showing the ability to create films with average thickness intermediate between integer layer numbers. The films exhibit wafer-scale coverage and uniformity, with electrical quality varying depending on the final thickness of the grown MoS2. The direct bandgap of grown monolayer MoS2 is analyzed using internal and external photoluminescence quantum efficiency. The photoluminescence quantum efficiency is shown to be competitive with untreated exfoliated MoS2 monolayer crystals. The ability to consistently grow wafer-scale monolayer MoS2 with high optical quality makes this technique a valuable tool for the development of 2D optoelectronic devices such as photovoltaics, detectors, and light emitters.

  6. Observation of Switchable Photoresponse of a Monolayer WSe 2 –MoS 2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging

    KAUST Repository

    Son, Youngwoo

    2016-04-27

    In the pursuit of two-dimensional (2D) materials beyond graphene, enormous advances have been made in exploring the exciting and useful properties of transition metal dichalcogenides (TMDCs), such as a permanent band gap in the visible range and the transition from indirect to direct band gap due to 2D quantum confinement, and their potential for a wide range of device applications. In particular, recent success in the synthesis of seamless monolayer lateral heterostructures of different TMDCs via chemical vapor deposition methods has provided an effective solution to producing an in-plane p-n junction, which is a critical component in electronic and optoelectronic device applications. However, spatial variation of the electronic and optoelectonic properties of the synthesized heterojunction crystals throughout the homogeneous as well as the lateral junction region and the charge carrier transport behavior at their nanoscale junctions with metals remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic diode behavior for WSe2 and MoS2, owing to the formation of a Schottky barrier of dissimilar properties. Notably, by changing the polarity and magnitude of the tip voltage applied, pixels that show the photoresponse of the heterostructure are observed to be selectively switched on and off, allowing for the realization of a hyper-resolution array of the switchable photodiode pixels. This experimental approach has significant implications toward the development of novel optoelectronic technologies for regioselective photodetection and imaging at nanoscale resolutions. Comparative 2D Fourier analysis of physical height and current images shows high spatial frequency variations in substrate/MoS2 (or WSe2) contact that

  7. Two-and three-dimensional CT reconstruction

    International Nuclear Information System (INIS)

    Fishman, E.K.; Ney, D.R.; Magid, D.

    1990-01-01

    This paper determines the optimal imaging sequence for creating two- and three-dimensional (2D/3D) skeletal reconstructions from CT data. A cadaver femur, a bone phantom, and a surgically created fracture were scanned with varying protocols to determine the optimal protocol for creating 2D/3D images. The scanning protocols used varying section thickness (2, 4, and 8 mm) as well as scan spacing (2, 3, 4 and 8 mm). All images were reconstructed into 2D data sets with a bicubic interpolation and 3D datasets with volumetric rendering. The results were reviewed by two reviewers to determine the quality of images reconstruction

  8. Mechanisms of Pyroelectricity in Three- and Two-Dimensional Materials

    Science.gov (United States)

    Liu, Jian; Pantelides, Sokrates T.

    2018-05-01

    Pyroelectricity is a very promising phenomenon in three- and two-dimensional materials, but first-principles calculations have not so far been used to elucidate the underlying mechanisms. Here we report density-functional theory (DFT) calculations based on the Born-Szigeti theory of pyroelectricity, by combining fundamental thermodynamics and the modern theory of polarization. We find satisfactory agreement with experimental data in the case of bulk benchmark materials, showing that the so-called electron-phonon renormalization, whose contribution has been traditionally viewed as negligible, is important. We predict out-of-plane pyroelectricity in the recently synthesized Janus MoSSe monolayer and in-plane pyroelectricity in the group-IV monochalcogenide GeS monolayer. It is notable that the so-called secondary pyroelectricity is found to be dominant in GeS monolayer. The present work opens a theoretical route to study the pyroelectric effect using DFT and provides a valuable tool in the search for new candidates for pyroelectric applications.

  9. Two-dimensional nanopatterning by PDMS relief structures of polymeric colloidal crystals

    Science.gov (United States)

    Nam, Hye Jin; Kim, Ju-Hee; Jung, Duk-Young; Park, Jong Bae; Lee, Hae Seong

    2008-06-01

    A new constructive method of fabricating a nanoparticle self-assembly on the patterned surface of a poly(dimethylsiloxane) (PDMS) relief nanostructure was demonstrated. Patterned PDMS templates with close-packed microwells were fabricated by molding against a self-assembled monolayer of polystyrene spheres. Alkanethiol-functionalized gold nanoparticles with an average particle size of 2.5 nm were selectively deposited onto a hydrophobic self-assembled monolayer printed on the substrate by the micro-contact printing (μCP) of the prepared PDMS microwell, in which the patterned gold nanoparticles consisted of close-packed hexagons with an average diameter of 370 nm. In addition, two-dimensional colloidal crystals derived from PMMA microspheres with a diameter of 380 nm and a negative surface charge were successfully formed on the hemispherical microwells by electrostatic force using positively charged PAH-coated PDMS as a template to produce multidimensional nanostructures.

  10. Design of a rotational three-dimensional nonimaging device by a compensated two-dimensional design process.

    Science.gov (United States)

    Yang, Yi; Qian, Ke-Yuan; Luo, Yi

    2006-07-20

    A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.

  11. WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai; Wang, Chen-Guang; Li, Ming-yang; Huang, Di; Li, Lain-Jong; Ji, Wei; Wu, Shiwei

    2017-01-01

    dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work

  12. Dynamic three-dimensional display of common congenital cardiac defects from reconstruction of two-dimensional echocardiographic images.

    Science.gov (United States)

    Hsieh, K S; Lin, C C; Liu, W S; Chen, F L

    1996-01-01

    Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.

  13. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  14. Two-dimensional MoS2: A promising building block for biosensors.

    Science.gov (United States)

    Gan, Xiaorong; Zhao, Huimin; Quan, Xie

    2017-03-15

    Recently, two-dimensional (2D) layered nanomaterials have trigged intensive interest due to the intriguing physicochemical properties that stem from a quantum size effect connected with their ultra-thin structure. In particular, 2D molybdenum disulfide (MoS 2 ), as an emerging class of stable inorganic graphene analogs with intrinsic finite bandgap, would possibly complement or even surpass graphene in electronics and optoelectronics fields. In this review, we first discuss the historical development of ultrathin 2D nanomaterials. Then, we are concerned with 2D MoS 2 including its structure-property relationships, synthesis methods, characterization for the layer thickness, and biosensor applications over the past five years. Thereinto, we are highlighting recent advances in 2D MoS 2 -based biosensors, especially emphasize the preparation of sensing elements, roles of 2D MoS 2 , and assay strategies. Finally, on the basis of the current achievements on 2D MoS 2 and other ultrathin layered nanomaterials, perspectives on the challenges and opportunities for the exploration of 2D MoS 2 -based biosensors are put forward. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Peak clustering in two-dimensional gas chromatography with mass spectrometric detection based on theoretical calculation of two-dimensional peak shapes: the 2DAid approach.

    Science.gov (United States)

    van Stee, Leo L P; Brinkman, Udo A Th

    2011-10-28

    A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Experimental evidence for an original two-dimensional phase structure: An antiparallel semifluorinated monolayer at the air-water interface

    International Nuclear Information System (INIS)

    El Abed, A.; Faure, M-C.; Pouzet, E.; Abillon, O.

    2002-01-01

    We show the spontaneous formation of an antiparallel monolayer of diblock semifluorinated n-alkane molecules spread at the air-water interface. We used simultaneous measurements of surface pressure and surface potential versus molecular area and performed grazing x-ray reflectivity experiments to characterize the studied monolayer, which is obtained at almost zero surface pressure and precedes the formation of a bilayer at higher surface pressure. Its thickness, equal to 2.7 nm, was found to be independent of the molecular area. This behavior may be explained by van der Waals and electrostatic interactions

  17. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System

    Directory of Open Access Journals (Sweden)

    Babak Qasemi-Panahi

    2013-02-01

    Full Text Available Purpose: Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1 on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Methods: Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 μL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Results: Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. Conclusion: According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  18. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2016-03-14

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  19. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan; Hao, Kai; Dass, Chandriker Kavir; Singh, Akshay; Xu, Lixiang; Tran, Kha; Chen, Chang-Hsiao; Li, Ming-yang; Li, Lain-Jong; Clark, Genevieve; Bergh ä user, Gunnar; Malic, Ermin; Knorr, Andreas; Xu, Xiaodong; Li, Xiaoqin

    2016-01-01

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  20. Computational methods for 2D materials: discovery, property characterization, and application design.

    Science.gov (United States)

    Paul, J T; Singh, A K; Dong, Z; Zhuang, H; Revard, B C; Rijal, B; Ashton, M; Linscheid, A; Blonsky, M; Gluhovic, D; Guo, J; Hennig, R G

    2017-11-29

    The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials' electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

  1. Gap States at Low-Angle Grain Boundaries in Monolayer Tungsten Diselenide

    KAUST Repository

    Huang, Yu Li

    2016-05-03

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have revealed many novel properties of interest to future device applications. In particular, the presence of grain boundaries (GBs) can significantly influence the material properties of 2D TMDs. However, direct characterization of the electronic properties of the GB defects at the atomic scale remains extremely challenging. In this study, we employ scanning tunneling microscopy and spectroscopy to investigate the atomic and electronic structure of low-angle GBs of monolayer tungsten diselenide (WSe2) with misorientation angles of 3-6°. Butterfly features are observed along the GBs, with the periodicity depending on the misorientation angle. Density functional theory calculations show that these butterfly features correspond to gap states that arise in tetragonal dislocation cores and extend to distorted six-membered rings around the dislocation core. Understanding the nature of GB defects and their influence on transport and other device properties highlights the importance of defect engineering in future 2D device fabrication. © 2016 American Chemical Society.

  2. Gap States at Low-Angle Grain Boundaries in Monolayer Tungsten Diselenide

    KAUST Repository

    Huang, Yu Li; Ding, Zijing; Zhang, Wenjing; Chang, Yung-Huang; Shi, Yumeng; Li, Lain-Jong; Song, Zhibo; Zheng, Yu Jie; Chi, Dongzhi; Quek, Su Ying; Wee, Andrew T. S.

    2016-01-01

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have revealed many novel properties of interest to future device applications. In particular, the presence of grain boundaries (GBs) can significantly influence the material properties of 2D TMDs. However, direct characterization of the electronic properties of the GB defects at the atomic scale remains extremely challenging. In this study, we employ scanning tunneling microscopy and spectroscopy to investigate the atomic and electronic structure of low-angle GBs of monolayer tungsten diselenide (WSe2) with misorientation angles of 3-6°. Butterfly features are observed along the GBs, with the periodicity depending on the misorientation angle. Density functional theory calculations show that these butterfly features correspond to gap states that arise in tetragonal dislocation cores and extend to distorted six-membered rings around the dislocation core. Understanding the nature of GB defects and their influence on transport and other device properties highlights the importance of defect engineering in future 2D device fabrication. © 2016 American Chemical Society.

  3. Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer

    Science.gov (United States)

    Huang, Chengxi; Du, Yongping; Wu, Haiping; Xiang, Hongjun; Deng, Kaiming; Kan, Erjun

    2018-04-01

    The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr3 monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr - Br6 units. As an example, we further show that (CrBr3)2Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.

  4. Wafer-scaled monolayer WO{sub 3} windows ultra-sensitive, extremely-fast and stable UV-A photodetection

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Zhenyin; Akbari, Mohammad Karbalaei [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985 (Korea, Republic of); Xue, Chenyang [Key Laboratory of Instrumentation Science and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Xu, Hongyan [School of Materials Science and Engineering, North University of China, Taiyuan, Shanxi 030051 (China); Hyde, Lachlan [Melbourne Centre for Nanofabrication, Clayton, Victoria 3168 (Australia); Zhuiykov, Serge, E-mail: serge.zhuiykov@ugent.be [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985 (Korea, Republic of)

    2017-05-31

    Highlights: • Monolayer WO{sub 3}-based photodetectors were fabricated for the first time. • The device has ultrafast response time of ∼40 μs and responsivity of ∼0.329 A W{sup −1}. • The response time is 400-fold improvement over any other WO{sub 3} UV photodetectors. • The device has better characteristics than many 2D materials-based photodetectors. • This proposed strategy has great potential for commercialization of photodetectors. - Abstract: The monolayer WO{sub 3}-based UV-A photodetectors, fabricated by atomic layer deposition (ALD) technique at the large area of SiO{sub 2}/Si wafer, have demonstrated vastly improved functional capabilities: extremely fast response time of less than 40 μs and photoresponsivity reaching of ∼0.329 A W{sup −1}. Their ultrafast photoresponse time is at least 400-fold improvement over the previous reports for any other WO{sub 3}-based UV photodetectors that have ever been fabricated, and significantly faster than most of other photodetectors based on two-dimensional (2D) nanomaterials reported-to-date. Moreover, their measured long-term stability exceeds more than 200 cycles without any visible degradation. The ALD-deposited WO{sub 3} monolayer has also exhibited wider bandgap of 3.53 eV and the UV-A photodetector based on it is environmentally friendly, highly reliable, with excellent reproducibility and long-term stability. Thus, the shift to mono-layered semiconductors, which possess completely new quantum-confined effects, has the greatest potential in creating a new class of nano-materials, which in return windows new functional opportunities for various opto-electronic instruments built on semiconductor monolayer and, more importantly, can result in new strategy for fabrication highly-flexible, inexpensive and extremely-sensitive devices. This strategy also opens up the great opportunities for industrialization and commercialization of the photodetectors and other optoelectronic devices based on

  5. One dimensional metallic edges in atomically thin WSe2 induced by air exposure

    Science.gov (United States)

    Addou, Rafik; Smyth, Christopher M.; Noh, Ji-Young; Lin, Yu-Chuan; Pan, Yi; Eichfeld, Sarah M.; Fölsch, Stefan; Robinson, Joshua A.; Cho, Kyeongjae; Feenstra, Randall M.; Wallace, Robert M.

    2018-04-01

    Transition metal dichalcogenides are a unique class of layered two-dimensional (2D) crystals with extensive promising applications. Tuning the electronic properties of low-dimensional materials is vital for engineering new functionalities. Surface oxidation is of particular interest because it is a relatively simple method of functionalization. By means of scanning probe microscopy and x-ray photoelectron spectroscopy, we report the observation of metallic edges in atomically thin WSe2 monolayers grown by chemical vapor deposition on epitaxial graphene. Scanning tunneling microscopy shows structural details of WSe2 edges and scanning tunneling spectroscopy reveals the metallic nature of the oxidized edges. Photoemission demonstrates that the formation of metallic sub-stoichiometric tungsten oxide (WO2.7) is responsible for the high conductivity measured along the edges. Ab initio calculations validate the susceptibility of WSe2 nanoribbon edges to oxidation. The zigzag terminated edge exhibits metallic behavior prior the air-exposure and remains metallic after oxidation. Comprehending and exploiting this property opens a new opportunity for application in advanced electronic devices.

  6. Magnetic properties of 2D nickel nanostrips: structure dependent magnetism and Stoner criterion

    International Nuclear Information System (INIS)

    Kashid, Vikas; Shah, Vaishali; Salunke, H G; Mokrousov, Yuriy; Blügel, Stefan

    2015-01-01

    We have investigated different geometries of two-dimensional (2D) infinite length Ni nanowires of increasing width using spin density functional theory calculations. Our simulations demonstrate that the parallelogram motif is the most stable and structures that incorporate the parallelogram motif are more stable as compared to rectangular structures. The wires are conducting and the conductance channels increase with increasing width. The wires have a non-linear behavior in the ballistic anisotropic magnetoresistance ratios (BAMR) with respect to the magnetization directions. All 2D nanowires as well as Ni (1 1 1) and Ni (1 0 0) monolayer investigated are ferromagnetic under the Stoner criterion and exhibit enhanced magnetic moments as compared to bulk Ni and the respective Ni monolayers. The easy axis for all nickel nanowires under investigation is observed to be along the wire axis. The double rectangular nanowire exhibits a magnetic anomaly with a smaller magnetic moment when compared to Ni (1 0 0) monolayer and is the only structure with an easy axis perpendicular to the wire axis. The Stoner parameter which has been known to be structure independent in bulk and surfaces is found to vary with the structure and the width of the nanowires. The less stable rectangular and rhombus shaped nanowires have a higher ferromagnetic strength than parallelogram shaped nanowires. (paper)

  7. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.

    Science.gov (United States)

    Hong, Yang; Zhang, Jingchao; Huang, Xiaopeng; Zeng, Xiao Cheng

    2015-11-28

    A recently discovered two-dimensional (2D) layered material phosphorene has attracted considerable interest as a promising p-type semiconducting material. In this work, thermal conductivity (κ) of monolayer phosphorene is calculated using large-scale classical non-equilibrium molecular dynamics (NEMD) simulations. The predicted thermal conductivities for infinite length armchair and zigzag phosphorene sheets are 63.6 and 110.7 W m(-1) K(-1) respectively. The strong anisotropic thermal transport is attributed to the distinct atomic structures at altered chiral directions and direction-dependent group velocities. Thermal conductivities of 2D graphene sheets with the same dimensions are also computed for comparison. The extrapolated κ of the 2D graphene sheet are 1008.5(+37.6)(-37.6) and 1086.9(+59.1)(-59.1) W m(-1) K(-1) in the armchair and zigzag directions, respectively, which are an order of magnitude higher than those of phosphorene. The overall and decomposed phonon density of states (PDOS) are calculated in both structures to elucidate their thermal conductivity differences. In comparison with graphene, the vibrational frequencies that can be excited in phosphorene are severely limited. The temperature effect on the thermal conductivity of phosphorene and graphene sheets is investigated, which reveals a monotonic decreasing trend for both structures.

  8. Predicting a new phase (T'') of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition

    Science.gov (United States)

    Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun

    2016-02-01

    Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological

  9. Characteristics of angular cross correlations studied by light scattering from two-dimensional microsphere films

    Science.gov (United States)

    Schroer, M. A.; Gutt, C.; Grübel, G.

    2014-07-01

    Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.

  10. Learning 2-Dimensional and 3-Dimensional Geometry with Geogebra: Which Would Students Do Better?

    Directory of Open Access Journals (Sweden)

    Zaleha Ismail

    2017-08-01

    Full Text Available The purpose of this study is to examine the geometric thinking of young children who worked with GeoGebra to learn two-dimensional (2-D and three-dimensional (3-D geometry. GeoGebra is an open sourced dynamic mathematics software which is applicable for learning mathematics from primary school to secondary school and to higher education. Thirty pupils studying in second grade (Year 2 at a school located in Pontian, a district in one of the Malaysian state participated in the study. They attended GeoGebra sessions to construct and analyze dynamics of two-dimensional and three-dimensional geometry after learning these topics in the conventional setting. Pretest and posttest on two-dimensional and three-dimensional spatial ability based on Van Hiele level of geometric thinking were administered to the pupils. The comparison between pretest and posttest results demonstrate significant enhancement in visualization and informal deduction for both 2-D and 3-D geometry. Moreover from the intervention, the students benefit most in analyzing 3-D and visualizing 2-D geometry. Interestingly, skills and knowledge acquired through activities using GeoGebra in student-centered learning environment could be successfully transferred to paper and pencil test.

  11. 2D biological representations with reduced speckle obtained from two perpendicular ultrasonic arrays.

    Science.gov (United States)

    Rodriguez-Hernandez, Miguel A; Gomez-Sacristan, Angel; Sempere-Payá, Víctor M

    2016-04-29

    Ultrasound diagnosis is a widely used medical tool. Among the various ultrasound techniques, ultrasonic imaging is particularly relevant. This paper presents an improvement to a two-dimensional (2D) ultrasonic system using measurements taken from perpendicular planes, where digital signal processing techniques are used to combine one-dimensional (1D) A-scans were acquired by individual transducers in arrays located in perpendicular planes. An algorithm used to combine measurements is improved based on the wavelet transform, which includes a denoising step during the 2D representation generation process. The inclusion of this new denoising stage generates higher quality 2D representations with a reduced level of speckling. The paper includes different 2D representations obtained from noisy A-scans and compares the improvements obtained by including the denoising stage.

  12. Two-dimensional wetting: the role of atomic steps on the nucleation of thin water films on BaF2(111) at ambient conditions.

    Science.gov (United States)

    Cardellach, M; Verdaguer, A; Santiso, J; Fraxedas, J

    2010-06-21

    The interaction of water with freshly cleaved BaF(2)(111) surfaces at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes. The images strongly suggest a high surface diffusion of water molecules on the surface indicated by the accumulation of water at step edges forming two-dimensional bilayered structures. Steps running along the 110 crystallographic directions show a high degree of hydrophilicity, as evidenced by small step-film contact angles, while steps running along other directions exhibiting a higher degree of kinks surprisingly behave in a quite opposite way. Our results prove that morphological defects such as steps can be crucial in improving two-dimensional monolayer wetting and stabilization of multilayer grown on surfaces that show good lattice mismatch with hexagonal ice.

  13. Impurity states in two - and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-01-01

    We investigate the microscopic structure of the impurity states in two-and three-dimensional (2D and 3d) disordered systems. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  14. Impurity states in two-and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-04-01

    The microscopic structure of the impurity states in two-and three-dimensional (2D and 3D) disordered systems is investigated. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e., from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  15. Solution of the two-dimensional spectral factorization problem

    Science.gov (United States)

    Lawton, W. M.

    1985-01-01

    An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.

  16. Three-dimensional spheroid culture promotes odonto/osteoblastic differentiation of dental pulp cells.

    Science.gov (United States)

    Yamamoto, Mioko; Kawashima, Nobuyuki; Takashino, Nami; Koizumi, Yu; Takimoto, Koyo; Suzuki, Noriyuki; Saito, Masahiro; Suda, Hideaki

    2014-03-01

    Three-dimensional (3D) spheroid culture is a method for creating 3D aggregations of cells and their extracellular matrix without a scaffold mimicking the actual tissues. The aim of this study was to evaluate the effects of 3D spheroid culture on the phenotype of immortalized mouse dental papilla cells (MDPs) that have the ability to differentiate into odontoblasts. We cultured MDPs for 1, 3, 7, and 14 days in 96-well low-attachment culture plates for 3D spheroid culture or flat-bottomed plates for two-dimensional (2D) monolayer culture. Cell proliferation and apoptosis were detected by immunohistochemical staining of Ki67 and cleaved caspase-3, respectively. Hypoxia was measured by the hypoxia probe LOX-1. Odonto/osteoblastic differentiation marker gene expression was evaluated by quantitative PCR. We also determined mineralized nodule formation, alkaline phosphatase (ALP) activity, and dentine matrix protein-1 (DMP1) expression. Vinculin and integrin signalling-related proteins were detected immunohistochemically. Odonto/osteoblastic marker gene expression and mineralized nodule formation were significantly up-regulated in 3D spheroid-cultured MDPs compared with those in 2D monolayer-cultured MDPs (podonto/osteoblastic differentiation of MDPs, which may be mediated by integrin signalling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Superior Gas Sensing Properties of Monolayer PtSe2

    KAUST Repository

    Sajjad, Muhammad

    2016-12-15

    First-principles calculations of the structural and electronic properties of monolayer 1T-PtSe2 with adsorbed (a) NO2, (b) NO, (c) NH3, (d) H2O, (e) CO2, and (f) CO molecules are discussed. The results point to great potential of the material in gas sensor applications. Superior sensitivity is demonstrated by transport calculations using the nonequilibrium Green\\'s function method.

  18. Surface Reconstruction-Induced Coincidence Lattice Formation Between Two-Dimensionally Bonded Materials and a Three-Dimensionally Bonded Substrate

    NARCIS (Netherlands)

    Boschker, Jos E.; Momand, Jamo; Bragaglia, Valeria; Wang, Ruining; Perumal, Karthick; Giussani, Alessandro; Kooi, Bart J.; Riechert, Henning; Calarco, Raffaella

    Sb2Te3 films are used for studying the epitaxial registry between two-dimensionally bonded (2D) materials and three-dimensional bonded (3D) substrates. In contrast to the growth of 3D materials, it is found that the formation of coincidence lattices between Sb2Te3 and Si(111) depends on the geometry

  19. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface

    KAUST Repository

    Li, Ming Yang

    2015-07-30

    Two-dimensional transition metal dichalcogenides (TMDCs) such as molybdenum sulfide MoS2 and tungsten sulfide WSe2 have potential applications in electronics because they exhibit high on-off current ratios and distinctive electro-optical properties. Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via the layer-stacking techniques, and direct growth favors the thermodynamically preferred TMDC alloys. We report the two-step epitaxial growth of lateral WSe2-MoS2 heterojunction, where the edge of WSe2 induces the epitaxial MoS2 growth despite a large lattice mismatch. The epitaxial growth process offers a controllable method to obtain lateral heterojunction with an atomically sharp interface.

  20. Scalable and reusable micro-bubble removal method to flatten large-area 2D materials

    Science.gov (United States)

    Pham, Phi H. Q.; Quach, Nhi V.; Li, Jinfeng; Burke, Peter J.

    2018-04-01

    Bubbles generated during electro-delamination and chemical etch during large-area two-dimensional (2D) material transfer has been shown to cause rippling, and consequently, results in tears and wrinkles in the transferred film. Here, we demonstrate a scalable and reusable method to remove surface adhered micro-bubbles by using hydrophobic surfaces modified by self-assembled monolayers (SAMs). Bubble removal allows the 2D film to flatten out and prevents the formation of defects. Electrical characterization was used to verify improved transfer quality and was confirmed by increased field-effect mobility and decreased sheet resistance. Raman spectroscopy was also used to validate enhanced electrical quality following transfer. The bubble removal method can be applied to an assortment of 2D materials using diverse hydrophobic SAM variants. Our studies can be integrated into large scale applications and will lead to improved large-area 2D electronics in general.

  1. The efficacy of cetuximab in a tissue-engineered three-dimensional in vitro model of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Tarig Magdeldin

    2014-07-01

    Full Text Available The preclinical development process of chemotherapeutic drugs is often carried out in two-dimensional monolayer cultures. However, a considerable amount of evidence demonstrates that two-dimensional cell culture does not accurately reflect the three-dimensional in vivo tumour microenvironment, specifically with regard to gene expression profiles, oxygen and nutrient gradients and pharmacokinetics. With this objective in mind, we have developed and established a physiologically relevant three-dimensional in vitro model of colorectal cancer based on the removal of interstitial fluid from collagen type I hydrogels. We employed the RAFT™ (Real Architecture For 3D Tissue system for producing three-dimensional cultures to create a controlled reproducible, multiwell testing platform. Using the HT29 and HCT116 cell lines to model epidermal growth factor receptor expressing colorectal cancers, we characterized three-dimensional cell growth and morphology in addition to the anti-proliferative effects of the anti–epidermal growth factor receptor chemotherapeutic agent cetuximab in comparison to two-dimensional monolayer cultures. Cells proliferated well for 14 days in three-dimensional culture and formed well-defined cellular aggregates within the concentrated collagen matrix. Epidermal growth factor receptor expression levels revealed a twofold and threefold increase in three-dimensional cultures for both HT29 and HCT116 cells in comparison to two-dimensional monolayers, respectively (p < 0.05; p < 0.01. Cetuximab efficacy was significantly lower in HT29 three-dimensional cultures in comparison to two-dimensional monolayers, whereas HCT116 cells in both two-dimension and three-dimension were non-responsive to treatment in agreement with their KRAS mutant status. In summary, these results confirm the use of a three-dimensional in vitro cancer model as a suitable drug-screening platform for in vitro pharmacological testing.

  2. Assessment of RELAP5-3D copyright using data from two-dimensional RPI flow tests

    International Nuclear Information System (INIS)

    Davis, C.B.

    1998-01-01

    The capability of the RELAP5-3D copyright computer code to perform multi-dimensional thermal-hydraulic analysis was assessed using data from steady-state flow tests conducted at Rensselaer Polytechnic Institute (RPI). The RPI data were taken in a two-dimensional test section in a low-pressure air/water loop. The test section consisted of a thin vertical channel that simulated a two-dimensional slice through the core of a pressurized water reactor. Single-phase and two-phase flows were supplied to the test section in an asymmetric manner to generate a two-dimensional flow field. A traversing gamma densitometer was used to measure void fraction at many locations in the test section. High speed photographs provided information on the flow patterns and flow regimes. The RPI test section was modeled using the multi-dimensional component in RELAP5-3D Version BF06. Calculations of three RPI experiments were performed. The flow regimes predicted by the base code were in poor agreement with those observed in the tests. The two-phase regions were observed to be in the bubbly and slug flow regimes in the test. However, nearly all of the junctions in the horizontal direction were calculated to be in the stratified flow regime because of the relatively low velocities in that direction. As a result, the void fraction predictions were also in poor agreement with the measured values. Significantly improved results were obtained in sensitivity calculations with a modified version of the code that prevented the horizontal junctions from entering the stratified flow regime. These results indicate that the code's logic in the determination of flow regimes in a multi-dimensional component must be improved. The results of the sensitivity calculations also indicate that RELAP5-3D will provide a significant multi-dimensional hydraulic analysis capability once the flow regime prediction is improved

  3. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong

    2013-02-12

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44monolayer is topologically nontrivial for 0.48monolayer, TiS2−xTex is a unique system for studying topological phases in three and two dimensions simultaneously.

  4. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44monolayer is topologically nontrivial for 0.48monolayer, TiS2−xTex is a unique system for studying topological phases in three and two dimensions simultaneously.

  5. Atomic structure of a metal-supported two-dimensional germania film

    Science.gov (United States)

    Lewandowski, Adrián Leandro; Schlexer, Philomena; Büchner, Christin; Davis, Earl M.; Burrall, Hannah; Burson, Kristen M.; Schneider, Wolf-Dieter; Heyde, Markus; Pacchioni, Gianfranco; Freund, Hans-Joachim

    2018-03-01

    The growth and microscopic characterization of two-dimensional germania films is presented. Germanium oxide monolayer films were grown on Ru(0001) by physical vapor deposition and subsequent annealing in oxygen. We obtain a comprehensive image of the germania film structure by combining intensity-voltage low-energy electron diffraction (I/V-LEED) and ab initio density functional theory (DFT) analysis with atomic-resolution scanning tunneling microscopy (STM) imaging. For benchmarking purposes, the bare Ru(0001) substrate and the (2 ×2 )3 O covered Ru(0001) were analyzed with I/V-LEED with respect to previous reports. STM topographic images of the germania film reveal a hexagonal network where the oxygen and germanium atom positions appear in different imaging contrasts. For quantitative LEED, the best agreement has been achieved with DFT structures where the germanium atoms are located preferentially on the top and fcc hollow sites of the Ru(0001) substrate. Moreover, in these atomically flat germania films, local site geometries, i.e., tetrahedral building blocks, ring structures, and domain boundaries, have been identified, indicating possible pathways towards two-dimensional amorphous networks.

  6. High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application

    Science.gov (United States)

    Zhou, Peng; Zheng, Gaige

    2018-04-01

    The efficiency of graphene-based optoelectronic devices is typically limited by the poor absolute absorption of light. A hybrid structure of monolayer graphene with cylindrical titanium dioxide (TiO2) array and aluminum oxide (Al2O3) spacer layer on aluminum (Al) substrate has been proposed to enhance the absorption for two-dimensional (2D) materials. By combining dielectric array with metal substrate, the structure achieves multiple absorption peaks with near unity absorbance at near-infrared wavelengths due to the resonant effect of dielectric array. Completed monolayer graphene is utilized in the design without any demand of manufacture process to form the periodic patterns. Further analysis indicates that the near-field enhancement induced by surface modes gives rise to the high absorption. This favorable field enhancement and tunability of absorption not only open up new approaches to accelerate the light-graphene interaction, but also show great potential for practical applications in high-performance optoelectronic devices, such as modulators and sensors.

  7. Formation and stability of manganese-doped ZnS quantum dot monolayers determined by QCM-D and streaming potential measurements.

    Science.gov (United States)

    Oćwieja, Magdalena; Matras-Postołek, Katarzyna; Maciejewska-Prończuk, Julia; Morga, Maria; Adamczyk, Zbigniew; Sovinska, Svitlana; Żaba, Adam; Gajewska, Marta; Król, Tomasz; Cupiał, Klaudia; Bredol, Michael

    2017-10-01

    Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10 -4 and 10 -2 M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10 -4 and 10 -2 M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions

  8. Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure.

    Science.gov (United States)

    Ding, Yi-Min; Shi, Jun-Jie; Xia, Congxin; Zhang, Min; Du, Juan; Huang, Pu; Wu, Meng; Wang, Hui; Cen, Yu-Lang; Pan, Shu-Hang

    2017-10-05

    To enhance the low hole mobility (∼40 cm 2 V -1 s -1 ) of InSe monolayer, a novel two-dimensional (2D) van der Waals heterostructure made of InSe and black phosphorus (BP) monolayers with high hole mobility (∼10 3 cm 2 V -1 s -1 ) has been constructed and its structural and electronic properties are investigated using first-principles calculations. We find that the InSe/BP heterostructure exhibits a direct band gap of 1.39 eV and type-II band alignment with electrons (holes) located in the InSe (BP) layer. The band offsets of InSe and BP are 0.78 eV for the conduction band minimum and 0.86 eV for the valence band maximum, respectively. Surprisingly, the hole mobility in the InSe/BP heterostructure exceeds 10 4 cm 2 V -1 s -1 , which is one order of magnitude larger than the hole mobility of BP and three orders larger than that of the InSe monolayer. The electron mobility is also increased to 3 × 10 3 cm 2 V -1 s -1 . The physical reason has been analyzed deeply, and a universal method is proposed to improve the carrier mobility of 2D materials by forming heterostructures with them and other 2D materials with complementary properties. The InSe/BP heterostructure can thus be widely used in nanoscale InSe-based field-effect transistors, photodetectors and photovoltaic devices due to its type-II band alignment and high carrier mobility.

  9. Evidence of indirect gap in monolayer WSe2

    KAUST Repository

    Hsu, Wei-Ting

    2017-10-09

    Monolayer transition metal dichalcogenides, such as MoS2 and WSe2, have been known as direct gap semiconductors and emerged as new optically active materials for novel device applications. Here we reexamine their direct gap properties by investigating the strain effects on the photoluminescence of monolayer MoS2 and WSe2. Instead of applying stress, we investigate the strain effects by imaging the direct exciton populations in monolayer WSe2–MoS2 and MoSe2–WSe2 lateral heterojunctions with inherent strain inhomogeneity. We find that unstrained monolayer WSe2 is actually an indirect gap material, as manifested in the observed photoluminescence intensity–energy correlation, from which the difference between the direct and indirect optical gaps can be extracted by analyzing the exciton thermal populations. Our findings combined with the estimated exciton binding energy further indicate that monolayer WSe2 exhibits an indirect quasiparticle gap, which has to be reconsidered in further studies for its fundamental properties and device applications.

  10. Optical Kerr effect and two-photon absorption in monolayer black phosphorus

    Science.gov (United States)

    Margulis, Vl A.; Muryumin, E. E.; Gaiduk, E. A.

    2018-05-01

    A theoretical treatment of nonlinear refraction and two-photon absorption is presented for a novel two-dimensional material, monolayer black phosphorus (or phosphorene), irradiated by a normally incident and linearly polarized coherent laser beam of frequency ω. It is found that both the nonlinear refractive index n 2(ω) and the two-photon absorption coefficient α 2(ω) of phosphorene depend upon the polarization of the radiation field relative to phosphorene’s crystallographic axes. For the two principal polarization directions considered—viz, the armchair ({ \\mathcal A }{ \\mathcal C }) and zigzag ({ \\mathcal Z }{ \\mathcal Z }), the calculated values of n 2 and α 2 are distinguished by the order of their magnitude, with the n 2 and α 2 values being greater for the { \\mathcal A }{ \\mathcal C } direction. Furthermore, for almost all the incident photon energies below the fundamental absorption edge, except its neighborhood, the signs of n 2 as well as α 2 for the { \\mathcal A }{ \\mathcal C } and { \\mathcal Z }{ \\mathcal Z } polarization directions are opposed to each other. Also, for both the directions, the change of sign of n 2 is predicted to occur in the way between the two-photon absorption edge and the fundamental absorption edge, as well as in the near vicinity of the latter, where the Kerr nonlinearity has a pronounced resonant character and the magnitude of n 2 for the { \\mathcal A }{ \\mathcal C } and { \\mathcal Z }{ \\mathcal Z } polarization directions reaches its largest positive values of the order of 10‑9 and 10‑10 cm2 W‑1, respectively. The implications of the findings for practical all-optical switching applications are discussed.

  11. Quantitative application of Fermi-Dirac functions of two- and three-dimensional systems

    International Nuclear Information System (INIS)

    Grimmer, D.P.; Luszczynski, K.; Salibi, N.

    1981-01-01

    Expressions for the various physical parameters of the ideal Fermi-Dirac gas in two dimensions are derived and compared to the corresponding three-dimensional expressions. These derivations show that the Fermi-Dirac functions most applicable to the two-dimensional problem are F/sub o/(eta), F 1 (eta), and F' 0 (eta). Analogous to the work of McDougall and Stoner in three dimensions, these functions and parameters derived from them are tabulated over the range of the argument, -4 3 He monolayer and bulk liquid 3 He nuclear magnetic susceptibilities, respectively, are considered. Calculational procedures of fitting data to theoretical parameters and criteria for judging the quality of fit of data to both two- and three-dimensional Fermi-Dirac values are discussed

  12. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  13. Study of structural order in porphyrin-fullerene dyad ZnDHD6ee monolayers by electron diffraction and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    D' yakova, Yu. A.; Suvorova, E. I.; Orekhov, Andrei S.; Orekhov, Anton S. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Alekseev, A. S. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Gainutdinov, R. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Tereschenko, E. Yu. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Tkachenko, N. V.; Lemmetyinen, H. [Tampere University of Technology (Finland); Feigin, L. A.; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-11-15

    The structure of porphyrin-fullerene dyad ZnDHD6ee monolayers formed on the surface of aqueous subphase in a Langmuir trough and transferred onto solid substrates has been studied. The data obtained are interpreted using simulation of the structure of isolated molecules and their packing in monolayer and modeling of diffraction patterns from molecular aggregates having different sizes and degrees of order. Experiments on the formation of condensed ZnDHD6ee monolayers are described. The structure of these monolayers on a water surface is analyzed using {pi}-A isotherms. The structure of the monolayers transferred onto solid substrates is investigated by electron diffraction and atomic force microscopy. The unit-cell parameters of two-dimensional domains, which are characteristic of molecular packing in monolayers and deposited films, are determined. Domains are found to be organized into a texture (the molecular axes are oriented by the [001] direction perpendicular to the substrate). The monolayers contain a limited number of small 3D domains.

  14. Anomalous lattice vibrations of monolayer MoS 2 probed by ultraviolet Raman scattering

    KAUST Repository

    Liu, Hsiang Lin; Guo, Huaihong; Yang, Teng; Zhang, Zhidong; Kumamoto, Yasuaki; Shen, Chih Chiang; Hsu, Yu Te; Li, Lain-Jong; Saito, Riichiro; Kawata, Satoshi

    2015-01-01

    We present a comprehensive Raman scattering study of monolayer MoS2 with increasing laser excitation energies ranging from the near-infrared to the deep-ultraviolet. The Raman scattering intensities from the second-order phonon modes are revealed to be enhanced anomalously by only the ultraviolet excitation wavelength 354 nm. We demonstrate theoretically that such resonant behavior arises from a strong optical absorption that forms near the Γ point and of the band structure and an inter-valley resonant electronic scattering by the M-point phonons. These results advance our understanding of the double resonance Raman scattering process in low-dimensional semiconducting nanomaterials and provide a foundation for the technological development of monolayer MoS2 in the ultraviolet frequency range. © the Owner Societies 2015.

  15. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.

    2018-01-01

    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  16. Interfacial nondegenerate doping of MoS2 and other two-dimensional semiconductors.

    Science.gov (United States)

    Behura, Sanjay; Berry, Vikas

    2015-03-24

    Controlled nondegenerate doping of two-dimensional semiconductors (2DSs) with their ultraconfined carriers, high quantum capacitance, and surface-sensitive electronics can enable tuning their Fermi levels for rational device design. However, doping techniques for three-dimensional semiconductors, such as ion implantation, cannot be directly applied to 2DSs because they inflict high defect density. In this issue of ACS Nano, Park et al. demonstrate that interfacing 2DSs with substrates having dopants can controllably inject carriers to achieve nondegenerate doping, thus significantly broadening 2DSs' functionality and applications. Futuristically, this can enable complex spatial patterning/contouring of energy levels in 2DSs to form p-n junctions, integrated logic, and opto/electronic devices. The process is also extendable to biocellular-interfaced devices, band-continuum structures, and intricate 2D circuitry.

  17. The longitudinal optical conductivity in bilayer graphene and other two-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.H., E-mail: chyang@nuist.edu.cn [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Ao, Z.M., E-mail: zhimin.ao@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney ,PO Box 123, Broadway, Sydney, NSW 2007 (Australia); Wei, X.F. [West Anhui University, Luan 237012 (China); Jiang, J.J. [Department of Physics, Sanjing College, Nanjing 210012 (China)

    2015-01-15

    The longitudinal optical conductivity in bilayer graphene is calculated using the dielectric function by defining the density operator theoretically, while the effect of the broadening width determined by the scattering sources on the optical conductivity is also investigated. Some features, such as chirality, energy dispersion and density of state (DOS) in bilayer graphene, are similar to those in monolayer graphene and a traditional two-dimensional electron gas (2DEG). Therefore, in this paper, the bilayer graphene optical conductivity is compared with the results in these two systems. The analytical and numerical results show that the optical conductivity per graphene layer is almost a constant and close to e{sup 2}/(4ℏ), which agrees with the experimental results.

  18. Understanding and control of nucleation, growth, habit, dissolution and structure of two- and three-dimensional crystals using 'Tailor-made' auxiliaries

    International Nuclear Information System (INIS)

    Weissbuch, I.; Popovitz-Biro, R.; Lahav, M.; Leiserowitz, L.

    1995-01-01

    Tailor-made auxiliaries for the control of nucleation and growth of molecular crystals may be classified into two broad categories: inhibitors and promoters. Tailor-made inhibitors of crystal growth can be used for a variety of purposes, which include morphological engineering and etching, reduction of crystal symmetry, assignment of absolute structure of chiral molecules and polar crystals, elucidation of the effect of solvent on crystal growth, and crystallization of a desired polymorph. As for crystal growth promoters, monolayers of amphiphilic molecules on water have been used to induce the growth of a variety of three-dimensional crystals at the monolayer-solution interface by means of structural match, molecular complementarity or electrostatic interaction. A particular focus is made on the induced nucleation of ice by monolayers of water-insoluble aliphatic alcohols. The two-dimensional crystalline structures of such monolayers have been studied by grazing incidence X-ray diffraction. It has become possible to monitor, by this method, the growth, dissolution and structure of self-aggregated crystalline monolayers, and indeed multilayers, affected by the interaction of solvent molecules in the aqueous subphase with the amphiphilic headgroups, and by the use of tailor-made amphiphilic additives. (orig.)

  19. Effect of Chum Salmon Egg Lectin on Tight Junctions in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Ryo Nemoto

    2015-05-01

    Full Text Available The effect of a chum salmon egg lectin (CSL3 on tight junction (TJ of Caco-2 cell monolayers was investigated. The lectin opened TJ as indicated by the decrease of the transepithelial electrical resistance (TER value and the increase of the permeation of lucifer yellow, which is transported via the TJ-mediated paracellular pathway. The effects of CSL3 were inhibited by the addition of 10 mM L-rhamnose or D-galactose which were specific sugars for CSL3. The lectin increased the intracellular Ca2+ of Caco-2 cell monolayers, that could be inhibited by the addition of L-rhamnose. The fluorescence immunostaining of β-actin in Caco-2 cell monolayers revealed that the cytoskeleton was changed by the CSL3 treatment, suggesting that CSL3 depolymerized β-actin to cause reversible TJ structural and functional disruption. Although Japanese jack bean lectin and wheat germ lectin showed similar effects in the decrease of the TER values and the increase of the intracellular Ca2+, they could not be inhibited by the same concentrations of simple sugars, such as D-glucose and N-acetyl-D-glucosamine.

  20. Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors

    Science.gov (United States)

    Lv, Longfei; Xu, Yibing; Fang, Hehai; Luo, Wenjin; Xu, Fangjie; Liu, Limin; Wang, Biwei; Zhang, Xianfeng; Yang, Dong; Hu, Weida; Dong, Angang

    2016-07-01

    All-inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I) nanocrystals (NCs) are emerging as an important class of semiconductor materials with superior photophysical properties and wide potential applications in optoelectronic devices. So far, only a few studies have been conducted to control the shape and geometry of CsPbX3 NCs. Here we report a general approach to directly synthesize two-dimensional (2D) CsPbX3 perovskite and mixed perovskite nanosheets with uniform and ultrathin thicknesses down to a few monolayers. The key to the high-yield synthesis of perovskite nanosheets is the development of a new Cs-oleate precursor. The as-synthesized CsPbX3 nanosheets exhibit bright photoluminescence with broad wavelength tunability by composition modulation. The excellent optoelectronic properties of CsPbX3 nanosheets combined with their unique 2D geometry and large lateral dimensions make them ideal building blocks for building functional devices. To demonstrate their potential applications in optoelectronics, photodetectors based on CsPbBr3 nanosheets are fabricated, which exhibit high on/off ratios with a fast response time.All-inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I) nanocrystals (NCs) are emerging as an important class of semiconductor materials with superior photophysical properties and wide potential applications in optoelectronic devices. So far, only a few studies have been conducted to control the shape and geometry of CsPbX3 NCs. Here we report a general approach to directly synthesize two-dimensional (2D) CsPbX3 perovskite and mixed perovskite nanosheets with uniform and ultrathin thicknesses down to a few monolayers. The key to the high-yield synthesis of perovskite nanosheets is the development of a new Cs-oleate precursor. The as-synthesized CsPbX3 nanosheets exhibit bright photoluminescence with broad wavelength tunability by composition modulation. The excellent optoelectronic properties of CsPbX3 nanosheets

  1. Transfer of an exfoliated monolayer graphene flake onto an optical fiber end face for erbium-doped fiber laser mode-locking

    International Nuclear Information System (INIS)

    Rosa, Henrique Guimaraes; De Souza, Eunézio A Thoroh; Gomes, José Carlos Viana

    2015-01-01

    This paper presents, for the first time, the successful transfer of exfoliated monolayer graphene flake to the optical fiber end face and alignment to its core. By fabricating and optimizing a polymeric poly(methyl methacrylate) (PMMA) and polyvinyl alcohol (PVA) substrate, it is possible to obtain a contrast of up to 11% for green light illumination, allowing the identification of monolayer graphene flakes that were transferred to optical fiber samples and aligned to its core. With Raman spectroscopy, it is demonstrated that graphene flake completely covers the optical fiber core, and its quality remains unaltered after the transfer. The generation of mode-locked erbium-doped fiber laser pulses, with a duration of 672 fs, with a single-monolayer graphene flake as a saturable absorber, is demonstrated for the first time. This transfer technique is of general applicability and can be used for other two-dimensional (2D) exfoliated materials. (letter)

  2. FLUST-2D - A computer code for the calculation of the two-dimensional flow of a compressible medium in coupled retangular areas

    International Nuclear Information System (INIS)

    Enderle, G.

    1979-01-01

    The computer-code FLUST-2D is able to calculate the two-dimensional flow of a compressible fluid in arbitrary coupled rectangular areas. In a finite-difference scheme the program computes pressure, density, internal energy and velocity. Starting with a basic set of equations, the difference equations in a rectangular grid are developed. The computational cycle for coupled fluid areas is described. Results of test calculations are compared to analytical solutions and the influence of time step and mesh size are investigated. The program was used to precalculate the blowdown experiments of the HDR experimental program. Downcomer, plena, internal vessel region, blowdown pipe and a containment area have been modelled two-dimensionally. The major results of the precalculations are presented. This report also contains a description of the code structure and user information. (orig.) [de

  3. Two-Dimensional Halide Perovskites for Emerging New- Generation Photodetectors

    DEFF Research Database (Denmark)

    Tang, Yingying; Cao, Xianyi; Chi, Qijin

    2018-01-01

    Compared to their conventional three-dimensional (3D) counterparts, two-dimensional (2D) halide perovskites have attracted more interests recently in a variety of areas related to optoelectronics because of their unique structural characteristics and enhanced performances. In general, there are two...... distinct types of 2D halide perovskites. One represents those perovskites with an intrinsic layered crystal structure (i.e. MX6 layers, M = metal and X = Cl, Br, I), the other defines the perovskites with a 2D nanostructured morphology such as nanoplatelets and nanosheets. Recent studies have shown that 2D...... halide perovskites hold promising potential for the development of new-generation photodetectors, mainly arising from their highly efficient photoluminescence and absorbance, color tunability in the visible-light range and relatively high stability. In this chapter, we present the summary and highlights...

  4. Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics

    Science.gov (United States)

    Meng Yam, Kah; Guo, Na; Zhang, Chun

    2018-06-01

    Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu2Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu2Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu2Si–NiPc–Cu2Si junction is about three orders higher than that through graphene–NiPc–graphene. Detailed analysis shows that the surprisingly high conductivity of Cu2Si–NiPc–Cu2Si originates from the mixing of the Cu2Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu2Si may be an excellent candidate for electrode materials for future nanoscale devices.

  5. Full melting of a two-dimensional complex plasma crystal triggered by localized pulsed laser heating

    Science.gov (United States)

    Couëdel, L.; Nosenko, V.; Rubin-Zuzic, M.; Zhdanov, S.; Elskens, Y.; Hall, T.; Ivlev, A. V.

    2018-04-01

    The full melting of a two-dimensional plasma crystal was induced in a principally stable monolayer by localized laser stimulation. Two distinct behaviors of the crystal after laser stimulation were observed depending on the amount of injected energy: (i) below a well-defined threshold, the laser melted area recrystallized; (ii) above the threshold, it expanded outwards in a similar fashion to mode-coupling instability-induced melting, rapidly destroying the crystalline order of the whole complex plasma monolayer. The reported experimental observations are due to the fluid mode-coupling instability, which can pump energy into the particle monolayer at a rate surpassing the heat transport and damping rates in the energetic localized melted spot, resulting in its further growth. This behavior exhibits remarkable similarities with impulsive spot heating in ordinary reactive matter.

  6. Equatorial spread F studies using SAMI3 with two-dimensional and three-dimensional electrostatics

    Directory of Open Access Journals (Sweden)

    H. C. Aveiro

    2013-12-01

    Full Text Available This letter presents a study of equatorial F region irregularities using the NRL SAMI3/ESF model, comparing results using a two-dimensional (2-D and a three-dimensional (3-D electrostatic potential solution. For the 3-D potential solution, two cases are considered for parallel plasma transport: (1 transport based on the parallel ambipolar field, and (2 transport based on the parallel electric field. The results show that the growth rate of the generalized Rayleigh–Taylor instability is not affected by the choice of the potential solution. However, differences are observed in the structures of the irregularities between the 2-D and 3-D solutions. Additionally, the plasma velocity along the geomagnetic field computed using the full 3-D solution shows complex structures that are not captured by the simplified model. This points out that only the full 3-D model is able to fully capture the complex physics of the equatorial F region.

  7. Dimensionality and its effects upon the valence electronic structure of ordered metallic systems

    International Nuclear Information System (INIS)

    Tobin, J.G.

    1983-07-01

    The system c(10x2)Ag/Cu(001) was investigated with Angle-Resolved Photoemission (ARP), Low Energy Electron Diffraction (LEED) and Auger Electron Spectroscopy (AES). LEED and AES provided the calibration of a quartz microbalance used to measure the amount of silver evaporated onto the copper single crystal and also established the monolayer geometrical structure at one monolayer exposure. An off-normal ARP bandmapping study performed with polarized HeI and NeI radiation demonstrated the electronically two-dimensional nature of the silver d-bands at coverages of near one monolayer. The states at the surface Brillouin Zone center were assigned upon the basis of their polarization dependences and a structural model of hexagonal symmetry. A normal emission ARP experiment was performed at the Stanford Synchrotron Radiation Laboratory (SSRL) over the photon energy range of 6 to 32 eV. Data from it documented the evolution of the valence electronic structure of the silver overlayer from a two-dimensional hexagonal valence to a three-dimensional behavior converging towards that of bulk Ag(111). A structural study was attempted using the ARP technique of Normal Emission Photoelectron Diffraction over the photon energy range of 3.4 to 3.7 keV at SSRL, the results of which are inconclusive

  8. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  9. Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.

    2005-01-01

    Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications

  10. Monolayer II-VI semiconductors: A first-principles prediction

    Science.gov (United States)

    Zheng, Hui; Chen, Nian-Ke; Zhang, S. B.; Li, Xian-Bin

    A systematic study of 32 honeycomb monolayer II-VI semiconductors is carried out by first-principles methods. It appears that BeO, MgO, CaO, ZnO, CdO, CaS, SrS, SrSe, BaTe, and HgTe honeycomb monolayers have a good dynamic stability which is revealed by phonon calculations. In addition, from the molecular dynamic (MD) simulation of other unstable candidates, we also find two extra monolayers dynamically stable, which are tetragonal BaS and orthorhombic HgS. The honeycomb monolayers exist in form of either a planar perfect honeycomb or a low-buckled 2D layer, all of which possess a band gap and most of them are in the ultraviolet region. Interestingly, the dynamically stable SrSe has a gap near visible light, and displays exotic electronic properties with a flat top of the valence band, and hence has a strong spin polarization upon hole doping. The honeycomb HgTe has been reported to achieve a topological nontrivial phase under appropriate in-plane tensile strain and spin-orbital coupling (SOC). Some II-VI partners with less than 5% lattice mismatch may be used to design novel 2D heterojunction devices. If synthesized, potential applications of these 2D II-VI families could include optoelectronics, spintronics, and strong correlated electronics. Distinguished Student (DS) Program of APS FIP travel funds.

  11. Excitation of plasmon modes in a graphene monolayer supported on a 2D subwavelength silicon grating

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jepsen, Peter Uhd

    2013-01-01

    Graphene is a two-dimensional (2D) carbon-based material, whose unique electronic and optical properties have attracted a great deal of research interest. Despite the fact that graphene is an atomically thin layer the optical absorption of a single layer can be as high as 2.3% (defined by the fine...... structure constant). Nevertheless, for light-matter interactions this number is imposing challenges and restrictions for graphene-based optoelectronic devices. One promising way to enhance optical absorption is to excite graphene-plasmon polaritons (GPPs) supported by graphene....

  12. D-brane propagation in two-dimensional black hole geometries

    International Nuclear Information System (INIS)

    Nakayama, Yu; Rey, Soo-Jong; Sugawara, Yuji

    2005-01-01

    We study propagation of D0-brane in two-dimensional lorentzian black hole backgrounds by the method of boundary conformal field theory of SL(2,R)/U(1) supercoset at level k. Typically, such backgrounds arise as near-horizon geometries of k coincident non-extremal NS5-branes, where 1/k measures curvature of the backgrounds in string unit and hence size of string worldsheet effects. At classical level, string worldsheet effects are suppressed and D0-brane propagation in the lorentzian black hole geometry is simply given by the Wick rotation of D1-brane contour in the euclidean black hole geometry. Taking account of string worldsheet effects, boundary state of the lorentzian D0-brane is formally constructible via Wick rotation from that of the euclidean D1-brane. However, the construction is subject to ambiguities in boundary conditions. We propose exact boundary states describing the D0-brane, and clarify physical interpretations of various boundary states constructed from different boundary conditions. As it falls into the black hole, the D0-brane radiates off to the horizon and to the infinity. From the boundary states constructed, we compute physical observables of such radiative process. We find that part of the radiation to infinity is in effective thermal distribution at the Hawking temperature. We also find that part of the radiation to horizon is in the Hagedorn distribution, dominated by massive, highly non-relativistic closed string states, much like the tachyon matter. Remarkably, such distribution emerges only after string worldsheet effects are taken exactly into account. From these results, we observe that nature of the radiation distribution changes dramatically across the conifold geometry k = 1 (k = 3 for the bosonic case), exposing the 'string - black hole transition' therein

  13. A Model for Spheroid versus Monolayer Response of SK-N-SH Neuroblastoma Cells to Treatment with 15-Deoxy-PGJ2

    Directory of Open Access Journals (Sweden)

    Dorothy I. Wallace

    2016-01-01

    Full Text Available Researchers have observed that response of tumor cells to treatment varies depending on whether the cells are grown in monolayer, as in vitro spheroids or in vivo. This study uses data from the literature on monolayer treatment of SK-N-SH neuroblastoma cells with 15-deoxy-PGJ2 and couples it with data on growth rates for untreated SK-N-SH neuroblastoma cells grown as multicellular spheroids. A linear model is constructed for untreated and treated monolayer data sets, which is tuned to growth, death, and cell cycle data for the monolayer case for both control and treatment with 15-deoxy-PGJ2. The monolayer model is extended to a five-dimensional nonlinear model of in vitro tumor spheroid growth and treatment that includes compartments of the cell cycle (G1,S,G2/M as well as quiescent (Q and necrotic (N cells. Monolayer treatment data for 15-deoxy-PGJ2 is used to derive a prediction of spheroid response under similar treatments. For short periods of treatment, spheroid response is less pronounced than monolayer response. The simulations suggest that the difference in response to treatment of monolayer versus spheroid cultures observed in laboratory studies is a natural consequence of tumor spheroid physiology rather than any special resistance to treatment.

  14. Edge Epitaxy of Two-dimensional MoSe2 and MoS2 Nanosheets on One-dimensional Nanowires

    KAUST Repository

    Chen, Junze; Wu, Xue-Jun; Gong, Yue; Zhu, Yihan; Yang, Zhenzhong; Li, Bing; Lu, Qipeng; Yu, Yifu; Han, Shikui; Zhang, Zhicheng; Zong, Yun; Han, Yu; Gu, Lin; Zhang, Hua

    2017-01-01

    the longitudinal direction of one-dimensional (1D) Cu2-xS nanowires (NWs) in an epitaxial manner. The obtained Cu2-xS-TMD heterostructures with tunable loading amount and lateral size of TMD NSs are achieved by the consecutive growth of TMD NSs on Cu2-xS NWs

  15. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2

    Science.gov (United States)

    Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng

    2016-04-01

    Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and

  16. Quasiparticle interference in unconventional 2D systems.

    Science.gov (United States)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-15

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe 2 ), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  17. Pressure of two-dimensional Yukawa liquids

    International Nuclear Information System (INIS)

    Feng, Yan; Wang, Lei; Tian, Wen-de; Goree, J; Liu, Bin

    2016-01-01

    A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas. (paper)

  18. Efficient two-dimensional compressive sensing in MIMO radar

    Science.gov (United States)

    Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad

    2017-12-01

    Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.

  19. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  20. Efficient construction of two-dimensional cluster states with probabilistic quantum gates

    International Nuclear Information System (INIS)

    Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng

    2006-01-01

    We propose an efficient scheme for constructing arbitrary two-dimensional (2D) cluster states using probabilistic entangling quantum gates. In our scheme, the 2D cluster state is constructed with starlike basic units generated from 1D cluster chains. By applying parallel operations, the process of generating 2D (or higher-dimensional) cluster states is significantly accelerated, which provides an efficient way to implement realistic one-way quantum computers

  1. A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay

    International Nuclear Information System (INIS)

    Wen, Z.; Liao, Q.; Hu, Y.; You, L.; Zhou, L.; Zhao, Y.

    2013-01-01

    Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D) models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer

  2. A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay

    Directory of Open Access Journals (Sweden)

    Z. Wen

    2013-08-01

    Full Text Available Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer.

  3. Extended Polymorphism of Two-Dimensional Material

    NARCIS (Netherlands)

    Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro

    When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from

  4. Coulomb engineering of the bandgap and excitons in two-dimensional materials

    Science.gov (United States)

    Raja, Archana; Chaves, Andrey; Yu, Jaeeun; Arefe, Ghidewon; Hill, Heather M.; Rigosi, Albert F.; Berkelbach, Timothy C.; Nagler, Philipp; Schüller, Christian; Korn, Tobias; Nuckolls, Colin; Hone, James; Brus, Louis E.; Heinz, Tony F.; Reichman, David R.; Chernikov, Alexey

    2017-01-01

    The ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS2 and WSe2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as an initial step towards the creation of diverse lateral junctions with nanoscale resolution. PMID:28469178

  5. Two-dimensional profiling of Xanthomonas campestris pv. viticola ...

    African Journals Online (AJOL)

    However, the analysis of the 2D-PAGE gel images revealed a larger number of spots in the lysis method when compared to the others. Taking ... Keywords: Bacterial canker, Vitis vinifera, proteomics, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2D-PAGE).

  6. Half-metallic ferromagnetism prediction in MoS2-based two-dimensional superlattice from first-principles

    Science.gov (United States)

    Wen, Yan-Ni; Gao, Peng-Fei; Xia, Ming-Gang; Zhang, Sheng-Li

    2018-03-01

    Half-metallic ferromagnetism (HMFM) has great potential application in spin filter. However, it is extremely rare, especially in two-dimensional (2D) materials. At present, 2D materials have drawn international interest in spintronic devices. Here, we use ab initio density functional theory (DFT) calculations to study the structural stability and electrical and magnetic properties of the MoS2-based 2D superlattice formed by inserting graphene hexagonal ring in 6 × 6 × 1 MoS2 supercell. Two kinds of structures with hexagonal carbon ring were predicted with structural stability and were shown HMFM. The two structures combine the spin transport capacity of graphene with the magnetism of the defective 2D MoS2. And they have strong covalent bonding between the C and S or Mo atoms near the interface. This work is very useful to help us to design reasonable MoS2-based spin filter.

  7. First principles study of the electronic properties and band gap modulation of two-dimensional phosphorene monolayer: Effect of strain engineering

    Science.gov (United States)

    Phuc, Huynh V.; Hieu, Nguyen N.; Ilyasov, Victor V.; Phuong, Le T. T.; Nguyen, Chuong V.

    2018-06-01

    The effect of strain on the structural and electronic properties of monolayer phosphorene is studied by using first-principle calculations based on the density functional theory. The intra- and inter-bond length and bond angle for monolayer phosphorene is also evaluated. The intra- and inter-bond length and the bond angle for phosphorene show an opposite tendency under different directions of the applied strain. At the equilibrium state, monolayer phosphorene is a semiconductor with a direct band gap at the Γ-point of 0.91 eV. A direct-indirect band gap transition is found in monolayer phosphorene when both the compression and tensile strain are simultaneously applied along both zigzag and armchair directions. Under the applied compression strain, a semiconductor-metal transition for monolayer phosphorene is observed at -13% and -10% along armchair and zigzag direction, respectively. The direct-indirect and phase transition will largely constrain application of monolayer phosphorene to electronic and optical devices.

  8. Confined catalysis under two-dimensional materials

    OpenAIRE

    Li, Haobo; Xiao, Jianping; Fu, Qiang; Bao, Xinhe

    2017-01-01

    Small spaces in nanoreactors may have big implications in chemistry, because the chemical nature of molecules and reactions within the nanospaces can be changed significantly due to the nanoconfinement effect. Two-dimensional (2D) nanoreactor formed under 2D materials can provide a well-defined model system to explore the confined catalysis. We demonstrate a general tendency for weakened surface adsorption under the confinement of graphene overlayer, illustrating the feasible modulation of su...

  9. Origin of n-type conductivity in two-dimensional InSe: In atoms from surface adsorption and van der Waals gap

    Science.gov (United States)

    Wang, Hui; Shi, Jun-jie; Huang, Pu; Ding, Yi-min; Wu, Meng; Cen, Yu-lang; Yu, Tongjun

    2018-04-01

    Recently, two-dimensional (2D) InSe nanosheet becomes a promising material for electronic and optoelectronic nano-devices due to its excellent electron transport, wide bandgap tunability and good metal contact. The inevitable native point defects are essential in determining its characteristics and device performance. Here we investigate the defect formation energy and thermodynamic transition levels for the most important native defects and clarify the physical origin of n-type conductivity in unintentionally doped 2D InSe by using the powerful first-principles calculations. We find that both surface In adatom and Se vacancy are the key defects, and the In adatom, donated 0.65 electrons to the host, causes the n-type conductivity in monolayer InSe under In-rich conditions. For bilayer or few-layer InSe, the In interstitial within the van der Waals gap, transferred 0.68 electrons to InSe, is found to be the most stable donor defect, which dominates the n-type character. Our results are significant for understanding the defect nature of 2D InSe and improving the related nano-device performance.

  10. Disorder-dependent valley properties in monolayer WSe2

    KAUST Repository

    Tran, Kha

    2017-07-19

    We investigate the effect of disorder on exciton valley polarization and valley coherence in monolayer WSe2. By analyzing the polarization properties of photoluminescence, the valley coherence (VC) and valley polarization (VP) are quantified across the inhomogeneously broadened exciton resonance. We find that disorder plays a critical role in the exciton VC, while affecting VP less. For different monolayer samples with disorder characterized by their Stokes shift (SS), VC decreases in samples with higher SS while VP does not follow a simple trend. These two methods consistently demonstrate that VC as defined by the degree of linearly polarized photoluminescence is more sensitive to disorder, motivating further theoretical studies.

  11. Bethe ansatz for two-magnon scattering states in 2D and 3D Heisenberg–Ising ferromagnets

    Science.gov (United States)

    Bibikov, P. N.

    2018-04-01

    Two different versions of Bethe ansatz are suggested for evaluation of scattering two-magnon states in 2D and 3D Heisenberg–Ising ferromagnets on square and simple cubic lattices. It is shown that the two-magnon sector is subdivided on two subsectors related to non-interacting and scattering magnons. The former subsector possess an integrable regular dynamics and may be described by a natural modification of the usual Bethe Ansatz. The latter one is characterized by a non-integrable chaotic dynamics and may be treated only within discrete degenerative version of Bethe Ansatz previously suggested by the author. Some of these results are generalized for multi-magnon states of the Heisenberg–Ising ferromagnet on a D dimensional hyper cubic lattice. Dedicated to the memory of L D Faddeev.

  12. Two-dimensional characterization of atmospheric profile retrievals from limb sounding observations

    International Nuclear Information System (INIS)

    Worden, J.R.; Bowman, K.W.; Jones, D.B.

    2004-01-01

    Limb sounders measure atmospheric radiation that is dependent on atmospheric temperature and constituents that have a radial and angular distribution in Earth-centered coordinates. In order to evaluate the sensitivity of a limb retrieval to radial and angular distributions of trace gas concentrations, we perform and characterize one-dimensional (vertical) and two-dimensional (radial and angular) atmospheric profile retrievals. Our simulated atmosphere for these retrievals is a distribution of carbon monoxide (CO), which represents a plume off the coast of south-east Asia. Both the one-dimensional (1D) and two-dimensional (2D) limb retrievals are characterized by evaluating their averaging kernels and error covariances on a radial and angular grid that spans the plume. We apply this 2D characterization of a limb retrieval to a comparison of the 2D retrieval with the 1D (vertical) retrieval. By characterizing a limb retrieval in two dimensions the location of the air mass where the retrievals are most sensitive can be determined. For this test case the retrievals are most sensitive to the CO concentrations about 2 deg.latitude in front of the tangent point locations. We find the information content for the 2D retrieval is an order of magnitude larger and the degrees of freedom is about a factor of two larger than that of the 1D retrieval primarily because the 2D retrieval can estimate angular distributions of CO concentrations. This 2D characterization allows the radial and angular resolution as well as the degrees of freedom and information content to be computed for these limb retrievals. We also use the 2D averaging kernel to develop a strategy for validation of a limb retrieval with an in situ measurement

  13. Strongly bound excitons in monolayer PtS2 and PtSe2

    KAUST Repository

    Sajjad, M.

    2018-01-22

    Based on first-principles calculations, the structural, electronic, and optical properties of monolayers PtS2 and PtSe2 are investigated. The bond stiffnesses and elastic moduli are determined by means of the spring constants and strain-energy relations, respectively. Dynamic stability is confirmed by calculating the phonon spectra, which shows excellent agreement with experimental reports for the frequencies of the Raman-active modes. The Heyd-Scuseria-Ernzerhof functional results in electronic bandgaps of 2.66 eV for monolayer PtS2 and 1.74 eV for monolayer PtSe2. G0W0 calculations combined with the Bethe-Salpeter equation are used to predict the optical spectra and exciton binding energies (0.78 eV for monolayer PtS2 and 0.60 eV for monolayer PtSe2). It turns out that the excitons are strongly bound and therefore very stable against external perturbations.

  14. Violating Bell inequalities maximally for two d-dimensional systems

    International Nuclear Information System (INIS)

    Chen Jingling; Wu Chunfeng; Oh, C. H.; Kwek, L. C.; Ge Molin

    2006-01-01

    We show the maximal violation of Bell inequalities for two d-dimensional systems by using the method of the Bell operator. The maximal violation corresponds to the maximal eigenvalue of the Bell operator matrix. The eigenvectors corresponding to these eigenvalues are described by asymmetric entangled states. We estimate the maximum value of the eigenvalue for large dimension. A family of elegant entangled states |Ψ> app that violate Bell inequality more strongly than the maximally entangled state but are somewhat close to these eigenvectors is presented. These approximate states can potentially be useful for quantum cryptography as well as many other important fields of quantum information

  15. The Make 2D-DB II package: conversion of federated two-dimensional gel electrophoresis databases into a relational format and interconnection of distributed databases.

    Science.gov (United States)

    Mostaguir, Khaled; Hoogland, Christine; Binz, Pierre-Alain; Appel, Ron D

    2003-08-01

    The Make 2D-DB tool has been previously developed to help build federated two-dimensional gel electrophoresis (2-DE) databases on one's own web site. The purpose of our work is to extend the strength of the first package and to build a more efficient environment. Such an environment should be able to fulfill the different needs and requirements arising from both the growing use of 2-DE techniques and the increasing amount of distributed experimental data.

  16. Decoherence in two-dimensional quantum walks

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Portugal, R.; Donangelo, R.

    2006-01-01

    We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk

  17. Three-dimensional culture conditions lead to decreased radiation induced cytotoxicity in human mammary epithelial cells

    International Nuclear Information System (INIS)

    Sowa, Marianne B.; Chrisler, William B.; Zens, Kyra D.; Ashjian, Emily J.; Opresko, Lee K.

    2010-01-01

    For both targeted and non-targeted exposures, the cellular responses to ionizing radiation have predominantly been measured in two-dimensional monolayer cultures. Although convenient for biochemical analysis, the true interactions in vivo depend upon complex interactions between cells themselves and the surrounding extracellular matrix. This study directly compares the influence of culture conditions on radiation induced cytotoxicity following exposure to low-LET ionizing radiation. Using a three-dimensional (3D) human mammary epithelial tissue model, we have found a protective effect of 3D cell culture on cell survival after irradiation. The initial state of the cells (i.e., 2D versus 3D culture) at the time of irradiation does not alter survival, nor does the presence of extracellular matrix during and after exposure to dose, but long term culture in 3D which offers significant reduction in cytotoxicity at a given dose (e.g. ∼4-fold increased survival at 5 Gy). The cell cycle delay induced following exposure to 2 and 5 Gy was almost identical between 2D and 3D culture conditions and cannot account for the observed differences in radiation responses. However the amount of apoptosis following radiation exposure is significantly decreased in 3D culture relative to the 2D monolayer after the same dose. A likely mechanism of the cytoprotective effect afforded by 3D culture conditions is the down regulation of radiation induced apoptosis in 3D structures.

  18. Two-Dimensional Homogeneous Fermi Gases

    Science.gov (United States)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  19. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides

    KAUST Repository

    Ly, Thuchue; Chiu, Ming-Hui; Li, Mingyang; Zhao, Jiong; Perello, David J.; Cichocka, Magdalena Ola; Oh, Hyemin; Chae, Sanghoon; Jeong, Hyeyun; Yao, Fei; Li, Lain-Jong; Lee, Young Hee

    2014-01-01

    Two-dimensional monolayer transition metal dichalcogenides (TMdCs), driven by graphene science, revisit optical and electronic properties, which are markedly different from bulk characteristics. These properties are easily modified due

  20. [Simultaneous determination of vitamins A, D3 and E in infant formula and adult nutritions by online two-dimensional liquid chromatography].

    Science.gov (United States)

    Zhang, Yanhai; Qibule, Hasi; Jin, Yan; Wang, Jia; Ma, Wenli

    2015-03-01

    A rapid method for the simultaneous determination of vitamins A, D3 and E in infant formula and adult nutritions has been developed using online two-dimensional liquid chromatography (2D-LC). First of all, C8 and polar embedded C18 columns were chosen as the first and second dimensional column respectively according to hydrophobic-subtraction model, which constituted excellent orthogonal separation system. The detection wavelengths were set at 263 nm for vitamin D3, 296 nm for vitamin E and 325 nm for vitamin A. The purification of vitamin D3 and quantifications of vitamins A and E were completed simultaneously in the first dimensional separation using the left pump of Dual Gradient LC (DGLC) with methanol, acetonitrile and water as mobile phases. The heart-cutting time window of vitamin D3 was confirmed according to the retention time of vitamin D3 in the first dimensional separation. The elute from the first dimensional column (1-D column) which contained vitamin D3 was collected by a 500 µL sample loop and then taken into the second dimensional column (2-D column) by the right pump of DGLC with methanol, acetonitrile and water as mobile phases. The quantification of vitamin D3 was performed in the second dimensional separation with vitamin D2 as internal standard. At last, this method was applied for the analysis of the three vitamins in milk powder, cheese and yogurt. The injected sample solution with no further purification was pre-treated by hot-saponification using 1. 25 kg/L KOH solution and extracted by petroleum ether solvent. The recoveries of vitamin D3 spiked in all samples were 75.50%-85.00%. There was no statistically significant difference for the results between this method and standard method through t-test. The results indicate that vitamins A, D3 and E in infant formula and adult fortified dairy can be determined rapidly and accurately with this method.

  1. On final states of two-dimensional decaying turbulence

    NARCIS (Netherlands)

    Yin, Z.

    2004-01-01

    Numerical and analytical studies of final states of two-dimensional (2D) decaying turbulence are carried out. The first part of this work is trying to give a definition for final states of 2D decaying turbulence. The functional relation of ¿-¿, which is frequently adopted as the characterization of

  2. Syntheses, crystal structures and luminescent properties of two new 1D d 1 coordination polymers constructed from 2,2'-bibenzimidazole and 1,4-benzenedicarboxylate

    International Nuclear Information System (INIS)

    Wen Lili; Li Yizhi; Dang Dongbin; Tian Zhengfang; Ni Zhaoping; Meng Qingjin

    2005-01-01

    Two novel interesting d 1 metal coordination polymers, [Zn(H 2 bibzim)(BDC)] n (1) and [Cd(H 2 bibzim)(BDC)] n (2) [H 2 bibzim=2,2'-bibenzimidazole, BDC=1,4-benzenedicarboxylate] have been synthesized under solvothermal conditions and structurally characterized. Both 1 and 2 are constructed from infinite neutral zigzag-like one-dimensional (1D) chains. The π-π interactions and interchain hydrogen-bonding interactions further extend the 1D arrangement to generate a 3D supramolecular architecture for 1 and 2. Both complexes have high thermal stability and display strong blue fluorescent emissions in the solid state upon photo-excitation at 365 nm at room temperature. They are the first two examples that 2,2'-bibenzimidazole has been introduced into the d 1 coordination polymeric framework

  3. Prenatal diagnosis of sirenomelia by two-dimensional and three-dimensional skeletal imaging ultrasound.

    Science.gov (United States)

    Liu, Rong; Chen, Xin-lin; Yang, Xiao-hong; Ma, Hui-jing

    2015-12-01

    This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Between September 2010 and April 2014, a prospective study was conducted in a single referral center using 3D-SUIS performed after 2D-US in 10 cases of sirenomelia. Diagnostic accuracy and detailed findings were compared with postnatal three-dimensional helical computed tomography (3D-HCT), radiological findings and autopsy. Pregnancy was terminated in all 10 sirenomelia cases, including 9 singletons and 1 conjoined twin pregnancy, for a total of 5 males and 5 females. These cases of sirenomelia were determined by autopsy and/or chromosomal examination. Initial 2D-US showed that there were 10 cases of oligohydramnios, bilateral renal agenesis, bladder agenesis, single umbilical artery, fusion of the lower limbs and spinal abnormalities; 8 cases of dipus or monopus; 2 cases of apus; and 8 cases of cardiac abnormalities. Subsequent 3D-SUIS showed that there were 9 cases of scoliosis, 10 cases of sacrococcygeal vertebra dysplasia, 3 cases of hemivertebra, 1 case of vertebral fusion, 3 cases of spina bifida, and 5 cases of rib abnormalities. 3D-SUIS identified significantly more skeletal abnormalities than did 2D-US, and its accuracy was 79.5% (70/88) compared with 3D-HCT and radiography. 3D-SUIS seems to be a useful complementary method to 2D-US and may improve the accuracy of identifying prenatal skeletal abnormalities related to sirenomelia.

  4. Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model

    Science.gov (United States)

    Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad

    2018-02-01

    In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.

  5. Interface Effects Enabling New Applications of Two-Dimensional Materials

    KAUST Repository

    Sattar, Shahid

    2018-05-01

    Interface effects in two-dimensional (2D) materials play a critical role for the electronic properties and device characteristics. Here we use first-principles calculations to investigate interface effects in 2D materials enabling new applications. We first show that graphene in contact with monolayer and bilayer PtSe2 experiences weak van der Waals interaction. Analysis of the work functions and band bending at the interface reveals that graphene forms an n-type Schottky contact with monolayer PtSe2 and a p-type Schottky contact with bilayer PtSe2, whereas a small biaxial tensile strain makes the contact Ohmic in the latter case as required for transistor operation. For silicene, which is a 2D Dirac relative of graphene, structural buckling complicates the experimental synthesis and strong interaction with the substrate perturbs the characteristic linear dispersion. To remove this obstacle, we propose solid argon as a possible substrate for realizing quasi-freestanding silicene and argue that a weak van der Waals interaction and small binding energy indicate the possibility to separate silicene from the substrate. For the silicene-PtSe2 interface, we demonstrate much stronger interlayer interaction than previously reported for silicene on other semiconducting substrates. Due to the inversion symmetry breaking and proximity to PtSe2, a band gap opening and spin splittings in the valence and conduction bands of silicene are observed. It is also shown that the strong interlayer interaction can be effectively reduced by intercalating NH3 molecules between silicene and PtSe2, and a small NH3 discussion barrier makes intercalation a viable experimental approach. Silicene/germanene are categorized as key materials for the field of valleytronics due to stronger spin-orbit coupling as compared to graphene. However, no viable route exists so far to experimental realization. We propose F-doped WS2 as substrate that avoids detrimental effects and at the same time induces the

  6. Microfluidic 3D cell culture: potential application for tissue-based bioassays

    Science.gov (United States)

    Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong

    2014-01-01

    Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034

  7. Janus monolayers of transition metal dichalcogenides

    KAUST Repository

    Lu, Ang-Yu

    2017-05-15

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  8. Two-dimensional magnetism in the triangular antiferromagnet NiGa2S4

    International Nuclear Information System (INIS)

    Nambu, Yusuke

    2013-01-01

    At sufficiently low temperatures, electron spins in normal magnets generally order into some fashion, for instance, ferromagnetic and antiferromagnetic. Geometrical frustration and/or reduced dimensionality can suppress such conventional orders, and occasionally induce unknown states of matter. This is the case for the two-dimensional (2D) triangular antiferromagnet Ni(Ga 2 S 4 , in which S=1 nickel spins do not order, instead show an exotic magnetism. We found (1) a resonant critical slowing down toward T*=8.5 K followed by a viscous spin liquid behavior, and (2) a spin-size dependent ground state. To elucidate (1), spin dynamics ranging from 10 -13 to 10 0 seconds were quantitatively explored through the experimental techniques such as inelastic neutron scattering, backscattering, neutron spin echo, ac and nonlinear susceptibilities. The finding of (2) is evidenced by impurity effects. Integer spins substituted systems such as zinc and iron ions retain a quadratic temperature dependence of the magnetic specific heat as for the parent compound. However, substitutions of half-odd integer spins, cobalt and manganese ions, eventually induce a distinct behavior, indicating an importance of integer size of spins to stabilize the 2D magnetism realized in NiGa 2 S 4 . The article gives our experimental findings and as well as some relevant theoretical scenarios. (author)

  9. Surface Plasmon Polariton-Assisted Long-Range Exciton Transport in Monolayer Semiconductor Lateral Heterostructure

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.

  10. Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers.

    Science.gov (United States)

    Lin, Kuang-I; Ho, Yen-Hung; Liu, Shu-Bai; Ciou, Jian-Jhih; Huang, Bo-Ting; Chen, Christopher; Chang, Han-Ching; Tu, Chien-Liang; Chen, Chang-Hsiao

    2018-02-14

    Edge morphology and lattice orientation of single-crystal molybdenum disulfide (MoS 2 ) monolayers, a transition metal dichalcogenide (TMD), possessing a triangular shape with different edges grown by chemical vapor deposition are characterized by atomic force microscopy and transmission electron microscopy. Multiphoton laser scanning microscopy is utilized to study one-dimensional atomic edges of MoS 2 monolayers with localized midgap electronic states, which result in greatly enhanced optical second-harmonic generation (SHG). Microscopic S-zigzag edge and S-Mo Klein edge (bare Mo atoms protruding from a S-zigzag edge) terminations and the edge-atom dependent resonance energies can therefore be deduced based on SHG images. Theoretical calculations based on density functional theory clearly explain the lower energy of the S-zigzag edge states compared to the corresponding S-Mo Klein edge states. Characterization of the atomic-scale variation of edge-enhanced SHG is a step forward in this full-optical and high-yield technique of atomic-layer TMDs.

  11. Two-Dimensional SiO2/VO2 Photonic Crystals with Statically Visible and Dynamically Infrared Modulated for Smart Window Deployment.

    Science.gov (United States)

    Ke, Yujie; Balin, Igal; Wang, Ning; Lu, Qi; Tok, Alfred Iing Yoong; White, Timothy J; Magdassi, Shlomo; Abdulhalim, Ibrahim; Long, Yi

    2016-12-07

    Two-dimensional (2D) photonic structures, widely used for generating photonic band gaps (PBG) in a variety of materials, are for the first time integrated with the temperature-dependent phase change of vanadium dioxide (VO 2 ). VO 2 possesses thermochromic properties, whose potential remains unrealized due to an undesirable yellow-brown color. Here, a SiO 2 /VO 2 core/shell 2D photonic crystal is demonstrated to exhibit static visible light tunability and dynamic near-infrared (NIR) modulation. Three-dimensional (3D) finite difference time domain (FDTD) simulations predict that the transmittance can be tuned across the visible spectrum, while maintaining good solar regulation efficiency (ΔT sol = 11.0%) and high solar transmittance (T lum = 49.6%). Experiments show that the color changes of VO 2 films are accompanied by NIR modulation. This work presents a novel way to manipulate VO 2 photonic structures to modulate light transmission as a function of wavelength at different temperatures.

  12. Strain-Gated Field Effect Transistor of a MoS2-ZnO 2D-1D Hybrid Structure.

    Science.gov (United States)

    Chen, Libo; Xue, Fei; Li, Xiaohui; Huang, Xin; Wang, Longfei; Kou, Jinzong; Wang, Zhong Lin

    2016-01-26

    Two-dimensional (2D) molybdenum disulfide (MoS2) is an exciting material due to its unique electrical, optical, and piezoelectric properties. Owing to an intrinsic band gap of 1.2-1.9 eV, monolayer or a-few-layer MoS2 is used for fabricating field effect transistors (FETs) with high electron mobility and on/off ratio. However, the traditional FETs are controlled by an externally supplied gate voltage, which may not be sensitive enough to directly interface with a mechanical stimulus for applications in electronic skin. Here we report a type of top-pressure/force-gated field effect transistors (PGFETs) based on a hybrid structure of a 2D MoS2 flake and 1D ZnO nanowire (NW) array. Once an external pressure is applied, the piezoelectric polarization charges created at the tips of ZnO NWs grown on MoS2 act as a gate voltage to tune/control the source-drain transport property in MoS2. At a 6.25 MPa applied stimulus on a packaged device, the source-drain current can be tuned for ∼25%, equivalent to the results of applying an extra -5 V back gate voltage. Another type of PGFET with a dielectric layer (Al2O3) sandwiched between MoS2 and ZnO also shows consistent results. A theoretical model is proposed to interpret the received data. This study sets the foundation for applying the 2D material-based FETs in the field of artificial intelligence.

  13. Valley-symmetric quasi-1D transport in ballistic graphene

    Science.gov (United States)

    Lee, Hu-Jong

    We present our recent studies on gate-defined valley-symmetric one-dimensional (1D) carrier guiding in ballistic monolayer graphene and valley-symmetry-protected topological 1D transport in ballistic bilayer graphene. Successful carrier guiding was realized in ballistic monolayer graphene even in the absence of a band gap by inducing a high distinction ( more than two orders of magnitude) in the carrier density between the region of a quasi-1D channel and the rest of the top-gated regions. Conductance of a channel shows quantized values in units of 4e2/ h, suggesting that the valley symmetry is preserved. For the latter, the topological 1D conduction was realized between two closely arranged insulating regions with inverted band gaps, induced under a pair of split dual gating with polarities opposite to each other. The maximum conductance along the boundary channel showed 4e2/ h, again with the preserved valley symmetry. The 1D topological carrier guiding demonstrated in this study affords a promising route to robust valleytronic applications and sophisticated valley-associated functionalities based on 2D materials. This work was funded by the National Research Foundation of Korea.

  14. Topology as fluid geometry two-dimensional spaces, volume 2

    CERN Document Server

    Cannon, James W

    2017-01-01

    This is the second of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. The second volume deals with the topology of 2-dimensional spaces. The attempts encountered in Volume 1 to understand length and area in the plane lead to examples most easily described by the methods of topology (fluid geometry): finite curves of infinite length, 1-dimensional curves of positive area, space-filling curves (Peano curves), 0-dimensional subsets of the plane through which no straight path can pass (Cantor sets), etc. Volume 2 describes such sets. All of the standard topological results about 2-dimensional spaces are then proved, such as the Fundamental Theorem of Algebra (two...

  15. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method

    International Nuclear Information System (INIS)

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere

  16. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong

    2011-10-14

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  17. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  18. Theoretical perspective on the electronic, magnetic and optical properties of Zn-doped monolayer SnS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lili; Zhou, Wei; Liu, Yanyu; Yu, Dandan [Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Liang, Yinghua [College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009 (China); Wu, Ping, E-mail: pingwu@tju.edu.cn [Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China)

    2016-12-15

    Highlights: • The Zn doping in monolayer SnS{sub 2} is energetically favored under S-rich condition. • The room temperature ferromagnetism can be realized in Zn-doped monolayer SnS{sub 2}. • The Zn doping enhances the effective utilization in the near-infrared light region. • The Zn doping could lead to the red shift of absorption edge in monolayer SnS{sub 2}. • The Zn-doped monolayer SnS{sub 2} is active for both the oxygen and hydrogen evolution. - Abstract: The electronic, magnetic and optical properties of Zn-doped monolayer SnS{sub 2} have been theoretically investigated with the density functional theory. Numerical results reveal that monolayer SnS{sub 2} can be easily synthesized by cleaving its bulk crystal. Besides, the Zn doping in monolayer SnS{sub 2} is energetically favored under the S-rich with respect to the Sn-rich condition. The doped system exhibits the magnetic ground states due to the formation of defect states above the Fermi level, which are introduced by the hybridization between S-3p states and a small amount of Sn-4d states. The room temperature ferromagnetism can also be realized in Zn-doped monolayer SnS{sub 2}. The injection of Zn can enhance the absorption efficiency of solar spectrum, especially in the near-infrared light region. Moreover, the Zn doping can enhance the photocatalytic activity for both the oxygen and hydrogen evolution reactions in the monolayer SnS{sub 2}.

  19. Image Making in Two Dimensional Art; Experiences with Straw and ...

    African Journals Online (AJOL)

    Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. It is an art form executed in three dimensional (3D)and two dimensional (2D) formats respectively. Uncountable materials havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre ...

  20. Spin-Dependent Scattering Effects and Dimensional Crossover in a Quasi-Two-Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANG YongHong; WANG YongGang; LIU Mei; WANG Jin

    2002-01-01

    Two kinds of spin-depcndcnt scattering effects (magnetic-iinpurity and spin-orbit scatterings) axe investi-gated theoretically in a quasi-two-dimensional (quasi-2D) disordered electron system. By making use of the diagrammatictechniques in perturbation theory, we have calculated the dc conductivity and magnetoresistance due to weak-localizationeffects, the analytical expressions of them are obtained as functions of the interlayer hopping energy and the charac-teristic times: elastic, inelastic, magnetic and spin-orbit scattering times. The relevant dimensional crossover behaviorfrom 3D to 2D with decreasing the interlayer coupling is discussed, and the condition for the crossover is shown to bedependent on the aforementioned scattering times. At low temperature there exists a spin-dcpendent-scattering-induccddimensional crossover in this system.

  1. Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor

    Science.gov (United States)

    Park, Jun Hong

    For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part

  2. Waterlike anomalies in a two-dimensional core-softened potential

    Science.gov (United States)

    Bordin, José Rafael; Barbosa, Marcia C.

    2018-02-01

    We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density, and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities is due the competition between the two length scales in the potential at higher densities, the anomalous region is related to the reentrance of the melting line.

  3. Geometrical aspects of solvable two dimensional models

    International Nuclear Information System (INIS)

    Tanaka, K.

    1989-01-01

    It was noted that there is a connection between the non-linear two-dimensional (2D) models and the scalar curvature r, i.e., when r = -2 the equations of motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggests that these models are closely related. This relation is explored further in the classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra. 21 refs

  4. Adsorbed Layers of D2, H2, O2, and 3He on Graphite Studied by Neutron Scattering

    DEFF Research Database (Denmark)

    Nielsen, Mourits; McTague, J. P.; Ellenson, W. D.

    1977-01-01

    The phase diagrams of adsorbed monolayers of D2, H2, O2, and 3He on graphite have been measured by neutron diffraction. H2 and D2-layers have a registered √3 structure at low coverages, and at monolayer completion they have a dense triangular structure, which is incommensurate with the substrate...

  5. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine D; Savran, Mona Meral; Konge, Lars

    2016-01-01

    were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...

  6. Differentiation of benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional shear-wave elastography.

    Science.gov (United States)

    Lee, Su Hyun; Chang, Jung Min; Kim, Won Hwa; Bae, Min Sun; Cho, Nariya; Yi, Ann; Koo, Hye Ryoung; Kim, Seung Ja; Kim, Jin You; Moon, Woo Kyung

    2013-04-01

    To prospectively compare the diagnostic performances of two-dimensional (2D) and three-dimensional (3D) shear-wave elastography (SWE) for differentiating benign from malignant breast masses. B-mode ultrasound and SWE were performed for 134 consecutive women with 144 breast masses before biopsy. Quantitative elasticity values (maximum and mean elasticity in the stiffest portion of mass, Emax and Emean; lesion-to-fat elasticity ratio, Erat) were measured with both 2D and 3D SWE. The area under the receiver operating characteristic curve (AUC), sensitivity and specificity of B-mode, 2D, 3D SWE and combined data of B-mode and SWE were compared. Sixty-seven of the 144 breast masses (47 %) were malignant. Overall, higher elasticity values of 3D SWE than 2D SWE were noted for both benign and malignant masses. The AUC for 2D and 3D SWE were not significantly different: Emean, 0.938 vs 0.928; Emax, 0.939 vs 0.930; Erat, 0.907 vs 0.871. Either 2D or 3D SWE significantly improved the specificity of B-mode ultrasound from 29.9 % (23 of 77) up to 71.4 % (55 of 77) and 63.6 % (49 of 77) without a significant change in sensitivity. Two-dimensional and 3D SWE performed equally in distinguishing benign from malignant masses and both techniques improved the specificity of B-mode ultrasound.

  7. Graphene and Two-Dimensional Materials for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Andreas Bablich

    2016-03-01

    Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.

  8. Effects of strain and thickness on the electronic and optical behaviors of two-dimensional hexagonal gallium nitride

    Science.gov (United States)

    Behzad, Somayeh

    2017-06-01

    The full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory has been used to study effects of strain and thickness on the electronic and optical properties of two-dimensional GaN. The band gap of monolayer and bilayer GaN under compressive in-plane strain change from indirect to direct with bond length shortening. Also, the semiconductor to semimetal transition occurs for monolayer and bilayer GaN under in-plane tensile strain with bond length elongation. It is found that the tensile and compressive strains cause the red and blue shifts in the optical spectra, respectively, for both monolayer and bilayer GaN. Applying the perpendicular strain on the bilayer GaN by decreasing the inter layer distance leads to the shift of valence band maximum towards the Γ point in the band structure and shift of peak positions and variation of peak intensities in ε2(ω) spectrum. The results show that the n-layer GaN has an indirect band gap for n < 16. The results suggest that monolayer and multilayer GaN are good candidates for application in optoelectronics and flexible electronics.

  9. Tuning Valley Polarization in a WSe_{2} Monolayer with a Tiny Magnetic Field

    Directory of Open Access Journals (Sweden)

    T. Smoleński

    2016-05-01

    Full Text Available In monolayers of semiconducting transition metal dichalcogenides, the light helicity (σ^{+} or σ^{-} is locked to the valley degree of freedom, leading to the possibility of optical initialization of distinct valley populations. However, an extremely rapid valley pseudospin relaxation (at the time scale of picoseconds occurring for optically bright (electric-dipole active excitons imposes some limitations on the development of opto-valleytronics. Here, we show that valley pseudospin relaxation of excitons can be significantly suppressed in a WSe_{2} monolayer, a direct-gap two-dimensional semiconductor with the exciton ground state being optically dark. We demonstrate that the already inefficient relaxation of the exciton pseudospin in such a system can be suppressed even further by the application of a tiny magnetic field of about 100 mT. Time-resolved spectroscopy reveals the pseudospin dynamics to be a two-step relaxation process. An initial decay of the pseudospin occurs at the level of dark excitons on a time scale of 100 ps, which is tunable with a magnetic field. This decay is followed by even longer decay (>1  ns, once the dark excitons form more complex pseudo-particles allowing for their radiative recombination. Our findings of slow valley pseudospin relaxation easily manipulated by the magnetic field open new prospects for engineering the dynamics of the valley pseudospin in transition metal dichalcogenides.

  10. Strain-engineered band parameters of graphene-like SiC monolayer

    International Nuclear Information System (INIS)

    Behera, Harihar; Mukhopadhyay, Gautam

    2014-01-01

    Using full-potential density functional theory (DFT) calculations we show that the band gap and effective masses of charge carriers in SiC monolayer (ML-SiC) in graphene-like two-dimensional honeycomb structure are tunable by strain engineering. ML-SiC was found to preserve its flat 2D graphene-like structure under compressive strain up to 7%. A transition from indirect-to-direct gap-phase is predicted to occur for a strain value lying within the interval (1.11 %, 1.76%). In both gap-phases band gap decreases with increasing strain, although the rate of decrease is different in the two gap-phases. Effective mass of electrons show a non-linearly decreasing trend with increasing tensile strain in the direct gap-phase. The strain-sensitive properties of ML-SiC, may find applications in future strain-sensors, nanoelectromechanical systems (NEMS) and nano-optomechanical systems (NOMS) and other nano-devices

  11. Spin heat capacity of monolayer and AB-stacked bilayer MoS2 in the presence of exchange magnetic field

    Science.gov (United States)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos

    2017-04-01

    Dirac theory and Green's function technique are carried out to compute the spin dependent band structures and corresponding electronic heat capacity (EHC) of monolayer (ML) and AB-stacked bilayer (BL) molybdenum disulfide (MoS2) two-dimensional (2D) crystals. We report the influence of induced exchange magnetic field (EMF) by magnetic insulator substrates on these quantities for both structures. The spin-up (down) subband gaps are shifted with EMF from conduction (valence) band to valence (conduction) band at both Dirac points in the ML because of the spin-orbit coupling (SOC) which leads to a critical EMF in the K point and EHC returns to its initial states for both spins. In the BL case, EMF results split states and the decrease (increase) behavior of spin-up (down) subband gaps has been observed at both K and K‧ valleys which is due to the combined effect of SOC and interlayer coupling. For low and high EMFs, EHC of BL MoS2 does not change for spin-up subbands while increases for spin-down subbands.

  12. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai

    2016-02-29

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

  13. Overcoming multidrug resistance in 2D and 3D culture models by controlled drug chitosan-graft poly(caprolactone)-based nanoparticles.

    Science.gov (United States)

    Shi, Wei-Bin; Le, Van-Minh; Gu, Chun-Hua; Zheng, Yuan-Hong; Lang, Mei-Dong; Lu, Yan-Hua; Liu, Jian-Wen

    2014-04-01

    The principal limitations of chemotherapy are dose-limiting systemic toxicity and the development of multidrug-resistant phenotypes. The aim of this study was to investigate the efficiency of a new sustained drug delivery system based on chitosan and ε-caprolactone to overcome multidrug resistance in monolayer and drug resistance associated with the three-dimensional (3D) tumor microenvironment in our established 3D models. The 5-fluorouracil (5-FU)-loaded nanoparticles (NPs) were characterized by transmission electron microscope and dynamic light scattering, and its released property was determined at different pH values. 5-FU/NPs exhibited well-sustained release properties and markedly enhanced the cytotoxicity of 5-FU against HCT116/L-OHP or HCT8/VCR MDR cells in two-dimensional (2D) and its parental cells in 3D collagen gel culture with twofold to threefold decrease in the IC50 values, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Hoechst/propidium iodide staining and flow cytometry analysis. Furthermore, the possible mechanism was explored by high-performance liquid chromatography and rhodamine 123 accumulation experiment. Overall, the results demonstrated that 5-FU/NPs increase intracellular concentration of 5-FU and enhance its anticancer efficiency by inducing apoptosis. It was suggested that this novel NPs are a promising carrier to decrease toxic of 5-FU and has the potential to reverse the forms of both intrinsic and acquired drug resistance in 2D and 3D cultures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lingyun; Lin, Zekai; Shi, Wenjie; Wang, Zi; Zhang, Cankun; Hu, Xuefu; Wang, Cheng; Lin, Wenbin (UC); (Xiamen)

    2017-05-10

    The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4',4''-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3',3''-nitro-4,4',4''-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.

  15. Femtosecond X-ray diffraction from two-dimensional protein crystals

    Directory of Open Access Journals (Sweden)

    Matthias Frank

    2014-03-01

    Full Text Available X-ray diffraction patterns from two-dimensional (2-D protein crystals obtained using femtosecond X-ray pulses from an X-ray free-electron laser (XFEL are presented. To date, it has not been possible to acquire transmission X-ray diffraction patterns from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permit a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy approach at the Linac Coherent Light Source, Bragg diffraction was acquired to better than 8.5 Å resolution for two different 2-D protein crystal samples each less than 10 nm thick and maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.

  16. Sub-Nanometer Channels Embedded in Two-Dimensional Materials

    KAUST Repository

    Han, Yimo; Li, Ming-yang; Jung, Gang-Seob; Marsalis, Mark A.; Qin, Zhao; Buehler, Markus J.; Li, Lain-Jong; Muller, David A.

    2017-01-01

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2

  17. Driving performance of a two-dimensional homopolar linear DC motor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Yamaguchi, M.; Kano, Y. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1998-05-01

    This paper presents a novel two-dimensional homopolar linear de motor (LDM) which can realize two-dimensional (2-D) motion. For position control purposes, two kinds of position detecting methods are proposed. The position in one position is detected by means of a capacitive sensor which makes the output of the sensor partially immune to the variation of the gap between electrodes. The position in the other direction is achieved by exploiting the position dependent property of the driving coil inductance, instead of using an independent sensor. The position control is implemented on the motor and 2-D tracking performance is analyzed. Experiments show that the motor demonstrates satisfactory driving performance, 2-D tracking error being within 5.5% when the angular frequency of reference signal is 3.14 rad./s. 7 refs., 17 figs., 2 tabs.

  18. A scanning tunneling microscope study on an ordered mixed monolayer of bis(4,5-dihydronaphtho[1,2-d])-tetrathiafulvalene and n-tetradecane on highly oriented pyrolytic graphite.

    Science.gov (United States)

    Zhao, Miao; Jiang, Peng; Deng, Ke; Jiang, Chao

    2010-11-01

    Tetrathiafulvalene (TTF) and its derivatives (TTFs) have been successfully used as building blocks to form charge transfer salts and organic semiconductors because of their special structures and rich electron nature. We report the formation of ordered mixed binary-component monolayer consisting of Bis(4,5-dihydronaphtho[1,2-d])tetrathiafulvalene (DH-TTF) and n-tetradecane (n-C14H30) molecules on highly oriented pyrolytic graphite (HOPG) surface. Scanning tunneling microscope (STM) imaging reveals that the two different kinds of molecules can spontaneously form ordered periodic phase separation structures on the substrate, in which ordered DH-TTF double- (or single-) lamella structures are periodically tuned by ordered n-C14H30 double- (or single-) lamella structures. Furthermore, scanning tunneling spectrum (STS) measurements by addressing the individual DH-TTF and n-C14H30 molecules in the ordered monolayer show that the two different kinds of molecules exhibit completely different I(V) characters on the HOPG substrate. The modulated arrangement of the TTF derivative by insulating molecules opens a possible route to construct organic conducting molecule ribbons for potential application in nanodevices.

  19. Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals

    KAUST Repository

    Kozawa, Daichi

    2016-11-16

    Transition metal dichalcogenide monolayers have attracted much attention due to their strong light absorption and excellent electronic properties. These advantages make this type of two-dimensional crystal a promising one for optoelectronic device applications. In the case of photoelectric conversion devices such as photodetectors and photovoltaic cells, p–n junctions are one of the most important devices. Here, we demonstrate photodetection with WSe2 monolayer films. We prepare the electrolyte-gated ambipolar transistors and electrostatic p–n junctions are formed by the electrolyte-gating technique at 270 K. These p-n junctions are cooled down to fix the ion motion (and p-n junctions) and we observed the reasonable photocurrent spectra without the external bias, indicating the formation of p-n junctions. Very interestingly, two-terminal devices exhibit higher photoresponsivity than that of three-terminal ones, suggesting the formation of highly balanced anion and cation layers. The maximum photoresponsivity reaches 5 mA/W in resonance with the first excitonic peak. Our technique provides important evidence for optoelectronics in atomically thin crystals.

  20. Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals

    KAUST Repository

    Kozawa, Daichi; Pu, Jiang; Shimizu, Ryo; Kimura, Shota; Chiu, Ming-Hui; Matsuki, Keiichiro; Wada, Yoshifumi; Sakanoue, Tomo; Iwasa, Yoshihiro; Li, Lain-Jong; Takenobu, Taishi

    2016-01-01

    Transition metal dichalcogenide monolayers have attracted much attention due to their strong light absorption and excellent electronic properties. These advantages make this type of two-dimensional crystal a promising one for optoelectronic device applications. In the case of photoelectric conversion devices such as photodetectors and photovoltaic cells, p–n junctions are one of the most important devices. Here, we demonstrate photodetection with WSe2 monolayer films. We prepare the electrolyte-gated ambipolar transistors and electrostatic p–n junctions are formed by the electrolyte-gating technique at 270 K. These p-n junctions are cooled down to fix the ion motion (and p-n junctions) and we observed the reasonable photocurrent spectra without the external bias, indicating the formation of p-n junctions. Very interestingly, two-terminal devices exhibit higher photoresponsivity than that of three-terminal ones, suggesting the formation of highly balanced anion and cation layers. The maximum photoresponsivity reaches 5 mA/W in resonance with the first excitonic peak. Our technique provides important evidence for optoelectronics in atomically thin crystals.

  1. Quantitative analysis of valsartan by two-dimensional liquid chromatography (2D-HPLC) and its application in a bioequivalence study in Chinese volunteers
.

    Science.gov (United States)

    Zhang, Min; Deng, Yang; Cai, Hua-Lin; Fang, Ping-Fei; Yan, Miao; Zhang, Bi-Kui; Wu, Yan-Qin

    2017-04-01

    To develop a sensitive, two-dimensional liquid chromatography (2D-LC) method for determination of valsartan, applied to investigate bioequivalence of two valsartan tablets in Chinese volunteers under fasting condition. A full automatic 2D-HPLC system was used to quantify valsartan in human plasma. The analytes were extracted by protein precipitation, using telmisartan as internal standard. The analytical method was applied in a randomized, crossover bioequivalence study of valsartan tablets; the study enrolled 18 Chinese volunteers (12 were men and 6 were women). The subjects received a single 160-mg dose of test or reference preparation with 7-days of washout under fasting state. Plasma samples were collected, pharmacokinetic parameters were obtained and the bioequivalence was evaluated. The calibration range was 9.2 - 4213.8 ng×mL-1. Inter- and intraprecision was less than 7.0%, and accuracies ranged from 99.5 to 103.8%. The extraction recovery for valsartan varied between 89.3 and 97.8%, and the stability in all conditions was excellent. The 90% CI of AUC0→36h and Cmax were 96.5 - 109.4% and 94.2 - 108.6%, respectively. The relative bioavailability was 103.9 ± 15.7%. No gender difference was observed in pharmacokinetic parameters. A sensitive 2D-HPLC method was established for the estimation of valsartan in human plasma and successfully applied in a bioequivalence study of valsartan, which suggests that these two formulations can be assumed to be bioequivalent.
.

  2. Near-unity photoluminescence quantum yield in MoS.sub.2

    Science.gov (United States)

    Amani, Matin; Lien, Der-Hsien; Kiriya, Daisuke; Bullock, James; Javey, Ali

    2017-12-26

    Two-dimensional (2D) transition-metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure-of-merit, the room-temperature photoluminescence quantum yield (QY) is extremely poor. The prototypical 2D material, MoS.sub.2 is reported to have a maximum QY of 0.6% which indicates a considerable defect density. We report on an air-stable solution-based chemical treatment by an organic superacid which uniformly enhances the photoluminescence and minority carrier lifetime of MoS.sub.2 monolayers by over two orders of magnitude. The treatment eliminates defect-mediated non-radiative recombination, thus resulting in a final QY of over 95% with a longest observed lifetime of 10.8.+-.0.6 nanoseconds. Obtaining perfect optoelectronic monolayers opens the door for highly efficient light emitting diodes, lasers, and solar cells based on 2D materials.

  3. Two-dimensional versus three-dimensional treatment planning of tangential breast irradiation

    International Nuclear Information System (INIS)

    Damen, E.M.F.; Bruinvis, I.A.D.; Mijnheer, B.J.

    1995-01-01

    Purpose: Full three-dimensional (3-D) treatment planning requires 3-D patient contours and density information, derived either from CT scanning or from other 3-D contouring methods. These contouring techniques are time consuming, and are often not available or cannot be used. Two-dimensional (2-D) treatment planning can be performed using only a few patient contours, made with much simpler techniques, in combination with simulator images for estimating the lung position. In order to investigate the need for full 3-D planning, we compared the performance of both a 2-D and a 3-D planning system in calculating absolute dose values and relative dose distributions in tangential breast irradiation. Methods: Two breast-shaped phantoms were used in this study. The first phantom consists of a polyethylene mould, filled with water and cork to mimic the lung. An ionization chamber can be inserted in the phantom at fixed positions. The second phantom is made of 25 transverse slices of polystyrene and cork, made with a computerized milling machine from CT information. In this phantom, films can be inserted in three sagittal planes. Both phantoms have been irradiated with two tangential 8 MV photon beams. The measured dose distribution has been compared with the dose distribution predicted by the two planning systems. Results: In the central plane, the 3-D planning system predicts the absolute dose with an accuracy of 0.5 - 4%. The dose at the isocentre of the beams agrees within 0.5% with the measured dose. The 2-D system predicts the dose with an accuracy of 0.9 - 3%. The dose calculated at the isocentre is 2.6% higher than the measured dose, because missing lateral scatter is not taken into account in this planning system. In off-axis planes, the calculated absolute dose agrees with the measured dose within 4% for the 2-D system and within 6% for the 3-D system. However, the relative dose distribution is predicted better by the 3-D planning system. Conclusions: This study

  4. Self-assembly 2D zinc-phthalocyanine heterojunction: An ideal platform for high efficiency solar cell

    Science.gov (United States)

    Jiang, Xue; Jiang, Zhou; Zhao, Jijun

    2017-12-01

    As an alternative to silicon-based solar cells, organic photovoltaic cells emerge for their easy manufacture, low cost, and light weight but are limited by their less stability, low power conversion efficiencies, and low charge carrier mobilities. Here, we design a series of two-dimensional (2D) organic materials incorporating zinc-phthalocyanine (ZnPc) based building blocks which can inherit their excellent intrinsic properties but overcome those shortcomings. Our first-principles calculation shows that such 2D ZnPc-based materials exhibit excellent thermal stabilities, suitable bandgaps, small effective masses, and good absorption properties. The additional benzene rings and nitrogen atoms incorporated between ZnPc molecules are mainly responsible for the modifications of electronic and optical properties. Moreover, some heterojunction solar cells constructed using those 2D ZnPc monolayers as the donor and acceptor have an appropriate absorber gap and interface band alignment. Among them, a power conversion efficiency up to 14.04% is achieved, which is very promising for the next-generation organic solar cells.

  5. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R., E-mail: jrgm@uniovi.es; García-Granda, Santiago

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of

  6. The sequence d(CGGCGGCCGC) self-assembles into a two dimensional rhombic DNA lattice

    International Nuclear Information System (INIS)

    Venkadesh, S.; Mandal, P.K.; Gautham, N.

    2011-01-01

    Highlights: → This is the first crystal structure of a four-way junction with sticky ends. → Four junction structures bind to each other and form a rhombic cavity. → Each rhombus binds to others to form 'infinite' 2D tiles. → This is an example of bottom-up fabrication of a DNA nano-lattice. -- Abstract: We report here the crystal structure of the partially self-complementary decameric sequence d(CGGCGGCCGC), which self assembles to form a four-way junction with sticky ends. Each junction binds to four others through Watson-Crick base pairing at the sticky ends to form a rhombic structure. The rhombuses bind to each other and form two dimensional tiles. The tiles stack to form the crystal. The crystal diffracted in the space group P1 to a resolution of 2.5 A. The junction has the anti-parallel stacked-X conformation like other junction structures, though the formation of the rhombic net noticeably alters the details of the junction geometry.

  7. Nonequilibrium 2-hydroxyoctadecanoic acid monolayers: effect of electrolytes.

    Science.gov (United States)

    Lendrum, Conrad D; Ingham, Bridget; Lin, Binhua; Meron, Mati; Toney, Michael F; McGrath, Kathryn M

    2011-04-19

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position α to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of ∼6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase. © 2011 American Chemical Society

  8. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism.

    Science.gov (United States)

    Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd; Jester, Stefan-S

    2014-01-01

    Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.

  9. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism

    Directory of Open Access Journals (Sweden)

    Joscha Vollmeyer

    2014-11-01

    Full Text Available Three shape-persistent naphthylene–phenylene–acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.

  10. Probing the impact of magnetic interactions on the lattice dynamics of two-dimensional Ti2X (X = C, N) MXenes.

    Science.gov (United States)

    Sternik, Małgorzata; Wdowik, Urszula D

    2018-03-14

    Dynamical properties of the two-dimensional Ti 2 C and Ti 2 N MXenes were investigated using density functional theory and discussed in connection with their structures and electronic properties. To elucidate the influence of magnetic interactions on the fundamental properties of these systems, the nonmagnetic, ferromagnetic and three distinct antiferromagnetic spin arrangements on titanium sublattice were considered. Each magnetic configuration was also studied at two directions of the spin magnetic moment with respect to the MXene layer. The zero-point energy motion, following from the phonon calculations, was taken into account while analyzing the energetic stability of the magnetic phases against the nonmagnetic solution. This contribution was found not to change a sequence of the energetic stability of the considered magnetic structures of Ti 2 X (X = C, N) MXenes. Both Ti 2 X (X = C, N) systems are shown to prefer antiferromagnetic arrangement of spins between Ti layers and the ferromagnetic order within each layer. This energetically privileged phase is semiconducting for Ti 2 C and metallic for Ti 2 N. The type of magnetic order as well as the in-plane or out-of-plane spin polarizations have a relatively small impact on the structural parameters, Ti-X bonding length, force constants and phonon spectra of both Ti 2 X systems, leading to observable differences only between the nonmagnetic and any other magnetic configurations. Nonetheless, a noticeable effect of the spin orientation on degeneracy of the Ti-3d orbitals is encountered. The magnetic interactions affect to a great extent the positions and intensities of the Raman-active modes, and hence one could exploit this effect for experimental verification of the theoretically predicted magnetic state of Ti 2 X monolayers. Theoretical phonon spectra of Ti 2 X (X = C, N) MXenes exhibit a linear dependence on energy in the long-wavelength limit, which is typical for a 2D system.

  11. Linkage analysis by two-dimensional DNA typing

    NARCIS (Netherlands)

    te Meerman, G J; Mullaart, E; Meulen ,van der Martin; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J

    1993-01-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core

  12. Impact and Origin of Interface States in MOS Capacitor with Monolayer MoS2 and HfO2 High-k Dielectric.

    Science.gov (United States)

    Xia, Pengkun; Feng, Xuewei; Ng, Rui Jie; Wang, Shijie; Chi, Dongzhi; Li, Cequn; He, Zhubing; Liu, Xinke; Ang, Kah-Wee

    2017-01-13

    Two-dimensional layered semiconductors such as molybdenum disulfide (MoS 2 ) at the quantum limit are promising material for nanoelectronics and optoelectronics applications. Understanding the interface properties between the atomically thin MoS 2 channel and gate dielectric is fundamentally important for enhancing the carrier transport properties. Here, we investigate the frequency dispersion mechanism in a metal-oxide-semiconductor capacitor (MOSCAP) with a monolayer MoS 2 and an ultra-thin HfO 2 high-k gate dielectric. We show that the existence of sulfur vacancies at the MoS 2 -HfO 2 interface is responsible for the generation of interface states with a density (D it ) reaching ~7.03 × 10 11  cm -2  eV -1 . This is evidenced by a deficit S:Mo ratio of ~1.96 using X-ray photoelectron spectroscopy (XPS) analysis, which deviates from its ideal stoichiometric value. First-principles calculations within the density-functional theory framework further confirms the presence of trap states due to sulfur deficiency, which exist within the MoS 2 bandgap. This corroborates to a voltage-dependent frequency dispersion of ~11.5% at weak accumulation which decreases monotonically to ~9.0% at strong accumulation as the Fermi level moves away from the mid-gap trap states. Further reduction in D it could be achieved by thermally diffusing S atoms to the MoS 2 -HfO 2 interface to annihilate the vacancies. This work provides an insight into the interface properties for enabling the development of MoS 2 devices with carrier transport enhancement.

  13. Two-dimensional grating guided-mode resonance tunable filter.

    Science.gov (United States)

    Kuo, Wen-Kai; Hsu, Che-Jung

    2017-11-27

    A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.

  14. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  15. MgO monolayer epitaxy on Ni (100)

    Science.gov (United States)

    Sarpi, B.; Putero, M.; Hemeryck, A.; Vizzini, S.

    2017-11-01

    The growth of two-dimensional oxide films with accurate control of their structural and electronic properties is considered challenging for engineering nanotechnological applications. We address here the particular case of MgO ultrathin films grown on Ni (100), a system for which neither crystallization nor extended surface ordering has been established previously in the monolayer range. Using Scanning Tunneling Microscopy and Auger Electron Spectroscopy, we report on experiments showing MgO monolayer (ML) epitaxy on a ferromagnetic nickel surface, down to the limit of atomic thickness. Alternate steps of Mg ML deposition, O2 gas exposure, and ultrahigh vacuum thermal treatment enable the production of a textured film of ordered MgO nano-domains. This study could open interesting prospects for controlled epitaxy of ultrathin oxide films with a high magneto-resistance ratio on ferromagnetic substrates, enabling improvement in high-efficiency spintronics and magnetic tunnel junction devices.

  16. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...

  17. MULTI2D - a computer code for two-dimensional radiation hydrodynamics

    Science.gov (United States)

    Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.

    2009-06-01

    Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are

  18. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}.

    Science.gov (United States)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J; Schuck, P James

    2017-08-25

    Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  19. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS2

    Science.gov (United States)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S.; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J.; Schuck, P. James

    2017-08-01

    Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena—critical to both many-body physics exploration and device applications—presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  20. Novel solution conformation of DNA observed in d(GAATTCGAATTC) by two-dimensional NMR spectroscopy

    International Nuclear Information System (INIS)

    Chary, K.V.R.; Hosur, R.V.; Govil, G.; Zu-kun, T.; Miles, H.T.

    1987-01-01

    Resonance assignments of nonexchangeable base and sugar protons of the self-complementary dodecanucleotide d(GAATTCGAATTC) have been obtained by using the two-dimensional Fourier transform NMR methods correlated spectroscopy and nuclear Overhauser effect spectroscopy. Conformational details about the sugar pucker, the glycosidic dihedral angle, and the overall secondary structure of the molecule has been derived from the relative intensities of cross peaks in the two-dimensional NMR spectra in aqueous solution. It is observed that d(GAATTCGAATTC) assumes a novel double-helical structure. The solution conformations of the two complementary strands are identical, unlike those observed in a related sequence in the solid state. Most of the five-membered sugar rings adopt an unusual O1'-endo geometry. All the glycosidic dihedral angles are in the anti domain. The AATT segments A2-T5 and A8-T11 show better stacking compared to the rest of the molecule. These features fit into a right-handed DNA model for the above two segments, with the sugar geometries different from the conventional ones. There are important structural variations in the central TCG portion, which is known to show preferences for DNase I activity, and between G1-A2 and G7-A8, which are cleavage points in the EcoRI recognition sequence. The sugar puckers for G1 and G7 are significantly different from the rest of the molecule. Further, in the three segments mentioned above, the sugar phosphate geometry is such that the distances between protons on adjacent nucleotides are much larger than those expected for a right-handed DNA. The authors suggest that such crevices in the DNA structure may act as hot points in initiation of protein recognition

  1. Combinatorial selection of a two-dimensional 3d-TM-tetracyanoquinodimethane (TM-TCNQ) monolayer as a high-activity nanocatalyst for CO oxidation

    DEFF Research Database (Denmark)

    Deng, Qingming; Wu, Tiantian; Chen, Guibin

    2018-01-01

    catalyzed by Sc-TCNQ (CO + O2* → OOCO*) can follow the LH mechanism with free energy barriers as low as 0.73 eV at 300 K. The second step of CO + O* → CO2 can occur with rather small energy barriers via either LH or ER mechanisms. The high activity of Sc-TCNQ can be attributed to its unique structural...... and thermodynamics of all the ten candidates (Sc-Zn), Sc-TCNQ is found to display the lowest activation energies and yield the highest catalytic activity for room temperature CO oxidation. Exploring the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms, we find that the rate-limiting step of CO oxidation...... and electronic features by possessing high stability, optimum adsorption energies with adsorbates, and fast reaction kinetics. These results have significant implications for the synthesis of two-dimensional single atom catalysis for CO oxidation with low-cost and high activity at low temperature....

  2. On the presence of lower dimensional confinement mechanisms in 4d SU2 lattice gauge theory

    International Nuclear Information System (INIS)

    Hari Dass, N.D.

    1983-11-01

    The presence of an essentially two-dimensional confinement mechanism in 4d SU 2 gauge theory has been conjectured. The authors present an explicit realization of this conjecture valid up to β = 1.8 based on variational investigations of lattice gauge theories. (Auth.)

  3. FLOWPLOT2, 2-D, 3-D Fluid Dynamic Plots

    International Nuclear Information System (INIS)

    Cobb, C.K.; Tunstall, J.N.

    1989-01-01

    1 - Description of program or function: FLOWPLOT2 is a plotting program used with numerical or analytical fluid dynamics codes to create velocity vector plots, contour plots of up to three fluid parameters (e.g. pressure, density, and temperature), two-dimensional profile plots, three-dimensional curve plots, and/or three-dimensional surface plots for either the u or v velocity components. If the fluid dynamics code computes a transient or simulated time related solution, FLOWPLOT2 can also be used to generate these plots for any specified time interval. Multiple cases generating different plots for different time intervals may be run in one execution of the program. In addition, plots can be created for selected two- dimensional planes of three-dimensional steady-state problems. The user has the option of producing plots on CalComp or Versatec plotters or microfiche and of creating a compressed dataset before plotting. 2 - Method of solution: FLOWPLOT2 reads a dataset written by the fluid dynamics code. This dataset must be written in a specified format and must contain parametric data at the nodal points of a uniform or non-uniform rectangular grid formed by the intersection of the grid lines of the model. 3 - Restrictions on the complexity of the problem - Maxima of: 2500 nodes, 40 y-values for 2-D profile plots and 3-D curve plots, 20 contour values, 3 fluid parameters

  4. Two dimensional nanomaterials for flexible supercapacitors.

    Science.gov (United States)

    Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi

    2014-05-21

    Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.

  5. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  6. Near-unity photoluminescence quantum yield in MoS2

    KAUST Repository

    Amani, Matin

    2015-11-26

    Two-dimensional (2D) transition metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure of merit, the room-temperature photoluminescence quantum yield (QY), is extremely low.The prototypical 2D material molybdenum disulfide (MoS2) is reported to have a maximum QYof 0.6%, which indicates a considerable defect density. Herewe report on an air-stable, solution-based chemical treatment by an organic superacid, which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by more than two orders of magnitude.The treatment eliminates defect-mediated nonradiative recombination, thus resulting in a finalQYofmore than 95%, with a longest-observed lifetime of 10.8 0.6 nanoseconds. Our ability to obtain optoelectronic monolayers with near-perfect properties opens the door for the development of highly efficient light-emitting diodes, lasers, and solar cells based on 2D materials.

  7. Near-unity photoluminescence quantum yield in MoS2

    KAUST Repository

    Amani, Matin; Lien, Der Hsien; Kiriya, Daisuke; Xiao, Jun; Azcatl, Angelica; Noh, Jiyoung; Madhvapathy, Surabhi R.; Addou, Rafik; Santosh, K. C.; Dubey, Madan; Cho, Kyeongjae; Wallace, Robert M.; Lee, Si Chen; He, Jr-Hau; Ager, Joel W.; Zhang, Xiang; Yablonovitch, Eli; Javey, Ali

    2015-01-01

    Two-dimensional (2D) transition metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure of merit, the room-temperature photoluminescence quantum yield (QY), is extremely low.The prototypical 2D material molybdenum disulfide (MoS2) is reported to have a maximum QYof 0.6%, which indicates a considerable defect density. Herewe report on an air-stable, solution-based chemical treatment by an organic superacid, which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by more than two orders of magnitude.The treatment eliminates defect-mediated nonradiative recombination, thus resulting in a finalQYofmore than 95%, with a longest-observed lifetime of 10.8 0.6 nanoseconds. Our ability to obtain optoelectronic monolayers with near-perfect properties opens the door for the development of highly efficient light-emitting diodes, lasers, and solar cells based on 2D materials.

  8. Strong Rashba-Edelstein Effect-Induced Spin–Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers

    KAUST Repository

    Shao, Qiming

    2016-11-18

    The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS or WSe)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.

  9. Comparison of two-dimensional fast spin echo T2 weighted sequences and three-dimensional volume isotropic T2 weighted fast spin echo (VISTA) MRI in the evaluation of triangular fibrocartilage of the wrist.

    Science.gov (United States)

    Park, Hee Jin; Lee, So Yeon; Kang, Kyung A; Kim, Eun Young; Shin, Hun Kyu; Park, Se Jin; Park, Jai Hyung; Kim, Eugene

    2018-04-01

    To compare image quality of three-dimensional volume isotropic T 2 weighted fast spin echo (3D VISTA) and two-dimensional (2D) T 2 weighted images (T2WI) for evaluation of triangular fibrocartilage (TFC) and to investigate whether 3D VISTA can replace 2D T 2 WI in evaluating TFC injury. This retrospective study included 69 patients who received wrist MRIs using both 2D T 2 WI and 3D VISTA techniques for assessment of wrist pathology, including TFC injury. Two radiologists measured the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the two sequences. The anatomical identification score and diagnostic performance were independently assessed by two interpreters. The diagnostic abilities of 3D VISTA and 2D T 2 WI were analysed by sensitivity, specificity and accuracy for diagnosing TFC injury using surgically or clinically confirmed diagnostic reference standards. 17 cases (25%) were classified as having TFC injury. 2 cases (12%) were diagnosed surgically, and 15 cases (88%) were diagnosed by physical examination. 52 cases (75%) were diagnosed as having intact TFC. 8 of these cases (15%) were surgically confirmed, while the others were diagnosed by physical examination and clinical findings. The 3D VISTA images had significantly higher SNR and CNR values for the TFC than 2D T 2 WI images. The scores of 3D VISTA's total length, full width and sharpness were similar to those of 2D T 2 WI. We were unable to find a significant difference between 3D VISTA and 2D T 2 WI in the ability to diagnose TFC injury. 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment. Advances in knowledge: 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment.

  10. Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization.

    Science.gov (United States)

    Foo, Jung-Leng; Martinez-Escobar, Marisol; Juhnke, Bethany; Cassidy, Keely; Hisley, Kenneth; Lobe, Thom; Winer, Eliot

    2013-01-01

    Visualization of medical data in three-dimensional (3D) or two-dimensional (2D) views is a complex area of research. In many fields 3D views are used to understand the shape of an object, and 2D views are used to understand spatial relationships. It is unclear how 2D/3D views play a role in the medical field. Using 3D views can potentially decrease the learning curve experienced with traditional 2D views by providing a whole representation of the patient's anatomy. However, there are challenges with 3D views compared with 2D. This current study expands on a previous study to evaluate the mental workload associated with both 2D and 3D views. Twenty-five first-year medical students were asked to localize three anatomical structures--gallbladder, celiac trunk, and superior mesenteric artery--in either 2D or 3D environments. Accuracy and time were taken as the objective measures for mental workload. The NASA Task Load Index (NASA-TLX) was used as a subjective measure for mental workload. Results showed that participants viewing in 3D had higher localization accuracy and a lower subjective measure of mental workload, specifically, the mental demand component of the NASA-TLX. Results from this study may prove useful for designing curricula in anatomy education and improving training procedures for surgeons.

  11. Semiconductor monolayer assemblies with oriented crystal faces

    KAUST Repository

    Ma, Guijun; Takata, Tsuyoshi; Katayama, Masao; Zhang, Fuxiang; Moriya, Yosuke; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2012-01-01

    Fabrication of two-dimensional monolayers of crystalline oxide and oxynitride particles was attempted on glass plate substrates. X-Ray diffraction patterns of the assemblies show only specific crystal facets, indicative of the uniform orientation of the particles on the substrate. The selectivity afforded by this immobilization technique enables the organization of randomly distributed polycrystalline powders in a controlled manner.

  12. Electronic Transport in Two-Dimensional Materials

    Science.gov (United States)

    Sangwan, Vinod K.; Hersam, Mark C.

    2018-04-01

    Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.

  13. Two-dimensional heterostructures for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)

    2017-06-12

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  14. User's manual for DYNA2D: an explicit two-dimensional hydrodynamic finite-element code with interactive rezoning

    Energy Technology Data Exchange (ETDEWEB)

    Hallquist, J.O.

    1982-02-01

    This revised report provides an updated user's manual for DYNA2D, an explicit two-dimensional axisymmetric and plane strain finite element code for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 4-node solid elements, and the equations-of motion are integrated by the central difference method. An interactive rezoner eliminates the need to terminate the calculation when the mesh becomes too distorted. Rather, the mesh can be rezoned and the calculation continued. The command structure for the rezoner is described and illustrated by an example.

  15. Large Work Function Modulation of Monolayer MoS2 by Ambient Gases.

    Science.gov (United States)

    Lee, Si Young; Kim, Un Jeong; Chung, JaeGwan; Nam, Honggi; Jeong, Hye Yun; Han, Gang Hee; Kim, Hyun; Oh, Hye Min; Lee, Hyangsook; Kim, Hyochul; Roh, Young-Geun; Kim, Jineun; Hwang, Sung Woo; Park, Yeonsang; Lee, Young Hee

    2016-06-28

    Although two-dimensional monolayer transition-metal dichalcogenides reveal numerous unique features that are inaccessible in bulk materials, their intrinsic properties are often obscured by environmental effects. Among them, work function, which is the energy required to extract an electron from a material to vacuum, is one critical parameter in electronic/optoelectronic devices. Here, we report a large work function modulation in MoS2 via ambient gases. The work function was measured by an in situ Kelvin probe technique and further confirmed by ultraviolet photoemission spectroscopy and theoretical calculations. A measured work function of 4.04 eV in vacuum was converted to 4.47 eV with O2 exposure, which is comparable with a large variation in graphene. The homojunction diode by partially passivating a transistor reveals an ideal junction with an ideality factor of almost one and perfect electrical reversibility. The estimated depletion width obtained from photocurrent mapping was ∼200 nm, which is much narrower than bulk semiconductors.

  16. Two-dimensional N = 2 Super-Yang-Mills Theory

    Science.gov (United States)

    August, Daniel; Wellegehausen, Björn; Wipf, Andreas

    2018-03-01

    Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (SYM) theory with gauge group SU(2) dimensionally reduced to two-dimensional N = 2 SYM theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.

  17. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges.

    Science.gov (United States)

    Duan, Xidong; Wang, Chen; Pan, Anlian; Yu, Ruqin; Duan, Xiangfeng

    2015-12-21

    The discovery of graphene has ignited intensive interest in two-dimensional layered materials (2DLMs). These 2DLMs represent a new class of nearly ideal 2D material systems for exploring fundamental chemistry and physics at the limit of single-atom thickness, and have the potential to open up totally new technological opportunities beyond the reach of existing materials. In general, there are a wide range of 2DLMs in which the atomic layers are weakly bonded together by van der Waals interactions and can be isolated into single or few-layer nanosheets. The van der Waals interactions between neighboring atomic layers could allow much more flexible integration of distinct materials to nearly arbitrarily combine and control different properties at the atomic scale. The transition metal dichalcogenides (TMDs) (e.g., MoS2, WSe2) represent a large family of layered materials, many of which exhibit tunable band gaps that can undergo a transition from an indirect band gap in bulk crystals to a direct band gap in monolayer nanosheets. These 2D-TMDs have thus emerged as an exciting class of atomically thin semiconductors for a new generation of electronic and optoelectronic devices. Recent studies have shown exciting potential of these atomically thin semiconductors, including the demonstration of atomically thin transistors, a new design of vertical transistors, as well as new types of optoelectronic devices such as tunable photovoltaic devices and light emitting devices. In parallel, there have also been considerable efforts in developing diverse synthetic approaches for the rational growth of various forms of 2D materials with precisely controlled chemical composition, physical dimension, and heterostructure interface. Here we review the recent efforts, progress, opportunities and challenges in exploring the layered TMDs as a new class of atomically thin semiconductors.

  18. Solution-Based Processing and Applications of Two-Dimensional Heterostructures

    Science.gov (United States)

    Hersam, Mark

    Two-dimensional materials have emerged as promising candidates for next-generation electronics and optoelectronics, but advances in scalable nanomanufacturing are required to exploit this potential in real-world technology. This talk will explore methods for improving the uniformity of solution-processed two-dimensional materials with an eye toward realizing dispersions and inks that can be deposited into large-area thin-films. In particular, density gradient ultracentrifugation allows the solution-based isolation of graphene, boron nitride, montmorillonite, and transition metal dichalcogenides (e.g., MoS2, WS2, ReS2, MoSe2, WSe2) with homogeneous thickness down to the atomically thin limit. Similarly, two-dimensional black phosphorus is isolated in organic solvents or deoxygenated aqueous surfactant solutions with the resulting phosphorene nanosheets showing field-effect transistor mobilities and on/off ratios that are comparable to micromechanically exfoliated flakes. By adding cellulosic polymer stabilizers to these dispersions, the rheological properties can be tuned by orders of magnitude, thereby enabling two-dimensional material inks that are compatible with a range of additive manufacturing methods including inkjet, gravure, screen, and 3D printing. The resulting solution-processed two-dimensional heterostructures show promise in several device applications including photodiodes, anti-ambipolar transistors, gate-tunable memristors, and heterojunction photovoltaics.

  19. Nonlinear dynamic characterization of two-dimensional materials

    NARCIS (Netherlands)

    Davidovikj, D.; Alijani, F.; Cartamil Bueno, S.J.; van der Zant, H.S.J.; Amabili, M.; Steeneken, P.G.

    2017-01-01

    Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's

  20. Improved modeling of two-dimensional transitions in dense phases on crystalline surfaces. Krypton-graphite system.

    Science.gov (United States)

    Ustinov, E A

    2015-02-21

    This paper presents a refined technique to describe two-dimensional phase transitions in dense fluids adsorbed on a crystalline surface. Prediction of parameters of 2D liquid-solid equilibrium is known to be an extremely challenging problem, which is mainly due to a small difference in thermodynamic functions of coexisting phases and lack of accuracy of numerical experiments in case of their high density. This is a serious limitation of various attempts to circumvent this problem. To improve this situation, a new methodology based on the kinetic Monte Carlo method was applied. The methodology involves analysis of equilibrium gas-liquid and gas-solid systems undergoing an external potential, which allows gradual shifting parameters of the phase coexistence. The interrelation of the chemical potential and tangential pressure for each system is then treated with the Gibbs-Duhem equation to obtain the point of intersection corresponding to the liquid/solid-solid equilibrium coexistence. The methodology is demonstrated on the krypton-graphite system below and above the 2D critical temperature. Using experimental data on the liquid-solid and the commensurate-incommensurate transitions in the krypton monolayer derived from adsorption isotherms, the Kr-graphite Lennard-Jones parameters have been corrected resulting in a higher periodic potential modulation.

  1. Liquid-Phase Exfoliation into Monolayered BiOBr Nanosheets for Photocatalytic Oxidation and Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongjian [Beijing; Huang, Hongwei [Beijing; Xu, Kang [Center; Hao, Weichang [Center; Guo, Yuxi [Beijing; Wang, Shuobo [Beijing; Shen, Xiulin [Beijing; Pan, Shaofeng [Beijing; Zhang, Yihe [Beijing

    2017-09-26

    Monolayered photocatalytic materials have attracted huge research interests in terms of their large specific surface area and ample active sites. Sillén-structured layered BiOX (X = Cl, Br, I) casts great prospects owing to their strong photo-oxidation ability and high stability. Fabrication of monolayered BiOX by a facile, low-cost, and scalable approach is highly challenging and anticipated. Herein, we describe the large-scale preparation of monolayered BiOBr nanosheets with a thickness of ~0.85 nm via a readily achievable liquid-phase exfoliation strategy with assistance of formamide at ambient conditions. The as-obtained monolayered BiOBr nanosheets are allowed diverse superiorities, such as enhanced specific surface area, promoted band structure, and strengthened charge separation. Profiting from these benefits, the advanced BiOBr monolayers not only show excellent adsorption and photodegradation performance for treating contaminants, but also demonstrate a greatly promoted photocatalytic activity for CO2 reduction into CO and CH4. Additionally, monolayered BiOI nanosheets have also been obtained by the same synthetic approach. Our work offers a mild and general approach for preparation of monolayered BiOX, and may have huge potential to be extended to the synthesis of other single-layer two-dimensional materials.

  2. Band Alignment Determination of Two-Dimensional Heterojunctions and Their Electronic Applications

    KAUST Repository

    Chiu, Ming-Hui

    2018-01-01

    Two-dimensional (2D) layered materials such as MoS2 have been recognized as high on-off ratio semiconductors which are promising candidates for electronic and optoelectronic devices. In addition to the use of individual 2D materials, the accelerated

  3. First principles prediction of the magnetic properties of Fe-X6 (X = S, C, N, O, F) doped monolayer MoS2

    KAUST Repository

    Feng, Nan; Mi, Wenbo; Cheng, Yingchun; Guo, Zaibing; Schwingenschlö gl, Udo; Bai, Haili

    2014-01-01

    Using first-principles calculations, we have investigated the electronic structure and magnetic properties of Fe-X 6 clusters (X = S, C, N, O, and F) incorporated in 4 4 monolayer MoS 2, where a Mo atom is substituted by Fe and its nearest S atoms are substituted by C, N, O, and F. Single Fe and Fe-F 6 substituions make the system display half-metallic properties, Fe-C 6 and Fe-N 6 substitutions lead to a spin gapless semiconducting behavior, and Fe-O 6 doped monolayer MoS 2 is semiconducting. Magnetic moments of 1.93, 1.45, 3.18, 2.08, and 2.21...? B are obtained for X = S, C, N, O, and F, respectively. The different electronic and magnetic characters originate from hybridization between the X and Fe/Mo atoms. Our results suggest that cluster doping can be an efficient strategy for exploring two-dimensional diluted magnetic semiconductors.

  4. First principles prediction of the magnetic properties of Fe-X6 (X = S, C, N, O, F) doped monolayer MoS2

    KAUST Repository

    Feng, Nan

    2014-02-05

    Using first-principles calculations, we have investigated the electronic structure and magnetic properties of Fe-X 6 clusters (X = S, C, N, O, and F) incorporated in 4 4 monolayer MoS 2, where a Mo atom is substituted by Fe and its nearest S atoms are substituted by C, N, O, and F. Single Fe and Fe-F 6 substituions make the system display half-metallic properties, Fe-C 6 and Fe-N 6 substitutions lead to a spin gapless semiconducting behavior, and Fe-O 6 doped monolayer MoS 2 is semiconducting. Magnetic moments of 1.93, 1.45, 3.18, 2.08, and 2.21...? B are obtained for X = S, C, N, O, and F, respectively. The different electronic and magnetic characters originate from hybridization between the X and Fe/Mo atoms. Our results suggest that cluster doping can be an efficient strategy for exploring two-dimensional diluted magnetic semiconductors.

  5. Intra-hydrogel culture prevents transformation of mesenchymal stem cells induced by monolayer expansion.

    Science.gov (United States)

    Jiang, Tongmeng; Liu, Junting; Ouyang, Yiqiang; Wu, Huayu; Zheng, Li; Zhao, Jinmin; Zhang, Xingdong

    2018-05-01

    In this study, we report that the intra-hydrogel culture system mitigates the transformation of mesenchymal stem cells (MSCs) induced by two-dimensional (2D) expansion. MSCs expanded in monolayer culture prior to encapsulation in collagen hydrogels (group eMSCs-CH) featured impaired stemness in chondrogenesis, comparing with the freshly isolated bone marrow mononuclear cells seeded directly in collagen hydrogels (group fMSCs-CH). The molecular mechanism of the in vitro expansion-triggered damage to MSCs was detected through genome-wide microarray analysis. Results indicated that pathways such as proteoglycans in cancer and pathways in cancer expansion were highly enriched in eMSCs-CH. And multiple up-regulated oncoma-associated genes were verified in eMSCs-CH compared with fMSCs-CH, indicating that expansion in vitro triggered cellular transformation was associated with signaling pathways related to tumorigenicity. Besides, focal adhesion (FA) and mitogen-activated protein kinase (MAPK) signaling pathways were also involved in in vitro expansion, indicating restructuring of the cell architecture. Thus, monolayer expansion in vitro may contribute to vulnerability of MSCs through the regulation of FA and MAPK. This study indicates that intra-hydrogel culture can mitigate the monolayer expansion induced transformation of MSCs and maintain the uniformity of the stem cells, which is a viable in vitro culture system for stem cell therapy.

  6. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  7. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  8. Transport properties in monolayer-bilayer-monolayer graphene planar junctions

    Institute of Scientific and Technical Information of China (English)

    Kai-Long Chu; Zi-Bo Wang; Jiao-Jiao Zhou; Hua Jiang

    2017-01-01

    The transport study of graphene based junctions has become one of the focuses in graphene research.There are two stacking configurations for monolayer-bilayer-monolayer graphene planar junctions.One is the two monolayer graphene contacting the same side of the bilayer graphene,and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene.In this paper,according to the Landauer-Büttiker formula,we study the transport properties of these two configurations.The influences of the local gate potential in each part,the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained.We find the conductances of the two configurations can be manipulated by all of these effects.Especially,one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene.The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.

  9. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Theumer, Anja; Gräfe, Christine; Bähring, Franziska [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Bergemann, Christian [Chemicell GmbH, Eresburgstrasse 22–23, 12103 Berlin (Germany); Hochhaus, Andreas [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Clement, Joachim H., E-mail: joachim.clement@med.uni-jena.de [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany)

    2015-04-15

    The aim of this study was to investigate the interaction of superparamagnetic iron oxide nanoparticles (SPION) with human blood–brain barrier-forming endothelial cells (HBMEC) in two-dimensional cell monolayers as well as in three-dimensional multicellular spheroids. The precise nanoparticle localisation and the influence of the NP on the cellular viability and the intracellular Akt signalling were studied in detail. Long-term effects of different polymer-coated nanoparticles (neutral fluidMAG-D, anionic fluidMAG-CMX and cationic fluidMAG-PEI) and the corresponding free polymers on cellular viability of HBMEC were investigated by real time cell analysis studies. Nanoparticles exert distinct effects on HBMEC depending on the nanoparticles' surface charge and concentration, duration of incubation and cellular context. The most severe effects were caused by PEI-coated nanoparticles. Concentrations above 25 µg/ml led to increased amounts of dead cells in monolayer culture as well as in multicellular spheroids. On the level of intracellular signalling, context-dependent differences were observed. Monolayer cultures responded on nanoparticle incubation with an increase in Akt phosphorylation whereas spheroids on the whole show a decreased Akt activity. This might be due to the differential penetration and distribution of PEI-coated nanoparticles.

  10. Tunneling between parallel two-dimensional electron liquids

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; MacDonald, A. H.

    361/362, - (1996), s. 167-170 ISSN 0039-6028. [International Conference on the Electronic Properties of Two Dimensional Systems /11./. Nottingham, 07.08.1995-11.08.1995] R&D Projects: GA ČR GA202/94/1278 Grant - others:INT(XX) 9106888 Impact factor: 2.783, year: 1996

  11. TWO-DIMENSIONAL CORE-COLLAPSE SUPERNOVA MODELS WITH MULTI-DIMENSIONAL TRANSPORT

    International Nuclear Information System (INIS)

    Dolence, Joshua C.; Burrows, Adam; Zhang, Weiqun

    2015-01-01

    We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant O(v/c) terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate O(v/c) terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 ms after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying ''ray-by-ray'' approach employed by all other groups may be compromising their results. We show that ''ray-by-ray'' calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion

  12. Airy beams on two dimensional materials

    Science.gov (United States)

    Imran, Muhammad; Li, Rujiang; Jiang, Yuyu; Lin, Xiao; Zheng, Bin; Dehdashti, Shahram; Xu, Zhiwei; Wang, Huaping

    2018-05-01

    We propose that quasi-transverse-magnetic (quasi-TM) Airy beams can be supported on two dimensional (2D) materials. By taking graphene as a typical example, the solution of quasi-TM Airy beams is studied under the paraxial approximation. The analytical field intensity in a bilayer graphene-based planar plasmonic waveguide is confirmed by the simulation results. Due to the tunability of the chemical potential of graphene, the self-accelerating behavior of the quasi-TM Airy beam can be steered effectively. 2D materials thus provide a good platform to investigate the propagation of Airy beams.

  13. Two-dimensional materials for ultrafast lasers

    International Nuclear Information System (INIS)

    Wang Fengqiu

    2017-01-01

    As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)

  14. Band Gap Tuning and Defect Tolerance of Atomically Thin Two-Dimensional Organic-Inorganic Halide Perovskites.

    Science.gov (United States)

    Pandey, Mohnish; Jacobsen, Karsten W; Thygesen, Kristian S

    2016-11-03

    Organic-inorganic halide perovskites have proven highly successful for photovoltaics but suffer from low stability, which deteriorates their performance over time. Recent experiments have demonstrated that low dimensional phases of the hybrid perovskites may exhibit improved stability. Here we report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C 4 H 9 NH 3 ) 2 MX 2 Y 2 , where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC functional are found to be in excellent agreement with experimental photoluminescence data for the already synthesized perovskites. Finally, we study the effect of different defects on the band structure. We find that the most common defects only introduce shallow or no states in the band gap, indicating that these atomically thin 2D perovskites are likely to be defect tolerant.

  15. Band Gap Tuning and Defect Tolerance of Atomically Thin Two- Dimensional Organic-Inorganic Halide Perovskites

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2016-01-01

    Organic−inorganic halide perovskites have proven highly successful for photovoltaics but suffer from low stability, which deteriorates their performance over time. Recent experiments have demonstrated that low dimensional phases of the hybrid perovskites may exhibit improved stability. Here we...... report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C4H9NH3)2MX2Y2, where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC functional are found to be in excellent agreement with experimental photoluminescence data...... for the already synthesized perovskites. Finally, we study the effect of different defects on the band structure. We find that the most common defects only introduce shallow or no states in the band gap, indicating that these atomically thin 2D perovskites are likely to be defect tolerant....

  16. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  17. Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy

    OpenAIRE

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.

    2013-01-01

    Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separat...

  18. Three-dimensional liver motion tracking using real-time two-dimensional MRI.

    Science.gov (United States)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-04-01

    Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Axial, sagittal, and coronal 2D MRI series

  19. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Brix, Lau, E-mail: lau.brix@stab.rm.dk [Department of Procurement and Clinical Engineering, Region Midt, Olof Palmes Allé 15, 8200 Aarhus N, Denmark and MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Ringgaard, Steffen [MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Sørensen, Thomas Sangild [Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Poulsen, Per Rugaard [Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark and Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark)

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  20. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    International Nuclear Information System (INIS)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-01-01

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  1. Heterogeneous Amyloid β-Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy.

    Science.gov (United States)

    Ho, Jia-Jung; Ghosh, Ayanjeet; Zhang, Tianqi O; Zanni, Martin T

    2018-02-08

    Two-dimensional sum-frequency generation spectroscopy (2D SFG) is used to study the structures of the pentapeptide FGAIL on hydrogen bond promoting surfaces. FGAIL is the most amyloidogenic portion of the human islet amyloid polypeptide (hIAPP or amylin). In the presence of a pure gold surface, FGAIL does not form ordered structures. When the gold is coated with a self-assembled monolayer of mercaptobenzoic acid (MBA), 2D SFG spectra reveal features associated with β-sheets. Also observed are cross peaks between the FGAIL peptides and the carboxylic acid groups of the MBA monolayer, indicating that the peptides are in close contact with the surface headgroups. In the second set of samples, FGAIL peptides chemically ligated to the MBA monolayer also exhibited β-sheet features but with a much simpler spectrum. From simulations of the experiments, we conclude that the hydrogen bond promoting surface catalyzes the formation of both parallel and antiparallel β-sheet structures with several different orientations. When ligated, parallel sheets with only a single orientation are the primary structure. Thus, this hydrogen bond promoting surface creates a heterogeneous distribution of polymorph structures, consistent with a concentration effect that allows nucleation of many different amyloid seeding structures. A single well-defined seed favors one polymorph over the others, showing that the concentrating influence of a membrane can be counterbalanced by factors that favor directed fiber growth. These experiments lay the foundation for the measurement and interpretation of β-sheet structures with heterodyne-detected 2D SFG spectroscopy. The results of this model system suggest that a heterogeneous distribution of polymorphs found in nature are an indication of nonselective amyloid aggregation whereas a narrow distribution of polymorph structures is consistent with a specific protein or lipid interaction that directs fiber growth.

  2. A new two dimensional spectral/spatial multi-diagonal code for noncoherent optical code division multiple access (OCDMA) systems

    Science.gov (United States)

    Kadhim, Rasim Azeez; Fadhil, Hilal Adnan; Aljunid, S. A.; Razalli, Mohamad Shahrazel

    2014-10-01

    A new two dimensional codes family, namely two dimensional multi-diagonal (2D-MD) codes, is proposed for spectral/spatial non-coherent OCDMA systems based on the one dimensional MD code. Since the MD code has the property of zero cross correlation, the proposed 2D-MD code also has this property. So that, the multi-access interference (MAI) is fully eliminated and the phase induced intensity noise (PIIN) is suppressed with the proposed code. Code performance is analyzed in terms of bit error rate (BER) while considering the effect of shot noise, PIIN, and thermal noise. The performance of the proposed code is compared with the related MD, modified quadratic congruence (MQC), two dimensional perfect difference (2D-PD) and two dimensional diluted perfect difference (2D-DPD) codes. The analytical and the simulation results reveal that the proposed 2D-MD code outperforms the other codes. Moreover, a large number of simultaneous users can be accommodated at low BER and high data rate.

  3. Two dimensional topological insulator in quantizing magnetic fields

    Science.gov (United States)

    Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.

    2018-05-01

    The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.

  4. Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system

    Science.gov (United States)

    Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria

    2017-07-01

    In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.

  5. Orbital order and effective mass enhancement in t2 g two-dimensional electron gases

    Science.gov (United States)

    Tolsma, John; Principi, Alessandro; Polini, Marco; MacDonald, Allan

    2015-03-01

    It is now possible to prepare d-electron two-dimensional electron gas systems that are confined near oxide heterojunctions and contain t2 g electrons with a density much smaller than one electron per metal atom. I will discuss a generic model that captures all qualitative features of electron-electron interaction physics in t2 g two-dimensional electron gas systems, and the use of a GW approximation to explore t2 g quasiparticle properties in this new context. t2 g electron gases contain a high density isotropic light mass xy component and low-density xz and yz anisotropic components with light and heavy masses in orthogonal directions. The high density light mass band screens interactions within the heavy bands. As a result the wave vector dependence of the self-energy is reduced and the effective mass is increased. When the density in the heavy bands is low, the difference in anisotropy between the two heavy bands favors orbital order. When orbital order does not occur, interactions still reshape the heavy-band Fermi surfaces. I will discuss these results in the context of recently reported magnetotransport experiments.

  6. Bounds on the Capacity of Weakly constrained two-dimensional Codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren

    2002-01-01

    Upper and lower bounds are presented for the capacity of weakly constrained two-dimensional codes. The maximum entropy is calculated for two simple models of 2-D codes constraining the probability of neighboring 1s as an example. For given models of the coded data, upper and lower bounds...... on the capacity for 2-D channel models based on occurrences of neighboring 1s are considered....

  7. 2D and 3D Traveling Salesman Problem

    Science.gov (United States)

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  8. Two Dimensional Electrophoresis of Galactosidase Relating to the Disappearance of Bombyx Lectin Activity

    OpenAIRE

    カトウ, ヤスオ; Yasuo, Kato

    2004-01-01

    "Two dimensional polyacrylamide gel electroporesis (2 D-PAGE) analysis on the haemolymph of Bombyx mori was performed using the Mini-PROTEAN mini tube gel two dimensional polyacrylamide gel electrophoresis system (Bio-Rad Laboratories, Inc.). The result on various electrophoretical conditions using the haemolymph-protein showed the possibility that the haemolymph-protein was separated actually by means of this method. Moreover, the result of 2 D-PAGE analysis on Fraction II obtained by gel fi...

  9. Doping of two-dimensional MoS2 by high energy ion implantation

    Science.gov (United States)

    Xu, Kang; Zhao, Yuda; Lin, Ziyuan; Long, Yan; Wang, Yi; Chan, Mansun; Chai, Yang

    2017-12-01

    Two-dimensional (2D) materials have been demonstrated to be promising candidates for next generation electronic circuits. Analogues to conventional Si-based semiconductors, p- and n-doping of 2D materials are essential for building complementary circuits. Controllable and effective doping strategies require large tunability of the doping level and negligible structural damage to ultrathin 2D materials. In this work, we demonstrate a doping method utilizing a conventional high-energy ion-implantation machine. Before the implantation, a Polymethylmethacrylate (PMMA) protective layer is used to decelerate the dopant ions and minimize the structural damage to MoS2, thus aggregating the dopants inside MoS2 flakes. By optimizing the implantation energy and fluence, phosphorus dopants are incorporated into MoS2 flakes. Our Raman and high-resolution transmission electron microscopy (HRTEM) results show that only negligibly structural damage is introduced to the MoS2 lattice during the implantation. P-doping effect by the incorporation of p+ is demonstrated by Photoluminescence (PL) and electrical characterizations. Thin PMMA protection layer leads to large kinetic damage but also a more significant doping effect. Also, MoS2 with large thickness shows less kinetic damage. This doping method makes use of existing infrastructures in the semiconductor industry and can be extended to other 2D materials and dopant species as well.

  10. Almost two-dimensional treatment of drift wave turbulence

    International Nuclear Information System (INIS)

    Albert, J.M.; Similon, P.L.; Sudan, R.N.

    1990-01-01

    The approximation of two-dimensionality is studied and extended for electrostatic drift wave turbulence in a three-dimensional, magnetized plasma. It is argued on the basis of the direct interaction approximation that in the absence of parallel viscosity, purely 2-D solutions exist for which only modes with k parallel =0 are excited, but that the 2-D spectrum is unstable to perturbations at nonzero k parallel . A 1-D equation for the parallel profile g k perpendicular (k parallel ) of the saturated spectrum at steady state is derived and solved, allowing for parallel viscosity; the spectrum has finite width in k parallel , and hence finite parallel correlation length, as a result of nonlinear coupling. The enhanced energy dissipation rate, a 3-D effect, may be incorporated in the 2-D approximation by a suitable renormalization of the linear dissipation term. An algorithm is presented that reduces the 3-D problem to coupled 1- and 2-D problems. Numerical results from a 2-D spectral direct simulation, thus modified, are compared with the results from the corresponding 3-D (unmodified) simulation for a specific model of drift wave excitation. Damping at high k parallel is included. It is verified that the 1-D solution for g k perpendicular (k parallel ) accurately describes the shape and width of the 3-D spectrum, and that the modified 2-D simulation gives a good estimate of the 3-D energy saturation level and distribution E(k perpendicular )

  11. Newton-sor iterative method for solving the two-dimensional porous ...

    African Journals Online (AJOL)

    In this paper, we consider the application of the Newton-SOR iterative method in obtaining the approximate solution of the two-dimensional porous medium equation (2D PME). The nonlinear finite difference approximation equation to the 2D PME is derived by using the implicit finite difference scheme. The developed ...

  12. Shape-persistent two-component 2D networks with atomic-size tunability.

    Science.gov (United States)

    Liu, Jia; Zhang, Xu; Wang, Dong; Wang, Jie-Yu; Pei, Jian; Stang, Peter J; Wan, Li-Jun

    2011-09-05

    Over the past few years, two-dimensional (2D) nanoporous networks have attracted great interest as templates for the precise localization and confinement of guest building blocks, such as functional molecules or clusters on the solid surfaces. Herein, a series of two-component molecular networks with a 3-fold symmetry are constructed on graphite using a truxenone derivative and trimesic acid homologues with carboxylic-acid-terminated alkyl chains. The hydrogen-bonding partner-recognition-induced 2D crystallization of alkyl chains makes the flexible alkyl chains act as rigid spacers in the networks to continuously tune the pore size with an accuracy of one carbon atom per step. The two-component networks were found to accommodate and regulate the distribution and aggregation of guest molecules, such as COR and CuPc. This procedure provides a new pathway for the design and fabrication of molecular nanostructures on solid surfaces. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    Science.gov (United States)

    Aoki, Michio; Juang, Jia-Yang

    2018-02-01

    Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.

  14. Structural, electronic and magnetic properties of 3d metal trioxide clusters-doped monolayer graphene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); M.U.E.T, S.Z.A.B, Campus Khairpur Mir' s, Sindh (Pakistan); Shuai, Yong, E-mail: shuaiyong1978@gmail.com [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Tan, He-Ping; Hassan, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)

    2017-03-31

    Highlights: • First-principles calculations are performed for TMO{sub 3} cluster-doped and TM atoms adsorbed at three O atoms-doped graphene. • Significant magnetic coupling behavior is observed between TM atoms and neighboring C and O atoms for both cases. • The direction of charge transfer is always from monolayer graphene to TMO{sub 3} clusters incorporated into graphene. • TiO{sub 3} and VO{sub 3} doped structures display dilute magnetic semiconductor behavior. • Five different orbitals (d{sub xy}, d{sub yz}, d{sub z}{sup 2}, d{sub xz} and d{sub x}{sup 2}{sub -y}{sup 2}) of 3d TM atoms give rise to magnetic moments for both cases. - Abstract: We present first-principles density-functional calculations for the structural, electronic and magnetic properties of monolayer graphene doped with 3d (Ti, V, Cr, Fe, Co, Mn and Ni) metal trioxide TMO{sub 3} halogen clusters. In this paper we used two approaches for 3d metal trioxide clusters (i) TMO{sub 3} halogen cluster was embedded in monolayer graphene substituting four carbon (C) atoms (ii) three C atoms were substituted by three oxygen (O) atoms in one graphene ring and TM atom was adsorbed at the hollow site of O atoms substituted graphene ring. All the impurities were tightly bonded in the graphene ring. In first case of TMO{sub 3} doped graphene layer, the bond length between C−O atom was reduced and bond length between TM-O atom was increased. In case of Cr, Fe, Co and Ni atoms substitution in between the O atoms, leads to Fermi level shifting to conduction band thereby causing the Dirac cone to move into valence band, however a band gap appears at high symmetric K-point. In case of TiO{sub 3} and VO{sub 3} substitution, system exhibits semiconductor properties. Interestingly, TiO{sub 3}-substituted system shows dilute magnetic semiconductor behavior with 2.00 μ{sub B} magnetic moment. On the other hand, the substitution of CoO{sub 3}, CrO{sub 3}, FeO{sub 3} and MnO{sub 3} induced 1.015 μ{sub B}, 2

  15. MicroRNA expression in the vildagliptin-treated two- and three-dimensional HepG2 cells.

    Science.gov (United States)

    Yamashita, Yasunari; Asakura, Mitsutoshi; Mitsugi, Ryo; Fujii, Hideaki; Nagai, Kenichiro; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2016-06-01

    Vildagliptin is an inhibitor of dipeptidyl peptidase-4 that is used for the treatment of type 2 diabetes mellitus. While vildagliptin can induce hepatic dysfunction in humans, the molecular mechanism has not been determined yet. Recent studies indicated that certain types of microRNA (miRNA) were linking to the development of drug-induced hepatotoxicity. In the present study, therefore, we identified hepatic miRNAs that were highly induced or reduced by the vildagliptin treatment in mice. MiR-222 and miR-877, toxicity-associated miRNAs, were induced 31- and 53-fold, respectively, by vildagliptin in the liver. While a number of miRNAs were significantly regulated by the orally treated vildagliptin in vivo, such regulation was not observed in the vildagliptin-treated HepG2 cells. In addition to the regular two-dimensional (2D) culture, we carried out the three-dimensional (3D) culturing of HepG2 cells. In the 3D-HepG2 cells, a significant reduction of miR-222 was observed compared to the expression level in 2D-HepG2 cells. A slight induction of miR-222 by vildagliptin was observed in the 3D-HepG2 cells, although miR-877 was not induced by vildagliptin even in the 3D-HepG2 cells. Further investigations are needed to overcome the discrepancy in the responsiveness of the miRNA expressions to vildagliptin between in vivo and in vitro. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  16. On-stack two-dimensional conversion of MoS2 into MoO3

    Science.gov (United States)

    Yeoung Ko, Taeg; Jeong, Areum; Kim, Wontaek; Lee, Jinhwan; Kim, Youngchan; Lee, Jung Eun; Ryu, Gyeong Hee; Park, Kwanghee; Kim, Dogyeong; Lee, Zonghoon; Lee, Min Hyung; Lee, Changgu; Ryu, Sunmin

    2017-03-01

    Chemical transformation of existing two-dimensional (2D) materials can be crucial in further expanding the 2D crystal palette required to realize various functional heterostructures. In this work, we demonstrate a 2D ‘on-stack’ chemical conversion of single-layer crystalline MoS2 into MoO3 with a precise layer control that enables truly 2D MoO3 and MoO3/MoS2 heterostructures. To minimize perturbation of the 2D morphology, a nonthermal oxidation using O2 plasma was employed. The early stage of the reaction was characterized by a defect-induced Raman peak, drastic quenching of photoluminescence (PL) signals and sub-nm protrusions in atomic force microscopy images. As the reaction proceeded from the uppermost layer to the buried layers, PL and optical second harmonic generation signals showed characteristic modulations revealing a layer-by-layer conversion. The plasma-generated 2D oxides, confirmed as MoO3 by x-ray photoelectron spectroscopy, were found to be amorphous but extremely flat with a surface roughness of 0.18 nm, comparable to that of 1L MoS2. The rate of oxidation quantified by Raman spectroscopy decreased very rapidly for buried sulfide layers due to protection by the surface 2D oxides, exhibiting a pseudo-self-limiting behavior. As exemplified in this work, various on-stack chemical transformations can be applied to other 2D materials in forming otherwise unobtainable materials and complex heterostructures, thus expanding the palette of 2D material building blocks.

  17. Optimal conclusive teleportation of a d-dimensional two-particle unknown quantum state

    Institute of Scientific and Technical Information of China (English)

    Yang Yu-Guang; Wen Qiao-Yan; Zhu Fu-Chen

    2006-01-01

    A conclusive teleportation protocol of a d-dimensional two-particle unknown quantum state using three ddimensional particles in an arbitrary pure state is proposed. A sender teleports the unknown state conclusively to a receiver by using the positive operator valued measure(POVM) and introducing an ancillary qudit to perform the generalized Bell basis measurement. We calculate the optimal teleportation fidelity. We also discuss and analyse the reason why the information on the teleported state is lost in the course of the protocol.

  18. Measurement of Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Chen, Xi; Zhu, Bairen; Cui, Xiaodong

    Excitonic effects are prominent in monolayer crystal of transition metal dichalcogenides (TMDCs) because of spatial confinement and reduced Coulomb screening. Here we use linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE) to measure the exciton binding energy of monolayer WS2. Peaks for excitonic absorptions of the direct gap located at K valley of the Brillouin zone and transitions from multiple points near Γ point of the Brillouin zone, as well as trion side band are shown in the linear absorption spectra of WS2. But there is no gap between distinct excitons and the continuum of the interband transitions. Strong electron-phonon scattering, overlap of excitons around Γ point and the transfer of the oscillator strength from interband continuum to exciton states make it difficult to resolve the electronic interband transition edge even down to 10K. The gap between excited states of the band-edge exciton and the single-particle band is probed by TP-PLE measurements. And the energy difference between 1s exciton and the single-particle gap gives the exciton binding energy of monolayer WS2 to be about 0.71eV. The work is supported by Area of excellency (AoE/P-04/08), CRF of Hong Kong Research Grant Council (HKU9/CRF/13G) and SRT on New Materials of The University of Hong Kong.

  19. Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS2 Heterostructure Devices.

    Science.gov (United States)

    Rathi, Servin; Lee, Inyeal; Lim, Dongsuk; Wang, Jianwei; Ochiai, Yuichi; Aoki, Nobuyuki; Watanabe, Kenji; Taniguchi, Takashi; Lee, Gwan-Hyoung; Yu, Young-Jun; Kim, Philip; Kim, Gil-Ho

    2015-08-12

    Lateral and vertical two-dimensional heterostructure devices, in particular graphene-MoS2, have attracted profound interest as they offer additional functionalities over normal two-dimensional devices. Here, we have carried out electrical and optical characterization of graphene-MoS2 heterostructure. The few-layer MoS2 devices with metal electrode at one end and monolayer graphene electrode at the other end show nonlinearity in drain current with drain voltage sweep due to asymmetrical Schottky barrier height at the contacts and can be modulated with an external gate field. The doping effect of MoS2 on graphene was observed as double Dirac points in the transfer characteristics of the graphene field-effect transistor (FET) with a few-layer MoS2 overlapping the middle part of the channel, whereas the underlapping of graphene have negligible effect on MoS2 FET characteristics, which showed typical n-type behavior. The heterostructure also exhibits a strongest optical response for 520 nm wavelength, which decreases with higher wavelengths. Another distinct feature observed in the heterostructure is the peak in the photocurrent around zero gate voltage. This peak is distinguished from conventional MoS2 FETs, which show a continuous increase in photocurrent with back-gate voltage. These results offer significant insight and further enhance the understanding of the graphene-MoS2 heterostructure.

  20. Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils

    Science.gov (United States)

    Jiang, Shaolong; Zhao, Liyun; Shi, Yuping; Xie, Chunyu; Zhang, Na; Zhang, Zhepeng; Huan, Yahuan; Yang, Pengfei; Hong, Min; Zhou, Xiebo; Shi, Jianping; Zhang, Qing; Zhang, Yanfeng

    2018-05-01

    Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77–290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.

  1. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  2. Two-dimensional silicon and carbon monochalcogenides with the structure of phosphorene.

    Science.gov (United States)

    Rocca, Dario; Abboud, Ali; Vaitheeswaran, Ganapathy; Lebègue, Sébastien

    2017-01-01

    Phosphorene has recently attracted significant interest for applications in electronics and optoelectronics. Inspired by this material an ab initio study was carried out on new two-dimensional binary materials with a structure analogous to phosphorene. Specifically, carbon and silicon monochalcogenides have been considered. After structural optimization, a series of binary compounds were found to be dynamically stable in a phosphorene-like geometry: CS, CSe, CTe, SiO, SiS, SiSe, and SiTe. The electronic properties of these monolayers were determined using density functional theory. By using accurate hybrid functionals it was found that these materials are semiconductors and span a broad range of bandgap values and types. Similarly to phosphorene, the computed effective masses point to a strong in-plane anisotropy of carrier mobilities. The variety of electronic properties carried by these compounds have the potential to broaden the technological applicability of two-dimensional materials.

  3. Two-dimensional silicon and carbon monochalcogenides with the structure of phosphorene

    Directory of Open Access Journals (Sweden)

    Dario Rocca

    2017-06-01

    Full Text Available Phosphorene has recently attracted significant interest for applications in electronics and optoelectronics. Inspired by this material an ab initio study was carried out on new two-dimensional binary materials with a structure analogous to phosphorene. Specifically, carbon and silicon monochalcogenides have been considered. After structural optimization, a series of binary compounds were found to be dynamically stable in a phosphorene-like geometry: CS, CSe, CTe, SiO, SiS, SiSe, and SiTe. The electronic properties of these monolayers were determined using density functional theory. By using accurate hybrid functionals it was found that these materials are semiconductors and span a broad range of bandgap values and types. Similarly to phosphorene, the computed effective masses point to a strong in-plane anisotropy of carrier mobilities. The variety of electronic properties carried by these compounds have the potential to broaden the technological applicability of two-dimensional materials.

  4. Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2.

    Science.gov (United States)

    Harel, Elad; Long, Phillip D; Engel, Gregory S

    2011-05-01

    Here we present two-dimensional (2D) electronic spectra of the light-harvesting complex LH2 from purple bacteria using coherent pulses with bandwidth of over 100 nm FWHM. This broadband excitation and detection has allowed the simultaneous capture of both the B800 and B850 bands using a single light source. We demonstrate that one laser pulse is sufficient to capture the entire 2D electronic spectrum with a high signal-to-noise ratio. At a waiting time of 800 fs, we observe population transfer from the B800 to B850 band as manifested by a prominent cross peak. These results will enable observation of the dynamics of biological systems across both ultrafast (1 ms) timescales simultaneously.

  5. Simplification of one-dimensional hydraulic networks by automated processes evaluated on 1D/2D deterministic flood models

    DEFF Research Database (Denmark)

    Davidsen, Steffen; Löwe, Roland; Thrysøe, Cecilie

    2017-01-01

    Evaluation of pluvial flood risk is often based on computations using 1D/2D urban flood models. However, guidelines on choice of model complexity are missing, especially for one-dimensional (1D) network models. This study presents a new automatic approach for simplification of 1D hydraulic networ...

  6. Giant photoresponse in quantized SrRuO3 monolayer at oxide interfaces

    KAUST Repository

    Liu, Heng-Jui

    2018-02-01

    The photoelectric effect in semiconductors is the main mechanism for most modern optoelectronic devices, in which the adequate bandgap plays the key role for acquiring high photoresponse. Among numerous material categories applied in this field, the complex oxides exhibit great possibilities because they present a wide distribution of band gaps for absorbing light with any wavelength. Their physical properties and lattice structures are always strongly coupled and sensitive to light illumination. Moreover, the confinement of dimensionality of the complex oxides in the heterostructures can provide more diversities in designing and modulating the band structures. On the basis of this perspective, we have chosen itinerary ferromagnetic SrRuO3 as the model material, and fabricated it in one-unit-cell thickness in order to open a small band gap for effective utilization of visible light. By inserting this SrRuO3 monolayer at the interface of the well-developed two-dimensional electron gas system (LaAlO3/SrTiO3), the resistance of the monolayer can be further revealed. In addition, a giant enhancement (>300%) of photoresponse under illumination of visible light with power density of 500 mW/cm2 is also observed. Such can be ascribed to the further modulation of band structure of the SrRuO3 monolayer under the illumination, confirmed by cross-section scanning tunneling microscopy (XSTM). Therefore, this study demonstrates a simple route to design and explore the potential low dimensional oxide materials for future optoelectronic devices.

  7. Giant photoresponse in quantized SrRuO3 monolayer at oxide interfaces

    KAUST Repository

    Liu, Heng-Jui; Wang, Jing-Ching; Cho, Deok-Yong; Ho, Kang-Ting; Lin, Jheng-Cyuan; Huang, Bo-Chao; Fang, Yue-Wen; Zhu, Yuan-Min; Zhan, Qian; Xie, Lin; Pan, Xiao-Qing; Chiu, Ya-Ping; Duan, Chun-Gang; He, Jr-Hau; Chu, Ying-Hao

    2018-01-01

    The photoelectric effect in semiconductors is the main mechanism for most modern optoelectronic devices, in which the adequate bandgap plays the key role for acquiring high photoresponse. Among numerous material categories applied in this field, the complex oxides exhibit great possibilities because they present a wide distribution of band gaps for absorbing light with any wavelength. Their physical properties and lattice structures are always strongly coupled and sensitive to light illumination. Moreover, the confinement of dimensionality of the complex oxides in the heterostructures can provide more diversities in designing and modulating the band structures. On the basis of this perspective, we have chosen itinerary ferromagnetic SrRuO3 as the model material, and fabricated it in one-unit-cell thickness in order to open a small band gap for effective utilization of visible light. By inserting this SrRuO3 monolayer at the interface of the well-developed two-dimensional electron gas system (LaAlO3/SrTiO3), the resistance of the monolayer can be further revealed. In addition, a giant enhancement (>300%) of photoresponse under illumination of visible light with power density of 500 mW/cm2 is also observed. Such can be ascribed to the further modulation of band structure of the SrRuO3 monolayer under the illumination, confirmed by cross-section scanning tunneling microscopy (XSTM). Therefore, this study demonstrates a simple route to design and explore the potential low dimensional oxide materials for future optoelectronic devices.

  8. Optically active charge transfer in hybrids of Alq3 nanoparticles and MoS2 monolayer

    Science.gov (United States)

    Ghimire, Ganesh; Dhakal, Krishna P.; Neupane, Guru P.; Jo, Seong Gi; Kim, Hyun; Seo, Changwon; Lee, Young Hee; Joo, Jinsoo; Kim, Jeongyong

    2017-05-01

    Organic/inorganic hybrid structures have been widely studied because of their enhanced physical and chemical properties. Monolayers of transition metal dichalcogenides (1L-TMDs) and organic nanoparticles can provide a hybridization configuration between zero- and two-dimensional systems with the advantages of convenient preparation and strong interface interaction. Here, we present such a hybrid system made by dispersing π-conjugated organic (tris (8-hydroxyquinoline) aluminum(III)) (Alq3) nanoparticles (NPs) on 1L-MoS2. Hybrids of Alq3 NP/1L-MoS2 exhibited a two-fold increase in the photoluminescence of Alq3 NPs on 1L-MoS2 and the n-doping effect of 1L-MoS2, and these spectral and electronic modifications were attributed to the charge transfer between Alq3 NPs and 1L-MoS2. Our results suggested that a hybrid of organic NPs/1L-TMD can offer a convenient platform to study the interface interactions between organic and inorganic nano objects and to engineer optoelectronic devices with enhanced performance.

  9. Two-dimensional dynamics of a free molecular chain with a secondary structure

    DEFF Research Database (Denmark)

    Zolotaryuk, Alexander; Christiansen, Peter Leth; Savin, A.V.

    1996-01-01

    A simple two-dimensional (2D) model of an isolated (free) molecular chain with primary and secondary structures has been suggested and investigated both analytically and numerically. This model can be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model of an anharmo......A simple two-dimensional (2D) model of an isolated (free) molecular chain with primary and secondary structures has been suggested and investigated both analytically and numerically. This model can be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model...

  10. Two-dimensional atom localization via two standing-wave fields in a four-level atomic system

    International Nuclear Information System (INIS)

    Zhang Hongtao; Wang Hui; Wang Zhiping

    2011-01-01

    We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.

  11. Comparison of one-, two-, and three-dimensional iron phosphates containing ethylenediamine

    International Nuclear Information System (INIS)

    Song Yanning; Zavalij, Peter Y.; Chernova, Natasha A.; Suzuki, Masatsugu; Whittingham, M.S.

    2003-01-01

    A new two-dimensional (2d) iron phosphate, (C 2 N 2 H 10 )Fe 2 O(PO 4 ) 2 , has been synthesized under hydrothermal conditions in the system of FeCl 3 -H 3 PO 4 -C 2 N 2 H 8 -H 2 O. The crystal data is: space group P2 1 /c, a=10.670(1) A, b=10.897(1) A, c=9.918(1) A, β=105.632(1) deg. , Z=4. The layered structure consists of double sheet layers, of composition Fe 2 O(PO 4 ) 2 , built from FeO 5 trigonal bipyramids and PO 4 tetrahedra. The amine holds the layers together via H-bonding. The study of the magnetic properties reveals two magnetic transitions at 160 and 30 K with spin-glass-like behavior below 160 K. By varying the hydrothermal conditions, three other iron phosphates were synthesized: the one-dimensional (1d) (C 2 N 2 H 10 )Fe(HPO 4 ) 2 (OH)·H 2 O, the 2d (C 2 N 2 H 10 )Fe 2 (PO 4 ) 2 (OH) 2 , and the three-dimensional (3d) (C 2 N 2 H 10 ) 2 Fe 4 O(PO 4 ) 4 ·H 2 O. The 1d compound can be used as the starting reagent in the synthesis of both the 2d compound and the 3d lipscombite Fe 3 (PO 4 ) 2 (OH) 2 due to the similar building blocks in their structures. In the 3d phosphate (C 2 N 2 H 10 ) 2 Fe 4 O(PO 4 ) 4 ·H 2 O, manganese can substitute for half of the iron atoms. Magnetic study shows ordering transitions at about 30 K, however, manganese substitution depresses the magnetic ordering temperature

  12. Performance analysis of three-dimensional-triple-level cell and two-dimensional-multi-level cell NAND flash hybrid solid-state drives

    Science.gov (United States)

    Sakaki, Yukiya; Yamada, Tomoaki; Matsui, Chihiro; Yamaga, Yusuke; Takeuchi, Ken

    2018-04-01

    In order to improve performance of solid-state drives (SSDs), hybrid SSDs have been proposed. Hybrid SSDs consist of more than two types of NAND flash memories or NAND flash memories and storage-class memories (SCMs). However, the cost of hybrid SSDs adopting SCMs is more expensive than that of NAND flash only SSDs because of the high bit cost of SCMs. This paper proposes unique hybrid SSDs with two-dimensional (2D) horizontal multi-level cell (MLC)/three-dimensional (3D) vertical triple-level cell (TLC) NAND flash memories to achieve higher cost-performance. The 2D-MLC/3D-TLC hybrid SSD achieves up to 31% higher performance than the conventional 2D-MLC/2D-TLC hybrid SSD. The factors of different performance between the proposed hybrid SSD and the conventional hybrid SSD are analyzed by changing its block size, read/write/erase latencies, and write unit of 3D-TLC NAND flash memory, by means of a transaction-level modeling simulator.

  13. Topotactic transformations of superstructures: from thin films to two-dimensional networks to nested two-dimensional networks.

    Science.gov (United States)

    Guo, Chuan Fei; Cao, Sihai; Zhang, Jianming; Tang, Haoying; Guo, Shengming; Tian, Ye; Liu, Qian

    2011-06-01

    Design and synthesis of super-nanostructures is one of the key and prominent topics in nanotechnology. Here we propose a novel methodology for synthesizing complex hierarchical superstructures using sacrificial templates composed of ordered two-dimensional (2D) nanostructures through lattice-directed topotactic transformations. The fabricated superstructures are nested 2D orthogonal Bi(2)S(3) networks composed of nanorods. Further investigation indicates that the lattice matching between the product and sacrificial template is the dominant mechanism for the formation of the superstructures, which agrees well with the simulation results based on an anisotropic nucleation and growth analysis. Our approach may provide a promising way toward a lattice-directed nonlithographic nanofabrication technique for making functional porous nanoarchitectures and electronic devices. © 2011 American Chemical Society

  14. Approaches for Achieving Superlubricity in Two-Dimensional Materials.

    Science.gov (United States)

    Berman, Diana; Erdemir, Ali; Sumant, Anirudha V

    2018-03-27

    Controlling friction and reducing wear of moving mechanical systems is important in many applications, from nanoscale electromechanical systems to large-scale car engines and wind turbines. Accordingly, multiple efforts are dedicated to design materials and surfaces for efficient friction and wear manipulation. Recent advances in two-dimensional (2D) materials, such as graphene, hexagonal boron nitride, molybdenum disulfide, and other 2D materials opened an era for conformal, atomically thin solid lubricants. However, the process of effectively incorporating 2D films requires a fundamental understanding of the atomistic origins of friction. In this review, we outline basic mechanisms for frictional energy dissipation during sliding of two surfaces against each other, and the procedures for manipulating friction and wear by introducing 2D materials at the tribological interface. Finally, we highlight recent progress in implementing 2D materials for friction reduction to near-zero values-superlubricity-across scales from nano- up to macroscale contacts.

  15. SU(1,2) invariance in two-dimensional oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2017-02-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.

  16. One-dimensional versus two-dimensional electronic states in vicinal surfaces

    International Nuclear Information System (INIS)

    Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F

    2005-01-01

    Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d

  17. Two-dimensional and three-dimensional ultrasonography for pregnancy diagnosis and antenatal fetal development in Beetal goats

    Directory of Open Access Journals (Sweden)

    Kailash Kumar

    2015-07-01

    Full Text Available Aim: The objective of this study was to compare two-dimensional (2D and three-dimensional (3D study of the pregnant uterus and antenatal development of the fetus. Materials and Methods: 2D and 3D ultrasound were performed from day 20 to 120 of gestation, twice in week from day 20 to 60 and once in week from day 60 to 120 of gestation on six goats. The ultrasonographic images were obtained using Toshiba, Nemio-XG (Japan 3D ultrasound machine. Results: On the 20th day of gestation, earliest diagnosis of pregnancy was done. First 3D ultrasonographic image of the conceptus, through transabdominal approach, was obtained on day 24. On 39th day, clear pictures of conceptus, amniotic membrane, and umbilicus were seen. On 76th day of gestation, internal organs of fetus viz heart, kidney, liver, urinary bladder, and stomach were seen both in 2D and 3D images. 3D imaging showed better details of uterine structures and internal organs of the fetus. Conclusions: Comparing 3D images with 2D images, it is concluded that 2D was better in visualizing fluid while 3D images were better to view details of attachment of fetus with endometrium.

  18. Mixed monolayers of dipalmitoyl phosphatidylcholine and ethyl palmitate at the air/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Gzyl, Barbara [Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow (Poland)]. E-mail: gzyl@chemia.uj.edu.pl; Paluch, Maria [Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow (Poland)

    2005-06-30

    The behaviour of monolayers containing dipalmitoyl phosphatidylcholine and ethyl palmitate and their mixtures at different molar fraction, using surface pressure-molecular area results, was investigated. The negative deviation from additivity of the mean molecular areas as a function of the mixture composition indicates the miscibility. The miscibility was confirmed by applying the two-dimensional phase rule, since the collapse pressure values vary with the composition of the mixtures. Also the free energy of mixing {delta}G{sub mix} and the excess free energy of mixing {delta}G{sub mix}{sup E} were determined. The negative values of {delta}G{sub mix} and {delta}G{sub mix}{sup E} indicate that the mixed monolayers are thermodynamically more stable compared to the pure ones and that the compounds in the two dimensional state experience mainly attractive interactions.

  19. Designing artificial 2D crystals with site and size controlled quantum dots.

    Science.gov (United States)

    Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav

    2017-08-30

    Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS 2 ), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS 2 . By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

  20. Characterization of separability and entanglement in (2xD)- and (3xD)-dimensional systems by single-qubit and single-qutrit unitary transformations

    International Nuclear Information System (INIS)

    Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-01-01

    We investigate the geometric characterization of pure state bipartite entanglement of (2xD)- and (3xD)-dimensional composite quantum systems. To this aim, we analyze the relationship between states and their images under the action of particular classes of local unitary operations. We find that invariance of states under the action of single-qubit and single-qutrit transformations is a necessary and sufficient condition for separability. We demonstrate that in the (2xD)-dimensional case the von Neumann entropy of entanglement is a monotonic function of the minimum squared Euclidean distance between states and their images over the set of single qubit unitary transformations. Moreover, both in the (2xD)- and in the (3xD)-dimensional cases the minimum squared Euclidean distance exactly coincides with the linear entropy [and thus as well with the tangle measure of entanglement in the (2xD)-dimensional case]. These results provide a geometric characterization of entanglement measures originally established in informational frameworks. Consequences and applications of the formalism to quantum critical phenomena in spin systems are discussed

  1. Tuning the Electronic, Optical, and Magnetic Properties of Monolayer GaSe with a Vertical Electric Field

    Science.gov (United States)

    Ke, Congming; Wu, Yaping; Guo, Guang-Yu; Lin, Wei; Wu, Zhiming; Zhou, Changjie; Kang, Junyong

    2018-04-01

    Inspired by two-dimensional material with their unique physical properties and innovative device applications, here we report a design framework on monolayer GaSe, an important member of the two-dimensional material family, in an effort to tune the electronic, optical, and magnetic properties through a vertical electric field. A transition from indirect to direct band gap in monolayer GaSe is found with an electric field of 0.09 V /Å . The giant Stark effect results in a reduction of the band gap with a Stark coefficient of 3.54 Å. Optical and dielectric properties of monolayer GaSe are dependent on the vertical electric field. A large regulation range for polarization E ∥c ^ is found for the static dielectric constant. The optical anisotropy with the dipole transition from E ∥c ^ to E ⊥c ^ is achieved. Induced by the spin-orbit coupling, spin-splitting energy at the valence band maximum increases linearly with the electric field. The effective mass of holes is highly susceptible to the vertical electric field. Switchable spin-polarization features in spin texture of monolayer GaSe are predicted. The tunable electronic, optical, and magnetic properties of monolayer GaSe hold great promise for applications in both the optoelectronic and spintronic devices.

  2. Au-Interaction of Slp1 Polymers and Monolayer from Lysinibacillus sphaericus JG-B53 - QCM-D, ICP-MS and AFM as Tools for Biomolecule-metal Studies

    Science.gov (United States)

    Suhr, Matthias; Raff, Johannes; Pollmann, Katrin

    2016-01-01

    In this publication the gold sorption behavior of surface layer (S-layer) proteins (Slp1) of Lysinibacillus sphaericus JG-B53 is described. These biomolecules arrange in paracrystalline two-dimensional arrays on surfaces, bind metals, and are thus interesting for several biotechnical applications, such as biosorptive materials for the removal or recovery of different elements from the environment and industrial processes. The deposition of Au(0) nanoparticles on S-layers, either by S-layer directed synthesis 1 or adsorption of nanoparticles, opens new possibilities for diverse sensory applications. Although numerous studies have described the biosorptive properties of S-layers 2-5, a deeper understanding of protein-protein and protein-metal interaction still remains challenging. In the following study, inductively coupled mass spectrometry (ICP-MS) was used for the detection of metal sorption by suspended S-layers. This was correlated to measurements of quartz crystal microbalance with dissipation monitoring (QCM-D), which allows the online detection of proteinaceous monolayer formation and metal deposition, and thus, a more detailed understanding on metal binding. The ICP-MS results indicated that the binding of Au(III) to the suspended S-layer polymers is pH dependent. The maximum binding of Au(III) was obtained at pH 4.0. The QCM-D investigations enabled the detection of Au(III) sorption as well as the deposition of Au(0)-NPs in real-time during the in situ experiments. Further, this method allowed studying the influence of metal binding on the protein lattice stability of Slp1. Structural properties and protein layer stability could be visualized directly after QCM-D experiment using atomic force microscopy (AFM). In conclusion, the combination of these different methods provides a deeper understanding of metal binding by bacterial S-layer proteins in suspension or as monolayers on either bacterial cells or recrystallized surfaces. PMID:26863150

  3. Defect Structure of Localized Excitons in a WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai

    2017-07-26

    The atomic and electronic structure of intrinsic defects in a WSe2 monolayer grown on graphite was revealed by low temperature scanning tunneling microscopy and spectroscopy. Instead of chalcogen vacancies that prevail in other transition metal dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work provided the first atomic-scale understanding of defect excitons and paved the way toward deciphering the defect structure of single quantum emitters previously discovered in the WSe2 monolayer.

  4. Moment-based method for computing the two-dimensional discrete Hartley transform

    Science.gov (United States)

    Dong, Zhifang; Wu, Jiasong; Shu, Huazhong

    2009-10-01

    In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.

  5. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  6. Smart multi-channel two-dimensional micro-gas chromatography for rapid workplace hazardous volatile organic compounds measurement.

    Science.gov (United States)

    Liu, Jing; Seo, Jung Hwan; Li, Yubo; Chen, Di; Kurabayashi, Katsuo; Fan, Xudong

    2013-03-07

    We developed a novel smart multi-channel two-dimensional (2-D) micro-gas chromatography (μGC) architecture that shows promise to significantly improve 2-D μGC performance. In the smart μGC design, a non-destructive on-column gas detector and a flow routing system are installed between the first dimensional separation column and multiple second dimensional separation columns. The effluent from the first dimensional column is monitored in real-time and decision is then made to route the effluent to one of the second dimensional columns for further separation. As compared to the conventional 2-D μGC, the greatest benefit of the smart multi-channel 2-D μGC architecture is the enhanced separation capability of the second dimensional column and hence the overall 2-D GC performance. All the second dimensional columns are independent of each other, and their coating, length, flow rate and temperature can be customized for best separation results. In particular, there is no more constraint on the upper limit of the second dimensional column length and separation time in our architecture. Such flexibility is critical when long second dimensional separation is needed for optimal gas analysis. In addition, the smart μGC is advantageous in terms of elimination of the power intensive thermal modulator, higher peak amplitude enhancement, simplified 2-D chromatogram re-construction and potential scalability to higher dimensional separation. In this paper, we first constructed a complete smart 1 × 2 channel 2-D μGC system, along with an algorithm for automated control/operation of the system. We then characterized and optimized this μGC system, and finally employed it in two important applications that highlight its uniqueness and advantages, i.e., analysis of 31 workplace hazardous volatile organic compounds, and rapid detection and identification of target gas analytes from interference background.

  7. Al-Doped ZnO Monolayer as a Promising Transparent Electrode Material: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Mingyang Wu

    2017-03-01

    Full Text Available Al-doped ZnO has attracted much attention as a transparent electrode. The graphene-like ZnO monolayer as a two-dimensional nanostructure material shows exceptional properties compared to bulk ZnO. Here, through first-principle calculations, we found that the transparency in the visible light region of Al-doped ZnO monolayer is significantly enhanced compared to the bulk counterpart. In particular, the 12.5 at% Al-doped ZnO monolayer exhibits the highest visible transmittance of above 99%. Further, the electrical conductivity of the ZnO monolayer is enhanced as a result of Al doping, which also occurred in the bulk system. Our results suggest that Al-doped ZnO monolayer is a promising transparent conducting electrode for nanoscale optoelectronic device applications.

  8. Two-dimensional simulations of magnetically-driven instabilities

    International Nuclear Information System (INIS)

    Peterson, D.; Bowers, R.; Greene, A.E.; Brownell, J.

    1986-01-01

    A two-dimensional Eulerian MHD code is used to study the evolution of magnetically-driven instabilities in cylindrical geometry. The code incorporates an equation of state, resistivity, and radiative cooling model appropriate for an aluminum plasma. The simulations explore the effects of initial perturbations, electrical resistivity, and radiative cooling on the growth and saturation of the instabilities. Comparisons are made between the 2-D simulations, previous 1-D simulations, and results from the Pioneer experiments of the Los Alamos foil implosion program

  9. Assessment of two-dimensional (2D) and three-dimensional (3D) lower limb measurements in adults: Comparison of micro-dose and low-dose biplanar radiographs

    International Nuclear Information System (INIS)

    Rosskopf, Andrea B.; Pfirrmann, Christian W.A.; Buck, Florian M.

    2016-01-01

    To evaluate reliability of 2D and 3D lower limb measurements in adults using micro-dose compared to low-dose biplanar radiographs(BPR). One hundred patients (mean 54.9 years) were examined twice using micro-dose and low-dose BPR. Length and mechanical axis of lower limbs were measured on the antero-posterior(ap) micro-dose and low-dose images by two independent readers. Femoral and tibial torsions of 50 patients were measured by two independent readers using reconstructed 3D-models based on the micro-dose and low-dose BPR. Intermethod and interreader agreements were calculated using descriptive statistics, intraclass-correlation-coefficient(ICC), and Bland-Altman analysis. Mean interreader-differences on micro-dose were 0.3 cm(range 0-1.0)/ 0.7 (0-2.9) for limb length/axis and 0.4 cm (0-1.0)/0.8 (0-3.3) on low-dose BPR. Mean intermethod-difference was 0.04 cm ± 0.2/0.04 ± 0.6 for limb length/axis. Interreader-ICC for limb length/axis was 0.999/0.991 on micro-dose and 0.999/0.987 on low-dose BPR. Interreader-ICC for micro-dose was 0.879/0.826 for femoral/tibial torsion, for low-dose BPR was 0.924/0.909. Mean interreader-differences on micro-dose/low-dose BPR were 3 (0-13 )/2 (0 -12 ) for femoral and 4 (0-18 )/3 (0 -10 ) for tibial torsion. Mean intermethod-difference was -0.1 ± 5.0/-0.4 ± 2.9 for femoral/tibial torsion. Mean dose-area-product was significantly lower (9.9 times;p < 0.001) for micro-dose BPR. 2D-and 3D-measurements of lower limbs based on micro-dose BPR are reliable and provide a 10-times lower radiation dose. (orig.)

  10. Conservation laws for two (2 + 1)-dimensional differential-difference systems

    International Nuclear Information System (INIS)

    Yu Guofu; Tam, H.-W.

    2006-01-01

    Two integrable differential-difference equations are considered. One is derived from the discrete BKP equation and the other is a symmetric (2 + 1)-dimensional Lotka-Volterra equation. An infinite number of conservation laws for the two differential-difference equations are deduced

  11. A companion matrix for 2-D polynomials

    International Nuclear Information System (INIS)

    Boudellioua, M.S.

    1995-08-01

    In this paper, a matrix form analogous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of 2-D linear systems theory. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. (author). 6 refs

  12. Three-dimensional versus two-dimensional sonography of the temporomandibular joint in comparison to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Landes, Constantin A. [Oral, Maxillofacial and Plastic Facial Surgery, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: c.landes@lycos.com; Goral, Wojciech A. [Oral, Maxillofacial and Plastic Facial Surgery, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: w.goral@gmx.de; Sader, Robert [Oral, Maxillofacial and Plastic Facial Surgery, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: r.sader@em.uni-frankfurt.de; Mack, Martin G. [Department of Diagnostic and Interventional Radiology, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: martinmack@arcor.de

    2007-02-15

    Aim: To compare clinical feasibility of static two-dimensional (2D) to three-dimensional (3D) sonography of the temporomandibular joint (TMJ) in assessment of disk dislocation and joint degeneration compared to magnetic resonance imaging (MRI). Method: Thirty-three patients, 66 TMJ were prospectively sonographed 2D and 3D (8-12.5 MHz step motor scan), in occlusion and maximum opening with a probe position parallel inferior to the zygomatic arch. Axial 2D images were judged independent from the 3D scans; 3D volumes were cut axial, sagittal, frontal and rotated in real-time. Disk position and joint degeneration were assessed and compared to a subsequent MRI examination. Results: The specific appearance of the disk was hypoechogenic overlying a hyperechogenic condyle in axial (2D) or sagittal and frontal (3D) viewing. Specificity of 2D sonography for disk dislocation was 63%, sensitivity 58%, accuracy 64%, positive predictive value 46%, negative predictive value 73%; for joint degeneration synonymously 59/68/61/38/83%. 3D sonography for disk displacement reached synonymously 68/60/69/51/76%, for joint degeneration 75/65/73/48/86%. 2D sonographic diagnoses of disk dislocation in the closed mouth position and of joint degeneration showed significantly different results from the expected values (MRI) in {chi} {sup 2} testing; 3D diagnoses of disk dislocation in closed mouth position, of joint degeneration, 2D and 3D diagnoses in open mouth position were nonsignificant. Conclusions: Acceptable was the overall negative predictive value, as specificity and accuracy for joint degeneration in 3D. 3D appears superior diagnosing disk dislocation in closed mouth position as for overall joint degeneration. Sensitivity, accuracy and positive predictive value will have to ameliorate with future equipment of higher resolution in real-time 2D and 3D, if sonographic screening shall be clinically applied prior to MRI.

  13. Two-dimensional MoS2-graphene hybrid nanosheets for high gravimetric and volumetric lithium storage

    Science.gov (United States)

    Deng, Yakai; Ding, Lixin; Liu, Qixing; Zhan, Liang; Wang, Yanli; Yang, Shubin

    2018-04-01

    Two-dimensional (2D) MoS2-graphene (MoS2-G) hybrid is fabricated simultaneously and scalablely with an efficient electrochemical exfoliation approach from the combined bulk MoS2-graphite wafer. The as-prepared 2D MoS2-G hybrid is tightly covered with each other with lateral sizes of 600 nm to few micrometers and can be directly assembled to flexible films for lithium storage. When used as anode material for lithium ion battery, the resultant MoS2-G hybrid film exhibits both high gravimetric (750 mA h g-1 at 50 mA g-1) and volumetric capacities (1200 mA h cm-3 at 0.1 mA cm-2). Such excellent electrochemical performance should attributed to the unique 2D structure and good conductive graphene network, which not only facilitates the diffusion of lithium ions, but also improves the fast transfer of electrons, satisfying the kinetics requirements for rapid lithium storage.

  14. Atomically thin two-dimensional organic-inorganic hybrid perovskites

    Science.gov (United States)

    Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong

    2015-09-01

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.

  15. Two dimensional analytical model for a reconfigurable field effect transistor

    Science.gov (United States)

    Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.

    2018-02-01

    This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.

  16. Buckled two-dimensional Xene sheets.

    Science.gov (United States)

    Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji

    2017-02-01

    Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.

  17. Photonic Structure-Integrated Two-Dimensional Material Optoelectronics

    Directory of Open Access Journals (Sweden)

    Tianjiao Wang

    2016-12-01

    Full Text Available The rapid development and unique properties of two-dimensional (2D materials, such as graphene, phosphorene and transition metal dichalcogenides enable them to become intriguing candidates for future optoelectronic applications. To maximize the potential of 2D material-based optoelectronics, various photonic structures are integrated to form photonic structure/2D material hybrid systems so that the device performance can be manipulated in controllable ways. Here, we first introduce the photocurrent-generation mechanisms of 2D material-based optoelectronics and their performance. We then offer an overview and evaluation of the state-of-the-art of hybrid systems, where 2D material optoelectronics are integrated with photonic structures, especially plasmonic nanostructures, photonic waveguides and crystals. By combining with those photonic structures, the performance of 2D material optoelectronics can be further enhanced, and on the other side, a high-performance modulator can be achieved by electrostatically tuning 2D materials. Finally, 2D material-based photodetector can also become an efficient probe to learn the light-matter interactions of photonic structures. Those hybrid systems combine the advantages of 2D materials and photonic structures, providing further capacity for high-performance optoelectronics.

  18. Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates

    KAUST Repository

    Wang, Zhuo

    2018-01-04

    Monolayer two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have a very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150-nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20-nm-wide gold trenches on flexible substrates, reporting ~7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 104 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 nm to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such fully open, flat and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

  19. Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates

    KAUST Repository

    Wang, Zhuo; Dong, Zhaogang; Zhu, Hai; Jin, Lei; Chiu, Ming-Hui; Li, Lain-Jong; Xu, Qing-Hua; Eda, Goki; Maier, Stefan A.; Wee, Andrew T. S.; Qiu, Cheng-Wei; Yang, Joel K.W.

    2018-01-01

    Monolayer two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have a very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150-nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20-nm-wide gold trenches on flexible substrates, reporting ~7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 104 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 nm to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such fully open, flat and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

  20. Tuning spin transport across two-dimensional organometallic junctions

    Science.gov (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping

    2018-01-01

    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.